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Water quality management is a critical aspect of environmental sustainability, particularly in arid 
and semi-arid regions such as Iran where water scarcity is compounded by quality degradation. This 
study delves into the causal relationships influencing water quality, focusing on Total Dissolved Solids 
(TDS) as a primary indicator in the Karkheh River, southwest Iran. Utilizing a comprehensive dataset 
spanning 50 years (1968–2018), this research integrates Machine Learning (ML) techniques to examine 
correlations and infer causality among multiple parameters, including flow rate (Q), Sodium (Na+), 
Magnesium (Mg2+), Calcium (Ca2+), Chloride (Cl−), Sulfate (SO4

2−), Bicarbonates (HCO3
−), and pH. 

For modeling the causation, the “Back door linear regression” approach has been considered which 
establishes a stable and interpretable framework in causal inference by focusing on clear assumptions. 
Predictive modeling was used to show the difference between correlation and causation along with 
interpretability modeling to make the predictive model transparent. Predictive modeling does not 
report the causality among the variables as it showed Mg is not contributing to the target (TDS) while 
the findings reveal that TDS is predominantly positive influenced by Mg, Na, Cl, Ca and SO4, with 
HCO3 and pH exerting negative (inverse) effects. Unlike correlations, causal relationships demonstrate 
directional and often unequal influences, highlighting Mg as a critical driver of TDS levels. This novel 
application of ML-based causal inference in water quality research provides a cost-effective and time-
efficient alternative to traditional experimental methods. The results underscore the potential of 
ML-driven causal analysis to guide water resource management and policy-making. By identifying the 
key drivers of TDS, this study proposes targeted interventions to mitigate water quality deterioration. 
Moreover, the insights gained lay the foundation for developing early warning systems, ensuring 
proactive and sustainable water quality management in similar hydrological contexts.
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Freshwater sources play a crucial role in maintaining the health and sustainable development of societies. 
Beyond mere quantity, the quality of water is equally important1. Ensuring safe access to drinking water yields 
tangible health benefits. Efforts should be directed toward achieving water safety as, major public health 
concern2, to the greatest extent possible (WHO 20113). Surface waters, often scarce with high seasonality, face 
contamination challenges4. In recent decades, global warming, socio-economic growth, and population increase 
have intensified water resource utilization. Arid or semi-arid nations like Iran confront significant water quantity 
and quality issue5–7. Surface water serves as a vital global freshwater resource, and its deficiency or compromised 
quality can impact drinking water accessibility and environmental and economic development8,9.

Monitoring (river) water is essential for assessing its quality and pollution levels, which is vital for protecting 
both human health and the environment. Ensuring water quality requires ongoing surveillance of water 
resources10. Electrical Conductivity (EC) and Total Dissolved Solids (TDS) serve as vital indicators for assessing 
water quality. Elevated TDS levels have been linked to adverse health effects, including gastrointestinal distress 
and organ dysfunction. Similarly, discrepancies in EC values may signal the presence of harmful substances, 
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prompting thorough investigation and remediation. These indicators play a pivotal role in safeguarding public 
health by upholding water purity standards11–13.

EC reflects the concentration of dissolved substances and minerals8. TDS encompass inorganic salts like 
sodium (Na+1), magnesium (Mg+2), calcium (Ca+2), and potassium (K +1) as cations, along with chloride (Cl−1), 
sulfate (SO4

−2), nitrates (NO−3), bicarbonates (HCO3
−1) as anions, and other dissolved organic particles14,15. 

According to the World Health Organization (WHO) guidelines for water quality, acceptable TDS limits are 
600 mg/l, while permissible limits are 1000 mg/l. Similarly, EC values should not exceed 500 µs/cm (acceptable) 
or 1500 µs/cm (permissible) to avoid adverse effects on human health.

Process-based models, such as numerical or analytical models, have been effective in simulating 
hydrodynamics and water quality in surface water systems16,17. However, their complexity in terms of 
application, data requirements, and simulation time, limits their use in managing drinking water sources18–21. 
Today, Machine Learning (ML) models as a subset of Artificial Intelligence (AI) have made significant strides in 
managing and monitoring water quality and hydrological processing22. ML algorithms analyze data to extract 
patterns and predict new information23. With the availability of large datasets, improved algorithms, and 
increased computing power, ML has gained widespread adoption in different fields like water and environmental 
science and engineering24–29. Its high accuracy, customization, and ease of development contribute to accurate 
assessment and prediction of complex environmental conditions, benefiting water resource management and 
water quality monitoring30–39.

Causal relationships in ML are very newfound feature within AI, requiring substantial research and 
development. Causal relations recognizes that mere correlations between variables are insufficient to establish 
causal relationships. While ML methods excel at predicting outcomes, they often fall short in understanding 
causality. Causality research can be broadly categorized into two main branches: causal discovery and causal 
inference. The former aims to extract causal knowledge directly from observational data, while the latter 
estimates the impact resulting from changes in specific variables on an outcome of interest40. Causal discovery 
methods have garnered significant attention in hydrometeorological research. Notably, they have been applied 
to understand the connections between different variables from observed data41,42. The four main categories of 
causal discovery methods include: Granger Causality (GC), Graph-Based Algorithms (e.g., the PC algorithm), 
Convergent Cross Mapping (CCM) and Structural Causal Models (SCM). These methods are well documented 
in the review study for climate research43 and hydrometeorological research44. Among these methods, GC stands 
out as the first practical approach for testing causality and, its widespread use in hydrometeorological research 
is attributed to its simplicity and strong performance in assessing causal interactions45. Causal inference models 
include linear and non-linear models in ML that typically rely on theory and prior knowledge to guide analyses, 
and it is not commonly associated with prediction modeling. However, modern causal inference methods, 
based on counterfactual or potential outcomes approaches, often involve intermediate processing steps before 
reaching the final estimation46. Previously mentioned, in the domain of exploration of causal relationships in 
ML, minimal research has been conducted across various scientific subjects, particularly in the context of water 
resources management and assessment (both quantitatively and qualitatively). Below, we highlight some of these 
studies.

Zhang et al.47, developed a grid-based interpretable ML approach to examine the spatial and temporal 
effects on water quality, focusing on nitrogen, phosphorus, and chemical oxygen demand in the Minjiang River 
Watershed, China. They discovered that reservoir water quality is more sensitive to environmental changes than 
stream water, with soil moisture and urbanization influencing pollutant distribution and point source pollution 
per inhabitant decreasing with urbanization. Han et al.48 examined the spatial and temporal changes in Na, 
K, Mg, Cl, SO4 and HCO3 in the Yellow River including. Their study identified nutrient sources and aided in 
forming strategies to control nutrient flow. The research divided the river into three regions showing varied 
ion and nutrient concentrations due to natural and human influences. Key findings revealed that phosphorus 
transport is rain erosion-driven, nitrogen sources vary seasonally, and six ions were identified as pollution 
tracers, enhancing hydro chemical analysis application in water management. Zavareh et al.49 delved into 
the connections among stream water quality indicators, hydroclimatic variables, and land characteristics to 
enhance water quality protection strategies. Principal Component and Granger causality analyses were applied 
to data gathered from ten eastern United States watersheds, revealing consistent patterns across locations and 
emphasizing the influence of factors like watershed size and land use on causal relationships. Mohammadi et 
al.50 investigated the relationship between water quality variables and catchment characteristics in Mazandaran 
Province, Iran. Their results revealed strong associations between variables like SAR, TDS, EC, Na, and Cl with 
geological features, while other variables showed connections with rainfall, land cover, and area.

In several previous studies, Adaptive Neuro-Fuzzy Inference System (ANFIS) demonstrated high efficiency in 
predicting water quality variables. For example, Karthikeyan et al.51 used Spearman’s rank correlations and found 
significant associations among pH, EC, Ca, HCO3, Mg, SO4, Na, K, and Cl, suggesting anthropogenic influences 
and sanitation issues impacting water quality. According to the result, Principal Component Analysis (PCA) 
highlighted strong relationships between Cl, K, Mg, dissolved solids, aiding in the assessment of hydro chemical 
characteristics in the Cauvery River, Tamil Nadu, Indial. Golekar et al.52 assessed the geochemical composition 
of surface and groundwater samples from 22 locations in Warnanagar, Maharashtra, India, focusing on key 
variables like pH, EC, and ion concentrations. Their results indicated elevated levels of salinity and hardness in 
the water, suggesting potential risks for drinking and irrigation purposes. He (2016) proposed a novel method 
for evaluating the causal relationship between water quality variables. In this method, a multivariate Gaussian 
mixture model was proposed to analyze joint distributions, providing insights into statistical dependence. 
Demonstrated using Bow River data in Canada, the approach offered a quantitative understanding of how 
variables influence each other in complex environments. Singh and Tripathi53 utilized Factor analysis to 
understand the relationships among hydro chemical variables in groundwater samples from NOIDA, part of 

Scientific Reports |         (2025) 15:2798 2| https://doi.org/10.1038/s41598-025-85908-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the National Capital Region (NCR) of Delhi. Three factors, representing salinity, alkalinity, and pollution, were 
identified, explaining 79.3% of the total variance. The study emphasized importance of multivariate analysis in 
delineating areas affected by salinization, alkalinity, and pollution for effective groundwater management through 
techniques like rainwater harvesting and water softening. Bajpayee et al.54 employed Pearson correlation matrix 
and multiple linear regression analysis on 58 groundwater samples collected from the northeastern region of 
Bankura District, West Bengal, India, during pre and post monsoon seasons in 2009–2010. The analysis revealed 
strong correlations between TDS and EC with various groundwater constituents, indicating their significance in 
assessing water quality. Raju55 employed correlation and regression analyses to assess seasonal variations in well 
water quality parameters in the upper Gunjanaeru River basin, South India. Key findings indicated significant 
positive correlations between Specific Electrical Conductance (SEC) and most parameters, while multiple linear 
regression models highlighted the influence of variables like HCO3, SO4, and Cl on SEC during post- and pre-
monsoon seasons. To date, a systematic causal inference study has not been conducted for the Karkheh River, 
Iran, that can be generalized to other rivers.

Researchers may now utilize these state-of-the-art techniques such as ML and Deep Learning (DL) to identify 
patterns in the dataset thanks to the significant advancements in ML algorithms and processing capacity56,57. 
There may be recurring patterns in any dataset that are repeatable and reproducible. One of the core concepts 
of AI is its capacity to reproduce patterns from a dataset without explicit instructions58,59. Giving the causal 
inference elaboration using the relevant examples, in most cases, the goal of causal inference in water quality 
research is examining how a given outcome is impacted by the quality of the water. For instance, there are two 
separate sources of water, and their chemical compositions are different. While the other source has a lower 
pH and a higher concentration of SO4, the first source has a higher pH level and a lower concentration of 
SO4. TDS, SO4 and pH concentrations are tested in each water source in order to determine how these water 
quality factors affect the final result. This implies that the variables of water quality (pH and SO4) and the result 
(TDS) may be causally related60. In this work, as it has been mentioned earlier, we conduct causal inference 
analysis to understand the causal relationship between the variables and TDS as an important and widely 
used and measured water quality indicator. To this end, it is not a matter of using empirical or experimental 
methodologies but rather, we use advance ML algorithms to have insight into this causation between variables 
and the outcome which in this case is TDS. By our proposed methodology, instead of running time-consuming 
and expensive experiments, we are going to show it is possible to use AI to go through the collected data and 
try to find the causation. This way of employing ML is new in the field and provides a new horizon to water 
quality data assessment and policy development. In addition to the introduction of a new methodology for 
understanding the causal relationship between the variables in water quality application, the novelty of this 
study lies in different reasons. For instance, it provides the knowledge-based to design the mitigation strategies 
by policy and decision makers based on the water quality condition through answering “What-if ” questions. 
As an example, the question like “What would happen to TDS if Mg level reduced?” Also, it can be integrated 
with other fields such as socio-economic fields. Another important message of this work is the emphasis on the 
differences between causation and correlation by illustrating how they can be mistakenly used interchangeably. 
On the other hand, the case study chosen for this research, is located in semi-arid area with variability water flow 
and water scarcity across the region which makes it good to be exemplified in other similar regions. Facing the 
“Bias” is highly crucial in a data-based analysis. To this end, data scientists and researchers in fields where ML 
algorithms are applicable have sought to develop strategies to mitigate overfitting and bias. One of the strategies, 
is the interpretability modeling and cross check the results with domain expertise and the literature to ensure 
about the results. In this study, these two approaches have been taken into consideration.

Material and methods
Study area
A prevalent challenge encountered in hydro-environmental research is the scarcity of consistent and pertinent 
data. To circumvent this limitation, the Karkheh River was meticulously chosen as the focal point of this 
investigation due to its extensive data record spanning over half a century. This lengthy dataset is indispensable 
for comprehensive studies in this field. Moreover, the Karkheh River presents an apt case for examining the 
implications of fluctuating historical water quality conditions influenced by climate change, urban development, 
and anthropogenic activities61,62.

Stretching approximately 950 km, the Karkheh River ranks as the third longest river in Iran, coursing from 
the western to southwestern regions of the nation. Originating from the Zagros Mountains in western Iran, the 
river eventually empties into the Persian Gulf via the Hurolazim wetland, situated at the Iran-Iraq border. In a 
predominantly arid to semi-arid climatic zone, the Karkheh River, with an average flow rate of 177.8 m3/s63,64 
and an expansive catchment area of approximately 51,912.3 Km2, holds significant hydrological importance. 
This riverine system is characterized by a climate marked by chilly winters and protracted, scorching summers. 
The region receives an average annual precipitation of close to 360  mm. Concurrently, the average annual 
evaporation in the vicinity of the river reaches approximately 3200 mm. The climatic conditions are further 
defined by an average temperature of 19 °C and a relative humidity level averaging at 37% from the early 1990s 
to around 202065. Elevational gradients along the Karkheh River are notably diverse, ranging from an altitude 
of about 3000 m above sea level down to 500 m66. Socio-economically, the Karkheh River exerts a considerable 
influence on the regions it traverses, catering to various needs such as irrigation, potable water supply, and 
industrial applications. The geographical scope of this study is illustrated in Fig. 1, which delineates the study 
area’s location and the trajectory of the Karkheh River within Khuzestan province67.
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Dara preparation
Data pertaining to both qualitative and quantitative parameters gathered in three hydrometric stations on 
Karkheh River has been obtained from the Iran Water Resources Management Company. These data were 
sampled monthly during 1968–2018. These stations are strategically located at proper distances along the river:

• Payepol station at coordinates 48° 08′ E and 32° 24′ N.
• Abdul Khan station at coordinates 48° 21′ E and 31° 51′ N.
• Hamidiyeh station at coordinates 48° 25′ E and 31° 29′ N.

To address data gaps, interpolation techniques were applied using the nearest time periods of measured values 
(employing a linear regression). Additionally, statistical methods from ML were used to assess the normal 
distribution of all data. Table 1 presents the quality parameters of the Karkheh River, comparing them to the 
acceptable and permissible values according to WHO guidelines. The data for this study has been provided by 
the local authorities that can be made available upon request.

Methodology
This study aims at showing the differences between the causation and correlation. The first step is using Pearson 
coefficient correlation and using an interpretable predictive algorithm to see the contributions of the variables 
in the prediction. The next step, is using causal inference modeling (in this case, “back door linear regression”) 
to realize the causal effect of different water quality stressor. The last step is comparing the results between 
correlation-based and predictive modeling, and a causal modeling. The research flowchart is presented in Fig. 2.

Signal analysis
In the context of causal inference, “Temporal dynamics” makes an important contribution to the causal 
relationships between variables and the outcome68–71. It is important to check whether or not, the temporal 
dynamics exist and if so, how stable the signal is. This analysis illustrates the necessity of using non-linear causal 
model or linear causal model. For this study, as it has been mentioned before, the causal method does not 
inherently and explicitly consider the temporal dynamics however it is important to make sure that the outcome 

Fig. 1. Study area and drainage network of the Karkheh River in Khuzestan Province.
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would be meaningful. To address this, continuous wavelet transform has been employed to check if there is a 
significant temporal dynamic in the variables. In wavelet transform analysis, there are two types of waves: Father 
waves and Mother waves. Whereas the second part is the mother part of the decomposition, which is useful for 
comprehending the signals’ details, the first part is the father wave and is good at capturing the approximate 
smoothness of the signal, even at low frequencies72–75 The result of this decomposition is “Trend”, “Seasonality”, 
and “Residual”. For this study, to check the decomposition condition, “Haar” wavelet was considered. In 
principle, Haar wavelet, that is a mother wavelet, has capability of capturing the details of the signals since, unlike 
other wavelets that can be difficult to compute, the Haar wavelet is easy to generate and can be prepared using 
basic arithmetic operations76,77. The Haar wavelet’s multi-scale lossless rapid signal decomposition is its primary 
benefit78. This approach generates a general framework for the future studies using sophisticated signal analysis.

Causality inference and correlation in ML
In a simple form of understanding the causal inference, it aims for discovering the causal-effect relationships 
between variables. In this context, the main goal of ML algorithm is not to predict the outcomes but to 
identify how changing one variable would cause a change in the outcome or another variable. For the sake of 
clarity, let assume X is the effect when Y happens so in structural equation modelling or graph-based models 
Y = β0 + β1X + ε where β1 is the causal effect of X on Y79. Also, in terms of confounding effect, one variable 

Fig. 2. Flowchart of the research methodology.

 

Parameter

Value

Average of three stations

Max acceptable value (WHO) Max allowed value (WHO)Min. Max. Mean Standard Deviation

TDS (mg/l) 344.3 1601 857.2 231.5 600 1000

EC (µs/cm) 613 2446 1316.4 360.1 500 1500

Na (mg/l) 1.2 14.2 5.6 2.5 200

Mg (mg/l) 1 5 2.7 0.74 50 150

Ca (mg/l) 2.5 12.5 5 1.3 75 200

pH (µs/cm) 5.3 8.5 7.9 0.26 6.5–8.5

Cl (mg/l) 0.95 14.7 5.5 2.5 200 600

SO4 (mg/l) 1.7 11.7 5.1 1.7 200 400

HCO3 (mg/l) 1.1 4 2.7 0.43 150

Table 1. The long-term statistics of the monthly water quality parameters of the Karkheh River compared to 
the WHO standard values for drinking.
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might not affect directly on the outcome but a combination of that variable with another variable might make a 
new variable that may significantly contributes to the outcome. Exploring this confounding effect is also one of 
the aims of studying causality and causal inference. In a mathematical form Y = β0 + β1X + β2Z + ε where 
Z can bias the estimate of the causal effect. For example, pH and HCO3, and Mg might affect the concentration 
of TDS so mathematically we need to adjust the model.

The complex relationship between different chemical components and water pollution selected indicators 
(TDS/EC in this study) and the climate change is still unknown, even after previous studies using different 
approaches80–83, For decades, the causal linkage between those components (variables) and water quality indices 
in rivers has drawn researchers’ attention82,84. Employing both experimental methodologies, empirical studies 
and numerical modelling, yet they continue to explore the complexities behind the water quality indices, pollution 
initiation and development, and how other big influencers such as climate change causally affect them85,86. 
While experiments offer tight control, guaranteeing internal validities, they inherently lack of comprehensive 
representation of natural systems87. In these environments, confounding variables and counterfactuals, the 
interplay of which cannot be fully captured in the experiments, emerge as significant limitations88. To untangle 
this complexity, this study suggests using data-driven models which in this case is the causal inference model. ML 
algorithms and causal inference techniques, in particular offer a powerful alternative, enabling the simultaneous 
investigation of all relevant factors, including confounders and counterfactuals that would be prohibitively time-
consuming or expensive to explore experimentally89.

Correlation and causality inference may be considered the same or used interchangeably, which is a mistake. 
Correlation assessment has also been done using Pearson correlation coefficient.

 
ρXY = COV (X, Y )

σXσY
 (1)

where ρXY  is the Pearson’s coefficient, COV (X, Y ) is the covariance between two generic variables X and Y, and 
σ is standard deviation of the two variables. The value of correlation coefficient lies between − 1 and + 1. Values 
near + 1 indicate the presence of a strong positive relation between variables, whereas the values approaching − 1 
illustrate strong negative relation between variables20. In this work, we have taken steps further as it is obvious 
there is a correlation between water quality variables. This study aims at understanding how the selected water 
quality variables, individually or together, causally influences the target variable (TDS) and each other.

In order to deviate from traditional statistical analysis toward causal analysis of multivariate data, a paradigmatic 
shift needs to be made, as this study attempts to emphasize. The assumptions underlying all causal inferences, 
the languages employed to express those assumptions, the conditionality of all causal and counterfactual claims, 
and the techniques devised for evaluating them are all given particular attention. This study’s specific objective 
is to better understand the causative mechanism underlying how chemical component descriptors affect TDS in 
water by applying ML models and causal inference techniques. There are different causal inference approaches 
like structure-based causal inference modelling or graph-based modelling. For this study, we use Directed 
Acyclic Graphs (DAG), as a graph-based causal model, to discuss the causal paths.

The model has been employed is called “Back Door Linear Regression” that primarily relies on satisfying 
the backdoor criterion to estimate causal inference. This method highlights that the backdoor linear regression 
assumes static causal relationships. In other words, this method identifies how many sets of variables need to 
be adjusted in order to identify causal effects from observational data. Also, this model, establishes a stable and 
interpretable framework to understand the causal relationship between variables such as pH, HCO3, Mg, Na 
on the outcome, which is TDS without making the problem complex to be able to analyse. This is the first step 
in comprehending the causal effect. The insights gained though this study provides a foundation for exploring 
application of more advanced causal modelling techniques. Also, the models remove that spurious association, 
ensuring that the causal effect that is estimated is a true causal relationship. In the model employed for identifying 
the potential causal relationships among the variables, first the causal graph was discovered using causal graph 
visualization. An iterative analysis was adopted over each feature (pH, HCO3, Cl, SO4, K, Ca, Mg, Na) to find 
causal influences on the outcome which is TDS here. This method aligns with the causal discovery methods that 
systematically examine the causal relationships. Then the causal effect was estimated using linear regression and 
finally the causal effect was calculated. In this method (which has been developed using DoWhy library) the 
causal model assumes a linear relationship of the form:

 Y = α + βX + ε (2)

where Y is the dependent variable, X is the independent variable and α and β are the parameters to be estimated 
and ε is the error term. To elaborate on the equation, X has a causal effect on Y, represented by β which captures 
how much Y changes when X changes. Statistical inference was done under two assumptions: Confidence 
intervals, that provide a range within which the true value of β is likely to lie, and Test Stat Significance which 
involves hypothesis testing to determine whether the estimated β is statistically significantly different from zero.

There are key assumptions in this method that have been taken into considerations:

• Linearity: The approach assumes a linear relationship between treatment and the outcome.
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• Causal interpretation: The estimated β is interpreted as the causal effect under the assumption that the speci-
fied causal model correctly identifies and adjusts for confounders.

• Adjustment for the confounders: The effectiveness of the causal inference depends on the correctly specifying 
and adjusting for the confounding variables.

Interpretability modeling
As it was mentioned earlier, in order to avoid the potential bias, there are different approaches like using 
interpretability modeling or the causal method that also inherently is interpretable. We have used interpretability 
modeling separately which enlightens the contribution of each variable in the target, however, the back door linear 
egression, that has been used, has an interpretable result due to the nature of the method, and the interpretability 
here has just been used to show the differences between the predictive models compared to causal models. To 
this end, the SAHP value method has been taken into consideration. This method can make the process inside 
the model (black box) transparent for understanding the variables contributions to the predictions. This will be 
helpful for assisting policymakers in ensuring that mitigation mechanisms are in place. The SAHP value for each 
feature indicates its average marginal contribution to the prediction, considering the order in which it is added 
the influence of other features90–92. The simplified representation of SAHP value is written bellow:

 SHAP (feature) = average(allcoalitions){weight (coalition) × marginalcontribution(feature, coalition)} (3)

where “coalition” refers to a specific combination of features (variables) in a dataset. In the context of SAHP value, 
the concept of coalition from game theory, in which, coalition means a group of players that are collaborating 
with each other to reach the target. In order to produce the result regarding the SAHP value and interpretability 
in predictive modelling, a well know machine learning model called “XGBoost” which is an ensemble learning 
algorithm, was employed. The model was used to predict the TDS level and then SHAP value was used to see 
the importance of each variable in the prediction. To elaborate on the XGBoost model, it is gradient boosting 
model that tries to find the local optima through boosting regression using different criterion. The model was 
just employed to have the interpretability results from a predictive model.

Results and discussion
In this section we present the results which match state of the art methods. Here we compared the differences 
between terminologies of correlation and causation which enlightens the importance of using this new 
methodology for further investigations in the field. Planned comparison revealed how different these two are. A 
novel finding is the use of this methodology for policy makers to decided how to mitigate environmental crisis 
in future based on the available data and key variables to design an early warning system. For the analysis which 
will be presented in this part, the outcome was TDS and the treatments were the other input variables such as 
HCO3, Cl, SO4, K, Ca, Mg, Na. These treatments also were considered as outcome for other treatments to see 
how they may influence each other. What is presented in this work does not mean that there is no need for the 
experimental works as they are essential and vital for developments yet expensive and timely demanding, but 
rather, this work suggests another way of realizing the factors’ influences to design a new pathway for the future 
studies and finding the right directions. Since this is very important to make sure that the causal pathways 
which will be found out through causal inference are consistent with experiments, it is vital to ensure about the 
validation and statistical robustness of the results. The causal effect values have been checked using P-value in 
addition to the experimental literatures that have shown the causal pathways of different variables on the TDS 
level.

Signal decomposition
The main aim of this study is to establish a baseline understanding about causal relationship between the 
variables without making the whole study complicated. Thus, it is essential to ensure about the temporal 
dynamics through seasonality, trend and the residual to make sure if there is temporal dynamics and if there is, 
it does not causally affect the outcome. Although there seems to have a long-term trend and seasonal variation 
in data but the residuals from the decomposition appear relatively stable across the time, which indicates while 
temporal dynamics exists, but the relationship can still be meaningfully approximated using back door linear 
regression at this stage.

Figure 3 shows analysis of TDS signals using Haar wavelets, focusing on five levels of detail and approximation, 
and “s” represents the real signal, a5 refers the approximation, and d1 to d5 are the details of the decomposition. 
Decomposing means that, it is possible to reconstruct the signal using approximation(s) and details. As can be 
seen in this figure, because of smaller magnitudes, the short-term variations (higher-frequency components 
or residuals) are less likely to significantly alter the overall causal links. In other words, signal decomposition 
illustrates that the trend is comparatively steady and smooth. As it is shown, although it shows the existence of 
some level of temporal dynamics, but it is enough stable to use linear regression for this stage.

Interpretability on the predictive modeling
As it was mentioned earlier, the predictive models are meant for the prediction of the target which in this case is 
TDS level. This prediction is done through data analysis and the correlation that exists among variables or pair of 
variables that in turn causes to have the prediction with different accuracy. To show the differences between the 
predictive modeling and causation modeling, Fig. 4 shows the importance and contribution of each variable to 
the target. To read the SHAP value figures, the middle column and the scarcity are the main important items to 
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be considered. The more variable is scattered compared to the middle column, the significant it is and vice versa, 
the more stick to the middle column, less significant contribute to the prediction. As can be in the figure, Na, 
SO4, Cl, and Ca respectively shows the most significant contribution to the prediction and the four variables—
Mg, HCO3, pH, and Q—do not significantly affect TDS.

Causality and correlation mapping
Payepol station
In Fig. 5, we present correlation and causality maps for various variables in relation to TDS and each other, based 
on linear relationships observed at the Payepol station. According to the figure, the following variables exhibit 
the highest positive correlation with TDS:

• Na with a correlation coefficient of + 0.8.
• Cl with a correlation coefficient of + 0.8.
• SO4 with a correlation coefficient of + 0.7.
• Ca with a correlation coefficient of + 0.5.
• Mg with a correlation coefficient of + 0.5.

Conversely, the following variables show an inverse and weaker correlation (compared to positive values) with 
TDS:

• Q with a correlation coefficient of − 0.4.
• HCO3 with a correlation coefficient of − 0.2.
• pH with a correlation coefficient of − 0.1.

The same trends are evident in the causality graph. Among the positively correlated variables, Mg (+ 3.5), Na 
(+ 1.72), SO4 (+ 1.71), Cl (+ 1.65) and Ca (+ 1.39) have the greatest impact on TDS. HCO3 (−  1.93) and pH 
(− 1.64) have the most negative impact on TDS.

Fig. 3. Signal analysis of TDS (s) using Haar wavelet with 5 levels of details (d1, …, d5) and approximation (a5).

 

Scientific Reports |         (2025) 15:2798 8| https://doi.org/10.1038/s41598-025-85908-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The correlation between variables is bidirectional, but it does not necessarily imply causality. Let’s consider 
an example: the correlation coefficient between Mg and TDS is + 0.5. Similarly, the correlation between TDS and 
Mg is also + 0.5. However, when we examine the causality graph, it becomes evident that TDS is influenced by the 
amount of Mg, but the reverse relationship is not necessarily true. This apparent contradiction can be understood 
by considering the definition of TDS, which represents the sum of various cations and anions. Intuitively, one 
might expect that TDS is caused by Mg. However, exploring the relationships among other variables (excluding 
TDS) and their mutual influences is a complex task that often requires laboratory experience. In such cases, 
causal relationships become crucial and can partially replace experimental relationships. For instance, let’s look 
at the correlation coefficient between Mg and Cl, which is + 0.5. The causality graph reveals that Mg has a positive 
effect on Cl, but Cl has only a negligible effect on Mg. Similarly, pH negatively affects HCO3, but the reverse 
effect is insignificant (with an R2 value of − 0.2). The remaining variables correlation and causal relationships can 
be explored in Fig. 5. Examining causality goes beyond assessing correlation strength, and the key distinction 
lies in understanding how variables relate to each other. In essence, this work aims to uncover the unique and 
specific causal relationships among qualitative variables (especially variables other than TDS). Karthikeyan et 
al.51 experimentally illustrated that Mg has caused an increase in the TDS level which proves the causal pathway 
that has been identified through causal inference model.

Fig. 5. (A) Correlation heat map matrix and (B) causality map in the Payepol station (red lines: positive effect, 
blue lines: negative effect, gray lines: insignificant effects, thicker lines: stronger effects).

 

Fig. 4. SHAP value for the predictive modeling based on XGBoost algorithm.
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The impact of the analyzed variables on TDS is illustrated in Fig.  6 below. According to this figure, Mg, 
Na, SO4, Cl, and Ca have the most positive influence on TDS, while HCO3 and pH have the most negative 
influence on TDS, respectively. As it was proven in the chemical literature, we were expecting to see Mg key 
role in determining TDS condition. From the casual graph shown in the Figs. 5 and 6, in Payepol station, Mg 
play a critical role in influencing TDS. Our results by causal inference in ML cast a new light on the way of 
understanding how influential factors are affecting the outcome. As it has been mentioned and it was shown in 
the Fig. 6, Mg causally influences an increase in the TDS level while it was not seen in the SHAP value (Fig. 4) as 
an important role player in the prediction.

Abdul Khan station
Figure 7 illustrates the heat map matrix and causal relationship map for the Abdul Khan station. Accordingly, 
TDS has a strong positive correlation with Na (+ 0.9), highlighting that sodium is a significant contributor to 
the TDS in the water. Similarly, the correlation between TDS and Cl is also notably high (+ 0.9), indicating 
that chloride ions are major constituents of the dissolved solids. There is a significant positive correlation 
(+ 0.8) between TDS and SO4, suggesting that sulfate ions are prevalent in the dissolved solids measured in the 
water. The variables pH (+ 0.1), Ca (+ 0.5), and Mg (+ 0.7) exhibit the weakest positive correlations with TDS. 
Conversely, the variables Q and HCO3 show the strongest inverse correlations with TDS, with R2 values of − 0.6 
and − 0.3, respectively. Other notable correlations include a strong positive relationship between Na and Cl 
(+ 1.0), Na and SO4 (+ 0.8), and Cl and SO4 (+ 0.6). These correlations imply that these ions often coexist in the 
water, contributing collectively to the TDS.

The causality graph provides a more nuanced understanding of the directional influence among variables. 
It allows us to discern not just the correlation but the causative impact of one variable on another. The graph 

Fig. 7. Correlation heat map matrix (A) and causality map (B) in the Abdul Khan station.

 

Fig. 6. The influence of the examined variables on TDS in the Payepol station.
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indicates several direct and indirect pathways influencing TDS. Significant causative relationships are observed 
from Mg (+ 3.5), SO4 (+ 1.98), Ca (+ 1.88), Na (+ 1.76), and Cl (+ 1.72) to the TDS, respectively, highlighting these 
ions as major causal agents in determining the TDS levels. Additionally, the variables pH (− 1.92) and HCO3 
(− 0.83) negatively impact TDS. The causal graph illustrates both bidirectional and unidirectional relationships 
among variables, with some examples highlighted. While all variables influence TDS, the reverse is not true. 
Additionally, Mg has a stronger positive effect on Na than Na has on Mg, despite both having a correlation 
coefficient of + 0.6. Although R2 between pH and TDS is + 0.1, the causality graph indicates that pH significantly 
negatively impacts TDS. Similarly, HCO3 negatively affects Na, but the reverse effect is weaker. The remaining 
relationships and correlation coefficients are depicted in Fig. 7.

Figure 8 illustrates the influence of the studied variables on TDS. Among these, Mg, SO4, Ca, Na, and Cl 
exhibit the most positive impact, respectively, with Mg being nearly twice as effective as the other four variables, 
which have similar effects. Conversely, pH and HCO3 negatively affect TDS. According to the figures in causal 
graphs of two mentioned stations (Figs. 6 and 8), the values were normalized with respect to the highest value 
which was Mg as it was mentioned earlier, it was expected. Therefore, the values shown in the causal graph are 
saying how important the factor is with respect to the other treatments. Also, in order to be statistically on the 
safe side, a control group of the outcome has been taken into consideration. In the sense that outcome when 
it gets treatment has been compared with the time that it has not received treatment and then the average 
treatment effect has been computed. Golekar et al.52, through the experimental work, showed the significance of 
the Mg level on the TDS level which is seen in the Fig. 8.

Hamidiyeh station
Figure  9 shows the correlation map of quantitative and qualitative variables, along with the causality graph 
at Hamidiyeh station. According to this figure, Na (+ 0.9), Cl (+ 0.9), SO4 (+ 0.9), Mg (+ 0.8), and Ca (+ 0.6) 
exhibit the highest positive correlations with TDS. Conversely, Q (− 0.5), pH (− 0.1), and HCO3 (− 0.1) show 
the highest negative correlations with TDS. The quantitative values of variables with positive correlations are 
significantly larger than those with negative correlations. The causality graph further indicates that Mg (+ 3.5), 
Ca (+ 2.08), SO4 (+ 1.82), Cl (+ 1.35), Na (+ 1.3), and pH (+ 1.03) have the most positive effects on TDS, whereas 
HCO3 (− 0.91) is the only variable with a negative impact on TDS. It is important to note that, in this station, 
unlike the previous two stations, pH has a positive impact on TDS. To better illustrate the difference between 
correlation and causality, we refer to some examples based on Fig. 9. The correlation between Ca and Na (and 
vice versa) is + 0.4. Ca has a stronger positive effect on Na, whereas Na has a lesser effect on Ca. Additionally, 
pH has a greater positive influence on Cl than Cl has on pH, even though the correlation for both conditions 
(pH on Cl and Cl on pH) is + 0.1. HCO3 and Na exhibit a small inverse correlation with R2 = − 0.1. The causality 
graph indicates that HCO3 has a negative and more significant effect on Na, but the reverse is not true. Mg and 
Ca have a slight bilateral effect on each other, with a correlation of + 0.3. Q shows an inverse correlation with all 
qualitative variables. In terms of influence, Q has a slight effect on SO4, Mg, Na, Ca, and Cl, a positive effect on 
TDS, no effect on pH and HCO3, and it is not influenced by any variable.

Figure 10 illustrates the impact of qualitative variables on TDS. According to this figure, Mg, Ca, SO4, Cl, Na, 
and pH have a progressively positive effect on TDS, while HCO3 is the sole variable exerting a negative influence. 
The bar charts for all stations (Figs. 6, 8, and 10) show the real values of causal effect. Another statistical factor 
that is very crucial for such study is P-value, that should be less than 0.05. For the whole causal effects analysis, 

Fig. 8. The influence of the examined variables on TDS in the Abdul Khan station.
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only treatment influences with P-value less than 0.05 were considered. The present results confirmed the 
findings about the causal effect by not-only the causal value which is important but also with the statistical factor 
of P-value. Also, the causal effects have been computed with confidence intervals which enables researchers to 
understand the lower and upper confidence intervals for future studies. Mohammadi et al.50 and Zavareh et al.49 
supported the causal links between water quality variables (e.g., TDS, EC, and ions) and hydrological factors. 
They showed the existing causal pathway in Na, Mg, Cl on the TDS level. It was essential to make sure the results 
are consistent with the experimental and empirical studies.

Limitations of the study and future works
This present work should be seen as a first systematic causal inference model for water quality in rivers 
investigating the causal effect of the measured environmental variables on the TDS, with limitations that were 
mainly related to i) the scarcity of available data, ii) the simplifications of the adopted modelling approach. This 
study was a try for understanding the causal relationship of the variables and TDS without overcomplicating the 
analysis at this stage. A key limitation of this work was Temporal Dynamics in the analysis, in the sense that the 
model does not explicitly consider the temporal dynamics of the system. The simplified assumption was putting 
i) Time lagged effects, ii) Temporal feedback loops, iii) Time-varying confounders, aside and just focused on 
the causal effect under a controlled set of assumptions. This work is positioned as the foundation for the future 
studies that model is built toward temporal dynamics and exploring non-stationarity. The potential future work 

Fig. 10. The influence of the examined variables on TDS in the Hamidiyeh station.

 

Fig. 9. Correlation heat map matrix (A) and causality map (B) in the Hamidiyeh station.
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would be using advanced non-linear causal models that also consider temporal dynamics and incorporating 
the signal analysis. Unlike the predictive modeling, we can incorporate the socio-economic data in “Casual 
models” which makes a significant contribution for policy making. This helps decision makers to go beyond the 
conventional prediction of the future of the water quality using sensors and indicators. It is going to be a platform 
in which other fields can enhance the mitigation strategies that is designated by environmental engineers.

Policy recommendations
Based on the identified causal relationships between TDS and water quality variables in the Karkheh River, 
several targeted policy recommendations can be made to effectively manage water quality. First and foremost, the 
policy makers should prioritize the key variables impacting the TDS level. Policies should focus on monitoring 
and regulating anthropogenic activities such as agricultural return flows and industrial waste waters, which are 
significant sources of Mg, Na and Cl. Also, efforts should be directed at reducing Mg and SO4 contributions 
through improved land-use practices, particularly in agricultural zones where fertilizers contribute to these 
ions48,51. As a mitigation strategy, an early warning system should be designed using predictive modeling based 
on WHO guidelines (with the priority of key variables) to forecast the level of the importance variables in the 
future then river is restored through avoiding flowing more waste material in the mainstream. As it is shown in 
below diagram (Fig. 11), the flow of mitigation strategies starts from policy evaluation which is highly dependent 
on the current status of the riverine system. To this end, causal model is essential to be employed using all 
available variables including climatic data and socio-economic data. After causally understanding about the 
significant variables, and ML algorithms are used to predict the future of the variables. This is checked using 
WHO guidelines and then early warning system that has been designed for alerting the variable fluctuation. 
It is important to frequently evaluate and enhance and develop the policy conditions using the results of the 
predictions and guidelines (Disclaimer: The shapes in diagram of Fig. 11 do not follow algorithmic structures so 
the rectangular or diamonds do not follow the algorithmic definitions).

The Karkheh River, located in a semi-arid region of Iran, is characterized by high seasonal variability in 
water flow, significant anthropogenic influences, and a complex interplay of hydro-chemical processes. These 
features make it comparable to rivers in similar climatic zones, such as other Middle Eastern and Central Asian 
rivers. Studies on comparable water bodies, such as the Karun River in Iran31 and the Cauvery River in India51, 
suggest that causal relationships, particularly the influence of cations like Mg and Na, on TDS are consistent 
across semi-arid and arid environments. For rivers in such regions, the results of this study can provide a 
robust framework for predicting and managing water quality. The effectiveness of ML-based causal inference 
approaches demonstrated in this study could be extended to other datasets with similar temporal and spatial 
resolution.

Fig. 11. Policy making diagram.
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While the causal relationships identified in the Karkheh River study can be generalized to similar semi-
arid rivers, caution is necessary when applying these findings to systems with differing climatic, geological, 
or anthropogenic characteristics. Future research should focus on validating these relationships across diverse 
environments and incorporating dynamic factors like climate change and extreme events to enhance the 
robustness of generalizations.

Conclusion
This study represents a pioneering effort to unravel the causal relationships among water quality variables in the 
Karkheh River using ML techniques. By analyzing a robust dataset spanning five decades, the research provides 
valuable insights into the factors influencing TDS, a critical indicator of water quality. The results reveal that 
Mg, Na, Ca, Cl, and SO4 significantly contribute to TDS levels (positive influence), while HCO3 and pH exert 
negative effects. This is different to what is obtained through conventional prediction modeling which solely 
predict the label data without taking step further than the checking the correlation.

The application of ML-driven causal inference offers a cost-effective and scalable alternative to traditional 
experimental approaches, reducing reliance on resource-intensive laboratory studies. This methodological 
innovation not only enhances our understanding of water quality dynamics but also equips policymakers and 
water managers with actionable insights. Targeted interventions, such as regulating Mg, Na and Cl inputs, 
optimizing irrigation practices, and implementing ion-selective treatment systems, can effectively mitigate TDS-
related water quality issues.

Moreover, the study’s findings pave the way for the development of early warning systems, integrating real-
time monitoring and predictive modeling to proactively address water quality challenges. While the insights 
gained are highly relevant to the Karkheh River, they also hold potential for adaptation in other semi-arid and 
arid regions with similar hydrological characteristics.

Future research should explore the application of these methods to other water bodies with diverse climatic 
and geological conditions and incorporating dynamic factors like climate change and extreme events, enhancing 
the generalizability of findings. By bridging the gap between data-driven causal analysis and practical water 
management strategies, this study contributes to the broader goal of achieving sustainable water resource 
management in a rapidly changing world.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on request.
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