Accepted Manuscript

Thrombosis and Haemostasis

Discontinuation of anticoagulants and occurrence of bleeding and thromboembolic events in vitamin K antagonist users with a life-limiting disease

Eva Kempers, Chantal Visser, Eric Geijteman, Jamilla Goedegebuur, Johanneke Portielje, Mette Søgaard, Anne Ording, Carline van den Dries, Denise Abbel, GJ Geersing, Sarah Aldridge, Kate Lifford, Ashley Akbari, Sjef van de Leur, Melchior Nierman, Isabelle Mahé, Simon Mooijaart, Sebastian Szmit, Michelle Edwards, Simon Noble, Frederikus A Klok, Qingui Chen, Suzanne C Cannegieter, Marieke J Kruip.

Affiliations below.

DOI: 10.1055/a-2524-5334

Please cite this article as: Kempers E, Visser C, Geijteman E et al. Discontinuation of anticoagulants and occurrence of bleeding and thromboembolic events in vitamin K antagonist users with a life-limiting disease. Thromb Haemost 2025. doi: 10.1055/a-2524-5334

Conflict of Interest: C. Visser received a travel award from the International Society on Thrombosis and Haemostasis (ISTH) for attending the ISTH congress 2024. I. Mahé reports grants from BMS-Pfizer Alliance, paid to her institution, and personal fees from BMS-Pfizer Alliance and Astra-Zeneca, outside the submitted work. S. Szmit has received honoraria for lectures from Bayer, BMS and Pfizer. S.I.R. Noble has received a payment for a lecture at Leo Pharma. F.A. Klok has received research support from Bayer, BMS, BSCI, AstraZeneca, MSD, Leo Pharma, Actelion, Farm-X, The Netherlands Organisation for Health Research and Development, The Dutch Thrombosis Foundation, The Dutch Heart Foundation and the Horizon Europe Program. All support was paid to the Leiden University Medical Center. Q. Chen was supported by the Chinese Government Scholarship (No. 201906380148) for his PhD study at the Leiden University Medical Center between September 2019 and September 2023 and received travel awards from the International Society on Thrombosis and Haemostasis (ISTH) for attending the ISTH congress between 2022-2024. The payments were made to himself. M.J.H.A. Kruip has received speaker fees from Roche paid to her institution. All authors declare that no known competing financial interests or personal relationships could have appeared to influence the work reported in this paper.

This study was supported by United Kingdom Research and Innovation, 10038000,10039823, European Union's Horizon Europe research and innovation, 101057292

Abstract:

Background: Data on risks and benefits of long-term anticoagulants in patients with a life-limiting disease are limited. This cohort study aims to describe (dis)continuation of anticoagulants and incidences of bleeding and thromboembolic events in vitamin K antagonist (VKA) users with a life-limiting disease.

Methods: Data from five Dutch anticoagulation clinics were linked to data from Statistics Netherlands and the Netherlands Cancer registry. Prevalent VKA users diagnosed with a pre-specified life-limiting disease between 01/01/2013 and 31/12/2019 were included and followed until 31/12/2019. Hospitalization data were used to identify bleeding and thromboembolic events. Cumulative incidences of anticoagulant discontinuation were calculated, accounting for death as competing risk, and event rates were determined for both anticoagulant exposed and unexposed person-years (PYs).

Results: Among 18,145 VKA users (median age 81 years, 49% females, median survival time 2.03 years), the most common lifelimiting diseases were heart disease (60.0%), hip fracture (18.1%), and cancer (13.5%). One year after diagnosis, the cumulative incidence of anticoagulant discontinuation was 14.0% (95%CI: 13.5-14.6). Over 80% of patients continued anticoagulant therapy until the last month before death, with median 14 days between discontinuation and death. Event rates per 100 PYs (95%CI) were comparable during anticoagulant use and after discontinuation for bleeding 2.6 (2.4-2.8) versus 2.1 (1.5-2.8); venous thromboembolism 0.2 (0.1-0.2) versus 0.4 (0.2-0.7); and arterial thromboembolism 3.1 (2.9-3.3) versus 3.3 (2.6-4.2). Conclusion: Most VKA users with a life-limiting disease continued anticoagulant treatment during their last phase of life, with

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Corresponding Author:

Dr. Marieke J Kruip, Erasmus University Medical Center, Hematology, dr Molewaterplein 40, 3015GD Rotterdam, Netherlands, m.kruip@erasmusmc.nl

Affiliations:

Eva Kempers, Erasmus MC University Medical Center Rotterdam, Hematology, Rotterdam, Netherlands Chantal Visser, Erasmus Medical Center, Hematology, Rotterdam, Netherlands Eric Geijteman, Erasmus MC Cancer Center, Medical Oncology, Rotterdam, Netherlands [...]

Marieke J Kruip, Erasmus University Medical Center, Hematology, Rotterdam, Netherlands

Discontinuation of anticoagulants and occurrence of bleeding and thromboembolic events in vitamin K antagonist users with a life-limiting disease

Running headline: VKA use in patients with life-limiting diseases

Eva K. Kempers¹, Chantal Visser¹, Eric C. T. Geijteman², Jamilla Goedegebuur^{3,4}, Johanneke E. A. Portielje⁵, Mette Søgaard^{6,7}, Anne Gulbech Ording⁶, Carline van den Dries⁸, Denise Abbel^{3,9,10}, Geert-Jan Geersing⁸, Sarah J. Aldridge¹¹, Kate J. Lifford¹², Ashley Akbari¹¹, Sjef J. C. M. van de Leur¹³, Melchior C. Nierman¹⁴, Isabelle Mahé¹⁵, Simon P. Mooijaart^{9,10}, Sebastian Szmit¹⁶, Michelle Edwards¹⁷, Simon I. R. Noble¹⁷, Frederikus A. Klok³, Qingui Chen⁴, Suzanne C. Cannegieter^{3,4}, Marieke J. H. A. Kruip¹, SERENITY consortium

¹Department of Hematology, Erasmus MC, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands

²Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.

³Department of Medicine - Thrombosis and Haemostasis, Leiden University Medical Center, Leiden, the Netherlands

⁴Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.

⁵Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands.

⁶Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg University Hospital, Denmark

⁷Center for General Practice, Aalborg University, Aalborg, Denmark

⁸Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands

⁹Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands

¹⁰LUMC Center for Medicine for Older People, LUMC, Leiden, the Netherlands

¹¹Population Data Science, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom

¹²Wales Centre for Primary and Emergency Care Research (PRIME Centre Wales), Division of Population Medicine, Cardiff University, Cardiff, United Kingdom

¹³Thrombosis Service, Isala Hospital Zwolle, Zwolle, the Netherlands.

¹⁴Department of Thrombosis and Anticoagulation, Atalmedial Medical Diagnostic Centers, Amsterdam, the Netherlands.

¹⁵Paris Cité University, Assistance Publique des Hôpitaux de Paris, Louis Mourier Hospital, Department of Internal Medicine, INSERM UMR_S1140, Innovations Thérapeutiques en Hémostase, Colombes; F-CRIN INNOVTE Network, France.

¹⁶Department of Cardio-Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland

¹⁷Division of Population Medicine, Marie Curie Palliative Care Research Centre, Cardiff University, Cardiff, Wales, UK.

Corresponding author:

Marieke J. H. A. Kruip, MD PhD

Associate professor Hematology

Department of Hematology, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands.

m.kruip@erasmusmc.nl

orcid.org/0000-0002-0265-4871

Abstract

Background: Data on risks and benefits of long-term anticoagulants in patients with a lifelimiting disease are limited. This cohort study aims to describe (dis)continuation of anticoagulants and incidences of bleeding and thromboembolic events in vitamin K antagonist (VKA) users with a life-limiting disease.

Methods: Data from five Dutch anticoagulation clinics were linked to data from Statistics Netherlands and the Netherlands Cancer registry. Prevalent VKA users diagnosed with a prespecified life-limiting disease between 01/01/2013 and 31/12/2019 were included and followed until 31/12/2019. Bleeding and thromboembolic events were identified by hospitalization data. Cumulative incidences of anticoagulant discontinuation, accounting for death as competing risk, and event rates for both anticoagulant exposed and unexposed person-years (PYs) were determined. **Results:** Among 18,145 VKA users (median age 81 years (IQR: 74-86), 49% females, median survival time 2.03 years (95%CI: 1.97-2.10)), the most common life-limiting diseases were heart disease (60.0%), hip fracture (18.1%), and cancer (13.5%). One year after diagnosis, the cumulative incidence of anticoagulant discontinuation was 14.0% (95%CI: 13.5-14.6). Over 80% of patients continued anticoagulant therapy until the last month before death, with median 14 days between discontinuation and death. Event rates per 100 PYs (95%CI) were comparable during anticoagulant use and after discontinuation for bleeding 2.6 (2.4-2.8) versus 2.1 (1.5-2.8); venous thromboembolism 0.2 (0.1-0.2) versus 0.4 (0.2-0.7); and arterial thromboembolism 3.1 (2.9-3.3) versus 3.3 (2.6-4.2).

Conclusion: Most VKA users with a life-limiting disease continued anticoagulant treatment during their last phase of life, with similar rates of bleeding and thromboembolic events during use and after discontinuation.

Keywords: Anticoagulants, Deprescriptions, Thromboembolism, Hemorrhage, Advance Care Planning

Summary Table

What is known about this topic?

 In patients with a life-limiting disease, use of long-term preventive medications, including anticoagulants, should be reconsidered and drugs should be deprescribed if potential harms outweigh benefits. • The limited amount of data on the risks of anticoagulant associated bleeding and thromboembolism after discontinuing anticoagulants in these patients may create uncertainty for physicians and patients, complicating deprescribing decisions.

What does this paper add?

- This large-scale cohort study examined the current practice patterns of vitamin K antagonist (VKA) and overall anticoagulant treatment use in long-term VKA users with a life-limiting disease and showed that over 80% of patients continued anticoagulant therapy until shortly before death.
- While incidence rates of hospital admission for bleeding and thromboembolic events were comparable during anticoagulant use and after discontinuation, these findings should not be interpreted in a causal way.

Introduction

Anticoagulants are frequently prescribed for various indications. Direct oral anticoagulants (DOACs) are now the first choice for most common indications, such as venous thromboembolism (VTE) and prevention of thromboembolic complications in patients with non-valvular atrial fibrillation (AF)¹⁻³. However, in certain patient groups, including patients with a mechanical heart valve⁴⁻⁶, frail older patients with AF⁷ or patients with antiphospholipid syndrome³, vitamin K antagonists (VKAs) are still preferred over DOACs because of superior efficacy in preventing thromboembolic events and/or a safer bleeding risk profile³.

In patients with a life-limiting disease, the drawbacks of continuing long-term anticoagulants, including frequent international normalized ratio (INR) monitoring during VKA therapy or heparin injections⁸ and an increased risk of clinically relevant bleeding⁹, may outweigh its benefits. For these patients, Advance Care Planning (ACP), which involves

discussions about future care preferences between patients and their healthcare providers¹⁰ and deprescribing drugs when potential harms outweigh benefits¹¹, is now standard care. Yet, uncertainty among prescribing physicians about the outcomes of continuing or discontinuing drugs remains a barrier to deprescribing¹². In the context of anticoagulant treatment, there is a lack of data and consensus on whether or not to continue anticoagulants in patients towards their end of life^{8,13-15}. Patients with advanced life-limiting diseases, such as cancer, chronic kidney disease or chronic obstructive pulmonary disease, face an increased risk of both bleeding and thromboembolic events, and this thromboembolic risk may increase if anticoagulant treatment is discontinued¹⁶⁻²². Furthermore, physicians might be reluctant to deprescribe anticoagulants because of the perceived thromboembolic risk associated with discontinuation¹³.

Most previous studies on anticoagulant use during the last phases of life identified patients at the time of death and retrospectively analyzed their medical history backwards in time^{14,23,24}. This approach can introduce selection bias if anticoagulant use influences survival and precludes the use of time-to-event analyses. Consequently, the use, risks and benefits of anticoagulants remain understudied in patients with life-limiting diseases⁸. Therefore, this large cohort study aims to (1) describe the use and discontinuation of VKAs and anticoagulant treatment overall, and (2) determine incidence rates of hospitalization for bleeding and thromboembolic events in VKA users with a life-limiting disease. This study is part of the "Towards Cancer Patient Empowerment for Optimal Use of Antithrombotic Therapy at the End of Life" (SERENITY) project²⁵.

Methods

Setting and data sources

Our cohort study used data from five large Dutch anticoagulation clinics, linked on an individual-level to data from Statistics Netherlands and the Netherlands Cancer Registry (NCR). Anticoagulation clinics monitor the VKA therapy of patients living in well-defined geographical areas in the Netherlands and provide detailed data on VKA treatment, including start and end dates of VKA therapy, treatment indications, and international normalized ratio (INR) measurements²⁶. Data from these clinics were linked to data from Statistics Netherlands by sex, date of birth, postal code, and last known date to be alive. Statistics Netherlands provides nationwide data on personal characteristics²⁷, diagnoses made during hospital admissions in Dutch hospitals²⁸⁻³¹, cause of death³², and date of death³³. Diagnoses in the Dutch Hospital Data (DHD) registry are coded according to the International Classification of Diseases (ICD) (ICD-9 for diagnoses made from 2010 to 2012, and ICD-10 thereafter). Additionally, data on outpatient medication prescriptions covered by the Dutch statutory basic medical insurance were also obtained from Statistics Netherlands³⁴. These data included the year of prescription and Anatomical Therapeutic Chemical (ATC) code. For anticoagulants specifically, more detailed prescription data were available, including dispending date and type of anticoagulant (i.e., VKA, DOAC or heparin group). However, data on medications received in hospitals and nursing homes were not available.

Data from the NCR were linked to Statistics Netherlands by sex, date of birth, and postal code. The NCR data are provided by the Netherlands Comprehensive Cancer Organization and comprises individual-level data on newly diagnosed cancer patients in the Netherlands³⁵. This registry includes information on cancer diagnosis, tumor stage according to the TNM-classification³⁶, and whether a patient had received surgery, systemic chemotherapy and/or radiotherapy immediately after their index diagnosis. All data were anonymized, and each individual was assigned a unique identification code by Statistics Netherlands. A detailed description of the data sources is provided in *Supplemental Methods*.

6

The source population compromised VKA users who were treated at one of the participating anticoagulation clinics between 2013-2019. From this population, we included VKA users who were hospitalized with a pre-specified life-limiting disease or who received a severe cancer diagnosis. Life-limiting diseases were defined according to the definition of a severe medical condition by Kelley et al.: "a diagnosis that carries an increased risk of mortality, hospitalization and emergency room visits"³⁷. To identify a cohort of patients with limited life expectancy, we restricted to diseases with median survival times of 2-4 years, which were predefined based on nationwide Dutch data. The following non-cancer diseases, derived from Statistics Netherlands data, were included: liver disease, dementia, heart disease, lung disease, diabetes mellitus with complications, and hip fracture (in patients >70 years of age) (*Table S1-2*). Data on cancer diagnoses and severity were derived from the NCR. Similar to non-cancer diseases, we restricted to cancer types with a median survival time of 3 years or less at time of diagnosis. These included all stages of pancreatic, brain and hepatobiliary cancer and primary tumor unknown; stage III and IV cervical, bladder, ovarian, lung, esophageal and gastric cancer and neuro-endocrine tumors (NETs); and stage IV of endometrial, breast and colorectal cancer (Table S3-4). The index date was defined as the date of first hospitalization with a life-limiting disease or the date of the first severe cancer diagnosis during the study period, whichever came first. VKA users were defined as patients with two registered INR measurements in the six months preceding the index date, with at least one in the three months preceding the index date. Patients who did not meet this definition on their index date were not classified as a VKA user and therefore excluded. Patients were followed until the end of the study period (31st December 2019) or their date of death, whichever occurred first.

Baseline characteristics

Information on age, sex, immigration background, and standardized household income was collected at index date. Discharge codes from the DHD registry were used to collect information on comorbidities diagnosed within the 3 years before the index date (Table S5). We also collected data on outpatient prescriptions of steroids, antidepressants, antacids, antihypertensive, lipid lowering, anti-inflammatory, and antiplatelet drugs, and the presence of polypharmacy in the calendar year of the index date (*Table S6*). To account for changes within pharmacological subgroups, polypharmacy was defined as ≥5 registered prescriptions of different drug types at the therapeutic level (2nd) of the ATC classification³⁸ based on all dispensed outpatient drugs in the calendar year of the index date.

Exposure to VKAs and other anticoagulants

Exposure to VKAs during follow-up was primarily derived from INR records and the start and end dates of VKA therapy, as registered by anticoagulation clinics. Continuous VKA exposure was defined as subsequent INR measurements ≤ 8 weeks apart, consistent with guidelines used by Dutch anticoagulation clinics³⁹. To account for switching to non-VKA anticoagulants or transfers to non-participating anticoagulation clinics, we used data on dispensed prescriptions for VKAs, DOACs, and Low-Molecular-Weight Heparins (LMWHs) from 2012 to 2020 from Statistics Netherlands. This allowed us to examine VKA and anticoagulant exposure after the registered VKA end dates from the anticoagulation clinics. Both VKA and anticoagulant exposure were modelled by constructing treatment periods of person-time exposed according to dispensed prescriptions, considering only prescriptions after the VKA end dates recorded by anticoagulation clinics. Construction of treatment periods for the different anticoagulant types is illustrated in *Figure S1-2* and described in the

Supplemental Methods. Anticoagulant treatment periods could consist of VKA, DOAC or LMWH therapy.

Study outcomes

For the first objective, the study outcomes were discontinuation of VKAs and discontinuation of anticoagulant treatment overall. To address this, the last VKA and anticoagulant treatment periods for each patient were identified. Patients were considered to have discontinued VKAs and/or anticoagulants if the end date of their last treatment period occurred before their end of follow-up (date of death or 31st December 2019, whichever occurred first). In addition, we calculated the proportion of days covered (PDC) with anticoagulants for each patient, defined as the ratio of days treated with anticoagulants following the index date to the total number of follow-up days.

For the second objective, the study outcomes were hospital admissions for major and non-major clinically relevant bleeding, VTE, and arterial thromboembolism (ATE), including stroke and transient ischemic attacks (TIA), myocardial infarction, and other ATE. These outcomes were identified from the DHD registry and restricted to primary or main diagnoses during hospitalization (*Supplemental Methods & Table S7*). For each outcome, separately, patients were followed until first event of interest, death, or end of follow-up, whichever occurred first, regardless of anticoagulant treatment.

Statistical analyses

For descriptive analyses, continuous variables were presented as mean ± standard deviation (SD) or median and interquartile range (IQR). Categorical variables were presented as numbers with percentages. Survival curves and median survival time were estimated by the Kaplan-Meier estimator, and median follow-up time was calculated by the reverse Kaplan-Meier⁴⁰. For the first objective, the cumulative incidences of VKA and anticoagulant

discontinuation were calculated with death as a competing risk, based on the Fine & Gray method⁴¹. We also estimated crude incidence rates of VKA and anticoagulant discontinuation as events per 100 person-years (PYs) with corresponding 95% confidence intervals (95%CI). Additionally, for patients who died during follow-up, we described the use of anticoagulants during the last period of life. For this analysis, we categorized patients into subgroups according to their available follow-up time from index date to the date of death: at least 365 days, 180-364 days, and 90-179 days. Point estimates with corresponding 95%CI for the proportion of patients exposed to anticoagulants were calculated for different time points in the period before death, ranging from 1 week to 1 year before death.

Similarly, for the second objective, cumulative incidences of first bleeding and thromboembolic events, separately, were calculated with death as competing risk. In addition, incidence rates per 100 PYs of first bleeding and thromboembolic events were estimated stratified by anticoagulant exposure. Observation time was categorized as anticoagulant exposed and unexposed, and events were assigned to the relevant exposure stratum at the time of the event. All analyses were stratified by cancer versus non-cancer disease. Statistical analyses were performed in SPSS® Statistics (IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.) and R 4.4.0⁴². R packages used are listed in the *Supplemental Methods*.

Sensitivity analyses

To examine the impact of our assumptions about treatment duration, we performed several sensitivity analyses when constructing treatment periods for both VKAs and anticoagulants based on dispensed prescriptions (*Supplemental Methods*). To examine possible time-related bias due to misclassification of anticoagulant exposure and/or outcome, the period exposed to

anticoagulants was extended by seven days when calculating incidence rates of bleeding and thromboembolic events stratified by anticoagulant exposure.

Ethics approval

The study received approval from the Science Committee of the department of Clinical Epidemiology at Leiden University Medical Center with a waiver for participant consent due to the use of pre-existing, de-identified data (#A0178).

Results

Baseline characteristics

Between 2013 and 2019, 18145 VKA users had a hospital admission for a life-limiting disease or received a severe cancer diagnosis (*Figure 1*). At index date, the median age of the cohort was 81 years (IQR 74-86), 49% was female, and 86% was native Dutch (*Table 1 & Table S8*). In addition, 45% had one or more comorbidities, and almost all patients (94.6%) fulfilled our definition of polypharmacy. The most common life-limiting diseases were heart disease (60.0%), hip fracture (18.1%), and cancer (13.5%). AF or other arrhythmias were the most common indication for VKA therapy (78.7%), with other indications including cardiomyopathy (5.8%), VTE (5.6%), and mechanical heart valves (5.3%). Among patients with cancer, the most common cancer type was lung (39.1%), followed by pancreatic (11.6%) and colorectal (10.8%) cancer (*Table 1 & Table S9*).

Follow-up and all-cause mortality

The overall median follow-up time (IQR) was 3.59 years (1.95-5.22), with 3.41 years (2.06-5.07) in patients with cancer and 3.60 years (1.95-5.22) in patients with non-cancer diseases (*Table S10*). During follow-up, 10,948 patients died, with an overall median survival time

(95%CI) of 2.03 years (1.97-2.10) (*Figure S3A*). Patients with cancer had shorter survival time than patients with non-cancer diseases (0.35 years (0.32-0.38) and 2.50 years (2.43-2.59), respectively) (*Figure S3B*).

According to INR records from the anticoagulation clinics, 5893 (32.5%) patients had at least one registered VKA end date during follow-up, and 382 (2.1%) patients interrupted their VKA treatment with a median duration of treatment interruption of 231 days (IQR 161-475). Despite having a VKA end date registered by the anticoagulation clinics, 10.9% of all VKA treatment periods (N=18560) indicated that patients continued to be exposed to anticoagulants after their VKA end date according to dispensing data from Statistics Netherlands. Specifically, 0.7% of patients (N=129) interrupted their VKA therapy according to INR records, whereas these patients continued to be exposed to anticoagulants according to dispensed prescriptions.

VKA and anticoagulation discontinuation

At 3 months after index date, the cumulative incidence (95%CI) of VKA discontinuation was 12.0% (11.5-12.5), which increased to 28.1% (27.4-28.8) at 3 years of follow-up (*Table 2*). Some patients switched to other types of anticoagulants, as illustrated by the lower cumulative incidence of overall anticoagulant treatment discontinuation, which ranged from 8.6% (8.2-9.0) at 3 months to 21.7% (21.1-22.4) at 3 years. The VKA and anticoagulant discontinuation rates per 100 PYs (95%CI) were 17.9 (17.4-18.4) and 12.9 (12.5-13.3), respectively. Throughout follow-up, the incidence of discontinuing both VKAs and overall anticoagulant treatment was higher in patients with cancer compared with non-cancer diseases (*Figure 2*), with an anticoagulant discontinuation rate per 100 PYs (95%CI) of 42.6 (39.7-45.7) in patients with cancer versus 11.0 (10.6-11.4) in patients with non-cancer diseases (*Table 2 & Table S11*). The overall mean PDC (SD) with anticoagulants was 91.8%

(22.2), with 88.0% of patients classified as adherent to anticoagulants defined by a PDC>80% (*Table S12*).

Anticoagulant use during the last phase of life

On their date of death, 69.2% of patients were still exposed to anticoagulants according to the constructed anticoagulant treatment periods. Among patients with a follow-up time of at least 365 days, the proportion exposed to anticoagulants (95%CI) decreased from 92.1% (91.2-92.8) at 1 year before death to 83.8% (82.7-84.9) at 1 month, and 76.8% (75.5-78.0) at 1 week before death (*Figure 3*). The median time gap between the constructed end of anticoagulant treatment and death among patients who discontinued anticoagulants before death (N=3372) was 14 days (IQR 4-63) (*Figure S5*).

Incidence of bleeding and thromboembolic events

Point estimates of the incidence rate per 100 PYs (95%CI) of hospital admission for major or clinically relevant bleeding were slightly higher during anticoagulant use than after discontinuation: 2.6 (2.4-2.8) versus 2.1 (1.5-2.8) (*Table 3*). Conversely for thromboembolic event-related hospital admissions, point estimates of the incidence rates were slightly lower during anticoagulant exposed than unexposed person-time, with rates of 0.2 (0.1-0.2) versus 0.4 (0.2-0.7) for VTE, and 3.1 (2.9-3.3) versus 3.3 (2.6-4.2) for the composite of ATE, respectively. Event rates were slightly higher in patients with cancer, but remained comparable regardless of anticoagulant use (*Table 4*). One year after index, the cumulative incidences (95%CI), irrespective of anticoagulant exposure, were 2.4% (2.1-2.6) for bleeding, 0.2% (0.1-0.3) for VTE, and 2.9% (2.6-3.1) for ATE (*Table 3*). Patients with cancer had a higher incidence of VTE, whereas patients with non-cancer diseases had a higher incidence of ATE (*Table 4 & Figure 4*).

Sensitivity analyses

Changing the construction of treatment periods based on anticoagulant prescriptions did not affect the observed rates of VKA or anticoagulant treatment discontinuation nor rates of bleeding or thromboembolic events stratified by anticoagulant exposure (*Table S13-15*). Event rates were also comparable to our main analysis after extending the anticoagulant exposed period by seven days (*Table S14*).

Discussion

Our large cohort study described the use and discontinuation of both VKAs and anticoagulant treatment overall and the incidence of bleeding and thromboembolic events in VKA users with a life-limiting disease. A key finding was the large proportion of prevalent VKA users who continued anticoagulant therapy during their last phase of life, with 69% remaining exposed to anticoagulants until death, and more than 80% continuing therapy until shortly before death. The observed VKA and anticoagulation discontinuation rates were relatively low at 17.9 for VKAs and 12.9 per 100 PYs for anticoagulants overall. Nevertheless, the incidence rates of hospital admission for bleeding and thromboembolic events were comparable during anticoagulant use and after discontinuation. Discontinuation was more frequent in patients with cancer than in patients with non-cancer diseases, both for VKA and anticoagulant treatment overall. This difference may relate to the worse prognosis of cancer patients in our cohort, as illustrated by their median survival time of 0.35 years. Additionally, the bleeding risk associated with anticoagulant treatment may be higher in cancer than non-cancer patients⁴³, leading physicians or patients to consider discontinuation sooner. Furthermore, the life expectancy in patients with cancer may be more predictable than that of patients with other life-limiting diseases⁴⁴, although the introduction

of immunotherapy and targeted therapy may have changed this dynamic over the last decade⁴⁵. More frequent discontinuation of VKAs in cancer patients may also reflect clinical guidelines recommending LMWH or DOACs for treatment of cancer-associated thrombosis⁴⁶.

Our observation that a substantial proportion of VKA users continued anticoagulant therapy aligns with previous studies on anticoagulant use in patients with a life-limiting disease^{15,24,47,48}. A chart review conducted in the Netherlands also demonstrated that anticoagulants were frequently continued until the last week(s) before death. Discontinuation of anticoagulation primarily occurred in response to a bleeding event, difficulty swallowing pills, or upon patient's request¹⁴. Several complex, interacting factors may hinder deprescribing of anticoagulants during the last phase of life. One factor is prescribing inertia, defined as "the failure to act despite awareness that prescribing is potentially *inappropriate*^{"12,49}. Prescribing inertia may arise from physicians', patients', or other stakeholders' fear of unknown or negative consequences of deprescribing¹². Furthermore, the belief that the decision to continue or cease medication is the responsibility of another party (e.g. another prescriber, healthcare professional, or the patient) can also contribute to prescribing inertia^{11,12}. Other barriers to deprescribing are the lack of awareness among prescribers and lack of evidence regarding the appropriateness of continuing anticoagulant use¹² and external factors, such as time constraints during patient encounters and guidelines that focus on prescribing rather than deprescribing^{11,12}.

Previous studies also observed comparable rates of hospital admissions and emergency department visits for thromboembolic and bleeding events during anticoagulant exposure and after discontinuation⁵⁰. In patients with AF and active cancer, bleeding rates per 100 PYs (95%CI) were 7.2 (5.7–8.9) during anticoagulant treatment and 6.7 (2.1–16) after discontinuation and rates of thromboembolic complications were 5.4 (4.1–6.9) and 6.8 (2.2– 16), respectively⁵¹. Among older (>65 years of age) recipients of home palliative care, incidence rates per 100 PYs (95%CI) were 12.7 (11.8-13.7) and 10.4 (8.7-12.3) for bleeding and 4.9 (4.3-5.5) and 5.2 (4.1-6.6) for thrombotic events during anticoagulant treatment versus after discontinuation, respectively¹⁵. In our study, the comparable event rates could be partly attributed to confounding by indication (i.e., the decision to continue or discontinue anticoagulants is likely influenced by the estimated risk of both bleeding and thromboembolism of the individual patient) and restricting to first events only. Therefore, these findings should not be interpreted in a causal way.

The magnitude of the event rates per 100 PYs in our cohort of VKA users with a lifelimiting disease were comparable to those reported among the general population of VKA users in the Netherlands from 2013 to 2019, ranging between 1.3 to 3.0 for major bleeding and 0.75 to 0.85 for the composite of thromboembolic events⁵². As these events were based on interviews regularly performed during visits at the anticoagulation clinic and information provided by hospitals rather than hospital admissions only, event rates in patients with a lifelimiting disease are likely higher than in the general population of VKA users. Furthermore, we observed higher event rates than those reported among newly diagnosed non-valvular AF patients treated with VKAs between 2010 and 2015: 1.27 major bleeding (95%CI 1.07-1.52) and 1.13 stroke and systemic embolism (95%CI 1.07-1.52) per 100 PYs⁵³. Another study performed in a cohort of VKA users treated between 2009 and 2012 at an anticoagulation clinic in Groningen, the Netherlands, reported event rates stratified by age-groups among patients aged 70 years or older⁵⁴. Importantly, events were identified by computerized records from the clinic itself, complemented by information from general practitioners. The reported rates of clinically relevant non-major and major bleeding per 100 PYs were 14.8 in patients aged 70 to 79 years, 16.7 in patients aged 80 to 89 years, and 18.1 in patients 90 years or older⁵⁴. For the composite of thrombotic events these were 0.8, 1.5, and 1.8, respectively⁵⁴.

The differences in event rates compared to our cohort may be attributed to the underlying risks of bleeding and thromboembolism in the population studied and differences in recording and identification of outcome events.

Strengths of our study include the large cohort of patients with limited life expectancy and different life-limiting diseases. In addition, we included both phenprocoumon and acenocoumarol users. Contrary to most other countries where warfarin is the most frequent VKA type, phenprocoumon and acenocoumarol are primarily used in the Netherlands⁵⁵.

Despite these strengths, several limitations of our study should be considered. First, misclassification and measurement error are inherent to the use of routinely-collected healthcare data, especially for patients in the last phase of life who may not always be referred to a hospital. Moreover, we only had access to hospital admission data and lacked information on diagnoses made in outpatient settings, such as in nursing homes, hospices, and by general practitioners. Hence, our estimates likely underestimate the true event rate in this patient population. However, it should be noted that the DHD registry includes information on emergency room visits over four hours.

Second, we cannot entirely rule out the possibility of misclassification in the assessment of VKA, anticoagulant exposure, and treatment discontinuation. Although we limited misclassification by directly obtaining data on VKA treatment from anticoagulation clinics, not all Dutch anticoagulation clinics participated, and we lacked data on VKA treatment during hospital stay and in nursing homes. Additionally, anticoagulation clinics do not provide longitudinal data on anticoagulant exposure after switching to non-VKA anticoagulant therapies, such as DOACs or LMWHs. To further minimize misclassification, we used data on outpatient anticoagulant prescriptions to construct anticoagulant treatment periods over time after the registered VKA end date from the anticoagulation clinics.

prescriptions, requiring us to make assumptions about treatment duration. Furthermore, we were unable to distinguish therapeutic from prophylactic LMWH prescriptions. Reassuringly, our sensitivity analyses assessing these assumptions had little impact on our results.

Finally, we lacked information on whether patients received palliative care. An approach to study patients in their last phase of life would be to start follow-up when patients start receiving palliative care or are declared terminally ill⁴⁸. Nevertheless, the validity and suitability of this method also depends on a homogenous definition of a palliative care patient⁵⁶ and the remaining follow-up time after being identified as such. Instead, we used a proxy by selecting patients with pre-specified life-limiting diseases and cancer types with a median survival of 3 years or less. This approach avoided selecting patients based on a future event (i.e., death), thereby decreasing the likelihood of selection bias in our study. However, presumably not all patients in our cohort truly had a life-limiting disease, at least not in its final stages.

Conclusion

In conclusion, the majority of VKA users with life-limiting diseases continued anticoagulant therapy during their last phase of life. Among those who discontinued anticoagulant therapy, discontinuation typically occurred only shortly before death, and incidence rates of hospital admission for bleeding and thromboembolic events were similar during anticoagulant use and after discontinuation. Our findings indicate that actively deprescribing anticoagulants is uncommon. Further research is warranted to examine the risks and benefits of continuing versus discontinuing anticoagulants in patients with life-limiting diseases. Moreover, healthcare providers need evidence-based tools to support the process of shared decision-making about the use of anticoagulants during the last phase of life with patients and their

caregivers. The SERENITY consortium is working towards developing and evaluating a shared decision-making support tool for this decision²⁵.

Conflict-of-interest Disclosure

C. Visser received a travel award from the International Society on Thrombosis and Haemostasis (ISTH) for attending the ISTH congress 2024. I. Mahé reports grants from BMS-Pfizer Alliance, paid to her institution, and personal fees from BMS-Pfizer Alliance and Astra-Zeneca, outside the submitted work. S. Szmit has received honoraria for lectures from Bayer, BMS and Pfizer. S.I.R. Noble has received a payment for a lecture at Leo Pharma. F.A. Klok has received research support from Bayer, BMS, BSCI, AstraZeneca, MSD, Leo Pharma, Actelion, Farm-X, The Netherlands Organisation for Health Research and Development, The Dutch Thrombosis Foundation, The Dutch Heart Foundation and the Horizon Europe Program. All support was paid to the Leiden University Medical Center. Q. Chen was supported by the Chinese Government Scholarship (No. 201906380148) for his PhD study at the Leiden University Medical Center between September 2019 and September 2023 and received travel awards from the International Society on Thrombosis and Haemostasis (ISTH) for attending the ISTH congress between 2022-2024. The payments were made to himself. M.J.H.A. Kruip has received speaker fees from Roche paid to her institution. All authors declare that no known competing financial interests or personal relationships could have appeared to influence the work reported in this paper.

Author contributions

EKK, CV, ECTG, JG, QC, MJHAK and SCC designed the study. EKK and CV had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. EKK and CV performed all data analyses. EKK drafted the

initial version of the manuscript. CV, ECTG, JG, JEAP, MS, AGO, CD, DA, GG, SJA, KJL, AA, SJCML, MCN, IM, SPM, SS, ME, SIRN, FAK, QC, SCC and MJHAK contributed to the interpretation of the data and critically revised the manuscript. All authors approved the final version of the manuscript.

Data availability Statement

This study used non-public microdata from Statistics Netherlands and the Netherlands Cancer Registry from by the Netherlands Comprehensive Cancer Organization. These data cannot be shared directly by the authors. Under certain conditions, these data are accessible for statistical and scientific research. For additional information: microdata@cbs.nl and/or gegevensaanvraag@iknl.nl.

Acknowledgements and Funding

The authors thank the federation of Dutch anticoagulation clinics, the Netherlands Comprehensive Cancer Organization and Statistics Netherlands for making the data available. The study is part of the research project SERENITY – "Towards Cancer Patient Empowerment for Optimal Use of Antithrombotic Therapy at the End of Life"

(https://serenity-research.eu/). This project has received funding from the European Union's Horizon Europe research and innovation action under grant agreement No 101057292. Additionally, United Kingdom Research and Innovation (UKRI) has provided funding under the United Kingdom government's Horizon Europe funding guarantee [grant agreement No 10039823 for Cardiff University and 10038000 for Hull York Medical School]. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or The European Health and Digital Executive Agency. Neither the European Union nor the granting authority.

Ethics Approval Statement

The study received approval from the Science Committee of the department of Clinical

Epidemiology at Leiden University Medical Center with a waiver for participant consent due

to the use of pre-existing, de-identified data (#A0178). This study was performed on behalf of

the SERENITY consortium²⁵.

References

1. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. *Eur Heart J*. Feb 1 2021;42(5):373-498.

2. Ortel TL, Neumann I, Ageno W, et al. American Society of Hematology 2020 guidelines for management of venous thromboembolism: treatment of deep vein thrombosis and pulmonary embolism. *Blood Adv.* Oct 13 2020;4(19):4693-4738.

3. Bejjani A, Khairani CD, Assi A, et al. When Direct Oral Anticoagulants Should Not Be Standard Treatment: JACC State-of-the-Art Review. *J Am Coll Cardiol*. Jan 23 2024;83(3):444-465.

4. Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. *Circulation*. Feb 2 2021;143(5):e72-e227.

5. Eikelboom JW, Connolly SJ, Brueckmann M, et al. Dabigatran versus warfarin in patients with mechanical heart valves. *N Engl J Med*. Sep 26 2013;369(13):1206-14.

6. Tracy YW, Lars GS, Jun W, et al. Apixaban or Warfarin in Patients with an On-X Mechanical Aortic Valve. *NEJM Evidence*. 2023;2(7):EVIDoa2300067. doi:doi:10.1056/EVIDoa2300067

7. Joosten LPT, van Doorn S, van de Ven PM, et al. Safety of Switching from a Vitamin K Antagonist to a Non-Vitamin K Antagonist Oral Anticoagulant in Frail Older Patients with Atrial Fibrillation: Results of the FRAIL-AF Randomized Controlled Trial. *Circulation*. Aug 27 2023;

8. Huisman BAA, Geijteman ECT, Kolf N, et al. Physicians' Opinions on Anticoagulant Therapy in Patients with a Limited Life Expectancy. *Semin Thromb Hemost*. Sep 2021;47(6):735-744.

9. O'Leary J, Pawasauskas J, Brothers T. Adverse Drug Reactions in Palliative Care. *J Pain Palliat Care Pharmacother*. Jun-Sep 2018;32(2-3):98-105.

10. National Institute for Health and Care Excellence. End of life care for adults: service delivery NICE guideline [NG142]. Accessed Jan 12, 2024.

https://www.nice.org.uk/guidance/ng142

11. Scott IA, Hilmer SN, Reeve E, et al. Reducing inappropriate polypharmacy: the process of deprescribing. *JAMA Intern Med.* May 2015;175(5):827-34.

12. Anderson K, Stowasser D, Freeman C, Scott I. Prescriber barriers and enablers to minimising potentially inappropriate medications in adults: a systematic review and thematic synthesis. *BMJ Open*. Dec 8 2014;4(12):e006544.

13. Raby J, Bradley V, Sabharwal N. Anticoagulation for patients with mechanical heart valves at the end of life: understanding clinician attitudes and improving decision making. *BMC Palliat Care*. Jul 16 2021;20(1):113.

14. Huisman BAA, Geijteman ECT, Arevalo JJ, et al. Use of antithrombotics at the end of life: an in-depth chart review study. *BMC Palliat Care*. Jul 16 2021;20(1):110.

15. Chin-Yee N, Gomes T, Tanuseputro P, Talarico R, Laupacis A. Anticoagulant use and associated outcomes in older patients receiving home palliative care: a retrospective cohort study. *Cmaj.* Sep 12 2022;194(35):E1198-E1208.

16. Tardy B, Picard S, Guirimand F, et al. Bleeding risk of terminally ill patients hospitalized in palliative care units: the RHESO study. *J Thromb Haemost*. Mar 2017;15(3):420-428.

17. White C, Noble SIR, Watson M, et al. Prevalence, symptom burden, and natural history of deep vein thrombosis in people with advanced cancer in specialist palliative care units (HIDDen): a prospective longitudinal observational study. *Lancet Haematol*. Feb 2019;6(2):e79-e88.

18. Ording AG, Skjøth F, Søgaard M, et al. Increasing Incidence and Declining Mortality After Cancer-Associated Venous Thromboembolism: A Nationwide Cohort Study. *Am J Med*. Jul 2021;134(7):868-876 e5.

19. Ording AG, Nielsen PB, Skjøth F, et al. Risk of recurrent cancer-associated venous thromboembolism: A Danish nationwide cohort study. *Int J Cardiol*. Nov 1 2023;390:131271.

20. Tillie-Leblond I, Marquette CH, Perez T, et al. Pulmonary embolism in patients with unexplained exacerbation of chronic obstructive pulmonary disease: prevalence and risk factors. *Ann Intern Med*. Mar 21 2006;144(6):390-6.

21. Vázquez E, Sánchez-Perales C, García-Cortes MJ, et al. Ought dialysis patients with atrial fibrillation be treated with oral anticoagulants? *Int J Cardiol*. Feb 2003;87(2-3):135-9; discussion 139-41.

22. Chin-Yee N, Tanuseputro P, Carrier M, Noble S. Thromboembolic disease in palliative and end-of-life care: A narrative review. *Thromb Res.* Mar 2019;175:84-89.

23. Ham L, Geijteman ECT, Aarts MJ, et al. Use of potentially inappropriate medication in older patients with lung cancer at the end of life. *J Geriatr Oncol*. Jan 2022;13(1):53-59.

24. Ouellet GM, Fried TR, Gilstrap LG, et al. Anticoagulant Use for Atrial Fibrillation Among Persons With Advanced Dementia at the End of Life. *JAMA Intern Med.* Aug 1 2021;181(8):1121-1123.

25. Goedegebuur J, Abbel D, Accassat S, et al. Towards optimal use of antithrombotic therapy of people with cancer at the end of life: A research protocol for the development and

implementation of the SERENITY shared decision support tool. *Thromb Res.* Aug 2023;228:54-60.

26. Toorop MMA, Chen Q, Kruip M, et al. Switching from vitamin K antagonists to direct oral anticoagulants in non-valvular atrial fibrillation patients: Does low time in therapeutic range affect persistence? *J Thromb Haemost*. Feb 2022;20(2):339-352.

27. *Persoonskenmerken van alle in de Gemeentelijke Basis Administratie (GBA) ingeschreven personen, gecoördineerd.* Version V1. ODISSEI Portal; 2021. https://doi.org/10.57934/0b01e4108071ba40

28. Diagnosen behorend bij ziekenhuisopnamen Landelijke Basisregistratie Ziekenhuiszorg. Version V1. ODISSEI Portal; 2019.

https://doi.org/10.57934/0b01e410805d9385

29. Ziekenhuisopnamen Landelijke Basisregistratie Ziekenhuiszorg. Version V1. ODISSEI Portal; 2019. https://doi.org/10.57934/0b01e410805d96a7

30. *Ziekenhuisopnamen voor RA-gebruik*. Version V1. ODISSEI Portal; 2012. https://doi.org/10.57934/0b01e4108030bccb

31. *Diagnosen behorend bij ziekenhuisopnamen voor RA-gebruik*. Version V1. ODISSEI Portal; 2012. https://doi.org/10.57934/0b01e4108030be8c

32. Doodsoorzaken van personen die bij overlijden inwoners waren van Nederland. Version V1. ODISSEI Portal; 2013. https://doi.org/10.57934/0b01e410802359a7

33. Datum van overlijden van personen die ingeschreven staan in de Gemeentelijke Basisadministratie (GBA). Version V1. ODISSEI Portal; 2018.

https://doi.org/10.57934/0b01e410803b37dc

34. *Verstrekkingen van geneesmiddelen op 4 posities ATC-code aan personen*. Version V1. ODISSEI Portal; 2020. https://doi.org/10.57934/0b01e41080757f4a

35. Netherlands Comprehensive Cancer Organisation (IKNL). Netherlands Cancer Registry (NCR). Updated 23 Oct 2023. Accessed 17 June, 2024. https://iknl.nl/en/ncr
36. Brierley JD, Gospodarowicz MK, Wittekind C. *TNM Classification of Malignant Tumours, 8th Edition*. Wiley-Blackwell; 2016:272.

37. Kelley AS, Ferreira KB, Bollens-Lund E, Mather H, Hanson LC, Ritchie CS. Identifying Older Adults With Serious Illness: Transitioning From ICD-9 to ICD-10. *J Pain Symptom Manage*. Jun 2019;57(6):1137-1142.

38. Woudstra OI, Kuijpers JM, Meijboom FJ, et al. High burden of drug therapy in adult congenital heart disease: polypharmacy as marker of morbidity and mortality. *Eur Heart J Cardiovasc Pharmacother*. Oct 1 2019;5(4):216-225.

39. Commissie Standaardisering Medisch Handelen van de Federatie van Nederlandse Trombosediensten. De kunst van het doseren. Federatie van Nederlandse Trombosediensten. Accessed May 27, 2024.

https://s3.eu-central-1.amazonaws.com/storage.topsite.nl/fnt.nl/uploads/docs/De-kunst-van-het-doseren/FNT_KvhD_juli-2023.pdf

40. Schemper M, Smith TL. A note on quantifying follow-up in studies of failure time. *Control Clin Trials*. Aug 1996;17(4):343-6.

41. Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing Risk. doi: 10.1080/01621459.1999.10474144. *Journal of the American Statistical Association*. 1999/06/01 1999;94(446):496-509. doi:10.1080/01621459.1999.10474144

42. *R: A language and environment for statistical computing*. R Foundation for Statistical Computing; 2023. https://www.r-project.org/

43. Angelini DE, Radivoyevitch T, McCrae KR, Khorana AA. Bleeding incidence and risk factors among cancer patients treated with anticoagulation. *Am J Hematol*. Jul 2019;94(7):780-785.

44. Murray SA, Kendall M, Boyd K, Sheikh A. Illness trajectories and palliative care. *Bmj*. Apr 30 2005;330(7498):1007-11.

45. Geijteman ECT, Kuip EJM, Oskam J, Lees D, Bruera E. Illness trajectories of incurable solid cancers. *Bmj*. Mar 1 2024;384:e076625.

46. Falanga A, Ay C, Di Nisio M, et al. Venous thromboembolism in cancer patients: ESMO Clinical Practice Guideline. *Ann Oncol*. May 2023;34(5):452-467.

47. Chen Q, Baek J, Goldberg R, Tjia J, Lapane K, Alcusky M. Discontinuation of oral anticoagulant use among nursing home residents with atrial fibrillation before hospice enrollment. *J Am Geriatr Soc*. Oct 2023;71(10):3071-3085.

48. Søgaard M, Ørskov M, Jensen M, et al. Use of antithrombotic therapy and the risk of cardiovascular outcomes and bleeding in cancer patients at the end of life: a Danish nationwide cohort study. *J Thromb Haemost*. Oct 10 2024;

49. Morin L, Todd A, Barclay S, Wastesson JW, Fastbom J, Johnell K. Preventive drugs in the last year of life of older adults with cancer: Is there room for deprescribing? *Cancer*. Jul 1 2019;125(13):2309-2317.

50. Polesello S, Georgescu S, Malagón T, Bouchard S. Evaluation of the Use of Anticoagulotherapy in Cancer Patients in Palliative Care Residence. *Palliat Med Rep*. 2023;4(1):41-48.

51. Chu G, Seelig J, Cannegieter SC, et al. Thromboembolic and bleeding complications during interruptions and after discontinuation of anticoagulant treatment in patients with atrial fibrillation and active cancer: A daily practice evaluation. *Thromb Res.* Oct 2023;230:98-104.

52. Van't Land RP, Banga JD, van den Besselaar A. Therapeutic quality control in a regional thrombosis center: The effect of changing the target intensity of anticoagulation with vitamin K antagonists. *Thromb Res.* Jul 2021;203:85-89.

53. Haas S, Ten Cate H, Accetta G, et al. Quality of Vitamin K Antagonist Control and 1-Year Outcomes in Patients with Atrial Fibrillation: A Global Perspective from the GARFIELD-AF Registry. *PLoS One*. 2016;11(10):e0164076.

54. Kooistra HA, Calf AH, Piersma-Wichers M, et al. Risk of Bleeding and Thrombosis in Patients 70 Years or Older Using Vitamin K Antagonists. *JAMA Intern Med*. Aug 1 2016;176(8):1176-83.

55. Federatie van Nederlandse Trombosediensten. Algemeen en medisch jaarverslag Accessed 14 Mar, 2024.

https://s3.eu-central-1.amazonaws.com/storage.topsite.nl/fnt.nl/uploads/docs/jaarverslagen/ Algemeen%20en%20Medisch%20JV%202022%20WEB,%20definitief.pdf

56. Mitchell H, Noble S, Finlay I, Nelson A. Defining the palliative care patient: its challenges and implications for service delivery. *BMJ Support Palliat Care*. Mar 2013;3(1):46-52.

57. Sobin LH, Gospodarowicz MK, Wittekind C, International Union against Cancer. *TNM classification of malignant tumours 7th ed.* 7th ed. 2009. ed. Wiley-Blackwell; 2009:310.

Figure 1. Flowchart of cohort selection

This figure presents the flowchart for the selection of the study cohort. A life limiting disease

was defined according to the definition of a severe medical condition by Kelly et al. as "a

diagnosis that carries an increased risk of mortality, hospitalization and emergency room

visits"³⁷. Abbreviations: INR = international normalized ratio; VKA = vitamin K antagonist. Created in BioRender. Kruip, M. (2024) https://BioRender.com/e31d202

Figure 2. Cumulative incidences of VKA and anticoagulant treatment discontinuation stratified by cancer versus non-cancer diseases

This figure illustrates the cumulative incidences of vitamin K antagonist (A) and anticoagulant (B) treatment discontinuation, stratified by whether patients had a cancer or non-cancer life-limiting disease, and accounting for the competing risk of death. The number of events at 5 years is masked according to privacy policy of Statistics Netherlands. Abbreviations: AC = anticoagulation; VKA = vitamin K antagonist.

Figure 3. Percentage of patients exposed to anticoagulants before death

This figure displays the percentage of patients exposed to anticoagulants, along with corresponding 95% confidence intervals, at different time points before death. The analysis was stratified according to the amount of follow-up time between index date and date of death, and was restricted to patients who died during follow-up.

Figure 4. Cumulative incidences of bleeding and thromboembolic events stratified by cancer versus non-cancer diseases

This figure shows the cumulative incidences of first bleeding and thromboembolic events accounting for the competing risk of death. Venous thromboembolism included pulmonary embolism, deep vein thrombosis, cerebral sinus thrombosis, portal vein thrombosis and other types of venous thromboembolism. Arterial thromboembolism included ischemic stroke, transient ischemic attack, myocardial infarction, and other types of arterial thromboembolism.

Total	Cancer	Non-cancer
(N=18145)	(N=2457)	(N=15688)

Table 1. Baseline characteristics

Demographics			
Female sex, No. (%)	8841 (48.7)	893 (36.3)	7948 (50.7)
Age at index date, median [Q1, Q3],	81.0 [74.0,	77.0 [70.0,	81.0 [74.0,
years	86.0]	82.0]	87.0]
Immigration background ^a , No. (%)			
Dutch background	15649 (86.2)	2199 (89.5)	13450 (85.7)
First-generation migration background	1781 (9.8)	159 (6.5)	1622 (10.3)
Second-generation migration	715 (3.9)	99 (4.0)	616 (3.9)
background			``
Year of diagnosis, No. (%)			
2013	2264 (12.5)	276 (11.2)	1988 (12.7)
2014	2596 (14.3)	362 (14.7)	2234 (14.2)
2015	2739 (15.1)	366 (14.9)	2373 (15.1)
2016	2738 (15.1)	362 (14.7)	2376 (15.1)
2017	2977 (16.4)	408 (16.6)	2569 (16.4)
2018	2536 (14.0)	345 (14.0)	2191 (14.0)
2019	2295 (12.6)	338 (13.8)	1957 (12.5)
Type of life-limiting disease ^b , No. (%)			100/ (1210)
Cancer	2457 (13.5)	2457 (100)	0 (0)
ILD	107 (0.6)	0(0)	107(0.7)
Liver disease	164 (0.9)	0(0)	164(10)
COPD	547 (3.0)	0(0)	547 (3 5)
Dementia	387 (2.1)	0(0)	387(25)
Diabetes mellitus (complicated)	327 (1.8)	$\frac{0}{0}(0)$	327(2.0)
Hip fracture	3277 (18.1)		327(2.1)
Heart disease	10879 (60.0)	0(0)	10879 (69 3)
Type of cancer No. (%)	10075 (00.0)	0(0)	10075 (05.5)
Fsonhagus	165 (0.9)	165 (6 7)	NA
Stomach	104 (0.6)	103(0.7) 104(42)	NA
Colorectal	265 (1.5)	265 (10.8)	NΔ
Hepatobiliary	170 (0.9)	170 (6 9)	NA
Dancreas	284 (1.6)	284 (11.6)	NΔ
Bronchus and lung	204(1.0)	204(11.0)	NA
Broast	49 (0 3)	<u> </u>	
	52(0.3)	$\frac{43(2.0)}{52(2.2)}$	
Other female genital organs	33(0.3)	$\frac{33(2.2)}{29(1.1)}$	
Dinddor	20(0.2)	20(1.1)	NA
Brain	115(0.0)	$\frac{115(4.7)}{66(2.7)}$	
	10 (0.4)	$\frac{00(2.7)}{10(0.7)}$	
Unknown primary or multiple tumors	10(0.1)	10(0.7)	
TNM Staged No. (9()	182 (1.0)	182 (7.4)	NA
TINM Stage', No. (%)	70 (0 4)	70 (2.9)	ΝΙΔ
	$\frac{70(0.4)}{64(0.4)}$	70 (2.0)	
	54(0.4)	04(2.0)	
	5/2(3.1)	$\frac{5/2}{1202}$	
	1382 (/.6)	1382 (56.2)	
	<u>31 (0.2)</u>	$\frac{31(1.3)}{220(12.0)}$	
	338 (1.9)	338 (13.8)	INA
Registered indications for VKA			

therapy ^e , No. (%)			
Mechanical heart valve	960 (5.3)	101 (4.1)	859 (5.5)
Biological valve and other heart	381 (2.1)	33 (1.3)	348 (2.2)
surgery			
Atrial fibrillation and other	14282 (78.7)	1757 (71.5)	12525 (79.8)
arrhythmias			
Decompensation cordis and valvular	371 (2.0)	22 (0.9)	349 (2.2)
disease			
Cardiomyopathy	1054 (5.8)	81 (3.3)	973 (6.2)
Cerebral vascular disease	296 (1.6)	31 (1.3)	265 (1.7)
Arterial embolism	181 (1.0)	32 (1.3)	149 (0.9)
Peripheral arterial disease	156 (0.9)	24 (1.0)	132 (0.8)
Coronary syndrome and interventions	439 (2.4)	60 (2.4)	379 (2.4)
Vascular surgery	400 (2.2)	93 (3.8)	307 (2.0)
VTE	1024 (5.6)	304 (12.4)	720 (4.6)
Other	187 (1.0)	30 (1.2)	157 (1.0)
INR target range, No. (%)			
2.0-3.0	2606 (14.4)	325 (13.2)	2281 (14.5)
2.5-3.5	11929 (65.7)	1578 (64.2)	10351 (66.0)
3.0-4.0	2136 (11.8)	250 (10.2)	1886 (12.0)
Other	117 (0.6)	17 (0.7)	100 (0.6)
Unknown	1357 (7.5)	287 (11.7)	1070 (6.8)
Type of VKA, No. (%)			
Acenocoumarol	13871 (76.4)	1769 (72.0)	12102 (77.1)
Phenprocoumon	4269 (23.5)	688 (28.0)	3581 (22.8)
\geq 1 comorbidity present at index date ^f ,	8195 (45.2)	956 (38.9)	7239 (46.1)
No. (%)			
Medication use at index date ^g , No. (%)			
Antiplatelet drugs	2853 (15.7)	261 (10.6)	2592 (16.5)
Antihypertensives	16964 (93.5)	2178 (88.6)	14786 (94.3)
Anti-inflammatory (non-steroidal)	1748 (9.6)	388 (15.8)	1360 (8.7)
Anti-depressants	2405 (13.3)	312 (12.7)	2093 (13.3)
Lipid-lowering	9828 (54.2)	1345 (54.7)	8483 (54.1)
Steroids	5244 (28.9)	1077 (43.8)	4167 (26.6)
Antacids	11572 (63.8)	1531 (62.3)	10041 (64.0)
Polypharmacy ^h	17168 (94.6)	2353 (95.8)	14815 (94.4)
Polypharmacy ⁱ	16802 (92.6)	2305 (93.8)	14497 (92.4)
(excluding antithrombotic agents)			
Unknown	467 (2.6)	27 (1.1)	440 (2.8)

COPD: Chronic Obstructive Pulmonary Disease; ILD: Interstitial Lung Disease; INR: International Normalized Ratio; IQR: Interquartile range; TNM: tumor, nodes and metastases; VKA; Vitamin K antagonist; VTE: Venous Thromboembolic Event.

^aImmigration data were collected from Statistics Netherlands. Dutch background is defined as having both parents born in the Netherlands. First-generation migration background is defined as being born abroad with at least one parent who was born abroad; second-generation migration background is defined as being born in the Netherlands with at least one parent who was born abroad.

^bA life-limiting disease was defined according to the definition of a severe medical condition by Kelley et al. as "a diagnosis that carries an increased risk of mortality, hospitalization and

emergency room visits"³⁷. These diseases were identified by ICD-10 codes of diagnoses registered as either main or primary diagnosis of the hospital admission or registered cancer diagnosis by the Netherlands Cancer Registry. Patients were classified according to the first type of life-limiting disease that occurred during the study period.

^cOther cancer types included (neuro-endocrine) tumors located in the small intestine, peritoneum, or retroperitoneum.

^dTNM stage was based on the 7th edition⁵⁷ of the tumor-node-metastasis cancer staging system for index dates between 2013 and 2016 and the 8th edition³⁶ of the tumor-node-metastasis cancer staging system for index dates between 2017 and 2019.

^eAll treatment indications for vitamin K antagonist treatment that have been registered until the date of data export and were identified from the Dutch anticoagulation clinics. One or more indications can be present.

^fComorbidities were identified by examining data on hospitalizations within 3 years before the index date using ICD-10 codes and ICD-9 codes restricting to main or primary diagnosis of hospital admission. One or more comorbidities can be present. The following comorbidities were identified: autoimmune disease or immune deficiency, thyroid disease, COPD, asthma or other chronic lung disease, major and clinically relevant bleeding, venous thromboembolism, arterial thromboembolism, stroke, myocardial infarction, anemia, coagulopathy, heart failure, valvular heart disease, atrial fibrillation, atherosclerosis, peripheral arterial disease, diabetes mellitus, hypertension, kidney, and liver disease.

^gMedication use at index date was identified by examining outpatient medication prescriptions covered by the Basic Dutch Health Insurance based on ATC codes in the calendar year of the index date.

^hPolypharmacy was defined as \geq 5 different drug types in the calendar year of the index date, at the therapeutic (2nd) level of the ATC classification.

ⁱPolypharmacy was defined as \geq 5 different drug types in the calendar year of the index date, at the therapeutic (2nd) level of the ATC classification, excluding the therapeutic class antithrombotic agents (B01).

	VKA discontinuation			ation	Anticoagulation discontinuation			
	IR / 100 PY (95% CI)	6- month Cumula tive incidenc e % (95%CI)	1-year Cumula tive incidenc e % (95%CI)	3-year Cumula tive incidenc e % (95%CI)	IR / 100 PY (95% CI)	6- month Cumula tive incidenc e % (95%CI)	1-year Cumula tive incidenc e % (95%CI)	3-year Cumula tive incidenc e % (95%CI)
Total	17.9	15.0	18.7	28.1	12.9	10.9	14.0	21.7
	(17.4-	(14.5-	(18.1-	(27.4-	(12.5-	(10.4-	(13.5-	(21.1-
	18.4)	15.5)	19.3)	28.8)	13.3)	11.3)	14.6)	22.4)

Table 2. Cumulative incidence and incidence rate of VKA and anticoagulant treatmentdiscontinuation

Type of life-limiting disease

Canc	63.1	33.7	38.7	43.7	42.6	23.8	28.7	33.7
er	(59.3-	(31.9-	(36.7-	(41.7-	(39.7-	(22.1-	(26.9-	(31.7-
	67.0)	35.6)	40.6)	45.8)	45.7)	25.5)	30.5)	35.6)
Non	15 0	17 1	15.6	25 G	11.0	90(94	11.0	10.9
INOII-	15.2	12.1	15.0	25.0	11.0	0.9 (0.4-	11.0	19.0
cance	(14.8-	(11.6-	(15.0-	(24.9-	(10.6-	9.3)	(11.2-	(19.2-
r	15.7)	12.6)	16.2)	26.4)	11.4)		12.3)	20.5)
Sex								
Fema	18.0	14.9	19.0	29.0	13.3	11.1	14.5	22.9
les	(17.3-	(14.2-	(18.2-	(28.0-	(12.7-	(10.5-	(13.7-	(21.9-
	18.7)	15.7)	19.8)	30.0)	13.9)	11.8)	15.2)	23.8)
Male	17.8	15.1	18.5	27.2	12.5	10.7	13.6	20.6
S	(17.2-	(14.3-	(17.7-	(26.3-	(12.0-	(10.0-	(12.9-	(19.7-
-	18 5)	15.8)	193)	28 2)	13 1)	11 3)	(14.4)	21.5)
	10.0)	10.0)	10.0)	20.2)	10.1)	11.0)	17.7)	21.0)

Cumulative incidences were computed taking the competing risk of death into account. Crude incidence rates (IR) were estimated as events per 100 person-years (PY). Abbreviations: CI = confidence interval; IR = incidence rate; PY = person-years; VKA = vitamin K antagonist.

Table 3. Cumulative incidence	es and i	ncidence r	ates of f	first bleeding	and
thromboembolic events					

Fable 3. Cumulative incidences and incidence rates of first bleeding and thromboembolic events								
	Events, N	IR/100 PY AC exposed (95%CI)	IR/100 PY unexposed (95%CI)	6-month Cumulative incidence % (95%CI)	Accepted			
Major and clinically relevant bleeding	824	2.6 (2.4-2.8)	2.1 (1.5-2.8)	1.5 (1.3-1.7)				
Venous thromboembolism	62	0.2 (0.1-0.2)	0.4 (0.2-0.7)	0.1 (0.1-0.2)				
Arterial thromboembolism	983	3.1 (2.9-3.3)	3.3 (2.6-4.2)	1.8 (1.6-2.0)				
Myocardial infarction	365	1.1 (1.0-1.3)	0.9 (0.5-1.4)	0.7 (0.6-0.9)				
Stroke	520	1.6 (1.4-1.7)	2.0 (1.5-2.7)	0.9 (0.8-1.0)				
Other	144	0.4 (0.4-0.5)	0.5 (0.2-0.9)	0.2 (0.2-0.3)				

Cumulative incidences were computed taking the competing risk of death into account. Crude incidence rates (IR) of first bleeding and thromboembolic events were estimated as events per 100 person-years (PY), stratified by anticoagulant exposure. Abbreviations: AC = anticoagulation; CI = confidence interval; IR = incidence rate; PY = person-years.

 Table 4. Cumulative incidences and incidence rates of first bleeding and thromboembolic events stratified by cancer versus non-cancer diseases

			Cancer				
	IR/100 PY AC	IR/100 PY	6-month Cumulativ	1-year Cumulativ	3-year Cumulativ	IR/100 PY AC	IR/10 PY
	exposed (95%CI)	unexpose d (95%CI)	e incidence % (95%CI)	e incidence % (95%CI)	e incidence % (95%CI)	exposed (95%CI)	unexµ d (95%
Major and	4.5 (3.6-	4.5 (2.1-	2.0 (1.5-	2.6 (2.0-	3.5 (2.8-	2.5 (2.3-	1.8 (1
clinically relevant bleeding	5.7)	8.6)	2.7)	3.3)	4.3)	2.7)	2.5)
Venous thromboembolis	0.8 (0.5-	0.5 (0.0- 2.5)	0.5 (0.3- 0.9)	0.6 (0.4- 1.0)	0.7 (0.4- 1.1)	0.1 (0.1- 0.2)	0.4 (0 0.8)
m Artorial	20(22	71(40	17(12	21(16)	20(22	21(20	20(2
thromboembolis	3.0 (2.2- 3.9)	7.1 (4.0- 11.7)	2.3)	2.8)	3.7)	3.3)	2.9 (2 3.7)
m Myocardial infarction	0.7 (0.3- 1.2)	2.8 (1.0- 6.0)	0.4 (0.2- 0.8)	0.5 (0.3- 0.9)	0.8 (0.5- 1.2)	1.2 (1.0- 1.3)	0.7 (0 1.2)
Stroke	1.8 (1.2- 2.5)	3.7 (1.6- 7.3)	1.0 (0.7- 1.4)	1.3 (0.9- 1.8)	1.7 (1.2- 2.3)	1.6 (1.4- 1.7)	1.8 (1 2.5)
Other	0.5 (0.2- 0.9)	0.9 (0.1- 3.3)	0.4 (0.2- 0.7)	0.4 (0.2- 0.7)	0.5 (0.2- 0.8)	0.4 (0.4- 0.5)	0.4 (0 0.8)

Cumulative incidences were computed taking the competing risk of death into account. Crude incidence rates (IR) of first bleeding and thromboembolic events were estimated as events per 100 person-years (PY), stratified by anticoagulant exposure. Abbreviations: AC = anticoagulation; CI = confidence interval; IR = incidence rate; PY = person-years.

Supplemental methods

Data sources

Data on personal characteristics: This dataset provides data on personal characteristics (i.e., year of birth, sex, and immigration background) collected from the Personal Records Database (in Dutch "Basisregistratie Personen", BRP)¹. It includes all persons who have been registered in the BRP since October 1994, both residents (i.e., individuals who were registered in the population register of a Dutch municipality) and non-residents (i.e., individuals who had a relationship with the Dutch government)². In the Netherlands, individuals who would stay in the Netherlands for more than four months are compulsory to register at a Dutch municipality and therefore their demographic characteristics would be recorded in the BRP. For the current study, data from the calendar years 2013 to 2019 were used.

Data on household income: Data on household income were collected from the Tax and Customs administration and the student grant registration of the Education Executive Agency (in Dutch "Dienst Uitvoering Onderwijs", DUO)^{2,3}.

Data on mortality and causes of death: Mortality data includes information on the dates of death for all persons who have been registered in the BRP since October 1994⁴. Data on underlying causes of death of persons who were registered in the BRP and died since the 2013 statistical year were collected from the nationwide Dutch Registry of Causes of Death statistics⁵. This registry also contains information on the most important injury and the location of the accident for those who died of non-natural death. For all deceased persons, the location of death and the statistical year, or the year in which the deceased was included in the statistics, are also present.

Data on diagnoses registered during hospitalizations: Data on diagnoses registered with hospital admissions in Dutch hospitals were collected from the Dutch Hospital Data registry, which includes all general and academic Dutch hospitals and two short-stay categorical hospitals (i.e., a cancer clinic and an eye hospital)² and includes data from individuals registered in the BRP⁶⁻⁹. The data contain diagnoses retrieved from discharge letters, length of hospital stay, and date of admission/discharge. The variable main diagnosis indicated which diagnosis was the main reason for the corresponding hospital admission, and the variable primary diagnosis indicated whether a diagnosis was the main reason for providing the corresponding care¹⁰.

Data on outpatient medication prescriptions: Data on outpatient medication prescriptions for which costs were reimbursed under the basic health insurance in the Netherlands. The data included information on medications for individuals in residential homes for elderly, whereas information on medications in hospitals and in nursing homes were not included^{10,11}. Only the prescription year was available.

Data on outpatient medication prescriptions of anticoagulants: Data on outpatient prescription of anticoagulants, identified by the codes from the World Health Organization's Anatomic-Therapeutic-Chemical (ATC) system (i.e., B01A*). Data contain information on the type of anticoagulant and the prescription date, but information on the amount of medication per dispensed prescription and the anticoagulant subtypes were not available¹⁰.

Data from Dutch anticoagulation clinics: These data compromise information about VKA treatments managed by participating anticoagulation clinics, including information on start date, indication(s) for treatment, type of VKAs, dose, target INR ranges, INR values and measurement time, reason for stop and stop date (if available). These clinics are managed by the Dutch Federation of

Anticoagulation Clinics (in Dutch "Federatie Nederlandse Trombosediensten", FNT). The following anticoagulation clinics participated in the study: Leiden Anticoagulation Clinic (Leiden), Atalmedial (Amsterdam), Saltro (Utrecht), Star-shl (Rotterdam), and Isala (Zwolle).

Netherlands Cancer Registry (NCR): The NCR is provided by the Netherlands Comprehensive Cancer Organization (in Dutch "Integraal Kankercentrum Nederland", IKNL) and comprises individual-level data of newly diagnosed patients with cancer in the Netherlands, including cancer diagnosis, tumour staging (according to the TNM-classification developed and maintained by the Union for International Cancer Control (UICC)), tumour site (topography) and morphology (histology) (according to the WHO International Classification of Diseases for Oncology (ICD-O-3)), co-morbidity at diagnosis and treatment received directly after diagnosis (source: Netherlands Cancer Registry (NCR) (iknl.nl)).

Data linkage

Data from the anticoagulation clinics were linked to data from Statistics Netherlands by sex, date of birth, postal code, and last date known to be alive and >95% of records were successfully matched. Data from the NCR were also linked to Statistics Netherlands by sex, date of birth, and postal code with an 98.5% match.

Details about constructing treatment periods for anticoagulants

Dispensed anticoagulant prescriptions for vitamin K antagonists (VKAs), direct oral anticoagulants (DOACs) and Low-molecular-weight heparins (LMWHs) from 2012 to 2020 were used to examine VKA and anticoagulant exposure after registered VKA end dates from the anticoagulation clinics, to account for possible switching to non-VKA anticoagulants and non-participating anticoagulation clinics. Both VKA and anticoagulant exposure were modelled by constructing treatment periods of person-time exposed according to dispensed prescriptions, only considering prescriptions after VKA end dates from anticoagulation clinics. As no data were available on the amount of anticoagulant dispensed nor the prescribed dose, treatment periods for the different types of anticoagulants were constructed assuming that a dispensing lasted a fixed number of days (i.e., the exposure time) unless a refill, death or end of follow-up occurred earlier. Whenever the period between two subsequent dispensed prescription dates exceeded this fixed number of days, the next prescription was considered to belong to a new treatment period. A predefined number of days was added to the last prescription date within the treatment period to construct the end of the corresponding treatment period (Supplemental Figure 1). For VKAs, the exposure time of a single prescription was based on a previously performed validation study (Kempers et al. 2024, unpublished data), which resulted in 180 days allowed between subsequent VKA prescription dates and the addition of 60 days to the last prescription date to construct the end date of the corresponding treatment period. For DOACs and LMWHs, exposure times were based on the number of days between two dispensed prescriptions studied in a random sample of patients with DOAC and/or LMWH prescriptions between 2013-2019 (Supplemental Figure 2). We applied an exposure time of 120 days for DOAC prescriptions and 30 days for LMWH prescriptions.

As sensitivity analyses, we varied the exposure time of anticoagulant prescriptions when constructing treatment periods: 100 days for LMWH prescriptions, 150 days combined with the addition of 100 days to the last prescription date within the treatment period for VKA prescriptions.

R packages used

The following packages were used for statistical analyses and preparing figures: tidyverse¹², dplyr¹³, lubridate¹⁴, stringr¹⁵, tidyr¹⁶, foreign¹⁷, forcats¹⁸, purrr¹⁹, ggplot2²⁰, survival²¹, prodlim²², epiR²³, tidycmprks²⁴, ggsurvfit²⁵, and cowplot²⁶.

Life-limiting disease	Restrictions
Liver disease	
Esophageal varices	Primary diagnosis of hospital admission
Alcoholic cirrhosis of liver	Primary diagnosis of hospital admission
Secondary biliary cirrhosis	Primary diagnosis of hospital admission
Unspecified cirrhosis of liver	Primary diagnosis of hospital admission
Hepatorenal syndrome	Primary diagnosis of hospital admission
Hip fracture	
Fracture of neck of femur	Primary diagnosis of hospital admission in patients >
Pertrochanteric fracture	Primary diagnosis of hospital admission in patients >
Subtrochanteric fracture	Primary diagnosis of hospital admission in patients >
Heart disease	150
Hypertensive heart disease with heart failure	Primary diagnosis of hospital admission
Hypertensive heart and chronic kidney disease with heart	Primary diagnosis of hospital admission
failure and stage 1 through stage 4 chronic kidney disease, or	
unspecified chronic kidney disease	te
Hypertensive heart and chronic kidney disease with heart	Primary diagnosis of hospital admission
failure and with stage 5 chronic kidney disease, or end stage	
renal disease	Š
Ischemic cardiomyopathy	Primary diagnosis of hospital admission
Heart failure	Primary diagnosis of hospital admission
Lung disease	
Mixed simple and mucopurulent chronic bronchitis	Primary diagnosis of hospital admission
Other chronic obstructive pulmonary disease	Primary diagnosis of hospital admission
Other interstitial pulmonary diseases with fibrosis	Primary diagnosis of hospital admission
Diabetes mellitus	
Type 1 diabetes mellitus with kidney complications	Primary diagnosis of hospital admission in combinat
	of severity (see table S4)
Type 1 diabetes mellitus with circulatory complications	Primary diagnosis of hospital admission in combinat
	of severity
Type 1 diabetes mellitus with multiple complications	Primary diagnosis of hospital admission in combinat
	of severity
Type 2 diabetes mellitus with kidney complications	Primary diagnosis of hospital admission in combinat
	of severity
Type 2 diabetes mellitus with circulatory complications	Primary diagnosis of hospital admission in combinat
	of severity
Type 2 diabetes mellitus with multiple complications	Primary diagnosis of hospital admission in combinat
	of severity

Supplemental Table 1. ICD-10 codes used to identify non-cancer life-limiting diseases

Malnutrition-related diabetes mellitus with renal	Primary diagnosis of hospital admission in combinat
complications	of severity
Malnutrition-related diabetes mellitus with peripheral	Primary diagnosis of hospital admission in combinat
circulatory complications	of severity
Malnutrition-related diabetes mellitus with multiple	Primary diagnosis of hospital admission in combinat
complications	of severity
Other specified diabetes mellitus with kidney complications	Primary diagnosis of hospital admission in combinat
	of severity
Other specified diabetes mellitus with circulatory	Primary diagnosis of hospital admission in combinat
complications	of severity
Other specified diabetes mellitus with multiple	Primary diagnosis of hospital admission in combinat
complications	of severity
Unspecified diabetes mellitus with renal complication	Primary diagnosis of hospital admission in combinat
	of severity
Unspecified diabetes mellitus with peripheral circulatory	Primary diagnosis of hospital admission in combinat
complications	of severity
Unspecified diabetes mellitus with multiple complications	Primary diagnosis of hospital admission in combinat
	of severity
Dementia	
Creutzfeld-Jakob disease	Primary or secondary diagnosis of hospital admissio
Subacute sclerosing panencephalitis	Primary or secondary diagnosis of hospital admissio
Progressive multifocal leukoencephalopathy	Primary or secondary diagnosis of hospital admissio
Other atypical virus infections of central nervous system	
	Primary or secondary diagnosis of hospital admissio
Vascular dementia, unspecified severity	Primary or secondary diagnosis of hospital admissioPrimary or secondary diagnosis of hospital admissio
Vascular dementia, unspecified severity Vascular dementia, severe	 Primary or secondary diagnosis of hospital admissio Primary or secondary diagnosis of hospital admissio Primary or secondary diagnosis of hospital admissio
Vascular dementia, unspecified severity Vascular dementia, severe Dementia in other diseases classified	 Primary or secondary diagnosis of hospital admissio
Vascular dementia, unspecified severityVascular dementia, severeDementia in other diseases classifiedDementia in other diseases classified, severe	 Primary or secondary diagnosis of hospital admissio
Vascular dementia, unspecified severityVascular dementia, severeDementia in other diseases classifiedDementia in other diseases classified, severeUnspecified dementia, unspecified severity	 Primary or secondary diagnosis of hospital admissio
Vascular dementia, unspecified severityVascular dementia, severeDementia in other diseases classifiedDementia in other diseases classified, severeUnspecified dementia, unspecified severityUnspecified dementia, severe	 Primary or secondary diagnosis of hospital admissio
Vascular dementia, unspecified severity Vascular dementia, severe Dementia in other diseases classified Dementia in other diseases classified, severe Unspecified dementia, unspecified severity Unspecified dementia, severe Delirium superimposed on dementia	 Primary or secondary diagnosis of hospital admissio
Vascular dementia, unspecified severityVascular dementia, severeDementia in other diseases classifiedDementia in other diseases classified, severeUnspecified dementia, unspecified severityUnspecified dementia, severeDelirium superimposed on dementiaAlzheimer's disease	 Primary or secondary diagnosis of hospital admissio
Vascular dementia, unspecified severity Vascular dementia, severe Dementia in other diseases classified Dementia in other diseases classified, severe Unspecified dementia, unspecified severity Unspecified dementia, severe Delirium superimposed on dementia Alzheimer's disease Frontotemporal dementia	 Primary or secondary diagnosis of hospital admissio
Vascular dementia, unspecified severityVascular dementia, severeDementia in other diseases classifiedDementia in other diseases classified, severeUnspecified dementia, unspecified severityUnspecified dementia, severeDelirium superimposed on dementiaAlzheimer's diseaseFrontotemporal dementiaSenile degeneration of brain	 Primary or secondary diagnosis of hospital admissio

Supplemental Table 2. ICD-10 codes used to identify any diagnosis of severity to indicate the severity of diabetes mellitus.

Any diagnosis of severity in combination with diabetes mellitus	ICD-10 codes
Peripheral vascular disease	
Diabetes mellitus due to underlying condition with circulatory complications	E08.5
Drug or chemical induced diabetes mellitus with circulatory complications	E09.5
Atherosclerosis of unspecified type of bypass graft(s) of the extremities	170.3
Atherosclerosis of autologous vein bypass graft(s) of the extremities	170.4
Atherosclerosis of nonautologous biological bypass graft(s) of the extremities	170.5
Atherosclerosis of nonbiological bypass graft(s) of the extremities	170.6
Atherosclerosis of other type of bypass graft(s) of the extremities	170.7
Other and unspecified atherosclerosis	170.9
Other arterial dissection	177.7
Coronary artery disease	

Angina	120.0; 120.1; 120.8; 120.
ST elevation (STEMI) myocardial infarction involving other sites	21.0; 21.1; 21.2; 21.
Subsequent ST elevation (STEMI) and non-ST elevation (NSTEMI) myocardial infarction	122.0; 122.1; 122.8; 122.
Other acute ischemic heart diseases	124.0; 124.1; 124.8; 124.
Atherosclerotic heart disease of native coronary artery	125.1
Old myocardial infarction	125.2
Coronary artery aneurysm and dissection	125.4
Ischemic cardiomyopathy	125.5
Silent myocardial ischemia	125.6
Atherosclerosis of coronary artery bypass graft(s) and coronary artery of transplanted	125.7
heart with angina pectoris	
Atherosclerosis of other coronary vessels without angina pectoris	125.8
Chronic ischemic heart disease, unspecified	125.9
Kidney failure	
Hypertensive renal disease with renal failure	I12.0
Hypertensive heart and chronic kidney disease without heart failure	113.1
Chronic kidney disease, stage 4	N18.4
Chronic kidney disease, stage 5	N18.5
End stage renal disease	N18.6
Unspecified kidney failure	N19
Encounter for adequacy testing for haemodialysis	Z49.3
Dependence on renal dialysis	Z99.2
	S

Supplemental Table 3. Survival rates of different cancer diagnoses

Cancer location	Stage	1 year survival	3 year survival	5 year survival	Reference	
Pancreas	All stages	22%	6%	< 5%	van der Geest, L. et al. Alvleesklier in	
Cervix					(2021).	
	IIA2-IVA (locally advanced)	86%	66%	59%	van der Aa, M. et al. (no date) Baar	
	IIIB	71%	42%	37%		
	IVA	47%	24%	21%	1	
	IVB	38%	13%	7%	1	
Endometrium ^a		90%	83%	80%	Soslow, Robert A et al. Clinicopathol	
	111	80%		48%	carcinomas of different histologic sul	
	IV	48%		15%	biologic differences. The American j 979-87.	
Bladder						
	T2-4a			45,7%	Ripoll, J et al. Cancer-specific surviva	
	T3	60%	42%	41,0%	collected by Mallorca Cancer Registr	
	T4a+b	IV: 40%	IV:20%	21% ; 12%	21,1 676. 7 Jun. 2021	
Breast						
	111	96%	83%	73%	IKNL 2023. Overleving borstkanker. A	
	IV	70%	38%	22%	https://iknl.nl/kankersoorten/borstk September 2024).	
Bone and soft tiss	ue (sarcoma)	1	1	1	1	

This article is protected by copyright. All rights reserve

	Bone	83%	69%	63%	IKNL 2024. Overleving bot- en weke
	Soft tissue	79%	65%	59%	https://iknl.nl/kankersoorten/bot-er
	sarcoma				(Accessed: 17 September
	GIST	91%	84%	80%	
Colon					1
		88-92%		71%	Araghi, Marzieh et al. Colon and rect
	IV	40-58%		12%	countries 2010-2014: variation by ag SURVMARK-2 project). Gut vol. 70,1
Rectal					
	Ш	91-96%		75%	Araghi, Marzieh et al. Colon and rect
	IV	52-66%		14%	countries 2010-2014: variation by ag SURVMARK-2 project). Gut vol. 70,1
Ovary					
	III	80%	40%	25%	Gaitskell, Kezia et al. Ovarian cancer
	IV	75%	25%	12%	diagnostic lifestyle factors, in the pro epidemiology vol. 76 (2022): 102074
Brain		54%	31%	26%	IKNL 2023. Overleving Hersentumore https://iknl.nl/kankersoorten/herser 17 September 2024)
Hepatobiliary - liver		44%	24%	18%	IKNL 2023. Overleving HPB-tumoren https://iknl.nl/kankersoorten/hpb-tu September 2024)
Hepatobiliary – gallbladder / bile duct		46%	22%	17	IKNL 2023. Overleving HPB-tumoren https://iknl.nl/kankersoorten/hpb-tu September 2024)
Lung			34%		IKNL 2024. Overleving longkanker. A https://iknl.nl/kankersoorten/longka September 2024)
	NSCLC III	78%	42%	30%	e
	NSCLC IV	33%	< 10%	< 5%	pt
	SCLC III	78%	35%	24%	G
	SCLC IV	25%	< 10%	< 5%	Ŭ
NEC/NET (any location) ^b	All stages	73%	53%	39%	 Man, Da et al. "Prognosis of patients database analysis." Cancer managen Nov. 2018. Dasari, Arvind et al. "Trends in the In in Patients With Neuroendocrine Tur vol. 3,10 (2017): 1335-1342.
Primary tumor un	known				
	Treated	40%		20%	IKNL 2024. Overleving Primaire Tume
	Untreated	5%	< 5%	< 5%	https://iknl.nl/kankersoorten/primai (Accessed: 17 September 2024)
Esophagus					
	HU	65%	33%	26%	IKNL 2023. Overleving slokdarm- en
	IV	22%	4%	2%	https://iknl.nl/kankersoorten/slokda (Accessed: 17 September 2024)
Gastric					
	III	60%	25%	16%	IKNL 2023. Overleving slokdarm- en
	IV	17%	2%	1%	https://iknl.nl/kankersoorten/slokda

included in the study. a: Good quality epidemiological studies describing 1/3/5 year survival rates were found, hence this more pathology focused papels: 3 year survival rates for all NET/NECs in general were above 50%, however, as described in the paper from Dasari et. al, grade Supplemental Table 4. Description of included severe cancer diagnoses

All stages	Stage III + IV	Stage IV	
Pancreas	Cervix	Breast	
Primary tumor unknown	Bladder	Colon and rectum	
Brain	Ovary	Endometrium	
Hepatobiliary (liver and gall bladder/duct)	Lung (NSCLC and SCLC)		
	Neuro-endocrine tumors		
	Esophagus		
	Gastric		

Cancer types with a median survival time of 3 years or less at the time of first diagnosis were selected.

Supplemental Table 5. ICD codes used to identify comorbidities

Comorbidities	Type of code	Code(s)	
Asthma	ICD-10	J45, J46	
	ICD-9	493	
Chronic obstructive pulmonary	ICD-10	J44	
disease	ICD-9	491, 492, 496	
Other chronic lung diseases	ICD-10	J41, J42, J43, J47, J6, J7	
	ICD-9	494, 495, 50	
Heart failure	ICD-10	150	
	ICD-9	428	
Hypertension	ICD-10	110, 111, 113, 115	
	ICD-9	401, 402, 404, 405	
Atrial fibrillation	ICD-10	148	
	ICD-9	4273	
Atherosclerosis	ICD-10	120, 1250, 1251, 1255, 1258, 1259, 170	
	ICD-9	413, 4140, 4143, 4144, 4148, 4149, 4292, 440	
Myocardial infarction (history)	ICD-10	121, 122, 1252	
	ICD-9	410, 412, 4142	
Rheumatic Heart disease	ICD-10	105, 106, 107	
	ICD-9	3941, 395, 3971	
Other valvular heart disease	ICD-10	108, 134, 135, 136, 137, 138, 139, 2952	
	ICD-9	3940, 3942, 3949, 396, 3970, 424, V433	
Peripheral artery disease	ICD-10	1739	
	ICD-9	4439	
Liver disease	ICD-10	B15, B16, B17, B18, B19, D684, I982, I983, K70,	
		K71, K72, K73, K74, K75, K76, K77, Z944	
	ICD-9	070, 4560, 4561, 4562, 571, 5722, 5723, 5724,	
		5728, 5731, 5732, 5733, 5735, V427	
Diabetes	ICD-10	E10, E11, E12, E13, E14	
	ICD-9	250	
Thyroid disease	ICD-10	E00, E01, E02, E03, E04, E05, E06, E07	

	ICD-9	240, 241, 242, 243, 244, 245, 246
Kidney disease	ICD-10	112, N01, N02, N03, N04, N05, N06, N07, N08,
		N11, N12, N14, N150, N158, N159, N16, N18, N19,
		N25, N26, Q60, Q611, Q612, Q613, Q614, Q615,
		Q618, Q619, Z49, Z940
	ICD-9	403, 581, 582, 583, 585, 586, 587, 588, 5900,
		7530, 7531, V420, V451, V56
Anemia	ICD-10	D5, D60, D61, D63, D64
	ICD-9	280, 281, 282, 283, 2840, 2848, 2849, 2850, 2852,
		2858, 2859
Coagulopathy	ICD-10	D65, D66, D67, D680, D681, D682, D683, D685,
		D686, D688, D689, D69
	ICD-9	286. 287
Stroke/TIA (history)	ICD-10	G45, G46, 163, 164
	ICD-9	3623 434 1 434 9 435 436
(Other) arterial	ICD-10	H340 H341 H342 I513 I74 K550
thromboembolism	ICD-9	3623 444 5570
Venous thromboembolism		H348 126 1636 1676 1801 1802 1803 1808 1809
(history)		181 1820 1822 1823 1828 1829 K765 0225 0873
(history)		A340 A376 A511 A512 A518 A519 A52 A530
		1532 1533 1531 1536 1538 1539 6715
Major and clinically relevant	ICD-10	D62 D683 H356 H431 1230 1312 160 161 162
bleeding (bistory)		1850 1983 1942 K226 K250 K252 K254 K256
Diccurry (history)		K260 K262 K264 K266 K270 K272 K274 K276
		K280, K282, K284, K286, K290, K672, K674, K270,
		K921 K922 M250 NO2 N837 N920 N921 N924
		N938 N939 N950 R04 R31 R58 S064 S065
		S066
	ICD-9	2851 2865 4230 430 431 432 4560 4590
		5307 5310 5312 5314 5316 5320 5322 5324
		5326 5330 5332 5334 5336 5340 5342 5344
		5346 5350 5693 578 5967 5997 6207 6262
		6266 6268 6269 6270 6271 7191 7847 7848
		7863 852
Parkinson's disease	ICD-10	F023 G20
	ICD-9	3320
Alzheimer's disease	ICD-10	F00, G30
	ICD-9	3310
Immune deficiency	ICD-10	D80, D81, D82, D83, D84, D89
	ICD-9	2790 2791 2792 2793 2798 2799
Autoimmune/		D86 F271 G35 K50 K51 K900 M05 M06 M07
autoinflammatory disease		M08 M09 M30 M31 M32 M33 M34 M35
	ICD-9	135 2554 2794 340 556 5790 6960 710 714
		725
Malignant tumor		C
	ICD-9	14, 13, 10, 17, 10, 17, 20

Supplemental Table 6. ATC codes used to identify medication prescription at the pharmacological subgroup level at index date

Pharmacological subgroup	ATC-code

C02, C03, C07, C08, C09
C10
M01A
H02A, H02B
N06A
A02B
B01AC

Data on outpatient medication prescriptions covered by the Dutch statutory basic medical insurance were obtained from Statistics Netherlands. These included the year of prescription and Anatomical Therapeutic Chemical (ATC) code. Medications received in hospitals and nursing homes were not available. Only for anticoagulants, more detailed prescription data were provided, including dispending date and type of anticoagulant. The latter were used to identify prescriptions of antiplatelet drugs.

Supplemental Table 7. ICD-10 codes used to identify bleeding and thromboembolic events

	Major & clinically relevant bleeding	
D62: Acute posthaemorrhagic anaemia	K256: Gastric ulcer, chronic or unspecified with	K920:
D683: Haemorrhagic disorder due to circulating	both haemorrhage and perforation	K921:
anticoagulants	K260: Duodenal ulcer, acute with haemorrhage	K922:
H356: Retinal haemorrhage	K262: Duodenal ulcer, acute with both	unspe
H431: Vitreous haemorrhage	haemorrhage and perforation	M250
I230: Haemopericardium as current	K264: Duodenal ulcer, chronic or unspecified	N02: F
complication following acute myocardial	with haemorrhage	N837:
infarction	K266: Duodenal ulcer, chronic or unspecified	N920:
1312: Haemopericardium, not elsewhere	with both haemorrhage and perforation	with r
classified	K270: Peptic ulcer, site unspecified, acute with	\leq
160: Subarachnoid haemorrhage	haemorrhage	N921:
161: Intracerebral haemorrhage	K272: Peptic ulcer, site unspecified, acute with	with i
162: Other nontraumatic intracranial	both haemorrhage and perforation	
haemorrhage	K274: Peptic ulcer, site unspecified, chronic or	N924:
1850: Oesophageal varices with bleeding	unspecified with haemorrhage	period
1983: Oesophageal varices with bleeding in	K276: Peptic ulcer, site unspecified, chronic or	N938:
diseases classified elsewhere	unspecified with both haemorrhage and	vagina
J942: Haemothorax	perforation	N939:
K226: Gastro-oesophageal laceration-	K280: Gastrojejunal ulcer, acute with	unspe
haemorrhage syndrome	haemorrhage	N950:
K250: Gastric ulcer, acute with haemorrhage	K282: Gastrojejunal ulcer, acute with both	R04: H
	haemorrhage and perforation	R31: U
K252: Gastric ulcer, acute with both	K284: Gastrojejunal ulcer, chronic or	R58: H
haemorrhage and perforation	unspecified with haemorrhage	S064:
	K286: Gastrojejunal ulcer, chronic or	S065:
K254: Gastric ulcer, chronic or unspecified with	unspecified with both haemorrhage and	S066:
haemorrhage	perforation	
	K290: Acute haemorrhagic gastritis	

K625: Haemorrhage of anus and rectum	
K661: Haemoperitoneum	

Venous thromboembolism				
PE/DVT+thrombophlebitis	VTE other	Cerebral sinus thrombosis		
I26: Pulmonary embolism	H348: Other retinal vascular	1636: Cerebral infarction due to		
1801: Phlebitis and	occlusions	venous thrombosis, nonpyoge		
thrombophlebitis of femoral vein	1808: Phlebitis and thrombophlebitis	1676: Nonpyogenic thrombosis		
1802: Phlebitis and	of other sites	intracranial venous system		
thrombophlebitis of other deep	1809: Phlebitis and thrombophlebitis	O225: Cerebral venous thromb		
vessels of lower extremities	of unspecified site	pregnancy		
(Deep vein thrombosis NOS)	1820: Budd-Chiari	O873: Cerebral venous thromb		
1803: Phlebitis and	1821: thrombophlebitis migrans	the puerperium		
thrombophlebitis of lower	1822: Embolism and thrombosis of			
extremities, unspecified	vena cava			
(Embolism or thrombosis of lower	1823: Embolism and thrombosis of			
extremity NOS)	renal vein			
	1828: Embolism and thrombosis of			
	other specified veins	bt		
	1829: Embolism and thrombosis of	U. U.		
	unspecified vein	SIL		
	K765: Hepatic veno-occlusive	an		
	disease	\geq		
	O223: Deep phlebothrombosis in	ed		
	pregnancy (Deep-vein thrombosis,	bt		
	antepartum)	0		
	O229: Venous complication in	Ac		
	pregnancy, unspecified			
	O871: Deep phlebothrombosis in the			
	puerperium (Deep-vein thrombosis,			
	postpartum/Pelvic thrombophlebitis,			
	postpartum)			
	O879: Venous complication in the			
	puerperium, unspecified			
	O882: Obstetric blood-clot embolism			
	(Obstetric (pulmonary) embolism			
	NOS/Puerperal (pulmonary)			
	empolism NOS)			

	Arterial thromboembolism	
Ischemic stroke/TIA	Other arterial thromboembolism	Myo
163: Cerebral infarction	H340: Transient retinal artery occlusion	121:
G45: Transient cerebral ischaemic attacks and	H341: Central retinal artery occlusion	122:
related syndromes	H342: Other retinal artery occlusions	
G46: Vascular syndromes of brain in	1513: intracardial thrombosis	

Supplemental Figure 1. Construction of treatment periods for anticoagulants

Treatment episodes for anticoagulants were constructed assuming that a dispensed prescription lasted a fixed number of days, unless a refill, death or end of follow-up occurred earlier. Whenever the period between two subsequent dispensed prescription dates exceeded this fixed number of days, the next prescription was considered to belong to a new treatment period. A predefined number of days was added to the last prescription date within the treatment period to construct the end of the corresponding treatment period. Different exposure times were applied to the different types of anticoagulants: 180 days for VKA prescriptions, 120 days for DOAC prescriptions, and 30 days for LMWH prescriptions. The end date of each treatment period was constructed by adding a fixed number of days to the last dispensing date within the treatment period. This was 60 days for VKA prescriptions, 120 days for DOAC prescriptions and 30 days for LMWH prescriptions. The end date of each treatment period was constructed by adding a fixed number of days to the last dispensing date within the treatment period. This was 60 days for VKA prescriptions, 120 days for DOAC prescriptions and 30 days for LMWH prescriptions. Created in BioRender. Kruip, M. (2024) https://BioRender.com/y81a190

Supplemental Figure 2. Density plots of average days until next DOAC or heparin dispensed prescription

Density plots of average days until next DOAC (A) or heparin (B) dispensing per patient studied in two random samples of 10,000 patients with DOAC or heparin prescriptions between 2013-2019, respectively. For patients with DOAC prescriptions, the median number of days until the next DOAC dispensing per patient was 58 days with a 95th percentile of 117 days. For heparin the median was 22 days.

Supplemental Results

Supplemental Table 8. Additional baseline characteristics

	Total	Cancer	Non-cancer
	(N=18145)	(N=2457)	(N=15688)
Standardized household income, quintile ^a ,			
No. (%)			
First (lowest)	4207 (23.2)	589 (24.0)	3618 (23.1)
Second	6401 (35.3)	787 (32.0)	5614 (35.8)
Third	3009 (16.6)	471 (19.2)	2538 (16.2)
Fourth	1923 (10.6)	295 (12.0)	1628 (10.4)
Fifth (highest)	1408 (7.8)	261 (10.6)	1147 (7.3)
Institutional household/unknown	1197 (6.6)	54 (2.2)	1143 (7.3)
≥1 comorbidity present at index date ^b , No.	8195 (45.2)	956 (38.9)	7239 (46.1)
(%)			
Autoimmune disease or immune	326 (1.8)	31 (1.3)	296 (1.9)
deficiency			
Thyroid disease	286 (1.6)	22 (0.9)	264 (1.7)
COPD	1696 (9.3)	162 (6.6)	1534 (9.8)
Asthma and other chronic lung diseases	338 (1.9)	25 (1.0)	313 (2.0)

History of major and clinically relevant	811 (4.5)	98 (4.0)	713 (4.5)
bleeding			
History of VTE	287 (1.6)	59 (2.4)	228 (1.5)
History of ATE	193 (1.1)	32 (1.3)	161 (1.0)
History of stroke	479 (2.6)	52 (2.1)	427 (2.7)
History of MI	1666 (9.2)	134 (5.5)	1532 (9.8)
Anemia	1440 (7.9)	136 (5.5)	1304 (8.3)
Coagulopathy	391 (2.2)	38 (1.5)	353 (2.3)
Heart failure	2380 (13.1)	93 (3.8)	2287 (14.6)
Valvular heart disease	1660 (9.1)	108 (4.4)	1552 (9.9)
Atrial fibrillation	4332 (23.9)	420 (17.1)	3912 (24.9)
Atherosclerosis	1622 (8.9)	161 (6.6)	1461 (9.3)
Peripheral artery disease	331 (1.8)	41 (1.7)	290 (1.8)
Diabetes mellitus	2292 (12.6)	198 (8.1)	2094 (13.3)
Hypertension	3119 (17.2)	295 (12.0)	2824 (18.0)
Kidney disease	1982 (10.9)	138 (5.6)	1844 (11.8)
Liver disease	247 (1.4)	31 (1.3)	216 (1.4)

ATE: Arterial Thrombotic Event; COPD: Chronic Obstructive Pulmonary Disease; MI: Myocardial Infarction; VTE: Venous Thromboembolic Event.

^aPercentile groups were determined based on disposable income of private households of the complete Dutch population in the Statistics Netherlands database.

^bComorbidities were identified by examining data on hospitalizations within 3 years before the index date using ICD-10 codes and ICD-9 codes restricting to main or primary diagnosis of hospital admission. One or more comorbidities can be present.

			Cancer	
			(N=2457)	
Dif	ferentiation grade ^a , No. (%)			
	Grade I		36 (1.5)	
	Grade II		286 (11.6)	
	Grade III		380 (15.5)	
	Grade IV		83 (3.4)	
	Unknown or not applicable		1672 (68.1)	
Tre	atment of cancer, No. (%)			
	Chemotherapy		675 (27.5)	
	Radiotherapy		405 (16.5)	
	Surgery ^b		321 (13.1)	
	Hormonal therapy		49 (2.0)	
	Targeted therapy		119 (4.8)	
°Τh	e differentiation grade was identified b	by using the 6th number	of the ICD-O-3 codes	
⁵Su	rgery was defined as any surgical proce	edure involving the rem	oval of (a portion of) an	
ore	an.			

Supplemental Table 9. Cancer-specific baseline characteristics

0	-	
	Ū	
	_	3
		5
1		
1		
	d	
		1
	<u>_</u>	
	q	
	2	
	6	

Supplemental Table 10. Median survival and follow-up times for different life-limiting diseases

	N at t=0	Number of deaths	Median survival time (95%Cl)	Median follow-up time (IQR)
Total				
	18145	10948	2.03 (1.97, 2.10)	3.59 (1.95, 5.22)
Type of life-limiting disease				
Cancor				
Cancer	2457	2072	0.35 (0.32, 0.38)	3.41 (2.06, 5.07)
Non-cancer			,,	
	15688	8876	2.50 (2.43, 2.59)	3.60 (1.95, 5.22)
Type of non-cancer life-limiting	ng diseas	e		
COPD	547	251	2 10 (1 72 2 42)	1 93 (1 09 2 64)
Dementia	547	251	2.10 (1.72, 2.43)	1.75 (1.07, 2.04)
Dementia	387	275	2.14 (1.84, 2.57)	4.75 (2.80, 6.00)
Diabetes mellitus				
	327	203	2.28 (1.88, 2.94)	4.64 (2.20, 5.69)
Heart disease	40070	1405	0.57 (0.44, 0.40)	
Lin functions	10879	6185	2.57 (2.46, 2.68)	3.80 (2.07, 5.32)
Hip fracture	3277	1792	2,53 (2,40, 2,67)	3.20 (1.77, 4.80)
Interstitial lung disease	0277	1,72	2.30 (2.10, 2.07)	0.20 (1.77, 1.00)
	107	76	2.14 (1.26, 2.71)	3.58 (2.61, 5.62)
Liver disease				
	164	94	2.09 (1.09, 3.50)	3.57 (1.88, 5.57)
CI = confidence interval; COPD =	Chronic ol	ostructive pulm	onary disease; IQR = Intere	quartile range. A life-

CI = confidence interval; COPD = Chronic obstructive pulmonary disease; IQR = Interquartile range. A lifelimiting disease was defined according to the definition of a severe medical condition by Kelley et al. as "a diagnosis that carries an increased risk of mortality, hospitalization and emergency room visits"²⁷. These diseases were identified by ICD-10 codes of diagnoses registered as either main or primary diagnosis of the hospital admission or registered cancer diagnosis by the Netherlands Cancer Registry. Median survival and follow-up time were estimated by the Kaplan-Meier estimator.

	VKA discontinuation				Anticoagulation discontinuation			
	IR / 100 PY (95% CI)	6-month Cumulati ve incidenc e % (95%CI)	1-year Cumulati ve incidenc e %	3-year Cumulati ve incidenc e % (95%Cl)	IR / 100 PY (95% CI)	6-month Cumulati ve incidenc e % (95%Cl)	1-year Cumulati ve incidenc e %	3-year Cumulati ve incidenc e % (95%CI)
			(95%CI)				(95%CI)	
Cancer	63.1	33.7	38.7	43.7	42.6	23.8	28.7	33.7
	(59.3-	(31.9-	(36.7-	(41.7-	(39.7-	(22.1-	(26.9-	(31.7-
	67.0)	35.6)	40.6)	45.8)	45.7)	25.5)	30.5)	35.6)
COPD	17.3	10.8 (8.3-	13.6	24.7	10.4	6.4 (4.6-	8.2 (6.0-	17.3
	(14.1-	13.7)	(10.8-	(20.3-	(8.0-	8.8)	10.7)	(13.0-
	21.0)		16.7)	29.3)	13.2)			22.1)

Supplemental Table 11. Cumulative incidence and incidence rate of VKA and anticoagulant treatment discontinuation stratified by life-limiting disease

Demen tia	21.7 (18.4- 25.5)	16.8 (13.3- 20.7)	23.2 (19.1- 27.6)	35.6 (30.7- 40.6)	19.9 (16.7- 23.4)	15.5 (12.1- 19.4)	22.2 (18.2- 26.5)	33.5 (28.7- 38.3)
Diabete s mellitus	17.1 (13.9- 20.7)	12.3 (9.0- 16.1)	14.9 (11.2- 19.0)	27.0 (22.0- 32.1)	14.1 (11.3- 17.4)	10.8 (7.7- 14.4)	12.7 (9.3- 16.6)	23.6 (18.8- 28.6)
Heart disease	13.8 (13.3- 14.3)	11.0 (10.4- 11.6)	14.4 (13.7- 15.1)	23.8 (22.9- 24.6)	9.4 (9.0- 9.8)	7.4 (6.9- 7.9)	10.1 (9.5- 10.7)	17.4 (16.6- 18.2)
Hip fracture	18.7 (17.6- 19.9)	14.9 (13.7- 16.1)	18.4 (17.1- 19.8)	30.1 (28.4- 31.9)	15.5 (14.4- 16.5)	12.7 (11.6- 13.9)	15.8 (14.6- 17.1)	26.1 (24.4- 27.7)
Intersti tial lung disease	18.6 (12.7- 26.2)	12.2 (6.8- 19.2)	16.9(10.5 -24.7)	29.4 (20.6- 38.8)	12.0 (7.5- 18.1)	9.4 (4.8- 15.9)	11.3 (6.1- 18.2)	19.1 (12.0- 27.6)
Liver disease	29.6 (22.8- 37.9)	22.1 (16.1- 28.8)	29.9 (23.0- 37.2)	36.5 (28.9- 44.1)	21.0 (15.5- 27.7)	17.9 (12.4- 24.1)	24.4 (18.0- 31.3)	30.5 (23.3- 38.0)

Cumulative incidences were computed taking the competing risk of death into account. Crude incidence rates (IR) were estimated as events per 100 person-years (PY). Abbreviations: CI = confidence interval; COPD = chronic obstructive pulmonary disease; IR = incidence rate; PY = person-years; VKA = vitamin K antagonist

Supplemental Table 12. Mean proportion of days covered with anticoagulants during follow-up

	Number of patients, No.	Mean PDC % (SD)	Adherent* patients %
Total	18145	91.8 (22.2)	88.0
Type of life-limiting disease			
Cancer	2457	87.2 (26.4)	81.0
Non-cancer	15688	92.6 (21.4)	89.2
Type of non-cancer life-limitin	g disease		
COPD	547	95.3 (17.3)	93.6
Dementia	387	83.9 (30.2)	75.5
Diabetes mellitus	327	88.0 (26.4)	82.9

Heart disease	10879	94.1 (18.8)	91.3
Hip fracture	3277	88.9 (26.3)	84.3
Interstitial lung disease	107	92.7 (21.2)	87.9
Liver disease	164	82.3 (32.2)	76.8
Sex			
Females	8841	91.0 (23.4)	86.8
Males	9304	92.6 (21.1)	89.2

*Adherent was defined as a proportion of days covered (PDC) with anticoagulants >80%. Abbreviations: COPD = chronic obstructive pulmonary disease; PDC = proportion of days covered; SD = standard deviation.

Supplemental Table 13. Cumulative incidence and incidence rate of VKA and anticoagulant treatment discontinuation in sensitivity analysis VKA exposure time

	VKA discontinuation A					Anticoagulation discontinuation		
	IR / 100 PY (95%C I)	6-month Cumulati ve incidenc e % (95%CI)	1-year Cumulati ve incidenc e % (95%CI)	3-year Cumulati ve incidenc e % (95%CI)	IR / 100 PY (95%C I)	6-month Cumulati ve incidenc e % (95%CI)	1-year Cumulati ve incidenc e % (95%CI)	3-year Cumulati ve incidenc e % (95%CI)
Total	17.7 (17.2- 18.2)	14.9 (14.4- 15.5)	18.6 (18.1- 19.2)	27.7 (27.0- 28.4)	12.7 (12.3- 13.1)	10.8 (10.4- 11.3)	14.0 (13.5- 14.5)	21.4 (20.7- 22.0)
Type of lif	e-limitin	g disease						
Cancer	62.8 (59.0- 66.7)	33.7 (31.8- 35.5)	38.5 (36.6- 40.5)	43.6 (41.6- 45.6)	42.4 (39.5- 45.4)	23.7 (22.0- 25.4)	28.5 (26.7- 30.4)	33.5 (31.6- 35.5)
Non- cancer	15.0 (14.5- 15.5)	12.0 (11.5- 12.5)	15.5 (15.0- 16.1)	25.3 (24.5- 26.0)	10.8 (10.4- 11.2)	8.8 (8.4- 9.3)	11.7 (11.2- 12.2)	19.5 (18.8- 20.2)
Type of no	on-cance	r life-limiting	g disease					
COPD	17.1 (14.0- 20.8)	10.6 (8.2- 13.4)	13.4 (10.6- 16.5)	24.5 (20.1- 29.2)	10.2 (7.9- 13.0)	6.3 (4.4- 8.5)	8.0 (5.8- 10.5)	17.2 (12.9- 22.0)
Demen	21.7	16.8	23.2	35.6	19.9	15.5	22.2	33.5

tia	(18.4- 25.5)	(13.3- 20.7)	(19.1- 27.6)	(30.7- 40.6)	(16.7- 23.4)	(12.1- 19.4)	(18.2- 26.5)	(28.7- 38.3)
Diabete s mellitus	16.7 (13.6- 20.3)	12.3 (9.0- 16.1)	14.9 (11.2- 19.0)	26.6 (21.7- 31.8)	13.7 (11.0- 17.0)	10.8 (7.7- 14.4)	12.7 (9.3- 16.6)	23.2 (18.5- 28.2)
Heart disease	13.5 (13.0- 14.1)	10.9 (10.3- 11.5)	14.3 (13.7- 15.0)	23.4 (22.5- 24.2)	9.2 (8.8- 9.6)	7.4 (6.9- 7.9)	10.1 (9.5- 10.7)	17.0 (16.3- 17.8)
Hip fracture	18.5 (17.4- 19.7)	14.8 (13.6- 16.1)	18.3 (16.9- 19.6)	29.8 (28.1- 31.5)	15.2 (14.2- 16.3)	12.6 (11.5- 13.8)	15.7 (14.5- 17.0)	25.7 (24.1- 27.4)
Interstiti al lung disease	18.0 (12.2- 25.6)	11.3 (6.1- 18.1)	16.9(10.5 -24.7)	28.1 (19.5- 37.4)	11.4 (7.1- 17.5)	8.4 (4.1- 14.7)	11.3 (6.1- 18.2)	17.8 (11.0- 26.0)
Liver disease	29.6 (22.7- 37.8)	22.1 (16.1- 28.8)	29.9 (23.0- 37.2)	36.5 (28.9- 44.2)	21.0 (15.5- 27.7)	17.9 (12.4- 24.1)	24.4 (18.0- 31.3)	30.5 (23.3- 38.0)
Sex								
Females	17.8 (17.1- 18.5)	14.9 (14.1- 15.6)	18.9 (18.0- 19.7)	28.7 (27.7- 29.7)	13.1 (12.6- 13.7)	11.1 (10.4- 11.7)	14.4 (13.6- 15.1)	22.6 (21.7- 23.6)
Males	17.6 (16.9- 18.3)	15.0 (14.3- 15.7)	18.4 (17.6- 19.2)	26.8 (25.9- 27.8)	12.3 (11.7- 12.9)	10.6 (10.0- 11.3)	13.6 (12.9- 14.3)	20.2 (19.4- 21.1)

This table displays the cumulative incidences and incidence rates of vitamin K antagonist (VKA) and anticoagulant treatment discontinuation calculated in a sensitivity analysis where we varied the exposure time of a VKA prescription when constructing treatment periods (150 days + 100 days added versus 180 days + 60 days added in the main analysis).

Cumulative incidences were computed taking the competing risk of death into account. Crude incidence rates (IR) were estimated as events per 100 person-years (PY). Abbreviations: CI = confidence interval; COPD = chronic obstructive pulmonary disease; IR = incidence rate; PY = person-years; VKA = vitamin K antagonist.

Supplemental Table 14. Cumulative incidence and incidence rate of anticoagulant treatment discontinuation in sensitivity analysis heparin exposure time

Anticoagulation discontinuation

	IR / 100 PY (95%CI)	6-month Cumulative incidence % (95%CI)	1-year Cumulative incidence % (95%CI)	3-year Cumulative incidence % (95%CI)
Total	12.7 (12.3-13.1)	10.7 (10.3- 11.2)	13.8 (13.3-14.3)	21.2 (20.6-21.9)
Type of life-lin	niting disease			
Cancer	39.9 (37.1- 42.8)	22.9 (21.3- 24.6)	27.2 (25.5-29.0)	31.4 (29.5-33.3)
Non-cancer	10.9 (10.6-11.3)	8.8 (8.4-9.3)	11.7 (11.2-12.2)	19.7 (19.0-20.3)
Type of non-ca	ancer life-limiting disea	se		
COPD	10.1 (7.8-12.9)	6.4 (4.6-8.8)	7.9 (5.8-10.5)	15.9 (12.2-20.1)
Dementia	19.9 (16.7-23.4)	15.5 (12.1- 19.4)	22.2 (18.2-26.5)	33.5 (28.7-38.3)
Diabetes mellitus	13.9 (11.1-17.2)	10.8 (7.7-14.4)	12.7 (9.3-16.6)	22.8 (18.1-27.7)
Heart disease	9.3 (8.9-9.7)	7.3 (6.9-7.8)	10.0 (9.5-10.6)	17.2 (16.5-18.0)
Hip fracture	15.4 (14.4-16.4)	12.7 (11.6- 13.9)	15.7 (14.5-17.0)	26.0 (24.3-27.6)
Interstitial lung disease	12.0 (7.5-18.1)	9.4 (4.8-15.9)	11.3 (6.1-18.2)	19.1 (12.0-27.6)
Liver disease	20.9 (15.5- 27.7)	17.9 (12.4- 24.1)	24.4 (18.0-31.3)	29.5 (22.5-36.9)
Sex				
Females	13.1 (12.6-13.7)	11.0 (10.4- 11.7)	14.3 (13.6-15.1)	22.5 (21.6-23.5)
Males	12.2 (11.6-12.8)	10.5 (9.9-11.1)	13.3 (12.6-14.0)	20.0 (19.2-20.9)

This table displays the cumulative incidences and incidence rates of anticoagulant treatment discontinuation calculated in a sensitivity analysis where we varied the exposure time of a heparin (i.e. LMWH) prescription when constructing treatment periods (100 days added versus 30 days in the main analysis).

Cumulative incidences were computed taking the competing risk of death into account. Crude

incidence rates (IR) were estimated as events per 100 person-years (PY). Abbreviations: CI = confidence interval; COPD = chronic obstructive pulmonary disease; IR = incidence rate; PY = person-years.

Supplemental Table 15. Incidence rates of bleeding and thromboembolic events stratified by anticoagulation exposure in sensitivity analyses

	Extending AC expos	ed period by 7 days	Sensitivity analysis heparin exposure time		
	IR/100 PY AC exposed (95%CI)	IR/100 PY unexposed (95%CI)	IR/100 PY AC exposed (95%CI)	IR/100 PY unexposed (95%CI)	
Major and clinically relevant bleeding	2.6 (2.4-2.8)	1.9 (1.4-2.7)	2.6 (2.4-2.8)	2.1 (1.5-2.8)	
Venous thromboembolism	0.2 (0.1-0.2)	0.4 (0.2-0.8)	0.2 (0.1-0.2)	0.4 (0.2-0.7)	
Arterial thromboembolism	3.1 (2.9-3.3)	3.0 (2.3-3.8)	3.1 (2.9-3.3)	3.2 (2.5-4.1)	
Myocardial infarction	1.1 (1.0-1.3)	0.8 (0.5-1.3)	1.1 (1.0-1.3)	0.8 (0.5-1.3)	
Stroke	1.6 (1.5-1.7)	1.8 (1.3-2.4)	1.6 (1.4-1.7)	2.0 (1.5-2.7)	
Other	0.4 (0.4-0.5)	0.5 (0.2-0.8)	0.4 (0.4-0.5)	0.4 (0.2-0.8)	

This table displays the incidence rates of first bleeding and thromboembolic events stratified by anticoagulant exposure, estimate sensitivity analyses were performed: (1) extending the period exposed to anticoagulants by seven days, (2) varying the exposure when constructing treatment periods (100 days added versus 30 days in the main analysis), (3) varying the exposure time of a VI periods (150 days + 100 days added versus 180 days + 60 days added in the main analysis). Incidence rates were estimated as exwas categorized according to anticoagulant exposure. AC = anticoagulant; CI = confidence interval; IR = incidence rate; PY = personal sectors and the sector of t

Kaplan-Meier survival curves for the total cohort (A) and patients with cancer versus non-cancer diseases separately (B). Median survival was estimated by the Kaplan-Meier estimator.

Supplemental Figure 4. Patients exposed to anticoagulants before death stratified by cancer versus non-cancer diseases

Percentage of patients exposed to anticoagulants with corresponding 95% confidence intervals at different time points before death, stratified according to the amount of follow-up time between index date and date of death and by cancer versus non-cancer diseases. This analysis was restricted to patients who died during follow-up.

Supplemental Figure 5. Density plot of days between end of anticoagulant treatment and death

Calculated among patients who died during follow-up and discontinued anticoagulant treatment before death (N=3372).

References

1. Persoonskenmerken van alle in de Gemeentelijke Basis Administratie (GBA) ingeschreven personen, gecoördineerd. Version V1. ODISSEI Portal; 2021.

https://doi.org/10.57934/0b01e4108071ba40

2. Chen Q, van Rein N, van der Hulle T, et al. Coexisting atrial fibrillation and cancer: time trends and associations with mortality in a nationwide Dutch study. *Eur Heart J*. Jul 9 2024;45(25):2201-2213.

3. Inkomen van huishoudens (revisie 2017). Version V1. ODISSEI Portal; 2011. https://doi.org/10.57934/0b01e41080371196

4. Datum van overlijden van personen die ingeschreven staan in de Gemeentelijke Basisadministratie (GBA). Version V1. ODISSEI Portal; 2018.

https://doi.org/10.57934/0b01e410803b37dc

5. Doodsoorzaken van personen die bij overlijden inwoners waren van Nederland. Version V1. ODISSEI Portal; 2013. https://doi.org/10.57934/0b01e410802359a7

6. Diagnosen behorend bij ziekenhuisopnamen Landelijke Basisregistratie Ziekenhuiszorg. Version V1. ODISSEI Portal; 2019. https://doi.org/10.57934/0b01e410805d9385

7. Ziekenhuisopnamen Landelijke Basisregistratie Ziekenhuiszorg. Version V1. ODISSEI Portal; 2019. https://doi.org/10.57934/0b01e410805d96a7

8. Ziekenhuisopnamen voor RA-gebruik. Version V1. ODISSEI Portal; 2012. https://doi.org/10.57934/0b01e4108030bccb 9. Diagnosen behorend bij ziekenhuisopnamen voor RA-gebruik. Version V1. ODISSEI Portal; 2012. https://doi.org/10.57934/0b01e4108030be8c

10. Chen Q, Toorop MMA, Tops LF, Lijfering WM, Cannegieter SC. Time Trends in Patient Characteristics, Anticoagulation Treatment, and Prognosis of Incident Nonvalvular Atrial Fibrillation in the Netherlands. JAMA Netw Open. Apr 3 2023;6(4):e239973.

11. Verstrekkingen van geneesmiddelen op 4 posities ATC-code aan personen. Version V1. ODISSEI Portal; 2020. https://doi.org/10.57934/0b01e41080757f4a

12. Wickham H, Averick M., Bryan J., et al. Welcome to the tidyverse. *Journal of Open Source Software*. 2019;4(43):1686. doi:https://doi.org/10.21105/joss.01686

13. Wickham H, François R, Henry L, Müller K, Vaughan D. dplyr: A Grammar of Data Manipulation. R package version 1.1.4. Accessed May 27, 2024.

https://CRAN.R-project.org/package=dplyr

14. Grolemund G, Wickham H. Dates and Times Made Easy with lubridate. *Journal of Statistical Software*. 2011;40(3):1 - 25. doi:10.18637/jss.v040.i03

15. Wickham H. stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.5.1. Accessed Aug 13, 2024. https://CRAN.R-project.org/package=stringr

16. Wickham H, Vaughan D, Girlich M. tidyr: Tidy Messy Data. R package version 1.3.1. Accessed Aug 13, 2024. https://CRAN.R-project.org/package=tidyr

17. R Core Team. foreign: Read Data Stored by 'Minitab', 'S', 'SAS', 'SPSS', 'Stata', 'Systat', 'Weka', 'dBase', ...

R package version 0.8-86. Accessed Aug 13, 2024. https://CRAN.R-project.org/package=foreign
18. Wickham H. forcats: Tools for Working with Categorical Variables (Factors). R package
version 1.0.0. Accessed Aug 13, 2024. https://CRAN.R-project.org/package=forcats

19. Wickham H, Henry L. purrr: Functional Programming Tools. R package version 1.0.2. Accessed Aug 13, 2024. https://CRAN.R-project.org/package=purrr

20. Wickham H, Chang W, Henry L, et al. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. Accessed 20 Sep, 2022. https://CRAN.R-project.org/package=ggplot2

21. Therneau T. A Package for Survival Analysis in R. R package version 3.6-4. Accessed Aug 13, 2024. https://CRAN.R-project.org/package=survival

22. Gerds TA. prodlim: Product-Limit Estimation for Censored Event History Analysis. R package version 2023.08.28. Accessed Aug 13, 2024. https://CRAN.R-project.org/package=prodlim

23. Stevenson M, Sergeant E. epiR: Tools for the Analysis of Epidemiological Data. R package version 2.0.74. Accessed Aug 13, 2024. https://cran.r-project.org/package=epiR

24. Sjoberg DD, Fei T. tidycmprsk: Competing Risks Estimation. R package version 1.0.0. Accessed Aug 13, 2024. https://CRAN.R-project.org/package=tidycmprsk

25. Sjoberg D, Baillie M, Fruechtenicht C, Haesendonckx S, Treis T. ggsurvfit: Flexible Time-to-Event Figures. R package version 1.1.0. Accessed Aug 13, 2024.

https://CRAN.R-project.org/package=ggsurvfit

26. Wilke C. cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2'. R package version 1.1.3. Accessed Aug 13, 2024. https://CRAN.R-project.org/package=cowplot

27. Kelley AS, Ferreira KB, Bollens-Lund E, Mather H, Hanson LC, Ritchie CS. Identifying Older Adults With Serious Illness: Transitioning From ICD-9 to ICD-10. *J Pain Symptom Manage*. Jun 2019;57(6):1137-1142.

VKA users between 01-01-2013 and 31-12-2019 (N=153891)	
	VKA users without life-limiting disease diagnosis between 2013 and 2019 (N=123936)
VKA users who received a life-limiting disease diagnosis between 01-01-2013 and 31-12-2019 (N=29955)	
	VKA users who started VKA after life-limiting disease diagnosis (N=8089)
VKA users who started VKA before date of life-limiting disease diagnosis (=index date) (N=21866)	
	VKA users who had a >3 month gap between last date INR measurement and index date or did not have ≥2 INR measurements in the 6 months before index date or had INR measurements after their registered date of death (N=3721)
Prevalent VKA users with a life-limiting disease (N=18145)	

Patients exposed to anticoagulants before death

is article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserv