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ABSTRACT Invasive mold infections (IMIs) are associated with high morbidity, 
particularly in immunocompromised patients, with mortality rates between 40% and 
80%. Early initiation of appropriate antifungal therapy can substantially improve 
outcomes, yet early diagnosis remains difficult to establish and often requires multidisci
plinary teams evaluating clinical and radiological findings plus supportive mycological 
findings. Universal digital high-resolution melting (U-dHRM) analysis may enable rapid 
and robust diagnoses of IMI. A universal fungal assay was developed for U-dHRM and 
used to generate a database of melt curve signatures for 19 clinically relevant fungal 
pathogens. A machine learning algorithm (ML) was trained to automatically classify 
these pathogen curves and detect novel melt curves. Performance was assessed on 73 
clinical bronchoalveolar lavage samples from patients suspected of IMI. Novel curves 
were identified by micropipetting U-dHRM reactions and Sanger sequencing amplicons. 
U-dHRM achieved 97% overall fungal organism identification accuracy and a turnaround 
time of ~4 hrs. U-dHRM detected pathogenic molds (Aspergillus, Mucorales, Lomento
spora, and Fusarium) in 73% of 30 samples classified as IMI, including mixed infections. 
Specificity was optimized by requiring the number of pathogenic mold curves detected 
in a sample to be >8 and a sample volume to be 1 mL, which resulted in 100% specificity 
in 21 at-risk patients without IMI. U-dHRM showed promise as a separate or combination 
diagnostic approach to standard mycological tests. U-dHRM’s speed, ability to simultane
ously identify and quantify clinically relevant mold pathogens in polymicrobial samples, 
and detect emerging opportunistic pathogens may aid treatment decisions, improving 
patient outcomes.

IMPORTANCE Improvements in diagnostics for invasive mold infections are urgently 
needed. This work presents a new molecular detection approach that addresses 
technical and workflow challenges to provide fast pathogen detection, identification, 
and quantification that could inform treatment to improve patient outcomes.
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I nvasive mold infections (IMI) cause millions of infections globally and account for an 
estimated 1.6 million deaths annually (1). Patients at risk from IMIs, including both 

severely immunocompromised and also more immunocompetent individuals (2), are 
increasing. IMIs in more immunocompetent persons/those receiving systemic corticoste
roids are characterized by early tissue invasive growth in the lungs with bloodstream 
invasion potentially occurring later although not universally, while early angioinvasive 
growth is more common in severely immunocompromised persons (3). Ground truth 
IMIs have characteristically been very difficult to diagnose before death, with rates of 
pre-mortem diagnosis ranging from 12% to 60% (4). Histopathologic examination and 
culture of tissue or bronchoalveolar lavage fluid (BALF) are considered the reference 
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standard for IMI diagnosis but are slow, with histopathology often available only at 
autopsy, while culture has poor sensitivity (5). Incubation of fungal cultures for 4 weeks 
is considered best practice to maximize the recovery of slow growing species, with 
most detected by day 14 (6). BALF antigen tests, such as galactomannan (GM), can be 
helpful but are only positive for a limited number of specific mold organisms and are 
further limited by variable turnaround times (TAT) and lower sensitivity for individuals on 
mold-active antifungal prophylaxis or treatment (2). PCR assays are currently advanc
ing as recommended complementary diagnostic tools due to their high sensitivity 
and specificity, ability to identify mutations associated with antifungal resistance, and 
ability to detect non-Aspergillus mold infections. The T2 Candida Panel (T2 Biosystems, 
Lexington, MA, USA), BioFire FilmArray Meningitis/Encephalitis (ME) Panel, and BioFire 
FilmArray Blood Culture Identification (BCID) Panel (BioFire Diagnostics, Salt Lake City, 
Utah, USA) are FDA-approved commercially available assays for whole blood, positive 
blood culture, and/or cerebrospinal fluid that have demonstrated excellent performance 
with swift turnaround times of 1–4 hours but only detect a limited panel of yeast 
pathogens (2). Pan-fungal assays and assays capable of detecting rare or novel fungi 
are limited to next generation sequencing (NGS)-based approaches, which suffer from 
high complexity that results in a send-out format and long turnaround times (2). Also, 
a recent study that applied both targeted NGS and metagenomic NGS to BALF samples 
found that both approaches failed to identify true fungal-positive cases (7). The absence 
of rapid and accessible fungal diagnostics often results in empiric utilization of systemic 
antifungals, mostly targeted against Aspergillus spp., some of which are lacking activity 
against other molds (8). As a prominent example, mucormycosis diagnosis is particularly 
challenging (9). Pulmonary mucormycosis remains one of the most common non-Asper
gillus mold infections in many US centers and has been globally and particularly in India 
on the rise as a complication in COVID-19 patients (10). There is hope on the horizon with 
Mucorales PCR now starting to be implemented in some clinical centers (11). However, 
currently, IMIs are often diagnosed and treated too late, leading to high mortality rates of 
40%–80%. It is estimated that 80% of patients could be saved with rapid diagnostics to 
inform early and targeted treatment (12).

Universal digital high-resolution melting (U-dHRM) to detect mold pathogens in 
BALF may be a promising probe-free diagnostic approach applicable without a priori 
knowledge of anticipated fungal organisms that could serve as a powerful complemen
tary diagnostic tool upstream of sequencing to achieve rapid and near point-of-care 
diagnosis to inform treatment decisions and improve patient outcomes. This approach 
consists of a single closed-tube test that integrates universal amplification of patho
gen barcoding sequences in a digital polymerase chain reaction (dPCR) format with 
high-resolution melting (HRM) of DNA and machine learning (Fig. 1) (13–16). Unlike 
NGS approaches, U-dHRM eliminates the need for post processing, thereby preventing 
external nucleic acid contamination and simplifying requirements for test operators. The 
integration and advancement of these techniques promise a unique combination of 
advantages: speed and breadth of detection, sensitivity and absolute quantification, and 
pathogen identification in polymicrobial samples (17, 18).

Here, we advanced the U-dHRM assay and database for the detection of IMI patho
gens, advanced the machine learning algorithm to recognize database organism curves 
and also flag novel organism melt curves, and developed a dPCR reaction recovery 
method to Sanger sequence novel melt curves and expand the pathogen panel. We 
applied these advancements to test 75 clinical BALF samples, assessing the utility of this 
approach for IMI diagnosis compared with gold standard tests.
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MATERIALS AND METHODS

ITS-Asp dPCR

ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) 
universal primers multiplexed with Asp 1 (5′-CGGCCCTTAAATAGCCCGGTC-3′) and Asp 
2 (5′-ACCCCCCTGAGCCAGTCCG-3′) were used to amplify the ITS universal region for all 
fungi and an Aspergillus specific region of the 18S gene. Each curve in dPCR originated 
from an individual partition containing single genomes or genome fragments. At least 
three dPCR chips were run for each organism type. ITS-Asp PCR was amplified using 
the following protocol: each 15 µL reaction mixture contained 0.1 µM of each primer 
(IDT, Coralville, IA), 0.2 mM deoxynucleoside triphosphate (dNTP) (Invitrogen, Carlsbad, 

FIG 1 U-dHRM technology overview. (a) Extraction of genomic DNA and digital loading. (b) Universal amplification of fungal internal transcribed spacer 

(ITS) barcoding region leading to a fluorescence increase in each positive reaction well. (c) Barcode sequence-defined melt curve signatures. (d) Automatic 

identification of each known pathogen melt curve and detection of novel melt curves using machine learning. Created with BioRender.com.
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CA), 1× Phusion GC PCR buffer (Thermo Scientific, Waltham, MA), 2.5× EvaGreen 
(Biotium, Fremont, CA), 0.02 U/µL Phusion polymerase (New England Biolabs, Ipswich, 
MA), ultrapure water (Quality Biological, Gaithersburg, MD), and 3 µL of genomic DNA 
from a final elution volume of 100 µL using the MolYsis Complete 5 kit (Molzym, 
Bremen, Germany). Thermocycling for quantitative PCR (qPCR)/dPCR and subsequent 
melt analysis were performed on a QuantStudio 3D real-time PCR system and a ProFlex 
2× Flat Block Thermal Cycler (Applied Biosystems, Waltham, MA) using the QuantStudio 
3D Digital PCR Chip (Applied Biosystems, Foster City, CA). The cycling conditions were as 
follows: hold at 98°C for 30 s, followed by 75 cycles of 98°C for 10 s, 61°C for 30 s, and 72°C 
for 60 s to ensure full endpoint amplification from single molecules (16, 19). At the end 
of cycling, there was a final extension step at 72°C for 5 min, which resulted in a total run 
time of approximately 3 hours of dPCR cycling. PCR amplification was followed by a melt 
cycle of an initial denaturation at 95°C for 15 s and then heating from 65°C to 95°C at a 
ramp rate of 0.2°C/s (15, 20).

Control human β-actin PCR

Human beta actin primers, forward (5′-CGGCCTTGGAGTGTGTATTAAGTA-3′) and reverse 
(5′-TGCAAAGAACACGGCTAAGTGT-3′) were used to amplify the human β-actin gene. 
Each PCR was conducted in triplicate using the following protocol: each 15 µL reac
tion mixture contained 0.1 µM each primers (IDT, Coralville, IA), 0.2 mM dNTP (Invi
trogen, Carlsbad, CA), 1× Phusion GC PCR buffer (Thermo Scientific, Waltham, MA), 
2.5× EvaGreen (Biotium, Fremont, CA), 0.02 U/µL Phusion polymerase (New England 
Biolabs, Ipswich, MA), ultrapure water (Quality Biological, Gaithersburg, MD), and 3 µL of 
direct BALF sample liquid. Thermocycling for qPCR and subsequent melt analysis were 
performed on a QuantStudio 3D real-time PCR system (Applied Biosystems, Waltham, 
MA). The cycling conditions were as follows: hold at 98°C for 30 s, followed by 55 cycles 
of 98°C for 10 s, 66°C for 30 s, and 72°C for 45 s. At the end of cycling, there was a final 
extension step at 72° for 5 min. PCR amplification was followed by a melt cycle of an 
initial denaturation at 95°C for 15 s and then heating from 65°C to 95°C.

DNA isolation for melt curve database generation

The following fungal strains were provided as clinical isolates by Dr. Nathan Weiderhold 
at the Department of Pathology University of Texas Health Science Center, San Anto
nio, TX: Aspergillus terreus, Aspergillus nidulans, Aspergillus versicolor, Mucor circinelloides, 
Mucor velutinosus, Mucor plumbeus, Rhizopus arrhizus var. delemar, Rhizopus microspo
rus, Lomentospora prolificans, Scedosporium apiospermum, Scopulariopsis brevicaulis, 
Scopulariopsis candida, and Scopulariopsis gossypii. Aspergillus fumigatus, Aspergillus 
flavus, Aspergillus niger, Fusarium oxysporum, Cryptococcus neoformans, Candida krusei, 
Candida glabrata, and Candida albicans were provided as clinical isolates from Dr. 
Sanjay Mehta at the San Diego VA Clinical Microbiology Laboratory. Candida auris was 
provided as a clinical isolate by Dr. Sharon Reed at the UCSD Center for Advanced 
Laboratory Medicine. For database generation, DNA was extracted using the Lucigen 
MasterPure Yeast DNA Purification Kit (Lucigen, Middleton, WI, USA). DNA concentration 
was measured by bio-spectrophotometer absorbance readings and diluted to the target 
concentrations.

DNA isolation from clinical BALF samples

Prior to DNA isolation, direct PCR β-actin was run to assess lavage quality as described 
above. Clinical BALF sample DNA was isolated in approximately less than 1 hour using 
MolYsis Complete 5 Small Size Sample DNA Isolation (≤1 mL liquid) protocol (Molzym, 
Bremen, Germany). Each BALF sample was run in U-dHRM with Asp-ITS PCR conditions as 
described above.
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Control pig BALF and analytical validation

For control and analytical spike-in experiments, pig BALF was collected from euthanized 
pigs previously treated with antibiotics and anesthetized with ketamine/xylene/atropine. 
Ambu aScope 4 Broncho single-use bronchoscopes (Ambu A/S, Ballerup, Denmark) 
were used with 50 mL sterile isotonic irrigation 0.9% saline (NDC 0990-6138-22) for 
lavages. Pig BALF was used because healthy human BALF is not readily attainable. As the 
BALF collection procedure is invasive, it is not typically collected from healthy humans, 
and there are no synthetic or standardized BALF matrices for diagnostic development 
purposes. Prior to analytical validation, pig BALF was screened to be negative for target 
organisms by U-dHRM. Target organism spores were counted by a hemocytometer and 
plated to determine CFUs, and six 10-fold serial dilutions were conducted to achieve 
concentrations down to 1 CFU/mL, with concurrent no spike controls. A. fumigatus and 
C. albicans spores from each concentration were spiked into 2 mL of pig BALF to achieve 
the final concentrations of 10k, 1k, 100, 10, 1, and 1 spores (CFU)/mL of BALF.

DNA sequencing

PCR products were prepared using ExoSAP-IT (Applied Biosystems, Foster City, CA) 
according to the manufacturer’s protocol and then sent for Sanger sequencing 
(GENEWIZ, San Diego, USA) using the same respective Asp and ITS forward primers 
described above.

Image processing and data analysis

A sequence of raw fluorescence images was captured during the heating and melting 
procedure for each chip. Subsequently, these images underwent a sequence of image 
processing steps to identify and extract the individual wells within them along with 
their corresponding average intensity values. This 5–10-min procedure resulted in the 
translation of the average intensity measurements for each well across the entire set of 
images into a chronological array of values, thus creating a time series representation.

The original fluorescence time series, recognized as melt curves, underwent a twofold 
transformation: initially, they were converted into their respective derivatives, after which 
they were subjected to a smoothing process using a Savitzky-Golay filter. Furthermore, 
these smoothed derivative time series were classified as “Positive” if they exhibited a 
peak or local maxima beyond a temperature threshold of 85°C and with a minimum 
negative derivative of fluorescence over temperature (−dF/dT) value of 4. In this context, 
a “Positive” melt curve designates an instance where the presence of a particular fungal 
target is anticipated, whereas the remaining instances are categorized as “Negatives.”

Leveraging these identified “Positive” melt curves, a data set for machine learning 
purposes was constructed. Each time series within this data set represented a derivative 
melt curve that was smoothed using a Savitzky-Golay filter with the following parame
ters: a window length of 9 and a polynomial order of 3. These time series were then 
normalized using area under the curve normalization.

Machine learning

We constructed a model based on our established database of organisms. This approach 
consists of a two-step procedure. The data set we employed comprises a comprehensive 
set of 10,000 melt curves attributed to each distinct organism. Within this data set, a 
subset of 10%, equating to 1,000 random melt curves, was selected and subjected to 
a time series Dynamic Time Warping (DTW) distance-based K-means clustering process, 
yielding a culmination of up to 50 representatives (21–23). Clusters housing fewer than 
10 melt curves were excluded from consideration due to their susceptibility to noise-rela
ted interference. Owing to the substantial variability and inherent noise within the melt 
curves, we employed the K-means clustering technique as the initial step to identify 
pivotal clusters of variation, thereby yielding corresponding cluster centers that serve as 
robust and condensed representations of signals. These cluster centers are referred to as 
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“DB representatives” in the flow charts in Fig. 2. The subsequent classification considers 
each cluster separately.

Another point to note is that instead of using the usual Euclidean distance-based K-
means, we use DTW for both the cluster assignment and the averaging step of K-means. 
Temporal distortions (or shift) along the temperature (or time) axis causing well-to-well 
as well as chip-to-chip variations in melt curves are something inherent in HRM (13, 15, 
24) and can be dealt with by using the various elastic distance measures for time series—
among which the most popular one is DTW (13, 25) and its variations (26, 27). More 
specifically, as we use DTW distance, we employ a more suitable DTW-based Barycenter 
Averaging technique, as proposed by Petitjean et al. (23), for the K-means averaging step.

Subsequently, the second phase (Fig. 2) entailed the development of a classifier 
grounded in a 3 nearest neighbor (3NN) framework, leveraging the Euclidean distance as 
the defining metric. In this step, each test curve underwent alignment with every 
representative curve curated from the database (see blue boxes in Fig. 2a and b). 
Consequently, the KNN model was executed to discern the three nearest neighbors for 
each aligned test curve (see pink boxes in Fig. 2a and b) (28). The alignment procedure 
was deemed necessary to account for the potential shift-based discrepancies present 
among melt curves.

The outcome of this model provides predictions wherein concordance among the 
majority of neighbors designates a high-confidence classification. Conversely, instances 
in which all three nearest neighbors correspond to dissimilar organisms are categorized 
as low-confidence and consequently disregarded. Low-confidence instances can 
originate from either noisy signals or from novel curves that remain unrepresented 
within the existing database. The performance of classification was quantified through 
the assessment of accuracy for each organism.

Although in the literature, the terms novelty detection (ND), anomaly detection (AD), 
and outlier detection (OD) have been used interchangeably; AD and OD usually refer to 
noisy or erroneous signals while ND usually refers to a positive learning opportunity. That 
is, the novel point is treated as a resource for potential future use (29–31). Currently AD, 
ND, and OD are being studied under the common framework of Generalized Out of 
Distribution Detection (OOD) (32). Specifically for time series data, there is a significant 
amount of literature on AD but this research primarily focuses on finding point or 
subsequence anomalies within a large time series (33). As we have a larger number of 
smaller length time series, we consider each time series (melt curve) as a separate data 
point. We then use a distance-based OOD methodology for novelty detection [see 
section 5.3 of reference (32)] where the test curve is checked if it is outside of a certain 
standard deviations (threshold) away from each of the nearest three DB representatives 
(class cluster centers) obtained via 3NN step described above. If this check is successful, 
then the test point is certified as out of distribution and labeled as “novel.”

Furthermore, when dealing with patient samples, their time series were initially 
clustered utilizing the Euclidean-based K-means method (Fig. 2B, top left). The resultant 
cluster centers were then subjected to classification leveraging the pre-constructed 3NN-
based classifier designed for the database curves.

Patients and samples

In this retrospective case control study, banked BALF samples originated from patients 
with various underlying diseases and clinical suspicion of invasive pulmonary aspergillo
sis (IPA) or IMI and GM and Aspergillus spp. culture testing ordered between 2015 and 
2019 at the University of California San Diego (UCSD). IMI was classified according to the 
revised European Organization for Research and Treatment of Cancer (EORTC)/Mycoses 
Study Group (MSG) criteria (34) and slightly modified AspICU criteria (35) [i.e., including 
positive BALF fluid GM of 1.0 optical density index (ODI) as entry criterion (36, 37)] for 
patients in the intensive care unit (ICU) who did not fulfill EORTC/MSG host criteria. GM 
testing with the Platelia enzyme-linked immunosorbent assay (Bio-Rad Laboratories, 
Marnes-la-Coquette, France) was routinely and prospectively performed in all BALF 
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samples before samples were stored at −70°C for up to 8 years. Based on classification, 
we retrospectively tested 75 patient BALF samples: 30 from patients diagnosed with 
proven (n = 1), probable (n = 25), or putative (n = 4) IPA infections and 45 from patients 
diagnosed as limited evidence or as not having IPA (n = 10 not classifiable, n = 4 possible 
IPA, and n = 31 classified as no IPA). Not-classifiable samples tested positive for mycologi
cal evidence and came from patients with clinical suspicion of IMI who did, however, not 
fulfill host factor criteria and/or did not present with typical radiological signs and were 
not admitted in the ICU. Direct β-actin PCR was used to access lavage quality according 
to previously published methods (38–40). Two samples (n = 1 possible and n = 1 no IPA) 
were excluded due to no human DNA being detected.

Novelty detection and micromanipulator interrogation

Novel curves that were unrepresented within the existing database were identified 
with ML as described above. These curves’ physical X-Y on-chip coordinates were then 
identified using Melio Melt Inspector software (MelioLabs Inc., Santa Clara, CA, USA). A 
custom micromanipulator setup then sampled the target amplicons from individual or 
clusters of wells using a glass capillary. Sampled amplicons were either reamplified with 
Asp-ITS primers or sent directly for Sanger sequencing. Reamplified Asp-ITS dPCR chips 
were used to demonstrate the process of adding novel organisms to the established 
database.

FIG 2 Machine learning process. (a) Flowchart for database sample testing. (b) Flowchart of patient sample testing differentiating between database 

classification and novelty detection.
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RESULTS

Fungal U-dHRM assay development and analytical validation

To develop a universal PCR assay for fungal detection, we first selected primers targeting 
conserved sequence regions flanking the ITS1–ITS4 barcoding region of the fungal 
genome (Fig. S1) and tested their ability to amplify 21 clinically relevant organisms 
(Fig. 3). We started with Aspergillus spp., since it is the most prevalent IMI pathogen 
worldwide, and Candida spp., the most prevalent commensal genus, and began testing 
the ITS primers.

However, Aspergillus spp. were not consistently amplified by our ITS primers and the 
efficiency of this region for detection of Aspergillus spp. isolates is not optimal. Further
more, the ITS1–4 region is not sufficient for discriminating between many individual 

FIG 3 Clinically relevant fungi, including rare molds, used to develop universal assay (1, 9, 41–58).
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Aspergillus spp. and has been shown to not amplify in certain isolates (59–61) (Fig. S2). 
Since Aspergillus spp. are one of the most clinically relevant fungal pathogens in the US 
but also globally, we next selected an Aspergillus-specific primer set targeting the 18S 
rDNA gene, which harbors species-specific sequence differences (Fig. S3).

This primer set was multiplexed with the ITS primer set, and the assay was tested 
for its ability to amplify the 21 species in . Our Scopulariopsis spp. isolates were not 
consistently amplified which has been observed previously (61), while Scedosporium 
apiospermum isolates produced variable melts indicating multiple organisms (Fig. S4), 
and neither of these were added to the final database. Ultimately, 19 species were 
amplified and sequenced in qPCR and produced reliable melt curve signatures in 
U-dHRM. Figure 4 shows the digital melt curve signatures for each organism and their 
average curve in black.

Next, we conducted analytical validation studies on Aspergillus spp. and Candida 
spp. to assess the overall detection capability of the assay in combination with sample 
preparation starting from a real sample matrix. Mock samples were created by spiking 
whole organisms into pig BALF over a concentration range of approximately 1 × 105–
1×10°CFU/mL and no spike controls. Host DNA depletion and pathogen DNA extraction 
were carried out using MolYsis Complete5 per manufacturer’s instructions. Then, the 
extracted DNA was loaded onto dPCR chips with the multiplexed Asp+ITS universal 
fungal assay and amplification was performed prior to dHRM analysis (Fig. S5). Fungal 
melt curve counts showed good linearity of quantification (r2 = 0.99) for Candida and 
Aspergillus spp. (Fig. S6A and B). However, Aspergillus spp. detection was 10-fold lower 
than expected and Candida detection was 10-fold higher than expected, based on 
spore counting and plating. To test if this difference could be attributed to Aspergillus 
spp. being more difficult to lyse or whether it reflected assay sensitivity differences, we 
conducted Aspergillus spp. DNA dilution series experiments. This showed that the assay 
alone maintained high linearity of detection down to ~10 copies/chip or 25 pg/mL (Fig. 
S6C).

Database generation and algorithm training

To determine whether fungal organism digital melt curves (Fig. 4) could be reliably 
and automatically recognized by a ML algorithm, a database of >150,000 curves of all 
combined organisms comprising biological and technical replicates n ≧ 3 for each of 
the 19 pathogens was generated on dPCR chips. Fig. 2a and b depicts the ML flowchart 
comparison for testing database curves versus clinical unknown or novel curves. The 
classification performance of a ML algorithm that combines dynamic time warping and 
Euclidean distance-based metrics was assessed in cross-validation studies (27).

Recall was assessed and plotted as a confusion matrix in Fig. 5a. This revealed that 
Aspergillus spp. were not reliably discriminated within the genus, while all other species 
were reliably classified. Among Aspergillus spp., cross-validation showed that an overall 
accuracy (F-score, a combination of precision and recall) of about 60% was achieved 
(Table S1). This can be explained visually by overlaying representative curves from 
each species, which are quite similar (Fig. 5b), due to few sequence differences (Fig 
S3). An overall accuracy of 86% was achieved across the 19 organisms with Aspergillus 
spp. treated as separate classes (Table S2). Grouping Aspergillus spp. into a single class 
(Fig. 5c) at the genus level resulted in a significant improvement in the F-score for 
Aspergillus spp. (90%, Table S3), and an overall accuracy for all classes of 97% was 
achieved. The associated confusion matrix (Fig. 5d) shows only 3.4% misclassification 
overall (5,059/150,752), with the most occurring between M. circinelloides and Aspergillus 
spp. when the Aspergillus genus is the true class (7.2%, 768/10,657). Representative melt 
curves for each organism class are shown in Fig. 5e.
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FIG 4 Digital melt curve database for 19 organisms. Asp and ITS primers were multiplexed in U-dHRM, and the assay was tested for the detection and 

melt-based discrimination of 19 organisms: (a–e) Candida spp., (f) Cryptococcus spp., (g) Lomentospora spp., (h) Fusarium spp., (i–k) Mucor spp., (l–m) Rhizopus 

spp., and (n–s) Aspergillus spp. Yeasts are blue/green; molds are orange/red/gray.
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FIG 5 Machine classification performance on fungal melt curve database and curves. A. flavus (AFl), A. fumigatus (AFu), A. nidulans (ANiD), A. niger (ANiG), 

Aspergillus terreus (ATe), Aspergillus versicolor (AVe), grouped Aspergillus spp. (Asp), C. albicans (C. Al), C. auris (Cau), C. glabrata (CGa), C. krusei (CKr), C. parapsilosis 

(CPa), C. Neoformans (CrN), F. oxysporum (FuO), L. prolificans (LoP), M. circinelloides (MuC), M. plumbeus (MuP), M. velutinosus (MuV), R. arrhizus (RiA), and R. 

microsporus (RiM). (a) Confusion matrix with individual Aspergillus spp. (b) Aspergillus spp. average curves overlap. (c) Grouped Aspergillus spp. average curve 

overlap. (d) Confusion matrix with grouped Aspergillus. (e) Average curves of grouped Aspergillus genus and all average curves of 13 other spp.
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FIG 6 U-dHRM pathogen detection statistics in patient samples. (a) Pathogen distribution by IMI diagnosis classification. Others are defined as yeasts in the 

U-dHRM database or unknown novel organisms (b) U-dHRM detection of Aspergillus in suspected IMI cases ordered left to right by decreasing confidence of 

suspicion by IPA classification. (c) U-dHRM detection of Aspergillus in combined highest, medium, and low suspicion. (d) Examples of Aspergillus detection by 

U-dHRM in BALF. Concordant Aspergillus detection examples in patients with no IPA, probable IPA (treated at the time of collection and culture negative and 

untreated at the time of collection and culture positive), and proven IPA. Correlations with routine mycological test results show that more Aspergillus curves 

were detected in the patient with probable IPA who had both positive BALF GM and positive culture, versus the other patient with probable IPA who had only 

positive BALF GM.
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Clinical BALF sample analysis

Overall performance for pathogenic mold detection

SinceU-dHRM achieved an average of 97% fungal organism identification accuracy and 
a turnaround time of 4 hours in analytical studies, we moved forward with clinical 
sample studies. In total, 73 remnant-banked BALF samples that were collected due 
to suspicion of IMI were analyzed by U-dHRM and compared with clinical diagnostic 
classifications (Fig. 6). U-dHRM measured a range of fungal melt curves corresponding to 
101–105 CFU/mL and detected pathogenic molds (Aspergillus, Mucorales, Lomentospora, 
and/or Fusarium spp.; ≧1 curve or 11 CFU/mL) in 73% (53/73) of all the samples (Fig. 
6a). In addition, Candida spp. were detected in 88% (64/73) of all samples, while 12% 
(9/73) had non-Candida yeasts as well. We note that there was no apparent association 
between human β-actin cycle threshold (Ct) and concentration of fungi detected by 
U-dHRM or BALF sample volume and concentration of fungi detected by U-dHRM (Fig. 
S7). In 19% (14/73) of samples, mixtures of pathogenic molds were detected (Fig. 6a). 
Examples of curve signatures detected by U-dHRM and identified by ML in the clinical 
BALF samples and their closest matching database curve are shown in Fig. S8. Of the 
samples considered positive for IMI, U-dHRM detected pathogenic molds in 73% (1/1 
proven, 17/25 probable, and 4/4 putative). In samples that were not classifiable for IMI, 
U-dHRM detected pathogenic molds in 90% (9/10). However, in samples considered 
negative or without mycological evidence for IMI, U-dHRM detected pathogenic molds in 
67% (1/3 possible; 21/30 no). These samples were considered negative for IMI predomi
nantly because of GM and culture negativity as well as the absence of host factors, but 
nonetheless, they were collected due to some clinical suspicion of IMI. These results 
suggest that U-dHRM has good sensitivity for IMI, as defined by the current diagnostic 
criteria, when host risk factors are also considered. Specificity was optimized by requiring 
the number of pathogenic mold curves detected in a sample to be >8 and sample 
volume to be 1 mL, which resulted in a subset of 43% detection in criteria-matching 
positives (6/14), 50% (5/10) in not classifiable, and 0% detection in negatives (0/21) .

Aspergillus detection by U-dHRM compared with culture and GM

A summary of Aspergillus spp. detection by U-dHRM compared with clinical diagnostic 
criteria is shown in Fig. 6b and c. Of all the samples that cultured Aspergillus spp., U-dHRM 
detected Aspergillus spp. melt curves in 61% of positives (1/1 proven, 4/9 probable, 
and 3/3 putative), 0% of not-classifiable (0/2) cases, or no IPA (0/1 no). Considering 
only samples from proven, probable, and putative cases that were culture+, GM+, and 
antifungal treatment−, U-dHRM detected Aspergillus spp. melt curves in 78% (7/9). 
Examples of Aspergillus spp. melt curves from patient samples that correlated with 
routine mycological test results are shown in Fig. 6d. The highest Aspergillus spp. load 
was detected in the patient with proven IPA, and the second highest load was detected 
in a patient with probable influenza-associated pulmonary aspergillosis.

U-dHRM also detected Aspergillus spp. in some samples that did not culture 
Aspergillus spp.: 10% (2/19) probable, 12% (1/8) not classifiable, and 28% (8/29) no IPA. 
In samples that did not culture Aspergillus spp., other pathogenic molds were often 
detected by U-dHRM alone or in combination with Aspergillus spp.: other molds were 
detected in 71% of probable and putative cases (12/17), 70% (7/10) not classifiable cases, 
and 67% (22/33) of possible and no IPA cases.

Differentiation between Aspergillus spp. and Fusarium spp. by U-dHRM in 
GM-positive samples

Of all the GM+ samples, U-dHRM detected GM-producing organisms Aspergillus and/or 
Fusarium spp. in 54% (21/39). Mixtures of Aspergillus and Fusarium spp. were detected in 
8% (3/39).

In GM+/Aspergillus spp. culture+ samples, Aspergillus spp. alone were detected in 36% 
(5/14) and Fusarium spp. alone in 7% (1/14), while both were detected in 21% (3/14). 
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In GM+/Aspergillus spp. culture- samples, Aspergillus spp. were detected in 12% (3/25) 
and Fusarium spp. in 36% (9/25), while both were detected in 0% (0/25). These results 
are depicted in Fig. 7a and b. An example of multiple pathogen detection including 
Aspergillus and Fusarium spp. melt curves from a patient sample is shown in Fig. 7c.

Detection of pathogenic molds in the absence of Aspergillus

In samples where no Aspergillus spp. was detected by U-dHRM, other pathogenic molds 
were detected in putative 1/1 (100%), probable 11/19 (58%), not classifiable 89% (8/9), 
possible 33% (1/3), and no IMI 55% (12/22) cases.

Mucorales detection

Fungal pathogens in the Mucorales order were detected in 42% (31/73) of all samples. 
Mucorales was detected in 31% (8/26) of the proven/probable IMI cases, 50% (2/4) 
putative cases, 40% (4/10) not classifiable cases, 33% (1/3) of the possible cases, and 

FIG 7 Aspergillus and Fusarium co-detection. (a) Aspergillus and Fusarium detection distribution by GM and culture positivity. Others are defined as yeasts in 

the U-dHRM database or unknown novel organisms. (b) U-dHRM detection of GM-producing spp. compared with clinical GM status. (c) Representative raw melt 

curves from a clinical sample where Aspergillus, Mucor, Fusarium, and Candida were co-detected. Organism quantification by U-dHRM was: 8.9 × 102 CFU/mL 

Aspergillus, 3.3 × 101 CFU/mL F. oxysporum, 7.7 × 101 CFU/mL M. veluntunsosis, 2.7 × 102 CFU/mL C. parapsilosis, and 3.1 × 102 CFU/mL novel organisms (not 

shown).
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53% (16/30) of the samples classified as no IMI. Under optimal specificity criteria (>8 
pathogenic mold curves detected and sample volume at least 1mL), this subset of 
detection dropped to 15% (2/13) in proven/probable IMI cases, 100% (1/1) of putative 
cases, 30% (3/10) of not classifiable cases, and no detection in possible cases or samples 
classified as no IMI.

Co-detection of ≧1 curve for multiple Mucorales spp. occurred in 10% (7/73) of 
samples, with the highest rate in possible at 33% (1/3), followed by not classifiable at 
20% (2/10), no IMI at 10% (3/30), and probable at 4% (1/25) , with proven and possible 
at 0%. Co-detection of Mucorales and Aspergillus spp. occurred in 11% (8/73) of samples, 
with the highest rate in putative at 50% (2/4) followed by samples classified as no IMI at 
13% (4/30), and proven/probable at 8% (2/26), with no co-detection in those classified as 
possible and those classified as not classifiable. These results are depicted in Fig. 8a and 
b. An example of co-detection of Mucorales spp., including melt curves from a patient 
sample representing discordant mold diagnosis, is shown in Fig. 8c.

Identification of organisms generating novel fungal melt curves

A unique feature of the U-dHRM-trained ML algorithm is its ability to automatically 
detect novel organisms by their distinct melt curve shapes compared with common 
pathogen curves represented in the database (see Materials and Methods). Ninety-six 

FIG 8 Mucorales detection. (a) Aspergillus and Mucorales detection distribution by IMI diagnosis classification. Others are 

defined as fungi and yeasts in the U-dHRM database or unknown novel organisms. (b) U-dHRM detection of Mucorales 

and potential co-infection in proven, probable, and putative IMI cases. (c) Discordant mold diagnosis example showing 

representative raw melt curves from patient BALF sample. Curves are shown for Mucor, Fusarium, and Candida for visualization 

purposes with the following quantifications: 6.6 × 101 CFU/mL C. albicans (blue), 3.3 × 101 CFU/mL C. glabrata (blue), 3.3 × 

102 CFU/mL M. circinelloides (red), 7.7 × 101 CFU/mL R. arrhizus (orange), 6.6 × 101 CFU/mL F. oxysporum, and 1.2 × 102 novel 

organisms (not shown).
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percent (70/73) of the BALF samples tested produced melt curves that confidently 
matched to the U-dHRM database of common pathogens. However, a few patient 
samples generated fungal melt curves that did not match the database and were 
called novel by the algorithm. To identify the organisms generating these curves, a 
micromanipulator was used to recover individual digital reactions and sequence their 

FIG 9 Novel melt curve identification and algorithm retraining. (a) Novel fungal melt curves Trichosporon asahii (dark-gray) 

and Saccharomyces cerevisiae (light-gray) identified by ML for patient sample IFI 004. Diagnostic information for this patient 

is shown in the adjacent gray box. (b) Screenshot of the Melio Melt Inspector software used to find the specific XY location 

of the wells on-chip harboring novel amplicons. (c and d) Schematic and photograph of the micromanipulator positioning 

a micropipette into the target well for novel amplicon collection. (e) Fluorescent micrograph of chip after micropipette 

extraction of reaction from the target well. (f) U-dHRM melt curves generated by re-amplification of the novel amplicon for 

database expansion and training of the ML algorithm.
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amplicons. Figure 9 demonstrates the application of this new technique to a patient 
sample where novel melt curves dominated U-dHRM results (Fig. 9a). Custom software 
was used to determine the XY position of novel curve-generating wells (Fig. 9b), and 
wells were sampled by using a micromanipulator (Fig. 9c) to position a micropipette 
into the target well (Fig. 9d) and extract the reaction containing novel amplicons (Fig. 
9e). In this sample, Trichosporon asahii and Saccharomyces cerevisiae (Fig. 9a, dark- and 
light-gray curves, respectively) were identified. Using the recovered T. asahii amplicons 
as template, U-dHRM was conducted to generate database curves for training the ML 
algorithm to automatically identify this organism in future samples Fig. 9f. Table S4 
describes other patient samples where novel amplicons were recovered and identified, 
including potentially causative pathogens and commensal yeasts Pneumocystis jirovecii, 
Sporobolomyces salmonicolor, Saccharomyces cerevisiae, Epicoccum nigrum, and Candida 
inconspicua. This process avoids the need to culture amplify isolates, which is important 
considering the low sensitivity of BALF culture and potential fastidiousness of novel 
organisms. Additionally, it will further expand the database while limiting the occurrence 
of future unidentifiable melt curves, thus minimizing the need for future sequencing, 
which in turn affects the TAT.

DISCUSSION

In this study, all patients who had BALF collected were suspected of having fungal 
infection, and it was determined necessary to order GM and culture testing. U-dHRM 
detected potential fungal pathogens in 73% of 30 samples classified as positive (proven, 
probable, or putative) for IMI, including mixed infections. However, it also detected 
potential fungal pathogens in 67% of cases considered negative (possible or no) IMI. 
Specificity was optimized by requiring the number of pathogenic mold curves detected 
in a sample to be >8 and a sample volume to be 1 mL, which resulted in 100% specificity 
in 21 at-risk patients without IMI. U-dHRM also showed high sensitivity and specificity in 
analytical validation experiments. One explanation for the seemingly high false positive 
rate of detection by U-dHRM is that the presence of an organism could indicate infection 
or could represent colonization or components of the lung mycobiome. Quantitative 
melt curve cutoffs may be useful to distinguish infection from colonization and could 
be used for monitoring of organism loads and community proportions. The fact that 
evaluating the performance of new diagnostic tests for IMI is difficult may have also 
contributed to the discrepancy, arising from the limitations of comparing these new 
modalities to imperfect gold standard clinical tests, the rarity of autopsy-proven IMI, and 
the ongoing debate over the accuracy of diagnostic classifications (62). For example, the 
sensitivity of culture from BALF has been reported to range from 30% to 60%, even in 
patients with proven Aspergillus pulmonary infection (63, 64), while meta-analysis for the 
sensitivity of GM testing in BALF reports a range of 78%–88% (65). Combining culture 
and GM tests in an “and” manner results in an overall sensitivity of 23%–53%. Imperfect 
gold standard tests can contribute to an appearance of high false positives in new tests.

U-dHRM results were not particularly well correlated with GM positivity or Aspergillus 
spp. culture results, neither of which correlated well with each other. However, U-dHRM 
did demonstrate strong agreement with clinical mycology tests in general and showed 
good sensitivity for IMI, as defined by current diagnostic criteria, when host factors were 
also considered. When considering samples from proven, probable, and putative cases 
that were culture+, GM+, and antifungal treatment−, U-dHRM performed well, detecting 
Aspergillus spp. melt curves in 78% (7/9). A significant proportion (43% 13/30) of proven, 
probable, and putative IPA patients were on antifungal therapy at the time of collection, 
which might have decreased the number of organisms present in the BALF fluid, thus 
impairing identification by U-dHRM. It has been posited in other fungal PCR studies 
that highly potent antifungal therapy and new prophylactic treatment schemata’s may 
reduce fungal load to undetectable amounts in the extravascular compartments (66).

U-dHRM detected Aspergillus spp. in 61% (9/13) of culture-positive samples from 
patients with IPA; the method also detected Aspergillus spp. in 19% (11/58) of 
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culture-negative samples. Only 9% of total eluted DNA from each clinical sample was 
analyzed, which could have impacted the assay’s sensitivity. The presence of viable 
but non-culturable organisms may also explain this finding. MolYsis sample process
ing upstream of U-dHRM analysis utilizes selective lysis, DNase, and filtration steps to 
degrade host and cell-free DNA and enrich for intact organisms, which allows U-dHRM 
to detect organisms that are intact but may not grow in culture. The sample processing 
may have also contributed to some discrepancies, since culture was conducted at the 
time of sampling but U-dHRM was conducted after samples had been frozen and stored 
for up to 8 years. Freezing and long storage may have led to organism lysis, and DNA 
degradation prior to sample preparation and MolYsis treatment, which degrades cell-free 
DNA, could have contributed to missed detections by U-dHRM, explaining some of 
the negative results in patients with prior Aspergillus detection by culture. Analytical 
study results also suggest that the lysis step prior to U-dHRM could be improved to 
facilitate higher sensitivity for difficult-to-lyse organisms like Aspergillus spp. (67). One 
such example would be to include intensive bead beating, as has been developed by 
the European Aspergillus PCR Initiative for the extraction of Aspergillus DNA from whole 
blood, serum, and plasma (68). An additional consideration for discrepancies between 
U-dHRM and GM results is the possibility of organism clearance when antigen levels are 
high or the presence of organisms before antigens are developed during active growth. 
Importantly, in cases where GM positivity did not correlate with Aspergillus spp. detection 
by culture, U-dHRM results occasionally provided potential explanations by detecting 
other GM-producing organisms such as Fusarium and Trichosporon spp. (69).

With BALF culture showing limited sensitivity for detecting pulmonary fusariosis 
(51), Fusarium spp. infections resulting in GM positivity can lead to a false diagnosis of 
probable IPA and incorrect or inadequate antifungal treatment for these highly resistant 
pathogens. In San Diego, Fusarium spp. have been shown to be a frequent cause of rare 
mold infections (55). U-dHRM had higher detection of Fusarium in GM+ samples that 
did not grow Aspergillus spp. in culture. Also, the ability of U-dHRM to detect multiple 
common pathogens, even in mixtures, has potential to identify mixed infections and 
improve treatment decisions. For example, in a patient classified as probable for IPA 
with positive GM and Aspergillus spp. culture results, U-dHRM detected Aspergillus spp. 
in concordance with these results but also detected F. oxysporum and M. velutinosus 
at similar abundances (8.9 × 102 CFU/mL Aspergillus, 3.3 × 101 F. oxysporum, 7.7 × 101 

CFU/mL M. velutinosus, and 2.7 × 102 CFU/mL C. parapsilosis). While at the time of BALF 
collection, this patient had not received antifungal treatment, the patient subsequently 
received treatment for IPA with voriconazole (which likely covered F. oxysporum but not 
M. velutinosus) and passed away within a week, with no autopsy performed. In this 
case, U-dHRM results may have influenced treatment to include antifungals targeting 
M. velutinosus. In another example, U-dHRM detected a mixture of different Mucorales 
spp. in a patient with suspected IMI but negative GM and Aspergillus spp. culture results. 
Of note, one of the species detected, M. circinelloides, commonly shows higher MICs 
against isavuconazole and posaconazole, complicating therapy (70). While IPA can be 
diagnosed with the presence of host factors, clinical symptoms, radiological findings, and 
mycological evidence of Aspergillus either in culture or by detection of GM, other IMIs 
can mimic the clinical presentation of IPA, with mycological evidence mostly limited to 
insensitive culture or histology.

U-dHRM yielded a high positive rate (53%) for Mucorales in BALF from patients 
determined to be negative for IMI. However, clinical diagnosis relied heavily on culture 
(no PCR was used), which often yields false negative results from patients with mucor
mycosis because of hypha fragmentation during sample processing (71). Mucormycosis 
is the most frequent rare mold infection in San Diego (55), and reported local rates 
were based on culture only. It is therefore likely that many people in San Diego 
are exposed to some extent. Implementing a curve number threshold in U-dHRM 
to remove all Mucorales detection in the negative population left six cases in other 
diagnostic categories that exceeded the cutoff (two probable, one putative, and three 
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not classifiable cases). Quantitative cutoffs and monitoring over time therefore seem 
necessary as U-dHRM detection in BALF may not always indicate infection but also 
colonization/components of the lung mycobiome. Even the detection of Mucorales as 
a colonizing agent could inform treatment decisions. For example, in a patient with 
Aspergillosis infection who also has Mucorales colonization, likely an antifungal agent that 
covers Mucorales at least to some extent would be selected.

The ability of U-dHRM to detect novel fungal organisms also demonstrated diagnos
tic value in this patient cohort. Several patient samples contained more novel melt 
curves than curves from common pathogens. The ability to recover these amplicons for 
same-day Sanger sequencing enabled the fast identification of emerging pathogens of 
clinical significance. In one case, using this method resulted in the identification of T. 
asahii as the dominant organism in the BALF of a patient classified as probable for IPA 
with positive GM and negative culture who had already received 42 days of micafungin. 
U-dHRM did not detect Aspergillus spp. in that patient. T. asahii is resistant to micafungin 
and can cause positive GM. It is an emerging pathogen that is rarely identified in clinical 
practice but often causes fatal infections in immunocompromised individuals due to 
being misdiagnosed as other types of fungal infections and because of its resistance 
to many front-line antifungals (72). This particular patient was never diagnosed with 
or treated for T. asahii and passed away, suggesting that U-dHRM could have provided 
critical diagnostic value with high impact for this patient.

Overall, the performance of U-dHRM suggests that it could represent a promising 
advance in molecular pathogen detection strategies for IMI. Previously, broad-based 
qPCR followed by sequencing has shown promise for improving the detection of rare 
molds, but this approach is recommended only when fungal elements are seen by 
histopathology due to sensitivity limitations (34). Also, the presence of multiple fungal 
species can lead to the detection of only the dominant species or failed detection 
altogether (73, 74). U-dHRM distinguishes itself by implementing broad-based PCR in 
a higher sensitivity dPCR format. Implementation of melt analysis in a digital format 
enables identification and counting at the single genome level, even in polymicrobial 
samples, and eliminates template amplification competition and efficiency biases. This 
format allows extensive melt curve training data to be rapidly generated, unlocking the 
power of machine learning through big data for automated melt curve identification to 
rapidly identify and quantify the sequences of all the common pathogens in the sample 
individually. Only novel organism curves of high abundance warrant interrogation by 
sequencing, saving time and expense. U-dHRM technology allows for a broader snapshot 
of the patient pathobiome, including more sensitively detecting and discriminating 
causative species. The quantitative nature of U-dHRM results also highlight the potential 
for monitoring over time to track mixed infections, measure effectiveness of therapies, 
and aid in discriminating between true infection (growth) and colonization (stasis).

Based on total curve counts per chip and Poisson theory, we estimate that approxi
mately 10% of samples (7/73) had 1.6% of total wells with double occupancy. So multiple 
organism curves could have overlapped in these wells, which may generate multiplexed 
curves that would be called novel. Running U-dHRM on a dilution of these samples 
overcomes this challenge. ML could also be potentially trained on combined melt curves 
in multiple occupancy wells. Also, Aspergillus spp. curves were not reliably differentiable, 
indicating that the sequence diversity of the Aspergillus specific amplicon generated 
by the selected primers was not sufficient. Future studies should re-engineer the assay 
to ensure sufficient sequence diversity to yield distinguishable melt curve shapes. For 
example, the β-tubulin gene may offer a promising alternative for suptyping Aspergillus 
and Scedosporium (60).

Conclusions

The promising performance and speed of U-dHRM and its ability to simultaneously 
identify and quantify clinically relevant mold pathogens in polymicrobial samples as 
well as detect emerging opportunistic pathogens may provide information that could 
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aid in treatment decisions and improve patient outcomes. For BALF, U-dHRM may be 
useful as a parallel test in high-prevalence areas/populations to maximize sensitivity or 
as a test conducted serially after other tests in areas/populations of low prevalence to 
maximize specificity. Future studies will be run on freshly obtained BALF samples instead 
of remnant banked samples to further evaluate the sensitivity of U-dHRM as well as 
the host depletion influence on possible loss of microbial reads. Concurrent BALF and 
blood samples will be assessed to provide to help discriminate angioinvasive infections 
(75). Sampling from timepoints before and after IMI classification would aid in evalu
ating U-dHRM’s diagnostic power compared with the gold standard tests, diagnostic 
classifications, and response to treatment. While our study has shown the potential of 
this method to aid IMI diagnosis, all these measures could also help to establish a reliable 
cutoff for improving specificity for infection versus colonization and thereby accuracy.
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