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Abstract

This thesis, consisting of three interrelated essays, uncovers the property investment behaviour
of commercial real estate market players and the return patterns of the asset class. The first
essay is titled “Real Estate Investment and Asset Return Dynamics: Evidence from REITs.” In
this essay, I examine the relationship between aggregate REIT property investment and future
public commercial real estate returns. Aggregate investment negatively predicts excess market
returns over the subsequent year. The return predictive power survives controls for financial
ratios, term-structure variables, investor sentiment measures, equity issuance, and operating
accruals. In addition, aggregate REIT investment is weakly related to investor sentiment
measures and fails to predict future firm earnings news indicators. Instead, aggregate
investment is strongly tied to discount rate proxies and positively predicts macroeconomic
growth indicators. And the investment’s return predictability is not subsumed by the future
materialization of firm cash-flow shocks and macroeconomic fundamentals. These results
suggest that the predictive relation is mainly driven by time-variation in expected returns, rather

than investor sentiment.

The second essay is titled “Real Estate Investment Plans and the Cross Section of Asset Returns:
Evidence from REITs.” In this essay, | examine the cross-sectional expected return implications
of planned real estate investments. I forecast the future investment growth of REITs using
Tobin’s q, gross profitability, changes in return on assets, and prior stock returns. The forecasted
future investment-to-asset changes generate a positive premium in the cross section of REIT
returns. To capture the return variation, I construct a factor-mimicking portfolio based on a
two-way monthly sort on size and the expected investment growth. Using the factor, an
augmented REIT-based investment-based model not only holds up against comparisons with
competing REIT-based and common stock-based factor models but also outperforms them in
dissecting prominent REIT return patterns. I finally propose an alternative risk-based
explanation for the premium. Firms with higher expected investment growth demonstrate
higher future profitability, yet they also exhibit a greater degree of future operating and
financial leverages and increased sensitivity of future cash flows to economic conditions,

leading to higher discount rates.
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The third essay is titled “Climate Change Exposure, Green Investment, and Financial
Performance: The Case of Publicly Listed Real Estate.” In this essay, I examine the real and
financial implications of climate change exposure among publicly listed real estate firms.
Exposure reflects earnings call participants’ attention to a firm’s climate-related opportunities,
as well as regulatory and physical shocks. I find that firms with higher climate change exposure
allocate more capital towards green building initiatives over the subsequent year. Additionally,
tenants of high-exposure firms tend to achieve superior aggregate environmental scores in the
future. The overall exposure effects are primarily attributable to firms with higher regulatory
exposure. However, doing good may not mean doing well. High-exposure firms experience
lower future operating and rental performance. The effect is primarily due to the reduced cash
flows in firms with higher opportunity exposure. Furthermore, the opportunity exposure
negatively predicts subsequent market valuations and stock returns, suggesting that investors
may overlook the adverse signal of exposure for firms’ future fundamentals, or may have non-

financial preferences, accepting lower expected returns.
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Chapter 1 Introduction

The real estate market plays a pivotal role in the economy, being intricately linked to the
financial markets and exerting substantial influence on the real economy. This thesis focuses
on commercial real estate, the oldest asset class but not the most transparent or well-understood.
Commercial real estate investment has undergone evolution over time. Once dominated by
wealthy individuals, this asset class is now actively sought by diverse investors as a primary
asset. For equity investors, this includes private equity, real estate operating companies,
property real estate investment trusts, pension funds, and sovereign wealth funds. Each has its
own risk profile and focus, such as income, fees, capital appreciation, and usage. This asset
class has experienced a shift in capital financing from straightforward financing to complex
financial instruments involving both equity and debt. Assets and portfolios are frequently
restructured. This asset class has also transitioned from a local to a global asset and exhibited
boom and bust cycles with broader implications for individuals, institutions, markets, and
economies. In recent years, the emergence of climate change as a critical global issue has
presented new risks and opportunities. To effectively manage this asset class, it is crucial to
comprehend the investment behavior of market players and the return pattern of this asset class.
This thesis aims to enhance this understanding by providing insights that are both academically

valuable and practically relevant.

This thesis comprises three interrelated essays that concentrate on U.S. publicly traded
commercial real estate equities. The initial two essays focus on equity real estate investment
trusts (REITs), a type of entity that invests in real estate through properties and provides
investors with a liquid stake in real estate. The first essay analyzes aggregate REIT property
investment and examines its market return predictability. The second essay forecasts REIT
future real estate investment growth and assesses its expected return implications in the cross
section. The third essay incorporates real estate operating companies (REOCs) to reflect the
broad impact of climate change on commercial real estate. A REOC is akin to a REIT but differs
from a REIT in terms of dividend distributions and the composition of a company’s assets. The
last essay investigates both the real-economy and financial consequences of climate change

exposure.



The first essay, titled “Real Estate Investment and Asset Return Dynamics: Evidence from
REITs,” explores whether aggregate corporate investment in income-generating properties
serves as a predictor of future returns on commercial real estate. The global financial crisis of
2008-2009 marked a turning point for the commercial real estate market, particularly in the
United States, where both private and public real estate have experienced remarkable price
growth since then. Today, these assets trade well above their pre-crisis peak levels, raising
critical questions about the factors that can predict future returns in this cyclical asset class.
Understanding the potential factors is crucial for a diverse range of market participants,

including high-net-worth individuals, institutional investors, and real estate firms.

The investment-based asset pricing model suggests the forecast of asset returns by investment-
related variables (Cochrane, 1991). The model is derived from the producer’s first-order
conditions for optimal intertemporal investment demand, where optimal investment is linked
to the cost of capital or expected returns. If we fix the investment process and make predictions
about returns, it is an investment-based asset pricing model. The model might say “expected
returns are high because investment is low”. Also, expected returns can vary over time due to
changes in the state of the economy (Fama, 1991). The model suggests that investment co-

moves this time variation, serving as a proxy for changes in the investment opportunity set.

To empirically test this hypothesis and explore the underlying mechanisms, this study focuses
on equity REITs, which primarily invest in institutional-quality properties. I employ a robust
measure of REIT property investment, namely changes in operating assets, and construct an
aggregate REIT investment series spanning from 1971 to 2018. The annual time horizon is
crucial for mitigating the inherent lag in commercial real estate transactions and capturing the
cyclical nature of the market. For return analysis, I utilize monthly return data on the FTSE
NAREIT All Equity REITs Index from July 1972 to June 2020. The choice of NAREIT index,
rather than private commercial property price indices, is driven by the relative efficiency of
capital markets in reflecting information in REIT returns (Fisher et al., 2003; Yavas and
Yildirim, 2011). Unlike private property indices, which suffer from significant market frictions,
smoothing, serial correlation, and price adjustment lags (Ghysels et al., 2013; Ghent et al.,
2019), REIT indices provide a more accurate and timely reflection of market conditions,

making them ideal for predictability tests.



The findings of this study are both intriguing and significant. The analysis reveals that
aggregate REIT investment negatively predicts future excess returns on the NAREIT index,
with a one-standard-deviation increase in aggregate investment associated with a decrease of
7.1% in one-year-ahead excess returns. This predictive relationship remains robust even after
controlling for several well-established return predictors, including the dividend-to-price ratio,
book-to-market ratio, earnings-to-price ratio, short-term interest rate, term spread, default
spread, equity share in total net issues, and aggregate accruals. Furthermore, investor sentiment
indicators also predict future market returns, but they do not diminish the return predictability

of aggregate investment.

The documented return predictability may arise from several economic sources. One potential
explanation is market inefficiency, where information is not timely incorporated into prices by
market participants (Fama, 1970), providing opportunities for informed investors to exploit
serial dependencies. However, the minimal serial correlation found in NAREIT returns
suggests that capital markets are relatively efficient in incorporating information. To further
understand the economic forces driving the return predictive power, I investigate whether
aggregate REIT investment captures time variation in expected returns (Campbell and Shiller,
1988a) and/or investor sentiment (Lee et al., 1991). I find that aggregate investment is weakly
related to investor sentiment measures and fails to predict firm cash-flow shock indicators.
Instead, it is strongly tied to discount rate proxies and positively predicts macroeconomic
growth indicators. Furthermore, its return predictability is not subsumed by the future
materialization of firm cash-flow shocks and macroeconomic fundamentals. These results
suggest that the predictive relationship is mainly driven by time variation in expected returns

rather than investor sentiment.

This study makes several important contributions to the existing literature. It first extends the
literature on aggregate stock return predictability based on investment-related variables.
Previous studies have predominantly focused on productive capital investment and aggregate
stock market returns. This study provides new evidence from commercial real estate investment
and its public market returns. In addition, previous studies have debated the economic force
behind the investment’s return predictability. This study provides new evidence strengthening
the rational explanation of time-varying expected returns. Second, the first essay contributes to
the literature on aggregate REIT return predictability, which has been addressed with different

interests in previous studies. This study approaches the topic with new insight from the



investment-based asset pricing models and suggests that aggregate REIT property investment
is an alternative and possibly shaper measure of expected returns. Third, the first essay adds to
the growing literature on REIT real investment decisions. Previous studies have documented
the effects of biased managers or investors on REIT property investment at the firm level. This
study shows contrasting evidence that at the aggregate level, investor sentiment is, in effect, a

sideshow to REIT investment, conveying a signal of collective rationality.

The second essay, titled “Real Estate Investment Plans and the Cross-Section of Asset Returns:
Evidence from REITs,” shifts focus to planned real estate investment and its asset pricing
implications in the cross section. Planned property acquisitions and/or constructions represent
real estate firms’ investment commitments. These real estate investment plans require
significant time and resources to complete and, once initiated, are difficult and costly to reverse,
making them inherently risky. Therefore, it is of great interest to examine their implications on

cross-sectional expected returns.

Theoretically, the investment CAPM in a dynamic setting provides an equilibrium model,
where expected returns vary cross-sectionally with current investment, expected profitability,
and expected investment growth (Liu et al., 2009). Holding current investment and expected
profitability constant, the model can make statements like “expected returns are high because
a function of expected investment growth is high”. Intuitively, according to the net present
value rule of capital budgeting, high expected investment relative to current investment implies
high discount rates, because the high discount rates are necessary to offset the high expected
marginal benefits of current investment to generate low net present values of new projects and

thereby maintain low current investment levels (Hou et al., 2021).

To empirically test the hypothesis, this study forecasts firms’ future investment growth.
Investment refers to investment-to-asset ratio and is measured as total asset growth rate (Fama
and French, 2006; Hou et al., 2015). REITs provide a favourable setting for this forecasting
exercise, as on average, 98.6% of their assets are real estate (Eichholtz and Yonder, 2015). This
homogeneity in asset composition suggests that the total asset growth rate serves as an effective
proxy for real estate investment. Given that investment-to-asset ratio is frequently negative,
making the growth rate of investment-to-asset ratio ill-defined, I follow Hou et al. (2019 and
2021) and specifically forecast future investment-to-asset changes, using predictors such as the

log of Tobin’s q, gross profitability, changes in return on assets, and prior stock returns.



Consistent with the dynamic investment CAPM, the forecasted investment-to-asset changes
are related to a significant positive premium in the cross-section of REIT returns. In firm-level
predictive regressions, they positively predict excess returns over the subsequent month, even
after controlling for a range of return predictors, including size, book-to-market ratio, prior 11-
month returns, share turnover, standardized unexpected earnings, idiosyncratic volatility,
investment-to-asset ratio, and return on assets. At the portfolio level, it earns a high-minus-low
quintile premium that is not explained by a set of conventional and more recent factor models
reconstructed for REITs, including the Fama and French (2018) six-factor model (FF6) and the
Hou et al. (2015) g-factor model (HXZq). To capture the return variation, I construct a factor-
mimicking portfolio. The resultant expected investment growth factor generates an average
return of 0.34% per month, which not only surpasses the premium from its constituents but

also remains robust across various empirical specifications.

With the factor, I construct a REIT-based Hou et al. (2021) g°> model (HMXZq>). The model
is subsumed by neither the REIT-based FF6 model nor the common stock-based FF6* and
HMXZ q°* models in spanning tests. Additionally, in stress-testing exercises, the model
outperforms competing REIT-based factor models in explaining a set of testing portfolios
formed on prominent REIT return predictors, including momentum, standardized unexpected
earnings, idiosyncratic volatility, and share turnover. Given the importance of the factor in the
model to dissecting REIT return patterns, I finally propose an alternative risk-based explanation
for the factor premium, highlighting the role of operating and financial leverage. Firms with
high expected investment growth show higher future profitability, but they also exhibit a
greater degree of future operating and financial leverage and increased sensitivity of future

cash flows to economic conditions, giving rise to high discount rates.

This study makes several contributions to the literature. It first extends the literature on
investment plans and asset returns. Previous studies have focused on productive capital
investment plans and stock returns at either the aggregate or cross-sectional level. This study
provides new evidence from commercial real estate investment plans and the cross-section of
REIT returns. Second, despite the dynamic investment CAPM, it remains an open question of
why high expected investment growth commands high expected returns in the cross-section.
This study proposes an alternative risk-based explanation that focuses on the risk amplification

effect of operating and financial leverages heightened by expected investment growth. Third,



this study contributes to the literature on real estate finance. The cross-section of REIT returns
has long attracted various interests from real estate researchers. This study provides evidence
of'a new return pattern related to expected investment growth, which is not only a reincarnation
of several existing return patterns but also an extension of them. Also, there is an ongoing
debate on the integration or segmentation of REIT returns with or from stock markets. This

study provides new evidence strengthening the segmentation argument.

The third essay, titled “Climate Change Exposure, Green Investment, and Financial
Performance: The Case of Publicly Listed Real Estate,” addresses one of the most pressing
challenges facing the real estate industry today: climate change. As climate hazards and policies
increase, firms within the industry face significant risks that could affect their financial
performance. The presence of climate risk forces firms to adopt green practices to reduce their
environmental impacts. The growing demand for sustainable and energy-efficient buildings
presents new opportunities for firms to differentiate themselves in the market and attract
environmentally conscious investors. This study therefore seeks to examine the extent to which

firms’ climate change exposure affects their green property investments and financial outcomes.

The models of “uncertainty about the path of climate change” (Giglio et al., 2021) and the
ESG-efficient frontier framework (Pastor et al., 2021; Pedersen et al., 2021) are referred to as
alternative theoretical foundations for pricing climate change in the cross-section. While the
former concerns the covariance properties of asset payoffs with climate change as a systematic
risk factor, the latter focuses on how investor beliefs and preferences regarding climate
change—and ESG considerations more broadly—fit within the factor model paradigm. The
former implies that climate change uncertainties make it difficult for investors to evaluate how
individual stocks will be affected by climate change and thus should be associated with a risk
premium. In the latter, investors with non-return preferences for sustainability or ESG may
accept lower expected returns for stocks with higher climate change exposure, leading to zero

or even a negative risk premium.

The empirical analysis draws on the firm-level climate change exposure measures proposed by
Sautner et al. (2023a). The measures capture market participants’ attention to firms’ exposure
to climate change by quantifying the portions of conversations during earnings calls that relate
to climate change topics. The measures cover a broad range of climate-related issues, including

physical shocks (e.g., extreme weather events), regulatory shocks (e.g., climate policies and



regulations), and technological opportunities (e.g., green buildings). The initial analysis reveals
that the climate change exposure measure varies across property types and increases over time.
It is positively correlated with public climate change attention proxies, firms’ S&P Global
environmental scores, and the weather exposure measure proposed by Nagar and Schoenfeld

(2022).

In terms of real economic impacts, firms with higher climate change exposure invest more in
green buildings over the subsequent year. The overall exposure effect is primarily driven by
firms with higher regulatory exposure. This finding suggests that firms tend to respond to
regulatory pressures for sustainability by increasing their investment in environmentally
certified buildings. This shift to sustainable buildings may not only help decarbonize the real
estate sector but also support the low-carbon transition of other economic sectors by enabling
building tenants or occupants to reduce their environmental footprints. I show that in aggregate,
tenants of high-exposure firms achieve higher S&P Global environmental scores over the

following year.

However, doing good may not mean doing well. Higher climate change exposure is associated
with lower operating profitability and funds from operations over the subsequent years,
particularly in firms with higher opportunity exposure. The negative association may be
attributed to the high upfront costs and longer construction times associated with green building
investments, which can strain firms’ financial resources and reduce profitability in the short
term. At the property level, high-exposure firms experience lower future rental net operating
incomes and occupancy rates. The overall exposure effect stems from firms with higher
opportunity and regulatory exposures, respectively. The results suggest that green retrofits may

also erode rental incomes, while regulatory shocks can impact tenant occupancy decisions.

Regarding financial market outcomes, climate change exposure negatively predicts future
market valuations and stock returns, particularly in firms with higher opportunity exposure.
These findings are consistent with the notion that investors may either ignore the negative
signal of climate change exposure for future firm cash flows or allocate capital to high-
exposure stocks due to their preference for sustainability. In addition, the return predictability
is persistent during the post-Copenhagen period, underscoring the long-term impact of climate

change exposure. Finally, the return predictability extends to the portfolio level, generating a



significantly negative high-minus-low quintile premium that is not explained by a set of

conventional and more recent factor models.

This study makes several contributions to the literature. It first adds to the growing literature
on climate change exposure and corporate green investment. Among others, Sautner et al.
(2023a and 2023b) find that firms with high climate change exposure invest more in green jobs
and green patents. This study provides new evidence on green buildings as well as transition
enabling. Second, this study contributes to the literature on climate change exposure and asset
prices. Saunter et al. document a positive premium related to climate change exposure, using
option-implied expected returns and a sample of S&P 500 stocks. They align the positive
premium with the model of “uncertainty about the path of climate change”(Giglio et al., 2021).
This study finds contrasting evidence of a negative premium based on realized returns and a
sample of SNL U.S. publicly traded real estate firms. The negative premium can be linked to
the ESG-efficient frontier framework (Pedersen et al., 2021). Third, this study adds to the
literature on climate change, sustainability, and real estate. A growing number of studies have
examined the effects of green building certifications, environmental or broader ESG
performance or disclosure, and physical climate hazards on the financial performance of
publicly traded real estate firms. This study differs from previous studies by using the firm-
level climate change exposure from Sautner et al. Compared with previous interest, this study
provides a more comprehensive analysis, covering both climate risks and opportunities, and
offers new insight from market participant perceptions of firms’ climate change exposure. In
addition, this study provides new evidence on green building investment and transition

enabling as well as contrasting evidence on financial performance.

In general, this thesis makes several theoretical contributions. The theoretical predictions from
the investment-based asset pricing models or the ESG-efficient frontier framework ultimately
rest on how and whether capital market prices investment, expected investment growth, or
climate change exposure. This thesis provides new evidence from commercial real estate
through asset pricing tests of public real estate equity returns. Also, this thesis sheds light on
the potential channels that investors are using to price those factors of interest in public
commercial real estate markets through economic mechanism analyses. The findings would be

of importance in the formation of hypotheses aimed at equilibrium model development.



This thesis also has practical implications. For instance, the first essay proposes that investors
can assess the market’s expected returns on public commercial real estate equity by analyzing
the aggregate property investments of key market players. The second essay suggests that the
augmented investment-based factor model can serve as an alternative benchmark to evaluate
the risk-adjusted performance of REITs and dedicated REIT mutual funds. The third essay
posits that the implementation of climate regulations and policies can facilitate the transition
to sustainable practices within the real estate sector. It also underscores the significance of firm
managers in strategically planning and allocating resources to green opportunities to mitigate

the potential erosion of future profits.

In conclusion, this thesis examines the implications of investment-based asset pricing and the
real and financial consequences of climate change exposure. It enhances comprehension of the
investment behavior of commercial real estate market players and the return pattern of the asset
class. The findings from this thesis emphasize the significance of informed investment
strategies and the necessity for a comprehensive approach to managing risks in an increasingly
intricate and uncertain market environment. This thesis serves as a foundation for future
research and provides valuable tools for addressing the challenges and opportunities that lie

ahead in the ever-evolving market.

The rest of this thesis is organized as follows. Chapter 2 presents the first essay, titled “Real
Estate Investment and Asset Return Dynamics: Evidence from REITs.” Chapter 3 presents the
second essay, titled “Real Estate Investment Plans and the Cross-Section of Asset Returns:
Evidence from REITs.” Chapter 4 presents the third essay, titled “Climate Change Exposure,
Green Investment, and Financial Performance: The Case of Publicly Listed Real Estate.”

Chapter 5 concludes.



Chapter 2 Real Estate Investment and Asset Return Dynamics:

Evidence from REITs

Abstract

I examine the relationship between aggregate REIT property investment and future public
commercial real estate returns. Aggregate investment negatively predicts excess market returns
over the subsequent year. The return predictive power survives controls for financial ratios,
term-structure variables, investor sentiment measures, equity issuance, and operating accruals.
In addition, aggregate REIT investment is weakly related to investor sentiment measures and
fails to predict future firm earnings news indicators. Instead, aggregate investment is strongly
tied to discount rate proxies and positively predicts macroeconomic growth indicators. And the
investment’s return predictability is not subsumed by the future materialization of firm cash-
flow shocks and macroeconomic fundamentals. These results suggest that the predictive

relation is mainly driven by time-variation in expected returns, rather than investor sentiment.
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2.1 Introduction

Commercial real estate, a cyclical asset class, has experienced nearly unprecedented price
growth since the global financial crisis. Both U.S. private and public real estate have more than
doubled in value since then and today are trading well above their pre-crisis peak levels.! This
remarkable growth raises an important question: which factors can explain the future returns
of this asset class? This question matters for a diverse range of market players, from traditional
high-net-worth individuals to institutional investors, including private equity funds, real estate
operating companies, property real estate investment trusts (REIT), pension funds, and
sovereign wealth funds. This study presents novel evidence that aggregate corporate

investment in commercial properties can predict future commercial real estate returns.

The investment-based asset pricing model suggests the forecast of asset returns by investment-
related variables (Cochrane, 1991). The model is derived from the producer’s first-order
conditions for optimal intertemporal investment demand, where optimal investment is linked
to the cost of capital or expected returns. If we fix the investment process and make predictions
about returns, it is an investment-based asset pricing model. The model might say “expected
returns are high because investment is low”. Also, expected returns can vary over time due to
changes in the state of the economy (Fama, 1991). The model suggests that investment co-

moves this time variation, serving as a proxy for changes in the investment opportunity set.

To test the model prediction and explore the underlying economic mechanism, I focus on
publicly traded commercial real estate companies, and in particular, equity Real Estate
Investment Trusts (REITs), whose sole activity is the management of a real estate portfolio.
REITs tend to purchase institutional-quality properties that are newer and larger than many
other commercial properties purchased by private investors (Ghent et al., 2019). I employ the
change in operating assets as a simple yet effective measure of REIT property investment,
given that they hold nearly all their assets in commercial properties (Eichholtz and Yonder,
2015). My aggregate REIT investment series, constructed from bottom-up firm-level data,
spans from 1972 to 2019. This annual horizon mitigates the “long lead time” nature of

commercial real estate transactions. In this market, shifts do not instantly translate into

! See, e.g., the National Council of Real Estate Investment Fiduciaries (NCREIF) Property Index and the FTSE
NAREIT U.S. All Equity REIT Index, respectively.
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investment actions due to the asset class’s inherent heterogeneity and lengthy valuation

processes, causing a lag in investment expenditure in response to market conditions.?

For commercial real estate returns, I use monthly return data from the FTSE NAREIT All
Equity REITs Index, covering the period from July 1973 to June 2020. This choice leverages
the relative efficiency of capital markets in impounding information into REIT returns (Fisher
etal., 2003; Yavas and Yildirim, 2011), as opposed to private commercial property price indices,
such as the NCREIF Property Index. Private indices suffer from significant market frictions
and exhibit substantial smoothing, serial correlation, and price adjustment lags, making them
less suitable for predictability tests (Ghysels et al., 2013; Ghent et al., 2019). Additionally, it is
well documented that unlevered REIT returns exceed NCREIF returns adjusted for property
type, fees, leverage, appraisal smoothing, etc. (see, e.g., Pagliari Jr et al., 2005; Riddiough et
al., 2005; Ling and Naranjo, 2015). Ang et al. (2018) further extend this evidence from raw to
risk-adjusted returns, reinforcing the representativeness of REIT indices for the broader

commercial real estate asset class (Van Nieuwerburgh, 2019).

I find that aggregate REIT investment negatively predicts future returns on the NAREIT Index.
This predictive role is economically significant. A one-standard-deviation increase in aggregate
investment is associated with a decrease of 7.1% in excess market returns over the subsequent
year. The predictive relationship holds even after controlling for several well-established return
predictors, including the dividend-to-price ratio, book-to-market ratio, earnings-to-price ratio,
short-term interest rate, term spread, and default spread, as well as equity share in total net
issues and aggregate accruals. Notably, while investor sentiment indicators also predict future
NAREIT fluctuations, they do not diminish the significance of investment as a predictor. This
result holds for several investor sentiment measures, including the University of Michigan
Consumer Sentiment Index, Baker and Wurgler (2006) Stock Market Sentiment Index, and the

constructed REIT market sentiment index.

The return predictability may arise from several economic sources. One potential explanation

is market inefficiency, where information is not timely incorporated into prices by market

2 Transaction closings are often reflective of values negotiated six months prior. The time estimate accounts for
time to conduct contract negotiations, perform due diligence, and arrange financing. See, Understanding the
Commercial Real Estate Investment Ecosystem: An Early Warning System Prototype, World Economic Forum,
https://www3.weforum.org/docs/WEF _IU Understanding the Commercial Real Estate Investment Ecosyste
m.pdf.
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participants (Fama, 1970), providing opportunities for informed investors to exploit serial
dependencies. I find minimal serial correlation in NAREIT returns, suggesting that capital
markets are efficient in incorporating information into REIT returns. However, the reduced-
form predictive regressions for NAREIT returns alone do not help further understand the
economic forces driving the predictive relationship. Is the predictability driven by time
variation in expected returns (Campbell and Shiller, 1988a), or by time-varying investor

sentiment (Lee et al., 1991)?

To investigate these questions, I first examine whether aggregate REIT investment captures
time variation in expected returns and/or investor sentiment.® I find that investment is
significantly positively related to stock and REIT market sentiment indices when no other
conditioning variables are included and when controlling for aggregate profits, market returns,
and aggregate book-to-market ratio. However, the investment-sentiment relationship weakens
sharply when adding state variables gauging the state of the economy: short-term interest rates,
the term spread, and the default spread. This suggests that investment may capture
unobservable fundamental components, rather than sentiment-related components, of the

sentiment indices. Indeed, expected return proxies align strongly with investment.

If aggregate REIT investment reflects biased market expectations of future firm fundamentals,
it should predict innovations in future firm cash flows. I test this implication by forecasting
aggregate REIT earnings news. While investment significantly negatively predicts aggregate
profits, it does not predict aggregate standardized unexpected earnings or aggregate errors in
analyst forecasts of one-year-ahead or long-term earnings. In addition, higher investment is
uncorrelated with more optimistic aggregate analyst forecasts of future earnings. To address
potential concerns regarding the low statistical power of my tests, which may be due to the
moderate persistence in aggregate analyst future earnings forecast errors, I forecast two
alternative firm cash-flow shock series with much lower serial correlation: aggregate earnings

announcement returns and the value premium. I find consistent results.

3 Behavioral models of managerial decision-making deviate from standard models in two key ways. First, models
of biased investors and analysts assume that rational managers with finite horizons either time non-rational
investor beliefs or cater to non-standard investor demand (see, e.g., Stein, 1996; Baker and Wurgler, 2000 and
2002; Baker et al., 2003; Polk and Sapienza, 2008). Second, models of biased managers hypothesize that managers
themselves exhibit biases, such as overconfidence (Malmendier and Tate, 2005 and 2008). In this study, I
primarily test the implications of biased investor beliefs on corporate investment at the aggregate level.
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To shed further light on whether aggregate REIT investment reflects non-rational market
beliefs about future broader macroeconomic fundamentals, I use it to forecast macroeconomic
growth. I find that investment significantly predicts the real GDP growth rate; however, the
predictive relationship is positive, not negative. This suggests that investment is more likely to
capture expected future macroeconomic fundamentals rather than biased expectations. The
results are further confirmed by predictive regressions using alternative economic growth
indicators. Finally, I demonstrate that aggregate REIT investment’s predictive power for
NAREIT returns cannot be subsumed by the inclusion of measures of aggregate firm cash-flow
shocks and macroeconomic fundamental realizations. This finding also suggests that the
economic force behind the predictive relationship is primarily time variation in NAREIT

expected returns.

This study makes several contributions to the existing literature. Firstly, it enhances the
literature on aggregate stock return predictability based on investment-related variables. Prior
studies have examined gross private domestic investment (Cochrane, 1991), net non-residential
fixed capital stock change (Baker and Wurgler, 2000), investment plan (Lamont, 2000), new
orders of durable goods (Jones and Tuzel, 2013), aggregate corporate asset investment (Arif
and Lee, 2014; Wen, 2019; Guo and Qiu, 2021; Chue and Xu, 2022), and aggregate expected
investment growth (Li et al., 2021a).* These investment quantities largely gauge nonfinancial
corporate investment in capital as production inputs. I examine financial corporations—
specifically REITs—investing in commercial real estate as portfolio holdings. I show that in
addition to productive-capital investment, income-producing property investment also captures
future asset return dynamics. In particular, I extend the evidence of investment’s market return

predictability to public commercial real estate.

Secondly, this study contributes to the literature on aggregate REIT return predictability. Liu
and Mei (1992) are among the earliest studies that document the predictability. Some follow-
up studies suggest that the predictability might be exploitable (see, e.g., Mei and Liu, 1994;

Ling et al., 2000). Others have employed more complex forecasting models (see, e.g., Cabrera

4 Notwithstanding the return predictability, the underlying economic forces remain unclear. Earlier works, such
as Cochrane (1991), Lamont (2000), and Jones and Tuzel (2013), note that their findings could be due to time-
varying expected returns. This interpretation is later echoed by Guo and Qiu (2021), Li et al. (2021a), and Chue
and Xu (2022). In contrast, Arif and Lee (2014) and Wen (2019) show that their investment variables mainly—
and at least partially—reflect investor sentiment, respectively. This study contributes to this debate by
demonstrating that the predictability is generally consistent with an explanation based on rational risk premiums
rather than mispricing.
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etal., 2011; Chen etal., 2014) or examined performance continuations and reversals at different
return horizons (see, e.g., Mei and Gao, 1995; Stevenson, 2002). While previous studies have
addressed REIT market return predictability with different interests, this study approaches the
topic with new insight from the investment-based asset pricing model that expected returns
vary time serially with aggregate investment. The results suggest that aggregate REIT
investment may serve as an alternative, and possibly sharper, measure of the expected returns

of public commercial real estate.

Thirdly, this study contributes to the growing literature on REIT real economic decisions. The
effects of biased investors and/or biased managers on corporate decisions have been the subject
of numerous studies in finance literature.’ For publicly traded real estate companies, Eichholtz
and Yonder (2015) report REIT investment’s response to managerial overconfidence. Kim and
Wiley (2019) document the effect of non-rational investor beliefs on REIT property
transactions. However, my results suggest that investor sentiment is, in effect, a sideshow to
aggregate REIT investment, aligning with standard models of managerial decision-making.®
The novel results may arise from the focus of REIT investment at the aggregate level, which
reflects the common variation in individual REIT investment. While previous studies suggest
that individual REIT investment decisions are susceptible to behavioural biases, this study
indicates that aggregating REIT investment decisions convey a signal of collective rationality,

reflecting broad economic states.

Fourthly, this study contributes to theoretical development of investment-based asset pricing
models. Kogan and Papanikolaou (2012) review studies investigating how firms’ systematic
risk and investment and production decisions are jointly determined in equilibrium. Models
incorporating investment provide insights into various empirical patterns, including the
correlations between firms’ economic characteristics and their risk premia. This study presents
new evidence supporting the theoretical prediction of asset return forecasts by investment from
public commercial real estate equity and aggregate REIT property investment. Additionally,
Kogan and Papanikolaou suggest that the first-order optimality condition of the firm’s optimal

investment faces limitations as a basis for empirical testing. Primarily, it lacks causal content,

3 See a recent review on behavioral corporate finance by Malmendier (2018).

¢ In these models, corporate managers behave rationally, and investor sentiment is considered irrelevant. This
irrelevance arises either because market prices are efficient (Cochrane, 1991; Carlson et al., 2006; Lyandres et al.,
2008) or because managers who optimize long-term firm value rationally ignore any short-term sentiment-induced
mispricing (e.g., Stein, 1996, the long-horizon case).
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as it links endogenous variables. Consequently, it cannot address the economic causes of time-
varying differences in firms’ expected returns and their observable characteristics. This thesis
conducts a series of tests to distinguish between rational and sentiment interpretations for the
investment’s ability to predict future asset returns. The findings would be of significance in

developing hypotheses for equilibrium models.

The rest of the chapter is organized as follows. Section 2.2 describes the data and methodology.
Section 2.3 forecasts aggregate REIT market returns. Section 2.4 explains aggregate REIT
investment. Section 2.5 forecasts aggregate REIT earnings news. Section 2.6 forecasts
aggregate REIT earnings announcement returns and the value premium. Section 2.7 forecasts
macroeconomic growth. Section 2.8 subsumes aggregate REIT market returns. Section 2.9

concludes.
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2.2 Data and Methodology

The sample includes 442 U.S. publicly traded equity REITs identified by the National
Association of Real Estate Investment Trusts (NAREIT). Glascock and Hughes (1995) provide
a list of all REITs identified by NAREIT that appear in the CRSP data file from January 1972
to December 1991. In this list, 74 out of 151 REITs are classified as equity REITs. The NAREIT
website offers monthly constituent data for the FTSE NAREIT U.S. Real Estate Index Series
starting from December 1991. In this list, 436 out of 560 REITs are classified as equity REITs
from December 1991 to December 2019. I merge these two lists to create a consolidated list of

460 equity REITs. I exclude 18 firms because they do not appear in the Compustat data file.

I measure annual aggregate REIT market returns, R;, 1, by compounding monthly excess total
returns (returns minus risk-free rate) of FTSE NAREIT All Equity REITs Index from July of
year t+1 to June of year t+2 for the period from July 1972 to June 2020.” This return cumulation
period ensures that firms’ accounting data are publicly available before future stock returns are
realized (Fama and French, 1992). Additionally, I compute non-overlapping annual horizon
returns. Overlapping returns can lead to severe serial correlation, distorting inference and

producing falsely high t-statistics (Valkanov, 2003).

Utilizing annual financial statement data from Compustat, I construct an annual aggregate
investment series, Invest,, from 1971 to 2018. The aggregate investment series is the value-
weighted average of annual firm-level investments, aggregated to the market level using fiscal-
year-end market capitalizations as weights. Firm-level investment is measured as the annual
growth rate in non-cash assets or operating assets.® Specifically, non-cash assets are computed

as total assets (Compustat AT) minus cash and short-term investments (CHE). I require the

7 The FTSE NAREIT All Equity REITs Index is a free-float adjusted, market capitalization-weighted index of
U.S. equity REITs. Constituents of the index include all tax-qualified REITs with more than 50% of total assets

in qualifying real estate assets other than mortgages secured by real property. The monthly return data on the

index are available from the NAREIT website, starting from January 1972 onwards.

8 Corporate investment is measured in various ways within the REIT literature. Utilizing the data item ‘real estate

investment’ from the SNL Financial Real Estate database, Eichholtz and Yoénder (2015) and Kim and Wiley (2019)
measure REIT investment as the annual growth rate in this data item. Based on relevant accounting data from

Compustat, Bond and Xue (2017) and Ling et al. (2019) measure REIT investment as the annual growth rate in

non-cash assets and total assets, respectively. Bond and Xue (2017) note that growth in non-cash assets is a

comprehensive measure of firms’ investment in various operating assets, such as fixed assets and working capital.

I obtain similar results using the annual growth rate in total assets.
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availability of Compustat annual data items CHE and AT in both current and previous years to

retain a firm-year observation in the sample.

Table 2.1 presents summary statistics for Invest and R. The investment series has an average
of 18.6% and a standard deviation of 16.9%, indicating that aggregate REIT property
investment exhibits substantial fluctuations over the sample period. The investment series also
demonstrates significant serial dependence, with an AR(1) coefficient of 0.648. The return
series is similarly volatile, with a mean of 7.95% and a standard deviation of 17.3%.

Additionally, the return series displays an extremely low first-order serial correlation of -0.002.

Following the extensive predictive literature in finance and real estate, I consider the following

linear predictive regression model:

Tevr = @+ B'Xy + €41 (2.1),

where 1, represents the return (or price change) and X, is a vector of variables observable at
time t. Predictability in r,,; might stem from market inefficiency if some available
information is not incorporated into prices in a timely manner by market participants (Fama,
1970). For a market to be inefficient, investors should be able to exploit some of the serial
dependence. However, I demonstrate low serial correlation in the return series, thereby

rejecting the weak-form market efficiency.

Predictability might stem from time variation in expected returns (Campbell and Shiller, 1988a).
To capture this, I select a set of conditioning variables to proxy for time variation in the state
of the economy and thus in the prevailing investment opportunity set. These variables have
been shown to effectively capture time variation in expected returns of the aggregate U.S. stock
market, bond market, and real estate market. I discuss these variables below based on the
predictive information included in X,. Details on the data sources and construction are provided

in Appendix 2.1.
Valuation ratios have a long-standing tradition as predictors of equity market returns, including

the dividend-to-price ratio (Fama and French, 1988; Lewellen, 2004; Lettau and Van
Nieuwerburgh, 2008), the book-to-market ratio (Kothari and Shanken, 1997; Pontiff and Schall,
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1998), and the earnings-to-price ratio (Campbell and Shiller, 1988a and b and 2005). The
economic rationale for using valuation ratios to predict future returns is based on the reasonable
assumption that the ratio components are cointegrated in logs (Engle and Granger, 1987). For
example, if log dividends and log prices are cointegrated, then the log dividend-price ratio must
be a mean-reverting process. If, at time ¢, the ratio is higher than its unconditional mean, this
suggests that either expected dividend growth will be low, expected returns will be high, or a
combination of the two (Campbell et al., 2009). To capture time variation in the expected
returns of the aggregate REIT market, I construct three valuation ratios: the value-weighted
averages of firm-specific REIT valuation ratios—aggregate dividend-to-price ( D/P ),

aggregate book-to-market (B /M), and aggregate earnings-to-price (E /P).

Despite the appeal of using valuation ratios in predictive regressions, an obvious problem is
that the predictive ratios might not capture all time variation in the conditioning information
set, X;. Indeed, there is considerable evidence that term structure variables, other than past
returns or valuation ratios, are associated with future stock market returns. These variables
include the short-term interest rate (Fama and Schwert, 1977; Hodrick, 1992; Ang and Bekaert,
2007), the term spread (Fama and French, 1989; Campbell and Vuolteenaho, 2004; Campbell
et al., 2010), and the default spread (Keim and Stambaugh, 1986; Fama and French, 1989). To
alleviate potential omitted-variable bias in the predictive regressions, I include three interest
rate variables: Thill, the 3-month Treasury bill rate; Term, the difference between 10-year and
I-year Treasury constant maturity rate; and Default, the difference between Moody’s

Seasoned Baa and Aaa corporate bond yields.

Predictability in 7,4 might also arise from time variation in investor sentiment, broadly
defined as demand unjustified by existing fundamentals. A natural prediction of the noise trader
model is that returns should be lower following high-sentiment periods (Lee et al., 1991). There
is ample evidence of the cross-sectional effect of sentiment on stock returns (see, e.g., Baker
and Wurgler, 2006 and 2007; Baker et al., 2012; Ben-Rephael et al., 2012). The sentiment effect
on REIT returns is also well documented (see, e.g., Clayton and MacKinnon, 2002; Ambrose
et al., 2007; Lin et al., 2009; Ling et al., 2014; Das et al., 2015). I employ three measures of
investor sentiment: SI¢°™_ the University of Michigan Consumer Sentiment Index; SISt0¢kL

the Baker and Wurgler (2006) composite stock-market-based sentiment index; and SIREITL the
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constructed composite REIT-market-based sentiment index. The definition, data sources, and

construction of the investor sentiment measures are provided in Appendix 2.2.

Prior research has examined various corporate decision variables, in addition to investment, for
their predictive power over stock returns. For example, Baker and Wurgler (2000) demonstrate
that when investor sentiment is high, firms increase the equity share in total new (equity plus
debt) issues, which is subsequently followed by lower market returns. Hirshleifer et al. (2009)
find that aggregate accruals positively predict aggregate returns and suggest that aggregate
accruals might serve as a proxy for discount rates. Additionally, Ling et al. (2019) predict the
stock returns of individual REITs using firm-level equity issuance and accruals variables.
Consequently, this study includes two additional corporate decision variables to proxy for time
variation in investor sentiment and/or expected returns. Eshare represents the equity share in
REIT total net equity and debt issues, while Accrual denotes aggregate operating accruals,

calculated as the value-weighted average of firm-level accruals.

As noted in the existing literature, statistical complications in linear predictive regressions may
arise when the predictor X, is persistent and its innovations are correlated with &, inducing
small-sample bias in the estimation of § (Stambaugh, 1999). Table 2.1 shows that the valuation
ratios exhibit moderate to high serial correlation. The interest rate variables are also moderately
to highly serially correlated, as are the three investor sentiment measures. Only the two
corporate decision variables are nearly serially uncorrelated. To address the potential small-
sample bias in OLS estimates, this study adjust the coefficient estimates using the Stambaugh
(1999) correlation. The t-statistics are calculated with Newey and West (1987) standard errors,

using three lags.

[Insert Table 2.1]
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2.3 Forecasting Aggregate REIT Market Returns

Equation (2.2) presents the regression model of future aggregate REIT market returns on a

constant and a set of conditioning variables:

Riy 1 = a+ ByInvest, + B,SI; + B3Tbill, + B,Term; + BsDefault, + B¢D/P; + 7B/
M, + BgE /P + P9Eshare; + fioAccrual; + g,4 (2.2)

R;, is the compounded monthly excess total return (return minus risk-free rate) on the FTSE
NAREIT All Equity REITs Index from July in year t+1 to June in year t+2. Invest, is aggregate
investment as of the end of fiscal year t. SI, represents one of three sentiment indices: SIF°™
is the average value of the monthly University of Michigan Consumer Sentiment Index over

Stock
It

year t; S is the average value of the monthly Baker and Wurgler (2006) composite stock

market sentiment index over year t; and SIRE!T is the average value of the monthly constructed
composite REIT market sentiment index over year t. Thill; is the 3-month Treasury bill rate as
of the beginning of July in year t+1. Term, is the difference between 10-year and 1-year
Treasury constant maturity rates as of the beginning of July in year t+1. Default, is the
difference between Moody’s Seasoned Baa and Aaa corporate bond yields as of the beginning
of July in year t+1. D /P; represents the dividend yield on the FTSE NAREIT All Equity REITs
Index as of the end of June in year t+1. B/M, is aggregate book-to-market equity ratio as of
the end of fiscal year t. E /P, is aggregate earnings-to-price ratio as of the end of fiscal year t.
Eshare; represents the equity share in REIT total net equity and debt issues over year t.

Accrual, is aggregate operating accruals as of the end of fiscal year t. The horizon t is annual

from 1971 to 2018.

Table 2.2 presents OLS slope estimates of Equation (2.2). Panels (1) through (13) present
various specifications of annual predictive regression. In Panel (1), where aggregate investment
is included as a standalone variable, it serves as a strong predictor of REIT market returns, with
a negative coefficient of -0.343 that is statistically significant (t-statistic = -2.58). When I add
interest rate variables as control variables in Panel (2), the coefficient for aggregate investment
becomes less negative, changing to -0.204 with a t-statistic of -1.88. All estimates for the
interest rate variables are positive; however, only the coefficient for the term spread is

statistically significant.
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Panel (3) presents the results of the predictive regression incorporating both valuation ratios
and corporate decision variables as additional conditioning variables. The estimate for the
investment variable decreases to -0.416, and the corresponding t-statistic decreases to -3.54. 1
observe a positive, albeit insignificant, relationship between dividend yields and future REIT
returns. In contrast, the book-to-market ratio exhibits a significantly positive relationship with
future REIT returns. It is surprising to observe a significantly negative relationship between
the earnings-to-price ratio and future REIT returns.® Consistent with Baker and Wurgler (2000),
I demonstrate that the equity share in total net issues significantly and negatively predicts REIT
market returns. While aggregate operating accruals positively predict market returns, consistent

with Hirshleifer et al. (2009), the relationship is not statistically significant in my REIT sample.

Panel (4), which includes interest rate variables, valuation ratios, and corporate decision
variables as control variables, reconfirms that aggregate investment is a strong predictor of
REIT market returns. All interest rate variables predict aggregate returns with a negative sign;
however, only the short-term interest rate variable is statistically significant. Valuation ratios
are all significant in predicting returns. In particular, the point estimate for the dividend-to-
price ratio increases dramatically in magnitude, as does the corresponding t-statistic. The equity
share in total net issues remains significant for aggregate REIT returns, while aggregate

operating accruals remain insignificant.

In the remaining panels, I present results from the predictive regressions that include investor
sentiment. In univariate settings, investor sentiment measures are not significant predictors of
REIT market returns, with the notable exception of the constructed composite REIT market
sentiment index. Panel (7), (10), and (13) present the most comprehensive specifications that
include all conditioning variables. The investment variable remains a strong predictor of REIT
returns, with point estimates in the range of -0.3 and t-statistics above -2. It is noteworthy that
the estimates for both the University of Michigan Consumer Sentiment Index and the Baker

and Wurgler composite stock market sentiment index become statistically significant. For the

% The negative sign of the earnings-to-price ratio deviates from expectations when the variable is interpreted as an
expected return proxy. Presumably, the ratio components are cointegrated in logarithms, implying that the
logarithmic earnings-to-price ratio is a mean-reverting process. If, at any time t, the ratio exceeds its unconditional
mean, either expected earnings growth will be subdued, expected returns will be elevated, or a combination of
both will occur. The negative sign suggests that the variable primarily functions as a proxy for expected earnings
growth rather than expected returns. Consequently, higher earnings-to-price ratios correspond to lower expected
earnings growth and diminished future returns.
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remaining state variables, their relationships with future REIT returns do not exhibit significant

changes.

The in-sample significance of my predictive results appears to be somewhat greater than that
documented in previous studies (see, e.g., Liu and Mei, 1992; Ghysels et al., 2013; Ghent et
al., 2019). This difference may be partly attributable to my focus on longer return horizons,
aligning with the argument in prior research that returns are more predictable at extended
horizons. In Table 2.2, I emphasize that aggregate investment strongly predicts REIT market

returns.

[Insert Table 2.2]
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2.4 Explaining Aggregate REIT Investment

Despite the existence of predictability, the reduced-form version of predictive regressions does
not help further understand the economic forces that are behind the predictive relationship. Is
the forecastability due to time variation in the expected returns of aggregate REIT market, or
is it driven by time-varying investor sentiment? These questions can be investigated by either
directly explaining the predictive variable of interest or indirectly introducing additional
response variables in predictive regressions (Arif and Lee, 2014). To trace the economic

provenance of the predictability, I begin by explaining aggregate REIT investment.

Specifically, I examine whether aggregate REIT investment is contemporaneously related to
investor sentiment or expected returns. If the predictability is driven by time-varying investor
sentiment, the investment variable should be contemporaneously positively related to the
sentiment measures. Corporate investment is related to investor sentiment either because
corporate managers rationally exploit market mispricing (see, e.g., Baker and Wurgler, 2000
and 2002; Polk and Sapienza, 2008) or because they are themselves caught up in market
euphoria (Arif and Lee, 2014). Conversely, if the predictive relationship is due to time variation
in expected returns, one would expect a strong association between the investment variable and
expected return proxies, since firms rationally align their investment policies with their costs

of capital.

Table 2.3 presents the results from the OLS regressions of aggregate REIT investment on a
constant and a set of conditioning variables suggested by prior literature.!” Given that the
investment variable is moderately to highly persistent (AR(1) coefficient of 0.648), I include a
one-period lagged value. I employ three previously mentioned investor sentiment measures.
Aggregate return on assets gauges aggregate REIT profitability, while REIT market returns

capture the state of the market. The aggregate book-to-market ratio serve as a proxy for

10 A range of economic state-related variables have been shown in the literature to be associated with aggregate

investment quantity. For example, Barro (1990) and Morck et al. (1990) report that stock market returns forecast

future aggregate investment. In addition to stock market returns, Morck et al. (1990) also document the association

of aggregate corporate profits and new equity issues with subsequent aggregate investment. Blanchard et al. (1993)
demonstrate that Tobin’s q and aggregate profits positively predict future aggregate investment. More recently,

Kothari et al. (2014) investigate the association of aggregate investment rate with current and past changes in

corporate profits, stock prices, market volatility, nominal risk-free interest rate, the maturity premium, and the

default risk premium.
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investment Q. Additionally, I include three interest rate variables as proxies for expected returns:

the short-term interest rate, the term spread, and the default spread.

The first three panels of Table 2.3 show that, in a univariate setting, aggregate investment is
significantly positively associated with all sentiment measures except the University of
Michigan Consumer Sentiment Index. The point estimate for the constructed composite REIT
market sentiment index is comparable in magnitude to that for the Baker and Wurgler
composite stock market sentiment index. Panels (4) through (6) present results for more
comprehensive specifications that include all other conditioning variables except the expected
return proxies. I observe that the estimates for both the stock and REIT market sentiment
indexes are significant at the 5% confidence level for aggregate investment. As expected,
aggregate investment is significantly positively related to aggregate profits. Additionally, the

investment variable exhibits a significant positive relationship to REIT market returns.

The last three panels of Table 2.3 present the results from regressions that include the three
interest rate variables. Surprisingly, the estimate for the REIT market sentiment index becomes
insignificant. The estimate for the stock market sentiment index remains significant; however,
its magnitude declines from 0.056 to 0.041, and it is now significant at the 10% level. In
contrast, the estimates for the aggregate book-to-market ratio increase dramatically in absolute
value and become significant at the 5% level across all specifications. The three expected return
proxies exhibit a strong relationship with aggregate investment. Notably, while the investment
variable negatively responds to the default spread, it positively responds to both the short-term
interest rate and the term spread. The diminishing relationship between investment and
sentiment suggests that the investment variable responds to some unobservable fundamental

factors rather than the sentimental components of the stock and REIT market sentiment indexes.

Taken together, Table 2.3 provides strong evidence of the relationship between investment and
expected returns, supporting the claim that the predictive relationship is due to time variation
in expected returns. The weak evidence of the investment-sentiment relationship appears to
conflict with the cross-sectional evidence documented in previous studies (see, e.g., Eichholtz
and Yonder, 2015; Kim and Wiley, 2019). This discrepancy may be attributed to the focus on
aggregate REIT investment, which captures the common variation across individual REIT

investments. Previous studies suggest that individual REIT investment decisions may be
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influenced by biased investors and/or biased managers. In contrast, this study posits that

aggregate REIT investment decisions tend to be aligned with the overall state of the economy.

[Insert Table 2.3]

26



2.5 Forecasting Aggregate REIT Earnings News

To further understand the economic forces behind the return predictability of aggregate
investment, I next introduce additional response variables in predictive regressions. I first
forecast aggregate REIT earnings news. If the predictability is driven by time-varying market
sentiment, the investment variable should forecast aggregate firm earnings news measures, as
it proxies for market-wide “optimism” or “pessimism” about future cash flows. Irrational

beliefs about future profits will lead to greater shocks on future realized cash flows.

[ utilize multiple measures of aggregate firm earnings shocks, which are based on firm earnings,
analyst forecast of one-year-ahead earnings, and analyst forecast of long-term earnings growth.
For firm earnings, I gauge earnings surprise as standardized unexpected earnings. For analyst
earnings forecasts, earnings surprise is measured as corresponding forecast error, which equals
the difference between analyst earnings forecast and actual realized earnings. Details on data

sources and construction are provided in Appendix 2.1.

Table 2.4 presents the OLS slope estimates from the predictive regressions for aggregate REIT
earnings news. I control for a one-period lagged term, given that all the earnings news variables
except aggregate standardized unexpected earnings exhibit moderate serial dependence. The
first two columns of Panel A show that when included as a standalone variable, aggregate
investment yields an insignificant estimate for future aggregate return on assets. However, the
estimate becomes significant when controlling for lagged aggregate profitability in column (2),
albeit at the 10% significance level. This result suggests that aggregate investment may capture
optimistic (pessimistic) expectations about future earnings, which are subsequently followed
by lower (higher) earnings realization. Conversely, the last two columns demonstrate that the
investment variable does not exhibit significant positive predictive relationship with aggregate

standardized unexpected earnings, weakening the aforementioned suggestion.

Panel B presents the predictive results for aggregate analyst forecasts of one-year-ahead
earnings and the corresponding aggregate earnings forecast error. Column (1) shows that, in a
univariate setting, higher aggregate investment is significantly associated with higher
aggregate analyst forecasts for one-year-ahead earnings. However, the estimate for the

investment variable drops sharply and loses its statistical significance after including a lagged
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term in column (2). In the subsequent two columns, I observe that aggregate investment
significantly positively predicts aggregate earnings forecast error in a univariate setting, but the
predictive relationship diminishes once a lagged term is controlled for. These results suggest
that aggregate investment is unlikely to reflect analysts’ biased expectations of one-year-ahead

earnings.

Panel C displays the results for aggregate analyst forecast of long-term earnings growth and
the relevant aggregate long-term earnings forecast error. The results are very much in
agreement with those in Panel B. I observe neither a significantly positive relation between
aggregate investment and aggregate analyst long-term earnings growth forecast nor the
predictability of the aggregate long-term earnings forecast errors by the investment variable.
The result reaffirms the unlikelihood of aggregate investment to capture analysts’ biased
expectations of future earnings. Note that because data on analyst forecast of long-term
earnings growth are available for a shorter period, the power of the tests for analyst long-term
earnings growth forecast is lower than that of the tests for analyst one-year-ahead earnings

forecast.

Table 2.4 shows little evidence of the predictability of aggregate REIT earnings news by
aggregate investment, suggesting that aggregate investment tends to be unrelated to biased
market expectations about future cash flows. However, it should be noted that the inability to
reject the null hypothesis of no predictability might also be due to a lack of power in my tests,
especially given the presence of noise in the earnings news series. Admittedly, even if
predictability were present, it would be hard to detect in series that are highly serially correlated.
I explore this issue further in the following section, as I have alternative response variables that

proxy for aggregate REIT earnings shocks but are far less persistent.

[Insert Table 2.4]
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2.6 Forecasting Aggregate REIT Earnings Announcement

Returns and the Value Premium

In this section, I forecast aggregate REIT earnings announcement returns and the REIT value
premium to mitigate the concern that the lack of predictability in aggregate REIT earnings news
might be due to insufficient statistical power. The two response variables exhibit much lower
serial correlation, with AR(1) coefficients of -0.162 and 0.026, respectively, making them

suitable for forecasting exercises.

Panel A of Table 2.5 presents the OLS slope estimates from regressions of future aggregate
REIT earnings announcement returns on a constant and a set of conditioning variables.!! If
aggregate investment reflects biased market expectations of future earnings, the investment
variable should negatively predict aggregate earnings announcement returns. This is because if
noise traders fail to forecast a decrease in future profits, they will be disappointed by the

subsequently released lower earnings.

The first column of Panel A shows that, in a univariate setting, aggregate investment negatively
but insignificantly forecasts aggregate earnings announcement returns. In the second column,
I control for three interest rate variables. I find that the sign of the coefficient on investment
changes from negative to positive, although it remains statistically insignificant. In the third
column of the panel, I add three valuation ratios and two corporate decision variables. The
results indicate that the estimate for the investment variable becomes smaller but highly
statistically significant. Since the three discount rate proxies are not controlled for in this
specification, aggregate investment may still simply proxy for expected returns rather than
market sentiment. The last column of the panel presents results from a comprehensive
regression, where the estimate of aggregate investment remains negative but insignificant.
Interestingly, equity share in total net issues demonstrates strong positive predictive power. To

the extent that the short-window returns around the report dates of quarterly earnings

' My forecasting exercises suggest that the relationship between aggregate investment and future aggregate
earnings announcement returns tends to be long-term, extending beyond the immediately following year.
Therefore, I report results for Invest(_;), calculated as the arithmetic average of Invest,_, and Invest,.
Similarly, EAR (11 ¢42) is computed as the arithmetic average of EAR,,,; and EAR,,,. As with forecasting
aggregate REIT market returns, the conditioning variables in forecasting aggregate earnings announcement
returns include valuation ratios, interest rate variables, and corporate decision variables. I also apply the above
specifications in forecasting the REIT value premium.
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announcements largely reflect the “surprise” element of such information releases, the results
suggest that aggregate investment may not capture investors’ irrational expectations about

future earnings.

Panel B of Table 2.5 presents the results of predictive regressions for REIT value premium.
Prior research indicates that the price of growth stocks reflects irrational market expectations
about future earnings growth (e.g., Lakonishok et al., 1994; Dechow and Sloan, 1997).'?> The
noise trader model naturally predicts that stock returns should be lower following high-
sentiment periods, and growth stocks in particular are expected to perform poorly in subsequent
periods. ' If aggregate investment reflects biased market expectations of future earnings

growth, the investment variable should positively forecast the value premium.

The first column of Panel B shows that, in a univariate setting, higher aggregate investment is
significantly associated with a higher future value premium. The coefficient for investment is
similar in magnitude but become statistically significant in the next column after including
discount rate proxies. In the third column, the aggregate investment estimate returns significant
when I control for valuation ratios and corporate decision variables. Nevertheless, the last
column exhibits that the estimate again becomes statistically insignificant in a specification
that further includes interest rate variables. It is also noteworthy to observe strong predictability
from short-term interest rates and dividend yields. To the extent that the increase in the value
premium is driven by the particularly poor performance of REITs with low book-to-market
ratios following excessive optimism about future earnings growth, the findings imply that
aggregate investment is very likely not correlated with such biased expectations of future

earnings growth.!'*

12 Lakonishok et al. (1994) find that value strategies generate higher returns because these strategies exploit the
suboptimal behavior of typical investors who naively extrapolate past trends in earnings and sales growth. A
subsequent study by Dechow and Sloan (1997) argues that stock prices appear to naively reflect analysts’ biased
expectations of future profit growth rather than investors’ over-extrapolation of past earnings growth. They find
that higher returns to value strategies are largely attributable to naive reliance on analysts’ forecasts of future
earnings growth.

13 The cross-sectional effect of sentiment on returns—that sentiment has a stronger effect on smaller, hard-to-
value, and difficult-to-arbitrage firms—is well documented in the literature (see, e.g., Lee et al., 1991; Baker and
Wurgler, 2006 and 2007; Baker et al., 2012; Ben-Rephael et al., 2012).

14 In addition to the value premium, the REIT literature has well documented a range of other factor premiums
associated with price momentum (Chui et al., 2003a and b), earnings surprises (Price et al., 2012; Feng et al.,
2014), share turnover (Clayton and MacKinnon, 2000; Cannon and Cole, 2011), and idiosyncratic volatility (Ooi
etal.,2009; DeLisle et al., 2013). I find no predictability of these factor premiums by aggregate investment (results
are available upon request).
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The results in Table 2.5 provide only weak evidence of the predictability of aggregate REIT
earnings announcement returns and the REIT value premium by aggregate investment. These
findings are consistent with those in Table 2.4, which forecasts aggregate REIT earnings news.
However, the inability to establish that aggregate investment proxies for biased expectations
about future fundamentals may be due to a narrow focus on firm-specific fundamentals, given
that the response variables in predictive regressions pertain solely to future firm cash flow
innovations. If aggregate investment captures biased expectations about broader
macroeconomic fundamentals, it is not necessary for it to demonstrate predictive power for
series related to firm earnings shocks. I will further investigate the implications of a broader
focus on fundamentals in the following section, where I employ alternative response variables

that measure future macroeconomic fundamentals.

[Insert Table 2.5]
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2.7 Forecasting Macroeconomic Growth

In this section, I conduct forecasting exercises on macroeconomic growth, considering that
aggregate investment may also propagate biased expectations about future macroeconomic
fundamentals in addition to firm-level cash flows. If this is the case, the investment variable
should negatively predict economic growth variables. Conversely, if aggregate investment
captures time variation in expected economic fundamentals, the predictive relationship should

be positive.

I employ two measures of economic growth: the Chicago Federal National Activity Index
(CFNALI) and the real GDP growth rate.'”> These two measures exhibit low serial correlation,
with AR(1) coefficients of 0.098 and 0.094, respectively, which enhances the statistical power
in predictive regressions. Table 2.6 presents the OLS slope estimates from regressions of the
future economic growth measures on a constant and a set of conditioning variables suggested
by Fama (1981), including a one-period lagged economic growth variable, aggregate REIT

market returns, and industrial production growth.

Panel A presents the results of predictive regressions for CFNAI. When included as a
standalone variable in column (1), aggregate investment significantly and positively predicts
CFNALI, with a point estimate of 0.305 (t-statistic = 2.04). In the following column, I control
for a lagged term. The estimate for the investment variable decreases slightly to 0.240 and loses
its statistical significance (t-statistic = 1.35). However, the estimate increases sharply to 0.467
(t-statistic = 2.81) when I further control for aggregate REIT market returns and industrial
production growth. The predictive result is also economically significant. A one-standard-
deviation increase in aggregate investment is associated with an increase of 0.079 in CFNAI in
the following year. For reference, the average annual CFNAI is -0.032, with a standard

deviation of 0.472.

15 The CFNAI corresponds to the index of economic activity developed by Stock and Watson (1999). This index
is the first principal component of 85 macroeconomic indicators drawn from four broad categories of data:
production and income; employment, unemployment, and hours; personal consumption and housing; and sales,
orders, and inventories. The index has been proven to be highly accurate in identifying U.S. recessions and
expansions. Positive values indicate above-average growth, while negative values indicate below-average growth.
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Panel B reports the predictive regression results for the real GDP growth rate, which are
consistent with those for CFNAI Specifically, I observe a positive relationship between
aggregate investment and future real GDP growth, with point estimates ranging from 0.036 to
0.048, all of which are significant at the 1% level. In economic terms, a one-standard-deviation
increase in aggregate investment is associated with a 0.81% higher real GDP growth rate in the
following year. For reference, the average annual real GDP growth rate is 2.50%, with a

standard deviation of 2.76%.

The results in Table 2.6 provide strong evidence of the predictability of macroeconomic
fundamentals by aggregate investment. The positive predictive relationship suggests that
aggregate investment is more likely to reflect expected future macroeconomic fundamentals

rather than biased expectations.

[Insert Table 2.6]
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2.8 Subsuming Aggregate REIT Market Return Predictability

The results in the previous sections indicate that aggregate investment is strongly linked to
discount rate proxies and appears unrelated to biased expectations of future firm cash flows
and macroeconomic fundamentals. In this section, I make the last attempt in exploring the
economic forces behind the aggregate REIT return predictability by aggregate investment.
Specifically, I examine whether the return predictability would be subsumed, should future
firm earnings news and macroeconomic growth materialize. If the predictability stems from
time variation in expected returns, it should not be subsumed. Conversely, if the predictability

is driven by time-varying market sentiment, it would be subsumed.

Table 2.7 presents the OLS slope estimates from regressions of future aggregate REIT market
returns on a constant, aggregate REIT investment, future firm earnings news measures, and
future macroeconomic growth indicators. The first column of Panel A reproduces the return
predictability by the investment variable in a univariate setting, generating a point estimate of
-0.343 (t-statistic = -2.58). From columns (2) to (8), I control for one of the following measures:
aggregate return on assets, aggregate standardized unexpected earnings, aggregate errors in
analyst forecasts of one-year-ahead earnings, aggregate errors in analyst forecasts of long-term
earnings, aggregate earnings announcement returns, value premium, and CFNAL I find that
the estimates for the investment variable remain negative and statistically significant across all
specifications, ranging from -0.387 (t-statistic = -2.86) to -0.322 (t-statistic = -2.66). The next
six columns present results for a more comprehensive specification, which includes CFNAI
and one of the future firm earnings news measures. The predictive power of aggregate
investment increases slightly, with higher point estimates and t-statistics in absolute terms.
Interestingly, CFNAI tends to dominate firm earnings news measures in explaining aggregate
REIT market returns. The final column presents results for a kitchen sink regression. The
estimate for the investment variable declines slightly to -0.296 but remains highly statistically

significant (t-statistic = -4.77).
In Panel B, I find similar results by substituting CFNAI with the real GDP growth rate. Taken

together, the results in Table 2.7 demonstrate that the return predictability by aggregate

investment is not subsumed by the subsequent materialization of future firm earnings news and
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macroeconomic growth, indicating that time variation in expected returns is the primary

economic force behind the predictive relationship.

[Insert Table 2.7]
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2.9 Conclusion

Motivated by the investment-based asset pricing model, I investigate whether aggregate
corporate investment in income-producing properties serves as a predictor of future market
returns on commercial real estate. I find that aggregate REIT property investment negatively
predicts public commercial real estate returns. The predictive relationship is robust even when
accounting for other predictors, including valuation ratios, interest rate variables, investor

sentiment measures, and other corporate decision variables.

Additional analyses suggest that time-varying market sentiment does not well explain the
return predictability. Aggregate investment is only weakly related to investor sentiment and
does not significantly predict aggregate firm earnings news. Instead, it is more likely that time
variation in expected returns drives the predictability. Aggregate investment is strongly linked
to interest rate variables and positively predicts macroeconomic growth. Additionally, the
return predictability is not subsumed by the materialization of future firm cash-flow shocks or
macroeconomic fundamentals. This study concludes that aggregate REIT property investment
may serve as an alternative, and possibly sharper, measure of the expected returns of public

commercial real estate, particularly the long-horizon component.

This study makes several important contributions to the existing literature. It first extends the
literature on aggregate stock return predictability based on investment-related variables.
Previous studies have predominantly focused on productive capital investment and aggregate
stock market returns. This study provides new evidence from commercial real estate investment
and its public market returns. In addition, previous studies have debated the economic force
behind the investment’s return predictability. This study provides new evidence strengthening

the rational explanation of time-varying expected returns.

This study secondly contributes to the literature on aggregate REIT return predictability, which
has been addressed with different interests in previous studies. This study approaches the topic
with new insight from the investment-based asset pricing models and suggests that aggregate
REIT property investment is an alternative and possibly shaper measure of expected returns.
Third, this study adds to the growing literature on REIT real investment decisions. Previous

studies have documented the effects of biased managers or investors on REIT property
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investment at the firm level. This study shows contrasting evidence that at the aggregate level,
investor sentiment is, in effect, a sideshow to REIT investment, conveying a signal of collective

rationality.

This study has practical implications for investors. The finding that aggregate REIT property
investment closely tracks future market return dynamics can guide commercial real estate
investors in their investment management. For instance, they can evaluate the expected returns
on public commercial real estate equity by analysing the aggregate property investments of
prominent commercial real estate market players, such as real estate investment trusts and real

estate operating companies, and so on.

It is imperative to acknowledge the limitations of this study. One of the primary limitations of
this study is the data constraints. The analysis heavily relies on the non-cash asset growth rate
as a proxy for equity REIT property investment. While this proxy provides a practical
measurement of real estate investment, its quality may vary across the sample period from 1972
to 2018. In the earlier years, the REIT industry underwent significant structural changes, such
as the Revenue Reconciliation Act of 1993. These changes could introduce inconsistencies into

the rules governing the composition of firms’ assets.

Another limitation concerns the predictive regression models, which are based on linear
assumptions. While these models are effective in capturing general trends and relationships
between variables, statistical complications can arise when predictors persist and their
innovations are correlated with residuals. This leads to small-sample bias in coefficient
estimation. To address this potential bias, I apply the Stambaugh (1999) correction to adjust
coefficient estimates. However, alternative estimation procedures could have been employed

to ensure the robustness of the results.

Finally, the scope and generalizability of the findings are also concerns. While the study focuses
on public commercial real estate equity, providing rich and relevant datasets, it limits the
applicability of the results to other types of commercial real estate equity, such as private

commercial real estate equity.
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Tables

Table 2.1 Descriptive Statistics

Variable Mean Std Dev Ql Median Q3 AR(D) N
R 0.0795 0.1736 -0.0011 0.0675 0.1623 -0.0020 48
Invest 0.1863 0.1696 0.1047 0.1317 0.1945 0.6478 48
D/P 0.0646 0.0199 0.0420 0.0712 0.0782 0.8468 48
B/M 0.5711 0.1432 0.4392 0.5867 0.6696 0.6705 48
E/P 0.1033 0.0487 0.0612 0.0992 0.1325 0.7662 48
Thill 0.0455 0.0345 0.0148 0.0496 0.0687 0.8450 48
Term 0.0117 0.0114 0.0049 0.0114 0.0199 0.4805 48
Default 0.0106 0.0037 0.0077 0.0094 0.0127 0.5566 48
§jcons -0.0112 0.0848 -0.0668 -0.0048 0.0425 0.7465 48
S[Stock -0.0171 0.8720 -0.2276 0.0016 0.5604 0.7353 48
SIREIT 0.0272 0.9260 -0.4591 0.0711 0.4864 0.4691 48
Eshare 0.4440 1.5955 0.3522 0.6290 0.9620 0.0590 48
Accrual 0.0038 0.0154 -0.0021 -0.0001 0.0057 -0.0864 48
ROA 0.0450 0.0225 0.0282 0.0397 0.0552 0.7949 48
SUE 0.1902 0.8416 -0.0905 0.2031 0.6617 -0.0457 48
FROA 0.0272 0.0066 0.0219 0.0271 0.0326 0.6237 44
Error -0.0154 0.0315 -0.0179 -0.0064 -0.0019 0.3381 44
FLTG 0.0979 0.0253 0.0762 0.0935 0.1154 0.6029 39
LTError 0.0183 0.0218 0.0063 0.0143 0.0299 0.3728 37
EAR 0.0008 0.0134 -0.0029 0.0001 0.0039 -0.1616 48
HML 0.0112 0.1447 -0.0648 0.0008 0.0464 0.0259 48
CFNAI -0.0322 0.4715 -0.1096 0.0317 0.2271 0.0976 48
GDPGR 0.0250 0.0276 0.0155 0.0295 0.0405 0.0941 48
Indprod 0.0179 0.0522 0.0001 0.0257 0.0504 -0.0165 48

This table presents descriptive statistics for the variables used in the study. R denotes aggregate REIT market
returns, and Invest refers to aggregate investment. D /P represents aggregate dividend-to-price ratio, B/M is
aggregate book-to-market equity ratio, and E /P is aggregate earnings-to-price ratio. Thill refers to the short-
term interest rate, Term represents the term spread, and Default is the default spread. SI€°™ is the University
of Michigan Consumer Sentiment Index, SIS?¢¥ is the Baker and Wurgler (2006) composite stock market
sentiment index, and SIRE'T is the constructed composite REIT market sentiment index. Eshare, is the equity
share in REIT total net equity and debt issues, while Accrual denotes aggregate operating accruals. ROA refers
to aggregate return on assets, and SUE is aggregate standardized unexpected earnings. FROA represents
aggregate analyst forecast of one-year-ahead ROA, and Error is aggregate difference between analyst forecast
of one-year-ahead ROA and actual realized ROA. FLTG stands for aggregate analyst forecast of long-term
earnings growth, and LTError is aggregate difference between analyst forecast of long-term ROA and actual
realized long-term ROA. EAR represents aggregate earnings announcement returns, and HML is the value
premium. CFNAI is the Chicago Federal National Activity Index, GDPGR is the growth rate of real GDP, and
Indprod is the growth rate of industrial production. AR(1) presents the first-order autoregressive coefficient
for the variables. N is the number of observations. See Appendix 2.1 and 2.2 for details on variable definitions,
data sources, and construction.
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Table 2.2 Forecasting Aggregate REIT Market Returns

1 (2) 3) 4) (%) (6) ) (3) ) (10 an (12) (13)
Invest,  -0.3429"  -0.2045"  -0.4164"" -0.4170" 0.3480"  -0.3443" 0.3326™  -03162" 0.3136™  -0.3970"
(-2.58) (-1.88) (-3.54) (-2.36) (-2.63) (-2.46) (-2.60) (-2.14) (-2.16) (2.21)
sicons 02899  0.0230 -0.5103"
(-1.33) (0.10) (-1.96)
SIStock 0.0246  -0.0075  -0.0687""
(-1.06) (-0.36) (-3.84)
SIREIT 0.0353*  -0.0158  -0.0180
(-1.84) (-0.69) (-1.00)
Thill, 0.6568 2.2083" 2.8557" -1.7405 -2.1096"
(0.85) (-2.05) (-3.10) (-1.52) (-1.89)
Term, 7.1915™* -0.4386 -1.8622 1.2908 -0.3834
(3.64) (-0.17) (-0.80) (0.55) (-0.15)
Default, 2.2637 -1.2157 -3.6225 -0.3898 -2.6698
(0.26) (-0.14) (-0.38) (-0.05) (-0.31)
D/P, 1.1525 3.9041% 4.0471" 3.3448" 4.0406"
(0.75) (2.16) (2.20) (1.79) (2.18)
B/M, 12121 1.2654" 1.5161" 1.5374* 1.2885"
(3.32) (2.45) .71) (3.17) (2.44)
E/P, 31306 -3.2266™ -3.6674" -4.0923" -3.4238™
(-2.88) (-2.15) (-2.34) (-2.89) (-2.32)
Eshare, 0.0140"  -0.0093" -0.0094" -0.0024 -0.0102"
(-2.36) (-1.75) (-1.79) (-0.48) (-1.91)
Accrual, 1.6309 1.3739 1.2210 1.5714 1.4258
(0.99) (0.80) (0.73) (1.01) (0.84)
Constant  0.1436™  -0.0218  -0.2856"  -0.3659"  0.0751™  0.1450""  -0.4212"*  0.0785™  0.1414™*  -0.4714™ 0.0806™*  0.1386™  -0.3604"
(4.42) (-0.26) (:2.06) (:2.39) (3.49) (4.19) (:2.65) (3.48) (4.43) (-3.03) (3.84) (4.14) (:2.27)
N 43 43 43 43 48 48 48 48 48 48 48 48 48
Adj. R? 9.26% 20.06%  30.19%  33.82%  -0.14% 7.25% 36.53%  -0.60% 7.38% 41.83% 1.44% 7.89% 32.92%

The table presents OLS slope estimates from regressions of future aggregate REIT market returns on a constant and a set of conditioning variables:
Riyq = o+ ByInvest, + (5,51 + [3Thill, + B,Term, + BsDefault, + B¢D/P; + B,B/M; + SgE /P + ByEshare, + [ipAccrual, + €44

R4 is the compounded monthly excess total return (return minus risk-free rate) on the FTSE NAREIT All Equity REITs Index from July in year t+1 to June in year t+2. Invest, is aggregate
investment as of the end of fiscal year t. SI, represents one of three sentiment indices: SIF°™ is the average value of the monthly University of Michigan Consumer Sentiment Index over
year t; SISk is the average value of the monthly Baker and Wurgler (2006) composite stock market sentiment index over year t; and SIFF'T is the average value of the monthly constructed
composite REIT market sentiment index over year t. Thill, is the 3-month Treasury bill rate as of the beginning of July in year t+1. Term, is the difference between 10-year and 1-year
Treasury constant maturity rates as of the beginning of July in year t+1. Default, is the difference between Moody’s Seasoned Baa and Aaa corporate bond yields as of the beginning of
July in year t+1. D /P, represents the dividend yield on the FTSE NAREIT All Equity REITs Index as of the end of June in year t+1. B /M, is aggregate book-to-market equity ratio as of the
end of fiscal year t. E /P, is aggregate earnings-to-price ratio as of the end of fiscal year t. Eshare, represents the equity share in REIT total net equity and debt issues over year t. Accrual,
is aggregate operating accruals as of the end of fiscal year t. The horizon ¢t is annual from 1971 to 2018. *, ** and *** denote statistical significance at 10%, 5%, and 1%, respectively.
Newey and West (1987) HAC t-statistics based on three lags are reported in parenthesis below the estimates.
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Table 2.3 Explaining Aggregate REIT Investment

1) (2) 3) “4) (5) (6) () (8) )
sIcoms 0.8627 0.4254 0.3640
(1.68) (1.36) (1.27)
SIStock 0.0503" 0.0559** 0.0405"
(1.73) (2.23) (1.96)
SIREIT 0.0627** 0.0428" 0.0264
(2.24) (2.36) (1.28)
ROA, 1.4352* 1.8634" 1.0877" 0.1649 0.6793 -0.2375
(1.99) 2.51) (2.20) (0.23) (1.03) (-0.45)
R, 0.2008"* 0.2603** 0.1908** 0.2224* 0.2561** 0.2311*
(2.32) (2.64) (2.04) (2.37) (2.53) (2.09)
Ry, 0.1980 0.1300 0.1834 0.1162 0.0676 0.1157
(1.66) (1.35) (1.54) (1.03) (0.69) (1.06)
Invest,_, 0.6682""* 0.7575"* 0.7215"* 0.6281""* 0.6963"* 0.6685"*
(4.89) (4.87) (4.69) (5.11) (4.92) (4.97)
B/M,_, -0.1898 -0.3002" -0.1456 -0.4984" -0.4892" -0.4123*
(-1.47) (-2.08) (-1.43) (-2.15) (-2.28) (-2.04)
Thill,_, 2.8988" 2.2341" 24327
(2.38) (2.07) @2.11)
Term,_, 5.1304 4.1238" 3.3339
(1.77) (1.73) (1.26)
Default,_, -11.3470* -11.5044™ -10.5937**
(-2.69) (-2.52) (-2.19)
Constant 0.1959"* 0.1871""* 0.1846™ 0.0788 0.1026" 0.0554 0.2495"* 0.2502* 0.2401**
(5.34) (5.19) (5.36) (1.12) (1.70) (1.03) (2.94) .71) (2.59)
N 48 48 48 47 47 47 47 47 47
Adj. R? 16.86% 4.66% 9.82% 45.13% 48.58% 47.73% 48.78% 49.74% 48.44%

The table presents OLS slope estimates from regressions of aggregate investment on a constant and a set of conditioning variables:
Invest, = a + B,SI; + B,ROA; + B3R; + L4R:_1 + fsInvest,_; + fcB/M;_1 + [,Tbill,_; + fgTerm,_, + ByDefault,_; + &;

Invest, is aggregate investment as of the end of fiscal year t. SI, represents one of three sentiment indices: SI°™ is the average value of the monthly University of
Michigan Consumer Sentiment Index over year t; SIFt°¢* is the average value of the monthly Baker and Wurgler (2006) composite stock market sentiment index over year
t; and SIRE'T is the average value of the monthly constructed composite REIT market sentiment index over year t. ROA, is aggregate return on assets as of the end of fiscal
year t. R, is the compounded monthly excess total return (return minus the risk free rate) on the FTSE NAREIT All Equity REITs Index from July of year t to June of year
t+1. B/M,_, is aggregate book-to-market equity ratio as of the end of fiscal year t-1. Thill,_; is the 3-month Treasury bill rate as of the beginning of July in year t.
Term,_, is the difference between 10-year and 1-year Treasury constant maturity rates as of the beginning of July in year t. Default,_; is the difference between Moody’s
Seasoned Baa and Aaa corporate bond yields as of the beginning of July in year t. *, ** and *** denote statistical significance at 10%, 5%, and 1%, respectively. Newey

and West (1987) HAC t-statistics based on three lags are reported in parenthesis below the estimates.
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Table 2.4 Forecasting Aggregate REIT Earnings News

The dependent variable is Variable, .,

Panel A Panel B Panel C
ROA; ., SUE:,, FROA;,4 Erroriyq FLTG¢ 4 LTETrTor, 4
€)) (2) 3) “) €)) (2 3) “) )] (2) 3) “)
Invest, -0.0172 -0.0118* 0.3776 0.3494 0.0111***  0.0052 0.0276* 0.0200 0.0030 0.0072 0.0250 0.0229
(-1.09) (-1.96) (1.25) (1.18) (2.88) (1.24) (1.81) (1.54) (0.22) (0.84) (1.25) (1.05)
Variable, 0.7954*%** 0.0487 0.5911%** 0.3318* 0.6176*** 0.3455%*
(8.99) (0.38) (3.42) (1.99) (6.05) (2.20)
Constant 0.0482***  0.0112**  0.0755 0.0744 0.0250***  0.0101**  -0.0206** -0.0133 0.0973***  0.0350*** 0.0131**  0.0061
(5.73) (2.18) (0.63) (0.63) (11.93) (2.38) (-2.26) (-1.61) (11.62) (3.29) (2.37) (0.95)
N 48 48 48 48 44 43 44 43 39 38 37 36
Adj. R2 -0.46% 63.13% -1.26% -3.26% 6.70% 38.48% 0.05% 8.73% -2.65% 38.81% 1.87% 15.14%

The table presents OLS slope estimates from predictive regressions for aggregate REIT earnings news.
Variable,,, = a + [ Invest, + [,Variable, + &4

I use multiple measures of aggregate firm earnings news. In Panel A, ROA,,, is aggregate return on assets as of the end of fiscal year t+1, and SUE,,, is aggregate
standardized unexpected earnings as of the end of last quarter of fiscal year t+1. In Panel B, FROA,,; is aggregate forecast of fiscal year t+1 ROA, computed using analyst
forecasts of one-year-ahead EPS available as of the end of fiscal year t, and Error,,, is aggregate difference between the forecast of fiscal year t+1 ROA and the actual
realized ROA in fiscal year t+1. In Panel C, FLTG,,, is aggregate forecast of long-term earnings growth, computed using analyst forecasts of long-term EPS growth
available as of the end of fiscal year t, and LTError,,, is aggregate difference between the forecast of long-term ROA and the actual realized long-term ROA. Invest, is
aggregate investment as of the end of fiscal year t. Aggregate return on assets and aggregate standardized unexpected earnings cover the period 1972-2019. Aggregate
analyst forecasts of one-year-ahead earnings and the corresponding aggregate earnings forecast error cover the period 1976-2019. Aggregate analyst forecasts of long-term
earnings growth and the corresponding aggregate long-term earnings forecast error cover the period 1981-2019. *, ** and *** denote statistical significance at 10%, 5%,
and 1%, respectively. Newey and West (1987) HAC t-statistics based on three lags are reported in parenthesis below the estimates.
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Table 2.5 Forecasting Aggregate REIT Earnings Announcement Returns and the Value Premium

Panel A: Forecasting EAR ;11 ¢42) Panel B: Forecasting HML (¢4 ¢12)
1) () (€) (4) 1) () 3) (4)
Invest_q 4 -0.0044 0.0021 -0.0116™" -0.0015 0.1279™ 0.1269 0.1349° 0.1010
(-1.07) (0.34) (-3.30) (-0.16) (2.08) (1.45) (1.87) (1.42)
Thill, 0.1314™ 0.1555° -0.3438 -2.0775™
(3.81) (1.81) (-0.59) (-2.29)
Term, 0.3610™ 0.3262 -0.9696 -2.3647
(2.20) (1.43) (-0.49) (-0.91)
Default, 0.1624 0.1228 1.6112 2.9838
(0.57) (0.43) (0.34) (0.63)
D/P, 0.0453 -0.1161 2.3644° 4.3849™
(0.44) (-0.75) (1.96) (5.24)
B/M, 0.0466™ 0.0204 -0.2722 -0.1428
(2.66) (0.78) (-1.41) (-0.46)
E/P, -0.1048"" -0.0396 0.0351 -0.2117
(-3.10) (-0.57) (0.09) (-0.33)
Eshare, 0.00117* 0.0009™** -0.0049 -0.0006
(4.24) (4.10) (-1.54) (-0.19)
Accrual, 0.0451 0.0231 0.6287 0.5799
(1.00) (0.51) (1.01) (0.73)
Constant 0.0014 -0.0121™ -0.0167" -0.0121 -0.0075 0.0034 -0.0119 -0.0939
(0.73) (-2.17) (-2.69) (-1.32) (-0.28) (0.05) (-0.20) (-1.32)
N 47 47 47 47 47 47 47 47
Adj. R? -1.58% 13.63% 9.29% 10.69% 1.70% -4.57% 7.82% 11.62%

The table presents OLS slope estimates from regressions of future aggregate REIT earnings announcement returns or the value premium on a constant and a set of conditioning
variables:
DepVar1t42) = @ + BiInvest 1) + B,Thill, + psTerm, + B,Default, + psD /P, + B¢B/M, + B,E /P, + BgEshare, + BoAccrual, + & y1,¢42)

In Panel A, the dependent variable is EAR ;44 ¢+2), which is the arithmetic average of EAR;,, and EAR;,,, where EAR,,; denotes aggregate earnings announcement returns
over the period from July in year t+1 to June in year t+2. In Panel B, the dependent variable is HML; 4 (. ,), which is the arithmetic average of HML,,, and HML,, , where
HML,,, denotes the compounded monthly returns to a REIT-based value-weighted HML (high book-to-market minus low book-to-market) portfolio over the period from
July in year t+1 to June in year t+2. Invest,_, ;) is the arithmetic average of Invest,_, and Invest,, where Invest,_; denotes aggregate investment as of the end of fiscal
year t-1. Thill, is the 3-month Treasury bill rate as of the beginning of July in year t+1. Term, is the difference between 10-year and 1-year Treasury constant maturity rates
as of the beginning of July in year t+1. Default, is the difference between Moody’s Seasoned Baa and Aaa corporate bond yields as of the beginning of July in year t+1.
D /P, is the dividend yield on the FTSE NAREIT All Equity REITs Index as of the end of June in year t+1. B/M, is aggregate book-to-market equity ratio as of the end
of fiscal year t. E /P, is aggregate earnings-to-price ratio as of the end of fiscal year t. Eshare, represents the equity share in REIT total net equity and debt issues
over year t. Accrual, is aggregate operating accruals as of the end of fiscal year t. *, **, and *** denote statistical significance at 10%, 5%, and 1%, respectively.
Newey and West (1987) HAC t-statistics based on three lags are reported in parenthesis below the estimates.
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Table 2.6 Forecasting Macroeconomic Growth

Panel A: Forecasting CFNAI, ., Panel B: Forecasting GDPGR,
1) (2) 3) 1) (2) 3)
Invest, 0.3054™ 0.2395 0.4673"" 0.0400"" 0.0361"" 0.0479""
(2.04) (1.35) (2.81) (3.20) (2.82) (3.64)
Variable, 0.1413 -0.0065 0.1329 0.2722
(1.32) (-0.02) (1.40) (1.01)
R, 0.9286™ 0.0448™
(2.66) (2.44)
Indprod, -0.3253 -0.1560
(-0.09) (-0.92)
Constant -0.0893 -0.0773 -0.2075™ 0.0175™" 0.0145™ 0.0072
(-1.15) (-1.07) (-2.06) (3.13) (2.47) (1.31)
N 48 48 47 48 48 47
Adj. R? -0.94% -1.31% 4.28% 3.97% 2.95% 6.07%

The table presents OLS slope estimates from regressions of future macroeconomic growth on a constant and a
set of conditioning variables:
Variable;,., = a + fInvest, + [,Variable, + 3R, + ByIndprod; + €44

I employ two measures of macroeconomic growth. In Panel A, CFNAI,,, is the average value of the monthly
Chicago Federal National Activity Index (CFNAI) from July in year t+1 to June in year t+2. In Panel B,
GDPGR,,, is the growth rate in real GDP over the period from July in year t+1 to June in year t+2. Invest; is
aggregate investment as of the end of fiscal year t. R, is the compounded monthly excess total returns (returns
minus the risk-free rate) on the FTSE NAREIT All Equity REITs Index over the period from July of year t to
June of year t+1. Indprod, is the growth rate in industrial production over the period from July in year t to
June in year t+1. *, ** and *** denote statistical significance at 10%, 5%, and 1%, respectively. Newey and
West (1987) HAC t-statistics based on three lags are reported in parenthesis below the estimates.
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Table 2.7 Subsuming Aggregate REIT Market Return Predictability

Panel A: using CFNAI, 4 as the future macroeconomic growth measure

1 (2) 3) 4) (%) (6) @) 3) ) (10) an (12) (13) (14) 15)
Invest,  -034297 03737 03234 -03407°  -03298" -0.3223" -0.3439"" 03872 04303 -03717 -04191" -03960" -0.3752" -03913 -0.2962""
(-2.58) (-2.99) (-2.79) (-2.64) (-3.80) (-2.66) (-2.77) (-2.86) (-3.46) (-2.83) (-3.23) (-3.80) (-2.88) (-3.16) (-4.77)
ROA;4, -1.7961" 22508 -7.9050"**
(-1.74) (-2.57) (-7.22)
SUE,4, 0.0462°* 0.0277 0.0357*"
(2.01) (1.25) 2.21)
Errores, -0.9501"* -0.1569 -1.7147°
(-2.40) (-0.28) (-6.56)
LTErrors,, 2.4631" -1.6620 0.8736
(-1.90) (-1.60) (0.87)
EARy4, 3.4864 1.1488 12.3427"
(0.95) (0.30) (7.56)
HML,y, 0.2360 0.2884  0.3690"**
(1.46) (1.36) (2.83)
CFNAI4, 0.1451"  0.1596™  0.1328"  0.1958"* 0.1959*  0.1281°  0.1544™  0.1383""
(2.13) (2.14) (1.89) 2.77) (2.17) (1.96) (2.41) (4.28)
Constant ~ 0.1436™  0.2302"*  0.1312"*  0.1418"* 02018 0.1371""  0.1412"*  0.1566™*  0.2664™*  0.1480"*  0.1769"** 0.2082°**  0.1529°**  0.1544°**  0.3975""
(4.42) @A.11) (3.95) (4.14) (5.29) (4.43) (4.61) (4.36) (5.41) 3.71) (4.48) (5.05) (4.78) (4.55) (10.89)
N 48 48 48 44 37 48 48 48 48 48 44 37 48 48 37
Adi.R2 9.26%  12.79% 12.44% 12.95% 19.45% 14.76% 11.28% 2327% 30.28% 23.33%  33.92% 35.98% 22.14% 27.63% 78.11%

The table presents OLS slope estimates from regressions of future aggregate REIT market returns on a constant, aggregate REIT investment, future firm earnings news

measures, and future macroeconomic growth measures:

Riy1 = a + ByInvest, + B,CFNAI 1 + B3ROA,, + B4SUE ;1 + BsErrory 4 + BLTError, . + f;EAR, 1 + BgHML; 1 + €44

R, represents the compounded monthly excess total returns (returns minus risk-free rate) on the FTSE NAREIT All Equity REITs Index over the period from July in year
t+1 to June in year t+2. Invest, is aggregate investment as of the end of fiscal year t. CFNAI, ,; is the average value of the monthly CFNAI over the period from July in year
t+1 to June in year t+2. ROA,,, is aggregate return on assets as of the end of fiscal year t+1. SUE,,; is aggregate standardized unexpected earnings as of the end of the last
quarter of fiscal year t+1. Error,,, represents aggregate difference between analyst forecasts of fiscal year t+1 earnings and actual realized ROA for fiscal year t+1.
LTError, 4 represents aggregate difference between analyst forecasts of long-term earnings and actual realized long-term ROA. EAR,,; is aggregate earnings announcement
returns over the period from July in year t+1 to June in year t+2. HML,,, denotes the compounded monthly returns to a REIT-based value-weighted HML portfolio over the
period from July in year t+1 to June in year t+2. *, ** and *** denote statistical significance at 10%, 5%, and 1%, respectively. Newey and West (1987) HAC t-statistics

based on three lags are reported in parenthesis below the estimates.
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Table 2.7 Continued

Panel B: using GDPGR,,, as the future macroeconomic growth measure

1) (2) (3) 4) (%) (6) @) (3) ) (10) an (12) (13) (14) 15)
Invest,  -034207 03737 03234 -03407° 03298 -0.3223"  -0.3430" 044607 04837 04258 -046927 -0.4508 -042227" -04456 -0.3320""
(-2.58) (-2.99) (-2.79) (-2.64) (-3.80) (-2.66) (-2.77) (-2.98) (-3.44) (-3.05) (-3.07) (-3.44) (-3.04) (-3.14) (-4.49)
ROA;4, -1.7961" -1.9553" -7.8454°"
(-1.74) (-2.47) (-6.84)
SUE,4, 0.0462°* 0.0341 0.0361*"
(2.01) (1.55) (2.16)
Errores, -0.9501"* -0.2204 -1.6245"
(-2.40) (-0.50) (-5.92)
LTError,., 2.4631" -1.7532 0.7929
(-1.90) (-1.64) (0.75)
EARy4, 3.4864 1.9443 12.4947"
(0.95) (0.57) (7.05)
HML,y, 0.2360 02129  0.3844"*
(1.46) (1.16) (2.94)
GDPGR,4, 26001 2.6807"  2.4342*  2.8302"  3.7903°  22714™  2.5437"  2.5269"
(2.56) (2.49) (2.60) (2.19) (1.70) (2.52) (2.41) (2.52)
Constant  0.1436™*  0.2302"*  0.1312"*  0.1418™*  0.2018™*  0.1371""  0.1412"*  0.0980""  0.1908"*  0.0918"* 0.1070"** 0.1104"  0.1001°*  0.0968°**  0.3309°**
(4.42) @A.11) (3.95) (4.14) (5.29) (4.43) (4.61) (3.59) (4.06) (3.31) (3.77) 2.12) (3.50) (3.29) (8.25)
N 48 48 48 44 37 48 48 48 48 48 44 37 48 48 37
Adi.R2 926%  12.79% 12.44% 12.95% 19.45% 14.76% 11.28% 24.03% 29.02% 25.13% 27.92% 33.18% 24.42% 25.66  75.44%

The table presents OLS slope estimates from regressions of future aggregate REIT market returns on a constant, aggregate REIT investment, future firm earnings news

measures, and future macroeconomic growth measures:

Ry y1 = a + ByInvest, + B,GDPGR; 1 + B3ROA, 1 + B4SUE, 1 + BsErrory 4 + BeLTError, ;1 + f;EAR 1 + BgHMLy 1 + €44
R, represents the compounded monthly excess total returns (returns minus risk-free rate) on the FTSE NAREIT All Equity REITs Index over the period from July in year
t+1 to June in year t+2. Invest, is aggregate investment as of the end of fiscal year t. GDPGR,, is the growth rate in real GDP over the period from July in year t+1 to June
in year t+2. ROA,;,, is aggregate return on assets as of the end of fiscal year t+1. SUE, ; is aggregate standardized unexpected earnings as of the end of the last quarter of
fiscal year t+1. Error;,, represents aggregate difference between analyst forecasts of fiscal year t+1 earnings and actual realized ROA for fiscal year t+1. LTError;,,
represents the aggregate difference between analyst forecasts of long-term earnings and actual realized long-term ROA. EAR,,; is aggregate earnings announcement returns
over the period from July in year t+1 to June in year t+2. HML,,, denotes the compounded monthly returns to a REIT-based value-weighted HML portfolio over the period
from July in year t+1 to June in year t+2. *, ** and *** denote statistical significance at 10%, 5%, and 1%, respectively. Newey and West (1987) HAC t-statistics based on

three lags are reported in parenthesis below the estimates.
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Appendices

Appendix 2.1 Variable Definitions, Data Sources, and Construction

Invest, represents aggregate investment as of the end of fiscal yeart. This variable is
calculated as the value-weighted average of annual firm-level investment, aggregated to market
level using fiscal-year-end market capitalizations as weights. Firm-level investment is
measured by the annual growth rate in non-cash assets or operating assets. Specifically, non-
cash assets are computed as total assets (Compustat data item AT) minus cash and short-term

investments (CHE).

R, represents annual aggregate REIT market returns. This variable is constructed by
compounding monthly excess returns of the FTSE NAREIT All Equity REITs Index (including
dividends) over the risk-free rate from July in year t+1 to June in year t+2 for the period from
July 1972 to June 2020. This return accumulation period ensures that firm’s accounting data
are fully available before future stock returns are realized (Fama and French, 1992). The index’s

return data are sourced from NAREIT.

D /P, represents the dividend yield for the FTSE NAREIT All Equity REITs Index as of the
end of June in year t+1. The index dividend yield data are sourced from NAREIT.

B /M, represents aggregate book-to-market equity ratio as of the end of fiscal year t. This
variable is calculated as the value-weighted average of annual firm-level book-to-market equity
ratio, aggregated to market level using fiscal-year-end market capitalizations as weights. Firm-

level book-to-market equity ratio is measured as book equity divided by market equity at fiscal
year-end. Book equity is defined as stockholder’s equity (Compustat SEQ), plus balance sheet
deferred tax and investment tax credit (TXDITC, if available), minus the book value of
preferred stock (liquidating value PSTKL if available, or else redemption value PSTKRYV if
available, or else carrying value PSTK). Market equity is calculated as price close (PRCC _F)
multiplied by common shares outstanding (CSHO).
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E /P, represents aggregate earnings-to-price ratio as of the end of fiscal year t. This variable is
calculated as the value-weighted average of annual firm-level earnings-to-price ratio,

aggregated to market level using fiscal-year-end market capitalizations as weights. Firm-level
earnings-to-price ratio is computed as operating income after depreciation (Compustat OIADP)

scaled by market capitalization at fiscal year-end.

Tbill, represents short-term interest rate, measured as the 3-month Treasury bill rate as of the
beginning of July in year t+1. Term, represents term spread, measured as the difference
between the 10-year and 1-year Treasury constant maturity rates as of the beginning of July in
year t+1. Default, represents default spread, measured as the difference between Moody’s
Seasoned Baa and Aaa corporate bond yields as of the beginning of July in year t+1. All these

data are sourced from the St. Louis Federal Reserve Economic Database (FRED).

Eshare, represents the equity share in REIT total net equity and debt issues over year t. Data

on annual REIT net equity issues and net debt issues are obtained from the Federal Financial

Accounts.

Accrual, represents aggregate operating accruals as of the end of fiscal year t. This variable is
calculated as the value-weighted average of annual firm-level operating accruals, aggregated
to market level using fiscal-year-end market capitalizations as weights. Firm-level operating
accruals are computed as the change in  noncash  current  assets

(Compustat RECT plus INVT plus ACO) minus the change in current liabilities

(Compustat AP plus LCO), scaled by the average of total assets (Compustat AT).

ROA;, represents aggregate return on assets as of the end of fiscal year t.!® This variable is

calculated as the value-weighted average of annual firm-level return on assets, aggregated to

16 Empirically, REIT performance is measured in various ways. Net income, based on Generally Accepted
Accounting Principles (GAAP), is a conventional measure of firm performance. Funds from Operations (FFOs),
a voluntarily disclosed, accounting-based performance measure, have long been advocated as the standard in REIT
industry. According to the revised NAREIT definition for 2000, FFOs are equal to a REIT’s net income, excluding
gains or losses from property sales, and adding back real estate depreciation. Fields et al. (1998) evaluate the
usefulness of FFOs compared to net income in REIT industry and suggest that the superiority of one measure over
the other is highly contextual. Vincent (1999) examines both the incremental and relative information content of
FFOs in relation to net income and other GAAP earnings items, indicating that both FFOs and net income provide
incremental information, but net income has greater relative information content. I nominate net income as the
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market level using fiscal-year-end market capitalizations as weights. Firm-level return on

assets is computed as net income (Compustat IB) scaled by the average of total assets

(Compustat AT).

SUE, represents aggregate standardized unexpected earnings as of the end of the last quarter

of fiscal yeart. This variable is calculated as the value-weighted average of firm-level

standardized unexpected earnings, aggregated to market level using fiscal-year-end market

capitalizations as weights. Firm-level standardized unexpected earnings are computed as the
change in quarterly earnings per share (Compustat quarterly item EPSPXQ) from its value four

quarters ago, scaled by the standard deviation of this change over the past eight quarters. The

earnings surprise is considered known on the report dates of quarterly earnings announcements

(Compustat RDQ).

FROA:, represents aggregate forecast of fiscal year t+1 ROA, computed using analyst

forecasts of one-year-ahead EPS available as of the end of fiscal year t. For each firm, the

median forecast of one-year-ahead ROA is calculated as the median forecast of one-year-ahead

EPS multiplied by the number of shares outstanding, scaled by total assets as of the end of
fiscal year t. Firm-level forecasts of one-year-ahead ROA are then aggregated to market level
using market capitalizations as of the end of fiscal year t as weights. This variable covers the

period from 1976 to 2019. Data on analyst forecasts are obtained from the I/B/E/S Database.

Errory,, represents aggregate difference between the forecasted ROA for fiscal year t+1 and

the actual realized ROA in fiscal year t+1.

FLTG,,, represents aggregate forecast of long-term earnings growth, computed using analyst
forecasts of long-term EPS growth available as of the end of fiscal year t. For each firm, the
median forecast of long-term EPS growth is obtained from the I/B/E/S database and aggregated
to the market level using market capitalizations as of the end of fiscal year t as weights. This

variable covers the period from 1981 to 2019.

REIT performance measure, primarily because I use multiple measures of firm cash-flow news based on GAAP
net income (EPS); using FFOs would not be consistent with these measures. In addition to FFOs, I found similar
results using return on equity (ROE), computed as net income scaled by the average of book equity.
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LTError,,, represents aggregate difference between the forecasted long-term ROA and the

actual realized long-term ROA. For each firm, the forecast of long-term ROA is computed by

applying the median forecast of long-term earnings growth as the interest rate over a four-year

time horizon to the actual realized ROA in fiscal year t-1. The actual realized long-term ROA

is calculated as the arithmetic average of the actual realized ROA in fiscal years t+2 and t+3.

EAR; represents aggregate earnings announcement returns over the period from July in
year t to June in year t+1. For each firm, earnings announcement return is calculated as the
arithmetic average of cumulative stock returns (CRSP daily item RET) over the trading
days [—1,+1] surrounding each of the firm’s report dates of quarterly earnings announcements
(Compustat quarterly item RDQ) that take place over the period from July in year t to June in
year t+1. Firm-level earnings announcement returns are then aggregated to market level using

market capitalizations as of the end of fiscal year t as weights. The data cover the period from

July 1972 to June 2020.

HML, represents the compounded monthly returns on a REIT-based value-weighted
HML (High book-to-market Minus Low book-to-market) portfolio over the period from July
in year t to June in year t+1. The construction of the portfolio largely follows the standard Fama
and French (1993) approach. Specifically, at the beginning of each month, all equity REITs are
sorted into two portfolios based on their market equity (size). Independently, all equity REITs

are also sorted into three portfolios based on their book-to-market equity ratio (B/M). The two-

way sort on size and B/M produces six portfolios, which are value-weighted and rebalanced
monthly. The monthly return on the HML portfolio is defined as the return spread between the

simple average of the small-value and big-value portfolios and the simple average of the small-

growth and big-growth portfolios.

CFNAI, represents the average value of the monthly CFNAI (Chicago Federal National
Activity Index) over the period from July in yeartto June in yeart+1. Data on the

monthly CFNALI are obtained from the Federal Reserve Bank of Chicago's website.

GDPGR; represents the growth rate of real GDP over the period from July in year t to June in

year t+1.
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Indprod; represents the growth rate of industrial production over the period from July in
year t to June in year t+1. Data on real GDP and industrial production are available from the

St. Louis Federal Reserve Economic Database.
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Appendix 2.2 Investor Sentiment Measures: Definitions, Data Sources, and

Construction

University of Michigan Consumer Sentiment Index

I first consider including an investor sentiment proxy that spans across asset classes. The
University of Michigan Consumer Sentiment Index is a widely used proxy for investor
sentiment based on consumer confidence. This index is derived from telephone surveys
conducted with adults living in U.S. households. An alternative well-known consumer
confidence-based measure of investor sentiment is the Conference Board Consumer
Confidence Index, which is based on mail surveys conducted with a random sample of U.S.
households. While the Conference Board’s Index places more emphasis on macroeconomic
conditions, the University of Michigan Index focuses more on financial conditions, particularly
the respondents’ own financial situations. Qiu and Welch (2004) suggest that, compared to the
Conference Board’s Index, the University of Michigan’s Index is more suitable as a proxy for

financial market sentiment.

SIEO™S represents the average value of the monthly University of Michigan Consumer

Sentiment Index over year t. The monthly index is scaled by 100 and orthogonalized with
respect to a set of six macroeconomic indicators following the methodology of Baker and
Waurgler (2006). Specifically, the monthly index is calculated as the residual from a regression
of the monthly index value on the growth rate in industrial production, durable, nondurable,
and services consumption, and employment, and the NBER recession indicator. Data on the
monthly index are obtained from the St. Louis Federal Reserve Economic Database, while data
on the six macroeconomic indicators are available on Jeffrey Wurgler’s website

(https://pages.stern.nyu.edu/~jwurgler/).

Baker and Wurgler Composite Stock Market Sentiment Index

Given that listed REITs’ shares, like other public companies’ shares, are publicly traded on
major stock exchanges, I next include a sentiment measure covering the general stock market.

A substantial body of research has proposed various sentiment indexes, including the more

recent Financial and Economic Attitudes Revealed by Search (FEARS) investor sentiment
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index by Da et al. (2015), the aligned investor sentiment index by Huang et al. (2015), and the
manager sentiment index by Jiang et al. (2019). Zhou (2018) provides a comprehensive
literature review on measuring investor sentiment. Despite the emergence of these modified
and novel sentiment indexes, the Baker and Wurgler (2006) investor sentiment index continues
to be regarded as an important benchmark in many of these studies.

SIStck is the average value of the monthly Baker and Wurgler (2006) composite stock market
sentiment index over year t. [ use the updated orthogonalized version of the sentiment index,
which is based on the first principal component of five standardized sentiment proxies, each of
which has first been orthogonalized with respect to a set of six macroeconomic indicators.
Unlike the original orthogonalized version of the sentiment index in Baker and Wurgler (2006),
the updated index on Jeffrey Wurgler’s website excludes NYSE turnover as one of the six
sentiment proxies. He suggests that turnover no longer carries the same meaning due to the rise
of institutional high-frequency trading and the migration of trading to various venues. The
sentiment index now maintained on his website and going forward is based on five proxies.
These five proxies are the value-weighted dividend premium, first-day returns on IPOs, IPO
volume, the closed-end fund discount, and the equity share in total new issues. I obtain data on

the monthly index from Jeffrey Wurgler’s website.

The Constructed Composite REIT Market Sentiment Index

I finally construct a composite sentiment index for the REIT market, recognizing the potential
differences in investor sentiment between the general stock market and the public commercial
real estate market. Following Baker and Wurgler (2006) framework, Ling et al. (2014) apply
principal component analysis to build a sentiment index for the broader commercial real estate
market. Specifically, their index is based on the common variation in eight underlying proxies
of investor sentiment in the market.!” They find that during their sample period (1992:Q2—
2009:Q4), the correlation between Baker and Wurgler (2006) stock market sentiment index and
their commercial real estate market sentiment index is effectively zero. Moreover, the estimates

from VAR models support their unconditional analysis, indicating that the two sentiment

17 The eight underlying sentiment proxies are: (1) the average REIT stock price premium to NAV; (2) the
percentage of properties sold each quarter from the NCREIF Property Index; (3) the share turnover of equity
REITs; (4) the number of REIT IPOs; (5) the average first-day returns on REIT IPOs; (6) the share of net REIT
equity issues relative to total net REIT equity and debt issues; (7) net mortgage flows as a percentage of GDP;
and (8) net capital flows to dedicated REIT mutual funds.
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indexes are distinct and do not influence each other. These findings suggest that investors tend
to perceive the general stock market and the commercial real estate market as different asset
classes. While Ling et al.’s sentiment index covers both private and public commercial real
estate markets, the sentiment index constructed in this study focus on the REIT market, given
the scope of the study.

SIREIT is the average value of the quarterly constructed composite REIT market sentiment
index over year t. Specifically, the quarterly index is derived as the first principal component
of four standardized sentiment proxies, each of which has first been orthogonalized with
respect to a set of six macroeconomic indicators. The four sentiment proxies are the number of
REIT IPOs, first day returns on REIT IPOs, net capital inflows from investors into REITs, and
the equity share in REIT total net equity and debt issues. Unlike the updated version of the
Baker and Wurgler (2006) stock market sentiment index, I exclude the value-weighted dividend
premium as one of the sentiment proxies in the constructed REIT market sentiment index. This
exclusion is due to the legal requirement that REITs must distribute at least 90% of their taxable
income as dividends to maintain their REIT status, which eliminates the existence of a premium

between dividend-paying and non-dividend-paying REITs.

I also substitute the closed-end fund discount with net capital inflows from investors into REITs
in constructing the REIT market sentiment index. Although Green Street Advisors reports
monthly discount (premium) to net asset value data for aggregate REIT market, the data only
extends back to February 1990, which is too short to cover the sample period of this study. The
inclusion of net capital inflows from investors into REITs is inspired by Dichev (2007) and
Ling et al. (2014). While Ling et al. (2014) include net capital inflows into dedicated REIT
mutual funds in their commercial real estate market sentiment index, Dichev (2007) suggests
using net capital inflows into listed firms as a sentiment measure. It may be more appropriate
to use net capital inflows from investors into REITs rather than dedicated REIT mutual funds
to measure REIT market sentiment, as the former directly reflects investors’ demand for REIT

shares.

NIPO,, is the monthly number of REIT IPOs. The index uses the sum of NIPO over the prior
12 months to smooth noise. RIPO,, is the monthly average of first day returns on REIT IPOs.
The index uses the NIPO-weighted average of monthly RIPOs over the prior 12 months to
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smooth noise, and then use the m-12 value of the result. Following Glascock and Hughes
(1995), I obtain data on the beginning of stock data (CRSP data item BEGDAT) and daily stock
returns (CRSP daily data item RET) from the CRSP Database using a list of REITs identified
by NAREIT. The list includes 608 publicly traded REITs identified by NAREIT from January
1972 to December 2019. However, this list does not represent the entire universe of publicly
traded REITs. It includes publicly traded REITs that are or were once qualified by NAREIT
and that appear in the CRSP data file. The list covers all types of publicly traded REITs: equity,
mortgage, and hybrid.

InFlow,, is the monthly aggregate net capital inflows from investors into REITs. The index
uses the average value of InFlow over the prior 12 months to smooth noise. The variable is
calculated as the value-weighted average of monthly firm-level net capital inflows, aggregated
to market level using end-of-month market capitalizations as weights. Firm-level net capital
inflow is defined following the formula: InFlow;,, = —1*(MI/ifm_1(1 + ri’m) —MVin),
where MV ,,, is the market capitalization of firm i at the end of month m, and ; ,, is the stock
return of firm i in month m (including dividends). Data on monthly stock returns (CRSP
monthly data item RET), price (PRC), and number of shares outstanding (SHROUT) are
available from CRSP.

Eshare, is the share of REIT net equity issues in total equity and debt issues over quarter q.
To smooth noise, the index uses the total amount of net equity issues over the prior 4 quarters
divided by the total amount of net equity and debt issues over the prior 4 quarters. Data on

quarterly REIT net equity and debt issues are sourced from the Federal Financial Account.
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Chapter 3 Real Estate Investment Plans and the Cross-Section of
Asset Returns: Evidence from REITs

Abstract

I examine the cross-sectional expected return implications of planned real estate investments.
I forecast the future investment growth of REITs using Tobin’s q, gross profitability, changes
in return on assets, and prior stock returns. The forecasted future investment-to-asset changes
generate a positive premium in the cross section of REIT returns. To capture the return variation,
I construct a factor-mimicking portfolio based on a two-way monthly sort on size and the
expected investment growth. Using the factor, an augmented REIT-based investment-based
model not only holds up against comparisons with competing REIT-based and common stock-
based factor models but also outperforms them in dissecting prominent REIT return patterns. I
finally propose an alternative risk-based explanation for the premium. Firms with higher
expected investment growth demonstrate higher future profitability, yet they also exhibit a
greater degree of future operating and financial leverages and increased sensitivity of future

cash flows to economic conditions, leading to higher discount rates.
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3.1 Introduction

Planned acquisitions and development pipelines in the real estate industry typically represent
firms’ commitments to property investments. Both types of real estate investment plans require
significant time to complete. While a straightforward acquisition generally takes several
months—encompassing pre-acquisition activities, property identification, due diligence,
contract negotiation, and closing—the development process is usually more complex. It
involves multiple lengthy phases, including pre-development, design and planning, pre-
construction, and construction. Moreover, undoing planned acquisitions or developments is
costly. Once underway, these plans are resource-intensive, demanding ongoing investment to
maintain momentum, and reversing course midway can result in significant additional expenses.
The inherent time-to-build (or acquire) and costly-to-reverse nature make real estate investment
plans particularly risky. This study examines the expected return implications of planned real

estate investment in the cross-section.

Why should high expected investment growth command high expected returns? Theoretically,
the investment CAPM in a dynamic setting provides an equilibrium model, where expected
returns vary cross-sectionally with current investment, expected profitability, and expected
investment growth (Liu et al., 2009). Holding current investment and expected profitability
constant, the model can make statements like “expected returns are high because a function of
expected investment growth is high”. Intuitively, according to the net present value rule of
capital budgeting, high expected investment relative to current investment implies high
discount rates, because the high discount rates are necessary to offset the high expected
marginal benefits of current investment to generate low net present values of new projects and

thereby maintain low current investment levels (Hou et al., 2021).

Bond and Xue (2017) are the first to apply the investment-based asset pricing to real estate
finance research. They implement the static version of the investment CAPM (Hou et al., 2015),
which posits that current investment and expected profitability are two "determinants" of cross-
sectional expected returns. Based on Fama and French (1993) portfolio approach, they follow
Hou et al. (2015) and find a negative investment premium and a positive profitability premium
in the cross section of REIT returns. In contrast, I explore the unique insight from the dynamic

investment CAPM, where expected investment growth serves as an additional "determinant"

56



of the expected returns. One could expect that expected investment growth captures a new

dimension of variation in the cross-section of expected REIT returns.!®

Given data constraints on planned property acquisitions and construction, I forecast firms’
future investment growth. Investment refers to investment-to-asset ratio and is measured as
total asset growth rate (Fama and French, 2006; Hou et al., 2015). REITs provide a favorable
setting for the forecasting exercises. Eichholtz and Yonder (2015) demonstrate that, on average,
98.6% of REIT assets are invested in real estate. Such homogeneity in asset composition makes
total asset growth rate an effective proxy for real estate investment. Given that the investment-
to-asset ratio can be both positive and negative, I follow Hou et al. (2021) and specifically
forecast firms’ future investment-to-asset changes. The forecasting framework employs the
monthly Fama and MacBeth (1973) cross-sectional predictive regressions, using the log of
Tobin’s q, gross profitability, changes in return on assets, and prior stock returns as predictors.
In the benchmark specification, all regressors predict highly significant and positive slopes for
one-year-ahead investment-to-asset changes. The out-of-sample Pearson and Rank correlations
between the forecasted and realized changes are both statistically significant. The forecasted

changes also closely track the subsequent realized changes at the portfolio level.

I begin by demonstrating that the expected investment-to-asset changes generate a significantly
positive premium in the cross section of REIT returns. At the firm level, the variable is a
significant characteristic in monthly Fama and MacBeth (1973) cross-sectional regressions of
future one-month-ahead excess returns, with controls of size, book-to-market ratio, prior 11-
month returns, share turnover, standardized unexpected earnings, idiosyncratic volatility,
investment-to-asset ratio, and return on assets. At the portfolio level, the high-minus-low
quintile sorted on expected one-year-ahead investment-to-asset changes earns an average

return of 0.51% per month (t = 2.11). This high-minus-low premium cannot be explained by

18 The cross section of REIT returns has long attracted interest from real estate researchers. Chui et al. (2003a)
demonstrate that while momentum, size, turnover, and analyst coverage are strong predictors of REIT returns in
the pre-1990 period, momentum and turnover emerge as the dominant and secondary predictors, respectively, in
the post-1990 period. The momentum effect is later confirmed by Hung and Glascock (2008 and 2010). Goebel
et al. (2013) further add that, after controlling for momentum, book-to-market ratio, institutional ownership, and
illiquidity are highly related to REIT returns, whereas size and analyst coverage are not. Price et al. (2012) identify
a significant post-earnings announcement drift, while Feng et al. (2014) observe that the earnings surprise effect
supersedes the price momentum effect. DeLisle et al. (2013) report that trading frictions, such as idiosyncratic
volatility, are priced in the cross section of REIT returns. Drawing on insights from investment-based asset pricing,
Bond and Xue (2017) document an investment premium and a profitability premium. The return predictive power
of investment and profitability further supported by Ling et al. (2019) and Glascock and Lu-Andrews (2014),
respectively. This study aligns with and contributes to this line of research.
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various asset pricing factor models constructed for REITs, including the CAPM, the Fama and
French (1993) three-factor model (FF3), the Carhart (1997) four-factor model (Carhart4), the
Fama and French (2015) five-factor model (FF5), the Fama and French (2018) six-factor model
(FF6), the Hou et al. (2015) g-factor model (HXZq), and the Bond and Xue (2017) investment-
based three-factor model (BX3).

To capture the return variation, I construct a factor-mimicking portfolio by interacting the
expected one-year-ahead investment-to-asset changes with size in an independent two-way
(2 x 3) monthly sort. The expected investment growth factor earns an average return of 0.34%
per month (t=2.01). The factor premium cannot be explained by any of the reconstructed
REIT-based factor models, leaving the bulk of the average returns unexplained. In addition, the
factor premium surpasses the premium generated from the individual predictors used to
forecast future investment-to-asset changes, highlighting the unique role of the expected
investment growth in driving the premium. The robustness of the factor premium is confirmed

across various empirical specifications.

With the expected investment growth factor, I construct an augmented REIT-based investment-
based factor model, the g> model (HMXZq®), as suggested by Hou et al. (2021). The model
provides superior information about the cross-section of expected REIT returns. Conceptually,
the HMXZq?® differs from standard factor models by being based on the dynamic investment
CAPM, while the FF5 is grounded in valuation theory and the FF6 adds a momentum factor
that is ad hoc and statistically motivated.'®- 2 Despite these differences, the HMXZq® and FF6
are closely related empirically. I compare them using spanning regressions and find that the
HMXZq°® largely subsumes the FF6, while the FF6 does not subsume the HMXZq>. As a
complement to the spanning tests, I stress-test the two models using testing quintiles based on

four prominent REIT return predictors (momentum, standardized unexpected earnings,

19 Hou et al. (2019) critique the FF5 by arguing that it cannot be fully justified by valuation theory. Instead, they
propose a reformulation of valuation theory based on one-period-ahead expected return, leading to a different
implication: a positive relationship between expected investment and expected returns. This revised implication
aligns more closely with the predictions of the dynamic investment CAPM.

20 “We include momentum factors (somewhat reluctantly) now to satisfy insistent popular demand. We worry,
however, that opening the game to factors that seem empirically robust but lack theoretical motivation has a
destructive downside: the end of discipline that produces parsimonious models and the beginning of a dark age of
data dredging that produces a long list of factors with little hope of sifting through them in a statistically reliable
way” (Fama and French, 2018, p.237)
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idiosyncratic volatility, and share turnover) compiled by Bond and Xue (2017). The HMXZq®°

outperforms the FF6 in explaining the high-minus-low quintiles.

The ongoing debate regarding the integration of REIT returns with common stock returns
prompts the consideration of selecting between REIT-based and common stock-based factor
models. Consequently, I conduct additional spanning tests to compare the REIT-based
HMXZ q° against common stock-based factor models, including the HMXZ ¢ *.?! The
HMXZq®* explains all factors present in the HMXZq> except for the size and expected
investment growth factors. Notably, the common stock-based expected investment growth
factor loading exhibits a small and insignificant value, suggesting distinct factor pricing
information between common stocks and REITs. GRS tests further corroborate the HMXZq>’s
non-subsumption by the HMXZq> *, implying divergent cross-sectional investment-based

expected returns between REITs and common stocks.

Given the critical role of the expected investment growth factor in the HMXZq®, I finally
examine the economic driving forces behind the factor premium. Liu et al. (2009) model does
not address the underlying mechanism driving the positive relationship between expected
investment growth and expected returns. According to the standard theory of investment, Hou
et al. (2021) suggest that if expected investment growth is high, high discount rates are required
to offset the high anticipated benefits of current investment, thereby maintaining low current
investment levels. Li et al. (2021a and 2021b) provide a risk-based explanation, arguing that
investment plan frictions create an embedded leverage effect, which amplifies firms’ future
cash flow risk, leading to a higher risk premium. This interpretation assumes that expected

investment is predetermined, irreversible, and not influenced by future business conditions.

I propose an alternative risk-based explanation that emphasizes the role of operating and

financial leverage. This emphasis is particularly pertinent because REITs are highly leveraged

2l The spanning analysis between the REIT-based and common stock-based factor models contributes
significantly to the ongoing debate about the integration (segmentation) of REIT returns with (from) stock returns.
For example, Li and Wang (1995) find no evidence that REIT returns are more predictable than the returns of
other stocks. Glascock et al. (2000) observe that REITs begin to behave more like stocks following the structural
changes of the early 1990s. Clayton and MacKinnon (2001 and 2003) demonstrate that REITs exhibit a strong
sensitivity to small-cap returns during the 1990s. Fei et al. (2010) report that correlations between REIT returns
and stock returns show little asymmetry. Asteriou and Begiazi (2013) add that while the stock market has a
significant general impact on REIT returns, it has little influence on the day-of-the-week effect. Li (2016) further
shows that expected REIT returns compensate for general stock market risk rather than for the volatility specific
to individual REITs.
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relative to industrial firms (Giacomini et al., 2017) and the realization of planned property
acquisitions and/or developments will likely increase a REIT’s fixed and financial costs.??
Given this premise, a positive idiosyncratic productivity shock can generate two conflicting
effects on firms’ expected investment growth.??> On the one hand, the enhanced productivity
leads to a positive cash flow effect, encouraging firms to expect greater future investment
growth. On the other hand, the higher expected investment growth elevates firms’ future
operating and financial leverages, thereby rising future cash flow risk. The cash flow effect
generally prevails over the discount rate effect. As a result, firms experiencing a positive cash
flow shock will optimally expect higher future investment growth, even in the presence of

potentially higher discount rates.

I find empirical evidence supporting both competing effects. The quintile with high expected
one-year-ahead investment-to-asset changes exhibits higher one-year-ahead sales growth and
gross profit growth on average compared to the low quintile. Additionally, the high quintile
demonstrates a higher degree of operating leverage and financial leverage over the subsequent
year. More importantly, the expected investment-to-asset changes and future GDP growth are
positively related to future net income growth, and their interaction term shows a significantly
positive coefficient, indicating that the concurrent response of net income growth to GDP

growth increases with expected investment-to-asset changes.

This study contributes to the real estate finance literature in several ways. First, it enhances the
understanding of the cross-section of REIT returns by documenting a new return pattern
associated with firms’ real estate investment plans. I capture this return variation by
constructing a factor-mimicking portfolio based on expected investment growth. Second, it
adds to the debate on the integration (segmentation) of REIT returns with (from) common stock
returns. I find that, with this factor, the REIT-based HMXZq® holds its own against competing

common stock-based factor models in spanning tests. Third, it contributes to the literature on

22 The realization of planned property acquisitions and/or developments is likely to augment a REIT’s fixed costs
across various domains, including property management, maintenance, insurance, administrative expenses, and
depreciation. Furthermore, it is probable to elevate a REIT’s financial costs due to increased interest expenses,
costs associated with issuing new debt or equity, and potentially higher hedging and refinancing costs.

23 Vuolteenaho (2002) finds that cash flow shocks play a crucial role at the firm level. Therefore, my conceptual
argument abstracts from time-varying volatilities in aggregate productivity, such as exogenous shocks to discount
rates, and instead focuses on the economic mechanism within the cross section.
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the effect of leverage on REIT returns. ?* I demonstrate that expected investment growth
positively predicts future operating and financial leverage, suggesting that it is a leading
indicator of firms’ future leverage. Fourth, it has practical implications. I find the REIT-based
HMXZ q° outperforms its competing REIT-based factor models in spanning tests and in
explaining prominent patterns of REIT returns in the cross-section. These results support the
model’s utility for future REIT asset pricing research and applications. For example, it can
serve as an alternative benchmark for evaluating risk-adjusted REIT returns or the performance

of dedicated REIT mutual funds.

This study also contributes to the literature on investment plans and asset returns. Lamont (2000)
employs data on investment plans from a survey of capital expenditure plans conducted by the
U.S. Commerce Department. Jones and Tuzel (2013) introduce the ratio of new orders to
shipments of durable goods as an indicator of investment plans. Li et al. (2021a) propose a
bottom-up measure of aggregate investment plans. It is well-documented that these aggregate
measures negatively predict stock market returns, indicating that time-varying discount rates
affect planned investment. In contrast, Hou et al. (2021) and Li et al. (2021b) forecast firms’
future investment growth, demonstrating that the forecasts positively predict stock returns. The
opposite sign observed at the firm level may be because idiosyncratic cash-flow shocks play a
more crucial role than exogenous shocks to discount rates at the firm level (Vuolteenaho, 2002).
This study complements previous studies by focusing on real estate investment plans, which
are inherently risky due to the significant time to build and the high costs of reversal, and their

expected return implications on public commercial real estate.

Finally, this study sheds light on the economic mechanism underlying the relationship between
expected returns and expected investment growth. The dynamic investment CAPM lacks
causal content because it links endogenous variables. Consequently, it cannot explain the
economic causes of the relationship between expected returns and their "determinants" (Kogan

and Papanikolaou, 2012). Hou et al. (2021) offer an intuition based on the net present value

24 Several studies have examined the effect of financial leverage on REIT returns. For example, Allen et al. (2000)
find a significant positive relationship between financial leverage and the sensitivity of U.S. REIT returns to
general stock market returns. Chaudhry et al. (2004) show that REIT idiosyncratic risk is affected by financial
leverage. Giacomini et al. (2015) document that levered public market real estate returns are significantly higher
and more volatile than unlevered returns. Giacomini et al. (2017) add that REITs are highly levered relative to
industrial firms; REITs with high leverage relative to their target levels perform better on a risk-adjusted basis
than underlevered REITs. This study contributes to the literature by suggesting that expected investment growth
is a leading indicator of firms’ future degree of leverage.
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rule of capital budgeting but call for further investigations into the economic driving forces
behind the expected investment growth premium. Li et al. (2021a and 2021b) offer a risk-based
explanation that highlights the role of investment plan frictions. This study emphasizes the role
of operating and financial leverages, particularly since REITs are more leveraged than
industrial firms (Giacomini et al., 2017). When a REIT plans to acquire or develop more
properties, the resulting expansion in its property portfolio will likely lead to higher fixed and
financial costs, thereby increasing cash flow risks. Although operating and financial leverages
have been used to explain other asset pricing phenomena, such as the value premium (e.g.,
Carlson et al., 2004; Novy-Marx, 2011; Choi, 2013), this study applies these concepts to

interpret the expected investment growth premium.

The rest of the chapter is organized as follows. Section 3.2 describes the data and methodology.
Section 3.3 presents the expected investment growth premium. Section 3.4 details the spanning
tests. Section 3.5 presents the stress-testing of factor models. Section 3.6 discusses the

economic mechanism. Section 3.7 concludes.
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3.2 Data and Methodology

3.2.1 Cross-Sectional Forecasts of Future Investment Growth

In this subsection, I form cross-sectional forecasts of future investment growth. Data on
monthly returns are obtained from the Center for Research in Security Prices (CRSP).
Accounting information is sourced from the Compustat Annual and Quarterly Fundamental
Files. The sample includes 438 U.S. publicly traded equity REITs identified by the National
Association of Real Estate Investment Trusts (NAREIT). Firms with negative book equity are

excluded from analysis. The sample period spans from July 1994 to December 2021.%3

In Fama and French (2006 and 2015) and Hou et al. (2015), investment refers to investment-
to-asset ratio, which is measured as total asset growth rate, as defined by Cooper et al. (2008).
Total asset growth rate is the most comprehensive measure of investment-to-asset ratio, where
asset is interpreted as all productive assets, and investment is the changes in total assets (Zhang,
2017). REITs provide a favourable setting for the forecasting exercises. Eichholtz and Ydnder
(2015) show that REITs have, on average, 98.6% of their assets in real estate. This homogeneity
in asset composition suggests that the total asset growth rate serves as an effective proxy for
real estate investment. Bond and Xue (2017) measure REIT investment as non-cash asset
growth rate, I find similar results using the growth rate of operating assets. Given that firm’s
investment-to-asset ratio is frequently negative, making the growth rate of investment-to-asset
ratio ill-defined, I follow Hou et al. (2019 and 2021) and specifically forecast future

investment-to-asset changes.?

The forecasting framework employs monthly Fama and MacBeth (1973) cross-sectional
predictive regressions. The predictors are based on prior literature on corporate investment. For

example, Fazzari et al. (1988) show that Tobin’s q is a strong predictor of future investment

23 NAREIT website offers monthly constituent data for the FTSE NAREIT U.S. Real Estate Index Series starting
from December 1991. I examine the post 1993 period, as the structure of the REIT market changed substantially
after 1993. The 1990s witnessed significant transformations within the United States REIT industry. Structural
changes, particularly those enacted after the 1993 Revenue Reconciliation Act, catalyzed substantial inflows of
capital into the system by enabling institutional investors to participate in REITs. Consequently, the industry
experienced remarkable asset growth, with numerous initial public offerings and substantial increases in market
capitalization. The six-month lag after December 1993 is to ensure that firms’ accounting data for fiscal year 1993
are publicly available as of the beginning of July 1994.

26 Alternatively, Li et al. (2021a and 2021b) forecast future gross capital investment growth using capital
investment data from Compustat annual item CAPX. However, REITs commonly have missing values for the
CAPX item in Compustat.
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rates, consistent with the g-theory argument that a firm should invest if its average q exceeds
one (Tobin, 1969). Fazzari et al. (1988) also find that cash flow produces a significant slope
when included in the future investment-q regression. They note that while the cash-flow effect
on investment may indicate measurement errors in Tobin’s ¢, an alternative explanation is that
cash flow reflects current and presumably future profitability and facilitates investment if a
firm is financially constrained. Liu et al. (2009) add that recent earnings shocks contain useful
information about future investment growth in the short term. Barro (1990) and Morck et al.
(1990) document that past returns strongly forecast investment growth. The positive
relationship between stock returns and future investment growth can be interpreted through
neoclassical models (e.g., Lamont, 2000) or (mis)valuation (Baker et al., 2003; Polk and
Sapienza, 2008). I remain agnostic about the exact interpretation and take the empirical

findings as given to form cross-sectional forecasts of future investment growth.

I begin by estimating monthly Fama-MacBeth cross-sectional predictive regressions of t-year-
ahead investment-to-asset changes, d*1/A, where T = 1 and 2, on the natural log of Tobin’s q,
log(q), gross profitability, Gp, changes in return on assets, dRoa, and prior 11-month returns,

Ret!!, covering the period from July 1995 to December 2021.

A*1/Aiti12: = Bot+12e + Bre+12:109(Q i + Bot+12:GPir + P3e412:dR0a; +

Bar+1zcREty + €irsaar (3.1).

At the beginning of each month t, I measure current investment-to-asset ratio as total assets
(Compustat annual item AT) from the most recent fiscal year-end at least four months ago
minus the total assets from one year prior, scaled by the average total assets. The t-year-ahead
investment-to-asset changes, d*1/A, are the investment-to-asset ratio from the tth fiscal year
after the most recent fiscal year minus the current investment-to-asset ratio. Tobin’s q is
calculated as the sum of market equity (items PRCC_F multiplied by CSHO), long-term debt
(item DLTT), and short-term debt (item DLC), scaled by book assets, all from the most recent
fiscal year-end at least four months ago. Gross profitability, Gp, is calculated as total revenue
(item REVT) minus cost of goods sold (item COGS), scaled by book assets, all from the most

recent fiscal year-end at least four months ago.?’

27 1 start with gross profits as the profitability measure, as Novy-Marx (2013, p.2) argues that “Gross profits is the
cleanest accounting measure of true economic profitability. The farther down the income statement one goes, the
more polluted profitability measures become, and the less related they are to true economic profitability.”
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Changes in return on assets, dRoa, are defined as Roa minus the four-quarter-lagged Roa.
Roa is income before extraordinary items (Compustat quarterly item IBQ) scaled by the one-
quarter-lagged book assets (item ATQ). ?® I compute dRoa using earnings from the most recent
announcement date (item RDQ) and, if not available, from the most recent fiscal quarter-end

at least four months ago. Prior 11-month returns, Ret!!

, are the cumulative returns (CRSP
monthly item RET) from month t-12 to month t-2; month t-1 returns are skipped to eliminate
the bid-ask bounce effect. I winsorize all variables at the 1st and 99th percentiles of their
distributions. Missing dRoa values are set to zero in the cross-sectional forecasting regressions.
I report the time-series average slopes, the t-values adjusted for heteroscedasticity and

autocorrelations, and goodness-of-fit coefficients.

I next form out-of-sample forecasts of 7-year-ahead investment-to-asset changes, E;;[d"I/A],

in which 7 =1 and 2.

Ei [d"I/A] = ,B_O,t—lzt—120(30) + El,t—l:t—120(30)log(q)it + B_Z,t—l:t—120(30)Gpit +

3_3,t—1:t—120(30)dR0ait + ,8_4-,t—1:t—120(30)Reti1t1 (3.2).

At the beginning of each month t, I combine the most recent winsorized predictors with the
average slopes estimated from the prior 120-month rolling window (minimum 30 months). The
most recent predictors— log(q) and Gp —are from the most recent fiscal year-end at least four
months ago as of the beginning of month t. dRoa is computed using the latest announced
quarterly earnings and, if not available, from the most recent fiscal quarter-end at least four
months ago as of the beginning of month t. Ret!! represents the prior 11-month cumulative
returns as of the beginning of month t (skipping month t-1). To avoid look-ahead bias, the

average slopes are estimated from the rolling window spanning months t-1 to t-120 (minimum

Glascock and Lu-Andrews (2014) echo the use of gross profits in their study of the profitability premium in REITs.
They argue that the two main measures—earnings (net income excluding extraordinary items) and funds from
operations (FFOs)—may be manipulated in firms’ financial reports. In a subsequent study, Bond and Xue (2017)
also find a profitability premium in REITSs using earnings before extraordinary items (Compustat item IB). I find
similar results using operating profits (item REVT — COGS — XSGA) and net income (loss) (item NI).

28 To ensure consistency between the deflator applied to the earnings measure and that used for the dependent
variable in the predictive regressions, I deflate earnings by book assets. As suggested by Ball et al. (2015), a
mismatch in deflators may exaggerate the explanatory power of the earnings variable. Compared to consistently
deflating both dependent and independent variables by book assets, deflating earnings by book equity results in
an explanatory variable that is the product of earnings deflated by book assets and the ratio of book assets to book
equity. In the context of REITs, Bond and Xue (2017) scale earnings by book equity, while Ling et al. (2019)
deflate earnings by book assets. I obtain similar results using earnings deflated by book equity.
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30 months). In the latest regression, d*I/A is from the most recent fiscal year-end at least four
months ago as of the beginning of month t-1, and the regressors are further lagged by 127
months. The resulting E;;[d*1/A] starts from January 1998. I report the time-series averages
of cross-sectional Pearson and Rank correlations between E;.[d"I/A] calculated at the
beginning of month t and the subsequently realized t-year-ahead investment-to-asset changes.

The p-values test whether a given correlation is zero.

Table 3.1 reports the results of the cross-sectional forecasts of future investment growth. At 1-
year horizon (7 = 1), Tobin’s q alone is a strong predictor, with a slope of 0.10 (t=6.60) and an
in-sample R? of 2.4%. The out-of-sample Pearson and Rank correlations are both around 0.10.
Gross profitability slightly outperforms Tobin’s q, yielding a slope of 1.06 (t=28.67) and a R?
of 3.8%. Changes in return on assets have a slope of 0.96 (t=2.77), but it does not perform as
well as Tobin’s q, with a R? of 1.7%. Both the Pearson and Rank correlations drop to about
0.05. Prior 11-month returns are comparable to Tobin’s q, with a similar slope and R?. At 2-
year horizon (7 = 2), Tobin’s q alone experiences a decline in its ability to predict future

investment-to-asset changes, while the other predictors increase their predictive powers.

In multivariate regressions that include all predictors, all slopes except for the slope of change
in return on assets are smaller than those from univariate regressions. At 1-year horizon (t =
1), the Tobin’s q’s slope decreases to 0.04; the gross profitability’s slope declines to 0.71; and
the prior 11-month returns’ slope falls to 0.12. Nevertheless, all slopes remain highly
statistically significant, with t-values ranging from 3.19 to 6.81. With multiple predictors, the
in-sample R? increases to 8.4%. The out-of-sample Pearson and Rank correlations are 0.14 and
0.16, respectively, both of which are highly significant. At 2-year horizon (7 = 2), the Tobin’s
q’s slope plunges to 0.007 and becomes statistically insignificant (t=0.46), while the other
predictors increase their predictive powers. The in-sample R? rises to 9.5%, and the Pearson

and Rank correlations are 0.12 and 0.14, respectively.
[Insert Table 3.1]
To further validate the forecasts, I form quintiles based on the forecasted 7 -year-ahead

investment-to-asset changes, E;;[d"I/A], where T = 1 and 2. At the beginning of each month t,

I sort all firms into quintiles based on the ranked values of E;;[d*I/A]. The quintiles are value-
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weighted using the end-of-prior-month market equity as weights and rebalanced at the

beginning of month t+1.

Table 3.2 reports the time-series averages of quintile expected t-year-ahead investment-to-
asset changes and subsequent realized changes, as well as their heteroskedasticity-and-
autocorrelation-adjusted t-statistics beneath the corresponding estimates. At portfolio level, the
expected changes closely track the subsequent realized changes. At 1-year horizon (t = 1), the
average expected changes rise from -10.15% (t=-20.09) to 5.13% (t=19.69) from the low to
high quintile, while the average subsequent realized changes range from -9.10% (t=-5.72) to
3.06% (t=3.04). The 2-year horizon (7 = 2) shows a similar pattern. Moving from the low to
high quintile, the average expected changes increase from -12.54% (t=-16.66) to 5.60%
(t=9.37), and the average subsequent realized changes range from -9.46% (t=-4.72) to 1.67%
(t=1.51). The time-series averages of cross-sectional correlations between the quintile
expected changes and subsequent realized changes are 0.43 and 0.41 for the 1-year and 2-year
horizons, respectively (untabulated). Both are highly significant. Therefore, my forecast of

future investment-to-asset changes is close to an unbiased estimator at portfolio level.

[Insert Table 3.2]

67



3.3 The Expected Investment Growth Premium

3.3.1 Cross-Sectional Return Predictive Regressions

Based on the forecasted future investment-to-asset changes, I examine the expected return
implications of expected investment growth. This involves several steps. In this subsection, I

perform monthly Fama and MacBeth (1973) cross-sectional return predictive regressions.

The return predictors are based on prior findings regarding patterns in the cross-section of REIT
returns. Chui et al. (2003a) show that while momentum, size, turnover, and analyst coverage
predict REIT returns well in the pre-1990 period, momentum and turnover become the
dominant and secondary predictors, respectively, in the post-1990 period. The momentum
effect is later confirmed by Hung and Glascock (2008 and 2010). Goebel et al. (2013) add that,
after controlling for momentum, the book-to-market ratio, institutional ownership, and
illiquidity are highly related to REIT returns, while size and analyst coverage are not. Price et
al. (2012) find a significant post-earnings announcement drift. Feng et al. (2014) note that the
earnings surprise effect dominates the momentum effect. DeLisle et al. (2013) report that
trading frictions, such as idiosyncratic volatility, are priced in the cross section of REIT returns.
Based on the insights from investment-based asset pricing, Bond and Xue (2017) document an
investment premium and a profitability premium. The return predictive power of investment
and profitability is also reported by Ling et al. (2019) and Glascock and Lu-Andrews (2014),

respectively.

I estimate the following monthly Fama-MacBeth cross-sectional regressions of one-month-
ahead excess returns on the expected t-year-ahead investment-to-asset changes and a set of

return predictors,

Retir1 = Borrr + Bres1Ei[dTT/Al + ByrriMese + Bas1B/ My + Borr1Retl +
Bscr1Turie + Borr1Sueir + Brer1Ivf fie + Bor1l/Aie + Bors1Roai + €ip4q (3.3).%°

21 implement the Fama and MacBeth (1973) two step procedure. In the first step, for each single time period
from January 1998 to December 2021, I perform a cross-sectional regression. Then, in the second step, I obtain
the final coefficient estimates as the average of the first step coefficient estimates. I use the lag number of five to
generate the heteroscedasticity and autocorrelation-consistent Newey-West standard error estimates.

68



Ret;;, 1s excess returns at the end of month t (or the beginning of month t+1), calculated as
returns (CRSP monthly item RET) minus one-month Treasury bill rate. E;.[d"]/A] represents
the expected t-year-ahead investment-to-asset changes calculated at the beginning of month t
(r =1 and T = 2). At the beginning of month t. I measure size or market equity, Me, as price
per share (item PRC) multiplied by the number of shares outstanding (item SHROUT), both
from the end of month t-1. Book-to-market equity, B /M, is calculated as book equity scaled by
market equity, both from the most recent fiscal year-end at least four months ago.?° Prior 11-

month returns, Ret'?!

, are the cumulative returns (CRSP monthly item RET) from month t-12
to month t-2, with month t-1 returns skipped to eliminate the bid-ask bounce effect. Share
turnover, Tur, is the average daily share turnover over the prior six months from month t-6 to
t-1, requiring a minimum of 50 days. Daily turnover is the number of shares traded (CRSP
daily item VOL) on a given day divided by the number of shares outstanding (item SHROUT)

on that day.?!

Standardized unexpected earnings, Sue, are calculated as the change in split-adjusted quarterly
earnings per share (Compustat quarterly item EPSPXQ divided by item AJEXQ) from its value
four quarters ago, divided by the standard deviation of this changes in quarterly earnings over
the prior eight quarters (minimum six quarters). I compute Sue using earnings from the most
recent announcement date (item RDQ), and, if unavailable, from the most recent fiscal quarter-
end at least four months ago.** Idiosyncratic volatility, Ivf f, is the residual volatility obtained
from regressing a stock’s excess returns on the REIT-based Fama and French (1993) three
factors. At the beginning of month t, [ use Ivff estimated with daily returns (CRSP daily item

RET) from month t-1, requiring a minimum of 15 daily returns.

30 Book equity is calculated as stockholders’ book equity plus balance sheet deferred taxes and investment tax
credit (Compustat annual item TXDITC), if available, minus the book value of preferred stocks. Stockholders’
equity is obtained from Compustat (item SEQ), if available. Otherwise, I use the book value of common equity
(item CEQ) plus the par value of preferred stock (item PSTK), or the book value of assets (item AT) minus total
liabilities (item LT). Depending on availability, I use the redemption value (item PSTKRYV), liquidating value
(item PSTKL), or par value (item PSTK) for the book value of preferred stock.

31T adjust the NASDAQ trading volume to account for the institutional differences between NASDAQ and NYSE-
Amex volumes, following the method outlined by Gao and Ritter (2010). Specifically, prior to February 1, 2001,
I divide NASDAQ volume by 2. From February 1, 2001, to December 31, 2001, I divide NASDAQ volume by
1.8. For the years 2002 and 2003, I divide NASDAQ volume by 1.6. From 2004 onward, I use a divisor of 1.

32 1 require that the end of the fiscal quarter corresponding to the most recent Sue falls within six months prior to
the beginning of month t. This ensures that stale earnings information is excluded. Additionally, to avoid
potentially erroneous records, I require that the earnings announcement date occurs after the corresponding fiscal
quarter end.
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Investment-to-asset ratio, I /A, is calculated as total assets (Compustat annual item AT) from
the most recent fiscal year-end at least four months ago minus total assets from one year prior,
scaled by the average total assets. Return on assets, Roa, is defined as income before
extraordinary items (Compustat quarterly item IBQ) scaled by the one-quarter-lagged book
assets (item ATQ). I compute Roa using earnings from the most recent announcement date
(item RDQ) and, if unavailable, from the most recent fiscal quarter-end at least four months
ago. When performing the monthly cross-sectional regressions, I winsorize the regressors at
the 1st and 99th percentiles to mitigate the impact of outliers. Additionally, since different
variables have different units, I standardize each winsorized regressor by subtracting its cross-
sectional mean and dividing by its cross-sectional standard deviation. I report the time-series
average slopes, the t-values adjusted for heteroscedasticity and autocorrelations (in

parentheses), and goodness-of-fit coefficients.

Table 3.3.1 shows that the expected one-year-ahead investment-to-asset changes (E;[d*1/A])
strongly predict the excess returns over the subsequent one month. On its own, it yields a slope
of 0.11% (t=2.16) with an in-sample R? of 3.7%. In the benchmark specification with all
predictors, a one-standard-deviation increase in the expected changes is related to a 0.19%
(t=2.29) increase in one-month-ahead excess returns on average. Unlike Chui et al. (2003a)
and Hung and Glascock (2008 and 2010), I find that the momentum is not a significant return
predictor across all specifications. The momentum effect may be subsumed by the expected
investment growth effect, as prior stock returns are one of the predictors of the expected
investment-to-asset changes. In line with Goebel et al. (2013), the book-to-market equity
remains highly significant even after controlling for momentum, while size and share turnover

are not.

Additionally, both the standardized unexpected earnings and the idiosyncratic volatility are
strong predictors of returns. In the benchmark specification, they have slopes of approximately
0.12% in absolute magnitude. While the positive earnings surprise effect aligns with Price et
al. (2012), the negative idiosyncratic volatility effect is consistent with DeLisle et al. (2013).
As suggested by Feng et al. (2014), the earnings drift effect may also dominate the momentum
effect. Unlike Bond and Xue (2017), I find that the investment-to-asset ratio and the return on
assets are not significant characteristics in the cross-sectional return predictive regressions.

These characteristics may be subsumed by the expected investment-to-asset changes, as they
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are related to the average slopes and the changes in return on assets used to forecaste future

investment growth, respectively.

Table 3.3.2 shows that using the expected two-year-ahead investment-to-asset changes
(E;:[d?1/A]) strengthens the predictability for the one-month-ahead excess returns. The slopes
increase to approximately 0.13% (t=2.84) and 0.21% (t=3.08) in the univariate and the
benchmark specifications, respectively. The book-to-market equity and the standardized
unexpected earnings remain highly significant in the predictive regressions, although their
slopes in absolute value experience a slight decline. There is no significant changes in the return
predictive power of the idiosyncratic volatility. The remaining predictors continue to be

insignificant.

[Insert Table 3.3.1]

[Insert Table 3.3.2]
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3.3.2 Quintiles

In this subsection, I investigate whether the expected investment growth premium documented
at firm level extends to portfolio level. At the beginning of each month t, I sort all firms into
quintiles based on the ranked values of T-year-ahead investment-to-asset changes, E;;[d*/A],
in which 7 = 1 and 7 = 2. I then compute value-weighted quintile excess returns for the current
month t, using the end-of-prior-month market equity as weights. The quintiles are rebalanced

at the beginning of month t+1.

Panel A in Table 3.4 shows the time-series average of quintile excess returns. The high-minus-
low quintile, sorted on expected one-year-ahead investment-to-asset changes, earns an average
return of 0.51% (t=2.11) per month during the period from January 1998 to December 2021.
At two-year horizon (7 = 2), the high-minus-low quintile has an average return of 0.39%
(t=1.99). The high-minus-low premium is consistent with the firm-level evidence that

expected investment-to-asset changes positively predict future excess returns.>

I further evaluate whether the high-minus-low premium is captured by asset pricing factor
models. [ draw on both conventional and more recent models: the Capital Asset Pricing Model
(CAPM), the Fama and French (1993) three-factor model (FF3), the Carhart (1997) four-factor
model (Carhart4), the Fama and French (2015) five-factor model (FF5), the Fama and French
(2018) six-factor model (FF6), the Hou et al. (2015) g-factor model (HXZq), and the Bond and
Xue (2017) investment-based three-factor model (BX3). Like Bond and Xue (2017), I construct
these factor models for REITs. Appendix 3.1 details the construction.

In Panels B to H in Table 3.4, I perform time-series factor model regressions for each quintile.
Appendix 3.1 details the regression specification. I report the CAPM alpha, a4py, the FF3
alpha, apps3, the Carhart4 alpha, @y nares, the FFS alpha, apps, the FF6 alpha, aprq, the HXZq
alpha, ayx 4, and the BX3 alpha, agys, as well as their heteroskedasticity-and-autocorrelation-

adjusted t-statistics. Additionally, I report the mean absolute alpha for each set of quintiles and

33 Per Fama (1976), the slope of the expected investment-to-asset changes in the cross-sectional return predictive
regressions represents the return to a zero-investment long-short portfolio. However, Hou et al. (2020, p.2026)
argue that “the long and short legs of the slope portfolio do not have total weights that sum to one. As such, the
magnitude of the slopes is not directly comparable to the magnitude of the average returns of the high-minus-low
(quintile)”
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the p-value from the Gibbons et al. (1989, GRS) test on the null hypothesis that the alphas

across the quintiles are jointly zero.

At one-year horizon (t = 1), the CAPM yields an alpha of 0.96% (t = 3.65) for the high-minus-
low quintile. The mean absolute alpha from the low to high quintile is 0.22%, and the GRS test
rejects the CAPM (p = 0.01). The high-minus-low alpha increases to 1.15% (t=3.88) in the
FF3. The mean absolute alpha also increases, reaching 0.28%. Per the GRS test, the alphas
from the low to high quintile are not jointly zero (p = 0.00). With the addition of momentum
factor, the Carhart4 generates a lower high-minus-low alpha of 0.84% (t=2.74), but the model
is still rejected by the GRS test (p = 0.00), with a mean absolute alpha of 0.22%. With the
investment and operating profitability factors, the FF5 outperforms the Carhart4, with the high-
minus-low alpha decreasing to 0.77% (t=4.03). Despite a decline in the mean absolute alpha

to 0.19%, the FF5 fails to survive the GRS test (p = 0.02).

The FF6 further reduces the high-minus-low alpha to 0.63% (t=2.67), but the magnitude
remains above the high-minus-low premium. The mean absolute alpha remains significant in
magnitude at 0.18%, and the GRS test rejects the FF6 (p = 0.04). The HXZq is comparable to
the CAPM, producing a high-minus-low alpha of 0.98% (t=3.43). The mean absolute alpha is
0.24%, and the model is rejected in the GRS test (p = 0.00). The BX3 improves on the HXZq,
with the high-minus-low alpha shrinking to 0.86% (t=3.22). Across the quintiles, the mean
absolute alpha is 0.22%. With a p-value of 0.01, the GRS test rejects the model.

The results for the one-year horizon broadly extend to the two-year horizon. None of the factor
models capture the high-minus-low premium, producing high-minus-low alphas ranging from
0.65% (t=2.51) to 1.09% (t = 4.64). All factor models except for FF5 and FF6 are rejected by
the GRS tests, with mean absolute alphas ranging from 0.16% to 0.29%. 3

[Insert Table 3.4]

34 The results on the asset pricing factor model alphas are based on the constructed REIT-based factors. When the
corresponding common stock-based factors, obtained from the Kenneth R. French website and Global-q.org, are
used in the time-series factor model regressions, our conclusion is further reinforced: the high-minus-low premium
remains uncaptured by both conventional and more recent factor models, and these models perform poorly in
explaining the excess returns across quintiles.
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3.3.3 A REIT Factor

Given that the high-minus-low premium is largely unexplained by a set of REIT-based factor
models, in this subsection I construct a factor-mimicking portfolio to capture the cross-

sectional REIT return variation related to expected investment growth.

The expected investment growth factor, Rg, is constructed using an independent two-way (2
x 3) monthly sort based on size and E;;[d1]/A]. At the beginning of each month t, I split REITs
into two groups, small and large, using the end-of-prior-month median market equity.
Independently, I divide all REITs into three groups—Ilow, median, and high—based on the
lowest 30%, middle 40%, and highest 30% of the ranked E;.[d*I/A] values. The intersection
of the two size groups and the three E;.[d*I/A] groups forms six benchmark portfolios. I
calculate value-weighted portfolio returns for the current month t and rebalance the portfolios
at the beginning of month t+1. The expected investment growth factor is the difference (high-
minus-low) each month between the simple average returns of the two high E;[d']/A]

portfolios and the simple average returns of the two low E;,[d*I/A] portfolios.

I conduct time-series factor model regressions of the expected investment growth factor,
including the CAPM, FF3, Carhart4, FF5, FF6, HXZq, and BX3. In Table 3.5.1, Panel A
presents the time-series average of the expected investment growth factor, Rgg, alongside the
model alphas, factor loadings, and R? values from the regressions. The t-values, adjusted for
heteroscedasticity and autocorrelation, are reported in parentheses. Panel B provides the

correlations of the expected investment growth factor with model factors.

The expected investment growth factor earns an average of 0.34% per month (t = 2.01) during
the period from January 1998 to December 2021. The CAPM alpha is substantial at 0.70% (t
= 4.27), with a significantly negative market factor loading of -0.45 (t = -4.61). When the size
and value factors are added, the FF3 model's R? jumps from 32% to 60%. However, similar to
the market factor, both the size and value factors have significantly negative slopes, -0.73 (t =
-6.29) and -0.41 (t =-3.89), respectively, which further increases the alpha to 0.85% (t = 3.83).
Introducing the momentum factor to the FF3 reduces the alpha to 0.51% (t = 2.78), driven by
a significantly positive loading on the momentum factor of 0.42 (t = 9.60). The FF5 model

improves upon the FF3 in explaining the expected investment growth factor, with the alpha
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decreasing to 0.54% (t=3.90), primarily due to a significantly positive loading on the operating
profitability factor, 0.47 (t =4.95).

With both the momentum and operating profitability factors included, the FF6 further reduces
the alpha to 0.36% (t =2.75), but the alpha still exceeds the expected investment growth factor
premium. The return on asset factor in the HXZq and the alternative return on asset factor in
the BX3 both generate significantly positive slopes of 0.30 (t = 3.66) and 0.38 (t = 2.74),
respectively. Compared to the CAPM, both investment-based factor models produce slightly
smaller alphas, 0.67 (t = 3.70) and 0.61 (t = 4.08), respectively. Overall, none of the factor
models fully subsume the expected investment growth factor, leaving a significant portion of
average returns unexplained. This finding suggests that the expected investment growth factor

captures a new dimension of variation in the cross-section of REIT returns.
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3.3.4 Sources

Given that the expected investment growth factor is closely correlated with some of the model
factors as shown in Panel B of Table 3.5.1, I next attempt to identify the sources behind the
expected investment growth factor premium. I adopt the HXZq factor model regression
framework because, unlike the FF6 model, the HXZq does not include factors for momentum
and operating profitability, which are directly related to the expected investment-to-assets
change predictors, specifically prior 11-month returns and gross profitability.>> Specifically, T
perform time-series regressions of the expected investment growth factor, Rg,, on the HXZq

model factors, as well as the augmented factors on Tobin’s q, Rjog(q), gross profitability, Rgp,

changes in return on assets, Rqroa, and prior 11-month returns, Rg,;11. Analogous to the
expected investment growth factor, the factors for log (q), Gp, dRoa, and Ret!! are formed

by interacting each of them separately with size in 2 x 3 monthly sorts.

Panel A of Table 3.5.2 presents the regression results. For reference, the HXZq model alone
generates an alpha of 0.67% (t = 3.70). Both log (q) and dRoa play a limited role in
contributing to the expected investment growth factor premium. Adding Rg(4) to the model
reduces the alpha to 0.62% (t = 3.90), despite the factor has a significantly positive slope of
0.35 (t = 3.79). Similarly, including R4g,, slightly lowers the alpha to 0.61% (t = 2.95). In

contrast, Gp and Ret!?!

are more significant contributors to the expected investment growth
factor premium. The addition of R, moderately reduces the alpha to 0.51% (t = 3.80), with a
factor loading of 0.52 (t = 3.88). Augmenting the model with Rp,.11 results in a similar

reduction in the alpha, 0.50% (t = 2.86), with a factor loading of 0.35 (t=6.01).

While adding Rjog(q) and Rggroa together reduces the alpha only to 0.55% (t = 3.20), including
both R¢, and Rg,,11 sharply reduces the alpha to 0.31% (t = 2.57). Augmenting the model with
all factors together still yields an alpha of 0.26% (t = 2.16), slightly below the expected

investment growth premium. These results suggest that while the expected investment growth

35 Using the BX3 factor model regression framework produces similar results. However, I argue that the HXZq
regression framework is more appropriate for identifying the sources behind the expected investment growth
factor premium. The augmented factors for Tobin’s g, gross profitability, change in return on assets, and prior 11-
month returns are constructed using an independent two-way (2 x 3) monthly sort on size and each variable. This
factor construction is consistent with the methodology used in the HXZq model but not in the BX3 model.
Additionally, employing size in the two-way sort helps to orthogonalize the size factor from the augmented factors,
whereas the BX3 model does not include a size factor.
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factor premium is a reincarnation of those cross-sectional return patterns related to valuation
ratios, profitability, and momentum, it extends far beyond them, emphasizing the significant
role of the forecasted investment-to-asset changes in generating the factor premium.

[Insert Table 3.5.1]

[Insert Table 3.5.2]
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3.3.5 Robustness Tests

Unlike current investment, expected investment growth cannot be directly observed. Indeed,
the cross-sectional forecasts of future investment growth depend on empirical specifications.
In this subsection, I explore several alternative formulations for the expected investment

growth factor.

The expected investment growth factor remains robust when I combine mechanically the log
of Tobin’s q, gross profitability, changes in return on assets, and prior 11-month returns. For
each portfolio formation month, I create a composite score that aggregates the four predictors
by equally weighting a firm’s percentage rankings across these variables, each realigned to

yield a positive slope in forecasting returns. Rgg is an alternative expected investment growth

factor derived from an independent two-way (2 x 3) monthly sort on size and the composite
score. As shown in Table 3.6, the alternative factor earns an average return of 0.49% per month
(t=2.65). The HXZq model yields an alpha of 0.65% (t = 3.98). The alternative factor is highly

correlated with the benchmark expected investment growth factor, Rg,, with a correlation
coefficient of 0.87 (p = 0.00). The HXZq model augmented with Rg, subsumes Rgg, resulting
in an alpha of 0.20% (t = 1.78). Similarly, the HXZq model augmented with Rgg also

subsumes R, yielding an alpha of 0.19% (t = 1.43).

The expected investment growth factor remains robust when using alternative dependent
variables in the cross-sectional forecasts of future investment growth. Given that firm-level

investment-to-assets ratio (I /A, net total asset growth) is not always positive, I forecast future
investment-to-asset changes, d*I/A, in which 7 = 1 and t = 2. Alternatively, I forecast t-year-

ahead changes in the natural logarithm of gross total asset growth, d"log (1 + 1/A), and -

NCA

Eg’ are alternative

year-ahead changes in net non-cash asset growth, d*I/Ayca- Rég and R

expected investment growth factors formed by interacting E[d'log (1 +1/A)] and

E [d1 1/Ay, A] separately with size in 2 x 3 monthly sorts. As shown in Table 3.7.2, Rég and

REs# earn an average return of 0.37% (t=2.09) and 0.39% (t = 1.88), respectively, with HXZq
model alphas of 0.70% (t = 3.82) and 0.71% (t = 3.01). Their correlations with the benchmark
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expected investment growth factor are 0.99 and 0.96, respectively. Both correlations are highly

statistically significant.

The expected investment growth factor remains robust when using alternative predictors in the
cross-sectional forecasts of future investment growth. I begin by substituting gross profitability
with operating profitability. Using operating profitability does not affect the results. Panel A of
Table 3.8.1 shows that its slope, 1.130 (t = 6.53), is highly significantly positive in forecasting

one-year-ahead investment-to-asset changes. The resulting expected investment growth

factor, Rggp, has an average return of 0.38% (t = 2.02), with a HXZq alpha of 0.68% (t = 3.40)

and a correlation of 0.97 with Rg,. Replacing the changes in return on assets with the changes

in return on equity generates a slope of 0.167 (t = 1.77) in the predictive regression. The

dRoe

corresponding factor, R4

, earns an average return of 0.36% (t = 2.05), with a HXZq alpha

0f 0.70% (t = 3.61). The correlation between Rgg"e and Rg4 is 0.99. If prior 11-month returns

are substituted with abnormal returns, the slope remains positive at 0.097 (t = 6.51). The

Aret1?

resulting factor, Rgg

, earns an average return of 0.32% (t = 1.75), with a HXZq alpha of

0.66% (t = 3.47). Its correlation with R is 0.95.

The expected investment growth factor remains robust when augmenting with additional
predictors in the cross-sectional forecasts of future investment growth. Barro (1990) forecasts
aggregate investment growth using a range of predictors, including the logarithm of Tobin’s q
growth, the first difference of the ratio of after-tax corporate profits to sales, gross national
product growth, prior one-year stock market returns, and lagged aggregate investment growth.
Since my benchmark specification already includes the logarithm of Tobin’s q and prior 11-
month returns, I have only incorporated non-conflicting variables from Barro's model to avoid
multicollinearity. Specifically, I substitute the growth of gross national product with sales
growth, which is more suitable for forecasting firm-level investment growth. Additionally, I
include two variables representing current and past investment growth: the current and the one-

year-lagged investment-to-asset changes.
Augmenting the first difference of the ratio of after-tax corporate profits to sales, dNis,

produces similar results. As shown in Panel A of Table 3.9.1, its slope in the predictive

regression of one-year-ahead investment-to-asset changes is significantly positive, 0.048 (t =
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2.79). Table 3.9.2 further shows that the corresponding expected investment growth
factor, R,‘}S’ i earns a premium of 0.44% (t = 2.35), with a HXZq alpha of 0.79% (t = 3.77). Its
correlation with Rgg is 0.97. In contrast to dNis, the annual growth rate of sales, gSale, yields
a negative slope of -0.154 (t = -10.41) in the predictive regression. The factor premium
decreases to 0.20% (t=1.91), with a HXZq alpha of 0.51% (t = 3.91). Rﬁ;ale has a correlation

of 0.93 with R;,. Adding the current investment-to-asset changes, lag0d* I /A, generates a
g

much negative slope of -0.394 (t =-22.19). The factor premium sinks to 0.13% (t = 1.20), with

a HXZq alpha of 0.23% (t = 2.13). The correlation between Ré“lg“qull/A and Rg, is only 0.73.

The large negative slope of the current investment-to-asset changes may be driven by a

mechanical relationship in the predictive regression, as the current investment-to-asset ratio
now appears on both sides of the regression.’® Indeed, the R? surges to 0.261 from 0.084 in the
benchmark specification. Such a high R? is somewhat suspicious in the context of predictive

regressions. Moreover, when I add the one-year-lagged investment-to-asset changes,

lagld'I/A, the slope remains negative but sharply increase to -0.020 (t = -2.08), and

the R? plunges to 0.091. The factor premium rises to 0.25% (t = 2.01), with a HXZq alpha of
o _ . lag1id'i/A . .

0.65% (t = 3.16). The correlation between R, and R increases to 0.95. I emphasize

the robustness of these results, given that it is a convention in empirical finance to impose a

time lag between a dependent variable and its lagged value in a predictive regression to avoid

any mechanical relationships.’’
[Insert table 3.6]
[Insert table 3.7.1]

[Insert table 3.7.2]

36 The large negative slope of sales growth may also be driven by the same mechanical relationship present in the
predictive regression. Indeed, a R? of 0.185 in the predictive regression is suspiciously high, suggesting potential
multicollinearity or model specification issues. In untabulated results, I observe a highly significant positive
contemporaneous relationship between sales growth and investment-to-asset changes. This indicates that sales
growth may be capturing similar information as investment growth, effectively serving as a reincarnation of
investment growth.

37 For example, when measuring momentum, it is standard practice to impose a one-month lag between prior and
subsequent returns to avoid the bid-ask bounce effect caused by market microstructure frictions.
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[Insert table 3.8.1]

[Insert table 3.8.2]

[Insert table 3.9.1]

[Insert table 3.9.2]
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3.4 An Augmented Investment-Based Factor Model

3.4.1 A REIT-Based HMXZq> model

Hou et al. (2015) base their g-factor model on the static investment CAPM. Following their
framework, Bond and Xue (2017) construct an investment factor and a return on equity factor
to form an investment-based three-factor model for REITs. Building on the dynamic investment
CAPM, Hou et al. (2021) expand the g-factor model by incorporating an expected investment
growth factor, resulting in a q° model (HMXZq®). In line with this approach, I apply the
constructed expected investment growth factor to formulate a REIT-based HMXZq> model.*®
Given the presence of the expected investment growth factor, the augmented investment-based
factor model is expected to provide superior information regarding the variation in the cross

section of expected REIT returns.

In the model, the expected excess return of a REIT is described by its loadings on the expected
premium of five factors: the market factor, Ry, the size factor, Ry, , the investment

factor, R;/4, the return on assets factor, Rg,q, and the expected investment growth factor, Rgg,

E[R; — R¢] = BiitE[Ruke] + Bire E[Rme] + Bl/aERi/a] + BhoaE[Rroal + BigE|Rig]
(3.4),

in which E[Ryx¢], E[Ryel, E[R,/A], E[Rg,ql, and E[REg] are the expected premium on the
market, size, investment, return on assets, and expected investment growth factors, respectively,
and BY4es Bhe» BE /4> BLoq, and ,B’,gg the corresponding factor loadings. Appendix 3.1 details the

factor construction and the factor model regression specification.

In Table 3.10, I perform time-series HMXZq® factor-model regressions for each expected

investment growth quintile. At 1-year horizon, the model generates an alpha of 0.21% (t=1.74)

38 Alternatively, 1 augment the Bond and Xue (2017) investment-based three-factor model with the expected
investment growth factor, R4, to create an investment-based four-factor model for REITs (BX4). While this
alternative model produces similar results, I argue that it is more appropriate to add Rg, to HXZq rather than to
BX3. This preference stems from the fact that R, is derived from a two-way (2 x 3) monthly sort on size and
expected one-year-ahead investment-to-asset changes, aligning with the construction of R4 and Rg,, in HXZq.
In contrast, BX3 employs alternative versions of R;/,_and Rg,, , which are based on a two-way (3 x 3) sort on
investment and return on assets and do not include a size factor.
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for the high-minus-low quintile. For reference, the high-minus-low alpha is 0.98% (t = 3.43)
in the HXZq. The reduction in alpha is attributed to the large loading of the expected investment
growth factor, 1.16 (t = 21.39). The mean absolute alpha from the low to high quintile is just
0.10%, and the GRS test fails to reject the HMXZq®> (p = 0.18). At 2-year horizon, the high-
minus-low alpha is 0.23% (t = 2.10), a sharp decrease from 1.00% (t = 3.75) in the HXZq. The
expected investment growth factor loading remains at 1.16 (t=17.76). The mean absolute alpha
across the quintiles stays at 0.10%. According to the GRS test (p = 0.43), the alphas across the
quintiles are jointly zero. These results demonstrate that although the expected investment
growth factor is formed based on expected one-year-ahead investment-to-asset changes, it
exhibits strong explanatory power for the cross-sectional return patterns associated with

expected two-year-ahead investment-to-asset changes.

[Insert Table 3.10]

&3



3.4.2 Spanning Tests

The dynamic investment CAPM underpins the HMXZq® as a factor pricing model in the cross-
section of expected REIT returns. However, despite the differences in theoretical foundation
between the HMXZq® and the FF6, they are closely related in empirical terms. Additionally,
the ongoing debate regarding the integration (segmentation) of REIT returns with (from)
common stock returns questions the choice between REIT-based versus common stock-based
factor models. To address these concerns, in this subsection, I compare factor models on
economic grounds using spanning tests, which have been employed by Fama and French (2015
and 2018), Barillas and Shanken (2017 and 2018), and Hou et al. (2019). Barillas and Shanken
(2017 and 2018) posit that for models with traded factors, the crucial aspect for model
comparison is the degree to which the alphas of the factors excluded from a nested model are

jointly zero when regressed on the nested model factors.

In Subsubsection 3.4.2.1, I detail the spanning tests of the HMXZq® against the FF6. I examine
whether the HMXZgq® is subsumed by the FF6, and vice versa. In the following subsubsection
3.4.2.2 and 3.4.2.3, I compare the REIT-based factor models, HMXZq® and FF6, with four
common stock-based factor models: the Fama and French (2015) five-factor model (FF5%),
Fama and French (2018) six-factor model (FF6*), Hou et al. (2015) g-factor model (HXZq*),
and Hou et al. (2021) g° model (HMXZg>*). My primary focus is to determine whether the
HMXZq"> and FF6 are subsumed by the FF5*, FF6*, HXZq* and HMXZq>*.

84



3.4.2.1 HMXZq°® versus FF6

In Panel A of Table 3.11, I regress the size and return on asset factors, Ry, and Ry, from the
HXZq model, and the expected investment growth factor, R4, from the HMXZq® model, on
the FF5 and FF6 models. The size factor earns an average return of 0.19% (t = 1.58). Both the
FF5 and the FF6 account for the Ry, premium, with alphas of -0.04% (t = -2.83) and -0.01%
(t =-0.34), respectively, due to the presence of SMB5 and SMB6. In an untabulated result, the
investment factor, R, /4, in the HXZq model earns an average return of 0.10% (t = 0.68). Given
that both R; /4 and R¢p 4 are constructed from sorts on size and I/A, the R/, premium is fully

subsumed by the FF5 and FF6 models.

The return on asset factor earns an average return of 0.21% (t = 0.99). Due to the presence of
the operating profitability factor, Rgpy, the FFS model explains the Ry, , premium, with an
alpha of 0.01% (t = 0.07). The FF6 model yields similar results. Although R, is constructed
from sorts on the latest known quarterly earnings, whereas Rgyy, 1s based on sorts from the
staler operating profitability from the most recent fiscal year end, Ry, is not more powerful
than Rgpy . The expected investment growth factor, Rg,, earns an average return of 0.34% (t
= 2.01). The FF5 model does not reduce the Rg, premium, with an alpha of 0.54% (t = 3.90).

The FF6 model shrinks the alpha to 0.36%, aided by the Ry p loading of 0.34 (t = 5.59), but

the alpha remains highly significant (t = 2.75).

In Panel B of Table 3.11, I regress the size, value, operating profitability, and momentum
factors ( Rsyp » Rumr » Rryw » and Rypyp ) from the FF6 model on the HXZq and
HMXZq® models. The Rg,p¢ factor earns an average return of 0.19% (t = 1.65), with alphas
of 0.04% (t = 2.62) from the HXZq model and 0.02% (t = 0.93) from the HMXZq> model. The
size factor, R,,, provides substantial explanatory power, yielding regression R? values of 0.98.
The Ry, factor has an average return of 0.08% (t = 0.54), and its alphas for the HXZq and
HMXZq® models are 0.06% (t = 0.41) and 0.15% (t = 0.91), respectively. The investment

factor, R; /4, primarily contributes to the explanatory power, with factor loadings of 0.51 (t =

3.74) for the HXZq model and 0.51 (t = 3.50) for the HMXZq> model.
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The Rzpw factor has an average return of 0.30% (t = 1.64). It remains significant after
controlling for the HXZq factors, with an alpha of 0.37% (t = 1.83). The Ry, loading is
statistically significant (t = 6.20) with a magnitude of 0.53. The HMXZq> model further
reduces the alpha of Ryzp to 0.17% (t = 0.90), aided by both the return on asset and expected
investment growth factors. The momentum factor, Ry, p, €arns an average return of 0.22% (t
= 1.01). The HXZq model yields an alpha of 0.48% (t = 3.07), despite a substantial Rg,,
loading of 0.53 (t = 3.87). In contrast, the HMXZq> model shrinks the momentum factor alpha
to 0.05% (t = 0.35). The explanatory power is largely provided by the expected investment
growth factor, which has a large and highly significant factor loading of 0.65 (t = 7.37).

In Panel C of Table 3.11, I perform the GRS test on the null hypothesis that the alphas of the
key HMXZq® factors in the FF5 and FF6 factor-model regressions are jointly zero. Specifically,
for the null hypothesis that the alphas of the return on asset and expected investment growth
factors are jointly zero, the GRS statistic is 5.59 (p-value = 0.00) for the FF5 model and 3.31
(p-value = 0.04) for the FF6 model. Therefore, neither the FF5 nor the FF6 can fully explain

the HMXZq® factors.

Additionally, I conduct the GRS test on the null hypothesis that the alphas of the key FF6
factors in the HXZq and HMXZq® factor-model regressions are jointly zero. For the null
hypothesis that the alphas of the value, operating profitability, and momentum factors are
jointly zero, the GRS statistic is 3.87 (p-value = 0.01) for the HXZq model and 0.97 (p-value
= 0.41) for the HMXZq®model. Thus, although the FF6 factors survive in the HXZq model,
they are subsumed by the HMXZq® model. These results suggest that the HMXZq> model
contains valuable additional information about expected REIT return variation in the cross

section that is not captured by the FF6 model.

[Insert Table 3.11]
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3.4.2.2 HMXZq5 versus FF5*, FF6*, HXZq*, and HMXZq°*

In Panel A of Table 3.12, I regress the HMXZq® factors on the FF5* and FF6* models. The
REIT-based market factor, Ry, from the HMXZg® model earns an average return of 0.81%
(t =2.63). Both the FF5* and FF6* models explain this market factor premium, with alphas of
0.09% (t=0.43) and 0.12% (t = 0.58), respectively. The explanatory power largely stems from
the common stock-based market factor, R+, which has factor loadings of 0.79 (t=6.13) and
0.75 (t = 6.59) for the FF5* and FF6* models, respectively. Similarly, both models account for
the REIT-based size factor, Ry, with alphas of 0.08% (t = 0.70) for the FF5* and 0.16% (t =
1.35) for the FF6*, primarily due to the presence of the common stock-based size factors,

Rgpyps* and Rgype-.

The FF5* model yields an alpha of -0.05% (t = -0.32) for the REIT-based investment factor,
R;/a. The common stock-based investment factor, R¢y 4+, does not contribute significantly,
exhibiting a factor loading of virtually zero (t = 0.05). Similarly, the FF6* model produces a
negligible alpha of -0.06% (t = -0.35) for R, /4, with an insignificant Ry 4+ loading. While the
FF5* and FF6* models explain the REIT-based market, size, and investment factors, they do
not fully account for the return on asset factor, Rg,,. The alphas for Ry, are 0.41% (t=2.63)
for the FF5* and 0.33% (t = 1.82) for the FF6*. The common stock-based operating profitability
factor, Rgpyw+, yields small and insignificant loadings of 0.19 (t = 1.57) for the FF5* and 0.14
(t=1.18) for the FF6*, respectively. Additionally, the REIT-based expected investment growth
factor, Rgg, persists in both models, with alphas of 0.59% (t = 3.08) for the FF5* and 0.48% (t
= 2.02) for the FF6*.

In Panel B, I use the HXZq* and HMXZg®°* models to explain the HMXZq> factors. For
the Ryx: factor, the HXZq* alpha is only 0.08% (t = 0.29), and the HMXZq>* alpha is virtually
zero (t = -0.01), supported by a large Ry loading of 0.80 (t = 5.39) and 0.82 (t = 4.96),
respectively. The Ry, factor survives the HXZq* but not the HMXZq°*, with an alpha of 0.19%
(t=1.42) and 0.24% (t = 2.00), respectively. The Ry~ factor has limited explanatory power,
with a loading of around 0.24 (t = 2.64) and 0.23 (t = 2.52), respectively. The HXZq* and
HMXZq®* alphas for the R, /4 factor are -0.05% (t = -0.30) and 0.09% (t = 0.64), respectively,
with most of the explanatory power coming from the R, 4+ factor, which has a loading of 0.36

(t=4.22) and 0.34 (t =4.91), respectively.
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The HXZqg* explains the Rg,, factor, with an alpha of 0.23% (t = 1.20), aided by a Rg,.*
loading of 0.52 (t=3.76). The HMXZq®* further reduces the alpha to 0.13% (t=0.81), and the
Rpoe+ factor yields a smaller factor loading of 0.46 (t = 2.88) due to the presence of the Rg -
factor. The Rg, factor survives the regressions on the HXZq* factors, with an alpha of 0.51%
(t=2.66). Although the Rg,.+ factor loading is significant (t = 1.85), its magnitude is only 0.36.
The HMXZq>* reduces the alpha further to 0.36% (t = 1.73), but the magnitude remains above
the Rgg4 factor premium. The Rgg4- factor provides a rather limited amount of explanatory

power, with a factor loading of 0.26 (t = 1.64). This result indicates that the factor pricing

information in expected investment growth differs between common stocks and REITs.

In Panel C of Table 3.12, I perform the GRS tests on the null hypothesis that the alphas of the
HMXZq® factors are jointly zero across the FF5*, FF6*, HXZq* and HMXZq®* models.
Specifically, for the null hypothesis that the REIT-based market, size, investment, return on

assets, and expected investment growth factors are jointly zero, the GRS statistic is 2.89 (p-
value = 0.02) for the FF5* model, 2.72 (p-value = 0.02) for the FF6* model, 3.21 (p-value =
0.01) for the HXZq* model, and 2.12 (p-value = 0.06) for the HMXZq°* model. Therefore, the
HMXZq® model is not subsumed by the FF5* FF6* HXZq*, and HMXZq°* models. This

result further implies a difference in the cross-sectional expected returns captured by HMXZq°

between REITs and common stocks.

[Insert Table 3.12]

88



3.4.2.3 FF6 versus FF5*, FF6*, HXZq*, and HMXZq>*

In Panel A of Table 3.13, I regress the FF6 factors on the FF5* and FF6* models. Both common
stock-based factor models explain the REIT-based size factor, Rgy 6, in the FF6, with an alpha
0f 0.10% (t = 0.93) for the FF5* and 0.16% (t = 1.49) for the FF6*, respectively. The common
stock-based size factors, Rgy s+ and Rgy g6+, are the main sources of explanatory power for the
Rgu 56, €xhibiting a factor loading of 0.37 (t=5.20) and 0.41 (t = 6.37), respectively. The REIT-
based value factor, Ry, , does not survive the regression on the FF5* and FF6*, with resulting
alphas both close to zero. The common stock-based value factor, Ryy+, provides the

explanatory power, albeit with small factor loadings slightly above 0.20 (t-values above 2.50).

The REIT-based investment factor, Ry, 4, 1S also explained by the two models; however, the
common stock-based investment factor, Ry 4+, has nearly zero factor loadings. In contrast, the
FF5* and FF6* cannot fully explain the REIT-based operating profitability factor, Rz »
yielding an alpha of 0.41% (t = 2.20) and 0.38% (t = 2.00), respectively. The common stock-
based operating profitability factor, Rgzpu+, has limited power to explain the Rgpyy, With a
factor loading of 0.25 (t = 3.67) for the FF5* and 0.23 (t = 2.61) for the FF6*, respectively. For
the REIT-based momentum factor, Ry, p, the FF5* model yields an alpha of 0.53% (t = 2.62).
With the inclusion of the common stock-based momentum factor, Ry, p+, the FF6* reduces the

alpha to 0.28% (t = 1.16). The factor loading of the Ryp+ 1s 0.63 (t = 3.39).

In Panel B of Table 3.13, I regress the FF6 factors on the HXZq* and HMXZq5* models. While
the HXZq* yields an alpha of 0.20% (t = 1.55) for the REIT-based size factor, Rgypg, the
HMXZq°* model raises the alpha to 0.25% (t = 2.06). The common stock-based size factors,
Ry.+, make a slight contribution to the models’ explanatory power for the Rgyp6, With a factor
loading of 0.23 (t = 2.92) for the HXZq* and 0.22 (t = 2.77) for the HMXZq>*, respectively.
Both models explain the REIT-based value factor, Ry, with a alpha of 0.06% (t = 0.39) for
the HXZq* and 0.16% (t = 0.95) for the HMXZq®*. The R, /a+ factor is the main source of
explanatory power, with a factor loading of 0.23 (t = 2.65) for the HXZq* and 0.22 (t = 2.37)
for the HMXZq®*, respectively.

The REIT-based investment factor, R4, is also explained by the two models. The common

stock-based investment factor, R; 4+ has factor loadings of around 0.35 (t above 4.22).
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Conversely, both models fail to explain the REIT-based operating profitability factor, Rgpu,
yielding an alpha of 0.46% (t = 2.25) for the HXZq* and 0.37% (t = 1.79) for the HMXZq>*.
The common stock-based return on equity factor, Rg,.*, has limited explanatory power, with a
factor loading of 0.23 (t = 2.25) for HXZq* and 0.18 (t = 1.37) for the HMXZq>*. For the
REIT-based momentum factor, Ry, p, both models successfully subsume it, with an alpha of
0.24% (t = 1.01) for the HXZq* and 0.15% (t = 0.73) for the HMXZq°*. This is aided by a
large Rg,.+ factor loading of 0.80 (t = 2.52) for the HXZqg* and 0.74 (t = 1.91) for the
HMXZq%*. The R gg* does not significantly contribute to explaining the Ry p, exhibiting an
insignificant factor loading of 0.16 (t = 0.53).

In Panel C of Table 3.13, I perform the GRS tests on the null hypothesis that the alphas of the
FF6 factors are jointly zero across the FF5* FF6*, HXZq* and HMXZq°>* models. Specifically,
for the null hypothesis that the REIT-based market, size, value, investment, operating
profitability, and momentum factors are jointly zero, the GRS statistic is 1.90 (p-value = 0.08)
for the FF5* model, 1.76 (p-value = 0.11) for the FF6* model, 2.26 (p-value = 0.04) for the
HXZq* model, and 1.60 (p-value = 0.15) for the HMXZg°* model. Therefore, the FF6 model
is not subsumed by the FF5* and HXZq* models but is subsumed by the FF6* and
HMXZq®* models. This result suggests that there is no significant difference in the cross-

sectional expected returns captured by FF6 between REITs and common stocks.

[Insert Table 3.13]
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3.4.2.4 Correlation Matrix

To shed further light on the relationship between model factors, Table 3.14 presents their

correlation matrix. The REIT-based market factor, Ry, is moderately correlated with the
common stock-based market factors in the HMXZq>* and FF6*, Ry+ and Rygr+, with a
correlation of 0.60. The REIT-based size factors in the HMXZq® and FF6 models, R, and
Rsupe, are nearly identical, exhibiting a correlation of 0.99. Additionally, the Ry, factor has a
moderate negative correlation of -0.60 with the momentum factor, Ry, in the FF6. The
correlation between Ry, and R+ is 0.40, while the correlation between Rgp g6 and Rgype* 18

0.43.

The REIT-based investment factors in the HMXZq® and FF6, R, /a and Repa, are essentially
identical. The R/, factor is moderately correlated with the value factor, Ry, in the FF6, with
a correlation of 0.51. Furthermore, the R, 4 exhibits a low correlation of 0.23 and 0.15 with the
common stock-based investment factors in the HMXZ q°* and FF6*, R, sa* and Repae,
respectively. The REIT-based return on asset factor, Rg,,, is moderately correlated with the
operating profitability factor and the momentum factor in the FF6, with a correlation of 0.69
and 0.56, respectively. Additionally, the Rg,, has a correlation of 0.57 and 0.38 with the

common stock-based return on equity factor and the operating profitability factor in the

HMXZq%* and FF6*, respectively.

The REIT-based expected investment growth factor, R, in the HMXZq> has a moderate
correlation of 0.68 with the operating profitability factor and a high correlation of 0.77 with
the momentum factor in the FF6. Conversely, it has a low correlation of 0.38 with the common
stock-based expected investment growth factor, Rgg4-, in the HMXZq5*. Its correlation with
the common stock-based operating profitability factor, Rgpy+, in the FF6* is 0.07, which is
not statistically different from zero, but it shows a moderate correlation of 0.43 with the

momentum factor, Rypp+.

[Insert Table 3.14]
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3.4.3 Stress-Testing Factor Models

In this subsection, I stress-test factor models using a set of testing quintiles. This analysis
complements the spanning tests conducted earlier by providing an alternative method for
comparing factor models (Hou et al., 2015; Fama and French, 2016; Hou et al., 2021). I
construct testing portfolios based on four prominent REIT return predictors compiled by Bond
and Xue (2017): momentum, standardized unexpected earnings, idiosyncratic volatility, and
share turnover. Subsequently, I conduct an empirical horse race involving eight REIT-based
factor models: the CAPM, FF3, Carhart4, FF5, FF6, HXZq, BX3, and HMXZq> .>° Presumably
the HMXZ g° provides superior information regarding the cross-sectional expected REIT

returns, the model would outperform the other in explaining the testing quintiles.

3.4.3.1 Price Momentum

Table 3.15 shows that the high-minus-low momentum quintile earns an average return of 0.54%
(t=1.80). The CAPM fails to explain this quintile, exhibiting an alpha of 0.78% (t=2.72). Out
of the five quintiles, three have significant alphas. The mean absolute alpha across the quintiles
is 0.22%. With a p-value of 0.06, the GRS test rejects the CAPM. The FF3 yields an even
higher alpha of 0.88% (t = 2.97) for the high-minus-low quintile. Except for quintiles 2 and 3,
the remaining quintiles have significant alphas. The mean absolute alpha increases to 0.26%,
and the GRS test rejects the FF3 (p-value = 0.02). The Carhart4 reduces the high-minus-low
alpha to 0.31% (t = 0.92), aided by a large momentum factor loading of 0.75 (t = 2.75).
Although quintiles 2 and 4 still have significant alphas, the mean absolute alpha reduces to

0.16%, and the GRS test does not reject the Carhart4 (p-value = 0.12).

Adding the investment and operating profitability factors to the FF3 does not significantly
improve the model’s explanatory power for the high-minus-low quintile, which has an alpha
of 0.73% (t = 2.98). Across the quintiles, three have significant alphas. Nevertheless, the FF5
reduces the mean absolute alpha to 0.19% and survives the GRS test (p-value = 0.13). As

3 In untabulated results, I also conduct an empirical horse race using seven common stock-based factor models:
the CAPM*, FF3* Carhart4*, FF5* FF6*, HXZq*, and HMXZq>*. Compared to REIT-based factor models, the
corresponding common stock-based factor models are less effective in explaining the quintiles sorted on
momentum, standardized unexpected earnings, idiosyncratic volatility, and share turnover. These results are
consistent with the findings from the spanning tests that compared to REIT-based factor models, the common
stock-based factor models provide far less explanatory power for REIT-based factors from non-nested models.
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expected, adding the momentum factor to the FF5 further reduces the high-minus-low alpha to
0.33% (t = 0.92), with only the alpha for quintile 2 remaining significant. The FF6 shrinks the
mean absolute alpha to only 0.14%, and the model is not rejected by the GRS test (p-value =
0.27).

Like the FF5, the HXZq exhibits similar explanatory power for the high-minus-low quintile,
yielding an alpha of 0.70% (t = 2.51), with two of the five quintiles having significant alphas.
However, unlike the FF5, the HXZq produces a higher mean absolute alpha of 0.22%, and the
model is rejected by the GRS test (p-value = 0.03). Utilizing the alternative investment and
return on asset factors, the BX3 reduces the high-minus-low alpha to 0.63% (t = 2.13), with
significant alphas in quintile 4 and 5. The mean absolute alpha decreases to 0.20%, but the

model does not survive the GRS test (p-value = 0.08).

The HMXZq® outperforms the FF6 in explaining the momentum quintile, with a high-minus-
low alpha of only 0.05% (t = 0.22). The expected investment growth factor primarily drives
the explanatory power, exhibiting a loading of 0.97 (t = 6.02), which is slightly higher than the
momentum factor loadings in the Carhart4 and the FF6. Across quintiles 1 to 5, none have
significant alphas, and the expected investment growth factor loading increases monotonically
from -0.53 (t=-2.91) to 0.44 (t = 6.68). The mean absolute alpha across the quintiles is merely
0.08%, and the GRS test does not reject the model (p-value = 0.69). Moving from quintile 1 to
5, the average expected one-year-ahead investment-to-asset changes increase from -4.68% (t =
-5.80) to 1.45% (t = 2.08), and the expected two-year-ahead changes increase from -6.59% (t
=-5.37) to 1.19% (t = 1.03). Intuitively, momentum winners have higher future investment
growth expectations and load more heavily on the expected investment growth factor than

momentum losers.

[Insert Table 3.15]
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3.4.3.2 Standardized Unexpected Earnings

Table 3.16 shows that the high-minus-low quintile formed on standardized expected earnings
earns a premium of 0.30% (t = 3.24). The high-minus-low premium is not captured by the
CAPM, resulting in an alpha of 0.44% (t = 3.50). Quintiles 1, 4, and 5 also yield significant an
alpha. The mean absolute alpha across the quintiles is 0.17%, and the CAPM does not pass the
GRS test (p-value = 0.05). In the FF3, the high-minus-low alpha rises to 0.53% (t = 3.97), and
the alphas for quintiles 1, 4, and 5 remain significant. The mean absolute alpha increases
slightly to 0.18%, and the GRS test rejects the FF3 (p-value = 0.01). The Carhart4 reduces the
high-minus-low alpha to 0.27% (t = 1.98). Although the alphas for quintiles 4 and 5 remain
significant, the alpha for quintile 1 becomes insignificant. The mean absolute alpha falls to

0.12%, and with a p-value of 0.11, the GRS test does not reject the Carhart4.

Compared to the Carhart4, the FF5 performs slightly worse. The high-minus-low alpha
increases to 0.35% (t = 2.99), and the alpha for quintile 1 becomes significant again. The mean
absolute alpha grows to 0.14%, and the GRS test does not reject the FF5 (p-value = 0.09). With
both the operating profitability and momentum factors, the FF6 reduces the high-minus-low
alpha to 0.21%, but it remains statistically significant (t = 1.71). The alphas for quintiles 4 and
5 remain statistically significant. The mean absolute alpha is 0.10%, and the model survives

the GRS test (p-value = 0.22).

The HXZq produces a high-minus-low alpha of 0.35% (t = 2.34), which is close to that in the
FF5. Compared to the operating profitability factor in the FF5, the return on asset factor in the
HXZq yields a higher loading of 0.34 (t = 3.79) in explaining the high-minus-low quintile.
Unlike the FF5, the HXZq yields an insignificant alpha for quintile 1. The mean absolute alpha
is 0.14%, and the model does not pass the GRS test (p-value = 0.04). Using the alternative
investment and return on asset factors, the BX3 does not show much improvement in
explaining the high-minus-low quintile, with an alpha of 0.37% (t = 2.53), and it yields a
significant alpha for quintile 1. Despite the mean absolute alpha rising to 0.15%, the model is

not rejected by the GRS test (p-value = 0.11).

The HMXZq® successfully explains the high-minus-low quintile, producing an alpha of 0.25%,
which is statistically insignificant (t = 1.60). Across the quintiles, two have significant alphas.

The mean absolute alpha is 0.12%, and the GRS test cannot reject the model (p-value = 0.28).
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Moving from quintiles 1 to 5, the expected investment growth factor loading grows from 0.03
(t =0.39) to 0.17 (t = 3.35). Accordingly, the average expected future investment-to-asset
changes increase from -2.64% (t = -3.62) to -0.91% (t = -1.30) at 1-year horizon and from -
5.10% (t = -4.13) to -0.98% (t = -0.88) at 2-year horizon. Intuitively, compared with earnings
momentum losers, earnings momentum winners expect higher future investment growth and

load more heavily on the expected investment growth factor.

[Insert Table 3.16]
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3.4.3.3 Idiosyncratic Volatility

Table 3.17 presents the properties of idiosyncratic volatility quintiles. The high-minus-low
quintile earns an average return of -0.34%, but this negative premium is statistically
insignificant (t = -0.89). The CAPM yields a high-minus-low alpha of -0.68% (t =-1.93) and
significant alphas in quintile 1 and 3. The mean absolute alpha across the quintiles is 0.22%,
and the CAPM is rejected by the GRS test (p-value = 0.03). In the FF3, the high-minus-low
alpha decreases further to -0.88% (t =-2.35). Across the quintiles, all except quintile 4 generate
significant alphas. The mean absolute alpha increases to 0.28%, and the GRS test strongly
rejects the FF3 (p-value = 0.00). The Carhart4 explains the high-minus-low quintile, producing
an alpha of -0.25% (t =-0.83). The momentum factor provides the primary explanatory power,
with a substantial loading of -0.78 (t = -5.48). Across the quintiles, only quintile 1 and quintile
3 have a significant alpha. The mean absolute alpha reduces to 0.11%, but the model does not

survive the GRS test (p-value = 0.05).

The FF5 further increases the high-minus-low alpha to -0.16% (t = -0.59). The operating
profitability factor is the main source of explanatory power, with a loading of -1.15 (t =-5.67).
The alphas for quintiles 1 and 3 remain significant in the FF5. The mean absolute alpha rises
slightly to 0.13%, and the GRS test rejects the model (p-value = 0.08). In the FF6, the high-
minus-low alpha turns positive at 0.17% (t = 0.63), aided by the negative loadings of the
operating profitability factor (-0.92, t = -5.81) and the momentum factor (-0.60, t = -6.31).
Despite the alphas for quintile 1 and 3 remaining statistically significant and the mean absolute

alpha increasing slightly to 0.15%, the FF6 passes the GRS test (p-value = 0.11).

The HXZq is comparable to the Carhart4, yielding a high-minus-low alpha of -0.31% (t = -
1.40). The explanatory power of the HXZq largely stems from the return on asset factor, with
a loading of -1.18 (t =-5.51). The alphas for quintiles 1 and 3 are significant in the HXZq. The
mean absolute alpha is 0.13%, and the GRS test rejects the model (p-value = 0.00). In the BX3,
the high-minus-low alpha drops to -0.37% (t = -1.47). The alternative return on asset factor has
a loading of -1.02 (t = -5.29), which is higher than the return on asset factor loading in the
HXZq. The alphas for quintiles 1 and 3 remain statistically significant in the BX3. The mean
absolute alpha rises to 0.15%, and the model is rejected by the GRS test (p-value = 0.02).
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Augmenting the HXZq with the expected investment growth factor increases the high-minus-
low alpha to -0.22% (t = -1.00). The augmented factor has a loading of -0.13 (t =-1.34), while
the return on asset factor loading is -1.14 (t = -5.17). The alphas for quintiles 1 and 3 remain
significant in the HMXZq®. The mean absolute alpha drops to 0.11%, and the GRS test does
not reject the model (p -value = 0.23). From quintile 1 to 5, the expected investment growth
factor loading declines from 0.20 (t = 5.26) to 0.07 (t = 0.66). Accordingly, the average
expected future investment-to-asset changes decline from -1.33% (t = -1.70) to -1.90% (t = -
2.26) at 1-year horizon and from -2.61% (t = -2.85) to -2.74% (t = -1.85) at 2-year horizon.
Intuitively, firms with low idiosyncratic volatility expect higher future investment growth and
load more heavily on the expected investment growth factor than firms with high idiosyncratic

volatility.

[Insert Table 3.17]
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3.4.3.4 Share Turnover

Table 3.18 shows the properties of share turnover quintiles. The high-minus-low quintile has
an average return of -0.61% (t = -2.13). The CAPM cannot explain this negative premium,
leaving an alpha of -0.81% (t = -2.89). Across the quintiles, two have significant alphas. The
mean absolute alpha is 0.26% in the CAPM, and the model is rejected by the GRS test (p-value
= 0.00). In the FF3, the high-minus-low alpha decreases further to -0.84% (t = -3.11). The
alphas for quintiles 1 and 3 remain statistically significant. The mean absolute alpha is 0.27%
in the FF3, and the GRS test rejects the model (p-value = 0.00). Adding the momentum factor
to the FF3 increases the high-minus-low alpha to -0.68% (t = -1.95). The Carhart4 produces
significant alphas for quintile 1, 3, and 4. The mean absolute alpha across the quintiles reduces

to 0.24%, but the model is rejected by the GRS test (p-value = 0.00).

Adding the investment and profitability factors to the FF3 increases the high-minus-low alpha
t0 -0.66% (t=-2.95). The alphas for quintiles 1 and 3 remain statistically significant in the FF5.
The mean absolute alpha falls to 0.21%, but the model still does not pass the GRS test (p-value
= 0.00). The FF6 further rises the high-minus-low alpha to -0.57% (t = -1.89). The alpha for
quintile 4 becomes statistically significant in the FF6. The mean absolute alpha across the

quintiles further falls to 0.19%, but the GRS test rejects the FF6 (p-value = 0.00).

The HXZq yields an alpha of -0.64% (t = -2.24) for the high-minus-low quintile. The return on
asset factor is the primary contributor to the model’s explanatory power, with a loading of -
0.49 (t = -3.06), which is much lower than the loading of the operating profitability factor in
the FF5, -0.29 (t =-1.95). Across the quintiles, three have significant alphas in the HXZq. The
mean absolute alpha is 0.24%, and the GRS test rejects the model (p-value = 0.00). Using the
alternative investment and return on asset factors, the BX3 yields a high-minus-low alpha of -
0.67% (t =-2.32). The alternative return on asset factor generates a loading of -0.54 (t =-2.99)
in the BX3, delivering the model’s explanatory power. The alphas for quintiles 1, 3, and 4
remain statistically significant. The mean absolute alpha is 0.23%, and the BX3 fails to survive

the GRS test (p-value = 0.00).

The HMXZq® explains the high-minus-low quintile, generating an insignificant alpha of -0.41%
(t =-1.59). The model’s explanatory power is largely due to the return on asset and expected

investment growth factors, with a loading of -0.39 (t=-2.67) and -0.35 (t =-2.90), respectively.
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While the alphas for quintiles 1 and 4 are statistically significant, the alpha for quintile 3 is
insignificant. The mean absolute alpha across the quintiles shrinks sharply to 0.15%, but the
model is still rejected by the GRS test (p-value = 0.01). Moving from quintile 1 to quintile 5,
the expected investment growth factor loading declines monotonically from 0.32 (t = 6.74) to
-0.04 (t = -0.29). Correspondingly, the average expected future investment-to-asset changes
decline from -0.79% (t = -0.76) to -2.12% (t = -3.21) at 1-year horizon and from -2.36% (t = -
1.95) to -2.85% (t =-2.16) at 2-year horizon. Intuitively, firms with lower share turnover expect
higher future investment growth and load more heavily on the expected investment growth

factor than firms with higher share turnover.

[Insert Table 3.18]
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3.4.3.5 Overall Performance

In the spanning tests, the HMXZq® subsumes the FF6, but not vice versa. Consistent with these
tests, the HMXZq> outperforms the FF6 in explaining the testing quintiles formed on the four
prominent REIT return predictors: momentum, standardized unexpected earnings,
idiosyncratic volatility, and share turnover. The HMXZq® successfully captures the high-
minus-low quintiles for each predictor, producing statistically insignificant alphas, with an
average high-minus-low alpha of 0.23%. In contrast, the FF6 explains the high-minus-low
quintiles for momentum and idiosyncratic volatility but fails to capture those for standardized
unexpected earnings and share turnover, resulting in a higher average high-minus-low alpha of
0.32%. Furthermore, compared to the FF6, the HMXZq® yields lower mean absolute alphas
for the quintiles formed on momentum, idiosyncratic volatility, and share turnover, averaging
0.11% for the HMXZq® versus 0.14% for the FF6. The GRS test does not reject the HMXZq®°
when explaining the quintiles formed on momentum, standardized unexpected earnings, and
idiosyncratic volatility. Overall, these results reaffirm that the HMXZq® contains superior

information regarding the cross-sectional variation in expected REIT returns.
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3.5 Economic Mechanism

3.5.1 An Alternative Risk-Based Explanation

The superior performance of the REIT-based HMXZq® in the spanning tests and stress-testing
exercises is largely attributable to the presence of the expected investment growth factor. Given
the important role of this factor, this subsection investigates the economic drivers behind the

expected investment growth premium.

The Liu et al. (2009)model does not address the underlying mechanisms that drive the positive
relationship between expected investment-to-asset growth and expected returns. According to
the net present value rule of capital budgeting, Hou et al. (2021) suggest that if expected
investment in the next period exceeds current investment, high discount rates are necessary to
offset the expected high benefits of current investment, resulting in a low present value of new
projects and thereby keeping current investment levels low. Li et al. (2021a and 2021b) provide
arisk-based explanation, proposing that investment plan frictions induce an embedded leverage

effect that amplifies firms’ future cash flow risk, leading to a higher risk premium.*’

I propose an alternative risk-based explanation that emphasizes the roles of operating and
financial leverages. Operating and financial leverage effects generally refer to the risk
amplification caused by fixed operating expenses and financial costs, respectively. Firms with
a higher degree of operating and financial leverages face greater business risk. REITs are highly
leveraged relative to industrial firms (Giacomini et al., 2017). Acquiring and/or developing
more properties in the future is likely to increase the fixed costs for a REIT across various areas,
including property management, maintenance, insurance, administrative expenses, and
depreciation. Additionally, such acquisitions and/or development activities are also likely to
increase a REIT’s financial costs, including additional interest expenses, issuance costs for new
debt or equity, increased principal repayments, and potential higher hedging and refinancing

costs.

40Li et al. (2021a and 2021b) develop a two-period model with investment plan frictions, in which firms are
endowed with an existing project and an investment option. A key assumption is that the investment plan is
predetermined, irreversible, and not realized until the next period. Industrial firms rarely cancel their investment
plans once they are initiated (Doms and Dunne, 1998; Ramey and Shapiro, 2001). As a result, expected investment
is not exposed to the economic conditions in the next period, creating an embedded leverage effect that amplifies
firms’ future cash flow risk. The model predicts that firms with a high degree of investment plan frictions have
higher risk premiums. However, this prediction may not apply to REITs, given the homogeneity of investment
within the industry.
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Given that cash flow shocks play a crucial role at firm level (Vuolteenaho, 2002), my
conceptual argument abstracts from time-series variation in aggregate productivity, such as
exogenous shocks to discount rates, and focuses on the economic mechanism in the cross-
section. A positive shock to idiosyncratic productivity can create two competing effects on
REITs’ future investment growth expectations. On the one hand, higher productivity generates
a positive cash flow effect, leading firms to expect higher future investment growth. On the
other hand, higher expected future investment growth increases firms’ future operating and
financial leverages, resulting in higher future cash flow risk. The cash flow effect tend to
dominate the discount rate effect, leading firms with a positive shock to cash flow to optimally
expect higher future investment growth despite of the potentially higher cost of capital. I

examine these two competing effects in the following subsections.
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3.5.2 Future Profitability

Table 3.19 presents the time-series averages of future profitability across expected investment
growth quintiles. I use two measures of profitability: sales growth and gross profit growth. The
quintile with high expected one-year-ahead investment-to-asset changes exhibits an average
one-year-ahead sales growth of 2.22% (t = 8.36), while the quintile with low expected one-
year-ahead investment-to-asset changes shows an average one-year-ahead sales growth of 1.08%
(t=3.97). At two-year horizon, the average future sales growth increases from 1.83% (t =5.20)

in the low quintile to 4.92% (t = 7.51) in the high quintile.

Using gross profit growth as a profitability proxy yields similar results. The average one-year-
ahead gross profit growth rises from 0.31% (t = 2.00) in the low quintile to 1.01% (t = 9.08) in
the high quintile. At two-year horizon, the average future gross profit growth increases from
0.53% (t=2.99) in the low quintile to 2.09% (t = 8.49) in the high quintile. These findings are
consistent with the cash flow effect, where positive innovations in cash flow lead firms to

expect higher future investment growth.

[Insert Table 3.19]
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3.5.3 Future Leverage

Table 3.20 presents the future leverage across the expected investment growth quintiles. In
Panel A, for each quintile, I run panel firm-month OLS regressions of the annual growth rate
of operating income on the contemporaneous annual growth rate of sales. The degree of
operating leverage is measured by the elasticity of operating income to sales. Compared to the
low quintile, the high quintile exhibits a higher current degree of operating leverage, 1.47 (t =
5.78) versus 1.23 (t = 4.64). Additionally, the high quintile experiences a greater degree of
operating leverage over the subsequent first year, 1.57 (t=5.89) versus 1.19 (t=15.81). However,
moving from the low to high quintile, the degree of operating leverage in the subsequent second

year decreases from 1.39 (t =5.33) t0 0.92 (t =3.73).

In Panel B, for each quintile, I run panel firm-month OLS regressions of the annual growth rate
of'net income on the contemporaneous annual growth rate of operating income for each quintile.
The degree of financial leverage is measured by the elasticity of net income to operating income.
The current degree of financial leverage increases monotonically from 0.55 (t = 2.93) in the
low quintile to 1.02 (t = 3.57) in the high quintile. More importantly, the high quintile exhibits
a degree of financial leverage of 1.05 (t=2.90) in the subsequent first year, significantly higher
than that of 0.58 (t = 3.53) in the low quintile. This pattern persists in the subsequent second
year. From the low to high quintile, the degree of financial leverage grows from 0.69 (t=3.81)
to 1.07 (t =2.61). These findings suggest that firms that expect high future investment growth

tend to have higher future leverage, particularly financial leverage.

[Insert Table 3.20]
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3.5.4 Future Cash-Flow Risk

Table 3.21 presents the future cash flow risk among firms with different expected investment
growth. I perform panel firm-month OLS regressions of future t-year-ahead net income growth,
where T = 1 and 2, on the expected one-year-ahead investment-to-asset changes, future one-
year-ahead economic growth, and their interaction term. I employ four proxies for economic
growth: gross domestic product growth (GDPG), personal consumption expenditure growth
(PCEQG), industrial production growth (IPG), and manufacturing and trade sales growth
(MTSG).

Panel A reports the results for GDPG. I find that expected one-year-ahead investment-to-asset
changes are significantly positively related to subsequent one- and two-year-ahead net income
growth, with a coefficient of 0.051 (t =4.37) and 0.077 (t = 4.22), respectively. This finding is
consistent with the cash flow effect. Additionally, one-year-ahead GDP growth positively
affects one-year-ahead net income growth, with a coefficient of 0.049 (t =2.09) and has a much
stronger impact on two-year-ahead net income growth. The interaction term loads a
significantly positive coefficient of 0.865 (t = 2.18) in explaining one-year-ahead net income
growth, even though the coefficient turns negative but insignificant at -0.769 (t = -1.36) in
explaining two-year-ahead net income growth. The positive interaction term suggests that the
response of net income growth to GDP growth increases with expected one-year-ahead

investment-to-asset changes.

Using PCEG produces similar results. The interaction between expected one-year-ahead
investment-to-asset changes and PCEG yields a coefficient of 0.707 (t = 2.12) when regressing
the one-year-ahead net income growth. However, PCEG alone has an insignificantly negative
coefficient of -0.002 (t = -0.15). In contrast, [IPG and MTSG alone yield a significant positive
coefficient of 0.035 (t=2.19) and 0.036 (t = 1.90), respectively, but their interaction terms with
the expected investment-to-asset changes are both insignificantly positive, with a coefficient

0f 0.279 (t=1.19) and 0.353 (t = 1.32).

I emphasize the results of using GDPG in the regressions, as it is a more comprehensive

measure of economic activity compared to other indicators. The results are consistent with the
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discount rate effect, suggesting that firms with high future investment growth expectations have

higher future cash flow risk.

[Insert Table 3.21]
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3.6 Conclusion

In this study, I examine the asset pricing implications of real estate investment plans among
equity REITs. According to the dynamic investment CAPM, firms with high expected
investment growth should have higher expected returns than firms with low expected
investment growth. Due to data constraints on planned real estate investment, I form cross-
sectional forecasts of future investment growth using Tobin’s q, gross profitability, changes in

return on assets, and prior stock returns.

I find that the forecasted future investment-to-asset changes positively predict excess returns
over the subsequent month in Fama-MacBeth cross-sectional predictive regressions. The return
predictability also extends to portfolio level, generating a significant high-minus-low premium
not explained by a set of REIT-based factor models. To capture the return variation related to
expected investment growth, I construct a factor-mimicking portfolio. The resultant factor
premium exceeds those of the expected investment growth constituents and remains robust

across alternative empirical specifications.

I subsequently apply the expected investment growth factor to build a REIT-based HMXZq®°
model. Given the presence of the augmented factor, the model is not subsumed by competing
REIT-based and common stock-based factor models in spanning tests. Additionally, in stress-
testing exercises, the model outperforms its competing REIT-based factor models in explaining

the testing quintiles formed on four prominent REIT return predictors.

I finally propose an alternative risk-based explanation for the expected investment growth
premium, emphasizing the roles of operating and financial leverages. I demonstrate that firms
with high expected investment growth have higher future profitability; however, they also
exhibit higher future degrees of operating and financial leverages and have future cash flows

that are more sensitive to economic conditions, leading to higher discount rates.

This study makes several contributions to the literature. It first extends the literature on
investment plans and asset returns. Previous studies have focused on productive capital
investment plans and stock returns at either the aggregate or cross-sectional level. This study

provides new evidence from commercial real estate investment plans and the cross-section of
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REIT returns. Second, despite the dynamic investment CAPM, it remains an open question of
why high expected investment growth commands high expected returns in the cross-section.
This study proposes an alternative risk-based explanation that focuses on the risk amplification

effect of operating and financial leverages heightened by expected investment growth.

This study thirdly contributes to the literature on real estate finance. The cross-section of REIT
returns has long attracted various interests from real estate researchers. This study provides
evidence of a new return pattern related to expected investment growth, which is not only a
reincarnation of several existing return patterns but also an extension of them. Also, there is an
ongoing debate on the integration or segmentation of REIT returns with or from stock markets.

This study provides new evidence strengthening the segmentation argument.

This study also has practical implications for investors. The finding that the augmented
investment-based factor model offers superior information on the cross-section of expected
REIT returns implies that, beyond conventional factor models, the factor model can serve as
an alternative benchmark for REIT asset pricing. For instance, the model can be utilized to

assess REIT risk-adjusted performance and the performance of dedicated REIT mutual funds.

It is crucial to recognize the limitations of this study. One of the primary limitations is the data
constraints. The measure of real estate investment plans is based on cross-sectional forecasts
of future investment growth. While this approach offers a novel method for capturing REIT
planned real estate investment, it is inherently dependent on the chosen predictors and
forecasting methods. Furthermore, REITs may have broader investment plans beyond planned
acquisition and development, including planned expansion and renovation. However, the future
realization of planned expansion or renovation is usually treated as expenses rather than
capitalized as assets in financial statements. Consequently, forecasting investment-to-asset

changes may underestimate firms’ actual planned investment.

Additionally, the REIT-based asset pricing factors are subject to the reconstruction process. I
reconstruct a set of standard factors and the q and ¢° factors specifically for REITs. The factor
reconstruction is driven by the ongoing debate on whether to integrate or segment REIT returns
with or from common stock returns. While the reconstruction largely follows the original
procedure, it requires adjustments in variable measurements and sorting methods to create

factors suitable for a REIT context. For example, when constructing the q factors, I use an
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independent two-way sort instead of the original three-way sort due to the smaller REIT sample

size to ensure reasonable portfolio diversification.

Finally, the scope and generalizability of the findings are also a concern. REITs are subject to
specific regulatory requirements, market dynamics, and investor behaviors that are less
representative of the broader commercial real estate. Consequently, the conclusions drawn from

this thesis may not be fully applicable to other segments of commercial real estate.
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Tables

Table 3.1 Monthly Cross-Sectional Forecasts of Future Investment Growth

dll/A d?1/A
1) (2) 3) “4) (5) 1) (2) 3) 4) (5)

log(q) 0.100 0.042  0.087 0.007
(6.60) (3.32)  (5.19) (0.46)
Gp 1.060 0.714 1.137 0.873
(8.67) (6.14) (7.88) (5.63)
dRoa 0.956 1.041 1.543 1.741
(2.77) (3.19) (3.99) (4.46)
Ret!t 0.144  0.116 0.168  0.146
(8.69)  (6.81) (8.74)  (8.29)
R? 0.024 0038 0017 0025 0084 0022 0042 0018  0.029  0.095

Pearson  0.103  0.102  0.045 0081  0.136 0.065 0.091 0046  0.109  0.124
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]  [0.00]
Rank 0.104  0.129  0.052  0.102 0163 0063  0.095 0.072  0.134  0.135
[0.00]  [0.00]  [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]  [0.00]

I begin by estimating monthly Fama-MacBeth cross-sectional predictive regressions of t-year-ahead investment-to-
asset changes, d*I /A, where =1 and 2, on the natural log of Tobin’s q (log(q)), gross profitability (Gp), changes in
return on assets (dRoa), and prior 11-month returns (Ret!'), covering the period from July 1995 to December 2021.
d*1/Air12 = Bogr1z + Bre+12l09(@ie + Boe+12GDie + B3 er128R0y + ByerrzRetl! + ierir
At the beginning of each month t, I measure current investment-to-asset ratio as total assets (Compustat annual item
AT) from the most recent fiscal year-end at least four months ago minus the total assets from one year prior, scaled
by the average total assets. The t-year-ahead investment-to-asset changes, d*1/A, are calculated as the investment-
to-asset ratio from the tth fiscal years after the most recent fiscal year minus the current investment-to-asset ratio.
Tobin’s q is defined as market equity (item PRCC_F multiplied by CSHO) plus long-term debt (item DLTT) and
short-term debt (item DLC), scaled by book assets, all from the most recent fiscal year-end at least four months ago.
Gross profitability (Gp) is total revenue (item REVT) minus cost of goods sold (item COGS), scaled by book assets,
all from the most recent fiscal year-end at least four months ago. Changes in return on assets (dRoa) are calculated
as Roa minus the four-quarter-lagged Roa. Roa is income before extraordinary items (Compustat quarterly item
IBQ) scaled by the one-quarter-lagged book assets (item ATQ). I compute dRoa using earnings from the most recent
announcement date (item RDQ) and, if unavailable, from the most recent fiscal quarter-end at least four months ago.
Prior 11-month returns (Ret!?!) are the cumulative returns (CRSP monthly item RET) from month t—12 to month t-2;
month t—1 returns are skipped to eliminate the bid-ask bounce effect. I winsorize all variables at the 1st and 99th
percentiles of their distributions. Missing dRoa values are set to zero in the cross-sectional forecasting regressions. |
report the time-series average slopes, the t-values adjusted for heteroscedasticity and autocorrelations (in
parentheses), and goodness-of-fit coefficients (R?).

I next form out-of-sample forecasts of 1-year-ahead investment-to-assets changes, E;;[d*]/A], where =1 and 2.
Ey[d*I/A] = 50,t—1:t_—120(30) + Bre-1:t-12030)109 (D it + B2,t-1:6-12030)GPic + B3,t-1:t-120(30)AR0A;;
+ B4-,t—1:t—120(30)Reti1t1

At the beginning of each month t, I combine the most recent winsorized predictors with the average slopes estimated
from the prior 120-month rolling window (minimum 30 months). The most recent predictors, log(q) and Gp, are
from the most recent fiscal year-end at least four months ago as of the beginning of month t. dRoa is computed using
the latest announced quarterly earnings and, if not available, from the most recent fiscal quarter-end at least four
months ago as of the beginning of month t. Ret!! represents the prior 11-month cumulative returns as of the
beginning of month t (skipping month t—1). To avoid look-ahead bias, the average slopes are estimated from the
rolling window spanning months t—1 to t—120 (minimum 30 months). In the latest regression, d*//A is from the most
recent fiscal year-end at least four months ago as of the beginning of month t—1, and the regressors are further lagged
by 12t months. The resulting E;;[d"]/A] starts from January 1998. I report the time-series averages of cross-sectional
Pearson and Rank correlations between E;.[d"I/A] calculated at the beginning of month t and the subsequently
realized t-year-ahead investment-to-asset changes. The p-values testing whether a given correlation is zero are
presented in brackets.
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Table 3.2 Time-Series Average of Quintile Expected Investment Growth and Subsequent Realized
Investment Growth

T Low 2 3 4 High H-L
Panel A: Average expected t-year-ahead investment-to-asset changes, E[d"]/A]
1 E[d"I/A] -10.15 -6.47 -4.22 -1.84 5.13 15.28
t -20.09 -14.38 -10.45 -5.07 19.69 33.27
2 E[d*1/A] -12.54 -8.09 -5.46 -2.74 5.60 18.14
t -16.66 -11.85 -8.69 -4.77 9.37 27.06
Panel B: Average subsequent realized t-year-ahead investment-to-asset changes, d*1/A
1 d*l/A -9.10 -5.44 -3.32 0.67 3.06 12.16
t -5.72 -5.26 -3.14 0.77 3.04 5.93
2 d*l/A -9.46 -6.46 -3.13 -2.24 1.67 11.13
t -4.72 -4.68 -2.48 -1.79 1.51 5.44

I form quintiles based on the forecasted T-year-ahead investment-to-asset changes, E;;[d*]/A], where 1= 1 and 2. At
the beginning of each month t, I sort all firms into quintiles based on the ranked values of E;;.[d"I/A]. The quintiles
are value-weighted using the end-of-prior-month market equity as weights and rebalanced at the beginning of
month t+1. T report the time-series averages of quintile expected t-year-ahead investment-to-asset changes and
subsequent realized changes, as well as their heteroskedasticity-and-autocorrelation-adjusted t-statistics (beneath the
corresponding estimates).
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Table 3.3.1 Monthly Fama-MacBeth Cross-Sectional Return Predictive Regressions on Expected One-
Year-Ahead Investment Growth

() 2) (€) (4) ©) (6) () 8) ©)

E[d'1/A] 0.108  0.171  0.187  0.181  0.176 0205  0.171  0.164  0.191
(2.16)  (344)  (2.60) (2.58) (242) (285  (2.16)  (239)  (2.29)

Me 0.009  -0.013  -0.024  -0.021  -0.022 -0.017  -0.014  -0.042
0.22)  (-0.32)  (-0.59)  (-0.50)  (-0.51)  (-0.40) (-0.33)  (-0.93)

B/M 0.197  0.174  0.188  0.168 0239  0.168  0.180  0.242
(3.01)  (2.64)  (290) (2.53)  (3.18)  (244)  (2.70)  (3.26)

Ret!t 0.006  0.008  -0.018  -0.036  0.000 0014  -0.027
(-0.09)  (0.13)  (-029) (-0.57)  (0.01)  (0.24)  (-0.43)

Tur 0.045 0.059
(0.63) (0.88)

Sue 0.130 0.128
(3.83) (3.73)

Ivff -0.150 -0.123
(-2.77) (-2.63)

1/4 0.009 0.021
(0.18) (0.45)

Roa 0.060  0.011
(128)  (0.27)

R 0.037 0091 0122  0.147  0.30  0.51  0.133 0141  0.209

I estimate the following monthly Fama-MacBeth cross-sectional regressions of one-month-ahead excess returns on
the expected one-year-ahead investment-to-asset changes and a set of return predictors, covering the period from
January 1998 to December 2021.
Retiryy = Boesr + Bres1Eie[d /Al + By riiMey + By rs1 B/ Mt + BarirRetiy' + Bsepr Tury, + o i1 Suey
+ Bre411Vf fie + Beew1l/Aie + Bogr1Roay + €p4q

Ret;;, 4 is the excess returns at the end of month t (or the beginning of month t+1), calculated as returns (CRSP
monthly item RET) minus one-month Treasury bill rate. E; [d']/A] represents the expected one-year-ahead
investment-to-asset changes calculated at the beginning of month t. At the beginning of month t, I measure size or
market equity (Me) as the price per share (item PRC) multiplied by the number of shares outstanding (item
SHROUT), both from the end of month t—1. Book-to-market equity (B/M) is calculated as book equity scaled by
market equity, both from the most recent fiscal year-end at least four months ago. Book equity is calculated as
stockholders’ book equity plus balance sheet deferred taxes and investment tax credit (Compustat annual item
TXDITC), if available, minus the book value of preferred stocks. Stockholders’ equity is obtained from Compustat
(item SEQ) if available. Otherwise, I use the book value of common equity (item CEQ) plus the par value of preferred
stock (item PSTK), or the book value of assets (item AT) minus total liabilities (item LT). Depending on availability,
I use redemption value (item PSTKRYV), liquidating value (item PSTKL), or par value (item PSTK) for the book
value of preferred stock. Prior 11-month returns (Ret!?) are the cumulative returns (CRSP monthly item RET) from
month t—12 to month t—2, with month t—1 returns skipped to eliminate the bid-ask bounce effect. Share turnover
(Tur) is the average daily share turnover over the prior six months from month t—6 to month t—1, requiring a
minimum of 50 days. Daily turnover is the number of shares traded (CRSP daily item VOL) on a given day divided
by the number of shares outstanding (item SHROUT) on that day. Standardized unexpected earnings (Sue) are
calculated as the change in split-adjusted quarterly earnings per share (Compustat quarterly item EPSPXQ divided
by item AJEXQ) from its value four quarters ago, divided by the standard deviation of this changes in quarterly
earnings over the prior eight quarters (minimum six quarters). I compute Sue using earnings from the most recent
announcement date (item RDQ), and, if unavailable, from the most recent fiscal quarter-end at least four months
prior. Idiosyncratic volatility (Ivff) is the residual volatility obtained from regressing a stock’s excess returns on
the REIT-based Fama-French (1993) three factors. At the beginning of month t, I use Ivff estimated with daily
returns (CRSP daily item RET) from month t—1, requiring a minimum of 15 daily returns. Investment-to-asset ratio
(1/A) is calculated as total assets (Compustat annual item AT) from the most recent fiscal year-end at least four
months ago minus total assets from one year prior, scaled by the average total assets. Return on assets (Roa) is
defined as income before extraordinary items (Compustat quarterly item IBQ) scaled by the one-quarter-lagged book
assets (item ATQ). I compute Roa using earnings from the most recent announcement date (item RDQ), and if
unavailable, from the most recent fiscal quarter-end at least four months ago. I winsorize the regressors at the 1st
and 99th percentiles to mitigate the impact of outliers. Additionally, I standardize each winsorized regressor by
subtracting its cross-sectional mean and dividing by its cross-sectional standard deviation. I report the time-series
average slopes, the t-values adjusted for heteroskedasticity and autocorrelations (in parentheses), and goodness-of-
fit coefficients (R?).
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Table 3.3.2 Monthly Fama-MacBeth Cross-Sectional Return Predictive Regressions on Expected Two-
Year-Ahead Investment Growth

) 2) (€) (4) (&) (6) () (8) ©)

E[d?1/A] 0.131 0167 0215 0211  0.185 0240 0209 0200  0.208
(2.84)  (4.12) (356)  (3.69)  (2.81)  (4.09)  (3.34)  (3.70)  (3.08)

Me 0016  -0.007  -0.014 -0.010 -0.016 -0.015 -0.011  -0.035
(0.40)  (-0.16)  (-0.34)  (-0.23)  (-037) (-0.34) (-026)  (-0.81)

B/M 0.168  0.147 0164  0.136 0208  0.141  0.163  0.209
(2.67)  (229)  (258)  (207)  (2.84) (2.12)  (246)  (2.83)

Ret!t 20.037  -0.036  -0.038  -0.065 -0.030  -0.029  -0.068
(-0.54)  (-0.55)  (-0.55) (-1.02)  (-0.45)  (-0.44)  (-1.06)

Tur 0.049 0.060
(0.71) (0.96)

Sue 0.111 0.108
(2.70) (2.53)

Ivff -0.142 -0.127
(-2.34) (-2.41)

1/4 0.026 0.022
(0.55) (0.49)

Roa 0.067  0.031
(125)  (0.69)

R 0.039 0092 0124  0.149  0.135  0.156  0.136  0.142 0215

I estimate the following monthly Fama-MacBeth cross-sectional regressions of one-month-ahead excess returns on
the expected two-year-ahead investment-to-asset changes and a set of return predictors, covering the period from
January 1999 to December 2021.
Retiryy = Boes1 + Bresr Eie[A*1/A] + ByriiMey + B3 psa B/ My + By rsrRetiy! + Bs ey Tury, + o1 Suey
+ Bre411Vf fie + Beew1l/Aie + Bogr1Roay + €p4q

Ret;;,, is the excess returns at the end of month t (or the beginning of month t+1), calculated as returns (CRSP
monthly item RET) minus one-month Treasury bill rate. E; [d']/A] represents the expected one-year-ahead
investment-to-asset changes calculated at the beginning of month t. At the beginning of month t, I measure size or
market equity (Me) as the price per share (item PRC) multiplied by the number of shares outstanding (item
SHROUT), both from the end of month t—1. Book-to-market equity (B/M) is calculated as book equity scaled by
market equity, both from the most recent fiscal year-end at least four months ago. Book equity is calculated as
stockholders’ book equity plus balance sheet deferred taxes and investment tax credit (Compustat annual item
TXDITC), if available, minus the book value of preferred stocks. Stockholders’ equity is obtained from Compustat
(item SEQ) if available. Otherwise, I use the book value of common equity (item CEQ) plus the par value of preferred
stock (item PSTK), or the book value of assets (item AT) minus total liabilities (item LT). Depending on availability,
I use redemption value (item PSTKRYV), liquidating value (item PSTKL), or par value (item PSTK) for the book
value of preferred stock. Prior 11-month returns (Ret!?) are the cumulative returns (CRSP monthly item RET) from
month t—12 to month t—2, with month t—1 returns skipped to eliminate the bid-ask bounce effect. Share turnover
(Tur) is the average daily share turnover over the prior six months from month t—6 to month t—1, requiring a
minimum of 50 days. Daily turnover is the number of shares traded (CRSP daily item VOL) on a given day divided
by the number of shares outstanding (item SHROUT) on that day. Standardized unexpected earnings (Sue) are
calculated as the change in split-adjusted quarterly earnings per share (Compustat quarterly item EPSPXQ divided
by item AJEXQ) from its value four quarters ago, divided by the standard deviation of this changes in quarterly
earnings over the prior eight quarters (minimum six quarters). I compute Sue using earnings from the most recent
announcement date (item RDQ), and, if unavailable, from the most recent fiscal quarter-end at least four months
prior. Idiosyncratic volatility (Ivff) is the residual volatility obtained from regressing a stock’s excess returns on
the REIT-based Fama-French (1993) three factors. At the beginning of month t, I use Ivff estimated with daily
returns (CRSP daily item RET) from month t—1, requiring a minimum of 15 daily returns. Investment-to-asset ratio
(1/A) is calculated as total assets (Compustat annual item AT) from the most recent fiscal year-end at least four
months ago minus total assets from one year prior, scaled by the average total assets. Return on assets (Roa) is
defined as income before extraordinary items (Compustat quarterly item IBQ) scaled by the one-quarter-lagged book
assets (item ATQ). I compute Roa using earnings from the most recent announcement date (item RDQ), and if
unavailable, from the most recent fiscal quarter-end at least four months ago. I winsorize the regressors at the 1st
and 99th percentiles to mitigate the impact of outliers. Additionally, I standardize each winsorized regressor by
subtracting its cross-sectional mean and dividing by its cross-sectional standard deviation. I report the time-series
average slopes, the t-values adjusted for heteroskedasticity and autocorrelations (in parentheses), and goodness-of-
fit coefficients (R?).
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Table 3.4 Time-Series Average of Quintile Excess Returns and Asset Pricing Factor Model Alphas

T Low 2 3 4 High H-L la|
Panel A: Average excess returns, R
1 R 0.50 0.92 0.76 0.87 1.01 0.51
t 0.96 2.23 2.10 2.49 3.70 2.11
2 R 0.63 0.99 0.90 0.94 1.02 0.39
t 1.23 2.30 2.55 2.73 3.70 1.99
Panel B: The CAPM alpha, a;4py
1 Qcapm -0.49 0.00 -0.05 0.10 0.47 0.96 0.22
t -2.24 0.01 -0.61 0.84 4.04 3.65 [0.01]
2 Qcapm -0.53 -0.07 -0.03 0.12 0.43 0.95 0.24
t -2.58 -0.81 -0.26 0.93 3.82 4.17 [0.05]
Panel C: The Fama-French three-factor model alpha, app4
1 QApps -0.62 -0.07 -0.06 0.09 0.54 1.15 0.28
t -2.55 -0.57 -0.71 0.72 4.55 3.88 [0.00]
2 QApps -0.59 -0.15 -0.06 0.13 0.51 1.09 0.29
t -2.72 -1.59 -0.49 0.92 4.73 4.64 [0.00]
Panel D: The Carhart four-factor model alpha, &¢grnarea
1 Acarharts -0.35 0.10 -0.08 0.08 0.50 0.84 0.22
t -1.43 0.82 -0.71 0.65 4.08 2.74 [0.00]
2 Acarharts -0.36 0.08 -0.00 0.01 0.47 0.84 0.19
t -1.37 0.92 -0.04 0.11 4.30 2.86 [0.03]
Panel E: The Fama-French five-factor model alpha, apg<
1 Apps -0.42 0.01 -0.12 0.07 0.34 0.77 0.19
-2.44 0.08 -1.27 0.65 3.60 4.03 [0.02]
2 Apps -0.46 -0.05 -0.08 0.06 0.31 0.77 0.19
-2.30 -0.63 -1.06 0.51 2.65 3.75 [0.10]
Panel F: The Fama-French six-factor model alpha, atppq
1 Apre -0.26 0.11 -0.12 0.06 0.36 0.63 0.18
-1.33 1.00 -1.06 0.55 3.82 2.67 [0.04]
2 Apre -0.32 0.09 -0.04 -0.02 0.34 0.65 0.16
-1.25 1.11 -0.45 -0.15 3.02 2.51 [0.14]
Panel G: The Hou-Xue-Zhang g-factor model alpha, ayxz,
1 Axzq -0.44 0.04 -0.09 0.11 0.54 0.98 0.24
-2.07 0.33 -1.08 0.89 4.38 3.43 [0.00]
2 Quxzq -0.47 -0.01 -0.04 0.12 0.54 1.00 0.24
-2.06 -0.17 -0.42 0.99 4.82 3.75 [0.01]
Panel H: The Bond-Xue investment-based three-factor model alpha, agys
1 Apxs3 -0.40 0.07 -0.09 0.09 0.47 0.86 0.22
t -1.80 0.54 -0.94 0.74 4.03 3.22 [0.01]
2 Apxs3 -0.42 -0.01 -0.05 0.11 0.44 0.86 0.21
t -1.95 -0.06 -0.46 0.91 4.31 3.53 [0.07]

At the beginning of each month t, I sort all firms into quintiles based on the ranked values of expected t-year-ahead
investment-to-asset changes, E;;[d*I/A], where T = 1 and 2. I then compute value-weighted quintile excess returns
for the current month t, using the end-of-prior-month market equity as weights. The quintiles are rebalanced at the
beginning of month t+1. I construct a set of asset pricing factor models for REITs, including the Capital Asset Pricing
Model (CAPM), Fama-French three-factor model (FF3), Carhart four-factor model (Carhart4), Fama-French five-
factor model (FF5), Fama-French six-factor model (FF6), Hou-Xue-Zhang g-factor model (HXZq), and Bond-Xue
investment-based three-factor model (BX3). Appendix 3.1 details the construction. For each quintile, I perform time-
series factor model regressions. Appendix 3.1 details the regression specifications. I report the time-series averages
of quintile excess returns (R), alongside the CAPM alpha (ac4py), the FF3 alpha (agg3), the Carhart4 alpha
(Xcarnarta)> the FFS alpha (apps), the FF6 alpha (@gpe), the HXZq alpha (ayyz,), and the BX3 alpha (agys).

Additionally, I provide their heteroskedasticity-and-autocorrelation-adjusted t-statistics beneath the corresponding

estimates. m represents the mean absolute alpha for each set of quintiles, and the p-value from the GRS test on the
null hypothesis that the alphas across the quintiles are jointly zero is presented in brackets.
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Table 3.5.1 Properties of Expected Investment Growth Factor (Part 1)

Panel A: Factor-model regressions of expected investment growth factor, Ry,

EEg Acapm Buie R?
0.34 0.70 -0.45 0.32
(2.01) 4.27) (-4.61)

QArr3 Buke Bsups3 Bumi R?

0.85 -0.36 -0.73 -0.41 0.60

(3.83) (-5.64) (-6.29) (-3.89)

Acarharta Bkt Bsmpa BumL Bump R?

0.51 -0.23 -0.35 -0.26 0.42 0.72

(2.78) (-4.48) (-4.91) (-3.02) (9.60)

Arrs Bkt Bsmss BumL Bcma Bruw R?

0.54 -0.24 -0.60 -0.20 0.03 0.47 0.68

(3.90) (-6.28) (-5.99) (-2.12) (0.35) (4.95)

QArre Bkt Bsuse BumL Bcma Bruw Bump R?
0.36 -0.16 -0.30 -0.18 0.00 0.35 0.34 0.76
(2.75) (-4.28) (-5.33) (-1.86) (0.03) (4.17) (5.59)
Ayxzq Bkt Bue .BI/A Broa R?

0.67 -0.33 -0.69 -0.01 0.30 0.62

(3.70) (-5.22) (-8.35) (-0.06) (3.66)

Apx3 Bkt Bija_ Broa_ R?

0.61 -0.41 -0.09 0.38 0.41

(4.08) (-4.08) (-0.53) (2.74)
Panel B: Correlations of R, with model factors

RMkt RSMBG RHML RUMD RCMA RRMW RMe RI/A RRoa RI/A_ RRoa_
056  -054 -039 077  -028 068  -0.61 -028 052  -0.11 038
(0.00)  (0.00)  (0.00) (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00)  (0.06)  (0.00)

The expected investment growth factor, R, is constructed using an independent two-way (2 x 3) monthly sort
based on size and E;,[d*]/A]. At the beginning of each month t, I split REITs into two groups, small and large,
using the end-of-prior-month median market equity. Independently, I divide all REITs into three groups—Ilow,
median, and high—based on the lowest 30%, middle 40%, and highest 30% of the ranked E;,[d'I/A] values. The
intersection of the two size groups and the three E;,[d']/A] groups forms six benchmark portfolios. I calculate
value-weighted portfolio returns for the current month t and rebalance the portfolios at the beginning of month t+1.
The expected investment growth factor is the difference (high-minus-low) each month between the simple average
returns of the two high E;,[d*1/A] portfolios and the simple average returns of the two low E;,[d*I/A] portfolios.
I conduct time-series factor-model regressions of the expected investment growth factor, including the CAPM, FF3,
Carhart4, FF5, FF6, HXZq, and BX3. Panel A presents the time-series average of the expected investment growth
factor, EEg, alongside the model alphas, factor loadings, and R? values from the regressions. The t-values, adjusted
for heteroskedasticity and autocorrelations, are reported in parentheses. Panel B provides the correlations of the
expected investment growth factor with the model factors.
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Table 3.5.2 Properties of Expected Investment Growth Factor (Part 2)

Panel A: HXZq factor-model regressions of expected investment growth factor, with augmented factors

EEg a Bukt Bue .31//4 Broa R?
0.34 0.67 -0.33 -0.69 -0.01 0.30 0.62
(2.01) (3.70)  (-5.22) (-8.35) (-0.06)  (3.66)
a ,BMkt .BMe .BI/A .BRoa .Blog (q) R?
0.62 -0.31 -0.58 0.19 0.18 0.35 0.65
(3.90) (-6.27) (-6.36)  (1.33) (3.28) (3.79)
a Buke Bue Bija Broa Bep R?
0.51 -0.25 -0.58 -0.13 0.16 0.52 0.69
(3.80) (-6.15) (-6.39) (-1.66) (1.67) (3.88)
a Bt Bue Bija Broa Baroa R?
0.61 -0.32 -0.62 -0.02 0.24 0.22 0.63
(2.95) (-5.00) (-6.49) (-0.19) (3.01) (1.53)
a Buke Bue Bija Broa Bret11 R?
0.50 -0.23 -0.38 -0.06 0.11 0.35 0.71
(2.86) (4.11) (-6.56) (-0.91) (1.1 (6.01)
a ,BMkt .BMe .BI/A .BRoa .Blog (@ .BdRoa R?
0.55 -0.30 -0.50 0.18 0.11 0.36 0.26 0.67
(3200 (-6.12) (4.62) (1.23) (2.04) (4.05) (2.13)
a Buke Bue Bija Broa Bep Bret11 R?
0.31 -0.14 -0.24 -0.20 -0.05 0.57 0.38 0.79
2.57)  (451)  (3.51)  (-3.78)  (-0.66)  (5.80) (7.28)
a Buke Bue .BI/A Broa .Blog (@ .BGp Baroa Bret11 R?
0.26 -0.13 -0.14 -0.03 -0.16 0.29 0.52 0.09 0.37 0.81
(2.16)  (-5.15) (-3.12) (-0.41) (-2.68) (3.48) (6.75) (0.85) (9.23)
Panel B: Correlations of Rg, with augmented factors
Rlog @ RGp Raroa Rpeg11
0.60 0.63 0.51 0.77
(0.00) (0.00) (0.00) (0.00)

I perform time-series HXZq factor-model regressions of the expected investment growth factor, Ry, augmented
with factors on Tobin’s q (Rjog(q)), gross profitability (Rgp), changes in return on assets (Rqgroa), and prior 11-month
returns (Rg,,11). Analogous to the expected investment growth factor, factors on log (q), Gp, dRoa, and Ret'* are
formed by interacting each of them separately with size in 2 x 3 monthly sorts. Panel A reports the time-series
averages of the expected investment growth factor, ﬁEg, alongside the model alphas, factor loadings, and R? values
from the regressions. The t-values adjusted for heteroskedasticity and autocorrelations are presented in
parentheses. Panel B reports the correlations of the expected investment growth factor with the augmented factors.
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Table 3.6 Properties of Alternative Expected Investment Growth Factor Formed with Composite Score

Panel A: Factor-model regressions of alternative expected investment growth factor, Rgg

RE, a Beg R?
0.49 0.19 0.91 0.75
(2.65) (1.75) (15.12)
a Bukt Bue .BI/A Broa R?
0.65 -0.22 -0.60 0.02 0.63 0.68
(3.98) (-3.78) (-6.72) (0.22) (7.91)
a Bukt Bue .BI/A Broa .BEg R?
0.20 -0.00 -0.14 0.03 0.42 0.68 0.84
(1.78) (-0.02) (-1.96) (0.44) (6.68) (14.14)
R, a Big R?
0.34 -0.07 0.83 0.75
(2.01) (-0.79) (20.13)
a Bukt Bue .BI/A Broa .ng R?
0.19 -0.16 -0.24 -0.02 -0.16 0.74 0.81
(1.43) (-4.95) (-5.70) (-0.38) (-1.92) (14.52)
Panel B: Correlations of Rgg with R, and HXZq model factors
Rgy Rygee Rye Rya Rroa
0.87 -0.47 -0.60 -0.28 0.70
[0.00] [0.00] [0.00] [0.00] [0.00]

I form a composite score using the log of Tobin’s q (log(q)), gross profitability (Gp), changes in return on assets
(dRoa), and prior 11-month returns (Ret1.). For each portfolio formation month, I create the composite score by
equal-weighting a stock’s percentage rankings across these four variables, ensuring each is realigned to yield a
positive slope in forecasting returns. I compute the composite score for a stock only if it has non-missing values for
all component variables. At the beginning of each month t, I use the median market equity to split stocks into two
groups: small and big, based on their beginning-of-month market equity. Independently, I sort all stocks into three
groups—Ilow, median, and high—based on the low 30%, middle 40%, and high 30% of the ranked composite score
values at the beginning of month t. By intersecting the two size groups with the three composite score groups, I
form six portfolios. I calculate value-weighted portfolio returns for the current month t and rebalance the portfolios
at the beginning of month t+1. Rgg is an alternative expected investment growth factor, defined as the difference
(high-minus-low) each month between the simple average of the returns on the two high composite score portfolios
and the simple average of the returns on the two low composite score portfolios. Panel A reports for Rgg: its average
return (Egg), alongside alphas, factor loadings, and R?s from a single-factor model that includes only the benchmark
expected investment growth factor (Rg, ), the HXZq, and the HXZq augmented with R, . The t-values, adjusted for
heteroskedasticity and autocorrelation, are presented in parentheses. Panel A also reports for R, for reference: its
average return (R £g)- alongside alphas, factor loadings, and R 25 from a single-factor model that includes only Rgg
and the HXZq augmented with Rgg. Panel B reports the correlations of Rgg with Rg, and HXZq model factors.
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Table 3.7.1 Cross-Sectional Forecasts of Future Changes in Log Gross Asset Growth or Non-Cash Asset
Growth

Panel A: t-year-ahead changes in the log of gross asset growth, d*log (1 +1/4)

T log (q) Gp dRoa Ret!? R? Pearson Rank
1 0.046 0.801 1.029 0.121 0.086 0.134 0.164
(3.31) (6.22) (2.70) (6.27) [0.00] [0.00]
2 0.009 0.957 1.745 0.150 0.093 0.123 0.138
(0.53) (5.67) (4.03) (7.67) [0.00] [0.00]
Panel B: 7-year-ahead changes in non-cash asset growth, d*I/A, .,
T log (q) Gp dRoa Ret? R? Pearson Rank
1 0.050 0.721 0.539 0.100 0.084 0.125 0.150
(3.37) (5.75) (1.53) (5.83) [0.00] [0.00]
2 0.012 0.957 1.543 0.175 0.098 0.129 0.151
(0.73) (5.83) (3.43) (9.83) [0.00] [0.00]

I estimate monthly Fama-MacBeth cross-sectional regressions of 7-year-ahead changes in the log of gross asset
growth, d*log (1 + 1/A), where T = 1 and 2, and t-year-ahead changes in non-cash asset growth, d* I/A,.,,
where T =1 and 2, on the log of Tobin’s q (log(q)), gross profitability (Gp), changes in return on assets (dRoa),
and prior 11-month returns (Ret'!). At the beginning of each month t, I measure current gross asset growth, 1 +
I/A, as total assets (Compustat annual item AT) from the most recent fiscal year end at least four months ago
divided by total assets from one year prior. The 7-year-ahead changes in the log of gross asset growth, d*log (1 +
1/A), are calculated as the log of gross asset growth from the tth fiscal year after the most recent fiscal year end
minus the current log of gross asset growth. Current non-cash asset growth, I/A, . ,, is defined as non-cash assets
(item AT minus CHE) from the most recent fiscal year end at least four months ago minus non-cash assets from
one year prior, scaled by the average non-cash assets. The 7 -year-ahead changes in non-cash asset
growth, d*I/A.,, are calculated as the non-cash asset growth from the tth fiscal year after the most recent fiscal
year end minus the current non-cash asset growth. I winsorize all variables at the 1st and 99th percentiles of their
distributions. I report the time-series average slopes, the t-values adjusted for heteroskedasticity and autocorrelations
(in parentheses), and goodness-of-fit coefficients (R?). Additionally, I form out-of-sample forecasts of 7-year-ahead
changes in the log of gross asset growth, E;.[d"log (1 + I/A)], where T = 1 and 2, and t-year-ahead changes in
non-cash asset growth, Eit[dT 1/4,. A], where 7 = 1 and 2. At the beginning of each month t, I combine the most
recent winsorized predictors with the average slopes estimated from the prior 120-month rolling window (minimum
30 months). The calculation of E;;[d"log (1 + I/A)] or E;;[d® I/ANCA] is analogous to that of E;,[d"1/A]. I report
time-series averages of cross-sectional Pearson and Rank correlations between E;[d"log (1 +1/A)] (or
Eit[dT 1/A,. A]) calculated at the beginning of month t and the realized t-year-ahead changes in the log of gross
asset growth (or non-cash asset growth). The p-values testing whether a given correlation is zero are presented in
brackets.
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Table 3.7.2 Properties of Alternative Expected Investment Growth Factors Formed with Expected
Changes in Log Gross Asset Growth or Non-Cash Asset Growth

Panel A: HXZq factor-model regressions of alternative expected investment growth factors, Rgg, and R’E"g“’
R a Bukt Bue Bi/a Broa R?
Rgg 0.34 0.67 -0.33 -0.69 -0.01 0.30 0.62
(2.01) (3.70) (-5.22) (-8.35) (-0.06) (3.66)
Rég 0.37 0.70 -0.32 -0.68 -0.01 0.30 0.62
(2.09) (3.82) (-5.00) (-8.44) (-0.07) (3.89)
RngCA 0.39 0.71 -0.34 -0.64 0.09 0.31 0.61
(1.88) (3.01) (-4.05) (-8.84) (1.09) (3.98)
Panel B: Correlations of R, and Rys* with Ry, and HXZq model factors
REg RMkt RMe RI/A RRoa
Rgg 0.99 -0.56 -0.62 -0.29 0.52
[0.00] [0.00] [0.00] [0.00] [0.00]
RJIEV;A 0.96 -0.58 -0.58 -0.23 0.52
[0.00] [0.00] [0.00] [0.00] [0.00]

Rég is an alternative expected investment growth factor derived from an independent two-way (2 x 3) monthly sort
on size and the expected one-year-ahead changes in the log of gross asset growth, E;[dlog (1 +1/A4)].
Similarly, ngVgCA is an alternative expected investment growth factor derived from an independent two-way (2 x 3)
monthly sort on size and the expected one-year-ahead changes in non-cash asset growth, Eit[d1 1/A,. A]. The
construction of Rgg and R’EVgCA is analogous to that of the benchmark expected investment growth factor, Rg,. For
each alternative expected growth factor, Panel A reports its average returns (R), alongside alphas, factor loadings,
and R? from the HXZq model. The t-values adjusted for heteroskedasticity and autocorrelations are presented in
parentheses. For reference, the panel also reports for Rg,: its average return, alongside alphas, factor loadings,
and R? from the HXZq model. Panel B reports the correlations of R, and Rig* with Ry, and HXZq model factors.
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Table 3.8.1 Cross-Sectional Forecasts of Future Investment Growth Using Alternative Predictors

Panel A: Operating profitability, Opp

T log () Opp dRoa Ret? R? Pearson Rank
1 0.022 1.130 1.147 0.116 0.088 0.141 0.169
(1.57) (6.53) (3.44) (6.84) [0.00] [0.00]
2 -0.023 1.514 1.960 0.148 0.102 0.130 0.145
(-1.29) (6.22) (4.95) (8.64) [0.00] [0.00]
Panel B: Change in return on equity, dRoe
T log () Gp dRoe Ret!? R? Pearson Rank
1 0.040 0.739 0.167 0.121 0.083 0.136 0.163
3.11) (6.10) (1.77) (6.97) (0.00) (0.00)
2 0.008 0.863 0.394 0.150 0.093 0.124 0.133
(0.50) (5.46) (3.90) (8.59) [0.00] [0.00]
Panel C: Prior 11-month abnormal returns, Aret!?
T log (¢) Gp dRoa Aret'? R? Pearson Rank
1 0.043 0.523 1.360 0.097 0.074 0.131 0.144
(3.90) (4.92) (4.52) (6.51) [0.00] [0.00]
2 0.015 0.666 1.541 0.117 0.082 0.107 0.111
(1.14) (4.30) (4.63) (6.65) [0.00] [0.00]

I estimate monthly Fama-MacBeth cross-sectional predictive regressions of 7-year-ahead investment-to-assets
changes, d*1/A, where T = 1 and 2, using operating profitability (Opp), changes in return on equity (dRoe), and
prior 11-month abnormal returns (Aret'?) as alternative predictors. At the beginning of each month t, I measure
current operating profitability, Opp, as total revenue (Compustat annual item REVT) minus cost of goods sold (item
COGS), minus selling, general, and administrative expenses (item XSGA), plus research and development
expenditures (item XRD, set to zero if missing), scaled by book assets—all from the most recent fiscal year end at
least four months ago. Changes in return on equity, dRoe, are calculated as Roe minus the four-quarter-
lagged Roe. Roe is defined as income before extraordinary items (Compustat quarterly item IBQ) scaled by one-
quarter-lagged book equity. Quarterly book equity is computed as shareholders’ equity plus balance sheet deferred
taxes and investment tax credit (item TXDITCQ) if available, minus the book value of preferred stock. Depending
on availability, I use stockholders’ equity (item SEQQ), or common equity (item CEQQ) plus the carrying value of
preferred stock (item PSTKQ), or total assets (item ATQ) minus total liabilities (item LTQ), in that order, as
shareholders’ equity. For the book value of preferred stock, I use redemption value (item PSTKRQ) if available,
otherwise the carrying value. I compute dRoe using earnings from the most recent announcement dates (item RDQ)
and, if unavailable, from the fiscal quarter end at least four months ago. To calculate abnormal returns, I use a prior
60-month rolling window (minimum 24 months) to estimate the CAPM regression and measure abnormal returns
as the intercept plus residuals. Prior 11-month abnormal returns, Aret?, are the cumulative abnormal returns from
month t—12 to month t—2. 1T winsorize all variables at the Ist and 99th percentiles of their distributions.
Missing dRoe values are set to zero in the cross-sectional predictive regressions. I report the time-series average
slopes, the t-values adjusted for heteroskedasticity and autocorrelations (in parentheses), and goodness-of-fit
coefficients ( R? ). Additionally, I form out-of-sample forecasts of 7 -year-ahead investment-to-assets
changes, E;.[d*I/A], where T = 1 and 2. At the beginning of each month t, I combine the most recent winsorized
predictors with the average slopes estimated from the prior 120-month rolling window (minimum 30 months). I
report time-series averages of cross-sectional Pearson and rank correlations between E;;[d*1/A] calculated at the
beginning of month t and the realized t-year-ahead investment-to-asset changes. The p-values testing whether a
given correlation is zero are presented in brackets.
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Table 3.8.2 Properties of Alternative Expected Investment Growth Factors Formed with Alternative

Predictors
Panel A: HXZq factor-model regressions of alternative expected investment growth factors, RPP?, RER°¢, and Rfpe™
R a Bkt Bue Broa R?
Rgg 0.34 0.67 -0.33 -0.69 0.30 0.62
(2.01) (3.70) (-5.22) (-8.35) (3.66)
Rg’;’” 0.38 0.68 -0.31 -0.61 0.34 0.62
(2.02) (3.40) (-4.47) (-7.04) (4.96)
Rg&oe 0.36 0.70 -0.33 -0.69 0.32 0.62
(2.05) (3.61) (-5.02) (-7.59) 4.12)
Riret™ 0.32 0.66 -0.34 -0.68 0.33 0.64
(1.75) (3.47) (-4.77) (-7.79) (4.65)
Panel B: Correlations of Rggp, RE8o¢, and Rﬁ;etnwith Ry, and HXZq model factors
REg Ryke Rye RI/A Rroq
Rggp 0.97 -0.56 -0.60 -0.29 0.55
[0.00] [0.00] [0.00] [0.00] [0.00]
Rgfoe 0.99 -0.56 -0.62 -0.29 0.53
[0.00] [0.00] [0.00] [0.00] [0.00]
Rpzet™ 0.95 -0.58 -0.61 -0.27 0.54
[0.00] [0.00] [0.00] [0.00] [0.00]

I form three alternative expected one-year-ahead investment-to-asset changes: E;.[d11/A]_Opp, E;[d*1/A]_dRoe,
and E; [d']/A]_Aret!l, where operating profitability, changes in return on equity, and prior 11-month abnormal

returns are used as alternative predictors in the cross-sectional predictive regressions, respectively. Rggp, Rggoe,
and Rg{get“ are alternative expected investment growth factors formed by interacting the alternative expected one-
year-ahead investment-to-asset changes with size in monthly two-way (2 x 3) sorts. The construction of Rg};p,

Rgo¢, and Rg‘;ef“ is analogous to that of the benchmark expected investment growth factor, Rg,. For each

alternative expected investment growth factor, Panel A reports its average returns (R), alongside alphas, factor
loadings, and R? from the HXZq model. The t-values adjusted for heteroskedasticity and autocorrelations are
presented in parentheses. For reference, the panel also reports for Rg: its average return, alongside alphas, factor

loadings, and R? from the HXZq model. Panel B reports the correlations of Rggp, R{&o¢, and Rg‘;etuwith Rgg and
HXZq model factors.
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Table 3.9.1 Cross-Sectional Forecasts of Future Investment Growth Using Augmented Predictors

Panel A: The first difference of the ratio of after-tax corporate profits to sales, dNis

T log (q) Gp dRoa Ret!! dNis R? Pearson Rank
1 0.051 0.684 1.111 0.115 0.048 0.103 0.141 0.169
(3.74) (6.17) (3.65) (7.14) (2.79) [0.00] [0.00]
2 0.013 0.877 1.778 0.143 0.027 0.106 0.129 0.148
(0.84) (5.92) (4.85) (8.49) (1.74) [0.00] [0.00]
Panel B: The annual growth rate of sales, gSale
T log (q) Gp dRoa Ret!! gSale R? Pearson Rank
1 0.036 0.523 0.876 0.110 -0.154 0.185 0.298 0.292
(3.10) (6.09) (2.96) (7.67) (-10.41) [0.00] [0.00]
2 0.003 0.658 1.462 0.130 -0.202 0.220 0.312 0.298
(0.25) (6.14) (3.95) (9.89) (-14.19) [0.00] [0.00]
Panel C: The current investment-to-asset changes, lag0d! I /A
T log (q) Gp dRoa Ret!? lag2d*1/A R? Pearson Rank
1 0.064 0.507 0.783 0.125 -0.394 0.261 0.437 0.374
(6.54) (5.13) (2.77) (8.47) (-22.19) [0.00] [0.00]
2 0.044 0.457 0.833 0.154 -0.359 0.244 0.378 0.322
(3.22) (4.07) (2.83) (9.92) (-16.10) [0.00] [0.00]
Panel D: The one-year-lagged investment-to-asset changes, lagld* I/A
T log (q) Gp dRoa Ret!? lag2d*1/A R? Pearson Rank
1 0.050 0.554 0.995 0.122 -0.020 0.091 0.135 0.157
(4.01) (5.36) (3.25) (7.65) (-2.08) [0.00] [0.00]
2 0.023 0.507 1.307 0.129 -0.040 0.099 0.098 0.102
(1.57) (3.41) (3.38) (6.58) (-2.96) [0.00] [0.00]

I estimate monthly Fama-MacBeth cross-sectional predictive regressions of T-year-ahead investment-to-asset
changes, d*1/A, where T = 1 and 2, with the augmentation of the first difference of the ratio of after-tax corporate
profits to sales (dNis), the annual growth rate of sales (gSale), and the current or the one-year-lagged investment-
to-asset changes (lag0d* I/A or lag1ld I/A) as predictors. At the beginning of each month t, I measure dNis as
the first difference of the ratio of after-tax corporate profits (Compustat annual item NI) to sales (item SALE) from
the fiscal year end at least four months ago, and gSale as the annual growth rate of sales from the fiscal year end at
least four months ago. I winsorize all variables at the 1st and 99th percentiles of their distributions.
Missing dRoa values are set to zero in the cross-sectional predictive regressions. I report the time-series average
slopes, the t-values adjusted for heteroskedasticity and autocorrelations (in parentheses), and goodness-of-fit
coefficients ( R? ). Additionally, I form out-of-sample forecasts of T -year-ahead investment-to-asset
changes, E;.[d*I/A], where T = 1 and 2. At the beginning of each month t, I combine the most recent winsorized
predictors with the average slopes estimated from the prior 120-month rolling window (minimum 30 months). I
report time-series averages of cross-sectional Pearson and Rank correlations between E;;[d"1/A] calculated at the
beginning of month t and the realized 7-year-ahead investment-to-asset changes. The p-values testing whether a
given correlation is zero are presented in brackets.

122



Table 3.9.2 Properties of Alternative Expected Investment Growth Factors Formed with Augmented
Predictors

Panel A: HXZq factor-model regressions of alternative expected growth factors, REYs, RIS, Ri29°V'!/4 | ang Rla9*'1/4

R a Buke Bue Bija Broa R?
Rg, 0.34 0.67 -0.33 -0.69 -0.01 0.30 0.62
(2.01) (3.70) (-5.22) (-8.35) (-0.06) (3.66)
RgNis 0.44 0.79 -0.36 -0.69 0.06 0.30 0.64
(2.35) (3.77) (-3.94) (-9.80) (0.66) (4.64)
RESee 0.20 0.51 -0.30 -0.66 0.23 0.19 0.57
(1.91) (3.91) (-5.24) (-8.10) (2.66) (2.55)
Rieo04I/A 0.13 0.23 -0.13 -0.31 0.14 0.24 0.31
(1.20) (2.13) (-3.76) (-1.97) (1.26) (3.08)
Rieor /A 0.25 0.65 -0.36 -0.74 0.01 0.35 0.66
(2.01) (3.16) (-4.16) (-9.06) (0.10) (4.08)
Panel B: Correlations of REN™, R3¢, R.9 04%/4 and Ry 1aU/A it Rgg and HXZq model factors
Req Ruge Rie Rija Rroa
RgNis 0.97 -0.59 -0.61 -0.25 0.52
[0.00] [0.00] [0.00] [0.00] [0.00]
Ry 0.93 -0.56 -0.58 -0.14 0.44
[0.00] [0.00] [0.00] [0.02] [0.00]
Ricoraii/A 0.73 -0.36 -0.41 -0.10 0.43
[0.00] [0.00] [0.00] [0.09] [0.00]
Rico2ai/A 0.95 -0.59 -0.63 -0.29 0.55
[0.00] [0.00] [0.00] [0.00] [0.00]

I form four alternative expected one-year-ahead investment-to-asset changes: E;,[d*I/A]_dNis, E;.[d*1/A]_gSale,
E;:[d*1/A] _lag0d*l /A, and E;, [d*]/A]_lag1d*I /A, where the first difference of the ratio of after-tax corporate
profits to sales, the annual growth rate of sales, and the current and the one-year-lagged investment-to-asset changes

. . . .. . . i Sal
are used as augmented predictors in the cross-sectional predictive regressions, respectively. Rgg”s , Rgg”

lagodI/A lag1dtI/A
R; g ,and Ry g
expected one-year-ahead investment-to-asset changes with size in monthly two-way (2 x 3) sorts. The construction

. 1 1
of REY™, Rggale, Ré‘;g 0a71/4 and Ré‘;‘q 147/4 i analogous to that of the benchmark expected investment growth

factor, Rg,. For each alternative expected investment growth factor, Panel A reports its average returns (R),
alongside alphas, factor loadings, and R? from the HXZq model. The t-values adjusted for heteroskedasticity and
autocorrelations are presented in parentheses. For reference, the panel also reports for Rgg: its average return,

alongside alphas, factor loadings, and R? from the HXZq model. Panel B reports the correlations of Ry, Ré’;“le,

1 1
Ré‘;g 041/4 and Rézg YA ith Ry, and HXZq model factors.

>

are alternative expected investment growth factors formed by interacting the alternative
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Table 3.10 Explaining Expected Investment Growth Quintiles with a REIT-Based HMXZq> model

Low 2 3 4 High H-L
Panel A: 7=1(Ja] =0.10 and p = 0.18)

a -0.03 0.24 -0.06 0.00 0.19 0.21
Bae 0.89 0.96 0.99 0.99 0.87 -0.02
Bue 0.00 0.08 -0.04 0.08 -0.15 -0.16
Bi/a 0.44 0.16 0.33 0.11 0.27 -0.17
Broa -0.16 -0.12 0.07 -0.08 -0.27 -0.11
Beg -0.62 -0.30 -0.04 0.17 0.53 1.16

t, -0.21 2.12 -0.65 0.00 1.84 1.74
tyke 23.20 33.93 42.03 42.24 25.04 -0.55
tye 0.04 1.82 -0.63 1.97 -1.88 -1.08
tija 4.11 2.41 3.03 1.52 2.13 -1.12
troa -2.93 -2.77 1.71 -1.88 -4.76 -1.94
teg -9.42 -6.41 -0.63 2.97 6.64 21.39

Panel B: =2 (Ja| =0.10 and p = 0.43)

a -0.04 0.17 -0.04 -0.04 0.19 0.23
Bae 0.94 0.96 0.98 0.97 0.83 -0.11
Bue -0.14 0.17 0.08 0.05 -0.21 -0.07
Bi/a 0.39 0.15 0.29 0.17 0.25 -0.14
Broa -0.01 -0.12 0.01 -0.05 -0.31 -0.30
Beg -0.64 -0.28 -0.01 0.25 0.52 1.16

ty -0.34 1.84 -0.43 -0.34 1.62 2.10
tyke 32.96 40.39 38.53 38.73 28.87 -3.05
tye -0.82 3.61 1.79 0.80 -2.47 -0.33
ti/a 3.05 2.41 2.11 2.65 2.27 -0.77
troa -0.08 -2.45 0.28 -1.15 -5.16 -3.06
teg -8.43 -4.48 -0.11 4.77 6.96 17.76

I form a REIT-based HMXZq> model. In this model, the expected excess return of a REIT is described by its loadings
on the expected premium of five factors: the market factor (Ryy.), the size factor (Ry,), the investment factor (R;/,

), the return on assets factor (Rg,,), and the expected investment growth factor (Rgy); E [RL- — Rf] = BleE[Ryke] +
BI}‘/IeE[RMe] + ,BIL/AE[RI/A] + .B}izan[RRoa] + .Bli‘gE[REg]o where E[RMkt] > E[RMe]o E[RI/A]a E[RRoa] > and E[REg]
are the expected premium of the five factors, respectively, and Si;» Bire, B} /4> BLoq, and ,B,ég are the corresponding
factor loadings. For each expected investment growth quintile, I perform time-series HMXZ g° factor-model
regressions. Appendix 3.1 details the factor construction and the factor model regression specifications. I report the
model alphas and factor loadings. The t-values are adjusted for heteroskedasticity and autocorrelations. |a| represents
the mean absolute alpha for a given set of quintiles, and the p-value is from the GRS test on the null hypothesis that
the alphas across the quintiles are jointly zero.
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Table 3.11 Spanning Tests: HXZq and HMXZq® versus FF5 And FF6

Panel A: Explaining the HXZq and HMXZq® factors

R a Bkt Bsus BumL Bcma Bruw Bump R?
Rye 0.19 -0.04 0.01 0.98 0.09 -0.02 -0.02 0.99
(1.58) (-2.83) (2.57) (62.20) (5.99) (-2.63) (-2.30)
-0.01 0.02 1.03 0.03 -0.01 -0.02 -0.04 0.99
(-0.34) (4.30) (58.37) (2.48) (-1.32) (-1.85) (-4.16)
Rzoa 0.21 0.01 0.06 -0.15 -0.18 -0.05 0.67 0.52
(0.99) (0.07) (1.73) (-1.40) (-1.53) (-0.33) (13.95)
-0.10 0.11 0.08 -0.18 -0.07 0.59 0.21 0.58
(-0.61) (2.25) (1.03) (-1.74) (-0.44) (10.37) (3.04)
Rgg 0.34 0.54 -0.24 -0.60 -0.20 0.03 0.47 0.68
(2.01) (3.90) (-6.28) (-5.99) (-2.12) (0.35) (4.95)
0.36 -0.16 -0.30 -0.18 0.00 0.35 0.34 0.76
(2.75) (-4.28) (-5.33) (-1.86) (0.03) (4.17) (5.59)
Panel B: Explaining the FF5 and FF6 factors
R a Bkt Bue :BI/A Broa ﬁEg R?
Rsype 0.19 0.04 -0.03 0.90 0.01 0.02 0.98
(1.65) (2.62) (-5.29) (45.07) (0.66) (1.48)
0.02 -0.02 0.92 0.01 0.01 0.04 0.98
(0.93) (-4.47) (49.88) (0.73) (0.54) (4.37)
Ryme 0.08 0.06 -0.00 0.12 0.51 -0.22 0.35
(0.54) (0.41) (-0.13) (0.67) (3.74) (-2.81)
0.15 -0.05 0.02 0.51 -0.17 -0.14 0.37
(0.91) (-1.406) (0.09) (3.50) (-2.02) (-1.72)
Reuw 0.30 0.37 -0.20 -0.18 0.12 0.53 0.59
(1.64) (1.83) (-4.32) (-2.27) (1.16) (6.20)
0.17 -0.10 0.02 0.12 0.44 0.29 0.64
(0.90) (-2.46) (0.39) (1.40) (4.94) (3.12)
Rymp 0.22 0.48 -0.27 -0.87 0.17 0.53 0.56
(1.01) (3.07) (-3.75) (-4.09) (0.66) (3.87)
0.05 -0.06 -0.42 0.17 0.34 0.65 0.66
(0.35) (-0.93) (-2.18) (0.82) (2.08) (7.37)

Panel C: GRS statistics and their p-values testing that the alphas of a key set of factors are jointly zero

QRroar Apg = AymL Armws Aump =0
FF5 FF6 HXZq HMXZq5
5.59 3.31 3.87 0.97
[0.00] [0.04] [0.01] [0.41]

In Panel A and B, R is the time-series average factor returns, « is the alpha from factor-model regressions, and R? is
the goodness of fit from the regressions. Ry, Rye» Ryja, and R, are the market, size, investment, and return on
assets factors in the REIT-based Hou-Xue-Zhang g-factor model (HXZq). R, is the expected investment growth
factor in the REIT-based Hou-Mo-Xue-Zhang ¢°> model (HMXZq®). Ryke» Rsmp> Rumr> Remas and Reay are the
market, size, value, investment, and operating profitability factors in the REIT-based Fama-French five-factor model
(FF5). Ryyp is the momentum factor in the REIT-based Fama-French six-factor model (FF6). The t-values
(presented in parentheses) are adjusted for heteroskedasticity and autocorrelations. Panel C reports the statistics and
the corresponding p-values from GRS tests.
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Table 3.12 Spanning Tests: HMXZq°> versus FF5*, FF6*, HXZq*, and HMXZq°*

Panel A: FF5* and FF6* regressions

R a Buxr- ﬁSMB* Bumrr ,BCMA* BRMW* BUMD* R?
Ryt 0.81 0.09 0.79 0.33 0.42 0.11 0.24 0.49
(2.63) (0.43) (6.13) (3.20) (1.72) (0.68) (2.31)
0.12 0.75 0.35 0.36 0.13 0.26 -0.08 0.49
(0.58) (6.59) (3.02) (1.77) (0.89) (2.44)  (-1.09)
Rye 0.19 0.08 0.04 0.41 0.23 -0.09 0.04 0.26
(1.58) (0.70) (0.81) (4.78) (7.50)  (-1.00)  (0.62)
0.16 -0.04 0.46 0.10 -0.04 0.10 -0.21 0.37
(1.35)  (-0.86)  (5.74) (1.54)  (-048)  (L.11)  (-3.54)
Ri/a 0.10 -0.05 0.12 0.21 0.23 0.00 0.08 0.23
0.68)  (-032)  (2.10) (2.25) (1.99) (0.05) (1.17)
-0.06 0.12 0.20 0.23 0.01 0.08 0.01 0.22
(-0.35)  (2.27) (2.08) (2.17) (0.08) (1.12) (0.28)
Rroa 0.21 0.41 -0.31 -0.21 0.03 -0.08 0.19 0.29
(0.99) (2.63)  (-4.18)  (-2.08)  (0.40)  (-0.67)  (1.57)
0.33 -0.23 -0.27 0.16 -0.13 0.14 0.21 0.36
(1.82)  (-3.18)  (2.65)  (1.50)  (-1.13)  (1.18) (3.16)
Rpg 0.34 0.59 -0.28 -0.35 -0.50 0.17 -0.05 0.27
(2.01) (3.08)  (-3.06) (2.67)  (-730)  (1.41)  (-0.46)
0.48 -0.19 -0.40 -0.33 0.10 -0.10 0.27 0.35
(2.02) (-2.39) (-3.20) (-4.61) (0.68) (-0.75) (3.16)
Panel B: HXZq* and HMXZq>* regressions
R a Buker Bue .BI/A* Broe* BEg* R?
Ryke 0.81 0.08 0.80 0.27 0.61 0.05 0.44
(2.63) (0.29) (5.39) (2.54) (2.90) (0.31)
-0.00 0.82 0.28 0.62 0.00 0.13 0.44
(-0.01)  (4.96) (2.64) (3.00) (0.00) (0.73)
Rye 0.19 0.19 -0.02 0.24 0.29 -0.33 0.28
(1.58) (142)  (-028)  (2.64) (2.69)  (-2.42)
0.24 -0.03 0.23 0.29 -0.30 -0.08 0.28
(2.00)  (-0.50)  (2.52) (2.68)  (-1.85)  (-0.68)
Ri/a 0.10 -0.05 0.12 0.14 0.36 -0.06 0.18
0.68)  (-0.30)  (1.83) (1.40) (4.22)  (-0.62)
0.09 0.09 0.11 0.34 0.03 -0.26 0.21
(0.64) (1.49) (1.29) (4.91) (0.35)  (-1.47)
Rroa 0.21 0.23 -0.21 -0.07 -0.14 0.52 0.38
(0.99) (1.20)  (-3.17)  (-1.20)  (-147)  (3.76)
0.13 -0.18 -0.05 -0.13 0.46 0.16 0.38
(0.81)  (-3.08)  (-0.92)  (-1.39)  (2.88) (1.49)
Rpg 0.34 0.51 -0.25 -0.18 -0.49 0.36 0.24
(2.01) (2.66)  (-2.81)  (-1.54)  (-2.78)  (1.85)
0.36 -0.21 -0.15 -0.48 0.27 0.26 0.24
(1.73)  (224)  (-147)  (2.66)  (1.35) (1.64)
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Table 3.12 Continued

Panel C: GRS statistics and their p-values testing that the alphas of a set of factors are jointly zero

Amitr Ames aI/A' Aroa aEg =0 Amitr Ames aI/A' Aroa aEg =0
FF5* FFo* HXZq* HMXZq5*
2.89 2.72 3.21 2.12
[0.02] [0.02] [0.01] [0.06]

In Panel A and B, R is the time-series average factor returns, « is the alpha from factor-model regressions, and R? is
the goodness of fit from the regressions. Ry, Rye> Ri/a> Rroq> and Rgg are the market, size, investment, return on
assets, and expected investment growth factors in the REIT-based Hou-Mo-Xue-Zhang ¢° model
(HMXZq®%). Rykr*> Rsyp*» Rumis» Rema*» and Rpay+ are the market, size, value, investment, and operating
profitability factors in the common stock-based Fama-French five-factor model (FF5*). Ry p* is the momentum
factor in the common stock-based Fama-French six-factor model (FF6*). Ry¢+, Rye*> Ryjar» and Rgoe+ are the
market, size, investment, and return on equity factors in the common stock-based Hou-Xue-Zhang g-factor model
(HXZg*). R4 is the expected investment growth factor in the common stock-based Hou-Mo-Xue-Zhang q° model
(HMXZq®*). The FF5* and FF6* model factors are obtained from Kenneth French’s website, while the HXZq* and
HMXZq>* model factors are sourced from Global-q.org. The t-values (presented in parentheses) are adjusted for
heteroskedasticity and autocorrelations. Panel C reports the statistics and the corresponding p-values from GRS tests.
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Table 3.13 Spanning Tests: FF6 versus FF5*, FF6*, HXZq*, and HMXZq>*

Panel A: FF5* and FF6* regressions

R a .BMKT* ﬁSMB* .BHML* ,BCMA* BRMW* BUMD* R?
Rykt 0.81 0.09 0.79 0.33 0.42 0.11 0.24 0.49
(2.63) (0.43) (6.13) (3.20) (1.72) (0.68) (2.31)
0.12 0.75 0.35 0.36 0.13 0.26 -0.08 0.49
(0.58) (6.59) (3.02) (1.77) (0.89) (2.44)  (-1.09)
Rsuse 0.19 0.10 0.01 0.37 0.18 -0.06 0.05 0.24
(1.65) (0.93) (0.16) (5.20) (5.46)  (-0.78)  (0.75)
0.16 -0.05 0.41 0.07 -0.02 0.09 -0.16 0.32
(149)  (-1.11)  (6.37) (1.25)  (-032)  (1.27)  (-3.69)
Rymi 0.08 0.01 0.14 0.17 0.25 0.02 -0.17 0.20
(0.54) (0.04) (2.57) (1.40) (2.68) (0.13)  (-1.82)
0.04 0.11 0.19 0.20 0.04 -0.15 -0.08 0.21
(0.23) (1.62) (1.39) (2.59) 030)  (-1.34)  (-1.12)
Rema 0.10 -0.05 0.12 0.21 0.23 0.00 0.08 0.23
0.68)  (-032)  (2.10) (2.25) (1.99) (0.05) (1.17)
-0.06 0.12 0.20 0.23 0.01 0.08 0.01 0.22
(-0.35)  (2.27) (2.08) (2.17) (0.08) (1.12) (0.28)
Reuw 0.30 0.41 -0.22 -0.21 -0.18 0.00 0.25 0.27
(1.64) (2.20)  (-2.79)  (2.57)  (-1.98)  (0.00) (3.67)
0.38 -0.19 -0.24 -0.12 -0.02 0.23 0.08 0.28
(2.00)  (-2.63)  (2.46)  (-191)  (-021)  (2.61) (1.06)
Rymp 0.22 0.53 -0.43 -0.24 -0.48 0.16 0.02 0.22
(1.01) (2.62)  (-3.13)  (-1.38)  (4.17)  (0.85) (0.11)
0.28 -0.20 -0.38 -0.09 0.02 -0.12 0.63 0.47
(1.16)  (-1.95)  (-2.49)  (-0.86)  (0.13)  (-0.79)  (3.39)
Panel B: HXZq* and HMXZq>* regressions
R a .BMkt* BMe* .BI/A* .[;Roe* BEg* R?
Ryke 0.81 0.08 0.80 0.27 0.61 0.05 0.44
(2.63) (0.29) (5.39) (2.54) (2.90) (0.31)
-0.00 0.82 0.28 0.62 0.00 0.13 0.44
(-0.01)  (4.96) (2.64) (3.00) (0.00) (0.73)
Rsmze 0.19 0.20 -0.04 0.23 0.24 -0.26 0.25
(1.65) (1.55)  (-0.64)  (2.92) (2.71)  (-2.33)
0.25 -0.05 0.22 0.24 -0.23 -0.08 0.25
(2.06)  (-0.88)  (2.77) (2.78)  (-1.82)  (-0.84)
RymL 0.08 0.06 0.10 0.09 0.23 -0.32 0.20
(0.54) (0.39) (1.60) (0.91) (2.65)  (-2.76)
0.16 0.07 0.07 0.22 -0.26 -0.18 0.21
(0.95) (1.23) (0.67) (2.37)  (-2.00)  (-1.08)
Rema 0.10 -0.05 0.12 0.14 0.36 -0.06 0.18
0.68)  (-0.30)  (1.83) (1.40) (4.22)  (-0.62)
0.09 0.09 0.11 0.34 0.03 -0.26 0.21
(0.64) (1.49) (1.29) (4.91) (0.35)  (-1.47)
Rryw 0.30 0.46 -0.21 -0.23 -0.18 0.23 0.27
(1.64) (2.25)  (-2.82)  (-3.56)  (-141)  (2.25)
0.37 -0.19 -0.22 -0.17 0.18 0.15 0.28
(1.79)  (-240)  (-3.40)  (-131)  (1.37) (1.57)
Rymp 0.22 0.24 -0.29 0.06 -0.52 0.80 0.29
(1.01) (1.01)  (-256)  (0.50)  (-2.15)  (2.52)
0.15 -0.27 0.07 -0.51 0.74 0.16 0.30
(0.73)  (-230)  (0.72)  (2.07) (1.9 (0.53)
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Table 3.13 Continued

Panel C: GRS statistics and their p-values testing that the alphas of a set of factors are jointly zero

Apker Asmper Xumir Xemar Crmws Eump =0 Aner Asmper umir Xemar Crmw s Eump =0
FF5* FF6* HXZq* HMXZq5*
1.90 1.76 2.26 1.60
[0.08] [0.11] [0.04] [0.15]

In Panel A and B, R is the time-series average factor returns, a is the alpha from factor-model regressions, and RZis
the goodness of fit from regressions. Ry, Rsmpe> Rumr> Remas Rruw» and Ryyp are the market, size, value,
investment, operating profitability, and momentum factors in the REIT-based Fama-French six-factor model
(FF6). Rykr*> Rsmp*> Rumirs Remars and Ry« are the market, size, value, investment, and operating profitability
factors in the common stock-based Fama-French five-factor model (FF5*). Ry p* is the momentum factor in the
common stock-based Fama-French six-factor model (FF6*). Ryy.+, Rye*, Ryja%, and Rp,.+ are the market, size,
investment, and return on equity factors in the common stock-based Hou-Xue-Zhang g-factor model (HXZq*). Rg 4+
is the expected investment growth factor in the common stock-based Hou-Mo-Xue-Zhang q> model (HMXZq>*).
The FF5* and FF6* model factors are obtained from Kenneth French’s website, while the HXZq* and
HMXZq>* model factors are sourced from Global-q.org. The t-values (presented in parentheses) are adjusted for
heteroskedasticity and autocorrelations. Panel C reports the statistics and the corresponding p-values from GRS tests.
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Table 3.14 Correlation Matrix

RMkt RMe RI/A RRoa REg RSMB6 RHML RCMA RRMW RUMD RMkt* RMe* RI/A* RRoe* REg* RMKT* RSMBe* RHML* RCMA* RRMW*
Rye 021
(0.00)
Rija 014 039
(0.02)  (0.00)
Rroq -027 -038 -0.23
(0.00)  (0.00) (0.00)
Rpg -0.56  -0.61 -0.28 0.52
(0.00)  (0.00) (0.00) (0.00)
Rempe 0.14 099 038 -034 -0.54
(0.02)  (0.00) (0.00) (0.00) (0.00)
Ryy, 014 037 051  -039 -039 033
(0.01)  (0.00) (0.00) (0.00) (0.00) (0.00)
Rema 0.14 0.39 1.00 -0.23 -0.28 0.38 0.51
(0.02)  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Regyw -049  -040 -0.14  0.69 0.68 -032  -032 -0.14
(0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01)
Rymp -045 -0.60 -0.21 0.56 0.77 -0.51  -023  -0.21 0.52
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Ryt 0.60 0.16 0.23 -0.47  -0.34 0.11 0.29 0.23 -0.40 -0.38
(0.00) (0.01) (0.00) (0.00) (0.00) (0.05) (0.00) (0.00) (0.00) (0.00)
Rye* 0.31 0.40 026 -0.30 -0.29 0.39 0.26 026 -037 -0.20 0.27
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Ry /g 0.06 0.15 0.23 0.08 -0.12  0.15 0.06 0.23 0.01 -0.05 -0.28 -0.01
(0.32)  (0.01) (0.00) (0.20) (0.05) (0.01) (0.33) (0.00) (0.89) (0.41) (0.00) (0.85)
Rgoer -031 -040 -020 0.57 0.37 -036 -040 -020 041 0.49 -0.51  -040 0.20
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Rpg» -033  -033 -0.33 0.49 0.38 -0.30 -037 -0.33 0.41 0.39 -0.54  -0.41 0.12 0.65
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.04) (0.00)

Rygr= 0.60 0.16 0.23 -047 -0.34 0.11 0.29 0.23 -0.40 -0.38 1.00 027 -0.28 -0.51 -0.54
(0.00) (0.01) (0.00) (0.00) (0.00) (0.05) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Rgyper 0.31 0.44 0.28 -0.36  -0.31 0.43 0.31 0.28 -0.38  -024  0.28 097 -0.05 -0.52 -048 0.28
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.42) (0.00) (0.00) (0.00)
Ryyr» 0.29 0.26 0.34 0.08 -032 0.23 0.21 034 -0.07 -022 -0.06 0.08 0.64 0.12 -0.06 -0.06  0.03

(0.00) (0.00) (0.00) (0.19) (0.00) (0.00) (0.00) (0.00) (0.22) (0.00) (0.33) (0.17) (0.00) (0.05) (0.31) (0.33) (0.59)
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Table 3.14 Continued

RMkt RMe RRoa REq RSMB6 RHML RCMA RRMW RUMD RMkt* RMe* RI/A* RRoe* REq* RMKT* RSMBe* RHML* RCMA* RRMW*
Repyar 0.03 0.10 0.12 -0.06 0.11 0.07 0.15 0.04 0.00 -0.31 0.07 0.91 0.19 0.15 -0.31 0.02 0.60
(0.64) (0.10) (0.04) (0.28) (0.07) (0.23) (0.01) (0.49) (1.00) (0.00) (0.25) (0.00) (0.00) (0.01) (0.00) (0.75) (0.00)
Rpyw= -0.10 -0.09 0.38 0.07 -0.08  -0.20 0.02 0.34 0.10 -0.39 -045 0.33 0.71 0.53 -0.39 -0.48 0.41 0.28
(0.10)  (0.11) (0.00) (0.26) (0.16) (0.00) (0.79) (0.00) (0.08) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Rymp+ -033  -0.39 0.36 0.43 -033  -0.26 -0.14 0.24 0.63 -0.33 0.04 -0.06 0.48 0.34 -0.33  -0.03 -0.27 -0.01 0.04
(0.00)  (0.00) (0.00)  (0.00) (0.00) (0.00) (0.02) (0.00) (0.00) (0.00) (0.53) (0.33) (0.00) (0.00) (0.00) (0.59) (0.00) (0.86) (0.47)

Ryie> Rues Rija> Rroq» and Rgg are the market, size, investment, return on assets, and expected investment growth factors in the REIT-based Hou-Mo-Xue-Zhang q° model
(HMXZq®). Ryke» Rsmpes Rumps Remas Rruws and Ry p are the market, size, value, investment, operating profitability, and momentum factors in the REIT-based Fama-French
six-factor model (FF6). Ry¢+, Rye*s Ryjars Rroe*> and Rgg+ are the market, size, investment, return on equity, and expected investment growth factors in the common stock-based
Hou-Mo-Xue-Zhang g° model (HMXZq>*). The data for Ry., Rue*s R;/4%s Rpoe, and R4+ are sourced from Global-q.org. Rykr+, Rsmpe*s Rumis> Remars Rpuw+> and Ryyp+
are the market, size, value, investment, operating profitability, and momentum factors in the common stock-based Fama-French six-factor model (FF6**). The data for Rk,
Rsmpes Rumirs Rema*s Rryw> and Ryyp+ are obtained from Kenneth French’s website. The p-values testing whether a given correlation equals zero are presented in parentheses

beneath the correlations.
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Table 3.15 Properties of Momentum Quintiles

Panel A: Average excess returns, R

Low 2 3 4 High H-L
R 0.32 0.87 0.84 0.93 0.86 0.54
tq 0.60 2.68 2.73 2.75 2.73 1.80
Panel B: The CAPM (Jacappy | = 0.22 and papy = 0.06)
Aenpmt 20.55 0.00 0.09 0.21 0.24 0.78
Bukt 1.07 1.07 0.93 0.88 0.77 -0.31
teapm -2.00 0.02 1.17 3.39 2.39 2.72
tyke 10.77 16.63 32.05 15.42 15.00 -2.78
Panel C: The Fama-French three-factor model (g3 = 0.26 and pgp; = 0.02)
App3 -0.57 -0.08 0.08 0.25 0.30 0.88
Bukt 1.02 1.03 0.92 0.90 0.80 -0.22
Bewps 0.07 0.45 0.07 -0.17 -0.34 -0.41
Bumi 0.63 0.10 0.06 -0.03 -0.07 -0.70
trrs -2.11 -0.54 1.02 3.27 2.83 2.97
tyke 15.36 27.81 36.23 19.22 22.00 -2.76
tsmpa 0.19 2.55 1.03 -3.00 -4.77 -1.10
tymL 2.71 0.94 0.96 -0.89 -0.98 -2.66
Panel D: The Carhart four-factor model (|@cgrnareal =0.16 and prgrnares = 0.12)
Tcarnarea -0.27 0.26 0.10 0.14 0.03 0.31
Bare 0.86 0.88 0.91 0.95 0.92 0.07
Bewna -0.33 -0.05 0.05 -0.06 -0.01 0.32
Bumi 0.58 0.01 0.05 0.01 0.02 -0.56
Bumo -0.40 -0.43 -0.03 0.13 0.35 0.75
tcarharta -0.74 237 1.23 2.13 0.39 0.92
tyke 13.54 24.60 36.86 24.12 36.26 1.07
tomrpa -1.59 -0.69 0.85 -1.03 -0.13 1.36
tymL 2.61 0.17 0.88 0.15 0.34 -2.41
tump -1.42 -12.36 -0.82 5.93 11.62 2.75
Panel E: The Fama-French five-factor model (|agzs]| = 0.19 and pgpe = 0.13)
Arps 20.44 20.01 0.04 0.17 0.29 0.73
Bukt 0.96 1.00 0.94 0.93 0.79 -0.16
Bsmps -0.08 0.42 0.10 -0.18 -0.40 -0.33
Bunis 0.49 -0.04 0.05 -0.04 -0.08 -0.56
Bema 0.26 0.11 0.03 0.16 0.19 -0.07
Brow -0.22 -0.10 0.07 0.12 -0.01 0.21
trrs -1.74 -0.06 0.43 2.21 2.70 2.98
tyke 13.29 35.34 43.78 32.20 25.14 -2.32
tomps 0.22 2.42 1.34 4.13 488 -0.92
timL 2.27 -0.39 0.97 -0.94 115 2.53
tema 0.82 1.20 0.64 224 1.46 2018
truw -0.85 -0.98 1.75 3.28 -0.11 0.82
Panel F: The Fama-French six-factor model (|agpg| = 0.14 and prge = 0.27)
Arre -0.23 0.22 0.06 0.11 0.10 0.33
Bare 0.84 0.89 0.93 0.96 0.89 0.05
Bsuse -0.51 -0.04 0.06 -0.08 -0.06 0.45
BrmL 0.51 -0.04 0.05 -0.03 -0.07 -0.58
Bema 0.27 0.15 0.03 0.16 0.16 -0.11
Brww -0.02 0.06 0.09 0.08 -0.16 -0.13
Bump -0.45 -0.43 -0.04 0.11 0.37 0.82
trre -0.58 1.96 0.65 1.53 1.39 0.92
tyke 8.91 26.62 44.25 31.67 31.74 0.63
tsmee -2.41 -0.47 1.07 -1.55 -0.57 1.75
tomL 2.20 -0.66 0.95 -0.85 -1.05 2.33
tema 1.02 2.20 0.79 2.04 1.60 -0.34
truw -0.12 1.28 1.84 2.69 -2.98 -0.75
tusn -1.88 -12.24 1.24 4.56 12.68 3.68
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Table 3.15 Continued

Panel G: The Hou-Xue-Zhang g-factor model (laHXqu =0.22 and pyxz, = 0.03)

Ayxzq -0.42 0.06 0.10 0.22 0.28 0.70
Brke 0.98 0.99 0.91 0.90 0.80 -0.18
Bue -0.08 0.31 0.05 -0.23 -0.41 -0.33
Bi/a 0.47 0.05 0.06 0.16 0.15 -0.33
Broa -0.41 -0.27 -0.04 0.03 -0.02 0.39
thxzq -1.48 0.48 1.28 2.93 2.68 2.51
tvke 14.99 31.78 38.18 23.27 26.49 -2.35
tye -0.26 2.26 0.74 -3.83 -4.44 -0.94
tia 1.27 0.38 1.36 2.74 1.27 -0.74
troa -1.55 -2.98 -0.99 0.78 -0.20 1.51

Panel H: The Bond-Xue investment-based three-factor model (Jagys| = 0.20 and pgy; = 0.08)

Apxs3 -0.40 0.06 0.10 0.20 0.22 0.63
Bkt 1.02 1.04 0.92 0.88 0.77 -0.26
Bia 0.01 0.15 0.04 0.06 0.04 0.03
Broa_ -0.51 -0.29 -0.06 0.02 0.03 0.54
texs -1.45 0.43 1.31 291 2.13 2.13
tvke 12.44 19.53 35.94 15.74 16.74 -2.80
tia 0.02 1.76 1.41 1.37 0.34 0.07
troa -2.60 -2.78 -1.11 0.54 0.36 2.45

Panel I: The Hou-Mo-Xue-Zhang q° model (|@pyxzqs| = 0.08 and pypxz45 = 0.69)

Aymxzqs -0.07 0.17 0.05 0.08 -0.02 0.05
Bkt 0.81 0.94 0.94 0.97 0.94 0.13
Bue -0.45 0.20 0.10 -0.08 -0.11 0.34
Bi/a 0.47 0.04 0.06 0.16 0.15 -0.32
Broa -0.25 -0.22 -0.06 -0.04 -0.15 0.10
Beg -0.53 -0.16 0.08 0.21 0.44 0.97

tumxzqs -0.29 1.49 0.53 1.13 -0.12 0.22
tvke 11.54 28.55 40.94 33.04 30.23 1.65
tye -1.19 1.25 2.24 -1.34 -1.32 0.90
tia 1.35 0.40 1.30 2.47 1.78 -0.83
troa -0.83 -2.16 -1.77 -1.13 -1.54 0.35
tgg -2.91 -2.32 1.66 6.46 6.68 6.02

Panel J: Average expected t-year-ahead investment-to-asset changes, E[d"1/A]
E[d'1/A] -4.68 -3.77 -2.77 -1.41 1.45 6.13
t -5.80 -4.60 -3.60 -1.83 2.08 9.06
E[d?1/A] -6.59 -5.31 -4.41 -2.65 1.19 7.78
t -5.37 -4.39 -3.48 -2.21 1.03 9.95

At the beginning of each montht, I sort all firms into quintiles based on prior 11-month returns from
month t—12 to t—2, Ret!!, and compute value-weighted quintile excess returns for the current month t, using the
beginning-of-month market equity as the weights. The quintiles are rebalanced at the beginning of month t+1. For
each quintile, I perform time-series REIT-based factor model regressions, including the Capital Asset Pricing Model
(CAPM), the Fama-French three-factor model (FF3), the Carhart four-factor model (Carhart4), the Fama-French five-
factor model (FF5), the Fama-French six-factor model (FF6), the Hou-Xue-Zhang g-factor model (HXZq), the Bond-
Xue investment-based three-factor model (BX3), and the Hou-Mo-Xue-Zhang g° model (HMXZq®). I report the
time-series average of quintile excess returns, alphas and factor loadings from the factor model regressions, as well
as their heteroskedasticity-and-autocorrelation-adjusted t-statistics. || is the mean absolute alpha for a given set of
quintiles, and the p-value from the GRS test on the null hypothesis that the alphas across the quintiles are jointly zero.

Additionally, I report the time-series average of quintile expected t-year-ahead investment-to-asset changes, E[d*1/
A], where =1 and 2.
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Table 3.16 Properties of Standardized Unexpected Earnings Quintiles

Panel A: Average excess returns, R

Low 2 3 4 High H-L
R 0.61 0.61 0.79 0.94 0.90 0.30
tq 1.88 1.88 2.50 3.07 2.83 3.24

Panel B: The CAPM (Jacapy | =0.17 and papy = 0.05)
Acapm -0.22 -0.14 0.06 0.20 0.22 0.44
Bukt 1.02 0.93 0.91 0.92 0.85 -0.17
teapm -2.35 -1.26 0.74 1.96 2.68 3.50
tyke 25.28 2491 28.35 20.17 17.10 -2.15
Panel C: The Fama-French three-factor model (Jazps| = 0.18 and pgpz = 0.01)
Apr3 -0.27 -0.11 0.07 0.21 0.26 0.53
Bukt 1.00 0.94 0.91 0.92 0.87 -0.13
Bsmps 0.26 -0.16 -0.07 -0.07 -0.22 -0.48
Bumi -0.01 0.06 0.03 0.08 -0.03 -0.02
trrs -2.66 -1.06 0.99 1.95 3.42 3.97
tyke 40.00 34.23 34.66 23.02 21.51 241
tsmpa 3.18 -2.48 -1.39 -1.67 -3.69 -4.62
tymL -0.13 0.95 0.63 1.65 -0.72 -0.20
Panel D: The Carhart four-factor model (| &g nareal =0.12 and prgrngrea = 0.11)
Tearnarte -0.09 -0.09 0.03 0.22 0.18 0.27
Bure 0.92 0.92 0.93 0.91 0.90 -0.03
Bewna 0.02 -0.23 -0.01 -0.12 -0.13 -0.15
BumL -0.06 0.08 0.04 0.09 0.02 0.08
Bump -0.22 -0.04 0.04 -0.02 0.10 0.32
tcarnarts 111 -1.02 0.43 2.18 222 1.98
tyke 28.42 31.72 38.46 23.31 29.79 -0.68
tompa 031 .57 -0.15 -2.05 -1.78 -1.95
tumL 113 1.46 0.80 2.17 0.41 1.19
tymp -4.29 -0.75 1.49 -0.60 3.38 5.99
Panel E: The Fama-French five-factor model (|aggs| = 0.14 and pggs = 0.09)
Arps 20.19 20.07 0.09 0.18 0.16 0.35
Bure 0.97 0.92 0.90 0.92 0.91 -0.06
Bemps 0.22 -0.20 0.11 -0.10 021 -0.42
Boms 20.12 0.04 0.02 0.02 0.01 0.13
Bema 0.12 0.08 0.06 0.23 0.09 -0.03
Brww -0.11 -0.09 -0.05 0.04 0.15 0.27
trrs -2.44 -0.88 1.42 1.99 2.25 2.99
tyke 41.83 23.99 36.93 28.68 35.66 -1.78
tsmps 3.09 -2.69 -1.60 -3.01 -3.51 -5.22
tomL -1.74 0.66 0.29 0.36 0.26 1.81
tema 1.23 0.84 0.80 2.55 1.09 -0.25
trarw 2.16 -0.68 -1.51 1.49 3.14 4.88
Panel F: The Fama-French six-factor model (|agpg| = 0.10 and pppq = 0.22)

Urre -0.08 -0.05 0.07 0.19 0.13 0.21
Bar 0.92 0.90 0.91 0.91 0.92 0.00
Bewse 0.00 -0.26 -0.06 -0.15 -0.15 -0.16
BrmL -0.12 0.05 0.02 0.02 0.02 0.14
Bema 0.14 0.08 0.05 0.23 0.08 -0.05
Bruw -0.03 -0.07 -0.06 0.05 0.13 0.17
Bump -0.21 -0.04 0.04 -0.03 0.07 0.28
trre -1.14 -0.64 1.01 2.14 1.70 1.71
tarke 29.75 22.03 39.32 27.35 36.44 0.13
tsmee 0.06 -2.84 -0.87 -3.03 -1.84 -2.06
tomL 2.16 0.95 0.35 0.58 0.41 2.12
tema 1.69 0.86 0.72 2.60 0.90 -0.47
trarw -0.87 -0.55 -1.97 220 281 3.15
tump -3.71 -1.10 1.57 -1.57 2.90 5.30
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Table 3.16 Continued

Panel G: The Hou-Xue-Zhang g-factor model (laHXqu =0.14 and pyxz, = 0.04)

Ayxzq -0.14 -0.05 0.10 0.21 0.20 0.35
Brke 0.96 0.92 0.90 0.91 0.88 -0.08
Bue 0.12 -0.24 -0.13 -0.13 -0.22 -0.35
Bi/a 0.02 0.07 0.05 0.24 0.12 0.10
Broa -0.25 -0.20 -0.11 -0.03 0.09 0.34
thxzq -1.50 -0.55 1.42 2.09 2.47 2.34
tvke 45.05 29.52 35.27 26.75 30.62 -2.30
tme 2.07 -2.61 -1.67 -3.86 -3.78 -5.02
tia 0.15 0.59 0.76 2.87 1.81 0.87
troa -3.99 -1.97 -3.01 -0.88 1.72 3.79

Panel H: The Bond-Xue investment-based three-factor model (|agyz| = 0.15 and pgx5 = 0.11)

Qpx3 -0.17 -0.10 0.09 0.17 0.20 0.37
Bkt 0.99 0.92 0.90 0.91 0.85 -0.14
Bia 0.08 -0.02 -0.03 0.18 0.01 -0.07

Broa_ -0.22 -0.14 -0.10 -0.01 0.05 0.28
texs -1.76 -0.98 1.20 1.84 2.21 2.53
tmkt 28.87 21.73 29.19 23.82 18.85 -1.98
tia 0.75 -0.21 -0.62 2.03 0.10 -0.50
troa -5.24 -1.78 -1.96 -0.47 1.32 4.44

Panel I: The Hou-Mo-Xue-Zhang q° model (|@pyxzqs| = 0.12 and pyypxz45 = 0.28)

Aymxzqs -0.16 -0.14 0.04 0.14 0.09 0.25
Bure 0.97 0.96 0.93 0.94 0.94 -0.04
Bue 0.14 -0.15 -0.06 -0.06 -0.11 -0.25
Bi/a 0.02 0.07 0.05 0.24 0.12 0.11
Broa -0.26 -0.24 -0.14 -0.06 0.04 0.30
Beg 0.03 0.14 0.10 0.10 0.17 0.14

tumxzqs -1.58 -1.73 0.63 1.84 0.98 1.60
tmkt 28.42 41.71 30.83 40.35 30.16 -0.62
tme 1.49 -1.73 -0.60 -1.75 -1.69 -2.07
tija 0.15 0.58 0.80 2.82 1.72 0.92
troa -3.64 -2.29 -3.66 -1.45 0.64 2.55
tgg 0.39 2.96 1.67 1.93 3.35 1.29

Panel J: Average expected t-year-ahead investment-to-asset changes, E[d"1/A]
E[d'1/A] -2.64 -2.26 -2.47 -1.68 -0.91 1.72
t -3.62 -2.77 -3.01 -2.28 -1.30 4.16
E[d?1/A] -5.10 -3.86 -3.83 -2.73 -0.98 4.12
t -4.13 -3.19 -3.04 -2.68 -0.88 6.14

At the beginning of each montht, I sort all firms into quintiles based on the beginning-of-month standardized
unexpected earnings, Sue, and compute value-weighted quintile excess returns for the current month t, using the
beginning-of-month market equity as the weights. The quintiles are rebalanced at the beginning of month t+1. For
each quintile, I perform time-series REIT-based factor model regressions, including the Capital Asset Pricing Model
(CAPM), the Fama-French three-factor model (FF3), the Carhart four-factor model (Carhart4), the Fama-French five-
factor model (FF5), the Fama-French six-factor model (FF6), the Hou-Xue-Zhang g-factor model (HXZq), the Bond-
Xue investment-based three-factor model (BX3), and the Hou-Mo-Xue-Zhang q° model (HMXZq®). I report the
time-series average of quintile excess returns, alphas and factor loadings from the factor model regressions, as well
as their heteroskedasticity-and-autocorrelation-adjusted t-statistics. || is the mean absolute alpha for a given set of
quintiles, and the p-value from the GRS test on the null hypothesis that the alphas across the quintiles are jointly zero.

Additionally, I report the time-series average of quintile expected t-year-ahead investment-to-asset changes, E[d*1/
A], where =1 and 2.
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Table 3.17 Properties of Idiosyncratic Volatility Quintiles

Panel A: Average excess returns, R

Low 2 3 4 High H-L
R 0.88 0.85 0.95 0.70 0.53 -0.34
tq 2.95 2.61 3.15 2.06 0.98 -0.89
Panel B: The CAPM (Jacapy | = 0.22 and papy = 0.03)
Acapm 0.24 0.12 0.18 -0.14 -0.43 -0.68
Bukt 0.78 0.90 0.96 1.04 1.20 0.42
teapm 3.15 1.50 2.58 -1.00 -1.28 -1.93
tyke 14.81 17.02 48.16 27.08 8.00 2.07
Panel C: The Fama-French three-factor model (g3 = 0.28 and pgr; = 0.00)
Apr3 0.29 0.15 0.17 -0.18 -0.60 -0.88
Bue 0.81 0.90 0.95 1.02 1.12 0.31
Bsmps -0.22 -0.13 0.03 0.19 0.84 1.06
Bumi -0.08 0.04 0.11 0.06 0.19 0.27
trrs 343 1.66 2.89 -1.31 -1.70 -2.35
tyke 20.05 22.06 55.85 31.99 10.85 2.25
tsmps -3.00 -1.76 0.72 1.17 2.02 2.19
tumL -1.89 0.79 2.44 0.58 0.73 0.94
Panel D: The Carhart four-factor model (|&¢grnareal = 0.11 and pegrnares = 0.05)
Ccarnarea 0.20 0.09 0.19 20.00 -0.05 20.25
Bare 0.84 0.93 0.94 0.95 0.89 0.05
Bewsa 0.11 -0.06 0.00 -0.08 0.09 0.20
Boms -0.04 0.06 0.11 0.03 0.02 0.07
Bump 0.11 0.07 20.02 -0.21 -0.67 -0.78
tcarharta 226 0.98 2.86 -0.04 -0.20 -0.83
Earie 23.39 30.84 45.56 23.80 10.67 0.49
tomrpa _1.45 “1.52 0.12 -0.56 0.24 0.49
tam -0.95 1.42 2.58 0.29 0.11 0.27
tump 5.00 1.87 -0.73 -5.05 4.92 -5.48
Panel E: The Fama-French five-factor model (|@gzs]| = 0.13 and pgpe = 0.08)
Arprs 0.21 0.08 0.13 -0.16 0.05 -0.16
Bukt 0.84 0.93 0.96 1.02 0.85 0.02
Bemps -0.21 -0.14 0.04 0.17 0.52 0.73
BumL -0.06 0.01 0.10 -0.01 -0.15 -0.09
Bema 0.10 0.18 0.06 0.10 -0.03 -0.13
Brow 0.12 0.10 0.06 -0.02 -1.03 115
trrs 2.89 0.96 2.24 -1.18 0.21 -0.59
tyke 27.35 34.81 56.03 30.98 13.34 0.23
tsmps -2.99 -2.83 0.98 0.99 1.40 1.69
tamL -1.40 0.46 1.79 -0.04 -0.64 -0.37
tema 1.34 2.10 0.95 0.89 -0.17 -0.58
trarw 2.97 291 1.80 -0.27 4.73 -5.67
Panel F: The Fama-French six-factor model (|@pgg|l = 0.15 and pgpe = 0.11)
Arre 0.16 0.06 0.15 -0.04 0.33 0.17
Bar 0.85 0.94 0.95 0.96 0.72 -0.13
Bewse -0.13 -0.10 0.01 -0.08 -0.01 0.12
BrmL -0.05 0.02 0.10 -0.00 -0.15 -0.10
Bema 0.09 0.17 0.06 0.12 0.02 -0.07
Bruw 0.09 0.08 0.07 0.07 -0.84 -0.92
Bump 0.08 0.05 -0.03 -0.23 -0.52 -0.60
trre 2.22 0.63 2.35 -0.36 1.37 0.63
tarke 26.90 41.62 47.03 28.87 8.88 -1.41
tsmee -1.70 -3.19 0.31 -0.49 -0.04 0.31
tumL 1.27 0.64 1.87 -0.02 -0.79 -0.50
tema 1.23 1.96 0.96 1.20 0.08 -0.36
trarw 2.15 227 1.89 0.94 4.77 -5.81
tuin 3.53 1.77 1.5 -3.98 -5.76 -6.31
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Table 3.17 Continued

Panel G: The Hou-Xue-Zhang g-factor model (laHXqu =0.13 and pyx, = 0.00)

Ayxzq 0.25 0.10 0.20 -0.05 -0.06 -0.31
Buke 0.81 0.91 0.94 0.98 0.97 0.16
Bue -0.25 -0.14 -0.00 0.05 0.40 0.64
Bi/a 0.08 0.21 0.11 0.06 -0.31 -0.40
Broa 0.04 0.08 -0.08 -0.27 -1.14 -1.18
thxzq 3.26 1.44 3.07 -0.48 -0.30 -1.40
tvke 20.33 31.48 62.02 33.92 17.24 1.79
tye -2.63 -2.23 -0.08 0.32 1.08 1.43
tia 1.26 2.83 1.99 0.53 -1.51 -1.59
troa 0.69 2.98 -2.20 -4.67 -6.16 -5.51

Panel H: The Bond-Xue investment-based three-factor model (Jagys| = 0.15 and pgy; = 0.02)

Apxs3 0.23 0.09 0.19 -0.08 -0.14 -0.37
Bkt 0.79 0.90 0.94 1.01 1.11 0.32
Bia -0.02 0.12 0.11 0.07 -0.10 -0.08
Broa_ 0.06 0.05 -0.12 -0.26 -0.96 -1.02
texs 2.87 1.15 3.03 -0.60 -0.61 -1.47
tvke 13.52 19.27 66.40 29.61 8.50 1.72
tia -0.54 2.18 2.19 1.35 -0.45 -0.34
troa 0.77 2.07 -2.57 -3.78 -6.22 -5.29

Panel I: The Hou-Mo-Xue-Zhang q° model (|@pyxzqs| = 0.11 and pypxzqs = 0.23)

Aymxzqs 0.12 0.07 0.15 -0.11 -0.10 -0.22
Brke 0.88 0.93 0.96 1.01 0.99 0.12
Bue -0.11 -0.11 0.05 0.10 0.44 0.55
Bi/a 0.09 0.21 0.11 0.06 -0.31 -0.40
Broa -0.02 0.06 -0.10 -0.30 -1.16 -1.14
Beg 0.20 0.05 0.08 0.08 0.07 -0.13

tumxzqs 1.81 0.92 2.07 -0.85 -0.56 -1.00
tvke 31.82 42.95 48.44 31.50 13.13 1.28
tye -1.44 -2.03 2.04 0.77 1.17 1.26
tia 1.48 2.76 2.21 0.52 -1.48 -1.65
troa -0.25 2.15 -3.17 -4.76 -6.30 -5.17
tgg 5.26 1.46 1.68 1.42 0.66 -1.34

Panel J: Average expected t-year-ahead investment-to-asset changes, E[d"1/A]
E[d'1/A] -1.33 -2.35 -2.47 -1.85 -1.90 -0.56
t -1.70 -2.86 -3.06 -2.45 -2.26 -0.53
E[d?1/A] -2.61 -3.78 -3.71 -3.13 -2.74 -0.13
t -2.85 -3.23 -2.82 -2.33 -1.85 -0.10

At the beginning of each montht, I sort all firms into quintiles based on the beginning-of-month idiosyncratic
volatility per REIT-based Fama-French three-factor model, Ivff, and compute value-weighted quintile excess
returns for the current month t, using the beginning-of-month market equity as the weights. The quintiles are
rebalanced at the beginning of month t+1. For each quintile, I perform time-series REIT-based factor model
regressions, including the Capital Asset Pricing Model (CAPM), the Fama-French three-factor model (FF3), the
Carhart four-factor model (Carhart4), the Fama-French five-factor model (FF5), the Fama-French six-factor model
(FF6), the Hou-Xue-Zhang g-factor model (HXZq), the Bond-Xue investment-based three-factor model (BX3), and
the Hou-Mo-Xue-Zhang g5 model (HMXZq?>). I report the time-series average of quintile excess returns, alphas and
factor loadings from the factor model regressions, as well as their heteroskedasticity-and-autocorrelation-adjusted t-

statistics. m is the mean absolute alpha for a given set of quintiles, and the p-value from the GRS test on the null
hypothesis that the alphas across the quintiles are jointly zero. Additionally, I report the time-series average of quintile
expected t-year-ahead investment-to-asset changes, E[d*I/A], where T = 1 and 2.
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Table 3.18 Properties of Share Turnover Quintiles

Low 2 3 4 High H-L
Panel A: Average excess returns, R
R 1.00 0.75 0.97 0.90 0.39 -0.61
tr 3.78 2.61 3.33 2.81 0.79 -2.13
Panel B: The CAPM (Jacappy | = 0.26 and papy = 0.00)
Aenpmt 0.47 0.11 0.25 0.11 20.34 -0.81
Bukt 0.66 0.79 0.89 0.97 0.90 0.24
teapm 4.92 1.40 2.88 1.18 137 -2.89
tyke 9.67 12.75 15.72 66.67 9.94 3.92
Panel C: The Fama-French three-factor model (|agps| = 0.27 and pgp5 = 0.00)
App3 0.50 0.14 0.25 0.11 -0.34 -0.84
Bake 0.67 0.81 0.89 0.97 0.87 0.20
Bsmps -0.16 -0.15 -0.04 0.02 -0.02 0.14
Bumi 0.00 -0.07 0.04 0.06 0.39 0.39
trps 4.86 1.60 2.69 1.24 “1.44 311
tyke 10.83 16.74 18.08 66.35 14.07 3.89
tsmpa -1.83 -1.48 -0.49 0.24 -0.07 0.45
tomL 0.06 -1.30 0.49 1.01 2.00 1.62
Panel D: The Carhart four-factor model (|&¢grnareal =0.24 and pegrngrea = 0.00)
Ccarnarea 0.36 0.06 0.28 0.16 -0.32 20.68
Bare 0.73 0.84 0.88 0.94 0.86 0.12
Bewsa 0.05 -0.04 0.11 -0.07 -0.05 -0.10
BimL 0.03 -0.04 0.05 0.06 0.39 0.36
Bump 0.17 0.10 -0.03 -0.06 -0.03 -0.20
tcarharta 3.99 0.76 3.55 1.87 -0.91 -1.95
Earie 16.31 20.35 20.97 56.57 18.47 1.77
tomrpa 0.76 -0.39 -1.56 -0.85 -0.25 -0.47
tumL 0.59 -0.90 0.76 1.24 2.40 1.91
tymp 4.40 3.25 -0.57 -1.95 -0.13 -1.02
Panel E: The Fama-French five-factor model (|&zgs| = 0.21 and pggps = 0.00)
Arps 0.39 0.05 0.21 0.11 2027 20.66
Bure 0.72 0.84 0.91 0.97 0.84 0.12
Bemps -0.13 -0.13 -0.07 0.00 -0.17 -0.04
BumL 0.05 -0.05 -0.02 0.04 0.25 0.19
Bema 0.04 0.10 021 0.06 0.37 0.33
Brww 0.17 0.15 0.07 0.00 0.12 -0.29
trps 3.32 0.52 3.03 1.39 1,19 2.95
Earie 15.63 2627 27.23 76.90 15.47 2.60
tomps -1.56 -1.62 -0.92 0.03 -0.60 -0.13
tumL 0.87 -0.86 -0.28 0.60 1.58 1.03
tema 0.42 1.36 233 1.00 2.61 2.00
Ernw 2.14 2.77 1.18 0.09 -0.75 -1.95
Panel F: The Fama-French six-factor model (Jagpg| = 0.19 and prre = 0.00)
Arre 0.31 0.01 0.24 0.14 -0.26 -0.57
Bukt 0.75 0.86 0.89 0.95 0.82 0.07
Bewse 0.04 -0.06 -0.14 -0.08 -0.20 -0.24
BrmL 0.05 -0.04 -0.01 0.04 0.26 0.20
Bema 0.02 0.09 0.22 0.07 0.36 0.34
Brww 0.12 0.12 0.09 0.03 -0.10 -0.22
Bump 0.15 0.07 -0.05 -0.07 -0.03 -0.18
trre 2.84 0.11 3.71 1.81 -0.81 -1.89
tyke 18.08 27.25 28.83 51.34 13.63 1.02
tompe 0.50 -0.70 236 -0.80 122 121
tumL 0.88 -0.83 -0.15 0.75 1.72 118
tema 0.28 1.30 2.41 1.13 2.57 2.26
truw 1.75 2.46 1.52 0.69 -0.68 -1.49
tuin 4.63 2.62 -1.40 218 0.16 -0.94
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Table 3.18 Continued

Panel G: The Hou-Xue-Zhang g-factor model (laHXqu =0.24 and pyx, = 0.00)

Ayxzq 0.44 0.12 0.27 0.16 -0.21 -0.64
Brke 0.69 0.81 0.89 0.95 0.83 0.15
Bue -0.12 -0.19 -0.14 -0.06 -0.26 -0.14
Bi/a 0.09 0.09 0.21 0.07 0.47 0.38
Broa 0.11 0.03 -0.05 -0.13 -0.38 -0.49
thxzq 4.41 1.40 3.41 2.17 -0.77 -2.24
tvke 12.20 17.81 21.32 90.18 17.78 2.30
tye -1.38 -1.61 -2.42 -0.93 -1.04 -0.59
tia 0.88 1.99 2.23 1.68 2.24 1.77
troa 1.70 0.61 -1.37 -2.24 -2.27 -3.06

Panel H: The Bond-Xue investment-based three-factor model (Jagys| = 0.23 and pyy; = 0.00)

Apxs3 0.45 0.11 0.24 0.14 -0.22 -0.67
Bkt 0.67 0.79 0.88 0.96 0.85 0.18
Bia -0.01 -0.01 0.11 0.03 0.08 0.09
Broa_ 0.09 -0.00 -0.06 -0.12 -0.45 -0.54
texs 4.75 1.46 3.04 1.91 -0.87 -2.32
tvke 9.78 12.23 17.29 85.93 11.03 3.40
tia -0.17 -0.38 1.73 0.68 0.46 0.44
troa 1.40 -0.09 -1.08 -2.44 -2.91 -2.99

Panel I: The Hou-Mo-Xue-Zhang q° model (|@yyxzqs| = 0.15 and pypxz45 = 0.01)

Aymxzqs 0.23 -0.01 0.22 0.12 -0.18 -0.41
Brke 0.79 0.87 0.91 0.97 0.82 0.03
Bue 0.09 -0.07 -0.09 -0.02 -0.29 -0.38
Bi/a 0.09 0.09 0.21 0.07 0.47 0.38
Broa 0.01 -0.03 -0.07 -0.15 -0.37 -0.39
Beg 0.32 0.18 0.07 0.06 -0.04 -0.35

tumxzqs 2.08 -0.06 3.44 1.58 -0.64 -1.59
tvke 22.37 27.69 29.80 59.83 12.81 0.47
tye 1.08 -0.64 -1.99 -0.28 -1.16 -1.70
tia 1.01 1.94 2.19 1.70 2.26 1.94
troa 0.25 -0.57 -2.15 -2.75 -2.20 -2.67
tgg 6.74 4.03 0.99 1.91 -0.29 -2.90

Panel J: Average expected t-year-ahead investment-to-asset changes, E[d"1/A]
E[d'1/A] -0.79 -1.11 -2.35 -2.54 -2.12 -1.33
t -0.76 -1.59 -3.26 -3.57 -3.21 -1.19
E[d?1/A] -2.36 -2.39 -3.99 -3.66 -2.85 -0.48
t -1.95 -2.40 -3.63 -3.19 -2.16 -0.35

At the beginning of each month t, I sort all firms into quintiles based on the beginning-of-month share turnover, Tur,
and compute value-weighted quintile excess returns for the current month t, using the beginning-of-month market
equity as the weights. The quintiles are rebalanced at the beginning of month t+1. For each quintile, I perform time-
series REIT-based factor model regressions, including the Capital Asset Pricing Model (CAPM), the Fama-French
three-factor model (FF3), the Carhart four-factor model (Carhart4), the Fama-French five-factor model (FF5), the
Fama-French six-factor model (FF6), the Hou-Xue-Zhang g-factor model (HXZq), the Bond-Xue investment-based
three-factor model (BX3), and the Hou-Mo-Xue-Zhang q° model (HMXZg?). I report the time-series average of
quintile excess returns, alphas and factor loadings from the factor model regressions, as well as their
heteroskedasticity-and-autocorrelation-adjusted t-statistics. || is the mean absolute alpha for a given set of quintiles,
and the p-value from the GRS test on the null hypothesis that the alphas across the quintiles are jointly zero.

Additionally, I report the time-series average of quintile expected t-year-ahead investment-to-asset changes, E[d*1/
A], where =1 and 2.
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Table 3.19 Expected Investment Growth and Future Profitability

T Low 2 3 4 High H-L
Panel A: Average t-year-ahead sale growth, g*Sale
1 g*Sale 1.08 1.09 1.25 1.56 2.22 1.14
t 3.97 5.56 6.66 9.04 8.36 2.98
2 g*Sale 1.83 1.70 2.16 2.77 4.92 3.10
t 5.20 6.68 8.98 9.86 7.51 4.45
Panel B: Average t-year-ahead gross profit growth, g*GP
1 g*GP 0.31 0.28 0.41 0.60 1.01 0.70
t 2.00 2.58 4.61 8.25 9.08 3.71
2 g'GP 0.53 0.30 0.77 1.05 2.09 1.55
t 2.99 2.04 6.33 10.34 8.49 6.25

At the beginning of each month t, I sort all firms into quintiles based on the ranked values of the expected t-year-
ahead investment-to-asset changes, E;;[d*I/A], where T = 1 and 2. The quintiles are value-weighted using the end-
of-prior-month market equity as weights and are rebalanced at the beginning of month t+1. I report the time-series
averages of quintile t-year-ahead sales growth and gross profit growth, as well as their heteroskedasticity-and-
autocorrelation-adjusted t-statistics (presented beneath the corresponding estimates). At the beginning of each
month t, I measure current sales as Compustat annual item SALE from the most recent fiscal year end at least four
months ago. The t-year-ahead sales growth, g*Sale, is calculated as the sales from the 7-th fiscal year after the most
recent fiscal year end minus current sales, scaled by average total assets. I measure current gross profit as Compustat
annual item REVT minus item COGS, both from the most recent fiscal year end at least four months ago. The 7-
year-ahead gross profit growth, g*GP, is calculated as gross profit from the 7-th fiscal year after the most recent
fiscal year end minus current gross profit, scaled by average total assets.
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Table 3.20 Expected Investment Growth and Future Leverage

T Low 2 3 4 High
Panel A: t-year-ahead degree of operating leverage, DOL®
0 DOLF 1.23 1.20 1.20 1.13 1.47
(4.64) (6.80) (6.52) (8.05) (5.78)
1 DOLF 1.19 1.14 1.00 1.23 1.57
(5.81) (8.28) (3.99) (8.12) (5.89)
2 DOLF 1.39 1.17 1.25 0.92 0.92
(5.33) (5.90) (6.61) (2.52) (3.73)
Panel B: t-year-ahead degree of financial leverage, DFL®
0 DFLF 0.55 0.59 0.62 0.74 1.02
(2.93) (4.47) (5.27) (4.05) (3.57)
1 DFLF 0.58 0.61 0.91 0.74 1.05
(3.53) (3.29) (4.26) (3.21) (2.90)
2 DFL* 0.69 0.58 0.61 0.79 1.07
(3.81) (2.91) (3.149 (3.28) (2.61)

At the beginning of each month t, I sort all firms into quintiles based on the ranked values of the expected one-year-
ahead investment-to-asset changes, E;.[d'I/A]. The quintiles are rebalanced at the beginning of month t+1. In Panel
A, for each quintile, I run panel firm-month OLS regressions of the annual growth rate of operating income, OIG, on
the contemporanecous annual growth rate of sales, SALEG, both from the t-th year after the beginning of month t:
OIGit412:= Bot+12t T Prt+120SALEG 4151 + €127, Where T=0, 1, and 2. In Panel B, for each quintile, I perform
panel firm-month OLS regressions of the annual growth rate of net income, NIG, on the contemporaneous annual
growth rate of operating income, 0IG, both from the 7-th year after the beginning of month t: NIG;¢y12:= Bo t412: T
B1t+12001Git 4121 + Eip 120, Where =0, 1, and 2. At the beginning of each month t, I measure current sales as
Compustat annual item SALE from the most recent fiscal year end at least four months ago. The annual growth rate
of sales, SALEG, is calculated as the current sales minus sales from one year ago, divided by sales from one year ago.
Current operating income is measured as Compustat annual item EBIT from the most recent fiscal year end at least
four months ago. The annual growth rate of operating income, OIG, is calculated as the current operating income
minus operating income from one year ago, divided by operating income from one year ago. Current net income is
measured as Compustat annual item NI from the most recent fiscal year end at least four months ago. The annual
growth rate of net income, NIG, is calculated as the current net income minus net income from one year ago, divided
by net income from one year ago. Each variable is winsorized at the 1% and 99% levels. Panel A reports the operating
income elasticity to sales, denoted as the degree of operating leverage. Panel B reports the net income elasticity to
operating income, denoted as the degree of financial leverage. The t-statistics (presented in parentheses beneath the
corresponding estimates) are based on robust standard errors clustered at both firm and month levels.
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Table 3.21 Expected Investment Growth and Future Cash-Flow Risk

Panel A Panel B Panel C Panel D
T 1 2 1 2 1 2 1 2
E[d*I/A] 0.051 0.077 0.052 0.078 0.068 0.061 0.063 0.056
(4.37) (4.22) (4.56) (3.85) (7.69) (4.39) (6.35) (3.65)
GDPG 0.049 0.305
(2.09) (8.03)
E[d*I/A] * GDPG 0.865 -0.769
(2.18) (-1.36)
PCEG -0.002 0.199
(-0.15) (5.43)
E[d*I/A] x PCEG 0.707 -0.843
(2.12) (-1.30)
IPG 0.035 0.148
(2.19) (6.52)
E[d*I/A] = IPG 0.279 -0.242
(1.19) (-0.88)
MTSG 0.036 0.186
(1.90) (6.45)
E[d*I/A] x MTSG 0.353 -0.139
(1.32) (-0.41)
R? 0.016 0.040 0.016 0.023 0.016 0.040 0.016 0.038

I perform panel firm-month OLS regressions of future t-year-ahead net income growth, g* NI, where T =1 and 2, on
expected one-year-ahead investment-to-assets change, E[d'1/A], future one-year-ahead economic growth, EG, and
their interaction term.
9 Nligs120= Borsrzr + Brer12eE[A /Al + Bos120EGerrz + Bars12cE[A /Al * EGer1z + €t 412:

At the beginning of each month t, I measure current net income as Compustat annual item NI from the most recent
fiscal year end at least four months ago. The t-year-ahead net income growth, g*NI, is measured as the net income
from the 7-th fiscal year after the most recent fiscal year end minus the current net income, scaled by average total
assets. I use four proxies for economic growth: gross domestic product growth (GDPG), personal consumption
expenditure growth (PCEG), industrial production growth (IPG), and real manufacturing and trade sales growth
(MTSG). I obtain quarterly data on real gross domestic product (GDP), real personal consumption expenditures
(PCE), industrial production: total index (IP), and real manufacturing and trade industries sales (MTS) from the
Federal Reserve Bank of St. Louis website. At the beginning of each month t, I measure GDPG as the GDP from the
most recent quarter end minus the GDP from four quarters ago, divided by the GDP from four quarters ago; PCEG as
the PCE from the most recent quarter end minus the PCE from four quarters ago, divided by the PCE from four
quarters ago; IPG as the IP from the most recent quarter end minus the IP from four quarters ago, divided by the IP
from four quarters ago; MTSG as the MTS from the most recent quarter end minus the MTS from four quarters ago,
divided by the MTS from four quarters ago. All variables are winsorized at the 1% and 99% levels. I report the main
regression coefficients, the t-values based on robust standard errors clustered at the firm level (presented in
parentheses), and goodness-of-fit coefficients (R?).
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Appendices

Appendix 3.1 REIT-Based Factor Model Construction

Standard Factor Models

Let E[R;] denote the expected returns of REIT i, and R the risk-free rate.

The Capital Asset Pricing Model (CAPM) consists of a market factor, Ry

E[Ri - Rf] = :BI{/IktE[RMkt]-

In the Fama and French three-factor model (FF3), the expected excess returns are described by

the loadings of its returns to three factors: a market factor, Ry, a size factor, Rgy g3, and a

value factor, Ry :

E[Rl - Rf] = :BI{/IktE[RMkt] + ﬁSi’MB3E[RSMB3] + ﬁISMLE[RHML]'

The Carhart four-factor model (Carhart4) augments the FF3 with a momentum factor, Ry p:

E[Ri - Rf] = ﬁ]ﬁ/lktE[RMkt] + BévpaE[Rsmpal + BimiE[Rumi] + BimpE[Rump].

The Fama and French five-factor model (FF5) augments the FF3 with an investment factor,

Rcuma, and an operating profitability factor, Rgpy:

E[Ri - Rf] = ﬁ]ﬁ/lktE[RMkt] + BémpsE[Rsups] + BimiE[RumL] + BémaE[Remal +
BimwE [Rryw].

The Fama and French six-factor model (FF6) augments the FF5 with a momentum factor, Ryyp:

E[Ri - Rf] = .BI{/IktE[RMkt] + BémpeE[Rsmpel + BimEIRumL] + BémaE[Remal +
BirwEIRrmw] + BimpE[Rymp]-
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Here, E[Ryk¢], E[Rsmpl, E[RumL], E[Rcmal, E[Rruw], and E[Ryyp] represent the expected
premiums of the market, size, value, investment, operating profitability, and momentum factors,

respectively, and B> Bémps Bimw> Bémas Bimw» and Bhyp the corresponding factor loadings.

The factor construction procedure largely follows Fama and French (2018). The market
factor, Ry, 1S the excess returns on the FTSE NAREIT All Equity REIT Index over the one-
month Treasury bill rate. The value factor, Ry, , is constructed from an independent two-way
(2 % 3) monthly sort on size and book-to-market ratio (B/M).*' At the beginning of each
month t, I use the median size or market equity to split stocks into two groups: small and big,
based on the beginning-of-month size or market equity. Independently, I sort all stocks into
three B/M groups: low, median, and high, based on the lowest 30%, middle 40%, and highest
30% of their ranked B /M values at the beginning of month t. By taking the intersections of
these two sorts, I form six size-B /M portfolios. I calculate value-weighted portfolio returns for
the current month t and rebalance the portfolios at the beginning of month t+1. The value
factor, Ry, is the monthly difference between the simple average returns of the two high
B/M portfolios and the simple average returns of the two low B/M portfolios (high-minus-
low).

t'1, the momentum

From an independent two-way (2 X 3) monthly sort on size and Re
factor, Ryyp, is defined as the monthly difference between the simple average returns of the
two high Ret!! portfolios and the simple average returns of the two low Ret!! portfolios
(high-minus-low). From an independent two-way (2 % 3) monthly sort on size and I /A, the
investment factor, R-p4, 1s defined as the monthly difference between the simple average
returns of the two low I/A portfolios and the simple average returns of the two

high I /A portfolios (low-minus-high). From an independent two-way (2 % 3) monthly sort on
size and Opp, the profitability factor, Rguy, 1S defined as the monthly difference between the

4! The expected T-year-ahead investment-to-asset change quintiles are formed monthly. I adopt the same sorting
frequency in factor construction. Compared to annual sorts, monthly sorts exploit more up-to-date information.
Asness and Frazzini (2013) construct a monthly sorted value factor, which is later included in the six-factor model
of Barillas and Shanken (2018). Hou et al. (2019) reconstruct their q factors using monthly sorts on all three
characteristics, including size and investment. They demonstrate that monthly formed size and investment factors
earn higher premiums compared to the original annual formed size and investment factors. Bond and Xue (2017)
also use monthly s