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Abstract

The populations of endangered species, such as African and Asian elephants, are declining
due to habitat loss, fragmentation, and poaching. Driven by the ivory trade, poaching involves
the unlawful killing of animals, posing a significant threat to elephant populations. Due
to funding shortages in wildlife conservation, analysing research data has emerged as a
cost-effective solution for decision-making in protecting wildlife species. Wildlife research
data are typically collected on a project-specific basis, leading to the creation of data silos.
Addressing key conservation questions often requires unified access to diverse data sources.
For example, accessing elephants’ tracked movements alongside environmental data during
the dry or wet season can help predict whether they are heading towards locations that expose
them to poachers.

This research introduces a novel approach that employs semantic web technologies
to integrate heterogeneous wildlife data from the forests of Sabah in Malaysian Borneo.
A review of Open Data Observatories and their data management methods identified the
Semantic Web as an effective approach to breaking wildlife research data silos. Consequently,
the Forest Observatory Ontology (FOO) was developed to standardise sensor-monitored
wildlife data for integration. FOO was populated with four heterogeneous wildlife datasets
to construct knowledge graphs. Predictive models derived from these knowledge graphs
were used to predict elephants’ geo-locations and poaching likelihood, providing a proactive
tool for conservationists. To extend the research, the generalisation of the methodology to
different domains was explored by developing and populating another ontology for Internet
of Things (IoT) data marketplaces, enabling on-demand data purchasing.

This doctoral research contributes to wildlife data management by analysing Open Data
Observatories to identify optimal approaches for integrating data. It develops the Forest
Observatory Ontology (FOO) and its associated knowledge graphs to standardise and unify
wildlife data generated by sensors. Using the constructed knowledge graphs, the research
creates predictive models for poaching through deep learning and semantic reasoning.
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Chapter 1

Introduction

1.1 Motivation

Many populations of endangered species, such as elephants, are declining due to habitat loss,
fragmentation, and poaching [157, 106, 3]. Also, conflicts between humans and elephants
sometimes escalate, leading to injuries and death on both sides. Forest fragmentation
occurs mainly due to human activities such as logging, agricultural expansion, infrastructure
development, and urbanisation. These activities break large, contiguous forests into smaller,
isolated patches, leading to habitat loss and limiting elephants to smaller and more vulnerable
populations. Poaching, on the other hand, refers to the unlawful killing and capturing of
animals. Despite continuous conservation efforts to curb and combat poaching, this crime
keeps happening [153, 70, 252].

Both African and Asian elephant species are under constant threat from poaching due
to the profitable ivory trade. IUCN (International Union for Conservation of Nature) recog-
nises two distinct species of African elephants, the savannah elephant (Loxodonta africana),
classified as endangered, and the forest elephant (Loxodonta cyclotis), listed as "critically
endangered" on the IUCN Red List [93, 33]. Since the early 2000s, the African elephant pop-
ulation has experienced significant declines, with approximately 415,000 individuals living
in 37 African countries [5]. The Asian elephant (Elephas maximus) species is distributed
across 13 countries in Asia and is also classified as endangered, with a decreasing population
estimated to be between 36,000 and 50,000 individuals [205, 157].

Elephants are the ecosystem engineers who reshape forests with their travelling and
feeding habits [184]. As they move between the forest corridors, tall trees are knocked down,
creating grasslands and savannas that allow other species to thrive. As mega-herbivores,
the germination process taking place in their digestive systems releases dung that is rich in
seeds, enabling widespread seed dispersal [142, 126, 25]. From an economic point of view,
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elephants are one of the pillars of wildlife tourism that yields decent income and opens jobs
for many people in some developing countries [182]. Culturally, elephants are revered in
many societies. They are featured prominently in religion, mythology, and national symbols
[109].

Wildlife conservation bodies in developing countries often face resource limitations,
understaffing, and chronic underfunding [193]. Early research in the 2000s by James et al.
[131] pointed out significant imbalances in conservation funding, with the most biodiverse
regions receiving minimal financial support. In the mid-2000s, Balmford et al. [19] identified
bureaucratic inefficiencies that further limited these scarce resources. Subsequent studies
by McCarthy et al. [171] showed that funding needs to increase by as much as five to ten
times the current levels to manage protected areas effectively. Waldron et al. [257] later
confirmed these financial constraints in developing countries, stressing the mismatch between
the amount of money invested and the ecological value of these investments. If wildlife
conservation bodies were funded similarly to police forces, they could recruit more personnel
(wildlife practitioners and rangers) to expand the area coverage of ranger patrols and enhance
on-the-ground enforcement. Sufficient funds can equip rangers with necessary health and
safety supplies, guaranteed access to reasonable shelter, fresh food, clean drinking water, and
reliable transportation [229].

The shortage of funding for wildlife conservation has led to a shift towards analysing
wildlife research data as a more cost-effective substitute for traditional, resource-heavy
methods. Urbano et al. [247] highlighted the importance of a scientifically informed
approach to decision-making, particularly when conservation resources are limited. Wildlife
research data are typically gathered through various methods, including field surveys, Global
Positioning System (GPS) tracking, motion-activated trail cameras, and low-cost sensors.
Field surveys involve observing animal sightings, tracking signs, and counting animals at
crucial sites. Aerial surveys, conducted using drones allow researchers to spot and count
wildlife from above. GPS collars around elephants’ necks enable park officials to track their
individual or herd locations [135, 128, 62].

Motion-activated trail cameras, triggered by movement, autonomously capture images
or videos of wildlife in their natural environments without human interference. Likewise,
airborne sensors such as digital cameras, Light Detection and Ranging (LIDAR), and imaging
spectrometers can be attached to aircraft to carry out aerial surveys and map wildlife habitats
and populations. Acoustic sensors [220, 117, 18] can detect the sound of gunshots and alert
rangers to the location of potential poaching incidents. A study by Zwerts et al. [283] found
that data-driven approaches using passive acoustic monitoring and motion-activated trail
cameras were more cost-effective and efficient than traditional human observer surveys,
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especially in remote and hard-to-access areas. Developing smaller, lower-cost GPS loggers
and other sensors allows conservation efforts to scale monitoring and data collection across
larger areas, even with limited budgets. This scalability is challenging to achieve with
boots-on-the-ground ranger patrols alone.

1.2 Problem Statement

Wildlife research data are typically collected on a project-by-project basis and often exist
in silos. Data silos happen due to independent data management, analysis, and storage
by different research activities. This data isolation hinders collaboration as groups work
independently, limiting the ability to answer key questions beyond a specific project [167].

Wildlife research data management has recently revolved around systems that focus
on gathering research data from disparate sources [243, 183, 266]. These systems include
Open Data portals like data.gov.uk, which centralise government and institutional data for
public access [161]. Open Data Observatories such as tern.org.au monitor and analyse
domain-specific datasets for trends, and generalist repositories such as zenodo.org archive
diverse scholarly outputs, supporting interdisciplinary research and increasing the visibility
of academic work.

However, data integration methods in some of these systems often lack automated logical
connections between data entities and their relationships. Although various data can be
freely offered by such environments, to the best of my knowledge, no system so far has
offered queryable, integrated, and linked wildlife data for the area and data types used in this
research. Various data-driven methods were employed in wildlife conservation [97, 98, 41].
These methods used Geographic Information Systems (GIS), machine learning, artificial
intelligence, and predictive analytics to understand species migration patterns, formulate
protective measures for at-risk species, optimise conservation resources and detect poaching
intentions. Yuan et al. [278] proposed a study optimising land use and patrol routes using
spatial data and mathematical optimisation to allocate conservation resources strategically.
Complementing this, Park et al. [199] introduced a behavioural model-based anti-poaching
engine that simulates poacher actions to refine patrol strategies dynamically, integrating
predictive behaviour modelling to adapt to evolving poaching patterns. Fang et al. [83]
used historical poaching data and game theory to predict poaching hotspots and incorporated
environmental features to improve patrol efficiency. Predictive and spatial strategies were
deemed helpful in deploying resources where they are most needed.

Furthermore, a study by Gurumurthy et al. [113] combined sparse data with domain expert
knowledge (rangers) to tackle poaching. Zafra-Calvo et al. [279] established a connection
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between the locations of elephant remains and their closeness to roads and protected regions.
Their research findings favoured the inclusion of diverse data into conservation approaches. In
parallel, Chen et al. [43] adopted a multimodal data integration approach for patrol planning
that synthesises geographical, temporal, and specific incident data, thereby broadening the
scope of data utility. Moreover, such data usage is theoretically promoted by Neil et al. [184],
whose agent-based modelling simulates different strategies, assessing their performance in
controlled environments. Further enhancing the data foundation of these models, Rivera
[221] addresses the challenge of unreliable datasets by employing longitudinal analysis
techniques to clean data inputs. Cleaning these unreliable datasets improved their quality and
made them fit for random forest algorithms employed by Jin et al. [133] to predict poaching.
The accuracy of these predictions directly benefits from the enhanced data quality provided
by Rivera’s techniques. Kar et al. [138] focused on modelling adversary behaviour to predict
poaching risks. Their work not only predicts where poaching might occur but also suggests
proactive strategies to mitigate these risks, seamlessly tying into the framework established
by the predictive analytics of Jin et al.

At the corporate level, the World Wildlife Fund’s Elephant Conservation Unit in Malaysia
uses Global Positioning System (GPS) collars, professionally fitted on several elephants
in the forests of Sabah, primarily to reduce human-elephant conflicts. This type of data
and other wildlife information hold untapped potential for further in-depth analysis and
knowledge discovery. Chibeya et al. [48] as such demonstrated that collaring data, combined
with environmental factors, can predict elephant locations during the wet season. Although
these technologies have enhanced animal movement tracking, the underlying reasons for
these movements remain underexplored. There is also a gap in linking diverse wildlife data
with context and advanced algorithms to achieve more accurate poaching prediction.

1.3 Research Questions

This doctoral thesis proposes a novel approach for integrating diverse wildlife data and uses
these integrated data to predict poaching. This research collaborated with the Danau Girang
Field Centre (DGFC) (danaugirang.com), a research and education facility located in the
heart of Sabah, Malaysia, within the Lower Kinabatangan Wildlife Sanctuary. This sanctuary,
spanning approximately 270 km² and situated between E 118°00’ - 118°50’, N 5°20’ - 5°50’,
features a tropical rainforest climate and is home to a variety of endangered species (e.g.,
Bornean elephants (Elephas maximus), orangutans (Pongo pygmaeus), and Sunda pangolins
(Manis javanica)). DGFC focuses on conserving biodiversity and ecosystems in the region
through scientific research. The centre studies how wildlife adapts to fragmented landscapes
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caused by deforestation and human activity. In addition to its research activities, DGFC
provides educational programmes, including internships and field courses for university
students, aiming to train the next generation of conservation scientists and increase awareness
of environmental issues. The main focus of research is on the situation of Bornean elephants
in the Lower Kinabatangan region of Sabah, Malaysian Borneo, which remains a critical
concern as they face the persistent threat of poaching, human-elephant conflict and habitat
loss. Illegal killings and injuries to elephants sometimes occur due to conflicts with farmers.
Elephants invade human settlements such as oil palm plantations, causing serious harm to
humans, properties, and machinery. Moreover, elephants often fall victim to snare traps
set for wild boar and deer in forest areas near oil palm plantations, like the Kinabatangan
floodplain. Since 2010, it’s estimated that 20% of Bornean elephants have been injured by
these snares [7].

The overarching research question is : Can a ’Linked Data Store’ be developed to
answer questions supporting wildlife research and conservation activities in the wild?

To reach an answer to the overarching research question, three sub-questions emerged:

Research Question 1 (RQ1): Can an effective data management approach be developed
to integrate heterogeneous wildlife data from disparate sources?

To find an effective data management approach, a literature review was conducted.
Thirteen open Data Observatories were selected, examined, and compared. Open Data
Observatories are online data platforms that integrate heterogeneous data from disparate
sources. The comparison was based on their data types, domain coverage, accessibility,
and usability. Their data management approaches were compared and analysed to identify
and adopt a suitable approach for this research. Furthermore, significant technical and
intellectual challenges were identified. The findings from the literature review guided the
recommendation to employ semantic web technologies as an effective data management
approach for this research. Semantic web technologies have the capability to integrate
heterogeneous data from disparate sources.

To illustrate the concept, semantic web technologies use ontologies to model the scenario
of an elephant fitted with a GPS tracking collar as a Resource Description Framework (RDF)
graph consisting of relationships such as (subject, predicate, object), for example, as shown
in Figure 1.1, this graph contains entities and relationships like the gPS_tracking_Collar
is an instance of the class Sensor (GPS_tracking_Collar ∈ Sensor). The Sensor made an
observation (Sensor made−→ Observation). The gPS_tracking_Observation is an instance of the
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Ontology classes and relationship

Observation Elephant

elephant_X

a

gPS_tracking 
Observation

a

(gPS_tracking_Observation ?  Observation) 

MammalSensor 

gPS_tracking Collar 
around Elephant_X 

neck

a 

    (Sensor  ?     Observation)

(gPS_tracking_Collar ?  Sensor)        

(Elephant ?  Mammal)

(elephant_X ?  Elephant)

    (Observation   ?       Elephant)
hasFeatureOfInterest  made? 

Figure 1.1 Wildlife data generated by an Internet of Things (IoT) sensor, modelled as an
RDF graph using ontologies.

class Observation (GPS_tracking_Observation ∈ Observation).
Class Observation has the feature of interest, which is class Elephant (Observation hasFeatureOfInterest−→
Elephant). The so called elephant_X is an instance of the class Elephant (elephant_X ∈
Elephant), and class Elephant is a subclass of Mammal (Elephant ⊑ Mammal).

Ontologies [111] are structured frameworks that describe the types, properties, and
interrelationships of concepts within a specific domain. They can define and infer the logical
connections between concepts (data entities) and their relationships.

Accordingly, a further review of the literature related to wildlife data management was
conducted, focusing on the application of semantic web technologies in modelling wildlife
data and comparing different methodologies. The development and advantages of using
ontologies and knowledge graphs were briefly explored, respectively. Existing studies on
knowledge graphs in predictive modelling and crime prediction were also examined alongside
the advancements in wildlife crime prediction techniques.

Knowledge graphs [118] represent a way of structuring and integrating knowledge
based on relationships between entities (such as objects, individuals, concepts, or events),
enabling humans and machines to interpret and process the interconnected information.
Ontology-based knowledge graphs focus on developing semantic relationships in data. These
relationships form meaningful connections between concepts in a particular domain, enabling
an understanding and interpretation of how these concepts relate to each other. Semantic web
technologies enable precise querying, complex relationship analysis, semantic consistency,
and interoperability between different systems and data formats. Moreover, the reasoning
capabilities can infer implicit knowledge that is not overtly specified within the data.

Research Question 2 (RQ2): Can a ’Linked Data Store’ be developed to answer
questions supporting wildlife research and conservation activities?
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To address RQ2, an ontology named the Forest Observatory Ontology (FOO)1 and its
online documentation2 were developed to standardise wildlife data generated by sensors.
Then, a resource website was built for FOO and its knowledge graphs, and created an
analytical dashboard, executable notebook and embedded a conservation AI Chatbot (as a
proof of concept) to remotely query, visualise, and analyse four distributed wildlife knowledge
graphs based on FOO.

The Forest Observatory Ontology (FOO) is a novel ontology built from data collected
from wildlife research. It reuses entities from established ontologies to unify the Internet of
Things (IoT) and wildlife concepts (biodiversity, conservation biology, habitat fragmentation,
and endangered species management). To break wildlife data silos, FOO was populated or
instantiated with four heterogeneous datasets transformed into Resource Description Frame-
work (RDF) to produce ontology-based knowledge graphs, named theForest Observatory
Ontology Data Store (FooDS)3. To access and use FooDS, an interface was created to enable
authorised users to script granular (SPARQL) search queries and retrieve instant answers to
questions from integrated and remotely located datasets.

RQ2 contributions (FOO and FooDS) provide a novel (modular) approach to manage and
integrate wildlife data to answer questions that support wildlife research and conservation
activities.

Research Question 3 (RQ3): Can prediction models be developed to predict poaching
crimes by using the developed ’Linked Data Store’?

To build the predictive models, data extracted from FooDS (i.e., ontology-based knowl-
edge graph) were used to train a deep learning model to predict tracked Bornean elephants
geo-locations. Then, semantic reasoning incorporated into FooDS was used to predict poach-
ing likelihood based on contextual data. This chapter aims to augment bioscientists and
conservationists in improving poaching prediction using modular and scalable predictive
data model enriched with semantic reasoning.

Research Question 4 (RQ4): Can the Linked Data Store’s semantic web data manage-
ment approach be generalised to another domain for various purposes?

To address RQ4, FooDS’s semantic web data management approach was generalised for
use in the IoT data marketplace. In traditional data marketplaces, data are often sold as entire

1https://w3id.org/def/foo#
2https://w3id.org/def/fooDocs
3https://w3id.org/def/fooDS
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datasets. This approach can be expensive and inefficient, as consumers may not require the
entirety of the dataset but only specific observations or subsets of the data. To address this
issue, FooDs’s generalised approach enables consumers, particularly SMEs, to customise
their data purchasing requests.

1.4 Research Contributions

The contributions of this thesis are as follows:

1. Contribution 1 (C1): A literature review was conducted, selecting and comparing thir-
teen Open Data Observatories. This was followed by an examination of semantic web
technologies for wildlife data, evaluating methodologies and exploring the benefits of
ontologies and knowledge graphs in predictive modelling and wildlife crime detection.

2. Contribution 2 (C2): Built the Forest Observatory Ontology (FOO) and populated
it with four RDF graphs, developing the Forest Observatory Ontology Data Store
(FooDs).

3. Contribution 3 (C3): Employed FooDs to build predictive models that forecast future
elephant geo-locations and infer poaching.

4. Contribution 4 (C4): Generalised FooDs’s semantic web data management approach to
the IoT data marketplace. Built ontology-based knowledge graphs facilitating unique
on-demand data offers. This contribution enabled IoT data buyers to customise their
data purchasing requests.

1.5 Thesis Structure

What remains from this thesis is structured as follows:
Chapter 2 (Literature Review): This chapter compares thirteen Open Data Observatories

and their data management approaches. It investigated their aims, design, types of data,
and research challenges that influence the implementation of these observatories, outlining
some advantages and limitations for each one and recommending areas for improvement.
One of the findings of this review recommends semantic web technologies for effective data
management. Subsequently, further review was conducted, focusing on the application of
semantic web technologies to wildlife data, evaluating different methodologies, and exploring
the benefits of using ontologies and knowledge graphs in predictive modelling and wildlife
crime prediction. This chapter addresses RQ1, achieves C1.
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1.5 Thesis Structure

Chapter 3 (Forest Observatory Ontology Data Store (FooDS)): introduces the Forest Ob-
servatory Ontology (FOO) and its development lifecycle and proposes FooDS (i.e., ontology-
based knowledge graphs) the Linked Data Store. Forest Observatory refers to online platforms
that aggregate, curate, integrate, store, and analyse heterogeneous wildlife data for effective
forest monitoring. However, integrating such data from disparate sources can be challenging
due to independent data management systems. This chapter proposes a novel approach for
integrating diverse wildlife data into Forest Observatories. It employs knowledge graphs
built on ontologies, enabling instant question-answering and inferences across isolated data
sources. The Forest Observatory Ontology (FOO) standardised entities in the IoT and wildlife
research data. Then, FOO was populated with four semantically modelled wildlife datasets.
The result is the Forest Observatory Ontology Data Store (FooDS), containing over six
million triples of heterogeneous wildlife data. Open-source tools, domain experts’ validation,
and use cases were used to evaluate the structure of FOO and the usability of FooDS. This
Linked Data Store answers questions to support wildlife research and conservation activities.
This chapter addresses RQ2 and achieves C2.

Chapter 4 (Leveraging FooDS for Predicting Wildlife Poaching): This chapter proposes
PoachNet, a predictive tool that forecast elephants’ geo-locations and poaching likelihood.
PoachNet extracts granular data from FooDS, applies deep learning models, evaluates
them, and returns accurate predictions to its database (triple-store). Output datasets can
include diverse entities such as elephant GPS observations, soil conditions, and vegetation
types. Semantic reasoning is then applied to the dataset to infer poaching. PoachNet
equips conservationists with a useful tool to predict future elephant locations and poaching
likelihood. This chapter addresses RQ3 and achieves C3.

Chapter 5 (Extending FooDS’s Semantic Web Framework to Data Marketplaces): gener-
alises FooDs’s semantic web data management approach to a different domain. An ontology
was developed with expert input and reuse, populated with datasets from various sensors
to construct knowledge graphs and apply reasoning. This allowed them to acquire granular
data records tailored to their needs from various data sources or providers, instead of being
forced to purchase entire datasets, much of which may be irrelevant or unnecessary for their
purposes. This chapter addresses RQ4 and achieves C4.

Chapter 6 (Conclusion) concludes the thesis by reminding the reader with the research
questions and their corresponding contributions, research novelty and Future work.

Figure 1.2 illustrates the remainder of this thesis structure and outline.
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Chapter 2

Literature Review

This chapter addresses the first research question (RQ1): Can an effective data management
approach be developed to integrate heterogeneous wildlife data from disparate sources?.
Starting by investigating data types shared as Open Data to understand the roles of data
management approaches. Following that, research techniques assisted in selecting Open Data
Observatories (i.e., data platforms or data environments that integrate data from disparate
sources to service a specific domain). The selected Open Data Observatories were examined
in terms of their data themes, data management approaches, strengths and limitations, and
possible research challenges faced whilst building them. The purpose of this literature review
is to identify the most suitable data management approach to address RQ1. Once the suitable
approach is identified, the chapter reviews relevant research on wildlife data integration and
delves into key aspects of semantic web technologies, such as ontologies and knowledge
graphs, emphasising their role in integrating wildlife data and predicting crimes, particularly
those involving wildlife.

2.1 Introduction

Structured, semi-structured, and unstructured data can be generated from diverse sources,
including government authorities, academic institutions, and citizens. These data categories
apply to every sort of data, with structured data including inventories and catalogs organized
in tables, semi-structured data such as operational manuals in JSON (JavaScript Object
Notation) and XML (eXtensible Markup Language) formats, and unstructured data including
text and media. These data are collected through various methods, such as questionnaires, web
scraping and Internet of Things (IoT) devices. Whilst many governments have embraced the
"Open Data" principles and made some of their data public, some commercial organizations
collect large volumes of data, but only a fraction is accessible. Open Data refer to data
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that are made available to the public by governments, organizations, and individuals [195].
They promote transparency, collaboration, and innovation, which can improve the quality of
scientific research and contribute to the development of a sustainable ecosystem [51, 151].

Open Data portals, Open Data Observatories, and Repositories represent distinct systems
within the data-sharing ecosystem, each serving unique functions and targeting specific
audiences. Open Data portals serve as gateways to a wide range of datasets and resources
from various sources. They provide search and discovery tools, data visualisation capabilities,
and options for downloading data [57]. Open Data portals are centralised platforms where
governments, non-profit organizations, and private companies release datasets to the public,
aimed at enhancing transparency, enabling societal and economic benefits, and fostering
innovation through open access to information on a variety of topics such as government
operations, demographics, and economics [161].

Open Data Observatories are online platforms that curate and integrate real-time and
historical data from different sources, presenting them in a unified manner. They focus on
monitoring and analysing specific datasets for trends and insights, typically in public or
research domains. The reliance on Open Data Observatories has become increasingly crucial
in tackling the complex challenges faced by contemporary society and the environment.
Previous research initiatives in [8] developed methods to survey Open Data platforms,
providing insights into their availability and helping data publishers select the most suitable
platforms for their data. A series of studies by Miller et al. [176], Moustaka et al. [178],
Ma et al. [164], and Liu et al. [159] provided an understanding of the role of Open Data
platforms in areas such as urban sustainability, smart city analytics, and ocean science.

Repositories provide broad platforms for sharing diverse research outputs. They can be
domain-specific (storing data from a specific subject or field) or Generalist (serving multiple
domains). Stall et al. [235] introduced the Generalist Repository Comparison Chart (GRCC)
to assist researchers in identifying a generalist repository when a domain-specific repository
[110] is unavailable for storing their research data. Generalist repositories (e.g., Zenodo,
Figshare, and Dryad) archive diverse types of scholarly work, including datasets, articles,
and preprints, thus supporting interdisciplinary research and increasing the visibility and
impact of academic work beyond traditional publication venues. Such repositories require
users to deposit their research outputs under open licenses, ensuring accessibility for further
use. Most of this chapter aims to compare different Open Data Observatories and highlight
their distinct features, methodologies, and challenges, thereby addressing thirteen Open Data
Observatories, their data management approaches, some of their strengths and limitations,
and primary research challenges faced when building them.
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2.2 Open Data

Table 2.1 Description and comparison of Open Data principles proposed by Sebastopol (S),
the Sunlight Foundation (SF), and how they map to the FAIR (Findable, Accessible,

Interoperable, and Reusable) data principles.

Principle Description S SF FAIR

1. Complete Data must be a complete and accurate rep-
resentation of the original observations, in-
cluding all computational details.

* * Findable

2. Primary Data collected at the source and with meta-
data.

* * Findable

3. Timely Data published promptly after collection. * * Accessible
4. Accessible Data must be easily accessible both physi-

cally and electronically.
* * Accessible

5. Machine-processable Data in a format that can be easily pro-
cessed by computers.

* * Interoperable

6. Non-discriminatory Data is accessible to anyone without restric-
tions.

* * Accessible

7. Non-proprietary Data in a format that does not require pro-
prietary software.

* * Interoperable

8. License Data freely available without restrictions or
with clear permitting licensing for reuse

* * Reusable

9. Permanence Data remain accessible online, including all
versions.

* Accessible

10. Usage costs Accessing and obtaining data incur no fees. * Accessible- Reusable

2.2 Open Data

Open Data are free digital data, typically shared under open licences and organised in
structured formats that follow established and agreed-upon standards. Open data are often
supplemented by metadata, which provides "data about the data", such as data provenance
information and data dictionaries. Metadata helps users understand the content datasets.
Open Data are also released in formats designed to be easily read and processed by computer
applications [151], enabling automated analysis and integration [264].

2.2.1 Open Data Principles

The expansion of Open Data is influenced by fundamental frameworks such as the Berners-
Lee Five-Star Model [195] principles. Berners-Lee Five-Star Model evaluated Open Data
on a scale from one to five stars, with higher ratings indicating open, machine-readable
data and compliance with open standards. Kucera et al. [149] investigated the challenges
of publishing and reusing Open Government data, including establishing a publication
methodology within the COMSODE project, highlighting the role of Open Government Data
in fostering transparency and citizen engagement. Open Data principles, further expanded
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upon by groups such as the Sebastopol [261] attendees and the Sunlight Foundation [88],
establish a framework to verify that government data are openly accessible. The FAIR data
principles [267, 130, 26] provide a set of guidelines aimed at enhancing data reusability for
both humans and machines, focusing on data being Findable, Accessible, Interoperable, and
Reusable.

Findable : For data to be findable, it must be easily discoverable by both humans and
machines. Achieving this involves assigning datasets persistent identifiers, such as DOIs
(Digital Object Identifiers), which provide a permanent link to the data. In addition, detailed
and descriptive metadata is crucial, allowing potential users to understand the nature, scope,
and relevance of the data. This metadata should be stored in well-established and searchable
repositories, ensuring that researchers can locate the data using common search tools and
databases.

Accessible: Beyond being discoverable, data must also be accessible to those who need
them. This does not imply that all data must be open access, as there are legitimate cases
where restrictions may apply—such as privacy concerns or proprietary information. However,
even in cases of restricted access, the metadata should remain open and accessible, informing
users about the data’s existence and providing instructions on how access can be requested.
Accessibility also depends on the use of standardised, well-documented protocols.

Interoperable: In modern research, the greatest insights often come from integrating
datasets from diverse sources, enabling new avenues of analysis. For this reason, data must
be interoperable—capable of being combined with other data and integrated into different
platforms and tools. This requires the adoption of widely accepted formats and standards.
Moreover, the use of common vocabularies, ontologies, and taxonomies is critical integrating
data from different domains.

Reusable: The final principle, reusability, emphasises the long-term utility of data. For
data to be reused by others—whether for replicating a study, conducting new analyses, or
applying them in different contexts—they must be accompanied by thorough documentation.
This includes details on how the data were collected, processed, and analysed, as well as any
relevant limitations or uncertainties. Furthermore, data should be released under clear and
appropriate licensing terms.

Table 2.1 integrates Open Data principles, as discussed by both the Sebastopol group and
the Sunlight Foundation, with the broader framework of the FAIR data principles, providing
a comparative overview of their alignment. It shows ten critical principles identified for the
openness and availability of government data. Moreover, it introduces considerations for
non-proprietary formats, licence freedom, permanence, and the waving of usage costs to
foster a more inclusive and accessible digital ecosystem. This alignment is further enhanced
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by indicating which of these Open Data principles correspond to which element of FAIR
data principles.

2.2.2 Open Data Sources

Open Data can arrive from different sources, varying from country to sector. The primary
Open Data providers in the United Kingdom (UK) and the United States of America (USA)
are governmental agencies such as (data.gov.uk) and (data.gov). International organisations,
including the World Bank (data.worldbank.org), provide global datasets for the health, envi-
ronment, and education sectors, including governments, academic institutions, and citizens.
Educational and Research Institutions such as Harvard Dataverse (dataverse.harvard.edu/ )
and PANGAEA (pangaea.de/) often share research findings with the public.

In many academic institutions, publishers increasingly require researchers to make the
data contributing to a paper available (i.e., making their data available for others to use and
build upon, including surveys and observational data that provide empirical evidence.) By
sharing data free of charge, researchers can collaborate, replicate ideas in different domains,
and expand scientific knowledge. In the past two decades, citizens generated a high volume
of data from smartphones and wearable devices (smart watches) [144]. These generated
data include information collected through social media platforms, GPS tracking devices,
and mobile applications. Sensor networks also contribute data on environmental conditions,
vehicle movement, and electricity consumption.

2.3 Research Method

The nominated and employed research method to select the Open Data Observatories is
SPIDER (Sample, Phenomenon of Interest, Design, Evaluation, Research type) [54]. SPIDER
is a framework for conducting rigorous, transparent, and reproducible reviews. It was
employed for its flexibility, which can cope with the evolving nature of technology compared
to other research methods like snowballing, which rely on academic literature’s provenance.
To widen the search, keywords were extracted for each SPIDER component based on
synonyms and related terms derived from the thesis research questions. Searches were
achieved using the Google search engine, Google Scholar, ACM digital library, and Cardiff
University library, focusing on the following terms:

1. Sample: Open Data observatory.

2. Phenomenon of Interest: domain-specific and multi-domain data observatory.
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3. Design: Open Data platforms.

4. Evaluation: relevance, transparency, accessible.

5. Research type: descriptive, survey, research article.

2.3.1 Search Plan

The search plan used the Boolean operators AND and OR to connect the search items
corresponding to each SPIDER component. This approach constructed search queries that
incorporated relevant terms. For instance, the search query for the SPIDER elements would
look like this: Sample AND Phenomenon of Interest AND Design AND Evaluation AND
Research type ("Open Data platform*" OR "Open Data observatory") AND ("domain-specific
data observatories" OR "domain-specific observatory" OR "multi-domain observatory"
OR "data integration") AND ("accessible online platforms" OR "data platform") AND
("relevance" OR "transparency" OR "rigour") AND ("descriptive" OR "survey").

Using the OR operator within parentheses, we expanded the search to include variations
and synonyms for terms such as "Open Data platform" and "Open Data observatory."
We incorporated terms related to the phenomenon of interest, such as "domain-specific
data observatories," "domain-specific observatory," "multi-domain observatory," and "data
integration." To capture different aspects of the design and evaluation, phrases like "accessible
online platforms" and "data platform" were included. Moreover, terms related to the desired
research attributes, such as "relevance," "transparency," and "rigour," and the research types,
such as "descriptive" and "survey", were added. This search strategy ensured a comprehensive
coverage of relevant literature and maximised the chances of identifying relevant studies.

2.3.2 Observatories Selection Process

SPIDER search plan yielded a vast number of online data platforms. To filter out the relevant
Open Data Observatories, specific inclusion and exclusion criteria were set to refine the
selection process and ensure that only the most relevant platforms were included in our
study. Filtering criteria, as shown in Figure 2.1, were based on domain experts’ suggestions,
platforms’ establishment date, and relevance to the overarching research questions. By
setting the inclusion and exclusion criteria, the most recent platforms available in the English
language were detected, prioritising platforms that demonstrated clear relevance to the
overarching research question.
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Accessibility = 
Active AND 

mature

Language = 
English

Relevance =       
Open Data 

Observatory

Establishment 
date 2009 - 2022

Accessibility = 
Inactive

Language ? 
English

Establishment 
date < 2009

Relevance =       
Data Portals OR  

Generalist 
Repositories

Selection 
process

 Exclusion Inclusion 

CriteriaCriteria

Figure 2.1 Inclusion and exclusion criteria for selecting the reviewed Open Data Observato-
ries.

2.4 Open Data Observatories

The initial search process yielded forty Open Data environments. Each was manually
checked to ensure it met the Open Data Observatories criteria. Through this evaluation,
thirty-four Open Data Observatories were filtered out and identified. After a thorough manual
evaluation, we arrived at a final selection of thirteen Open Data Observatories that satisfied
all the necessary criteria. Therefore, the selected Open Data Observatories are introduced
and discussed in the subsequent section- starting from the older ones and progressing to the
newer ones (Figure 2.2). Each observatory is concisely outlined and characterised by its
attributes, kinds of data, and significant accomplishments or obstacles.
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2.4 Open Data Observatories

2.4.1 Terrestrial Ecosystem Research Network (TERN)

Terrestrial Ecosystem Research Network (TERN)1 is a national research infrastructure
programme in Australia that supports ecosystem science. The Australian Government
established TERN in 2009 in response to a growing demand for a coordinated approach to
terrestrial ecosystem research. The network, as such, comprises a range of field sites and
data infrastructure that supports long-term environmental monitoring and scientific research,
including biodiversity and land surface properties. TERN’s infrastructure has over 600
ecological monitoring sites across Australia and advanced data management systems that
allow researchers to access and analyse data from disparate sources. TERN aims to support
evidence-based decision-making for ecosystem management and conservation in Australia
and to promote a greater understanding of terrestrial ecosystems and their role in maintaining
global environmental health.

TERN hosts a substantial and growing collection of diverse ecosystem datasets across
Australia, covering topics such as vegetation, soil, and phenology. TERN provides a variety of
data tools and services, including SHaRED for data submission and harmonisation, aligning
with the FAIR principles, a Data Discovery Portal for accessing diverse ecosystem datasets,
tools for data analysis and visualisation such as MCAS-S and the Data Visualiser, cloud-
based research platforms like CoESRA, and resources for field data collection, including a
network of monitoring sites. In addition, the Threatened Species Index- TSX (tsx.org.au) is a
dynamic tool that helps understand how Australia’s threatened species are faring over time.
It provides visualisations and observations on temporal trends for 286 species of threatened
and near-threatened mammals, birds, and plants in Australia.

2.4.2 Channel Coastal Observatory (CCO)

Since 2011, the National Network of Regional Coastal Monitoring Programmes has supported
six projects along the English coastline. The overarching objective of these projects is to
gather in-situ coastal monitoring data [154]. However, Contarinis et al. [53] highlighted some
inconsistencies in the data quality and the methodologies employed. The Channel Coastal
Observatory (CCO)2 was established in response to these challenges. In England, 520,000
properties face the risk of coastal flooding, while 8,900 are threatened by coastal erosion. The
CCO provides fit data for decision-makers in understanding coastal behaviour and identifying
potential risks associated with coastal flooding and erosion [169]. The observatory covers
various coastal regions (e.g., Northeast, East Riding of Yorkshire, Anglian, Southeast region

1tern.org.au/
2coastalmonitoring. org/
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(low-lying land), and Northwest). The primary data types collected and displayed on its
platform are topographic and hydrographic surveys. Topographic surveys entail beaches,
cliffs, dunes, and coastal defence structures, whilst hydrographic surveys extend from
the Mean Low Water (MLW) contour to 1 kilometre offshore. The CCO also generates
heterogeneous real-time data on waves, tides, meteorology, and GPS measurements, which
helps understand and manage coastal environments. Through its public API, developers can
access and integrate the real-time coastal data (waves, tides, and meteorology) collected by
the monitoring programmes. It also provides information on accessing coastal data through
Web Map Services (WMS) in GIS software such as ArcMap and QGIS.

2.4.3 Urban Observatory Project (UOP)

The Urban Observatory Project (UOP)3 was launched in 2013 and sponsored by the UK
Collaboratorium for Research on Infrastructure and Cities (UKCRIC) - led by Newcastle
University in collaboration with five other British universities; Sheffield, Bristol, Cranfield,
Birmingham, and Manchester. The UOP monitors and analyses urban areas by deploying
different sensors across UK cities. Real-time data from sensors and smart cameras allow
the monitoring of urban dynamics. Each participating university focuses on specific aspects
of urban life. For instance, Sheffield Urban Flows Observatory examines the impact of
energy and resource flows on economic performance and social well-being. At the same time,
Bristol Urban Flows Observatory transforms Bristol into a living laboratory for community
engagement.

Cranfield Urban Observatory provides data-centric and remote-sensing solutions for
addressing environmental, social, and economic issues. Birmingham Urban Observatory
monitors critical infrastructure and its interplay with the environment, economy, and society.
Lastly, Manchester Urban Observatory collects, analyses, and shares urban data to support
informed decision-making at the city level. The collaboration between these observatories
contributes to a better understanding of urban dynamics and assists efficient urban devel-
opment [233]. The UOP’s data types include traffic flow, parking spaces, cycling docking,
pedestrian count, weather data, air quality, water quality, seismic activity, noise level, water-
level (rainfall), beehives, energy usage data, thermal imaging, visual and hyper-spectral
mapping, social media feeds, employee feedback, and quantifying the impacts of COVID-19
measures.

3urbanobservatory.ac.uk
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2.4.4 Global Forest Watch (GFW)

Global Forest Watch (GFW) initiative4 is a non-profit organisation that is part of the World
Resources Institute (wri.org). GFW collaborates with over 100 organizations to provide a
transparent and actionable platform supported by satellite technology and cloud computing.
Such observatory empowers diverse stakeholders, wildlife practitioners, companies, and
governments in forest management and combating deforestation. The GFW’s web-based
platform (observatory), launched in 2014, provides data and tools for monitoring forests and
land use. The platform has amassed over four million users worldwide, benefiting diverse
groups such as local law enforcement, park managers, international corporations, and civil
society organisations in their endeavours to safeguard forests.

GFW’s primary applications include the Forest Watcher mobile app for real-time threat
detection, GFW Pro for managing deforestation risks in supply chains, and the Global Forest
Review (GFR) for monitoring global forest objectives. Moreover, national governments em-
ploy GFW’s technology for forest resource management, whilst small grants and fellowships
support additional advocacy and research. Collectively, GFW assists in forest surveillance
and management, combats illegal deforestation, promotes sustainable commodity sourcing,
and supports conservation research on a global scale. GFW data types include satellite
imagery for observing changes in forest cover, forest change data for tracking deforestation
and regrowth, and land cover data for understanding land usage in addition to data about
biodiversity, climate dynamics, and commodity supply chains, as well as legal and adminis-
trative boundaries, fire alerts, and water resources. GFW provides both developer-focused
tools (APIs and open-source code) and a user-friendly MapBuilder platform to enable the
creation of customised interactive mapping applications that leverage GFW’s robust spatial
data and analysis capabilities.

2.4.5 Global Earth Observation System of Systems (GEOSS)

Global Earth Observation System of Systems (GEOSS)5 was created due to directives
from the 2002 United Nations World Summit on Sustainable Development and the G8’s
2005 commitment. Its purpose is to improve the development and application of earth
observation technologies for environmental monitoring. Starting in 2005 with a 10-year
implementation plan (2015), GEOSS aimed to provide coordinated, sustained observations
of the Earth, focusing on nine key societal benefits (e.g., sustainable agriculture, biodiversity
conservation, and climate change adaptation). The success of GEOSS’s first decade led

4wri.org/initiatives/global-forest-watch
5geoportal.org/
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to the implementation of a renewed 10-year plan (2016-2025), which aligned well with
global initiatives such as the UN Committee of Experts on Global Geospatial Information
Management (UN-GGIM) and the G8 Open Data Charter to enhance data sharing and
management. GEOSS became a global partnership that advocated for the importance of
Earth observations and collaborated with stakeholders to address global challenges. One of
GEOSS’s achievements was the establishment of its data-sharing principles, which advocated
for Open Data access. These principles influenced standard data policies like the European
Union’s Copernicus programme [59]. GEOSS integrates heterogeneous data, aiming to
facilitate continuous Earth system observations. Examples of data types are satellite imagery,
atmospheric data, oceanographic data, geological data, and biodiversity information.

2.4.6 Earth Observing System Data and Information System (EOSDIS)

The Earth Observing System Data and Information System (EOSDIS)6 is an active part of
NASA’s Earth Science Data Systems Program. The observatory integrates data from dis-
parate sources, such as satellites, aircraft, field measurements, and other programs. EOSDIS
supports Earth Observing System (EOS) satellite missions by handling command and control,
scheduling, data capture, and initial processing tasks. These operations are overseen by
NASA’s Earth Science Mission Operations Project. EOSDIS’s Science Operations, managed
by NASA’s Earth Science Data and Information System Project, entail generating higher-
level science data products (levels 1-4), archiving, and distributing data products from EOS
missions, in addition to other satellite missions, aircraft, and field measurement campaigns.
This function is carried out within a distributed system that consists of interconnected nodes
of Science Investigator-led Processing Systems and Distributed Active Archive Centres
(DAACs), which are discipline-specific. EOSDIS offers a variety of curated data types that
are crucial for evaluating ecosystem conditions, predicting species’ geographical distribu-
tions, identifying materials based on spectral properties, and monitoring human-induced
environmental changes. These data types include vegetation health, spectroscopy, species
distribution, and ecological change tracking.

2.4.7 Grow Observatory (GROW)

Grow Observatory (GROW)7 serves as a citizens’ observatory, enabling individuals and
communities to take proactive measures about soil and climate across Europe. GROW col-
lected soil moisture, temperature, and light level data from low-cost "Flower Power" sensors

6earthdata.nasa.gov/eosdis
7growobservatory.org/
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deployed across 24 locations in 13 European countries. This resulted in a 6,502 ground-based
soil sensor network and 516 million rows of soil data datasets. Citizen scientists, community
members, and land managers installed and maintained sensors voluntarily. Sensors’ data
were collected at 15-minute intervals and manually uploaded to the GROW servers using
mobile phones. GROW integrated the sensors’ data through a dedicated online hub, allowing
members to register and visualise their sensors through time-series graphs and maps.

GROW also used GEOSS (observatory 5) data to provide public access to earth observa-
tion data collection. Further, data acquired from GEOSS were then used to more accurately
predict extreme events, such as floods, droughts, and wildfires. In addition, GROW data
played a significant role in validating and calibrating satellite observations, such as those from
the European Space Agency’s (ESA), SMOS (Soil Moisture and Ocean Salinity) mission and
the future SMAP (Soil Moisture Active Passive) satellite. Artists and designers have played
a significant role in GROW, with the former creating artworks reflecting the significance
of soil ecosystems and remote sensing satellites and designing dynamic visualisations for
agriculture and climate forecasting. It has also helped farmers in the Canary Islands reduce
their water usage for irrigation by 30%. GROW received awards, including the Land and Soil
Management Award 2019, the Stephen Fry Award for Excellence in Public Engagement 2020,
and recognition as the first in the European Commission’s annual GEO Plenary Statement on
significant Earth Observation developments in 2019.

2.4.8 Tsunami Observatory

In March 2017, NOAA’s National Tsunami Warning Center and Pacific Tsunami Warning
Center, in partnership with the Tsunami Service Program, centralised their information on a
Tsunami Observatory8. As a hub for information on tsunamis, it provides warnings, advi-
sories, watches, and threat evaluations for Alaska, British Columbia, Washington, Oregon,
and California regions. The observatory supplies real-time updates on event magnitude,
depth, coordinates, and the time the seismic event occurred. It also shares bulletins and
statements about the current tsunami status, clearly indicating if there are any warnings,
advisories, watches, or threats in effect for the mentioned areas. (This tsunami observatory)
educates civilians about tsunami risks following seismic activities, promoting safety and
preparedness among residents of affected regions. It also communicates with other relevant
observatories, such as the Deep-ocean Assessment and Reporting of Tsunamis (DART)
project, a component of the U.S. National Tsunami Hazard Mitigation Program. DART
employs seafloor bottom pressure recorders (BPR) and surface buoys to identify and report

8tsunami.gov
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tsunamis in real-time. DART system has two generations, with the second-generation DART
II enabling bidirectional communication since 2008. This system can detect tsunamis as
small as 1 cm and transmits information to ground stations through a GOES satellite link for
early detection and data collection. Moreover, the NOAA Tsunami Stations offer information
on tide stations equipped to detect tsunamis along various coastlines. At the same time,
the IOC Sea Level Monitoring Facility provides real-time monitoring of sea level stations
worldwide.

2.4.9 Southampton Data Observatory (SDO)

Southampton Data Observatory9 collects data from various stakeholders in Southampton
and Hampshire and combines them with nationally published data, providing access to
professionals, businesses, the voluntary sector, citizens, and communities. The observatory
has been developed in partnership with statutory partners, including the National Health
Service (NHS) Hampshire, Southampton, and Isle of Wight (CCG), and Southampton
Voluntary Services, with data contributions from other partners such as the National Office of
Statistics (ONS), Hampshire Constabulary, Hampshire Fire and Rescue Service, and South
Central Ambulance Service. SDO is accountable to the Southampton Health and Well-being
Board and the Southampton Safe City Partnership for delivering the Joint Strategic Needs
Assessment (JSNA) and the Safe City Strategic Assessment. It considers data protection
issues and ensures sufficient safeguards and disclosure controls are in place to protect the
identity of individuals. SDO’s data types include links to demographics, economy, education,
health, housing, road safety and environment specific to Southampton and its immediate
surroundings within the United Kingdom.

2.4.10 National Ecological Observatory Network (NEON)

The National Ecological Observatory Network (NEON)10 is an Open Data observatory funded
by the National Science Foundation. Initiating its operational phase in the summer of 2019,
NEON allows access to data on various topics, including climate, land use, and biodiversity.
NEON adopts a specialised method for selecting its study locations across the United States,
including Hawaii and Puerto Rico, to capture diverse environmental conditions. The areas
are split into 20 distinct zones, each comprising its own set of ecosystems, landscapes, and
natural processes. As a result, NEON integrates extensive data on the well-being of plants
and animals, soil and water quality, and many more. It uses state-of-the-art sensor technology

9data.southampton.gov.uk/
10data.neonscience.org/
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and direct field observations. Notably, NEON collects and provides standardised data on
a continental scale collected from 81 field sites equipped with automated sensor systems.
NEON’s focus on long-term, standardised data collection enables researchers to track and
analyse changes in ecological systems over time to understand the impacts of climate change
and other environmental factors. NEON engages scientific communities by encouraging
researchers to use the available data in their research projects.

2.4.11 India Urban Observatory (IUO)

The India Urban Observatory (IOU)11 is an Open Data Observatory established by the
Ministry of Housing and Urban Affairs (MoHUA). IOU is a central hub for data and analytical
tools related to the country’s urban areas to equip policymakers, researchers, and citizens
with reliable information on urban planning and development. It provides evidence-based
decision-making and improves urban planning, offering city-level indicators of population
statistics, infrastructure development, and economic growth information. Furthermore, IOU
also provides data about water supply, sanitation, and waste management. Visualisation and
analysis tools are available at the IOU to enhance data reuse and understanding. These tools
enable users to explore and interpret the data in a user-friendly manner, aiding informed
decision-making.

2.4.12 The Finnish Ecosystem Observatory (FEO)

The Finnish Ecosystem Observatory (FEO)12 is a research and monitoring platform that
serves as a resource for obtaining high-quality ecosystem data across diverse terrestrial and
aquatic ecosystems in Finland. FEO allows researchers, policymakers, and the general public
access to data and observations. Available data include climate, hydrology, biogeochemistry,
and biodiversity. FEO employs eddy covariance flux towers, radiometers, anemometers, and
infrared gas analysers to gather the required data. FEO provides standardised field monitoring
methods, calibration guidelines, and field data collection apps to ensure consistent and reliable
data collection. Mäyrä et al. [170] combined deep learning and remote sensing to enhance
forest monitoring by classifying tree species using airborne hyperspectral imagery and
LIDAR data. The study conducted in Finland’s Boreal forests demonstrated the effectiveness
of high-resolution hyperspectral data and ground reference measurements in efficiently
distinguishing between different tree species for improved biodiversity monitoring.

11iuo.mohua.gov.in/portal/apps/sites
12feosuomi.fi/en/

25



Literature Review

2.4.13 The Open Forest Observatory (OFO)

The Open Forest Observatory (OFO)13 employs drones and Artificial Intelligence (AI) to
map and identify trees without needing traditional ground surveys. It establishes more than
100 forest plots, each roughly 25 hectares in size, to gather data vital for forest management
in the face of issues such as droughts and wildfires. This initiative aims to improve forest and
disturbance ecology research by creating three innovative cyberinfrastructure tools. The first
tool is an AI-driven software workflow that transforms drone-captured imagery into forest
inventory information– creating maps that accurately locate and scan individual trees. The
second tool is an open database that contains tree maps from over 100 plots, each covering
25 hectares. These plots are managed with existing forest inventory networks (NSF’s NEON)
and cover a range of environmental and disturbance gradients. Lastly, the initiative includes
documentation and training programmes, both online and in-person, to empower researchers
to generate and share their data. This observatory applies photogrammetry to create 3D
models of forest structures.

Moreover, it uses computer vision methods, supported by neural networks, for accurate
species classification and to filter out incorrect tree identifications. The National Science
Foundation primarily funds the OFO with additional support from The Nature Conservancy.
The OFO is housed in three academic institutions: the Department of Plant Sciences at
the University of California, Davis, the CIRES Earth Lab at the University of Colorado,
Boulder, and the Bio5 Institute at the University of Arizona. It relies on ground-reference
forest inventory data from the USDA Forest Service Pacific Southwest Region and the
National Ecological Observatory Network (NEON) 2.4.10. The OFO also uses CyVerse and
Jetstream2 computing infrastructure to support its operations.

2.5 Data Themes, Sources, Processing and Visualisation

This section discusses the data from the selected Open Data Observatories, examining
their themes, sources and methods employed in their processing. Our thematic analysis,
referencing [39], revealed two main themes: urban and no-urban data. We started the thematic
analysis by reading through the data types collected for the selected observatories and taking
notes. Table 2.2 shows data types the chosen observatories manage. Then, using NVIVO
12 software, we generated codes that helped us with the data themes. Words coded under
"Transport" indicate urban data, whilst the words coded under "Soil Data" and "Seismic
Events" entail non-urban data themes.

13openforestobservatory.org/
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Table 2.2 Lists the Open Data Observatories and their data types.

Open Data Observatory Data types

1. Terrestrial Ecosystem Research Network (TERN) Vegetation, soil, and phenology.
2. Channel Coastal Observatory (CCO) Topographic and hydrographic surveys. Real-time data about waves,

tides, weather and GPS data.
3. Urban Observatory Project (UOP) Urban data include traffic flow, parking spaces, cycling docking, pedes-

trian count, weather data, air quality, water quality, seismic activity, noise
level, water level (rainfall, river and tides), beehives, energy usage data,
thermal imaging, visual and hyper-spectral mapping, social media feeds,
employee feedback.

4. Global Forest Watch (GFW) Satellite imagery, biodiversity, soil, climate dynamics, commodity sup-
ply chains, legal and administrative boundaries, fire alerts, and water
resources.

5. Global Earth Observation System of Systems
(GEOSS)

Satellite imagery, soil, atmospheric data, oceanographic data, geological
data, biodiversity information, and climate metrics.

6. Earth Observing System Data and Information System
(EOSDIS)

Soil, vegetation, spectroscopy, species distribution, and environmental
change.

7. Grow Observatory (GROW) Soil, temperature, and light level.
8. International Tsunami Information Center (ITIC) Water-level data, historical tsunami, recent tsunamis.
9. Southampton Data Observatory (SDO) Urban data include links to demographics, economy, education, health,

housing, road safety and environmental data.
10. National Ecological Observatory Network (NEON) Soil, atmospheric data for climate change, biogeochemistry, ecohydrol-

ogy, land cover processes, organisms, populations, and communities.
11. Indian Urban Observatory (IUO) Urban data include population statistics, infrastructure development,

economic growth, water supply, sanitation, and waste management.
12. Finnish Ecosystem Observatory (FEO) Climate, soil, hydrology, biogeochemistry, and biodiversity.
13. Open Forest Observatory (OFO) Forest drone imagery, forest structure metrics, tree sizes and species

2.5.1 Urban Data Theme

Urban data refer to information generated from activities taking place in cities, including data
on smart transportation, human behaviour, and demographics. Smart transportation data are
generated by devices (cameras) connected to the Internet of Things (IoT) and monitor traffic
flow, vehicle counts, public transit usage, parking availability, congestion levels, average
speeds, and pedestrian counts. Many observatories, the UOP, SDO and IUO, collect and
analyse various types of urban data. Examining the UOP, it was noticed that it’s focused
on real-time data on city transportation (e.g., traffic congestion, parking availability, and
public transit usage). On the other hand, SDO aggregates forwarding links from different
stakeholders and Open Data providers (ONS) to data on transportation usage and behaviour,
such as walking, cycling, and driving patterns, as well as transportation infrastructure (i.e.,
roads and public transit systems). IUO also collects data on transportation infrastructure
(roads, highways, railways), usage, and behaviour (vehicle ownership, mode choice, travel
patterns). These observatories have a common goal: how urban transportation systems
function and how they can be improved to better meet the needs of city residents. The data
collected by these observatories cover a range of urban data metrics, as analysed in Figure 2.3.
Environmental data are collected in cities by one of the UOP observatories. To illustrate the
concept, Figure 2.4 shows the environmental data types and parameter counts at Newcastle’s
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Figure 2.3 Transport data metrics collected by Open Data Observatories.

Urban Observatory Project. Table 2.5 lists examples of the data types’ parameters and
their measuring units. Here, weather data refer to temperature, humidity, wind speed, and
precipitation through a network of sensors deployed across Newcastle and the surrounding
territories, and the water level data entail river and tide levels. Raw data were obtained from
(newcastle.urbanobservatory.ac.uk/api-docs/doc/sensors-dash-types-csv/).

2.5.2 Non-urban Data Theme

Non-urban data refer to observations from areas outside city boundaries (i.e., rural, forest,
and natural environments). Such data collected by our selected Open Data Observatories as
listed in Table 2.2 span various environmental variables helpful in understanding ecosystem
dynamics, climate change, and biodiversity. To mention a few observatories catering for non-
urban data, TERN supplies data on vegetation, soil, and phenological data. The CCO delivers
topographic, hydrographic, meteorological, and GPS data relevant to coastal dynamics.
GFW and GEOSS use satellite imagery to monitor biodiversity, climate dynamics, and
environmental changes. EOSDIS provides and analyses soil, vegetation, and ecological
change data. GROW contributes data on soil conditions, temperature, and light levels.
NEON offers comprehensive soil, atmosphere, biogeochemistry, and biodiversity data to
track climate change impacts. The FEO and the OFO deal with data generated from boreal
and temperature forests, respectively. The diversity of non-urban data from some of the
selected observatories supports a holistic understanding of Earth’s non-urban environments,
facilitating research and conservation efforts across multiple disciplines.
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Table 2.3 Compares Open Data Observatories, including their data types, geographic scope
and the data themes they provide.

Observatory Geographic
Scope

Data Types Urban
Data

Non-
Urban
Data

1. TERN Australia Mangroves, vegetation, soil, phenology No Yes
2. CCO UK Topographic and hydrographic surveys, real-time coastal data No Yes
3. UOP UK Urban data (traffic, air quality, noise, water level, etc.) Yes No
4. GFW Worldwide Satellite imagery, biodiversity, climate dynamics, fire alerts No Yes
5. GEOSS Worldwide Satellite imagery, atmospheric, oceanographic, geological, biodi-

versity, climate metrics
No Yes

6. EOSDIS USA Soil, vegetation, spectroscopy, species distribution, environmental
change

No Yes

7. GROW Europe Soil, temperature, light level No Yes
8. ITIC Worldwide Water-level data, historical tsunami, recent tsunamis No Yes
9. SDO UK Demographics, economy, education, health, housing, road safety,

environment
Yes No

10. NEON North America Soil, atmospheric data, climate change, biogeochemistry, ecohy-
drology, land cover processes

No Yes

11. IUO India Population statistics, infrastructure, economic growth, urban ser-
vices (water, sanitation, waste)

Yes No

12. FEO Finland Climate, soil, hydrology, biogeochemistry, biodiversity No Yes
13. OFO USA Forest drone imagery, forest structure metrics, tree sizes and species No Yes

2.5.3 Data Themes Comparison

Table 2.3 provides a detailed comparison of the thirteen Open Data Observatories, each con-
tributing to various domains of environmental and urban data monitoring. The observatories
are evaluated based on their geographic scope, types of data collected, focus on urban or
non-urban data, availability of data APIs, and common themes they address. For example,
TERN in Australia is dedicated to environmental monitoring, including data on mangroves,
vegetation, soil, and phenology. On the other hand, the UOP in the UK focuses on urban
dynamics by collecting data on traffic, air quality, noise, and water levels. Observatories
like NASA’s EOSDIS offer extensive APIs for data access, facilitating broader research
applications, while initiatives such as GROW in Europe emphasise citizen science and soil
data without providing an API.

Several observatories share common themes in their data types and focus areas (see Table
2.4). For instance, TERN, FEO, and NEON all concentrate on environmental monitoring
and ecosystem research. Similarly, the UOP, SDO, IUO focus on urban dynamics, planning,
and infrastructure. In contrast, observatories like the CCO and the ITIC are unique in their
focus on coastal data management and tsunami monitoring, respectively. GFW and the OFO
both emphasise forest management, although GFW provides global coverage using satellite
imagery, the OFO uses drone imagery specific to the USA. NASA’s EOSDIS and GEOSS
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Table 2.4 Lists common themes and differences among Open Data Observatories.

Observatory Themes Common with Differences

TERN Non-urban FEO, NEON, GEOSS, EOSDIS Focuses on mangroves, vegetation, soil, and phenology
specific to Australia

CCO Non-urban ITIC Specialises in topographic and hydrographic surveys
of UK coastal regions

UOP Urban SDO, IUO Emphasises real-time urban data collection in the UK
GFW Non-urban OFO Platform supported by satellite technology and cloud

computing
GEOSS Non-urban TERN, EOSDIS, FEO, NEON Comprehensive global data including atmospheric,

oceanographic, and geological data
EOSDIS Non-urban TERN, GEOSS, FEO, NEON Specific to NASA’s satellite data, focuses on soil, veg-

etation, and environmental change
GROW Non-urban TERN Focuses on citizen science in Europe, does not offer a

data API
ITIC Non-urban CCO Centralises tsunami-related data on a global scale
SDO Urban UOP, IUO Aggregate various urban data including demographics

and health data
NEON Non-urban TERN, FEO, GEOSS, EOSDIS Offers comprehensive ecological data for North Amer-

ica
IUO Urban SDO, UOP Focuses on urban services in India, such as water and

waste management
FEO Non-urban TERN, NEON, GEOSS, EOS-

DIS
Specific to Finland’s diverse ecosystems

OFO Non-urban GFW Uses drone imagery focusing on USA

both engage in earth observation but differ in their specific data types and scope. GROW is
distinct for its focus on citizen science and soil data in Europe.

2.5.4 Data Sources

Open Data Observatories obtain data from Open Data portals, wireless sensor networks,
and smart devices. Wireless Sensor Networks (WSNs) play a significant role in urban and
non-urban data collection [96]. A notable example is the UOP, which uses a network of over
3600 sensors to capture diverse data streams from different physical environments. GROW, as
such, employs Flower Power sensors to monitor in-situ soil moisture, fertiliser levels, and air
temperature at 15-minute intervals [147, 268]. Other technologies contributing data to these
observatories include LIDAR, ARGUS cameras, and satellites. ITIC- tsunami observatory
provides data on water levels and historical and recent tsunamis. The water-levels data
sourced from the DART (Deep-ocean Assessment and Reporting of Tsunamis) system and
the National Oceanic and Atmospheric Administration (NOAA) coastal water-level stations.
The DART system obtains water-level data from bottom pressure recorders on the seafloor,
which measure water pressure with a resolution of approximately 1 mm of seawater and take
15-second averaged samples. The data are then transmitted to a ground station via satellite
telecommunications, enabling real-time reporting. The DART II systems transmit standard
mode data containing 24 estimated sea-level height observations at 15-minute intervals once
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Figure 2.4 Newcastle Urban Observatory
parameters count by data type.
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Table 2.5 Newcastle Urban Observatory
parameters examples and their measuring

unit.

every six hours. The OFO uses drone imagery in a multi-step process to source data. First,
numerous overlapping drone photos are taken from various angles to estimate each tree’s
three-dimensional structure.

Next, the Canopy Height Model (CHM) is generated by curating the data to create a high-
resolution Digital Surface Model (DSM) that displays the vegetation’s height in each pixel
above the ground. Then, an algorithm identifies individual trees in the forest area using drone
imagery and CHM data, resulting in tree-level maps of forest stands. NEON sources data and
samples using a combination of automated instruments, field technicians, and airborne remote
sensing. TERN gathers data using a variety of sensors, including eddy covariance flux towers,
heat flux plates, radiometres, anemometres, infrared gas analysers, spectrometres, CosmOz
soil moisture meters, groundwater bores, ecoacoustic sensors, phenocams, terrestrial laser
scanners, UAV/drones, camera traps, and photopoints [226]. Table 2.6 groups and compares
some of the observatories’ primary data sources.

2.5.5 Data Processing

Most of the selected Open Data Observatories develop open-source software to ingest,
harmonise, and integrate diverse data. Such data processing techniques are set to realise the
potential value of Open Data by making them FAIR (Findable, Accessible, Interoperable,
and Reusable) for researchers, decision-makers, and the broader community. TERN includes
several tools and applications for data processing and analysis. To mention a few, SHaRED
Data Submission (shared.tern.org.au) allows ecologists to upload their research data to the
Australian Ecological Knowledge and Observation System (ÆKOS). It assists in creating
structured metadata and assigns Digital Object Identifiers (DOIs).

31



Literature Review

Table 2.6 Lists and compares the Open Data Observatories data sources.
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1. Terrestrial Ecosystem Research Network (TERN) * * * * * * *
2. Channel Coastal Observatory (CCO) * * * * * * * *

3. Urban Observatory Project (UOP) * * * * * * * * *
4.Global Forest Watch (GFW) * * * *

5. Global Earth Observation System of Systems (GEOSS) * * * * * *
6. Earth Observing System Data and Information System (EOSDIS) * * * *

7. Grow Observatory (GROW) * * * * * *
8. International Tsunami Information Center (ITIC) * * * * *

9. Southampton Data Observatory (SDO) * * *
10. National Ecological Observatory Network (NEON) * * * * * * * * * *

11. India Urban Observatory (IUO) * * * *
12. Finnish Ecosystem Observatory (FEO) * * * *

13. Open Forest Observatory (OFO) * * *

CoESRA Virtual Desktop (coesra.tern.org.au) enables access to a web-based virtual
desktop from any device and is equipped with scientific software such as RStudio, Jupyter
Notebook, and QGIS. EcoImages (ecoimages.tern.org.au) is a repository that organises
images of vegetation, soil, and landscapes. To process live streams of diverse data, the
UOP deploys real-time machine learning models on CCTV feeds and uses data queues, data
sharding, and many edge processors along with hourly replication to reduce the occurrence
of problems during live data streaming. To produce forest datasets, GFW uses machine
learning to detect and map tree cover and loss, involving image segmentation, classification,
and change detection. At the ITIC tsunami observatory, raw data from the tide gauges and
DART buoys are processed by the PMEL (Pacific Marine Environmental Laboratory) and
NGDC (National Geophysical Data Center) to remove errors and archive. NEON developed
proprietary software to process raw data from sensors and field apps into standardised data
products. NEON employs a unique "NEON Ingest Conversion Language" to establish and
update data processing protocols as necessary. The OFO presents three cyber-infrastructure
innovations to enhance data processing capabilities. These include a scalable, reproducible,
AI-enabled software workflow for converting drone imagery into forest inventory data, a
searchable database of treemaps that are aligned with forest inventory plot networks and
accessible to the public, and documentation and training resources to encourage researchers to
contribute their research data and analytical tools. Moreover, research [277] offers resources
for individuals who want to create efficient and detailed tree maps of conifer forests without
requiring extensive customisation of image acquisition and processing parameters.
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2.5.6 Data Visualisation

Data visualisation transforms raw data into meaningful graphical representations that intended
audiences can readily perceive, read and understand [273]. The selected observatories employ
various visualisation tools and methods to present and communicate their collected data.
Some of the data visualisations entail static and interactive maps [82], charts such as time
series, scatter plots, histograms [234], bar, and pie graphs. For instance, TERN-ANU
Landscape Data Visualizer (maps.tern.org.au) is a user-friendly atlas that offers spatial
data on Australian landscapes, soil, ecosystems, and water resources. The data can be
visualised on a map and explored through time-series data for specific locations. The UOP
has interactive maps, digital comparison tools, thematic cartography, and real-time data
visualisations to explore and monitor urban dynamics.

NEON collaborates with Google to enhance the visualisation and accessibility of its
environmental data via the Google Cloud Platform, incorporating tools such as Google Earth
Engine and BigQuery. This integration enables users to engage with and visualise extensive
NEON datasets directly in the cloud. Global Forest Watch (GFW) visualises data through its
Open Data portal, interactive map features, downloadable datasets, geospatial monitoring
frameworks, and software like the Forest Trends Analysis Tool. EOSDIS visualises data
through the Earthdata Cloud, providing users free access to NASA Earth science data
for research purposes. ITIC - tsunami observatory offers real-time and historical tsunami
data through 1-minute water level readings, event search tools, and interactive maps. IUO
illustrates data stories and interactive maps using ArcGIS, thematic dashboards, and an Open
Data portal to share urban vision with its designated stakeholders. GROW uses interactive
maps and visualisation tools to visualise the collected actual soil moisture data and share
them with its network [236].

2.6 Research Challenges

Establishing Open Data Observatories involves addressing various challenges related to
integrating diverse data sources and systems. These challenges include ensuring data in-
teroperability, scalability, and replicability since each data source has its own design and
computing specifications. Combining and merging disparate data, without careful considera-
tion, can lead to service conflicts, resulting in degraded data quality, loss of data provenance,
and potential privacy breaches. This section explores these challenges, as depicted in Figure
2.5 and how each observatory addresses each challenge.
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2.6.1 Data Integration

Data integration is the process of combining data from disparate sources into a unified view.
Integrating heterogeneous data can positively impact decision-making; however, achieving
valid integration faces many challenges, as noted by various researchers [20, 66]. Figure 2.5
outlines the main data integration components that Open Data Observatories may encounter.
The interoperability challenge refers to the difficulty of integrating and harmonising disparate
data sources and systems. Interoperability is one of the Open Data FAIR principles, as
explained in section 2.2.1 [188, 20]. Integrating data from disparate sources may also involve
using ontologies, managing large data volumes, and handling high-velocity data streams.
Effective use of APIs is crucial for accessing and integrating data from different platforms.

To overcome this challenge, several observatories implemented various strategies. For
instance, TERN harmonised the plot-based ecology using EcoPlots (ecoplots.tern.org.au), a
semantic data integration system that maps each data source to TERN Plot ontology. The
term ’ontology’ is a structured framework that defines the relationships between concepts
within a specific domain, providing a shared vocabulary for that domain [111]. OWL (Web
Ontology Language) is a formal language used to create and share these ontologies on the
web, enabling better data interoperability. The UOP deployed a platform called the "Urban
Data Exchange (UDX)" (urbandatacollective.com/urban-observatories-case-study) that acts
as a central hub for onboarding, harmonising, and serving the real-time data streams from
the different urban observatory systems. EOSDIS enhanced data interoperability through
standardisation of data formats and metadata, a distributed and interoperable architecture
across nodes like the Science Investigator-led Processing Systems (SIPS) and Distributed
Active Archive Centers (DAACs), which enabled efficient data retrieval [216].

2.6.2 Data Quality

Applied research defined the term data quality differently [207], a commonly used definition
by Strong et al. [237] describing data quality as data fit for the intended purpose. Byabazaire
et al. [38] and Taleb et al. [244] testified that data quality is a mature research topic in
big data and database management. However, Perez-Castillo et al. [207] claimed its youth
in Smart Connected Products (SCP) [281] and the Internet of Things. Data quality plays
a significant role in Open Data Observatories, as a sufficient quality level can build trust
between the cyber and physical world [38, 207].

Each observatory addresses data quality using different strategies, the UOP manages data
quality by using automated checks for data anomalies, calibrating sensors against precision
stations, and incorporating user feedback. The UOP also acknowledges the limitations
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of low-cost sensors and design their data use accordingly. GFW ensures data are up-to-
date by automating updates or requesting providers to notify them of changes. EOSDIS
methodology ensures metadata quality of Earth observation data hinges on a framework
prioritising correctness, completeness, and consistency. NASA uses automated and manual
reviews to identify and rectify issues, demanding active collaboration with data providers
to implement enhancements [37]. The CCO and NEON implement quality assurance and
control practices. The CCO ensures the reliability of marine observations, flagging poor
data but not eliminating them, whilst NEON applies rigorous quality measures to ensure
data quality. For example, observation system data use mobile apps with constraints and
validation rules. Instrument System data benefit from sensor placement, maintenance, and
calibration.

Airborne Remote Sensing data are calibrated and tested pre- and post-flight. Automated
checks and expert reviews ensure reliability, while flags and metrics provide transparency.
IUO handles quality through trusted data sources, accuracy, transparency, and interactive
visualisations but has limitations in completeness and update frequency. The OFO prioritises
data quality through standardised, open-source workflows for drone-based forest mapping,
accessible via its GitHub repository. It also employs cloud-based tools to process drone
imagery into detailed forest maps, facilitating ease of use as well as a central database to
support data sharing and quality enhancement through community feedback. As shown
in Figure 2.5, data quality challenges in the selected Open Data Observatories are closely
related to the FAIR principles, particularly data findability, accessibility, and reusability.
Using trusted sources and maintaining rigorous data entry standards minimise anomalies.
Sensor calibration, data entry rules and constraints implementation provide reliable data and
enhance their accessibility. Data completeness and consistency through quality assurance
processes also contribute to better metadata and documentation, making the data reusable.

2.6.3 Data Provenance

Data provenance, which traces the origins and lineage of data, is crucial in Open Data
Observatories. Maintaining rigorous data provenance allows observatories to ensure data
transparency, reliability, and reproducibility [9, 202, 124]. TERN releases weather data
accompanied by their lineage, including (a) the type and model of the automatic weather
station used for collection; (b) the specific location and characteristics of the site; (c) the
instruments used for measuring different weather parameters, along with their accuracy and
resolution; (d) the methodology for data recording and the intervals at which data were
stored; (e) the procedures followed in case of sensor failure including using alternative data
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sources for gap filling and indicating this within the dataset; and (f) the availability of the
data and contact information for access to more granular data (hourly data).

Similarly, SDO commits to full metadata inclusion for all its published data compendiums
and resources, encompassing data sources and time frames. NEON’s dedication to rich
metadata and thorough documentation strengthens the provenance and traceability of its
data offerings. This commitment includes the provision of Digital Object Identifiers (DOIs)
for NEON data packages, enhancing their findability and citability. NEON’s approach to
data provenance involves metadata management, adherence to FAIR principles, data citation
tracking, and handling data from diverse sources, focusing on transparency and accessibility.
In a different vein, research [265] recommends applying blockchain technology for data
provenance.

Blockchain can revolutionise how data are managed, enhancing transparency, security,
and trust. By leveraging its immutable ledger, data integrity and authenticity can be guaran-
teed, ensuring that once data are recorded, it cannot be altered. Moreover, the decentralisation
offered by blockchain reduces risks associated with centralised data storage by distributing
data across a network, thus enhancing data resilience and accessibility through peer-to-peer
sharing. Furthermore, blockchain’s encryption and smart contracts safeguard sensitive data
and automate data access permissions, ensuring only authorised access. It also offers a
transparent audit trail for all data modifications and transactions, facilitating traceable data
lineage and enforcing open data licenses automatically. Data provenance in our selected
Open Data Observatories aligns with the FAIR principles through elements like data access
licenses, documentation, transparency, data lineage, and citations. As shown in Figure
2.5, clear data access licenses enhance accessibility and reuse, whilst documentation and
transparency improve findability and interoperability. Data lineage ensures reliability and
supports reusability, and citations facilitate proper attribution, enhancing findability.

2.6.4 Data Privacy

Data privacy is critical in protecting personal and sensitive information from unauthorised
access and disclosure. Open Data Observatories implemented various measures to address
data privacy challenges, including data anonymisation, access controls, and encryption
[155, 168, 230, 218, 124]. These observatories handle massive amounts of data from various
data sources through orderly collection, aggregation, and analytics. However, these data may
contain sensitive details such as personally identifiable information and endangered species
locations [230, 206, 4, 150, 71, 160].

TERN, the CCO, and the UOP all have dedicated privacy statements that outline their data
privacy practices. These include compliance with regulations like GDPR, providing privacy
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Figure 2.5 This diagram captures the intricate web of research challenges in data management,
segmented into four primary categories, Data Integration, Data Quality, Data Privacy, and
Data Provenance. Each challenge extends into related subtopics and approaches to overcome
them that touch the periphery of the web, symbolising the complex and interconnected nature
of these issues. The visual metaphor of a spider web conveys the idea that each aspect is a
critical thread in the overall structure of data management.
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notices, defining lawful data processing, implementing security measures, and respecting user
rights. Similarly, GFW and GEOSS approach data privacy through transparency, consent-
based processing, security, and clear points of contact for users. NASA’s EOSDIS also has a
privacy policy that emphasises protection and proper use of information in line with relevant
laws and regulations. GROW addresses privacy by using an open data license, collecting
only anonymised sensor data without personal identifiers, and operating under institutional
oversight. The ITIC-tsunami observatory’s privacy policy covers aspects like cookies, email
handling, and user rights under the Privacy Act. SDO adheres to the overall privacy policy of
Southampton City Council, whilst NEON securely manages user accounts, anonymises data
reporting, and applies Creative Commons licensing. In contrast, IUO has a privacy-focused
approach, avoiding automatic capture of personal information and only collecting such data
if explicitly provided by users, with appropriate security measures.

Finally, the OFO focuses on openly sharing its forest mapping data and tools, rather
than collecting or managing personal user information, implying a commitment to data
transparency and accessibility. Data privacy in our selected Open Data Observatories in-
volved encryption, access controls, disclosure of information, anonymisation, privacy notices,
secure collection of personal information, privacy statements, and GDPR compliance. As
shown in Figure 2.5, encryption and access controls ensure secure and restricted data access,
aligning with FAIR principles. Disclosure and privacy notices enhance transparency, improv-
ing findability and interoperability. Anonymisation and secure collection practices ensure
data reusability without compromising privacy. Privacy statements and GDPR compliance
maintain legal and ethical standards, supporting data integrity and user trust.

2.6.5 Takeaways

The evaluation of Open Data Observatories, summarised in Table 2.7, underscores their
strengths, including high-quality environmental monitoring data (TERN), tools for analysing
coastal changes (CCO), and real-time monitoring of urban areas (UOP) and forests (GFW).
These observatories also provide platforms for citizen engagement (SDO, GROW) and
global data archiving (EOSDIS). Despite these strengths, challenges persist, such as limited
geographic coverage (UOP, FEO), concerns over data security and quality (CCO, ITIC),
inconsistent updates (IOU), and restricted data diversity (OFO). To address these issues, the
recommendations focus on enhancing data quality and transparency (TERN, GFW, ITIC),
expanding geographic reach (SDO, FEO), implementing real-time alert systems (CCO,
EOSDIS), and adopting advanced technologies such as AI, blockchain, and drones (TERN,
OFO). Importantly, the semantic web emerges as a promising data management approach
for overcoming these challenges. By leveraging ontologies, harmonised standards, and
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FAIR-aligned practices, Semantic web solutions enable interoperable, high-quality, and
secure data integration across diverse observatory systems, as illustrated in Figure 2.5. This
approach effectively addresses issues related to data coherence, provenance, and privacy,
making it particularly suited to integrating wildlife data silos. As a result, Semantic web
technologies qualify as the effective data management solution I have been searching for. The
subsequent sections explore wildlife data management approaches, with a focus on semantic
web applications for wildlife data integration and crime prediction, particularly in the context
of wildlife crimes.

2.7 Data Management Approach for Wildlife Data

This section provides an overview of the relevant research on wildlife data management. It
begins by outlining data integration in wildlife applications, then transitions to exploring
how semantic web technologies are used to represent wildlife data and evaluates various
methods. The section then discusses ontologies and knowledge graphs, explaining how they
can be developed and why using ontologies to create knowledge graphs could benefit relevant
stakeholders.

2.7.1 Data Integration for Wildlife Applications

In the last few years, data integration across wildlife applications has been investigated on
multiple fronts to improve the collection, analysis, and use of wildlife data. For example,
drones with AI are transforming conservation monitoring by providing vital information
about wildlife numbers and distribution [104, 36]. Likewise, the Internet of Things (IoT)
technologies have revolutionised wildlife tracking and provided an unparalleled opportunity
for combined data capture and integration [158].

However, developments in machine learning techniques like Convolutional Neural Net-
works (CNN) have been used to classify wildlife and combine it with ecological data in a
very cost-effective way [166]. Integrative models that combine information from extensive
surveys and participatory science [179] are aiding in the understanding of wildlife population
dynamics at broad geographic scales as well as over time. For instance, hierarchical models
are being developed to integrate data from both count and distance sampling for improved
wildlife population estimates [99]. Furthermore, incorporating Unmanned Aerial Vehicle
(UAV) systems in combination with machine learning algorithms enables near-real-time
wildlife monitoring and conservation [214]. Increasingly, novel machine learning applica-
tions are being used to decode animal movement patterns and improve our understanding of
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Table 2.7 Strengths and limitations of the selected Open Data Observatories, future recom-
mendations and some takeaways.

Data Obser-
vatory

Strengths Limitations Future Recommendation Takeaways

1. TERN14 High-quality data on
environmental monitoring,
along with tools and
expertise, provided to
researchers.

Limited coherent national
capability for monitoring
freshwater ecosystems.

Integrating blockchain for
data provenance and artifi-
cial intelligence for Linked
Data.

Semantic data integra-
tion and the Threat-
ened Species Index
(TSX)15

2. CCO16 Access to tools and mod-
els to analyze coastal data
and predict morphological
changes.

Outsourcing data storage
may impose security con-
cerns.

Incorporate extreme events
alert system.

Extreme events analy-
sis.

3. UOP17 Ability to provide a wide
variety of real-time and his-
torical data on different as-
pects of the urban environ-
ment.

Urban observatories do
not extend their coverage
to all cities across the UK,
resulting in a limited geo-
graphical reach.

Lack of evident research
documenting the positive
impact of the project (e.g.,
reduce crime rates).

Real-time data integra-
tion.

4. GFW18 Forest Watcher mobile app
for real-time threat detec-
tion, the GFW Pro for man-
aging deforestation risks in
supply chains, grants and
fellowships.

Limited data lineage. Provide details how data
are collected and evolved
over time to enhance data
provenance.

Real-time forest moni-
toring via satellite im-
agery and remote sens-
ing.

5. GEOSS19 Data platform flexibility
enabling users to adapt it
to their needs.

GEOSS does not guaran-
tee its Earth Observations’
accuracy or take responsi-
bility for their use.

Invest in quality assurance
and control.

Platform flexibility.

6. EOS-
DIS20

Global, long-term and reli-
able Open Data.

Limited validation for
satellite-based data with
ground-based measure-
ments.

Consider real-time update
and alert system for ex-
treme events.

Data long-term archiv-
ing useful for analysis
and training AI appli-
cations.

7. GROW21 Empowers citizens and
communities to have a say
on soil and climate matters
across Europe.

Limited data types. Integrate more data sources
such as air quality and
noise level.

Citizen science.

8. ITIC22 Centralized and authorita-
tive source for providing
real-time information, and
warnings about tsunami
events and risks.

Data quality and prove-
nance challenges caus-
ing errors in tsunami
database.

Addressing data quality for
improving the reliability
and usability of the tsunami
data.

Hazard alert system.

9. SDO23 Crowd-sourcing, allowing
citizens to understand lo-
cal issues and contribute to
problem-solving in urban
development and sustain-
ability matters.

Lack of real-time data and
APIs.

Extend geographic scope. Civic engagement and
transparency.

10.
NEON24

Open Data with good qual-
ity and sufficient documen-
tation.

Sensor locations at cer-
tain sites are seasonally
adjusted or removed due
to unfavourable or unsuit-
able measurement condi-
tions.

Implement hybrid power
solutions combining wind
power, solar power and
energy storage systems
for the Oksrukuyik Creek
(OKSR) site, where opera-
tions cease during winter.

Educational resources
such as the learning
and code hub.

11. IOU25 Wide range of urban data. Inconsistent data fre-
quency.

Consider using applica-
tions for data quality assur-
ance.

Urban data diversity.

12. FEO26 Ongoing monitoring and
research initiatives related
to Finland ecosystems.

Limited data coverage,
lack of data privacy state-
ment.

Expand geographic scope. Platform presentation
in multiple languages.

13. OFO27 Educational resources to
understand forests.

Limited data diversity, pri-
vacy policy not shared in
the website.

Integrate more remote sens-
ing wildlife data, supple-
mented with contextual in-
formation

Drones and Artificial
Intelligence (AI).
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species behaviour [187]. Cross-species toxicokinetic modelling Novel models are being used
to assess the risk due to endocrine-disrupting chemicals in wildlife [269].

2.7.2 Semantic Modelling for Wildlife Data

Semantic web technologies enable data interoperability and integration of multiple types
of wildlife data, leading to the development of knowledge graphs for querying and analysis
[253, 90, 209]. Technologies like GPS tracking, Wireless Sensor Networks (WSN) [276, 224],
and the devices connected to the Internet of Things (IoT) [34, 145, 232, 73] gather a lot of
information about the environment and need ways to combine it, like knowledge graphs
[272, 107, 196]. These graphs provide information about how species are connected, how
ecosystems work, and how the environment affects wildlife [204, 14]. This helps people from
different fields work together to protect species and make informed decisions [189, 194].

Previous research, such as Athanasiadis et al. [15] developed a semantic framework for
significant carnivore conservation in northern Greece, integrating animal tracking data with
ecological niche modelling for habitat suitability. In contrast, this work differs in location,
integration process, and output flexibility and employs an executable interface for interactive
analysis across various data types. Wang et al. [259] applied semantic technology to model
wildlife observations, including pollution effects on ecosystems and storing provenance
data for traceability. The semantic modelling in this study is similar in some ways, but it
is different in how the data are transformed. Instead of Wang et al.’s manual RDF model
conversion, this study uses the Resource Description Framework (RDF) Mapping Language
(RML) and modular pipelines for scalable data conversion into triple data stores.

Researchers Mireku et al. [177] and Zheng et al. [225] use semantic inference to help find
new information and make predictions about how animals will move in the future. On the
other hand, Wannous et al. [262] worked on creating a trajectory ontology that includes parts
of three main ideas: (i) moving objects, (ii) marine environments, and (iii) spatiotemporal
models. This was accomplished by converting their data into an OWL ontology using an
open-source tool (uml2owl). Wannous et al. constructed a domain ontology that integrates
various sub-ontologies tailored to specific use cases. This research adopted a different
approach that allowed semantically modelled data to populate a wildlife monitoring ontology.
Furthermore, this method includes ontology documentation, publication, and maintenance
plans as recommended features.
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2.7.3 Wildlife Ontologies

In computer science, ontology is a formal and explicit specification of a conceptualisation
used to represent knowledge in a particular domain [111]. Ontologies have been used in
various domains, including biodiversity, to model knowledge [6]. Previously, the development
of ontologies was based on manual curation by domain experts. However, this process is
time-consuming and prone to errors. In the context of biodiversity, ontologies have been
developed to represent concepts such as species, habitats, and ecosystems. The semantic web
for Earth and Environmental Terminology (SWEET) [217] is an example of a large-scale
ontology that covers several domains related to the environment.

The Wildlife Ontology (WO) [215] is another example of an ontology developed specifi-
cally for wildlife data. In principle, ontologies are logically well-defined vocabularies that
link various data sources and define their connections firmly. They comprise classes, relations,
and instances. Data entities are represented as graphs with nodes and edges using a data
model like the RDF. Using the RDF model, a piece of information is converted into a graph
composed of (subject, predicate, object), for instance (Soil_ID, Soil_pH, 4.88). Ontologies
can be expressed as a tuple of five elements [245], formulated as follows:

Ontology = ( C , HC , R , HR , I ) (2.1)

Where:

C = (instances of "rdf:Class") stands for concepts.
HC = (“rdfs:subClassOf”) stands for concept hierarchy.
R = (instances of “rdf:Property”) stands for relationships between concepts.
HR = (“rdfs:subPropertyOf”) stands for relationship hierarchy.
I = (“rdf:type”) the instantiation of the concepts in a particular domain.

2.7.4 Ontology Development Methodologies

For a suitable methodology, I searched the ACM digital library (dl.acm.org) and Google
Scholar (scholar.google.com). Our search terms included "ontology methodology," "ontology
development methodology," and "ontology building approaches." Methodologies include
the eXtreme design (XD) methodology [30], which is a modular, incremental approach that
maps a set of competency questions to one or more Ontology Design Patterns (ODPs) [92]
before integrating them into the ontology under construction.

The DILIGENT methodology [210] provides a more flexible trial-and-error approach,
recommending the order of discussion, evaluation, justification, and testing in a use-case.
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Table 2.8 Compares ontology development methodologies. CQs= Competency Questions,
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The eXtreme Design (XD) [30] * * * * * *
DILIGENT [210] * * * * * *
METHONTOLOGY [162] * * * * * *
On-To-Knowledge Methodology [242] * * * * * * *
Ontology Development 101 [190] * * * * * *
NeOn Methodology [238] * * * * * *
Linked Open Terms (LOD) [211] * * * * * * * * * * *

METHONTOLOGY methodology [87], on the other hand, proposes a waterfall, an incre-
mental development approach that focuses on the lightweight ontology version. Although
METHONTOLOGY provides detailed guidelines for the life-cycle development of ontolo-
gies, it must be generalised to fit multiple domains. The On-To-Knowledge Methodology
(OTKM) [242] focuses on the initial setup, enterprise applications, and maintenance of
ontologies. Other well-known methodologies include "Ontology Development 101" by Noy
et al. [190] and NeON by Suárez-Figueroa et al. [238]. Whereas the former focuses on
ontology conceptualisation, the latter divides the ontology development process into nine
distinct scenarios to accommodate a broader range of use cases.

Further ontology development methodologies were reviewed by Aminu et al. [12] and
Singh et al. [228]. The Linked Open Terms (LOT) project [211] builds on over two decades
of ontological engineering experience, taking inspiration from the Neon methodology [101].
It emphasises borrowing and reusing classes from related ontologies and allows for including
natural language statements and tabular data during the requirement-gathering phase.

Moreover, LOT promotes the sharing of ontologies following the Linked Data and FAIR
principles for the semantic web [28, 89] to facilitate their reuse by the research community and
software applications. Table 2.8 compares the different ontology development methodologies.

2.8 Knowledge Graphs

A knowledge graph [114, 29] organises information into a graph structure, where nodes
represent entities and edges define their relationships. The term "Knowledge Graph" gained
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popularity with Google’s Knowledge Graph project [75]. Following that, many academics
have evaluated the term and used it in various contexts [201, 282, 46, 122, 45]. A commonly
accepted definition of a knowledge graph captures knowledge by defining entities and their
relationships [76]. Knowledge graphs offer several benefits in wildlife data management,
enabling data integration, standardisation, linking, and reuse by combining characteristics of
different data management paradigms.

2.8.1 Knowledge Graphs Creation Methodologies

A knowledge graph [114, 29] organises information into a graph structure, where nodes rep-
resent entities and edges define their relationships. Different methodologies exist for creating
knowledge graphs, and the choice of method depends on factors such as the stakeholders
involved, domain, intended applications, and available data sources. Some approaches
include starting with an essential core and gradually enhancing it, following an Agile or
"pay-as-you-go’ approach [16]. Another strategy involves initiating a knowledge graph
without predefining its schema (i.e., ontology) and gradually building schema and instances
during creation. However, designing a knowledge graph schema beforehand can signifi-
cantly enhance its utility [141]. A six-step process involving data identification, ontology
construction, knowledge extraction, data processing, data integration, and knowledge graph
evaluation is also commonly used [100].

Furthermore, employing robust tools for linked data, data integration, and data manage-
ment whilst continuously analysing and adjusting deliverables is another viable methodology
[22]. The ad hoc creation of knowledge graphs that reuse existing knowledge by interlinking
relevant classes and properties from existing ontologies has also been practised [134]. The
World Wide Web Consortium (W3C) (w3.org) recommends using RDF mapping languages
(w3.org/TR/r2rml/), such as RML (rml.io/specs/rml/), R2RML (w3.org/TR/r2rml/), and
xR2RML [175] for scalability and interoperability. RML is designed to map heterogeneous
data structures onto the RDF (w3.org/RDF/).

The process starts by generating a text file defining the mapping rules that an RML
processor executes to create the output RDF dataset [65]. Prior academic studies have
extensively explored the development of semantic knowledge graphs and the evaluation of
mapping languages and systems to generate RDF knowledge graphs from heterogeneous
(semi-)structured data. Ryen et al. [223] and Van Assche et al. [250] contributed to the study
area. In addition, Corcho et al. [55] presented a notable case in which they designed an
ontology to create a knowledge graph for an ICT firm. These studies collectively emphasize
the significance of semantic knowledge graphs and the utility of RDF-based approaches in
representing and integrating data across various domains.
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2.8.2 Ontologies for Knowledge Graphs

Using ontologies in knowledge graphs reduces ambiguity, ensures data compatibility, and
establishes a formal representation of concepts and relationships [127, 148, 32]. With
a defined ontology, data collection schemas from different sources can leverage shared
vocabulary, resulting in semantic data integration. Ontology-powered knowledge graphs
improve data interoperability, promote reusability and data exchange [136], enable automated
reasoning, and enhance analytical capabilities. Table 2.9 compares the benefits of building a
knowledge graph with and without an ontology.

Table 2.9 Compares the benefits of building a knowledge graph with ontology and without
ontology

Benefits With Ontology Without Ontology
Less Ambiguity Ensures a normalised representation of

concepts and relationships.
Increased ambiguity in data and lack
of a normalised structure.

Data Integration Accelerates Data Integration. Slower and more complex heteroge-
neous data sources.

Knowledge
Representation Enables complex relationship mod-

elling and nuanced insights.
Limited ability to model relationships
and capture intricate connections.

Data Interoperability Facilitates seamless data exchange and
system interoperability.

Challenges in integrating data from di-
verse systems.

Reusability Promote ontology reuse and extension
across applications and domains.

Lack of ontology reuse and extension
leads to redundancy and inconsistency.

Reasoning Enables automated reasoning and in-
ference based on ontology relation-
ships.

Limited ability for automated reason-
ing and logical inference.

Improved Search Enhanced targeted search and query-
ing through structured data representa-
tion.

Less precise and effective search and
querying due to lack of structure.

2.8.3 Knowledge Graphs for Data Modelling

Knowledge graphs (KGs) have witnessed significant advancements in research, particularly
in augmenting the capabilities of predictive models. Pahuja et al. [197] discussed the
complexities of building prediction models with knowledge graphs, aiming to deduce new
facts from existing data. Their research identified inherent challenges in traditional Graph
Neural Networks (GNNs), such as over-smoothing and scalability issues. Addressing these,
they proposed a novel "retrieve-and-read" framework, anchored by a Transformer-based
GNN, which markedly improved the model’s ability to extract and used relevant contextual
information for predictions. Simultaneously, Duan and Chiang [69] introduced an integrated
system to streamline complex predictive tasks for domain experts. This system, employing an
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ontology-centric approach, consolidates diverse data into RDF knowledge graphs, facilitating
efficient querying and analysis. A notable application of their system was demonstrated
in a case study focusing on forecasting the future trajectory of fuel cell technologies. The
system’s proficiency in assimilating data from various sources, such as academic research
and patents, showcased its versatility and effectiveness in predictive modelling.

In urban planning and analysis, Ning [186] introduced the Unified Urban Knowledge
Graph (UUKG) dataset to overcome limitations in existing UrbanKGs. The project involved
constructing comprehensive UrbanKGs for two significant cities containing millions of data
triplets. The study unveiled intricate high-order structural patterns within these UrbanKGs
through qualitative and quantitative analyses. The primary focus was enhancing urban spatio-
temporal predictions by testing various KG embedding methods and integrating them into
advanced spatiotemporal models. The UUKG dataset and its source code, made publicly
available, represent a significant contribution to the field, encouraging further exploration
and research.

Yan [271] explored the application of virtual knowledge graphs in the industrial sector,
particularly in predictive analytics for hydraulic systems. This approach, aligned with the
emerging needs of Industry 4.0, particularly in predictive maintenance, presents a pioneering
method in digital modelling and system analysis. In the healthcare and pharmaceutical
domains, Feng et al. [85] unveiled DKADE, an innovative framework combining deep
learning with knowledge graphs to detect adverse drug events (ADEs). This framework
addresses common issues in clinical narratives, such as missing drug information and the
complexities of multiple medications. Complementing this, Zeng et al. [85] conducted an
extensive review of KG methods in drug repurposing and adverse drug reaction predictions,
focusing on the crucial role of knowledge graphs in drug discovery processes. In a related
study, Wang [260] introduced KG-DTI, a deep-learning approach rooted in KGs aimed at
predicting drug-target interactions for Alzheimer’s disease treatments. This method uses a
comprehensive KG containing thousands of positive drug-target pairs. It employs a Conv-
Conv module to extract significant features, resulting in a highly effective neural network for
drug-target interaction calculations. These diverse studies, covering urban planning, industrial
maintenance, and medical research, exemplify the expanding influence and applicability of
KGs. They highlight the potential of KGs to revolutionise predictive analytics in various
fields, offering innovative solutions to complex challenges and paving the way for future
developments in this dynamic and evolving area.
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2.8.4 Knowledge Graphs for Crime Prediction

Tompson et al. [246] outline the integration of open data from various sources as a formidable
approach to crime prediction. Knowledge graphs, in particular, are useful in organising,
managing, and effectively using large volumes of information. Their ability to augment data
with relationships and semantics transforms raw data into intelligent, explainable insights, as
explored by Sikos [227]. To mention few work from the literature, Deepack and his team
[63] addressed the recent surge in crime rates with a Bi-LSTM neural network tailored to
classify a spectrum of crime types. Their approach involved data gathering from Google
News and Twitter, including preprocessing, initial labelling via the Fuzzy c-means algorithm,
vector creation using Term Frequency-Inverse Document Frequency, and feature extraction
through GloVe word embeddings. The cornerstone of their model’s enhanced classification
capability was dynamically crafted ontologies derived from weighted graphs from news and
social media sources. Wang and colleagues [258] developed HAGEN, an end-to-end graph
convolutional recurrent network aimed at predicting various types of crime across different
geographical areas. Their model incorporated a homophily-aware constraint, guiding the
optimisation of the region graph to ensure adjacent nodes exhibited similar crime patterns,
in line with diffusion convolution principles. Simultaneously, Iqbal and associates [129]
used actual crime datasets from several U.S. states for crime category prediction. Their
multifaceted approach included techniques such as data reduction, Naïve Bayesian methods,
Decision Trees, and Confusion Matrices. Bogomolov et al. [31] sought to forecast crime
hotspots in London, merging data from human mobile networks, demographic insights, and
open crime data. They employed various techniques, from Logistic Regression to Neural
Networks, Decision Trees, Random Forest, and K-fold cross-validation.

Almanie and team [10] explored real-world crime datasets for Denver and Los Angeles.
Their methodology embraced Decision Trees, Naïve Bayesian analysis, and Confusion Ma-
trices. Similarly, Chen et al. [44] harnessed data from Twitter alongside weather information
to predict crime incidents, relying on linear modelling techniques. Kang et al. [137] intro-
duced an innovative feature-level data fusion method, incorporating environmental context
information to surmount the limitations of existing crime prediction models. They employed
a deep neural network (DNN) that integrated diverse datasets, including crime statistics,
demographic data, meteorological information, and imagery from Chicago, enriching the
prediction model with extensive environmental insights.
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2.8.5 Wildlife Crime prediction

In the realm of wildlife conservation and biodiversity, the development of significant
databases and information systems, such as the Global Biodiversity Information Facility
(GBIF) [152], has been useful. GBIF’s role as an internationally-funded network collating
data on Earth’s life forms is vital for biodiversity records. Similarly, the Encyclopedia of
Life (EOL) [200] augments these efforts by documenting species on the planet, integrating
diverse information sources to provide comprehensive data on species taxonomy, distribution,
and conservation status. Wikidata [255], with its open, editable nature, and the UK-based
National Biodiversity Network (NBN) Atlas [212], especially for species and habitats in the
UK, are crucial in making biodiversity data accessible. eBird [241], managed by the Cornell
Lab of Ornithology, contributes significantly with its extensive database of bird observations,
enhancing global understanding of bird distribution and abundance.

These resources become particularly evident in the context of wildlife crime, a pressing
global issue that operates transnationally and requires an international mitigation strategy
[180]. Wildlife trafficking criminals, including poachers, intermediaries, and end consumers,
are often part of larger syndicates orchestrating illicit operations. These syndicates rely on
the exploitation of biodiversity and are responsible for reimbursing poachers and couriers
for obtaining animal parts. Research that addressed wildlife crime, Hofer et al. [121]
analysed the economic facets of illegal hunting in the Serengeti. They modelled factors like
weapon costs, hunting expenses, potential penalties, and income loss due to travel. They
deduced poacher behaviours and motivations by employing herbivore population statistics
and community hunting questionnaires. Bakana et al. [17] explored multimedia data mining
techniques against poaching. They reviewed object detection, image classification, and
behaviour analysis methods for poacher identification.

Haas et al. [115] emphasised social network analysis for targeting wildlife trafficking
networks. The authors consolidated federated databases containing criminal intelligence data
from heterogeneous sources. Usually, a member of the federation, who is the requester, sends
an email containing a Structured Query Language (SQL) query to each federation member.
When a federation member receives such an email query, they can disregard it if they don’t
trust the requester. Alternatively, they may execute the query on their local database and
send the result back to the requester as an encrypted file attached to an email. As such, they
equipped law enforcement with strategies to dismantle these networks, as evidenced by a
rhino trafficking case study.

In 2018, Haas and colleagues developed a political-ecological simulator model to manage
human-wildlife conflict in [116]. The model uses decision-making diagrams to represent
groups and animals to describe ecosystems. The model’s parameters can be statistically
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fitted to a political-ecological action history dataset using consistency analysis. The fitted
model can then be used to find politically feasible management plans to achieve conservation
goals. The authors also developed a web-based system for automatically acquiring group
action data to update the model’s parameter values in real-time. Actual time was tested on
the management challenge of conserving the South African rhino population in the face of
severe poaching pressure. The model generated decisions that matched 82.4% of those in
a real-world dataset. The authors concluded that anti-poaching can increase disincentives
against incentives, but it may require a significant investment that is not socially acceptable.
Providing employment can shift the trade-off at a given level of incentives for relatively low
and politically feasible input.

Critchlow et al. [60] employed Bayesian hierarchical models on ranger patrol data in
Uganda, identifying illegal activities and accounting for ranger observation errors. Their
study discussed the impact of illegal resource use on biodiversity loss within protected areas.
Data were collected by ranger patrols in the Queen Elizabeth Conservation Area (QECA),
Uganda, to identify the patterns, trends, and distribution of illegal activities. Encroachment
and poaching of non commercial animals were the most prevalent illegal activities within the
QECA [248]. The study also found that ecological covariates were not valuable predictors
for the occurrence of unlawful activities, but the location of illicit activities in previous years
was more helpful. Regular patrols throughout the protected area, even in regions of low
occurrence, are also required. Ranger patrol strategies must be implemented to target illegal
activities, informed by the location of past occurrences of illicit activity, which is the most
useful predictor of future events.

Previous research [275, 72, 143, 174, 219] stated that geospatial standards enhance
data sharing, analysis, evidence-based decisions, and reduce wildlife trafficking. For this,
Gore [108] stressed on the significance of geospatial data standards in combating wildlife
trafficking. They employed participatory workshops, online platforms, and communication
with over 100 participants globally to establish these standards, facilitating data-driven
actions such as indictments and network disruption. As a result, an open-access wildlife
trafficking data directory and visualisation tool for researchers were developed. Ferber et
al. [86] examined wildlife trafficking’s broader impacts, focussing on the challenges in its
mitigation. They presented a data-driven model predicting trafficking routes.

Applying heuristics, Yang et al. (2014) launched the Protection Assistant for Wildlife
Security (PAWS) to optimise ranger patrols using game theory. Nguyen et al. [185] built
the so-called Comprehensive Anti-Poaching with Temporal and Observation Uncertainty
Reasoning (CAPTURE). Used as an anti-poaching tool, Capture provided a noticeable
improvement over the state-of-the-art [83, 121, 60] in many ways. CAPTURE accounted
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for the rangers imperfect observations challenge, integrated the temporal effect on poachers
behaviour, and overcame the requirement of knowing the poachers’ numbers. Nguyen et al.
introduced two heuristics (evaluation-and-feedback and trial-and-error methods): parameter
separation and target abstraction, respectively.

However, CAPTURE’s predictions had some ambiguity (too many targets), the learning
process took a long time on a high-performance computing cluster, and the model learned was
hard to interpret since it makes predictions based on linear combinations of different decisions.
Kar et al.[139] investigated the limitation of CAPTURE [185] by presenting an adversary
behaviour modelling system, INTERCEPT (Interpretable Classification Ensemble to Protect
Threatened Species). Intercept used decision trees to make predictions that are easier to
interpret and address the spatial correlation of the dataset by introducing a spatially aware
binary decision tree algorithm (BoostIT). To further augment INTERCEPT’s performance,
they built an ensemble of the best classifiers, which boosted predictive performance by a
factor of 3.5 over the existing CAPTURE model. Moreover, they provided an extensive
empirical evaluation of the largest poaching datasets from Queen Elizabeth National Park
(QENP) in Uganda. They analysed 41 different models and a total of 193 model variants and
presented month-long field test results. One year later, Gholami et al. [98] combined capture
& intercept models and presented a hybrid model predictive power with spatiotemporal power
that selectively predicted snaring activity in precise locations in areas of high snaring activity,
resulting in rangers finding more snares and snared animals. Their field test was much
more prominent in scale than the other models, involving 27 patrol posts. Then, Gholami
and McCarthy [98] developed an imperfect observation aWare Ensemble (iWare-E1) model
to improve the detection of poaching crime in two protected areas in Uganda and Africa.
The predictions were made on 14-year (2003–2016) datasets of type, location, and date of
wildlife crime activities.

In contrast to these approaches, this work pioneers integrating heterogeneous wildlife
data with deep learning on an ontology-based knowledge graph. This model achieves
remarkable predictive performance by understanding complex animal movements’ behaviour
and constructing reasoning rules, outperforming conventional techniques and state-of-the-art
methods. This innovative approach holds promise for advancing poaching prediction and
enhancing wildlife conservation efforts.
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2.9 Summary

This chapter introduced and analysed thirteen Open Data Observatories, offering data span-
ning both urban and non-urban settings on a global and regional scale. The main features,
data availability, and usability of these observatories were examined. Despite challenges
in comparing them due to varying sizes and stages of development, collaborations and
connections were identified, such as between NEON and the OFO, and between GROW
and GEOSS. In addition, the data explored in the Open Data Observatories were grouped
into urban and non-urban themes, highlighting commonalities in data types and processing
approaches across the observatories.

Research challenges related to integrating diverse data sources whilst maintaining their re-
liability and integrity were identified, including data integration, data quality, data provenance,
and data privacy. Solutions to these challenges vary widely depending on the observatory’s
domain, data source, and target audiences. Specific strengths and weaknesses of each obser-
vatory were also pinpointed, forming the basis for future recommendations. These findings
underline the importance of collaboration between different disciplines, the standardisa-
tion of data, and adaptable strategies to overcome data and system integration challenges.
More specifically, the gap in the current literature that this research addresses is the lack of
integrated platforms for wildlife data.

Through a comparative analysis of existing data management methods, semantic web
technologies were identified as the most suitable data management approach for this research
data, thereby addressing RQ1 and fulfilling C1. Semantic web technologies were selected for
their unique ability to handle the integration of heterogeneous data sources whilst ensuring
interoperability, standardisation, and scalability. In comparison, Geographic Information
System (GIS) and Artificial Intelligence (AI) are highly effective for spatial analysis and
predictive modelling but are often domain-specific and less adaptable for unifying diverse
datasets across disciplines. Unlike semantic web technologies, GIS lacks built-in mechanisms
for semantic integration, and whilst AI can process and analyse data, it typically requires
pre-structured, high-quality inputs and lacks the capacity to natively enforce data standards
or manage provenance. Semantic web, through the use of ontologies and knowledge graphs,
excels at representing complex relationships enabling seamless integration of disparate
wildlife data silos.

Consequently, an overview of the relevant research on wildlife data management examines
how semantic web technologies are used to model wildlife data by comparing different
approaches. Ontologies and knowledge graphs were discussed, focusing on their development
and construction. In addition, the benefits of using ontologies to create knowledge graphs
were justified. Further, previous studies applying knowledge graphs for data modelling, crime
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prediction in general, and wildlife crime prediction in particular were reviewed. This review
led to the identification of insufficient application of knowledge graphs in poaching prediction.
This sets the stage for introducing an ontology created to standardise heterogeneous wildlife
data, build wildlife knowledge graphs, and use them to predict poaching intents.

The proposed ontology, named the Forest Observatory Ontology (FOO), is the outcome of
a collaboration between Cardiff University’s School of Biosciences, the Danau Girang Field
Centre (DGFC), and the School of Computer Science and Informatics. The following chapter
details the ontology development lifecycle and the creation of its associated knowledge
graphs, collectively referred to as the Forest Observatory Ontology Data Store (FOODS).
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Chapter 3

Forest Observatory Ontology Data Store
(FooDS)

This chapter addresses the second research question (RQ2): Can a ’Linked Data Store’ be
developed to answer questions supporting wildlife research and conservation activities?
This chapter begins by briefly defining the term "Forest Observatory" and comparing various
data management approaches in the context of Open Data Observatories. Following this,
the chapter introduces an ontology named the Forest Observatory Ontology (FOO). Four
semantically modelled wildlife datasets were used to populate FOO, resulting in an ontology-
based knowledge graph named the Forest Observatory Ontology Data Store (FooDS), which
serves as the ’Linked Data Store’ to answer wildlife research questions. FOO and FooDS
were evaluated using specialised open-source ontology scanners, feedback from domain
experts, and applied use cases. This chapter contributes FooDS, the first ontology-based
knowledge graph for Forest Observatories, which provides accurate query responses, reason-
ing capabilities, and granular data acquisition from diverse datasets. FOO in turtle format,
FOO’s documentation and FooDS in turtle format and their resource website are published
at https://w3id.org/def/foo, https://w3id.org/def/fooDocs, https://w3id.org/def/fooDS, and
https://ontology.forest-observatory.cardiff.ac.uk.

3.1 Introduction

Forest Observatories integrate and analyse wildlife data to answer questions that support
data-driven analysis and forest monitoring [119]. Such observatories can enhance the under-
standing of ecosystems, species interactions, and environmental changes, aiding conservation
efforts and informed decision-making [68]. In wildlife research activities, multiple methods
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are employed to collect data, including field surveys, direct observation censuses, GPS
tracking, motion-activated trail cameras and airborne sensors. However, the collected data
often exist in silos or isolation due to the independent handling of maintenance, analysis, and
storage by separate research activities. In addition, many environmental scientists lack exper-
tise in managing data using computer science methods, which can lead to data management
being overlooked rather than a planned process [222].

Siloed data hinder collaboration as groups work independently, thereby reducing oppor-
tunities for data sharing [167]. For example, consider one group studying the impact of
elephant populations on soil health in a specific ecosystem, whereas another group investigat-
ing the behaviour and movement patterns of the same elephant population. The first group
collected data on soil composition, nutrient levels, and erosion rates, whereas the second
group collected information on migration routes, feeding habits, and social interactions. Soil
researchers might need to understand elephant movement patterns to assess their impact
on soil compaction and nutrient distribution, whereas elephant researchers could benefit
from insights into how soil quality influences elephant grazing behaviour. Collaboration
between these two groups can be facilitated by using a common data store that standardises
the datasets and links their entities. This linked data store can integrate these diverse data
in a way that is comprehensible to both humans and machines. Effective data management
for Forest Observatories improves the long-term collection, quality, and persistence of data,
enhancing the ability to address key ecological questions regarding conservation and natural
resource management. Traditional data management strategies such as data warehousing and
lakes are commonly employed to integrate data from various sources [243, 183, 266].

Data warehousing involves extracting, transforming and loading of data from different
sources into a structured database system, ensuring uniform storage, and facilitating ac-
cessibility and analysis for data scientists. Conversely, data lakes serve as repositories for
structured and unstructured data in raw formats. Conceptual models of how animals interact
with and use habitats that link diverse research data also existed in past studies [123, 35, 40].
However, these approaches often lack meaningful connections between the data entities.
Data scientists can derive substantial benefits from incorporating semantic webtechnologies
such as ontologies and knowledge graphs into their workflow. The semantic web equips
computers with the necessary tools and languages to understand and process the data in a way
that is meaningful and useful for specific applications, enabling rule-based and automated
reasoning, data integration, and complex querying capabilities.

Ontologies [111] are structured frameworks that describe the types, properties, and in-
terrelationships of concepts within a specific domain. They serve as formal representations
of a set of concepts and their connections, facilitating a shared understanding that can be
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communicated between people and their computational systems. Knowledge graphs [118],
on the other hand, represent a way of structuring and integrating knowledge based on relation-
ships between entities (such as objects, individuals, concepts, or events), enabling machines
and people to interpret and use interconnected information effectively. Ontology-based
knowledge graphs focus on developing semantic relationships in data. These relationships
form meaningful connections between concepts in a particular domain, enabling an under-
standing and interpretation of how these concepts relate to each other. The semantic web
technologies enable precise querying, complex relationship analysis, semantic consistency,
and data interoperability. Moreover, the reasoning capabilities can enable data scientists to
infer implicit knowledge that is not overtly specified within the data.

Our research employed a novel ontology integrating elements from established ontologies
to unify the Internet of Things (IoT) and wildlife concepts (biodiversity, conservation biology,
habitat fragmentation, and endangered species management). We applied semantic modeling
techniques to reformat various wildlife datasets into graphs and merged them with our
ontology to produce four knowledge graphs.

This chapter’s contributions to Forest Observatories include the following:

1. The Forest Observatory Ontology (FOO) and its knowledge graphs (FOODS), equipped
with online documentation for describing wildlife data generated by sensors.

2. A resource website for FooDS, offering information on their creation and usage.

3. An analytical executable notebook and a dashboard to remotely query, visualise and
analyse four distributed wildlife knowledge graphs in a granular, unified manner.

3.2 Forest Observatory Ontology (FOO)

The Forest Observatory Ontology (FOO) is proposed, a novel ontology that represents wildlife
data collected through remote sensing devices. FOO articulates complex relationships and
facilitates the linkage of diverse concepts through a versatile approach incorporating classes
and properties from established ontologies. FOO standardises data entities and formalises
their semantics, enabling the integration of diverse wildlife datasets from various sources.
Specifically, it can articulate the relationship between an animal, a sensor, and its geolo-
cation, and the observations collected when a sensor is attached to an animal record its
geolocation. Furthermore, FOO facilitates thesemantic linkage of data sources that share
common concepts, thereby allowing for efficient retrieval of animal location data through
sensor queries. In addition, FOO enhances data analysis capabilities by incorporating rules
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directly into databases to support inferences. To develop FOO, I employed the Linked
Open Terms (LOT) methodology [211], chosen for its alignment with our project’s needs,
including the ability to model natural language statements and support the publishing and
maintenance of the ontology. The development of the ontology progressed through iterative
stages, including requirement gathering, implementation, evaluation, and publication. Figure
3.1 illustrates the comprehensive lifecycle of FOO’s development process. FOO’s actors
play distinct roles during its life cycle. Bio-scientists contribute expertise on Sabah’s forest
wildlife, including Bornean elephants and their endangered status. Wildlife researchers pro-
vide real-world scenarios, such as elephants’ movements and incidents. Ontology developers
focus on integrating FooDS with AI-enabled frontends using SPARQL queries. Computer
scientists highlight the benefits of Linked Data stores (i.e., FooDS) in bridging data silos.
Data scientists assess FooDS usability and explore applications of machine learning and deep
learning.
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Figure 3.1 FOO Ontology Development phases, inspired by Linked Open Terms (LOT)
methodology [211].

3.2.1 Ontology Requirements

During the initial phase of the ontology development process, the Ontology Requirements
Specification Document (ORSD) [240] was crafted, adhering to the guidelines outlined in
the LOT methodology. The ORSD outlines critical details, such as the ontology’s scope,
intended purpose, and the use cases it aims to support. This phase actively involves domain
experts identifying use cases for the ontology and selecting the datasets that will be modelled.
Competency Questions (CQs) in Table .3 and 3.3, Natural Language Statements (NLSs)
in Table 1 were compiled and various use cases were created for biologists and wildlife
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researchers. CQs, as defined in [112], outline the functional requirements of the ontology
by formulating questions that the ontology should answer using query languages. NLSs are
short affirmative phrases that convey information to be included in the ontology. Use cases
describe real-world scenarios that the proposed ontology aims to address.

To meet these requirements, I engaged in three distinct activities: The first activity was
an ethnography to gain insight into the wildlife research community, informed by casual
interviews and observations during data collection. The second involved conducting semi-
structured interviews with eight wildlife researchers from Cardiff University in Wales and the
DGFC in Sabah, Malaysian Borneo. I organised a text-based focus group for the third activity
and conducted a nominal group technique session. Three administrative documents were
created for each activity: participants’ information sheets, consent forms, and demographic
questionnaires. Participants’ information sheets briefly outlined the project objectives and
procedures for the activities. Consent forms enabled us to obtain signed permission from the
participants to proceed with the activities. Finally, the demographic questionnaire collected
non-personal details from participants, such as their education level, occupation, and years of
experience.

Ethical clearance (COMSC/Ethics/2021/039) for collecting the necessary data was
granted by Cardiff university’s research ethics board. The participants were provided with
both online and paper versions of the documents. To enlist participants, snowball sampling
technique was followed [91] and collaborated with DGFC. The first meeting was with bi-
ologists within Cardiff University network, requesting them to refer to individuals who
aligned with the study criteria. Although the target was six participants for formal interviews,
this direct engagement strategy proved effective, and semi-structured interviews with eight
participants were successfully conducted. In the discussion groups (nominal and focus),
at least five participants joined each group, receiving responses from 14 participants via
Google Forms in total. Interviews were transcribed using Microsoft Word, written notes were
taken for the discussion groups, and the ethnographic studies were summarised. In line with
methodologies adopted in prior research [78], the data gleaned from interview transcriptions
and discussion group notes were manually coded into Competency Questions (CQs) (see
Table .3) to guide the ontology’s development.

Figure 3.2 shows the demographic details of the study participants.

Ethnography

Ethnographic research at DGFC were exercised in the summer of 2022 to observe the
collection and processing of wildlife data [163] (Figure 3.3). Four activities were carried out:
(i) comparing butterfly diversity, (ii) comparing Proboscis Monkey Activity, and (iii) finding
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count mean std min 25% 50% 75% max
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Figure 3.2 Participants’ Demographic Information

the tracked Sunda pangolin. (iv) finding the Elephas maximum (Asian elephants). These
ethnographic experiments were conducted to understand cultural and operational dynamics,
providing crucial insights to guide research and the design of the proposed ontology. For
example, they revealed how data are collected and processed, identified the species present in
the forests of Sabah, and highlighted some use cases that can be tailored to real-world needs.

1. Comparing butterfly diversity: The ethnographic research contrasted butterfly pop-
ulations in a tropical rainforest and an oil palm plantation. The rainforest revealed
rich biodiversity with 372 butterflies across 23 species, notably G. harina, constituting
67% of its butterfly fauna. In contrast, the plantation had only nine butterflies of six
species, with no unique species. The findings, showing a mean species richness of 8.4
in the rainforest and 2.2 in the plantation, highlight the significant impact of habitat on
butterfly diversity.

2. Comparing Proboscis Monkey Activity: The ethnographic study conducted by BSc
students from Bioscience, with assistance from staff wildlife researchers at the Danau
Girang Field Centre (DGFC). This study focused on variations in the behaviour of
proboscis monkeys across different time periods (multiple days). The study used two
methodologies: visual surveys along the Kinabatangan River and nearby forest trails
and bio-acoustic monitoring facilitated by AudioMoth devices. Preliminary visual
data suggested a higher sighting frequency of monkeys along the riverbank than in
the forest, somewhat challenging the initial hypothesis of peak afternoon activity at
the river. However, the acoustic data, encompassing over 22 hours of recordings from
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each device, are yet to be analysed and will be crucial in validating or refuting the
hypothesis regarding the unpredictability of activity patterns. Despite its insights, the
study acknowledged several limitations, including adverse weather conditions, human
observation constraints, and the possibility of repeated sightings of the same monkeys.

3. Finding the tracked Sunda pangolin: In the early hours, I entered the forest with fellow
researchers, equipped for protection against insects and rain, aiming to locate the Sunda
pangolin using a noise-emitting antenna designed for proximity detection. This method
is critical for tracking species in extensive forested areas. The increasing strength of
the antenna’s signal indicated our approach to the pangolin, a species known for its
effective camouflage and quiet movement.

4. Finding the Asian elephants (Elephas Maximum): Leaving Sandakan Jetty, me and my
colleagues headed towards the DGFC centre through the dense forest. On our boat ride,
we spotted a group of Asian elephants swimming in the lower Kinabatangan River.

Figure 3.3 Forest Observatory Ontology Development’s activities collage

Interviews

Eight semi-structured face-to-face discussions with specialists in genetics and biology
were conducted, focusing on wildlife conservation. Seven interviews were based in Sabah
(Malaysian Borneo), apart from one individual from the United Kingdom who volunteered
in the DGFC. The participants had diverse experience in landscape ecology and conservation
biology research, with their expertise spanning from one to twenty-five years. To recruit
participants for the study, the first bioscientist was identified from our university mailing list,
and then snowballing technique was used to identify and recruit participants from hard-to-
reach populations [181]. The process begins by identifying a participant through an internal
mailing list, for instance. This participants then refers others from their networks who also fit
the criteria. These nominees were determined with an information sheet about the interview
and details of ethics approval two weeks before their interviews. During these sessions, a
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consistent semi-structured guide was followed to delve into the types of data the participants
collected and processed and their aims to use them to make well-informed decisions swiftly.
Every participant completed their interview within 60 minutes, and the audio recordings were
preserved for detailed analysis. The interview questions covered a range of topics, including:

• What is your opinion about a given User Interfaces mock-up?

• What features would you like to use?

• What is your feedback about the delivered linked data store prototype/ outcome?

• What are the types of collected data?

• How do you process the collected data?

• What are the tools and methods used to process the data?

• How do you access and interact with the data?

• What are the drawbacks of your current data system?

• What questions do you require your data environment to answer?

• What would the ideal data model look like for you (e.g., chronological data catalogue,
interactive interface with links to downloadable datasets)?

Given that DGFC faces data silos due to project-specific data collection practices. These
interview questions aim to identify strategies for breaking these silos, integrating datasets,
enhancing data discovery, and providing organised, accessible data to support informed
decision-making.

Interviews analysis and findings

Analysis of the interview transcriptions was conducted using inductive coding [27]. This
approach entails thoroughly examining the data, including interview transcripts, field notes,
and documents, to identify text segments of interest or significance. Each segment was
labelled in a manner that mirrored the participants’ own words or specific details of the data.
As the analysis progressed, these initial labels were aggregated into broader themes that
naturally arose from the dataset. The analysis was cyclical; I kept comparing new data to
existing codes and themes and refining them as needed. Table 3.1 presents the themes that
emerged from this process, along with their descriptions. The research findings revealed
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a collective desire for improved data management, visualisation, and accessibility across
wildlife research activities. Studies ranging from animal tracking to vegetation studies have
highlighted the demand for simple, unified, and user-friendly interfaces for data management.
Interviewees expressed challenges with manual data entry, integrating disparate data sources,
and the need for better tools to visualise and analyse data, mainly through maps for spatial
understanding. Key quotes reflecting these themes include:

• Participant(2): "All of this raw data I keep it myself like I save it in my external hard
drive as well" indicating challenges with data accessibility and sharing.

• Participant(5): "We don’t have it in the GPS, in the camera traps, but since I was
advised us to do so, we have now labelled the pictures in the timestamp of the name
and using the name." showing efforts to improve data organisation but still highlighting
manual processes.

• Participant(7): "So you might want to say into Google, like where are the elephants
right now or where have the elephants been in the last two weeks?" This illustrates the
need for intuitive data query methods that can provide real-time or specific historical
insights based on natural language processing.

These findings highlight the need for wildlife research platforms that integrate diverse
data sources, improve contextual data access, and enable efficient, complex query resolution.
The ideal system should manage and visualise current data, such as GPS tracking, whilst
adapting to evolving conservation needs by incorporating new data types and analytical
methods.

Focus and nominal groups

In the form of visual materials, a map of Sabah, Malaysian Borneo was created, displaying
diverse types of wildlife data, such as elephant movements. Three information cards were
printed detailing the GPS collar, soil sensor, and vegetation data, with blank spaces for
note-taking and participant comments. Over two consecutive days, nominal and focus groups
were held, with six members and one moderator in the former and seven members in the latter.
During the nominal group, participants brainstormed ideas in response to the study questions,
wrote them down, and then shared them with the group in a round-robin manner. For the
focus group, participants received a copy of the primary map and three data-type cards. They
were requested to suggest ideas, potential use cases, and questions that could be addressed
using these different datasets. From the discussion groups, a list of use cases was collected
for FOO and the relevant datasets, exploring their potential applications and usefulness in
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Table 3.1 Overview of Participant Feedback Themes. This table outlines the main feedback
themes from evaluating our proposed data management system, including design impressions,
functional requirements, and user experiences.

Theme Description
Design Participants’ impressions of the mock-up’s ease of use, visual appeal,

and overall user experience.
Functional Requirements Features participants find essential or desirable for their work, such as

data visualisation tools, search functionality, or customisation options.
Data Diversity The variety and nature of data that participants deal with, including

qualitative, quantitative, temporal, or spatial data.
Analytical Methods How participants process data, including data cleaning, analysis tech-

niques, and transforming raw data into usable information.
Technology Software, tools, and methods used for data processing, highlighting

preferences, effectiveness, and limitations.
Usability How participants access, explore and manipulate data, including

databases, APIs, or interactive dashboards.
Challenges identified issues with current data systems include lack of integration,

poor usability, or inadequate functionality.
Prototype Evaluation Participants’ assessments of the prototype’s functionality, performance,

and how well it meets their needs or expectations.
Desired Outcomes The Specific questions or problems participants need their data environ-

ment to address, reflecting on gaps in current systems.
Vision for the Future Participants’ conceptualisation of the ideal data model or system.

informed decision-making. This exercise has been a significant portion of the Competency
Question (CQs) and the Natural Language Statements (NLSs) for ontology, offering valuable
insights into its development and application. Participants gathered various perspectives and
ideas, including those new to such activities, resulting in a rich collection of spoken and
written information. Both sessions were conducted ethically, with consent obtained, and video
recordings were recorded. Subsequently, the Ontology Requirements Specification Document
(ORSD) in Appendix .1, the ontology development sheet containing Competency Questions
(CQs) listed in Tables .3 and 3.3, and the Natural Language Statements (NLSs) in Table 1 were
finalised, with the corresponding SPARQL queries added in Appendix .3. The methodology
details are uploaded to the ontology website (ontology.forest-observatory.cardiff.ac.uk).

3.2.2 Ontology Implementation

Based on the Ontology Requirements Specification Document (ORSD) crafted in the re-
quirements phase, It was deduced that FOO’s scope would include Internet of Things (IoT)
concepts, such as sensors and their observation, and wildlife aspects, like animals. For exam-
ple, the datasets of interest and proposed use cases include data from "sensors" monitoring
"animals" and "land". For instance, an animal GPS collar tracks an elephant, recording
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CQ1 Where do elephants forage? * * ✓
CQ2 What are the daily movement patterns for Elephant X in June?? * ✓
CQ3 What are the yearly movement patterns for Elephant X?? * ✓
CQ4 How do the movements of Elephant X relate to human and urban areas? * ✓
CQ5 Has elephant x died? * ✓
CQ6 Why has elephant x died? ✓
CQ7 What are the suitable environmental conditions for elephant x to survive? * * * x
CQ8 What can we learn from the movements of Elephants X, Y, and Z? * ✓
CQ9 How does Elephant X use Habitat Site Y?? * * ✓
CQ10 What is the range of habitat sites used by Elephants X, Y, and Z? * * ✓
CQ11 Where was Elephant X located during the flood season in the Lower Kinabatangan area?? * ✓
CQ12 What was the average speed of Elephant X during the flood season? * ✓
CQ13 Is Elephant Dara near (5 Km) the danger zone (poachers’ area) today? * ✓
CQ14 How did Elephant X’s movements change with climate change in 2014? * ✓
CQ15 What are Elephant X’s preferred habitats based on prolonged stays in areas? * * ✓
CQ16 How far was Elephant X from the oil plantation fencing? * ✓
CQ17 When was Elephant X near the oil plantation fencing? * ✓
CQ18 What is the distance traveled between each of Elephant X’s stops (sleeping)? * ✓
CQ19 * Which elephants met this month? * ✓
CQ20 Which sites were revisited by Elephant X month? * ✓
CQ21 What environment or habitat does Elephant X prefer, based on the prolonged time spent in a
certain area?

* * * ✓

CQ22 Was there any significant change in Elephant X’s movement patterns between June and July
2012?

* ✓

CQ23 Has Elephant X visited Village Y in year Z? * ✓
CQ24 What is the movement range of Elephant X during Month Y? * ✓
CQ25 What is Elephant’s activity (speed) during Month Y? * ✓
CQ26 Are there any interactions between collared elephants during the flood season? * * ✓
CQ27 What is the status of Elephant X’s tracking collar battery? * ✓
CQ28 What habitat has Elephant X selected this season? * * * ✓
CQ29 What is the average elevation of Elephant X during a specific time range? * ✓
CQ30 Which elephant came near the logged site? * * ✓
CQ31 Which elephant came near the semi-logged site? * * ✓
CQ32 Which elephants crossed the river? * ✓
CQ33 What is the canopy height for the distance traveled by Elephant X during the flood season? * * * ✓
CQ34 Which elephants are near the oil palm plantations this week? * ✓
CQ35 What is the home range for all collared elephants? * ✓
CQ36 What is the distance traveled by Elephant Y over a specific period? * ✓
CQ37 What are the altitudes of the collared elephants? * ✓
CQ38 What are the body/environment temperatures for collared elephants? * ✓
CQ39 What is the behavior of Elephants X and Y this month? * ✓
CQ40 Does Elephant X need help? * ✓
CQ41 What are the distribution patterns of Elephants X and Y during this month? * ✓
CQ42 Are Elephants X and Y’s favorite foods in a particular area? * * x
CQ43 Do we need to create corridors along rivers/palm plantations, or is it not an obstacle for
elephants to cross the river?

* x

CQ44 Why have the elephants’ collars been fitted for almost two years? * ✓
CQ45 What are the migration patterns of Elephants X during the flood season? * ✓
CQ46 What are the favorite locations that Elephant X likes to visit during certain times of the year? * ✓
CQ47 Where are elephants likely to come into contact with humans? * ✓
CQ48 What are the places where elephants may be vulnerable? * ✓
CQ49 Where can we assign locations to rangers? * ✓
CQ50 How to track (investigate) the last location of a dead elephant? * ✓

Table 3.2 Competency Questions (CQs) extracted from research activities such as ethno-
graphic research, interviews, and nominal and focus groups
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CQ51 * Will the elephants be arriving at DGFC soon? * ✓
CQ52 How many satellites did the collar detect? (COV=0, speed=0) * ✓
CQ53 Which elephants are close to the river today? * x
CQ54 Which elephants are close to oil plantations? * ✓
CQ55 Which elephant roams near the Sabahmas site? * ✓
CQ56 Which elephant roams near small steep sites? * ✓
CQ57 Which elephant is likely to visit Ribubonus, kg. Kiabau, and Reka Halus 12ha? * ✓
CQ58 What locations could have snares? * x
CQ59 * Is Elephant X sick, injured, or dead? * ✓
CQ60 Which elephants are likely to conflict with humans? * x
CQ61 What is the soil condition during certain times of the year? * ✓
CQ62 What types of soil are available throughout the year? Dry, muddy, swamps. * ✓
CQ63 What are the locations (soil type) that elephants prefer? * x
CQ64 What are the mineral content (salt and others) in a particular location? * ✓
CQ65 Is there any metal in the soil in that area? * x
CQ66 What are the chemical and agro-chemical concentrations in the soil of a certain area? * ✓
CQ67 Does the soil in location x contain disease pathogens? * ✓
CQ68 Which area needs pesticide spraying? * ✓
CQ69 What is the soil moisture level in a specific location? * ✓
CQ70 What is the presence of minerals in the soil? * ✓
CQ71 Are there signs of heavy metals in the soil? * x
CQ72 * Where are the salt licks located? * ✓
CQ73 What are the mineral and salt concentrations in the soil that indicate the presence of salt licks
in a particular location?

* ✓

CQ74 What is the pH level of the soil? * ✓
CQ75 What is the temperature reading from the soil sensor? * x
CQ76 What is the soil moisture in a certain location? * x
CQ77 Is the soil in this area healthy for animals? * ✓
CQ78 Is the soil fertile in this area? * ✓
CQ79 What is the moisture rate of the soil in this area (i.e., provide geo-location)? * x
CQ80 Where to plant crops for elephants (i.e., soil moisture rates)? * ✓
CQ81 Could planting in safer areas (healthy soil) influence animal movements? * ✓
CQ82 Could we predict crop yield based on soil data? * x
CQ83 What soil metrics help us predict flooding? * ✓
CQ84 What are the metrics of healthy soil with less/no chemical pollution from oil palm plantations? * ✓
CQ85 Why do elephants not like to walk on wet soil (movement prediction)? * ✓
CQ86 What are the chemical levels of the soil in Protected Area 1? * ✓
CQ87 What are the soil nutrient levels? * ✓
CQ88 What is the effect of moisture on nutrients and oxygen levels? * ✓
CQ89 What is the ideal soil moisture rate for an elephant to give birth? * ✓
CQ90 What are the soil conditions in the areas that have elephant grass? * ✓
CQ91 How to conserve suitable soils for the elephants to have food in the future? * ✓
CQ92 What soil moisture do elephants spend most time on? * ✓
CQ93 What do elephants eat? * x
CQ94 Where do bamboo shoots grow? * x
CQ95 Where could we find areas with the inner trunk of oil palms? * ✓
CQ96 Where could we find areas with broad leaves? * ✓
CQ97 Where could we find areas with vines? * x
CQ98 How can vegetation and site habitat information help understand the future patterns/locations
of elephants?

* x

CQ99 Do elephants drink lots of water? * x
CQ100 Where do we find fruit farms in lower Kinabatangan? * x
CQ101 What areas have fewer trees? * ✓
CQ102 What plant species to conserve in the areas the elephants visit? * * x
CQ103 What plant species effected by deforestation? * x
CQ104 Which plant species are cultivated by the Grow Borneo project? * ✓
CQ105 How many trees has the Grow Borneo project planted in the last five years? * x

Table 3.3 Competency Questions (CQs)-Continued
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NLS1 Tracking elephant locations so that the wildlife department can give warnings to local people
about the arrival of elephants.

* x

NLS2 Examples of areas with elephant grass (Nappier), other grasses, bark, palm shoots, young leaf
trunks, soft plants, and bananas.

* x

NLS3 Focus on the area of Lower Kinabatangan and the 14 collared elephants living there. * ✓
NLS 4 Collared elephants will not go to primary forest sites. * * x
NLS5 The datasets in this research could be used to generate predictions. * x
NLS6 Elephants do not intend to cause damage. It may occur when their strong and huge bodies
come in contact with things.

* x

NLS 7 Nearly all wild pigs in the area of Kinabatangan died from influenza viruses. x
NLS 8 There was a famous story about the rhino who lost one leg from poaching. It survived on
three legs for a long time.

x

NLS9 Female Asian elephants are tusk-less. * x
NLS10 Male Asian elephants are more likely to explore human areas than females, attracted by food. * CQ30

Table 3.4 Natural language statements and what data set can fulfil the task.

geographic location observations at different and equally spaced time intervals and tem-
perature readings at each specified interval. Searching in scholarly resources and ontology
repositories, relevant ontologies were identified. The search included Google Scholar [105],
BioPortal repository, and other pertinent websites. The selection criteria stipulated that
publications must be published between 2015 and 2020. Variety of search terms were used,
such as "sensor data ontology," "semantic modelling for sensor data," "semantic IoT data,"
and "IoT ontology." Several domain-specific ontologies were found for modelling sensors
and wildlife data. The Semantic Sensor Network (SSN) ontology describes the sensory
observation processes (SSN, SSN2). Within SSN Version 2, a Sensor, Observation, Sample,
and Actuation (SOSA) ontology is suitable for lighter use without the whole SSN [132].
IoT-Lite ontology provides foundational descriptions of IoT resources, whilst the Smart
Applications REFerence (SAREF) ontology focuses on referencing IoT appliances [61]. The
Extensible Observation Ontology (OBOE) [165] models terms, such as observation and
its measurement. For wildlife ontologies, notable examples include GeoSpecies ontology,
BBC Wildlife Ontology (BBC-WO) (bbc.co.uk/ontologies/wildlife-ontology/), the African
wildlife ontology [140], and an ontology of core ecological entities named Ecocore, catering
to specific wildlife aspects depending on the intended purpose and use case. As a result, most
commonly used ontologies for modelling sensor data were filtered out, such as the SSN [256].
Among the shortlisted ontologies is the SAREF ontology [61], which is designed for smart
appliances, IoT devices, and services; however, it may not adequately model sensor data
observations. IoT-Lite ontology [24] provides a basic framework of classes and properties
for describing IoT devices, sensors, and actuators. However, for our specific use cases, more
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classes are needed to model the sensor’s observations and associated properties than just the
sensors.

The W3C Web of Things (WoT) ontology (w3.org/TR/wot-thing-description11/) is a
flexible and modular ontology that can be customised to fit different use cases, allowing for
interoperability across various IoT systems and domains. Although it covers distinct aspects
of IoT devices and services, its flexibility and generality can make adapting to our specific
requirements challenging. For instance, the ’Thing’ class in WoT models the IoT device,
service, or data source, whereas the ’Sensor’ class is better suited for modelling sensor ob-
servations. The FIESTA-IoT ontology (iot.ee.surrey.ac.uk/ontology/fiesta-iot.owl) primarily
models IoT-related concepts but includes more entities than needed. It incorporates classes
from the SSN ontology (Version 1) [52], W3C Web of Things (WoT) Thing Description, and
oneM2M standard (onem2m.org). The IoT-Semantics Ontology is another flexible ontology;
however, its lack of sufficient documentation makes it challenging for developers to adapt.

Ontology Resue

After conducting an in-depth examination and comparison of contemporary ontologies, con-
cepts ere reused from SSN ontology (Version 2) [256]. This ontology distinguishes itself
from its modular structure, comprising three integrated ontologies: the original SSN ontology
(Version 1), the Sensor, Observation, Sample, and Actuator (SOSA) ontology [132], and the
Quantities, Units, Dimensions, and Types (QUDT) ontology.eth Such integration makes the
SSN ontology (Version 2) well-suited to our needs. FOO extracted SOSA ontology from
SSN version 2 using owl:imports, reused classes with ‘owl:equivalentClass’, and properties
with ’owl:equivalentProperty‘. FOO directly uses the geolocation points, specifically lon-
gitude and latitude, from the W3C’s Basic Geo (WGS84 lat/long) Vocabulary available at
(w3.org/2003/01/geo/).

FOO extends the BBC Wildlife Ontology (WO) by reusing its taxonomic structure
through equivalence relations and defined hierarchies. At the kingdom level, f oo : Animalia
is specified as f oo : Animalia ≡ wo : Animalia and f oo : Animalia ⊑ owl:Thing, represent-
ing all animals. Moving to the phylum level, f oo : Chordata is defined as f oo : Chordata ≡
wo : Chordata and f oo : Chordata ⊑ f oo : Animalia, encompassing vertebrates and re-
lated taxa. The class level includes f oo : Mammalia ( f oo : Mammalia ≡ wo : Mammalia,
f oo : Mammalia ⊑ f oo : Chordata) for mammals and f oo : Reptilia ( f oo : Reptilia ≡ wo :
Reptilia, f oo : Reptilia ⊑ f oo : Chordata) for reptiles. Within f oo : Mammalia, orders
such as f oo : Proboscidea ( f oo : Proboscidea ≡ wo : Proboscidea, f oo : Proboscidea ⊑
f oo : Mammalia) for elephants and f oo : Carnivora ( f oo : Carnivora ≡ wo : Carnivora,
f oo : Carnivora ⊑ f oo : Mammalia) for carnivorous mammals are included. Similarly, un-
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der f oo : Reptilia, the order f oo : Squamata is defined as f oo : Squamata ≡ wo : Squamata
and f oo : Squamata ⊑ f oo : Reptilia, representing snakes and lizards. At the family
level, FOO introduces f oo : Elephantidae ( f oo : Elephantidae ≡ wo : Elephantidae, f oo :
Elephantidae ⊑ f oo : Proboscidea), encompassing elephants and related extinct species.
Additionally, general taxonomic categories such as f oo : Genus ( f oo : Genus ≡ wo : Genus)
and f oo : Species ( f oo : Species ≡ wo : Species) enable further classification. By reusing
and aligning with WO, FOO ensures semantic coherence (≡), a well-structured hierarchy
(⊑), and adaptability for domain-specific needs.

FOO adopts and extends key classes and properties from SOSA to model observations,
sensors, and their relationships in a semantically rich framework. The f oo : Observation
class is defined as equivalent to sosa : Observation ( f oo : Observation ≡ sosa : Observation)
and represents the act of estimating or calculating the value of a property of a f oo :
FeatureO f Interest, such as an elephant or tree. Similarly, f oo : Sensor ( f oo : Sensor ≡ sosa :
Sensor) describes devices, agents, or software involved in implementing a procedure. Observ-
able qualities are represented by f oo : ObservableProperty ( f oo : ObservableProperty ≡
sosa : ObservableProperty), which denotes measurable characteristics such as temperature or
speed, while f oo : FeatureO f Interest ( f oo : FeatureO f Interest ≡ sosa : FeatureO f Interest)
represents the entity being observed. FOO also reuses and aligns several SOSA object
properties. The property f oo : hasFeatureO f Interest ( f oo : hasFeatureO f Interest ≡ sosa :
hasFeatureO f Interest) links an observation to its feature of interest, while its inverse, f oo :
isFeatureO f InterestO f ( f oo : isFeatureO f InterestO f ≡ sosa : isFeatureO f InterestO f ),
connects the feature to its corresponding observations. The property f oo : madeBySensor
( f oo : madeBySensor ≡ sosa : madeBySensor) relates an observation to the sensor that pro-
duced it, with the inverse relation defined as f oo : madeObservation ( f oo : madeObservation≡
sosa : madeObservation). Furthermore, f oo : observedProperty ( f oo : observedProperty≡
sosa : observedProperty) connects observations to the specific properties being measured,
and its inverse, f oo : isObservedBy ( f oo : isObservedBy ≡ sosa : isObservedBy), relates
observable properties to the sensors capable of detecting them. The f oo : observes property
( f oo : observes ≡ sosa : observes) establishes a direct relationship between a sensor and the
observable property it monitors. These alignments ensure semantic interoperability with
SOSA while enabling FOO to extend and specialise these concepts for wildlife observation
and environmental monitoring.

FOO introduces a range of domain-specific classes to represent wildlife species, each
structured within a well-defined taxonomic hierarchy and aligned with external references
using description logic. The class f oo : Primates is defined as f oo : Primates ⊑ f oo :
Mammalia, representing an order of mammals characterised by large brains and including
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species such as lemurs, monkeys, and hominids. Within this, f oo : Cercopithecidae is
defined as f oo : Cercopithecidae ⊑ f oo : Primates to represent African and Asian monkeys,
further narrowed to the genus level with f oo : Nasalis ( f oo : Nasalis⊑ f oo :Cercopithecidae),
which includes the proboscis monkey. The species f oo : NasalisLarvatus is defined as
f oo : NasalisLarvatus ⊑ f oo : Nasalis and is aligned with external taxonomy via owl :
equivalentClass

f oo : ElephasMaximus (Asian elephant) is represented as f oo : ElephasMaximus ⊑
f oo : Elephantidae⊓ f oo : FeatureO f Interest, integrating its ecological and conservation
significance. For reptiles, f oo : Pythonidae is defined as f oo : Pythonidae⊑ f oo : Squamata
and aligned with external taxonomy via owl : equivalentClass. This lineage includes
f oo : Malayopython ( f oo : Malayopython ⊑ f oo : Pythonidae) and its subclass, the retic-
ulated python f oo : MalayopythonReticulatus ( f oo : MalayopythonReticulatus ⊑ f oo :
Malayopython⊓ f oo : FeatureO f Interest), which is further aligned with external refer-
ences. The class f oo : ManisJavanica (Sunda pangolin) is defined as f oo : ManisJavanica⊑
f oo : Mammalia⊓ f oo : FeatureO f Interest and aligned with owl : equivalentClass⟨htt p :
//purl.bioontology.org/ontology/NCBITAXON/9974⟩. This critically endangered species
is described with details on its unique keratin armour and its role in controlling insect popula-
tions. These classes, enriched with external references and conservation-focused descriptions,
exemplify FOO’s capability to integrate domain-specific wildlife data within a semantically
rich framework.

FOO defines a set of data properties to describe observational, geographical, and environ-
mental measurements, ensuring semantic clarity and interoperability. Data properties for GPS
observations include f oo : temperature ( f oo : temperature ⊑ f oo : gPSObservation⊓ xsd :
double), which captures the temperature in Celsius during data collection, and f oo : direction
( f oo : direction ⊑ f oo : gPSObservation⊓ xsd : integer), representing the directional move-
ment of observed features. Spatial data properties such as f oo : latitude and f oo : longitude
link to pos : lat and pos : long respectively, ensuring consistency with geospatial ontolo-
gies. Properties like f oo : gMT Date and f oo : gMT Time define temporal metadata for
data logging, aligned to global time standards ( f oo : gMT Date ⊑ xsd : date). For soil
observations, properties such as f oo : clay, f oo : silt, and f oo : soilPH ( f oo : soilPH ⊑
f oo : soilObservation⊓ xsd : double) capture detailed soil composition and quality data,
essential for ecological studies. Tree observations are supported by properties like f oo :
treeDBH_cm and f oo : treeHeight_m, representing diameter at breast height and tree height
( f oo : treeHeight_m ⊑ f oo : treeObservation⊓ xsd : f loat). Camera trap image data prop-
erties include f oo : imageFile and f oo : path ( f oo : path ⊑ f oo : imageObservation⊓ xsd :
anyURI), defining the storage location and metadata of captured wildlife images. The
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f oo : animalDetected property links image observations to identified species, while f oo :
cameraLocation contextualises image data geographically. These properties integrate diverse
observational and environmental metrics, enabling FOO to provide a detailed, interoperable
framework for wildlife and environmental monitoring.

FOO also defines a detailed set of instances for sensors and observed features to contextu-
alise wildlife monitoring data. Sensor instances such as f oo : aqeelaGPS, f oo : bikang1GPS,
and f oo : bikang2GPS are represented as owl : NamedIndividual ⊓ f oo : Sensor and are
explicitly associated with specific elephants ( f oo : hasFeatureO f Interest links them to
f oo : Aqeela, f oo : Bikang1, and f oo : Bikang2, respectively). These sensors also observe
a range of properties through their association with f oo : gPSObservation, enabling the
collection of real-time spatial and behavioural data. Individual elephants are instantiated
as owl : NamedIndividual ⊓ f oo : ElephasMaximus, where each, such as f oo : Aqeela
or f oo : Se jati, is defined with unique labels and skos : de f initions to capture contex-
tual information. For example, f oo : Aqeela is defined as a female Asian elephant, while
f oo : Guli represents a male counterpart. This structure allows for detailed semantic rep-
resentation and tracking of individual animals in ecological studies. Additional feature
instances include f oo : Soil (owl : NamedIndividual ⊓ f oo : FeatureO f Interest), observed
through f oo : soilObservation, which captures soil-specific properties like f oo : soilPH
and f oo : totalC. Similarly, f oo : Tree represents arboreal features, with properties like
f oo : treeHeight_m and f oo : treeDBH_cm observed through f oo : treeObservation. Cam-
era trap images, represented by f oo : Image, are associated with f oo : imageObservation
and link to specific metadata like f oo : imageFile and f oo : cameraLocation. By employing
such well-defined instances and linking them to their respective observations and features
of interest, FOO facilitates granular, interoperable representation of ecological monitoring
data. This approach not only enhances the semantic clarity of the ontology but also ensures
its utility in wildlife conservation efforts.

FOO (see Appendix .4) contains 81 classes, 73 properties, and 176 individuals. Table 3.5
lists a small part of its content, including concepts that represent wildlife data generated by
sensors and extracted from data collected during the ontology requirement phase. Specifically,
FOO includes data on wildlife species and devices observed during ethnography, such as the
Asian elephant, Sunda Panogolin and Proboscis Monkey. Figure 3.4 illustrates part of FOO
data modeling. FOO models ‘foo:jasmin‘ as an instance of the class ‘foo:ElephasMaximus‘
(representing the Asian elephant), which is a subclass of ‘foo:Elephantidae‘, further sub-
classed under ‘foo:Mammalia‘, and ‘foo:Chordata‘. ‘foo:jasmin‘ is identified as the ’Feature
of Interest’ for ‘foo:gPsObservation‘, an instance of ‘foo:Observation‘, which is made by
‘foo:Sensor‘. The light pink classes indicate elements imported and mapped from SOSA,
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while the light yellow classes represent those imported and reused from the BBC Wildlife On-
tology (WO). The light blue spatial box are the directly-used basic Geo vocabulary. Further,
Figure3.5 illustrates a collapsed heavy weight version of FOO, visualised using WebVowl
(service.tib.eu/webvowl/).

3.2.3 Ontology Evaluation

Various ontology evaluation techniques were investigated and discovered that ontology eval-
uation primarily focused on assessing quality and accuracy during and after its development
[203]. Raad et al. [213] identified four ontology assessment methods from the literature:
(i) gold standards, (ii) corpus-based, (iii) criteria-based, and (iv) task-based. McDaniel et
al. [172] described ontology evaluation as a two-fold process, namely, the glass-box and
black-box approaches. The former evaluates the ontology incrementally throughout its life-
cycle, also known as component evaluation. By contrast, the latter is a task-based approach
to evaluating an ontology’s performance in a specific task or application [173]. The most
suitable method for evaluating an ontology depends on the intended purpose. The proposed
ontology, FOO, is designed to support applications integrating heterogeneous data sources
for decision-making. Thus, the structure, semantic representation, and interoperability were
evaluated. To assess the structure and semantic representation, open-source online scanner
Foops! (foops.linkeddata.es) was selected, as the baseline for evaluating semantic repre-
sentation, Pellet [231] to detect any inconsistencies via reasoning and, SPARQL queries to
evaluate FOO’s accuracy and efficiency. Subsequently, in the following section, the black-box
(i.e., task-based) approach was followed to assess the applicability and interoperability of
knowledge graphs (FOODS), focusing on how well it addresses use cases and their efficiency
in data exchange between different computer systems.

FOOPS! Evaluation

FOOPS! [95]is a web service created to evaluate the compliance of vocabularies and ontolo-
gies with the FAIR principles, making sure that the ontology under evaluation is findable,
accessible, interoperable and reusable. FOOPS! performs a series of checks to ensure
compliance with the FAIR principles. Regarding the Findable dimension, it does nine checks
to see if the ontology URI is persistent and resolvable, has a version IRI that is unique for
each version and has at least the title and description of the instance. Moreover, it verifies
if the ontology prefix and namespace are registered in external registries like prefix.cc and
LOV. In the Accessible dimension, three checks ensure proper content negotiation with at
least one RDF serialisation and HTML format and verify that the URI protocol is open
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Table 3.5 Main Forest Observatory Ontology, classes and descriptions

Class/Properties Label Description < foo:http://w3id.org/def/foo#>

foo:ElephasMaximus Asian Ele-
phant

Elephas maximus, commonly known as the Asian elephant, is a species of large
mammal native to various regions in South and Southeast Asia, including India,
Sri Lanka, Thailand, and parts of Indonesia. It is distinguished by its smaller ears
compared to its African relatives, and it has a prominent domed head with two hemi-
spherical bulges. The Asian elephant is classified as Endangered due to significant
threats from habitat loss, fragmentation, and poaching. This species plays a crucial
ecological role, aiding in forest maintenance through seed dispersal and the creation
of clearings in dense vegetation. Bornean elephants exhibit distinct morphological
and behavioural traits compared to mainland Asian elephants, and their genetic
uniqueness emphasises their priority for conservation efforts. Although they are
considered an evolutionary significant unit requiring tailored conservation measures,
their formal recognition as a subspecies awaits further research. Restricted to about
5% of Borneo, primarily in Sabah, Bornean elephants typically form family groups
of 5 to 20 individuals, occasionally merging into larger herds of up to 200.

foo:Nasalislarvatus Proboscis
Monkey

Nasalis larvatus, aka the proboscis monkey, is a primate species endemic to the
island of Borneo. Characterized by its large, pendulous nose in males, this arboreal
monkey primarily inhabits mangrove forests, riverine, and coastal areas, and is
known for its distinct vocalizations and swimming abilities.

foo:Soil Soil A dataset describing soil properties from organic and mineral soil across various
land uses in Sabah, Malaysia, sampled and measured at the Forest Research Centre
Sabah Malaysia.

foo:ManisJavanica Sunda Pan-
golin

Sunda pangolin aka Manis Javanica is a mammal distinguished by its protective
armor of keratin scales, which cover its body except for its belly and face. Native
to Southeast Asia, including Malaysia, Thailand, Indonesia, and Vietnam, this
species is adapted to various habitats, ranging from primary and secondary forests
to wetlands, mangroves, and grasslands. Characterized by its elongated body, small
head, and long, prehensile tail, the Sunda pangolin is primarily nocturnal and has a
diet mainly consisting of ants and termites, which it extracts using its long, sticky
tongue. It plays a vital role in its ecosystem by controlling insect populations.
Manis Javanica is a species critically threatened by poaching and habitat loss. It is
one of eight pangolin species, all of which are considered Vulnerable, Endangered,
or Critically Endangered according to the IUCN Red List and listed in CITES
Appendix I. The Sunda pangolin, critically endangered and the only species found
in Malaysia, inhabits Peninsular Malaysia and Malaysian Borneo, including Sabah
and Sarawak.

foo:MalayopythonReticulatus Reticulated
Python

Malayopython reticulatus, aka the reticulated python, is a large snake species native
to Southeast Asia. Renowned for its impressive length, it is the longest snake in
the world, often exceeding 6 meters. It inhabits various environments, including
rainforests, woodlands, and plantations, demonstrating adaptability. As a generalist
predator, it feeds on many animals, contributing to its ecological significance.

foo:Sensor (Reused from
SOSA)

Sensor Device, agent (including humans), or software (simulation) involved in, or imple-
menting, a Procedure. (e.g., Temperature sensor, humidity sensor, motion sensor).
In our model, we have created a unique ID for each sensor based on the platform it
is hosted by.

foo:ObservableProperty
(Reused from SOSA)

Observable
Property

An observable quality (property, characteristic) of a FeatureOfInterest. (e.g., Tem-
perature, humidity, presence)

foo:Observation (Reused
from SOSA)

Observation Act of carrying out an (Observation) Procedure to estimate or calculate a value of
a property of a FeatureOfInterest (e.g., Elephant). Observation can be seen as a
placeholder that links relevant information together. In our ontology, observation
can be considered an ID for each data record.

foo:FeatureOfInterest
(Reused from SOSA)

Feature of
Interest

The thing whose property is being estimated or calculated in the course of an
Observation to arrive at a Result, or whose property is being manipulated by an
Actuator, or which is being sampled or transformed in the act of Sampling. In
the context of FOO, Soil is the FeatureOfInterest. Most of the sensors are used to
observe a property (phenomenon) of a location (e.g., the moisture of soil).

foo:Mammalia (Reused
from WO)

Mammalia The highest class of the subphylum Vertebrata comprising humans and all other
animals that nourish their young with milk secreted by mammary glands.

foo:Chordata (Reused from
WO)

Chordata A large phylum of animals that includes the vertebrates together with the sea squirts
and lancelets. They are distinguished by the possession of a notochord at some
stage during their development.

foo:Elephantidae (Reused
from WO)

Elephantidae ELEPHANTIDAE is a family of bulky mammals (order Proboscidea) comprising
the recent elephants and related extinct forms.
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Figure 3.4 Lightweight version of the Forest Observatory Ontology (FOO), main classes,
properties and instances.
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Figure 3.5 Heavyweight version of the Forest Observatory Ontology (FOO), main classes,
properties and instances. FOO has 81 classes, 73 properties and 176 instances.

and accessible. The Interoperable dimension includes three checks that determine if the
vocabulary references pre-existing vocabularies within its metadata annotations, classes,
properties, or data properties.

Finally, there are nine checks in the Reusable dimension that make sure there is human-
readable documentation, provenance metadata, licence information, detailed vocabulary
metadata, and that ontology terms are well-described with labels and definitions. FOO passed
the test and scored a respected 78%, outperforming SOSA ontology with a score of 67%.
Figure 3.6 shows a screenshot of the test results of both SOSA and FOO.

Pellet Evaluation

Pellet, an open-source OWL-DL reasoner, is renowned for its competent performance in
identifying conflicting facts in ontologies, making inferences, and responding to SPARQL
queries [231]. To evaluate FOO for inconsistencies, I used Protegé’s plug-in Pellet version to
reason over the ontology. Pellet processed FOO in just 29 ms, calculating the inferences for
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SOSA FOO

Figure 3.6 FOOPS! Results

the entities’ hierarchies and detecting no contradictions. The report generated by the reasoner
can be found in FOO’s GitHub repository.

Evaluation with SPARQL Queries

To evaluate FOO with SPARQL queries, the structure of the ontology was queried by
inspecting its classes, properties, and instances. FOO has 81 classes, 73 properties and 176
instances. SPARQL queries were formulated to explore FOO and subsequently evaluated
the performance of each query. The table presented in 3.6 is a summary of the performance
metrics for various SPARQL queries used to evaluate FOO. Each row in the table provides a
concise description of a specific query’s function, such as retrieving all classes, properties,
instances, triples, or labels within the ontology. The performance of each query is evaluated
based on three key metrics: latency, precision 3.1, and recall 3.2.

Latency, measured in seconds, indicates the time taken to execute the query. As a negative-
oriented metric, lower latency signifies faster response times. Precision and recall are used to
evaluate the accuracy of query results against expected results (i.e., ground truth) retrieved
from FOO beforehand. Precision measures the ratio of relevant instances correctly retrieved
by the query to the total instances retrieved, reflecting the accuracy of the results. Recall,
on the other hand, measures the ratio of relevant instances retrieved to the total number of
relevant instances available, indicating the completeness of the query results.

A score of 1 in both precision and recall was achieved. It means that all retrieved
results are relevant (precision) and all relevant results have been retrieved (recall) and that’s
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justifiable because the ontology and queries were perfectly aligned. This executable notebook
shares all the executable codes that queried FOO from its URL.

Table 3.6 Performance for SPARQL Queries Latency in Seconds

Description SPARQL Query Latency (s)
Retrieve all classes in the

ontology
SELECT DISTINCT ?class WHERE {?class

rdf:type owl:Class .}

0.0067

Retrieve all properties in the
ontology

SELECT DISTINCT ?property {?property

rdf:type owl:ObjectProperty .}

0.0090

Retrieve all instances of a
specific class

SELECT DISTINCT ?instance {?instance

rdf:type foo:Sensor .}

0.0076

Retrieve labels for all classes SELECT DISTINCT ?class ?label {?class

rdf:type owl:Class . ?class

rdfs:label ?label .}

0.0091

Retrieve instances with
specific properties

SELECT * {?instance rdf:type

foo:Observation ; foo:madeBySensor

foo:Jasmin ; foo:hasFeatureOfInterest

?FeatureOfInterest .}

0.0080

Retrieve all instances and
their labels

SELECT ?instance ?label {?instance

rdf:type foo:Sensor . ?instance

rdfs:label ?label .}

0.015

Retrieve instances with their
labels and definitions

SELECT * {?FeatureOfInterest rdf:type

foo:FeatureOfInterest; rdfs:label

?label ; skos:definition ?definition

.}

0.013

rdf: <http://w3.org/1999/02/22-rdf-syntax-ns#> owl: <http://w3.org/2002/07/owl#> foo: <https://w3id.org/def/foo#>

The precision metric is calculated as:

Precision =
True Positives

True Positives+False Positives
(3.1)

The recall metric is calculated as:

Recall =
True Positives

True Positives+False Negatives
(3.2)

3.2.4 Ontology Publication and Maintenance

When creating ontologies, it is a common practice to use editors to export them in formats
such as Turtle, RDF/XML, and JSON-LD. However, these formats can be complex to
understand and use. To address this challenge, researchers can turn to articles or technical
reports. However, these sources often prioritise scientific contributions to the detailed
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definition of each ontology entity. An alternative solution is to document ontology entities.
The semantic web community has developed tools that extract annotation properties from
OWL ontologies and generate HTML documentation for classes, properties, and instances.
This approach can aid in making ontologies more accessible and understandable [58].

WIZARD for DOCumenting Ontology (WIDOCO) was selected, a tool based on the Live
OWL Documentation Environment (LODE), which is utilised within the seven-star linked
data model platform [94, 208], to document FOO. WIDOCO enabled us to generate HTML
pages that present human-readable and machine-readable visualisations of FOO along with
Oops! evaluation. Moreover, OnToology (ontoology.linkeddata.es) [11] was used to secure a
persistent identifier for FOO documentation (https://w3id.org/def/foo#), ensuring it can be
reliably referenced and accessed over time under the Creative Commons 4.0 International
SA (CC BY-SA 4.0) license. I have made FOO and its associated documentation available
on FOO’s GitHub page to facilitate collaboration and interoperability with other software
applications within the research community and for maintenance purposes. Adhering to
W3C best practices, I ensured FOO’s accessibility in various interoperable formats on the
web and deposited it in the BioPortal repository. FOO and its documentation are accessible
online through dedicated website (ontology.forest-observatory.cardiff.ac.uk).

3.3 Forest Ontology Observatory Data Store (FooDS)

This section describes FooDS as an ontology-based knowledge graph built with four distinct
datasets. FooDS enabled the representation and integration of diverse wildlife data sources in
a unified manner. Figure 3.8 shows the relationships between the proposed ontology (FOO)
and wildlife knowledge graphs. To transform four wildlife datasets —encompassing soil data,
vegetation and site habitats, GPS collar data, and trail camera images into knowledge graphs,
Matey web user interface (rml.io/yarrrml/matey), powered by YARRRML (Yet Another RDF
Rules Language) [120, 251] was employed. YARRRML (rml.io/yarrrml) specifies a set of
prefixes to create namespaces and offers mapping rules to generate RDF triples from the data
sources. Figure 3.8 explains how FOODS was generated. In addition, modular pipelines (i.e.,
Python scripts) were developed to manage large data volumes, ensuring data serialisation with
names or schemas that align with those defined in FOO. Resources including the ontology
and code, are available on the proposed website (ontology.forest-observatory.cardiff.ac.uk).
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Figure 3.7 Main related concepts between FOO and the proposed knowledge graphs
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Figure 3.8 The proposed ontology-based Knowledge graph construction approach

3.3.1 Soil RDF Graph

Based on the experience drawn from ontology development, a decision was made to outsource
the soil data. The nominated dataset contained characteristics and nutrient content for logged
and unlogged tropical forests in Sabah, Malaysia. Soil properties were obtained using buried
ion-exchange membranes, and nutrient levels were measured. These data were made possible
by the BALI collaboration, which was funded by the UK’s Natural Environment Research
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Council (NERC) [79]. YARRRML (Yet Another RDF Rules Language) syntax was used
to define RDF mappings in a human-readable format. YARRRML specifies prefixes to
define namespaces and shorthand notations for Uniform Resource Identifiers (URIs). The
mappings represented in listings 3.1, 3.2 defined the rules for the "Observation" entity. These
mappings specified the data source as "soil.csv csv" and mapped the observation properties
using the "s" subject template, which combines the foo namespace with the value of the
"Identifier" column. The po (predicate, object) mapped section lists the properties and their
corresponding values for observation. Figure 3.9 shows the classes and instances distribution
for the soil knowledge graph. Meanwhile, Table 3.7 provides a descriptive analysis of the
modelled data.

Listing 3.1 Soil data prefixes

foo : " h t t p : / / w3id . o rg / d e f / foo # "
xsd : " h t t p : / / w3 . o rg / 2 0 0 1 / XMLSchema# "

Listing 3.2 Soil data YARRRML
mappings :

s o i l :
s o u r c e s :

− [ ' s o i l . c sv ~ csv ' ]
s : foo : $ ( I d e n t i f i e r )
po :

− [ a , foo : O b s e r v a t i o n ]
− [ foo : S i t e , $ ( S i t e ) ]
− [ foo : Land_Use , $ ( Land_Use ) ]
− [ foo : Plot_Name , $ ( Plot_Name ) ]
− [ foo : Subp lo t , $ ( S u b p l o t ) ]
− [ foo : Horizon , $ ( Hor izon ) ]

Figure 3.9 Soil Knowledge Graph
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Table 3.7 Soil data descriptive analysis

Subplot Soil_Moist. Horizon_Depth Bulk_Density Soil_pH total_C total_N Inorganic_P C N C:P

Count 222 222 222 222 222 222 222 222 222 222
Mean 13.18 26.71 3.74 0.69 5.59 6.04 0.39 33.97 15.04 0.27
STD 7.93 9.37 1.91 0.28 0.85 4.61 0.21 51.56 3.52 0.16
MIN 1.00 7.62 0.20 0.17 3.22 0.83 0.09 3.77 6.65 0.01
25% 6.00 20.56 2.35 0.49 4.92 3.74 0.27 14.34 12.96 0.17
50% 12.00 26.43 3.50 0.66 5.58 4.94 0.34 20.49 14.46 0.24
75% 20.00 31.91 5.00 0.86 6.32 6.33 0.43 32.91 16.47 0.33
MAX 25.00 65.10 9.50 1.84 7.42 33.45 1.49 571.25 39.59 0.89
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Figure 3.10 Vegetation RDF Graph

3.3.2 Vegetation RDF Graph

Another nominated Open data contained records of plants from 49 plots in Sabah, Malaysian
Borneo, spanning 14 fragmented forest areas and four continuous forest sites. The vegetation
data collected from two to three sites in each of the 18 locations included information on
living plants and dead trees. The data contained plant properties, forest structure measures,
and forest fragmentation metrics in the surrounding landscape of the plots. The primary
objectives of collecting these data were to support research focused on (i) understanding the
factors driving the spread of exotic plant species in fragmented forest areas and (ii) evaluating
the effectiveness of conservation set-asides in palm oil plantations to preserve carbon storage
and plant diversity [80]. Figures 3.10 and Table 3.8 illustrate the vegetation knowledge
graph modelling and its descriptive data analysis, respectively. The RDF mappings were
modelled in a human-readable format using YARRRML (Yet Another RDF Rules Language)
syntax. These mappings defined rules for the "Observation" entity by specifying the data
source as "veg.csv csv" and mapped observation properties through the "s" subject template,
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Table 3.8 Lianas data descriptive analysis

Plot_no Tree_indv_no Tree_dbh_cm Tree_ht_m Tree_N_lianas Liana_dbh_cm Subplt_radi._m ID1

Count 3070.00 3070.00 3070.00 1103.00 3070.00 3070.00 3070.00 3070.00
Mean 2.01 1984.24 30.09 20.05 5.74 3.91 25.51 1535.50
STD 0.83 1132.74 17.66 10.73 4.65 2.27 4.97 886.38
MIN 1.00 2.00 10.00 3.00 1.00 2.00 20.00 1.00
25% 1.00 1028.00 17.50 12.00 3.00 2.40 20.00 768.25
50% 2.00 2094.50 26.30 17.00 4.00 3.20 30.00 1535.50
75% 3.00 3022.00 37.00 25.00 7.00 4.60 30.00 2302.75
MAX 3.00 3895.00 140.00 60.00 31.00 21.80 30.00 3070.00

which merges the FOO namespace with values from the "Site_name" column. The po
(predicate, object) map section enumerates the properties and their corresponding values for
the observation. This mapping approach was similarly applied to the GPS collar and trail
image data.

3.3.3 GPS Collar RDF Graph

The GPS collar datasets were acquired from the Danau Girang Field Centre (DGFC). These
sets included data from GPS collars fitted on twenty-two adult Asian elephants, encompassing
14 females and eight males. The fitting process involved a collaborative effort among
researchers, trackers, and a wildlife veterinarian. Supplied by Africa Wildlife Tracking,
the collars weighed approximately 14 kg and were equipped with a Global Positioning
System (GPS) receiver and a Very High Frequency (VHF) transmitter. Between 2012 and
2018, these devices systematically recorded data on time, location, and temperature, among
other variables, at two-hour intervals, as detailed in Table 4.4 [163, 81]. Figure 3.11 shows
the distribution of classes and instances within the collar knowledge graph. Owing to the
sensitive nature of the data and the risk of poaching, it will not be made publicly accessible,
prioritising the protection of these endangered species [163, 81].

3.3.4 Camera Trap Images RDF Graph

A dataset containing 1000 images of Asian elephants was modelled. Before their transforma-
tion into RDF graphs, the images’ metadata were extracted and stored as CSV files. The RDF
dataset includes unique paths that point to image locations on a protected cloud server. Figure
3.12 and illustrates the results of the semantic modelling and the data entities, respectively.
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Figure 3.11 GPS Collar RDF graph
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Figure 3.12 Camera Trap Images’ metadata knowledge graph conceptual model

3.3.5 Semantic Data Integration

Figure 3.13 exemplifies how FOO integrates and links the four datasets of interest (RDF
graphs) to form FooDS. The overall architecture and elements of the FooDS are depicted
in Figure 3.14. In this system, wildlife data collected from various research activities are
managed by a data manager, who assigns each dataset to an RDF graph using its specific
mapper code. These RDF graphs and the Forest Observatory Ontology (FOO) are stored
together in a unified database known as a triple store. Creating a knowledge graph involves
mapping data from the source schema—the schema of the original data source—to the target
schema—the schema of the knowledge graph. This target schema is represented here by RDF,
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which is a structured format governed by a vocabulary or ontology [249]. FOO interlinks
these diverse datasets with a shared URL for each dataset, referencing their conversion into
RDF format. Once these RDF formatted datasets are merged within the same triple store,
they inherently connect and form an ontology-based knowledge graph. The ontology-based
knowledge graph(s) are stored and published as URLs, which can be accessed and parsed
using libraries such as RDFLib in Python environments like Colab. This accessibility allows
easy integration with existing data analysis tools and enhances collaborative opportunities
across the scientific community.

This query language enables authorised users— wildlife researchers, data scientists, and
developers— to access and manipulate the graphs. FooDS provides a robust foundation for
integrating AI technologies to enhance the capabilities of intelligent systems. The formal,
logic-based representation of knowledge in the knowledge graph enables the application of
semantic reasoning techniques, such as rule-based inference and probabilistic reasoning, to
derive new insights and make inferences. Natural language processing can extract entities,
relationships, and attributes from unstructured text and populate the knowledge graph. At the
same time, the graph structure can also improve NLP tasks by providing valuable contextual
information. Machine learning models can be trained on the structured data in the knowledge
graph to perform classification, prediction, and recommendation, with the relational features
enhancing the accuracy and interpretability of these AI models. The flexible knowledge rep-
resentation in the graph also enables deep learning techniques to learn vector representations
of entities and relationships, improving reasoning and inference. Furthermore, the semantic
nature of knowledge graphs can help make AI systems more transparent and explainable by
tracing the reasoning behind outputs using encoded relationships and logical rules. Knowl-
edge graphs can integrate diverse data sources, and AI techniques like entity resolution and
data fusion can be applied to maintain data quality and consistency.
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Figure 3.13 FOO is populated with the four heterogeneous datasets (above) transformed into
RDF graphs, referencing FOO URI (w3id.org/def/foo) to form FOODS.
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Education Occupation Experience

P1 4 4 5 5 4 5 4 5 5 Master’s Researcher 4 to 10
P2 4 4 2 3 5 4 3 4 5 Master’s Researcher 4 to 10
P3 4 5 3 4 4 4 1 5 4 Master’s Researcher 4 to 10
P4 5 5 4 5 5 4 2 5 5 Doctorate Researcher 4 to 10
P5 5 5 4 5 5 4 3 5 5 Master’s Data Scientist 4 to 10
P6 5 5 5 5 5 5 4 4 5 Master’s Researcher 1 to 3
P7 5 4 4 5 5 4 3 5 5 Bachelor’s Data Manager 11 to 20
P8 5 4 3 5 4 4 3 5 5 Doctorate Researcher 4 to 10
P9 3 3 3 3 4 3 3 4 3 Doctorate Conservation Biologist 4 to 10

Table 3.9 Usability study results. (1= Strongly Disagree), (2 = Disagree), (3= Neutral), (4=
Agree), (5= Strongly Agree). Q1. I feel confident in the tool’s ability to merge and manage
data from multiple sources. Q2. The tool is useful in answering questions from different data
sets. Q3. Learning to use the data integration tool can be easy. Q4. The tool’s performance
(speed, stability) meets my expectations. Q5. Integrating data using this tool saves me time.
Q6. The user interface of the data integration tool is clear and understandable. Q7. I require

technical support frequently when using this data integration tool. Q8. The tool provides
clear visualisation of different animals’ movements. Q9. I am satisfied with how the data

integration tool handles complex data sets.

3.4 FooDS Evaluation

This section assesses the ontology-based knowledge graphs using a task-based approach.
To evaluate the usefulness of FOODS, I conducted a usability study involving nine domain
experts to assess system performance; six of these experts are related to DGFC and partic-
ipated in the discussion groups during the ontology requirement gathering phase. I then
discuss three use cases—3.4.2, 3.4.3, and 3.4.4—derived from the requirements outlined in
Section 3.2.1. The use cases created based on data collected from the discussion groups. The
reasoning inferred events that are not directly expressed in the data. For example, hazardous
areas that can put the elephants at risk. I conducted an in-depth evaluation of the third use
case (3.4.4), as it encapsulates a real-life scenario. This evaluation highlighted the primary
benefits of FOODS, particularly by extracting several Competency Questions (CQs) from
use cases.
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Figure 3.15 Box plot representation of usability ratings across five key metrics (Confidence,
Ease of Use, Learning Curve, Performance, Data Handling) as evaluated by participants in a
usability study. Each box indicates the interquartile range (IQR) with the median highlighted,
encapsulating the central tendency and dispersion of ratings, thus providing insights into the
tool’s perceived effectiveness and user satisfaction.

3.4.1 Domain Experts Evaluation

The usability study for testing the ontology-based knowledge graphs was judged by the
presence of a conservation biologist among the participants. Participants were provided
presentations about the dashboard and how to query and analyse the knowledge graphs.
Responses were quantified on a Likert scale from 1 (Strongly Disagree) to 5 (Strongly
Agree) across several aspects such as confidence in the tool, its usefulness, ease of learning,
performance, time efficiency, UI clarity, need for technical support, visualisation quality, and
data handling satisfaction. Table 3.9 shows participant feedback on our proposed ontology-
based knowledge graphs across various dimensions. I analysed and visualised the results,
reducing the dimensions to confidence, ease of use, learning curve, performance, and data
handling capabilities for simplicity (Figure 3.15).

3.4.2 Use Case 1: Elephants spending time together

Elephants, as mammals, maintain connections with their families and interact with elephants
from other herds. They engage in activities such as travelling, foraging, and socialising.
Their interactions in the wild can be complex and vary based on factors such as age, sex, and
familial ties. Researchers have employed GPS collars and motion-activated trail cameras to
observe elephant behaviour and track their movements in their natural habitat. Understanding
the migration patterns of elephants in Sabah forest is vital for shaping forest management
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strategies. It helps identify key conservation habitats, reduces human-elephant conflicts, and
guides the allocation of resources, such as deploying rangers and fitting motion-activated
cameras. These patterns reveal where elephants move and find essential resources, allowing
for focused conservation initiatives, strategies to minimise conflicts and practical use of
anti-poaching resources. Moreover, it enables researchers to deduce when different elephants
spend time together. For example, observing two elephants travelling or foraging in the same
geographic area could indicate their social interactions. Access to data from GPS collars,
soil sensors, and camera traps collectively aids researchers in understanding elephant social
dynamics and migration patterns. To illustrate this concept, the SPARQL query in .1 (CQ19)
was formulated to find out which elephants met.

3.4.3 Use Case 2: Salt licks locations

Salt or mineral licks are natural deposits of salts and minerals that animals consume as
essential nutrients. In Sabah, several protected areas, such as the Danum Valley Conservation
Area, Tabin Wildlife Reserve, and Maliau Basin Conservation Area, harbour salt licks
that attract elephants and other wildlife species. The exact locations of these salt licks
may be kept confidential to prevent disturbance or exploitation of wildlife. Elephants can
obtain vital minerals and nutrients from salt licks, which may not be readily available in
their regular diet. However, excessive use of salt licks can lead to detrimental effects such
as overgrazing and soil erosion, harming the surrounding ecosystem. Having a tool that
provides access to curated and semantically integrated data about elephant GPS locations
and information about salt lick areas, including soil conditions and vegetation, can empower
wildlife conservationists to make informed decisions to protect the natural habitats and
resources of wildlife. The SPARQL query listed in Listing allows users to select elephants
observed in the Danum Valley and gather information about salt licks in the area. In this use
case, the sensor observations include the elephant’s name, which can be selected in the query
.1 (CQ72).

3.4.4 Use Case 3: Rescuing the injured elephant

Numerous elephants in the Kinabatangan region are equipped with GPS collars to track
and monitor their movements. These collars are named after the elephants to which they
are attached (e.g., Jasmin, Seri, Sandi, etc.). Bioscientists regularly access and visualise
real-time data from the collars and store historical data for later analysis. During one such
analysis, a chief scientist observed an unusual pattern in the GPS data for elephant Jasmin;
the observations were repeated at the exact location for two days. Consequently, a wildlife
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officer was dispatched to check Jasmin, leading to the discovery that a snare near an oil palm
plantation injured the elephant. The officer promptly notified the manager, who contacted a
veterinarian to rescue Jasmin. The proposed solution involves designating predetermined
geographical boundaries. If an animal is found to have crossed these boundaries, it should
be treated as a potential danger that may necessitate intervention. Due to availability,
this system currently uses historical data. However, at the reproduction level, our system
can stream real-time sensor data into our pipeline codes for transformation into RDF. I
developed use cases to evaluate the proposed knowledge graphs, focusing on three main
tasks: integrating heterogeneous wildlife data from various sources, providing precise and
immediate data retrieval, and demonstrating the ability to deduce novel information through
reasoning techniques. These use cases served as benchmarks to assess the knowledge graphs’
performance and effectiveness in achieving these objectives. I derived four Competency
Questions (CQs) based on the third use case, Listing , which depicts a real-life scenario.
These questions were formulated to SPARQL queries in .1 (CQ4, CQ17, CQ54, CQ92) to
evaluate the effectiveness of the knowledge graphs in providing accurate answers.

• CQ1: What are elephant Jasmin’s observations between 2012-02-07 and 2012-02-15?

• CQ2: When did elephant Jasmin go near the plantation on 2012-02-07?

• CQ3: What are the soil metrics near the elephant Jasmin?

• CQ4: What are the other elephants near the palm oil plantations?

CQ1 investigates how GPS collar information can be merged with camera-trap images to
authenticate elephant identities and assess the urgency of incidents. CQ2 aims to elucidate
elephant behaviours, such as foraging and socialising. CQ3 delves into the significance of
soil conditions near elephant locations, which can influence their speed and movement, for
instance, by causing their legs to become stuck in mud if the soil is wet. CQ4 leverages
the reasoning capabilities of semantic web technologies to introduce assertive rules into
data. In artificial intelligence and knowledge representation, reasoning is essential for
enabling systems to draw conclusions from available data and established rules. Reasoning
approaches are commonly divided into two primary types: deductive reasoning, which
derives conclusions based on general premises, and rule-based reasoning, which relies on
predefined "if-then" rules to make specific inferences in given contexts. For instance, a
logical rule might stipulate that if a snare injures one elephant, the other nearby elephants
could also be at risk. I used Federated SPARQL queries to interrogate the knowledge graphs,
enabling us to retrieve answers from any integrated data source within the FOO. Responses
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Table 3.10 Statistics for the four Competency Questions (CQs) query responses in millisec-
onds (ms)

CQ1 CQ2 CQ3 CQ4
Description NO-Rule SWRL NO-Rule SWRL No-Rule SWRL No-Rule SWRL

Mean 54.60 43.04 88.98 70.64 262.30 207.76 2083.42 1646.26
Std 7.84 21.66 25.94 37.27 47.14 102.57 47.17 791.33
Variance 61.46 469.15 972.88 1389.05 2222 10520.6 2225.00 626.203
Minimum 43.00 -6.00 60.00 -8.00 205.00 -25.00 2029 -208.00
Maximum 77.00 89.00 172.00 173.00 390.00 427.00 2246 3064
Shapiro-Wilk test p-value (0.05) 0.001 0.755 3.20-6 0.367 5.916 0.405 7074-06 0.241
Mann-Whitney U test p-value (0.05) 0.001 0.014 0.006 0.001
Count 50 50 50 50

were obtained from FooDS, including data from the GPS collar and soil datasets incorporated
into FOO. SPARQL queries are available in .1.

3.4.5 Results

An experiment was conducted to assess responses to four Competency Questions (CQs) based
on correctness, completeness, and speed. Using the Stardog Studio knowledge graph platform
(cloud.stardog.com), the queries were executed 50 times each without reasoning, with a 3-
second interval between executions, and response times were recorded. The experiment was
then repeated with reasoning enabled by activating the reasoning option and incorporating
Semantic Wb Rule Language (SWRL) into the triple store. The SWRL rule stipulated
that if the distance between an elephant and an oil palm plantation is less than 5 km, it
constitutes a hazard. Figure 3.16 illustrates the response times for each query, showing
average times of 54.7 ms, 87.29 ms, 259 ms, and 2080 ms for CQ1, CQ2, CQ3, and CQ4,
respectively. The results were accurate, with CQ4 demonstrating the longest response time
due to the large volume of requested information. Similarly, CQ3 had longer response times
compared to CQ1 and CQ2 because of the necessity to link disparate databases. Although
response times were faster after enabling reasoning, the correctness and accuracy of the
query results remained consistent. To analyse the data, the Shapiro-Wilk test for normality
and the non-parametric Mann-Whitney U test were applied to compare the two sets of
independent responses. The Shapiro-Wilk test indicated that query responses without rules
were not normally distributed, whereas a normal distribution was observed for the SWRL
responses. Given the non-normal distribution of the rule-free query responses, the Mann-
Whitney U test was employed and revealed a significant difference between responses before
and after enabling reasoning or incorporating SWRL. Table 3.10 shows the statistics of
the CQs response time, while complete documentation for this evaluation is available at
https://github.com/Naeima/Knowledge-Graphs-Evaluations.git.
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Listing 3.3: Shapiro Wilk test

Hypo theses
H0 : Samples a r e n o r m a l l y d i s t r i b u t e d
H1 : Samples a r e n o t n o r m a l l y d i s t r i b u t e d
p− v a l u e c u t o f f = 0 . 0 5 i f p > v a l u e :
R e t a i n H0 − Samples a r e n o r m a l l y d i s t r i b u t e d .
E l s e :
R e j e c t H0 − Samples a r e n o t n o r m a l l y d i s t r i b u t e d .

Listing 3.4: Mann-Whitney U
test

Hypo theses
H0 : Samples median a r e e q u a l
H1 : Samples median a r e n o t e q u a l
p− v a l u e c u t o f f = 0 . 0 5 i f p > v a l u e :
R e t a i n H0 − t h e medians a r e e q u a l .
E l s e :
R e j e c t H0 − t h e medians a r e n o t e q u a l .

Figure 3.16 Response time for the four Competency Questions (CQs)

3.4.6 Discussion

Forest Observatory Ontology Data Store (FooDS), the ontology-based knowledge graph,
was generally well-received by domain experts, with high scores in confidence, usefulness,
performance, time-saving, UI clarity, visualisation, and data handling across participants with
diverse educational backgrounds and occupations, mainly researchers and data specialists.
The ontology-based knowledge graphs’ ease of use and the need for technical support
received more varied responses, indicating areas where few end-users might require prior
indication training. The educational backgrounds and occupations of the participants suggest
that the knowledge graphs are relevant to academic and professional research, especially in
fields requiring data integration and analysis. FooDS answered 83 Competency Questions
(CQs) correctly from 105 CQs and addressed three specific use cases. These 105 CQs
were formulated from the data collected during the requirement phase (ethnography, semi-
structured Interviews and discussion groups) for example, a SPARQL query could be generic
to address elephants while the CQs address specific elephant and specific event. There is
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an overlap but I suggest that CQ2 capture the high level of knowledge while use cases CQs
are more tailored to solve the task in hand. Use cases CQs are extracted from the general
CQs and tunned to address the case. Applying reasoning, particularly through SWRL rules,
optimised the inferred new knowledge from data and accelerated the query response times
whilst maintaining accuracy. Through thorough statistical analyses of the results from the
third use case, it was demonstrated that querying FooDS, stored in a triple store and enriched
with SWRL reasoning rules outperforms querying a rule-free one, particularly in speed and
efficiency, thereby expediting the search and discovery processes. Challenges related to data
sensitivity and scarcity were encountered, particularly concerning the ethical implications
of GPS collar data for elephants. This emphasises the need to balance data utility with
conservation ethics. The limited scope of the data is compounded by the lack of collared
status for many elephants and difficulties in data collection owing to environmental factors.
In addition, integrating real-time data into FOO poses distinct challenges, mainly because of
the instability of data generation and connectivity issues. Although this framework relies on
historical data, I recognise its potential for integrating real-time sensor data streams. This can
be achieved using IoT devices, such as Arduino or Raspberry Pi boards, and protocols like
MQTT or WebSockets for seamless data transmission. Theoretically, embedding logic into
these devices for continuous sensor data collection and converting the data into RDF format
would enable real-time data streaming. However, this enhancement, although feasible, is
beyond the scope of the current project and is a direction for future development. The need for
real-time data is beneficial in the third use case scenario, such as the prompt rescue of injured
elephants, where reliance on historical data hinders swift responses to emergencies. The
integration of real-time data can facilitate immediate action to aid wildlife injuries. I concede
that, in its present configuration, FOO does not offer benefits for the third scenario involving
the rescue of an injured elephant unless real-time or near real-time data are incorporated. The
proposed framework, centred on defining domain-specific ontologies followed by the data
population to generate ontology-based knowledge graphs, offers a flexible and replicable
method across various domains. This approach is applied in healthcare [125], smart cities for
urban planning [146], finance for market predictions [280], cultural heritage for connecting
historical dots [67], and education for personalised learning solutions [47]. This methodology
not only aids in structuring domain knowledge but also facilitates the extraction of actionable
insights, demonstrating its broad applicability and potential to revolutionise knowledge
representation and decision-making across diverse fields.
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3.5 Summary

The first part of this chapter discussed the role of Forest Observatories in enhancing the
understanding of wildlife dynamics by integrating heterogeneous wildlife data and breaking
down data silos. It introduced the Forest Observatory Ontology (FOO) and its knowledge
graphs, supported by a resource website (ontology.forest-observatory.cardiff.ac.uk), a digital
book, executable notebooks for SPARQL queries, and chatbot (developed as a proof of
concept and not formally evaluated) to prove that the knowledge graphs can be accessed
by non-technical users. Following this, four knowledge graphs (soil, vegetation, GPS
collar, and camera trap image metadata), their semantic modelling and ontology integration
processes were proposed, resulting in the Forest Ontology Observatory Data Store (FooDS).
In addition, FooDS was evaluated S domain expert feedback and applied use cases. The
subsequent chapter used FooDS for deep learning to support bioscientists and conservationists
in predicting poaching.
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Chapter 4

Leveraging FooDS for Predicting Wildlife
Poaching

This chapter addresses the third research question (RQ3): Can prediction models be developed
to predict poaching crimes by using the developed ’Linked Data Store’?

This chapter draws upon linked data from the previously developed Forest Observatory
Ontology Data Store (FooDS) to build predictive models based on deep learning algorithms.
These models are designed to forecast the future geo-locations of elephants and assess the
likelihood of poaching incidents, supported by rule-based semantic reasoning. The resulting
application introduces a hybrid predictive model that leverages heterogeneous wildlife data
drawn from an ontology-based knowledge graph. The novelty of this approach lies in its
capacity to harmonise deep learning with ontology-based knowledge graph’s reasoning to
generate accurate, actionable predictions.

4.1 Introduction

Habitat loss, human-elephant conflict, and poaching threaten Bornean elephants (Elephas
maximus) [81]. Despite global anti-poaching efforts, the illegal ivory trade continues to drive
poaching, reducing the population to fewer than 1,500 [106, 3, 42]. In Sabah, Malaysian
Borneo, over 200 elephants died between 2010 and 2021, many through poisoning near
oil palm plantations [191, 64]. High-profile incidents, such as the 2013 poisoning of 14
pygmy elephants, highlight the escalating conflict between expanding agriculture and wildlife
conservation. Other species, including Bornean orangutans (Pongo pygmaeus), proboscis
monkeys (Nasalis larvatus), and Sunda pangolins (Manis javanica), face similar threats from
habitat loss and animal trafficking for illegal trade [64]. Poaching also endangers human
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lives, with rangers facing armed poachers [180]. Limited and inconsistent poaching data
complicate reliable predictions [270], prompting researchers to leverage environmental data
for insights. For example, GPS sensors used by the World Wildlife Fund in Sabah help
monitor elephant behaviour and mitigate human-elephant conflicts. Advanced machine
learning models built on GPS and environmental data can predict wildlife movements,
assisting targeted anti-poaching efforts.

This chapter addresses the third research question (RQ3): Can prediction models be
developed to predict poaching crimes by using the developed ’Linked Data Store’?

To address RQ3, PoachNet is presented, a predictive tool designed integrate wildlife data
with advanced algorithms. PoachNet employs deep learning with FooDS creating a dynamic
and hybrid model for poaching prediction. Elephant GPS observations are processed through
a sequential neural network to predict geo-locations, which are semantically modelled
and incorporated into FooDS. Semantic Web Rule Language (SWRL) asserts poaching
rules based on events not explicitly expressed in FooDS. PoachNet’s performance was
benchmarked against state-of-the-art methods and demonstrated higher accuracy, consistently
outperforming them.

PoachNet allows users to interact with the data through directed queries, enabling the
retrieval of granular wildlife data from knowledge graphs either stored locally in a triple-store
or accessed online via Uniform Resource Identifiers (URIs). Once extracted, the data are
processed through a deep learning model that predicts an elephant’s geo-location (latitude
and longitude) based on GPS collar data, whilst semantic reasoning assesses the likelihood
of poaching in specific areas.

In addressing RQ3, this application achieves the third core contribution (C3) of this
research: developing a solution for predicting poaching threatening a Bornean elephant (Ele-
phas Maximus) by using data extracted from FooDS. This contribution assists bioscientists
and conservationists by enhancing poaching prediction capabilities through modular, scalable
predictive models enriched with semantic data.

4.2 Elephant GPS Collar Knowledge Graph RDF

Sourced from Danau Girang Field Centre [163], Table 4.1 describes 9168 observations from
Global Positioning System (GPS) collar on adult Bornean elephant (Elephas Maximus)
named Seri. Metrics include latitude (lat), longitude (long), temperature (Temperature),
external temperature (ExtTemp), activity, speed, direction, covariance (Cov), horizontal
dilution of precision (HDOP), distance, and count. The latitude and longitude data show
minimal variation, with averages of 5.20° and 118.66° respectively, indicating a specific
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geographic area. The mean temperature is 29.20°C, with a wide range from -37.00°C to
60.50°C, suggesting potential anomalies or extreme environmental conditions. Metrics such
as external temperature, activity, speed, and direction show uniformity, with all values at 0,
possibly indicating static conditions or missing data. Covariance and HDOP have average
values of 1.23 and 2.21 respectively, highlighting variable GPS signal quality. Distance
values range widely, with an average of 273.89 units, and the Count metric spans from
2199 to 11366, indicating diverse data recording frequencies. The historical elephant Seri
knowledge graph 4.1 was extracted from FooDS and contains 202,885 triples.

Table 4.1 Summary Statistics of GPS Data and Related Metrics

lat long Temperature ExtTemp Activity Speed Direction Cov HDOP Distance Count
count 9168.00 9168.00 9168.00 9168.0 9168.0 9168.0 9168.0 9168.00 9168.00 9168.00 9168.00
mean 5.20 118.66 29.20 0.0 0.0 0.0 0.0 1.23 2.21 273.89 6782.50
std 0.10 0.11 1.93 0.0 0.0 0.0 0.0 1.89 2.07 429.72 2646.72
min 5.01 118.44 -37.00 0.0 0.0 0.0 0.0 0.00 0.00 0.00 2199.00
max 5.38 118.95 60.50 0.0 0.0 0.0 0.0 5.00 21.00 8572.00 11366.00
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Figure 4.1 Elephant Seri’s ontology-based knowledge graph

4.3 Geo-location Prediction with Deep Learning

A neural network model was developed to predict geo-location attributes based on data
extracted from the ontology-based knowledge graph. The selected features—localDate,
localTime, latitude, and longitude—were chosen for their critical role in capturing both
temporal and spatial dimensions of movement. Temporal features such as localDate and
localTime provide essential information about when an event or movement occurred, while
latitude and longitude define the exact geographic location, making them key predictors for
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modelling movement patterns. These features were extracted from the knowledge graph
using the rdflib library and SPARQL queries.

4.3.1 Data Extraction and Preprocessing

SPARQL Protocol and RDF Query Language [13] was employed (Algorithm 4.3.1) to
retrieve relevant attributes from the RDF graph. The query extracted geo-location data points
representing observations for latitude, longitude, date, and time. The extracted data were
converted into numerical values for further preprocessing.

Listing 4.1: Query to extract elephant geo-location data including latitude, longi-
tude, date, and time.

SELECT *
{? o b s e r v a t i o n a < h t t p s : / / w3id . o rg / d e f / foo # gPSObserva t ion >;

< h t t p : / / www. w3 . org / 2 0 0 3 / 0 1 / geo / wgs84_pos # l a t i t u d e > ? l a t ;
< h t t p : / / www. w3 . org / 2 0 0 3 / 0 1 / geo / wgs84_pos # l o n g i t u d e > ? long ;
< h t t p s : / / w3id . o rg / d e f / foo # l o c a l D a t e > ? l o c a l D a t e ;
< h t t p s : / / w3id . o rg / d e f / foo # l o c a l T i m e > ? l o c a l T i m e . }

The retrieved features were then processed to generate feature vectors (‘day‘, ‘month‘,
‘year‘, ‘hour‘) and label vectors (‘latitude‘, ‘longitude‘). The ‘NumPy‘ library was used to
convert these vectors into float-compatible arrays, enabling compatibility with the neural
network. The dataset was split into training, validation, and testing subsets. Initially, 20%
of the data was reserved for testing, while the remaining 80% was split further into 60%
training and 20% validation sets.

4.3.2 Architecture and Training

A sequential neural network model was developed using TensorFlow and Keras to predict
continuous target variables. The model architecture consisted of an input layer that accepted
four features (‘date‘, ‘time‘, ‘longitude‘, and ‘latitude‘), followed by two hidden layers with
128 and 64 neurons, respectively. Each hidden layer used the Rectified Linear Unit (ReLU)
activation function to learn non-linear patterns in the data. The output layer employed a
linear activation function, enabling precise predictions of the target values (‘date‘, ‘time‘,
‘longitude‘, and ‘latitude‘).

The model was compiled using the Adam optimiser and Root Mean Squared Error
(RMSE) as the loss function, quantifying prediction accuracy. The model training was
conducted over 500 epochs with a batch size of 32, incorporating validation data to monitor
performance and mitigate overfitting. The trained model achieved precise geo-location
predictions, evaluated using RMSE. The predictions were transformed into RDF graphs and
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integrated into the ontology-based knowledge graph, enriching it for rule-based reasoning.
Figure 4.2 illustrates the predictive framework, and pseudocode in 4.3.2 outlines the entire
workflow.
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         <http://www.w3.org/2003/01/geo/wgs84_pos#latitude> ?lat ;
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SELECT * {
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         <http://www.w3.org/2003/01/geo/wgs84_pos#latitude> ?lat ;
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Figure 4.2 POachNet: End-to-end predictive framework featuring RDF data extraction and
deep learning and showcasing the integration of the ontology-based knowledge graphs with

deep learning. The framework consists of a sequential neural network for predicting
elephants’ future geo-location. The network comprises an input layer with a shape matching
the dataset’s four features, followed by two hidden layers employing the Rectified Linear
Unit (ReLU) activation function. The output layer uses a linear activation function. The

model’s performance was assessed using the Root Mean Square Error (RMSE) metric, and
accurate predictions were mapped back to their original RDF format.

4.4 Rule-based Reasoning for Poaching Prediction

In rule-based reasoning, each rule comprises conditions and consequents (i.e., outcomes or
actions). When the system recognises that the conditions in the antecedents are met, it triggers
the action or inference specified in the consequent. This approach is well-suited to scenarios
requiring clear and interpretable logic, such as implementing conservation protocols based
on animal movements near high-risk areas like plantations or logging zones. Rule-based
systems are also adept at handling symbolic representations, making them compatible with
semantic reasoning tools like the Semantic Web Rule Language (SWRL), often used in
conservation studies to manage and apply rules in ecological knowledge graphs. Using
this reasoning framework, specific indicators, such as a binary poaching indicator, can be
created to represent the likelihood of poaching occurrences. These indicators can then be
incorporated into knowledge graphs, enhancing data-driven decision support systems that
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Code Snippet 1: Data Extraction and Regression Model Training
Part 1 – Data Extraction ;
Function ParseRDF(graph_file, format):

graph = LoadGraph(graph_file, format);
return graph;

Function ExtractFeatures(graph, query):
features, labels = [], [];
results = ExecuteQuery(graph, query);
foreach row in results do

features.append([row.long, row.lat, row.date, row.time]);
labels.append([row.long, row.lat, row.date, row.time]);

return features, labels;

Function SplitData(features, labels, train_size, val_size):
train_data, test_data = TrainTestSplit(features, labels, train_size);
train_set, val_set = TrainTestSplit(train_data, val_data, val_size);
return train_set, val_set, test_data;

graph = ParseRDF(“SeriKG.rdf”, “ttl”);
features, labels = ExtractFeatures(graph, SPARQL_query);
train, val, test = SplitData(features, labels, 0.8, 0.20);
Part 2 – Model Training ;
Function TrainModel(train_data, val_data):

model = Sequential();
model.add(Dense(128, activation=ReLU));
model.add(Dense(64, activation=ReLU));
model.add(Dense(2, activation=linear));
model.compile(optimizer=Adam, loss=MeanSquaredError);
history = model.fit(train_data, validation_data=val_data, epochs=1000);
return model, history;

model, history = TrainModel(train, val);
Part 3 – Evaluation and Visualisation ;
predictions = model.predict(test_data.features);
RMSE = CalculateRMSE(predictions, test_data.labels);
VisualisePredictions(test_data.labels, predictions);
Part 4 – RDF Graph Enrichment ;
Function MapCSVToRDF(csv_file, ontology, format):

rdf_graph = LoadOntology(ontology);
foreach row in csv_file do

MapRowToTriples(rdf_graph, row);

SaveGraph(rdf_graph, “SeriKG.rdf”, format);

MapCSVToRDF(“Seri.csv”, “foo.ttl”, “ttl”);
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assist conservationists in anticipating and mitigating risks to wildlife populations. Borenean
elephants eat diverse vegetation including palm leaves 1 2 [77, 56]. Monitoring their diet and
vegetation choices helps identify danger and poaching hotspots (e.g. oil palm plantations).
To predict poaching, Semantic Web Rule Language (SWRL) was used. That is, creating a
rule to insert in the ontology-based knowledge graph - inspired by insights from biologists
and conservationists at Danau Girang Field Centre (DGFC).

Our experiment created a specific rule (refer to Rule 5) to anticipate poaching activities.
This rule predicts poaching based on an elephant’s proximity to a designated hazardous
area, like an oil palm plantation. The criterion states that if an elephant, equipped with
a GPS tracker and termed elephant Seri, is near oil palm plantations – areas marked as
hazardous owing to previous poaching/poisoning incidents. Thus, there is an increased
likelihood that the elephant will be poached. Rule-based semantic reasoning ability led to
a new binary poaching indicator in the knowledge graph database (triple store), where ’1’
indicates potential poaching and ’0’ indicates its absence.

To determine if an elephant is within a 5 km radius of the oil palm location (see Figure
4.3), I created buffer zones with a radius of 5 km between the oil palm plantation and the
elephant geo-location. Figure 4.4 visualises the 5km buffer zones used to formulate the
semantic rule.

The haversine formula was applied to calculate the distance between the two points. The
elephant can be marked as potentially poaching if the calculated distance is less than or equal
to 5 km. The Haversine formula is given by equation 4.4:

a = sin2
(

∆lat
2

)
+ cos(lat1) · cos(lat2) · sin2

(
∆long

2

)
c = 2 · atan2

(√
a,
√

1−a
)

d = R · c

Where: ∆lat is the difference in latitude , ∆long is the difference in longitude, lat1 and
lat2 are the latitudes of the two points, R is the radius of the Earth (mean radius = 6,371 km),
d is the distance between the two points.

1borneomammals.online/2018/10/15/bornean-elephant-feeding-in-oil-palm-at-tabin/
2rainforest-rescue.org/petitions/905/malaysia-pygmy-elephants-poisoned-for-palm-oil
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Figure 4.3 The map shows the geo-points (in green) intersection between the oil palm
plantation (in blue) and the elephant movements (in red)
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Figure 4.4 The figure displays a 5 km buffer zone (in green) around each geographic feature
of an oil palm plantation. These zones are overlaid with the original geographic features
(shown with slight transparency) and the points from the elephant movements (in red).

102



4.5 Results

Listing 4.2: Detect Poaching Observations Near Oil Palm Plantations Rule

INSERT {
? s a < h t t p s : / / w3id . o rg / d e f / foo # gPSObserva t ion >;

< h t t p s : / / w3id . o rg / d e f / foo # poaching > ? poach ing .
}
WHERE {
? s a < h t t p s : / / w3id . o rg / d e f / foo # gPSObserva t ion >;

< h t t p : / / www. w3 . org / 2 0 0 3 / 0 1 / geo / wgs84_pos # l a t i t u d e > ? l a t ;
< h t t p : / / www. w3 . org / 2 0 0 3 / 0 1 / geo / wgs84_pos # l o n g i t u d e > ? long .

# R e t r i e v e p l a n t a t i o n d e t a i l s
< h t t p s : / / w3id . o rg / d e f / foo # p l a n t a t i o n > a < h t t p s : / / w3id . org / d e f / f o o # O i l P a l m P l a n t a t i o n >;

< h t t p : / / www. w3 . org / 2 0 0 3 / 0 1 / geo / wgs84_pos # l a t i t u d e > ? p l a n t a t i o n L a t ;
< h t t p : / / www. w3 . org / 2 0 0 3 / 0 1 / geo / wgs84_pos # l o n g i t u d e > ? p l a n t a t i o n L o n g .

# Conver t c o o r d i n a t e s t o f l o a t ( i f s t o r e d as l i t e r a l s )
BIND( xsd : f l o a t ( ? l a t ) AS ? l a t i t u d e )
BIND( xsd : f l o a t ( ? long ) AS ? l o n g i t u d e )
BIND( xsd : f l o a t ( ? p l a n t a t i o n L a t ) AS ? o i l p a l m L a t )
BIND( xsd : f l o a t ( ? p l a n t a t i o n L o n g ) AS ? o i lpa lmLong )

# C a l c u l a t e d i s t a n c e u s i n g t h e H a v e r s i n e f o r m u l a
BIND(6371 * 2 * ASIN (SQRT(

POW( SIN ( ( ? l a t i t u d e − ? o i l p a l m L a t ) * PI ( ) / 180 / 2 ) , 2 ) +
COS( ? o i l p a l m L a t * PI ( ) / 180) * COS( ? l a t i t u d e * PI ( ) / 180) *
POW( SIN ( ( ? l o n g i t u d e − ? o i lpa lmLong ) * PI ( ) / 180 / 2 ) , 2 )

) ) AS ? d i s t a n c e )

# Determine poach ing based on t h e c a l c u l a t e d d i s t a n c e
BIND( IF ( ? d i s t a n c e <= 5 , 1 , 0 ) AS ? p o a c h i n g . }

Listing 4.3: Query to retrieve poaching status in a format of turtle graph with the
geo-location coordinates, local data and poaching likelihood.

CONSTRUCT WHERE {
? O b s e r v a t i o n a < h t t p s : / / w3id . o rg / d e f / foo # gPSObserva t ion >;

< h t t p s : / / w3id . o rg / d e f / foo # l o c a l D a t e > ? Loca lDate ;
< h t t p : / / www. w3 . org / 2 0 0 3 / 0 1 / geo / wgs84_pos # l a t i t u d e > ? l a t ;
< h t t p : / / www. w3 . org / 2 0 0 3 / 0 1 / geo / wgs84_pos # l o n g i t u d e > ? long ;
< h t t p s : / / w3id . o rg / d e f / foo # poaching > ? poach ing . }

4.5 Results

This section presents the geo-location prediction results. The foundation of this approach
is FooDS, now publicly accessible online at (w3id.org/def/fooDS). However, elephant Seri
GPS Observations dataset used in this research is kept confidential due to its sensitive
nature. The graph injected with Semantic Web Rule Language (SWRL) enabled the semantic
reasoning about poaching and introduced new triples to assert poaching likelihood. The
query results fed into the deep learning models demonstrated high accuracy and compatibility
with machine learning formats. To evaluate the accuracy of the geo-location predictions,
the Root Mean Square Error (RMSE) was used. Deep learning model was trained using
Tensorflow within a Docker environment. The remote computer machine hosting the model
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had an Intel Xeon W-2245 processor, an NVIDIA GPU RTX A6000 with 48GB memory,
and 128GB of DDR4 RAM.

4.5.1 Geo-locations Prediction Result

The proposed neural network model for the geo-location prediction is a linear model and
built using the TensorFlow and Keras frameworks. The model contained an input layer
intended to accommodate four critical features (data, time, longitude and latitude) related to
the geographical positioning of elephant Seri. The network also includes two subsequent
dense layers, containing 128 and 64 neurons, respectively, using the Rectified Linear Unit
(ReLU) activation function to capture nonlinear patterns in the data effectively. In other
words, the model is an output layer with two neurons, employing a linear activation function.
Such configuration is well-suited for regression tasks of continuous outputs (i.e., longitude
and latitude). The data used contained 9168 observations, and their distribution is shown in
Figure 4.2 step 3. This model underwent multiple training epochs with a batch size of 32.
It achieved its highest accuracy at 500 epochs, registering an average geospatial RMSE of
0.0166 for elephant Seri GPS observations dataset.

4.5.2 Evaluation

To evaluate predictive methods on Seri GPS collar data, I used its dataset in CSV format
containing (date, time, longitude, latitude) features. The goal was to predict spatial-temporal
coordinates (date, time, longitude, latitude) and compare the performance of three models:
linear regression, polynomial regression, and vector autoregression (VAR). The performance
was assessed using the average root mean square error (RMSE).

4.5.3 Data Preprocessing

The independent variables in this analysis are the input features used to make predictions.
These include the day, month, and year, all of which are extracted from the ‘LocalDate‘.
These temporal features provide the contextual information necessary for the models to make
accurate predictions.

The dependent variables, or targets, are the outputs the models aim to predict. These
include geospatial coordinates such as latitude (‘lat‘) and longitude (‘long‘), as well as
temporal features like the day, represented as a numeric value indicating the day of the
month, and time, converted into a numeric representation of seconds since midnight (e.g.,
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‘12:34:56‘ becomes ‘45296‘ seconds). Together, these outputs capture both spatial and
temporal dynamics.

The data were divided into training and testing sets to ensure fair evaluation, and models
were trained and tested sequentially to respect the temporal structure of the data.

4.5.4 Models and Results

1. Linear Regression: Applied simple linear regression using day as the predictor for both
lat and long. Evaluated using 5-fold time-Series cross-validation.

2. Polynomial Regression:Incorporated polynomial features (degree 4) to account for
non-linear relationships. Similarly validated with 5-fold time-Series cross-validation.

3. Vector Autoregression (VAR): Used both latitude and longitude as a multivariate time
Series for temporal forecasting. Reserved a portion of the dataset for out-of-sample
prediction and RMSE calculation.

The RMSE results for all models are summarised in Table 4.5.4. From the negatively-
oriented RMSE scores (where a lower score indicates better performance), the linear re-
gression model demonstrated strong performance for predicting latitude and longitude, with
RMSE values of 0.123 and 0.164, respectively. Notably, the linear regression model also
performed exceptionally well for predicting the day, achieving an RMSE close to zero, but
struggled with time predictions, yielding an RMSE of approximately 25,186 seconds.

The polynomial regression model, while offering a more complex representation, exhib-
ited higher RMSE values for latitude (2.396) and longitude (1.050) predictions. It achieved a
near-perfect prediction for the day (RMSE: 7.2e-06) but produced the highest error for time
predictions, with an RMSE of 483,988 seconds. This suggests that the added complexity of
the polynomial model may have led to overfitting or inefficiency for these particular features.

In comparison, the VAR model excelled in predicting longitude, with the lowest RMSE of
0.089. It also performed reasonably well for latitude predictions (RMSE: 0.222) but struggled
with day and time predictions, with RMSE values of 8.69 and 25,093 seconds, respectively.
These results indicate that the VAR model effectively captures temporal dependencies for
geospatial coordinates but may require additional feature refinement for accurate temporal
predictions.

However, the neural network built with TensorFlow and Keras trained on the same Seri
data but in an ontology-based knowledge graph, outperformed all other models. The neural
network model achieved test RMSE values of 0.0247 for longitude, 0.0084 for latitude, 0.0123
for ‘localDate‘, and 0.0086 for ‘localTime‘. These results demonstrate the effectiveness of
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Figure 4.5 The chart visually compares the performance of various predictive models, specif-
ically focusing on their Root Mean Square Error (RMSE) values, a standard measure of
prediction accuracy. The models, including ’Linear Regression’, ’Polynomial Regression’,
’VAR’, and ’PoachNet’.

leveraging a knowledge graph representation and deep learning methods for highly accurate
geospatial and temporal predictions. Codes are available in Github.

Table 4.2 Comparison of RMSE between PoachNet and State-of-the-Art Models

Model Latitude RMSE Longitude RMSE Average RMSE
Linear Regression 0.123 0.164 0.144
Polynomial Regression 2.396 1.050 1.723
VAR Model 0.222 0.089 0.156
PoachNet 0.0084 0.0247 0.0166

4.6 Discussion

The loss of forest elephants and their dispersal from poaching or habitat loss and fragmenta-
tion [106] could lead to reduced forest diversity, the inability of elephants to colonise new
or deforested areas, and potentially reduced carbon stocks. Combating poaching in Sabah
is a priority, and various organisations, including Sabah Wildlife Department and Sabah
Forestry Department with the support of Danau Girang Field Centre and WWF-Malaysia,
are working to protect the Bornean elephant and many other species. The Bornean Elephant
Action Plan for Sabah 2020-2029 is a ten-year plan approved by the state government of
Sabah to conserve the Bornean elephant population and many other species. The plan has
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four main objectives: improve protection and reduce elephant deaths, improve landscape
connectivity and permeability, ensure the best ex-situ practices for elephant management and
conservation, monitor, and predict elephant population trends.

This research differentiates itself from existing views by integrating heterogeneous
wildlife data with deep learning on an ontology-based knowledge graph. while prior ap-
proaches have primarily focused on specific aspects, such as social network analysis, mul-
timedia data mining, or hierarchical models on ranger patrol data, this methodology offers
an interconnected understanding of wildlife dynamics. The results highlight that while
linear regression is well-suited for simple relationships in this dataset, and the VAR model
shows promise for geospatial predictions, PoachNet surpasses them significantly, showcasing
the potential of neural networks combined with knowledge graph techniques. Polynomial
regression, despite its theoretical flexibility, did not outperform the simpler models and may
require better feature engineering to improve its effectiveness.

PoachNet predictions can assist the strategic resource allocation for anti-poaching efforts.
It can also guide the decision to deploy ground truth sensors and motion-activated camera
traps in areas most likely to have anticipated poaching crimes.

Research challenges include semantic heterogeneity among diverse data sources, which
risks the consistent representation of information in the knowledge graph. Scalability issues
may emerge as the knowledge graph expands, necessitating careful resource management.
To address scalability issues in the knowledge graphs, several strategies can be recommended.
Partitioning the graph into manageable subgraphs and using distributed triple-store databases
like Stardog, Neo4j or Amazon Neptune can enhance processing efficiency. Incremental
updates minimises reprocessing, while graph compression and summarisation reduce storage
demands. Scalable cloud-based storage, optimised query processing with indexing, and the
use of high-performance graph algorithms further improve performance. Edge computing
can preprocess data near collection points, reducing bandwidth and latency.

Optimising the deep learning algorithms in PoachNet to enhance predictive performance
while minimising computational costs can be achieved through model compression techniques
such as pruning and quantisation [198]. These approaches reduce the size of deep neural
networks while maintaining accuracy, enabling faster inference, reduced storage requirements,
and lower training costs. Techniques like low-rank decomposition, knowledge distillation,
and lightweight model design can further streamline model deployment, making them more
efficient for use in resource-constrained environments [156].

PoachNet can be expanded by integrating additional wildlife data sources such as acoustic
sensors, satellite imagery, and crime intelligence. Acoustic sensors can detect gunshots,
elephant vocalisations, or vehicle noises associated with poaching crimes. Satellite imagery
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can monitor changes in habitat, detect unauthorised human activity, and assess landscape
connectivity. Crime intelligence data can add historical context, identifying patterns in
poaching incidents and aiding in predicting future hotspots.

4.7 Summary

This chapter introduced PoachNet, a novel tool integrating Semantic Web technologies and
deep learning to predict poaching crime and wildlife dynamics. By combining diverse wildlife
data into an ontology-based knowledge graph enriched with rule-based reasoning, PoachNet
provided a dynamic, hybrid predictive solution for conservation. Custom-built dataset and
advanced neural network models accurately predicted elephant geo-locations and potential
poaching incidents, achieving an average geospatial RMSE of 0.0166 , surpassing state-of-the-
art methods. This approach predicts future elephant geo-locations and uses this information
to infer poaching risks based on proximity to identified hazardous areas. PoachNet equips
biologists and conservationists with advanced tools for spatiotemporal poaching predictions,
offering a transformative paradigm for wildlife crime prevention. While challenges such as
semantic heterogeneity, data sensitivity, and ecosystem dynamics persist, the public release
of the ontology-based knowledge graph and source code demonstrates the commitment to
transparency and collaboration, encouraging the research community to collaborate with us
and build upon this work.
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Chapter 5

Extending FooDS’s Semantic Web
Framework to Data Marketplaces

This chapter addresses the fourth research question (RQ4): Can the Linked Data Store’s
semantic web data management approach be generalised to another domain for various
purposes?

This chapter examines whether FooDS’s semantic web data management approach can be
applied to other fields, with a focus on IoT data marketplaces. These marketplaces represent
a new concept designed to meet consumer data needs by encouraging data sharing and
lowering acquisition costs. However, existing marketplaces, such as SynchroniCity, lack
options for selective data purchasing, requiring consumers to buy entire datasets, which
can be costly and inefficient. FooDS’s approach was adapted to an IoT data marketplace,
enabling selective querying of annotated IoT data. This adaptation allowed users to access
only the data they needed, reducing costs and improving efficiency. An ontology, developed
with experts input, reused existing ontology and was populated with six different sensor
datasets to create ontology-based knowledge graphs. Semantic Web Rule Language (SWRL)
reasoning was applied to three use cases, demonstrating its ability to efficiently manage rules,
store data at the edge, and provide remote access through SPARQL queries without straining
resources. This case study illustrates the potential of FooDS’s approach to be generalised
and applied in other domains.

5.1 Introduction

Over the last decade, many cities have initiated projects that deploy different sensors for
various reasons. One popular application domain is environmental monitoring. After
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accomplishing the primary objectives, such data are often discarded or stored somewhere
where access can be difficult outside the initial project. There often needs to be a mechanism
(or motivation) to share data with outside parties (other than the organisation that deploys the
sensing infrastructure). This approach leads to a waste of resources and can limit the potential
benefits derived from such data. Internet of Things (IoT) data marketplaces for smart cities
are being proposed as a solution to address this challenge. Urban data Exchange1 is one such
data marketplace aimed at facilitating businesses to develop IoT and AI-enabled services to
improve citizens’ lives and grow local economies. Data marketplaces have received limited
attention in the academic community. However, the buying and selling of data have taken
place for a long time, especially within the business-to-business (B2B) context. Initially,
these data transactions took place offline between companies and their alliances. Data have
been widely sold across various domains, such as travel, advertising, and insurance. This
chapter addresses the fourth research question (RQ4): Can the Linked Data Observatory ’s
approach be generalised to another domain for various purposes? Several key contributions
are presented and linked to the research question:

• An ontology, aggregating well-known ontologies to model sensor data in IoT market-
places, is proposed. Design decisions made during the ontology engineering process are
discussed, highlighting trade-offs and identifying good practices observed in existing
efforts.

• A unique technique for on-demand data offer creation is introduced. Custom data
requests (i.e., data orders) are enabled, allowing buyers to consider four aspects:
location, data type, date/time, and service level agreement.

• The utility of knowledge engineering, including reasoning and inferencing, is demon-
strated through a series of use cases in the context of data marketplaces. Different
levels of knowledge engineering approaches—dataset level, market level, and buyer
level—are presented, along with their utility and associated costs, such as computa-
tional complexity.

• The performance of the proposed approach is evaluated across three different data
marketplace setups. Various parameters are measured, and several recommendations
for future marketplace deployments are extracted.

1https://urbandata.exchange/

110



5.2 Motivation and the Problem Definition

Figure 5.1 Urban Data Marketplace (Current Approach): FIWARE data models are used to
organise the data into datasets. They have been harmonised to enable data portability for
different applications, including Smart Cities, Smart Agrifood, Smart Environment, Smart
Energy, Smart Water, and others. The key weakness of this approach is that data buyers need
to buy the entire dataset (e.g., Noise Level Helsinki) whether they need the entire dataset or
not. This approach leads to higher data prices.

5.2 Motivation and the Problem Definition

Currently, IoT data marketplaces sell data per entire dataset, as shown in Figure 5.1. For
example, potential buyers could buy weather forecast data and parking status data in bulk.
Each of the datasets may contain multiple pieces of data packed together in a pre-defined
manner (e.g., temperature, relativeHumidity may be included in the Weather Forecast
data offer). There are multiple problems with this approach.
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Problem 1: Higher network communication and bandwidth requirement: (↑ Dp
i ∝ Db

i ↑)
In the current approach, data offers are sold as pre-defined data bundles. There is
no way to limit the number of data within a bundle that a buyer acquires (whether
the buyer may request past (archival) data or future data (as a subscription)). The
consequence of this approach is higher network download time and cost. For example,
if a data consumer wants bicycle docking station data in Santander, they will need to
buy the entire Docking Stations - SAN dataset whether they need the entire dataset
or not. Therefore, there is a positive correlation between network communication,
bandwidth requirement and volume of data. Given that the price of a data offer i is Dp

i

and the bandwidth required is Db
i , the price is proportional to bandwidth.

Problem 2: Difficulties in pricing which leads to higher prices: (↑ Dp
i ∝ Dv

i ↑) Currently,
each data bundle comprises large volumes of data. The cost of acquisition for a large
amount of data is high. Therefore, the cost of the bundle has to be high as well. In
a data marketplace, the price of a data offer has to cover the cost of data acquisition
plus a profit margin. Therefore, there is a positive correlation between data prices
and volume. Given that the price of a data offer i is Dp

i and volume is Dv
i , price is

proportional to volume.

Problem 3: Information overload for data consumers: (↑ Dv
i ∝ Dpp

i ↑) .
In data science projects, 80% of time and effort is often devoted towards preparing
the data (i.e., acquiring, cleaning, transforming, etc.), and only 20% is used to do
the actual analysis. Therefore, the larger the buyers’ dataset, the more effort they
need to prepare and filter the relevant data. Assume that a given data analysis task
is related to weekends data (e.g., parking slot status). First, data scientists need to
query the entire dataset, remove the data related to weekdays and select only the data
related to weekends. Therefore, the current bulk pre-defined data offering approach
unnecessarily increases data scientists’ workload (i.e., data consumers’). Given the
size of a data offer, i is Dv

i , the cost of data pre-processing is Dpp
i – the cost of data

pre-processing is proportional to volume.

Problem 4: Limited data discovery capabilities: Currently, IoT data marketplaces organ-
ise datasets by type (broadly) and location. For example, it is usually up to the data
seller to bundle the data into an offering as they see fit, as shown in Figure 1. Here,
data offers are pre-defined and static without any mechanism to request customised
data. Data search primarily relies on location. There is no way for data consumers to
acquire traffic data in London on rainy days over the last three years in the
current data marketplace scenario.
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5.2.1 Design Principles and Architecture

Design principles were suggested to help data consumers communicate the data they need.
These efforts yielded Competency Questions (CQs) for our data model.

Design Principles

Twenty-one participants were enlisted with backgrounds in computer and data science to
extract the following design principles. The identified expressed their priorities using question
terms: (1) where, (2) what, (3) when, and (4) how. Let us explain each of these design
principles with a concrete example.

Selected participants were considered for their expertise in three key areas: (i) their
understanding of the IoT domain, (ii) their knowledge of semantic web technology for the
IoT from an end-user perspective, and (iii) their proficiency in semantic data modelling. I
reviewed their qualifications, expertise, and past experiences, sourcing them from professional
networks, academic institutions, conferences, and events. The participants’ questionnaire
responses supplemented us with the necessary data for these filters to make deductions.
For instance, one of the questions asked, "Do you believe that bikes available for hire in
London city will be less accessible than usual on a sunny day?" The response showed that
over 70% of the participants agreed with this statement. Consequently, logical rules were
established to infer sunny days based on the decreased availability of bikes for hire. Moreover,
the participants’ responses revealed interesting insights about their demographics. Most
participants have achieved a minimum of a bachelor’s degree, with approximately 30% of
them having pursued further education at the postgraduate level. The majority of participants,
as such, have direct experience in applying semantic web technology to handle and analyze
IoT data (e.g., database management, AI and machine learning). The distribution of years of
experience in the current field is quite diverse, with 25% having 1-2 years, 30% having 3-5
years, and a sizeable proportion having more than ten years. Participants also have a wide
range of ages, with the majority in the 25-34 and 35-44 age groups, respectively. Figure 5.2
and 5.3 show the study participants’ educational background and demographic information.

Architecture

The IoT data marketplaces need to be distributed in nature. Data owners are expected
to store and manage data items and only share their metadata with brokers such as the
IoT data marketplaces. Consequently, when a broker receives a request, it knows from
where to gather the data (or to decide whether it is possible or not to fulfill the request).
Figure 5.4 depicts the architecture of the IoT data marketplace, and details are presented
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Figure 5.2 Participants education and experience background in Computer Science.

Figure 5.3 Participants demographic information.

here (https://gitlab.com/synchronicity-iot). In summary, we have developed a user interface
that allows data consumers to build their data requests. Each data request was organised
using a standardised JSON schema and send it to the validation engine. The validation
engine determines whether the IoT data marketplace can fulfill a given request based on the
available metadata. Then, one or multiple SPARQL queries will be generated based on the
requirements of the data request (and depending on where the actual data reside).

5.3 Data Marketplace Design

To address the requirements stated in 5.2.1, an IoT data marketplace was proposed that
allows potential data consumers to buy only the data points/records they need to solve a given
problem. Pre-defining many data offerings is not feasible; therefore, the best approach is to
allow consumers to create their data offerings (i.e., data requests). To illustrate the notion,
assume a new tourism company is interested in purchasing various data entities to build an
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AI decision support system. These entities may contain specific observations about local
attractions such as beaches, museums, parking spots, and bike docking stations. Thus, the
organisation prepares a single order that includes the data records from the datasets instead of
acquiring the entire dataset for each entity separately. Nonetheless, this method has several
drawbacks in terms of the following: (see Table 5.1 ).

• Data pricing could be complicated because each data source may price its observations-
depending on their size and novelty. In addition, the broker fees and any variable extra
charges have to be carefully calculated and added to the total bill.

• Data publishing could raise privacy and ownership concerns because data providers
may have different privacy policies and credit preferences. Therefore, appropriately
tailored privacy and data ownership agreements must exist to satisfy all parties.
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Table 5.1 Possible Scenarios

Criteria Current Pre-Defined Data Of-
fering Approach

Proposed On-Demand
Data Offering Approach

• Pricing Structure Simple Could be complicated
• Pricing Fairness Less fair More fair
• Data Discovery Less discoverable More discoverable
• Publishing Complex-
ity

Easy and simple to publish Could be complicated to
publish

• Data Preparation
Complexity (from
a data consumer
perspective)

Higher (as large datasets
need to be processed and fil-
tered)

Less (as data is already pro-
cessed and filtered)

5.3.1 Data Model

Proposed data model comprised a foundational ontology instantiated with six heterogeneous
datasets. The ontology aims to describe sensor data in the IoT data marketplace. Following
the NeOn methodology [103, 102, 239], the ontology was built. Although there are numerous
other ontology development methodologies [210, 87, 242, 190, 211], NeOn was selected
as it has multiple modular scenarios to choose from and adapt to our current requirement.
Figure 5.5 shows the ontology development’s life cycle. I adopted NeOn’s first, second and
third scenarios. The first scenario outputs the Ontology Requirement Specification Document
(ORSD). Then, I identified the non-functional requirements from the second scenario based
on the ORSD. I , then followed the process of reusing existing ontological resources from
the third scenario. Following that, the ontology was implemented and evaluated using
various tools. Figure 5.6 depicts the proposed core ontology, Table 5.2 discusses the key
characteristics of this ontology, and Figure 5.7 shows the ontology instantiated with six
sensor datasets.

5.3.2 Ontology Requirements

The first step in developing the ontology was to gather the required information. Here, the
information collected at the design stage (see section 5.2.1 were coded into Competency
Questions (CQs) to develop the ontology. During this step, the ORSD was produced, which
contains the conceptual building blocks for the ontology as follows:

• Ontology purpose: To describe the sensor data.
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Figure 5.5 Neon Methodology for developing the proposed Urban Data Exchange Ontology

• Ontology scope: The Internet of Things (IoT).

• Ontology implementation language: OWL2 Web Ontology Language.

• Ontology intended users: Small to medium businesses (SMEs).

• Ontology non-functional requirements: To List elements that must be included in the
ontology, such as IoT geospatial and time classes.

• Ontology functional requirements: To contain the Competency Questions (CQs) that
build and validate the ontology.

5.3.3 Ontology Analysis

In this step, the Competency Questions (CQs) were revised from the requirements phase and
extracted knowledge to implement the ontology. Reusing classes from mature ontologies
to develop a new ontology that models the following concepts was decided : 1) sensor data
observations, 2) sensing infrastructure, 3) location, 4) temporal aspects, and 5) units of data.

To find suitable state-of-the-art ontologies, I searched Google Scholar [105] and the
BioPortal repository [1], as well as other scholarly websites and ontology repositories, with
inclusion criteria that the publication date had to be between 2015 and 2020. Different search
terms were used to perform the search: "sensor data ontology", "semantic modelling for
sensor data", "semantic IoT data", and "IoT ontology" . The outcome of the search yielded
six ontologies that are commonly used to model sensor data, such as the Semantic Sensor
Network Ontology (SSN) [256].

Among the shortlisted ontologies is the SAREF [61] ontology that describes smart
appliances and related IoT devices and services, which may not be the most suitable ontology
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for modelling sensor data observation. Additionally, the IoT-Lite ontology [24] provides a
basic set of classes and properties for describing IoT devices, sensors, and actuators. However,
more than this may be needed for the ontology use cases, as classes are required to model the
sensor’s observation and properties rather than the sensor alone. The W3C Web of Things
(WoT) ontology2 is a flexible, modular ontology that can be changed to fit different use cases
and allow different IoT systems and domains to work together. WoT focuses on different
aspects of IoT devices and services. However, its flexibility and generality can also make
it challenging to adapt to our requirements. For example, one of the WoT classes, "Thing",
models the IoT device, the service, or the data source. In contrast, the class "Sensor" is more
suitable for modelling the sensor’s observation.

The FIESTA-IoT ontology 3, as such, models IoT-related concepts but has more entities
than needed. It borrows classes from the SSN ontology (Version 1) [52], the W3C Web of
Things (WoT) Thing Description, and the oneM2M standard4. The IoT-Semantics Ontology
is another flexible ontology that lacks sufficient documentation, making it challenging for
developers to adapt. After scouring and comparing the state-of-the-art ontologies, reusing
concepts from the SSN ontology (Version 2) [256] was decided, mainly for its modular
property. SSN ontology (Version 2) integrates three distinct ontologies. That is the SSN
ontology (Version 1), the Sensor, Observation, Sample, and Actuator (SOSA) ontology [132],
and the Quantities, Units, Dimensions, and Types (QUDT) ontology [192], qualifying it to
be the optimal choice for our use case. Further, the new ontology was named the Urban Data
Exchange Ontology (UDEO).

The sensor data observations were modelled using the SOSA ontology, which was
extracted from SSN (Version 2). The SOSA ontology is designed to be interoperable with
other Semantic Web standards like RDF, OWL, and SPARQL, making it easy to integrate
with other data sources and applications. Additionally, the SOSA ontology is continuously
maintained and updated by a community of researchers and developers, ensuring its relevance
to current IoT applications. Its modular and extensible nature allows for easy customisation to
suit specific use cases. SOSA also provides sufficient facilities to model sensing infrastructure.
For location, this work focuses on outdoor locations that are easily identified using GPS
coordinates. Temporal aspects were addressed by storing the timestamp of each observation
using the XML DateTime data type (xsd:dateTime). Whilst the incorporation of OWL-Time
into UDEO was considered, it was concluded that SPARQL’s Time function provides most
of OWL-Time’s capabilities. Consequently, OWL-Time was omitted from the ontology. For
units of data, concepts from the Quantities, Units, Dimensions, and Types Ontology (QUDT)

2https://www.w3.org/TR/wot-thing-description11/
3http://iot.ee.surrey.ac.uk/ontology/fiesta-iot.owl
4https://www.onem2m.org/
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were adopted. QUDT is part of the SSN ontology (Version 2) and provides a modular
approach to ontology development, ensuring compatibility and interoperability with other
systems using QUDT or similar ontologies.

5.3.4 Ontology Implementation

As mentioned in the analysis step, most of the UDEO classes were adopted from the SOSA
ontology as shown in Figure5.6. The conceptual ontology model, or the lightweight version,
was designed as a UML diagram in draw.io software5. The ontology diagram in 5.7 was
discussed between UDEO stakeholders before its digitisation. Each of the concepts and
relationships modelled in UDEO is listed in Table 5.2. The ontology’s digital version was
coded in the Protege ontology editor and exported it to a dedicated knowledge graph platform
[2].
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Figure 5.6 The adopted classes for the proposed Urban Data Exchange Ontology (UDEO)

Table 5.2 Proposed data model: Concepts and relationships. [Official definitions are in
Italics]

Concept Description
Observation
(OWL Class)
[sosa]

Act of carrying out an (Observation) Procedure to estimate or calculate a value
of a property of a FeatureOfInterest (e.g., Room). Observation can be seen as
a placeholder that links relevant information together. As illustrated in Figure
5.7, observation can be considered an ID for each data record in our data model.
Each raw depicts a data record.

ObservableProperty
(OWL Class)
[sosa]

An observable quality (property, characteristic) of a FeatureOfInterest. (e.g.,
temperature, humidity, presence)

5https://app.diagrams.net/
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Sensor (OWL
Class) [sosa]

Device, agent (including humans), or software (simulation) involved in, or
implementing, a Procedure. (e.g., Temperature sensor, humidity sensor, motion
sensor). In our model, a unique ID was created for each sensor based on its
hosted platform.

Platform
(OWL Class)
[sosa]

A Platform is an entity that hosts other entities, particularly Sensors, Actuators,
Samplers, and other Platforms. In UDEO, sensors are attached to different
types of platforms, as shown in Figure5.7. I do not necessarily keep track of
the exact location of the platform. However, location can be approximately
identified by using the feature of interest.

FeatureOfInterest
(OWL Class)
[sosa]

The thing whose property is being estimated or calculated in the course of an
Observation to arrive at a result, or whose property is being manipulated by an
Actuator, or which is being sampled or transformed in the act of Sampling. In
the context of UDEO, BuidlingSpaces are the FeatureOfInterest (e.g., offices,
zones, floors). Most of the sensors are used to observe a property (phenomenon)
of a location (e.g., the temperature in a room).

Result (OWL
Class) [sosa]

The Result of an Observation, Actuation, or act of Sampling. To store an
observation’s simple result value, one can use the hasSimpleResult property.
Result is a placeholder to link related information, such as values and units. The
UDEO model stores the data value and its unit type.

resultTime
(Datatype
Property)
[sosa]

The result time is the instant of time when the Observation, Actuation or Sam-
pling activity was completed. Each data record in the UDEO system comes with
a time stamp.

SpatialThing
(OWL Class)
[WGS84]

A class for representing anything with a spatial extent, i.e., size, shape or
position.

5.3.5 Ontology Evaluation

This step evaluates the ontology quality in terms of structure, semantic representation, and
interoperability. To evaluate the structure and semantic representation, the open-source online
scanner, Oops! [211] and Pellet reasoner [231] built-in to Protege were used. Following that,
SPARQL queries were executed against the knowledge graph (i.e., UDEO instantiated with
IoT datasets) to answer the Competency Questions (CQs).

5.3.6 Experimentation Plan

Our experimentation plan consists of three layers, as shown in Figure 5.18, (i) data sources,
(ii) adaptor layer; and (iii) evaluation. The aim is to simulate a data marketplace using the
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5.3 Data Marketplace Design
' According to Sanahl et al. [1], The museum is a non-profit, permanent institution in
the service of society and its development, open to the public, which acquires,
conserves, researches, communicates and exhibits the tangible and intangible
heritage of humanity and its environment for the purposes of education, study and
enjoyment'.

[{'dayOfWeek': 'Mo, Wed, Thu, Fr','closes' : '19:30','opens
'11:00'}, {'dayOfWeek': 'Sat','closes' : '21:00','opens' : '10:00'{'dayOfWeek':
'Sun', 'closes' : '15:00','opens' : '10:00'}]

[['250', 40], ['315',40], ['400', 40], ['500',40],['630',40],['800',40],['1000',40],
['1250',40], ['1600',40],['2000',40],['2500',40],['3150',40], ['4000', 40],

['8000',40],['10000',40]]
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Figure 5.7 The proposed Urban Data Exchange Ontology (UDEO) instantiated with six
different sensors’ datasets

most practical solution that fits the purpose.

• Data Sources: UDEO was expanded to accommodate six data sources: docking
stations, air quality, noise level, parking status, museums, and beaches. Further,
synthetic datasets were generated for each data source that adhered to the FIWARE
data model structure.

• Adaptor Layer: six datasets were mapped into the Resource Description Framework
(RDF) graph - referencing UDEO.

• Evaluation Layer: the data were stored from the adaptive layer in triple-store databases
under three different architectures and evaluated each one’s performance.

SynchroniCity IoT Data Marketplace receives data as JSON files (modeled using FI-
WARE standards) from data owners/publishers. SynchroniCity IoT Data Marketplace cur-
rently has a limited amount of data. It was not sufficient for us to conduct an experiment to
uncover the utility of Semantic Web technologies and their impact on computing infrastruc-
ture. Therefore, an algorithm was developed to produce the required number of synthetic
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Figure 5.8 Experimental Setup

sensor data observations in JSON format (depending on the specific experiment). Then
I transformed JSON data into Resource Description Framework (RDF) graph and loaded
graph data into a triple-store database. This meant our algorithm could run and update
concurrently or partially by modules. For example, the user may run the algorithm’s first
part to generate JSON data and then transform the output JSON file into RDF using the
second part as an independent code. Our experience found that running the algorithm in
stages consumed less time when generating many data observations (e.g., 1000K+). Code
Snippet 1 explains the technique used. The UDEO and datasets were connected to create a
knowledge graph. Stardog was employed [2], a knowledge graph platform that integrates
heterogeneous and isolated data sources. Stardog hosts the triple-store databases and has
an IDE (Stardog Studio) capable of performing numerous operations, including SPARQL,
GraphQL, artificial intelligence, and machine learning. Complex SPARQL queries were
written to test the efficiency of retrieving information and inferring new phenomena. Further
details are in the evaluation section.

5.4 Evaluation

The characteristics exhibited in Figure 2 (d), such as sunny days and weekdays, have been
modeled using SWRL rules. To illustrate the assessment, the rule were inserted into the
database. A query was executed that conveyed, for instance, the condition of a sunny day,
assuming a decrease in bike availability. To evaluate the knowledge graph’s performance
in terms of utility and response time, I evaluated it using three different architectures, each
of which differs in how it stores and queries data. In the first instance, Code Snippet 2 was
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5.4 Evaluation

Code Snippet 2: Data Generate, Transform and Load
Part 1– Generate
Function GenerateModel():

Function GenerateId(size, chars+ string):
return join (chars for i in range(size));
model = DataModel(Id ,type);
n = name ;
v = value ;
model.add(n,v) ;

return model ;

x = observation number (integer only) ;
for i in range(x) do

data= GenerateModel();
JSON.dump(data);

end for;
Part 2 –Transform ;
Data = ReadJSON(data) ;
for i, r in Data: do

RDFData=Graph.add(subject,property,object);
Graph.serialise(RDFData, f ormat=turtle);

end for;
Part 3 – Load ;
StardogConnection=(endpoint,username,password);
DatabaseName = NewDatabase(RDFData) ;
connection = ConnectStardog(RDFData, StardogConnection);
connection.add(RDFData, f ormat=turtle);
connection.commit
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used to generate three incremental series of synthetic datasets. The number of generated
observations was equal for each one. However, the volume varied when serialised into RDF
graphs. Table 5.3 shows the kilobyte (KB) size for the generated RDF graphs. Furthermore,
Figure 5.9 compares the volume of each data model. It was evident that the Noise Level
dataset with more than 1K triples is the largest. That is due to the increased amount of metrics
(e.g., CO, NOx) in a single observation compared to other data sources. The objective is to
estimate how much data can be stored on a disk for each data model. It helps to understand
how much data storage is required for a given use case, depending on the frequency of the
observations captured and the number of metrics modeled within each observation. The
data stores were interrogated to answer Competency Questions (CQs) such as where can
I park and ride?. We developed complex SPARQL queries and executed them across the
databases in question. Then, Semantic Web Rule Language (SWRL) was inserted into the
databases and reran the queries. Each approach was assessed by checking the correctness of
each query’s result (i.e., the answer to the competency question) and comparing response
time on databases with and without SWRL. SPARQL query response time is critical because
it directly impacts the usability and performance of applications relying on semantic data.
Response time is critical as it directly impacts the completeness and consistency of query
responses. Incomplete or incorrect queries may fail to produce results, and query outputs
must be manually checked and verified to ensure accuracy. Moreover, when queries take too
long—especially in large ontologies or complex scenarios—it can degrade user experience,
hinder real-time decision-making, and reduce the system’s overall efficiency. Subsequently, I
reflected on the impact of complex queries and reasoning processes on data, highlighting
some strengths and weaknesses. Furthermore, the collected data were analysed to compare
the results and determine if response time is faster after inserting SWRL rules. In other words,
to examine if reasoning and setup reduce the query response time. Finally, key findings
suggested the most suitable approach for the data marketplace. The accumulated response
time observations were analysed with the following steps to detect the difference between the
two groups: (i) line graph to visualise and compare the data. (ii) testing the data distribution
with the Shapiro-Wilk normality test to determine the appropriate statistical test for detecting
the difference between two groups (i.e., parametric or non-parametric). Here, the histograms
and test p-value suggested that the observations were not found to be not normally distributed.
Accordingly, non-parametric tests were conducted. (iii) using Kruskal-Wallis to check if
the two groups of observations (No-rule-SWRL) are related (i.e., sampled from the same
distribution). (iV) finally, Mann-Whitney, the statistical test proved if there is a significant
difference between the two groups. In other words, to examine if SWRL increased or reduced
the query efficiency and response time.

124



5.4 Evaluation

Therefore, the claimed hypotheses can be formulated as:

Hypothesis 1 (H0). SWRL reduces query response

Hypothesis 2 (H1). SWRL does not reduce query response time.

The significance level of
α = 0.05

We retain the null hypothesis if the p-value is greater than the significance level.

Data Model 1K 10K 100K
Air Quality 90 903 9023
Beaches 108 859 8580
Docking Sta-
tions

119 1188 11877

Museums 153 1215 12141
Noise Level 135 1347 13471
Parking Status 99 918 9180

Table 5.3 Data Model
RDF Graph Size (KB)

Figure 5.9 Comparison between Data Model
Sizes(KB)

5.4.1 Rule-based Reasoning

In the context of the Semantic Web in general and RDF graphs in particular, reasoning, also
referred to as inferencing, derives a new phenomenon from a given dataset based on named
axioms, applicable rules, and definitions in the data model. Reasoning rules are declarative
and represent proven knowledge or concepts modelled by experts. Rule-based inferring uses
conditional IF-Then entailment rules. The logical consequences in the IF clause are inferred
in the statement of Then. For example, outdoor activities are busier than usual on sunny
days. Reasoning can reshape and align data, creating new views of data and connections.
More importantly, it validates domain modelling and detects violations. One of the features
is the reasoning at query time. Besides the excellent performance, it allows users to specify
the type and pay only for its reasoning usage. Reasoning can be enabled or disabled via
a simple boolean command. When enabled, rules or axioms are triggered, and reasoning
executes according to its value in the database. In this case study, a rule that assumes low
rental bike availability during sunny days was created. This assumption was sketched to
prove a concept that may not reflect objective reality. As discussed in the coming sections,
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the sunny days rule is injected into our database and used to evaluate its performance in three
different scenarios.

5.4.2 Evaluation One

The first experiment loaded all six datasets and our ontology (UDEO) into a single database.
SPARQL query scripts were executed at Code Snippet 5.3 and 5.4 a hundred times consecu-
tively and respectively. The queries yield vacant car parking spots and available bikes near a
geographical location. The time taken by each script was recorded in milliseconds (ms). The
experiment was repeated after inserting SWRL, which could infer a sunny day. The SPARQL
queries were executed 100 times before and after reasoning (i.e., inserting SWRL). Figures
5.10 and 5.11 show the query responses for each query type (i.e., No-rule and SWRl), and the
histograms in Figures 5.12 and 5.13 unveil the data distribution. The obtained p-values from
Shapiro-Wilk, Kruskal-Wallis and Mann Whitney, as listed in Table 5.25, were far below the
significance level of 0.05. Therefore, we reject the null hypothesis and conclude that SWRL
does not reduce response time in this query setup.

Listing 5.1: SunnyDays
Rule

P r e f i x r u l e : < t a g : s t a r d o g : a p i : r u l e : >
[ ] a r u l e : SPARQLRule ;
r u l e : c o n t e n t " " "
PREFIX f i w a r e :
< h t t p s : / / u r i . f i w a r e . o rg / ns / da t a −models #>
IF

{? i d a f i w a r e : B i k e H i r e D o c k i n g S t a t i o n ;
f i w a r e : Ava i l ab leBikeNumber ;
? Avia lab leBikeNumber ;

BIND( xsd : i n t e g e r ( Avia lab leBikeNumber ) <5
AS ? SunnyDays ) }
THEN

{? i d f i w a r e : SunnyDays ? SunnyDays } " " " .

Listing 5.2: PREFIXES for"Where

can I park my car and ride a bicycle?"

PREFIX f i w a r e : / / < h t t p s : / / u r i . f i w a r e . o rg / ns / da t a −models #>
PREFIX n g s i : < h t t p s : / / u r i . e t s i . o rg / ngs i − l d / >

PREFIX r d f : < h t t p : / / www. w3 . org / 1 9 9 9 / 0 2 / 2 2 − r d f − syn t ax −ns #>
PREFIX schema : < h t t p s : / / schema . o rg / >

PREFIX s o s a : < h t t p : / / www. w3 . org / ns / s o s a / >
PREFIX pos : < h t t p : / / www. w3 . org / 2 0 0 3 / 0 1 / geo / wgs84_pos #>
PREFIX geo f : < h t t p : / / www. o p e n g i s . n e t / d e f / f u n c t i o n / g e o s p a r q l >

PREFIX u n i t : < h t t p : / / qud t . o rg / vocab / u n i t #>
PREFIX xsd : < h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#>
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Figure 5.10 Evaluation 1 visualisation Figure 5.11 Evaluation 1 boxplot

Figure 5.12 Evaluation 1 No-Rule distri-
bution plot

Figure 5.13 Evaluation 1 SWRL distribu-
tion plot

Listing 5.3: Evaluation
One NoRule Result Re-
sponse Time = 237 ms

S e l e c t *
{? i d a
f i w a r e : P a r k i n g S p o t ;

f i w a r e : c a t e g o r y ? c a t e g o r y ;
f i w a r e : d a t a P r o v i d e r ? d a t a P r o v i d e r ;
n g s i : s t a t u s ? s t a t u s ;
n g s i : l o c a t i o n ? l o c a t i o n ;
n g s i : p a r k i n g P o i n t ? P a r k i n g P o i n t .

? i d 2 a
f i w a r e : b i k e H i r e D o c k i n g S t a t i o n ;

f i w a r e : a v a i l a b l e B i k e N u m b e r ? a v a i l a b l e B i k e N u m b e r ;

schema : a d d r e s s ? a d d r e s s ;
n g s i : s t a t u s ? B i k e s t a t u s .

s o s a : P o i n t I D a pos : P o i n t ;
pos : SOSAPoint

? SOSAPoint .
BIND ( geo f : d i s t a n c e

( ? P a r k i n g P o i n t , ? SOSAPoint , u n i t : K i l o m e t e r )
a s ? D i s t a n c e ) .

FILTER ( xsd : i n t e g e r ( ? D i s t a n c e < 5 0 0 ) )
FILTER (REGEX( ? B i k e s t a t u s , " f r e e " ) )
FILTER (REGEX( ? ava i l ab l eB ikeNumber , " 1 " ) )
FILTER (REGEX( ? c a t e g o r y , " o f f s t r e e t " ) ) . } }
LIMIT 1

Listing 5.4: Evaluation One-
SWRL-Result Response Time=
571 ms

S e l e c t *
{? i d a f i w a r e : P a r k i n g S p o t ;

f i w a r e : c a t e g o r y ? c a t e g o r y ;
f i w a r e : d a t a P r o v i d e r ? d a t a P r o v i d e r ;
n g s i : s t a t u s ? s t a t u s ;
n g s i : l o c a t i o n ? l o c a t i o n ;
n g s i : p a r k i n g P o i n t ? P a r k i n g P o i n t .

? i d 2 a f i w a r e : b i k e H i r e D o c k i n g S t a t i o n ;
f i w a r e : a v a i l a b l e B i k e N u m b e r ? a v a i l a b l e B i k e N u m b e r ;
schema : a d d r e s s ? a d d r e s s ;
n g s i : s t a t u s ? B i k e s t a t u s ;
f i w a r e : sunnyDays ? SunnyDays .

s o s a : P o i n t I D a pos : P o i n t ;
pos : sOSAPoint

? SOSAPoint .
BIND ( geo f : d i s t a n c e

( ? P a r k i n g P o i n t , ? SOSAPoint , u n i t : K i l o m e t e r )
a s ? D i s t a n c e ) .

FILTER ( xsd : i n t e g e r ( ? D i s t a n c e < 5 0 0 ) )
FILTER (REGEX( ? B i k e s t a t u s , " f r e e " ) )
FILTER (REGEX( ? ava i l ab l eB ikeNumber , " 1 " ) )
FILTER (REGEX( ? c a t e g o r y , " o f f s t r e e t " ) ) . } }
LIMIT 1
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Listing 5.5: Evaluation Two
NoRule Result Response Time=
32 ms

SELECT *
{SERVICE <db : / / B i k e H i r e D o c k i n g S t a t i o n 1 0 0 k >

{? i d a
f i w a r e : B i k e H i r e D o c k i n g S t a t i o n ;

f i w a r e : a v a i l a b l e B i k e N u m b e r ? a v a i l a b l e B i k e N u m b e r ;
schema : a d d r e s s ? a d d r e s s ;
n g s i : s t a t u s ? B i k e s t a t u s . }

{SERVICE <db : / / Pa rk ing >
{? i d 2 a f i w a r e : P a r k i n g S p o t ;

f i w a r e : c a t e g o r y ? c a t e g o r y ;
f i w a r e : d a t a P r o v i d e r ? d a t a P r o v i d e r ;
n g s i : s t a t u s ? s t a t u s ;
n g s i : l o c a t i o n ? l o c a t i o n ;
n g s i : P a r k i n g P o i n t ? P a r k i n g P o i n t .

s o s a : P o i n t I D a pos : P o i n t ;
pos : SOSAPoint ? SOSAPoint .
BIND ( geo f : d i s t a n c e

( ? SOSAPoint , ? P a r k i n g P o i n t , u n i t : K i l o m e t e r )
a s ? D i s t a n c e ) .

FILTER ( xsd : i n t e g e r ( ? D i s t a n c e < 2 9 0 ) )
FILTER (REGEX( ? B i k e s t a t u s , " f r e e " ) )
FILTER (REGEX( ? ava i l ab l eB ikeNumber , " 1 " ) )
FILTER (REGEX( ? c a t e g o r y , " o f f s t r e e t " ) ) . } } }
LIMIT 1

Listing 5.6: Evaluation Two-
SWRL Result Response Time=
47 ms

SELECT *
{SERVICE <db : / / Pa rk ing >
{? i d 2 a

f i w a r e : P a r k i n g S p o t ;
f i w a r e : c a t e g o r y ? c a t e g o r y ;
f i w a r e : d a t a P r o v i d e r ? d a t a P r o v i d e r ;
n g s i : s t a t u s ? s t a t u s ;
n g s i : l o c a t i o n ? l o c a t i o n . }
# n g s i : P a r k i n g P o i n t ? P a r k i n g P o i n t .

{? i d a f i w a r e : B i k e H i r e D o c k i n g S t a t i o n ;
f i w a r e : a v a i l a b l e B i k e N u m b e r ? a v a i l a b l e B i k e N u m b e r ;
f i w a r e : Ava i l ab leBikeNumber ? Avia lableBikeNumbe ;
schema : a d d r e s s ? a d d r e s s ;
n g s i : s t a t u s ? B i k e s t a t u s ;
f i w a r e : SunnyDays

? SunnyDays .
s o s a : P o i n t I D a pos : P o i n t ;
pos : SOSAPoint ? SOSAPoint .
# BIND ( g e o f : d i s t a n c e
#? SOSAPoint , ? P a r k i n g P o i n t , u n i t : K i l o m e t e r )
# as ? D i s t a n c e ) . }
# FILTER ( xsd : i n t e g e r (? D i s t a n c e < 2 9 0 ) )
FILTER (REGEX( ? B i k e s t a t u s , " f r e e " ) )
FILTER (REGEX( ? ava i l ab l eB ikeNumber , " 1 " ) } }
LIMIT 1

5.4.3 Evaluation Two

The second experiment stored each dataset with the UDEO locally but in separate databases
using the same Stardog instance. Here, the SPARQL federation answered the competency
question. For instance, the query targeted the data source internally by using the SERVICE
keyword with the URI typed as db://database instead of the SPARQL endpoint URL. For
further analysis, the SPARQL queries were executed shown in the Code Snippet 5.5 and 5.6
hundred times, with and without SWRL-recording observations.

In the same manner, the line plot in Figure 5.14 and the box plot in Figure 5.15 compared
the two variables. whilst the histograms in Figures 5.16 and 5.17 suggest that the observations
do not follow the normal distribution. Noticeably, this setup (locally separated databases)
has a quicker response time than the unified database in evaluation one. Similar to evaluation
one 5.4.2, the p-values from Shapiro-Wilk, Kruskal-Wallis and Mann-Whitney, as listed
in Table 5.25, were less than the significance level of 0.05. Once again, we reject the null
hypothesis and recommend that injecting SWRL into the internally distributed databases
does not accelerate response time.
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Figure 5.14 Evaluation 2 visualisation Figure 5.15 Evaluation 2 boxplot

Figure 5.16 Evaluation 2 No-Rule distri-
bution plot

Figure 5.17 Evaluation 2 SWRL distribu-
tion plot
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5.4.4 Evaluation Three

In the last experiment, each database was stored on a separate computer node under different
Stardog instances. Every machine acted as an independent data provider. Federated SPARQL
queries were executed, as illustrated in Code Snippet 5.7 and 5.8 to answer our competency
question from the desired database without moving or copying data. This time, the query
targeted a SPARQL endpoint on a remote machine. Therefore, an IP address was required
along with the port number to reference the SERVICE Keyword. Nevertheless, HTTP
authentication was also necessary to access the reference SPARQL endpoint. It can be
achieved by disabling Stardog security on startup or storing password credentials in the
Stardog directory. The same query for all other evaluations was executed concurrently,
in the same manner, with and without SWRL. The line plot in Figure 5.19 and the box
plot in Figure 5.20 compared the two variables. whilst the histograms in Figures 5.21 and
5.22 suggest that the observations do not follow the normal distribution. Astonishingly, the
average response time with SWRL was faster than no-rule. Accordingly, we retain the null
hypothesis and conclude that SWRL reduces the query response time in the decentralised
data storage manner.

Listing 5.7: Evaluation Three
NoRule Result Response Time =
99 ms

SELECT *
{SERVICE < h t t p : / / 1 9 2 . 1 6 8 . 0 . 1 2 8 : 5 8 2 0 / P a r k i n g / query >

{? i d 2 a f i w a r e : P a r k i n g S p o t ;
f i w a r e : c a t e g o r y ? c a t e g o r y ;
f i w a r e : d a t a P r o v i d e r ? d a t a P r o v i d e r ;
n g s i : s t a t u s ? s t a t u s ;
n g s i : l o c a t i o n ? l o c a t i o n . }

{SERVICE < h t t p : / / 1 9 2 . 1 6 8 . 0 . 1 2 8 : 5 8 2 0 / Bike / query >

{? i d a f i w a r e : B i k e H i r e D o c k i n g S t a t i o n ;
f i w a r e : a v a i l a b l e B i k e N u m b e r ? a v a i l a b l e B i k e N u m b e r ;
f i w a r e : Ava i l ab leBikeNumber ? Avia lab leBikeNumber ;
schema : a d d r e s s ? a d d r e s s ;
n g s i : s t a t u s ? B i k e s t a t u s ; } }

LIMIT 1

Listing 5.8: Evaluation Three
SWRL Result Response Time =
86 ms

SELECT *
{SERVICE < h t t p : / / 1 9 2 . 1 6 8 . 0 . 1 2 8 : 5 8 2 0 / P a r k i n g / query >
{? i d 2 a f i w a r e : P a r k i n g S p o t ;

f i w a r e : c a t e g o r y ? c a t e g o r y ;
f i w a r e : d a t a P r o v i d e r ? d a t a P r o v i d e r ;
n g s i : s t a t u s ? s t a t u s ;
n g s i : l o c a t i o n ? l o c a t i o n . }

{? i d a f i w a r e : B i k e H i r e D o c k i n g S t a t i o n ;
f i w a r e : a v a i l a b l e B i k e N u m b e r ? a v a i l a b l e B i k e N u m b e r ;
f i w a r e : Ava i l ab leBikeNumber ? Avia lab leBikeNumber ;
schema : a d d r e s s ? a d d r e s s ;
n g s i : s t a t u s ? B i k e s t a t u s ;
f i w a r e : SunnyDays ? SunnyDays . } }

LIMIT 1

5.4.5 Results

Data aggregated (n=100) for each evaluation was fed to a Python code for visualisation,
exploration, and statistical testing. Figure 5.23 are line graphs that visualise the flow of each
trail. Querying the database after inserting SWRL took more time than querying the database
without a rule. A descriptive analysis was performed to understand the data. Then, Shapiro-
Wilk, Kruskal-Wallis, and Mann-Whitney statistical tests were used to check the distribution
of the samples and detect and compare differences between the two independent samples
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Figure 5.18 Evaluation Three Setup, A to E represent the different data providers’ machines.
Data providers may store their data on edge using mini pcs or dedicated computers. Here,
the user/developer places a request. It gets verified by the validation engine and passed to the
meta organiser that knows the data provider that has the requested information.

Figure 5.19 Evaluation 3 visualisation Figure 5.20 Evaluation 3 boxplot

Figure 5.21 Evaluation 3 No-Rule distri-
bution plot

Figure 5.22 Evaluation 3 SWRL distribu-
tion plot

(no-rule/SWRL) for each experiment, respectively. Descriptive Analysis in Figures 5.24
explored the datasets to help understand the data content and characteristics. For example,
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(a) (b) (c)

Figure 5.23 Compare the three evaluations of query response time (ms), with and without
reasoning rules inserted. (a) Evaluation One (all datasets and the ontology are stored in
a single database). (b) Evaluation Two (each dataset and ontology are stored locally in
separate databases). (c) Evaluation Three (each dataset and ontology stored remotely with
autonomous data providers)

the line graphs for evaluation one indicated a considerable difference between query time
responses for the dataset with and without SWRL. Unlike evaluation two, where the gap
narrowed dramatically, it was surprising that querying with SWRL was slightly faster in
evaluation 3. This result could be due to the distribution of the datasets over disparate nodes
and the remote access, which distinguished evaluation three from the others. The mini-PC
nodes that hosted the datasets had relatively small disk spaces ranging from 32GB to 128
GB and no less than 8GB of RAM. Noticeably, the number of observations was equal in all
three experiments, the mean fluctuated between approximately 34.45 and 519.13, and the
standard deviation was at its lowest point of 3.78 in evaluation two. To further discover the
data distribution, the histograms and Shapiro-Wilk decided the most appropriate statistical
tests. It was clear from the histograms that the data in the three evaluation datasets did
not resemble bell curves. Shapiro-Wilk test confirmed the non-normality further through
the p-values (<0.05). Therefore, we rejected H0 with a 95 percent confidence interval and
concluded that all datasets do not follow the normal distribution. Kruskal-Wallis test was
the non-parametric test that suited our data distribution. It suggested that the two samples
(no-rule/SWRL) for each experiment came from different distributions with p-values of less
than 0.05. Figure 5.25 explained in detail the hypotheses result of the evaluations based
on their p-values, and the final test, Mann-Whitney, was used to determine if the response
time was different after inserting SWRL. The result also suggested a significant difference
between the samples of each experiment (no-rule/SWRL). Furthermore, the average query
response time (in milliseconds) for the three evaluations is presented in Figure 5.26.

132



5.4 Evaluation

(a) (b) (c)

Figure 5.24 Descriptive analysis for the three evaluations of query response time (ms)—with
and without reasoning rules inserted. Tables explore the datasets’ nature and summarise their
contents.

No Rule Result SWRL Result No Rule /SWRL Result No Rule /SWRL Result

One 4.70508E-08 Reject H0 5.02E-06 Reject H0 0.000 Reject H0 0.000 Reject H0

Two 3.52513E-08 Reject H0 0.0006118 Reject H0 0.000 Reject H0 0.000 Reject H0

Three 4.14385E-05 Reject H0 4.94E-07 Reject H0 0.000 Reject H0 0.000 Reject H0

P-value = 0.05

Ev
al

ua
ti

on
s

Shapiro-Wilk                                                                                                               

H0 : Data follow a normal distribution.

H1 : Data do not follow a normal distribution.

Kruskal-Wallis                                                                        

H0  :Two samples are related

   H1 :Two samples are not related

Mann Whitney                                                           

H0 : Sample distributions are equal

   H1 :Sample distributions are not equal

Figure 5.25 Evaluation Statistical Analysis

No Rule SWRL

One 107.4 519.13 411.73 383 ↑
Two 34.45 45 10.55 31 ↑

Three 130.04 105.68 -24.36 -19 ↓

Average Query Time (ms) 
 SPARQL Query

Difference %
Evalu

atio
ns

Figure 5.26 Evaluations query average time comparison

5.4.6 Cost of Adapting Linked Data

The feasibility of linking distant, semantically modeled data sources and reasoning over
them using SWRL has been established. It facilitates quick access to diverse data sources.
Therefore, data owners can retain and manage their data whilst sharing only their metadata
with the IoT data marketplace. The results indicate that semantic data sources efficiently
send small packets through the communication network. For instance, when reasoning is
performed, the query response time decreases. However, the information overhead and
implementation cost must be evaluated before system deployment.
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• Typically, information overhead stems from the data structure, runtime, and data
exchange. In our methodology, the semantic data sources are database engines whose
data are represented in RDF and queried via their SPARQL endpoints. The most
significant expense is the creation of an ontology for each data source, as query
resolution necessitates a complete merging ontology. Here, ontologies are created by
a large consortium of academics and industry professionals [132? ]. Occasionally,
different consortiums may have differing views on the data type, making it difficult to
model the data in a single format. Simultaneously, Semantic Web technologies enable
the merging and reasoning over ontologies, allowing different classes, for instance, to
be defined as equivalent.

• Costs associated with the system implementation may be related to the need for
dedicated computers for data storage and retrieval. As depicted in Figure 5.18, These
computers had between 8GB and 16GB of RAM, and the smallest solid-state disc (SSD)
capable of storing the relevant data source was 60GB in size. Table 5.3 illustrates how
much RDF-formatted data can be stored on a single storage disc. For example, an air
quality sensor that generates one observation per minute would require approximately
one KB of storage space on a disc for 90 observations. Thus, the data provider can
determine the amount of information stored on a 60GB SSD. As mentioned, calculating
the overhead could determine the total cost before implementation. Although using
inexpensive computing devices contributes to the efficiency of this system, the cost
may be increased by the labour time of human resources.

5.4.7 Use Cases

Our proposed on-demand data model is applicable in various industries. It offers practical and
cost-effective solutions for SMEs. Businesses can build various innovative services enriched
with machine learning and AI that respond to end-users personally. In comparison, legacy
data trading constrained businesses to acquire bulky datasets that may incur more charges
and require high maintenance. (i.e., filtering to process relevant data records). This study’s
hypothetical use cases concern the tourism and housing industries. The former is a small
company that enables consumers to browse and book trips to local attractions, promoting
sustainable travel. The latter is a state agency recommending properties with considerably
clean air features (i.e., properties in less polluted and quiet areas).
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Use Case 1

TripRecomender is a small business that enables end-users to plan green trips to local
attractions. It predominantly aims for high-rated customer satisfaction by leveraging AI’s
self-learning competencies. The company adopted the online chat application, called bots
or chatbots. An intelligent program relies on actual data to carry out a specific task. Here,
TripRecommender is planning to train its chatbot to search for and suggest local tourist
destinations and sustainable travel solutions, increasing customer satisfaction and boosting
the company’s revenue. Well-trained bots can reduce the time and effort spent on monotonous
trip planning. TripRecommender considers users’ requests and suggests tailored options
based on previously known information. The company’s chatbot requires sufficient relevant
data to analyse and turn into meaningful information to accomplish this task. Relevant
data records may exist in separate data sources, making aggregating challenging. With our
on-demand data model, TripRecommender can query and retrieve granular data records that
are fit to train the bot. (e.g., ten years of data for either the local beaches occupation rate or
the availability of rental bikes on weekends at the local docking stations). Subsequently, it
recommends customised offers and infers new events. For example, the SPARQL query in
Code Snippet 5.9 expresses how our model retrieves certain weekend information about (i)
a local beach’s name, services, and occupancy rate, (ii) a museum’s opening hours, and (iii)
an available rental bike location.

Listing 5.9: Use Case 1 - TripRecommender

PREFIX : < h t t p : / / a p i . s t a r d o g . com/ >
PREFIX s t a r d o g : < t a g : s t a r d o g : a p i : >
PREFIX schema : < h t t p s : / / schema . o rg / >
PREFIX r d f : < h t t p : / / www. w3 . org / 1 9 9 9 / 0 2 / 2 2 − r d f − syn t ax −ns #>
PREFIX ngs i − l d : < h t t p s : / / u r i . e t s i . o rg / ngs i − l d / d e f a u l t − c o n t e x t / >
PREFIX f i w a r e : < h t t p s : / / u r i . f i w a r e . o rg / ns / da t a −models #>
PREFIX n g s i : < h t t p s : / / u r i . e t s i . o rg / ngs i − l d / >
SELECT *

{? i d a f i w a r e : Beach ;
n g s i : name ?Name ;
f i w a r e : f a c i l i t i e s ? F a c i l i t i e s ;
f i w a r e : o c c u p a t i o n R a t e ? O c c u p a t i o n R a t e ;
f i w a r e : Weekends ? Weekends .

{SERVICE < h t t p : / / 1 9 2 . 1 6 8 . 0 . 7 8 : 5 8 2 0 / Museum / query >
{? i d 2 a f i w a r e : Museum ;
f i w a r e : o p e n i n g H o u r s S p e c i f i c a t i o n ? OpeningHours .

{SERVICE < h t t p : / / 1 9 2 . 1 6 8 . 0 . 1 2 8 : 5 8 2 0 / Bike / query >
{? i d 3 a f i w a r e : B i k e H i r e D o c k i n g S t a t i o n ;
f i w a r e : a v a i l a b l e B i k e N u m b e r ? a v a i l a b l e B i k e N u m b e r ;
schema : a d d r e s s ? a d d r e s s ;
n g s i : s t a t u s ? B i k e s t a t u s . }}}}}
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Use Case 2

CleanAir Housing is a medium-sized business that sells and rents out residential properties.
Recently, the company noticed a staleness and price drop for properties in highly polluted
areas based on its sales records. Conversely, homes in quiet and less polluted areas will
most likely sell in a year. Air pollution could negatively impact health. It happens when
particular gases and liquid particles are released into the atmosphere, forming PM2.5 and
PM10 particles and elevating levels of carbon monoxide (CO) and nitrogen dioxide (NO2)
pollutants above the clean air legal limit. Sources of these toxic gases include vehicle exhaust,
factories, and domestic combustion. Measuring the Air Quality Index (AQI) can assess the
air quality in areas of interest. As a result, CleanAir Housing decided to integrate AI-powered
services to (i) predict sales forecasts based on historical data and air pollution levels, (ii)
recommend the optimal price to match the expected value, and (iii) hunt for local fast-selling
homes. Several environmental data records are needed to calculate air quality and noise levels.
Traditional ways to acquire such data are by deploying thousands of sensors or purchasing
bulky ecological datasets. Both options demand time and funds. Hence, further data mining,
processing, and analysis are required to extract valuable insights. Integrating our on-demand
data model enables the filtering and extraction of the needed metrics from multiple datasets,
forming search data that are fit to train the company’s AI. For instance, the SPARQL query
script in Code Snippet 5.10 combined metrics from air quality and noise level datasets to
filter out the addresses in areas with low noise levels and good AQI.
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Listing 5.10: Use Case 2 - CleanAir Housing

SELECT*
{SERVICE < h t t p : / / 1 9 2 . 1 6 8 . 0 . 1 2 8 : 5 8 2 0 / A i r Q u a l i t y / query > ;

{? i d a f i w a r e : A i r Q u a l i t y O b s e r v e d ;
schema : a d d r e s s ? a d d r e s s ;
f i w a r e : d a t e O b s e r v e d ? d a t e ;
f i w a r e : P r e c i p i t a t i o n ? P r e c i p i t a t i o n ;
f i w a r e : R e l i a b i l i t y ? R e l i a b i l i t y ;
f i w a r e : W i n d D i r e c t i o n ? W i n d D i r e c t i o n ;
f i w a r e : A i r Q u a l i t y I n d e x ? A i r Q u a l i t y I n d e x ;
ngs i − l d : Co ?Co ;
ngs i − l d : CO_Level ? CO_Level ;
ngs i − l d : No?No ;
ngs i − l d : Nox ?Nox ;
ngs i − l d : No2 ?No2 ;
ngs i − l d : So2 ? So2 .

{SERVICE < h t t p : / / 1 9 2 . 1 6 8 . 0 . 7 8 : 5 8 2 0 / Noise / query >
? i d 2 a f i w a r e : No i seLeve lObse rved ;

f i w a r e : DateObservedFrom ? DateObservedFrom ;
f i w a r e : DateObservedTo ? DateObservedTo ;
f i w a r e : f r e q u e n c i e s ? f r e q u e n c i e s ;
f i w a r e : D a t a P r o v i d e r ? D a t a P r o v i d e r ;
n g s i : l o c a t i o n ? l o c a t i o n ;
ngs i − l d : lAeq_d ? lAeq_d ;
ngs i − l d : lAmax ? lAmax .
FILTER ( xsd : f l o a t ( ? lAmax ) > 0 . 7 2 )
FILTER (REGEX( ? a d d r e s s , "A" ) )
FILTER (REGEX( ? CO_Level , "Low" ) )
FILTER ( xsd : i n t e g e r ( ? A i r Q u a l i t y I n d e x ) < 100)
FILTER ( xsd : i n t e g e r ( ? Nox ) < 100)}}}

Limi t10

5.5 Discussion

SynchroniCity data marketplace sells sensor data in bulk. Consumers interested in specific
observations from different sensors (e.g., air quality and noise level) must purchase each
sensor’s dataset separately. Such a practice may incur more charges and cause a high-
latency network. Our study extended SynchroniCity data marketplace with Semantic Web
technologies to allow consumers to pay for the sensor’s information they need - instead of
buying the entire dataset. Consumers can acquire multiple observations from various data
providers to fulfill their orders. For example, finding nearby parking spaces and museum
opening hours on a particular date and time.

Our end-product consists of a user-friendly interface with an interactive map and a seman-
tic data model. More specifically, (i) a novel semantic model was proposed. It encompassed
an Urban Data Exchange Ontology (UDEO) and FIWARE synthetic datasets for six different
providers. (ii) three different experiments were conducted, as shown in 5.18 to determine
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the most practical modelling and storage solutions for the IoT data marketplaces. (iii) the
experiments were evaluated to demonstrate the effectiveness of the semantic modelling and
SWRL - using different SPARQL queries to answer related competency questions. The
evaluation results support the hypothesis that reasoning over distributed data sources could
be the ideal architecture for the IoT data marketplace. Evidently, in evaluation one 5.4.2,
querying after inserting rules took a long time, and the time-lapse between queries with
and without rules is relatively slow. In evaluation two 5.4.3, the query time response was
dramatically reduced compared to evaluation one. It is worth mentioning that to make SWRL
rules work, the rule was inserted independently in each database, unlike the evaluation one,
where dealing with a single database. Even when SWRL is inserted in each database, it did
not activate with the SERVICE keyword. The query line had to be executed within the rules
inserted in the database. Query line targeting rules and reasoning responded when calling the
database internally in the Stardog Studio workspace. In evaluation three 5.4.4, the requested
data can be obtained remotely via HTTP, using the host’s IP address, port, and database name.
The user query breaks into triple patterns that interrogate data sources SPARQL endpoints
for results. Figure 5.26 compared the average evaluation time between querying databases
with and without SWRL. Evaluation One showed the highest difference in query response
time among the evaluations. Unexpectedly, the average response time on SWRL databases
was lower than without rules. Therefore, valuable insights can be drawn from our semantic
model results as follows:

Semantic modelling and reasoning: Extracting explicit information from IoT Syn-
chroniCity datasets was challenging since these data lacked formal definitions for widely
shared standards. Our semantic model transformed them into queriable triplestores. The
adapter (code) mapped the data to RDF whilst referencing the UDEO. Abstract rules were
inserted into the databases to trigger reasoning such as Sunnydays and weekends. Sunny
days rule sets available rental bikes level low, assuming higher demand on such days. whilst
the weekends’ rule deduced high occupancy rates on local attractions such as beaches and
museums. Reasoning quickened query response time in experiment three by reducing the
search space whilst filtering out information adhering to the rules. SPARQL queries retrieved
granular and semantically enriched and reasoned information from different datasets, stored
locally and remotely. As a result, customised data requests can be achieved at low costs.
Interoperability: It’s suggested that experiment three’s approach is interoperable. SPARQL
allowed remote access through its endpoints, achieving seamless data sharing between differ-
ent RDF databases stored on heterogeneous machines.
Edge computing: In experiment three, the RDF datasets were distributed on separate comput-

138



5.6 Summary

ers operating independently. Executing data on these edge computers satisfied the horizontal
scaling property, provided storage capacity, allowed computational flexibility (i.e., semantic
modelling), and maintained low network latency (i.e., transmitting query results instead of
the whole dataset).

Limitations: Despite that, our semantic model slashed data price, reduced network
latency, and cut down information overload in the SynchroniCity data marketplace- yet this
approach has some drawbacks. In particular, the pricing structure, data platform security,
data quality, and safe dissemination. The pricing structure of our model allows consumers
to pay for desired information instead of an entire dataset. Although it costs less, working
out the total price of an order could be a complex task. Managing diverse data providers
with varying data tariffs, broker fees, and applicable taxes presents a significant challenge.
Each of these has independent calculations and may change over time. Therefore, offering
fixed and competitive charges is an open challenge. Therefore, it’s highly recommended to
add a self-configuring pricing model that standardises and price-marks data records across
independent stores. For example, set one reasonable price for each data record- automatically
updating to match the data market’s supply and demand, then adjust the broker fees to be a
fair percentage of the total bill. Regarding security, accessing and querying data stored in
remote machines via HTTP pose risks. Stardog offers security options such as authentication
and password encryption; so far, its default security settings are considered minimal for
network communications. Therefore, it’s recommended using the Secure Sockets Layer
(SSL) encryption when deploying Stardog in production mode. Concerning data quality,
Synthetic data used in this study are consistent with good quality, whilst real sensors data
may have errors and missing values. Hence, data quality should be carefully addressed to
replicate our real-life study. Accurate machine learning algorithms and artificial intelligence
to detect and automatically correct errors are also suggested. The information retrieved to
fulfil consumers’ requests creates new datasets. These datasets have diverse sources collected
by sensors owned by different stakeholders. Thus, publishing them may raise data ownership
and privacy concerns. A remedy could be building a tool that (i) traces the data lineage and
accurately identifies the owner. (ii) applies a GDPR-compliant privacy policy agreed upon
by all parties (data buyer, seller/owner and broker).

5.6 Summary

Data marketplaces are a new category of online marketplaces. Therefore, they are not
well-researched within the academic community or well-implemented within the industry.
SynchroniCity represents the first attempt to deliver a Single Digital City Market for Europe
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by piloting its foundations at scale in 11 reference zones - 8 European cities and 3 more
worldwide cities - connecting 34 partners from 11 countries across 4 continents. The
primary goal is to meet the data needs of consumers. Data marketplaces also emphasise
vital challenges around data acquisition. Data marketplaces incentivise owners to share the
gathered data and recover part of the acquisition costs. A fundamental issue of syntactic
data marketplaces such as SynchroniCity is that they do not selectively provide a mechanism
to buy data. It means data consumers have to buy the entire datasets that data owners offer.
FooDS’s approach enabled selective querying of annotated IoT data. This approach allowed
users to access only the data they needed, reducing costs and improving efficiency.
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Chapter 6

Conclusion

This doctoral thesis proposed a novel approach for integrating diverse wildlife data and using
these integrated data to build deep learning models that predict elephants’ geo-locations and
poaching likelihood. This research focuses on the situation of Bornean elephants in the Lower
Kinabatangan region of Sabah, Malaysian Borneo, which remains a critical concern as they
face the persistent threat of poaching, human-elephant conflict and habitat loss. Injuries to
humans and elephants sometimes occur due to conflicts near oil palm plantations. Elephants
invade the oil palm plantations, causing serious harm to humans, properties and machines.
Moreover, elephants often fall victim to snare traps set for wild boar and deer in forest areas
like the Kinabatangan floodplain. Since 2010, it’s estimated that 20% of Bornean elephants
have been injured by these snares. Recent statistics show that the population of Bornean
elephants has dropped to less than 1,500, largely owing to poaching driven by illicit ivory
trade. In Sabah, boats easily access forests; between 2010 and 2021, at least 200 elephants
died in Malaysia, with many incidents linked to poisoning near oil palm plantations. In 2013,
14 Borneo pygmy elephants were found poisoned near the Gunung Rara Forest Reserve,
close to logging camps and palm plantations. Similar cases occurred in 2018, when six
elephants were poisoned on plantations in Sabah, and in 2019, when three more were killed
near palm oil plantations. These incidents highlight the ongoing conflict between elephants
and the expansion of agricultural land, particularly for oil palm cultivation. Poaching poses
dangers to wildlife officers as well. Rangers who protect wildlife often put their life at risk
when confronting armed poachers. This research collaborated with a research and training
facility named Danau Girang Field Centre (DGFC), which is managed jointly by the Sabah
Wildlife Department and Cardiff University. DGFC was the research hub where most of the
interviews with wildlife researchers and discussion groups took place.
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6.1 Research Questions and Contributions

The overarching research question is Can a ’Linked Data Store’ be developed to answer
questions supporting wildlife research and conservation activities in the wild?

To reach an answer to the overarching research question, three sub-questions have been
asked:

Research Question 1 (RQ1) Can an effective data management approach be developed to
integrate heterogeneous wildlife data from disparate sources?

RQ1 Contribution Summary: To find an effective data management approach, thirteen
Open Data Observatories were selected, examined, and compared. Open Data Observatories
are online data platforms that integrate heterogeneous data from disparate sources. The
comparison was based on their data types, domain coverage, accessibility, and usability. Their
data management approaches were scrutinised to learn from them and find a suitable approach
to adopt in this research. The findings from the literature review guided the recommendation
to employ semantic web technologies as an effective data management approach for this
research. Semantic web technologies have the capability to link and integrate heterogeneous
data from disparate sources. Consequently, another review of the literature related to wildlife
data management was conducted, focusing on the application of semantic web technologies
in modelling wildlife data. Here, the development and advantages of using ontologies and
knowledge graphs were briefly explored, respectively. Existing studies on knowledge graphs
in predictive modelling and crime prediction were also examined and compared to this
approach alongside the advancements in wildlife crime prediction techniques.

Research Question 2 (RQ2) Can a ’Linked Data Store’ be developed to answer questions
supporting wildlife research and conservation activities?

RQ2 Contribution Summary: To address RQ2, an ontology named the Forest Observatory
Ontology (FOO) and its online documentation1 was developed to standardise wildlife data
generated by sensors. The Forest Observatory Ontology (FOO) is a novel ontology built
from data collected from wildlife research. It integrates elements from established ontolo-
gies to unify the Internet of Things (IoT) and wildlife concepts (biodiversity, conservation
biology, habitat fragmentation, and endangered species management). To break wildlife data
silos, FOO was populated or instantiated with four heterogeneous datasets transformed into
Resource Description Framework (RDF) referencing FOO to produce the Forest Observatory
Ontology Data Store (FooDS). To access and use FooDS, an interface was created to enable
authorised users to script granular (SPARQL) search queries and retrieve instant answers
to questions from integrated and remotely located datasets. RQ2 contribution provides a

1w3id.org/def/foo#
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novel (modular) approach to link, manage, and analyse wildlife data to answer questions that
support conservation and wildlife research.

Research Question 3 (RQ3) Can prediction models be developed to predict poaching
crimes by using the developed ’Linked Data Store’?

RQ3 Contribution Summary: To build the predictive too named PoachNet, granular data
were extracted from FooDS to infer poaching likelihood. PoachNet applied sequential neural
network model to predict an Asian elephant’s geo-locations. Rule-based semantic reasoning
was employed to infer poaching event based on elephant Seri’s closeness to the oil palm
plantation in Sabah forest, Malaysia. PoachNet equips conservationists with a useful tool to
predict future elephant locations and poaching likelihood.

Research Question 4 (RQ4): Can the Linked Data Store’s semantic web data management
approach be generalised to another domain for various purposes?

RQ4 Contribution Summary: To answer this research question, FooDS’s semantic web
data management approach was generalised to the IoT data marketplace. In traditional
data marketplaces, data are often sold as entire datasets. This approach can be expensive
and inefficient, as consumers may not require the entirety of the dataset but only specific
observations or subsets of the data. to address this challenge, an ontology was developed with
expert input and reuse, populated with datasets from various sensors to construct knowledge
graphs and apply reasoning. FooDS’s semantic web data management approach allowed
data consumers to acquire granular data records tailored to their needs from various data
sources or providers, instead of purchasing the entire datasets. This research experiment was
evaluated in three different marketplace setups, measuring key parameters and extracting
recommendations for future deployments.

6.2 Research Novelty

This research presents a significant advancement in semantic data integration for wildlife
by addressing gaps identified in selected Open Data Observatories and existing wildlife and
environmental data integration efforts (e.g., Global Biodiversity Information Facility (GBIF)2

and World Environment Situation Room (WESR)3 by UNEP). Whilst selected data platforms
provide services by integrating various datasets into a single platform, offering downloadable
datasets, visualisations, and analysis options, they do not allow users to query and acquire
data at a granular level from different datasets simultaneously. To the best of our knowledge,

2gbif.org
3wesr.unep.org/
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these platforms do not enable users to create on-demand data sets combining records from
multiple datasets, which are efficient and cost-effective for training AI models.

This research approach, using the Forest Observatory Ontology (FOO) populated with
heterogeneous wildlife datasets creating an ontology-based knowledge graph(s) named the
Forest Observatory Ontology Data Store (FooDS), overcomes these limitations. FooDS
enables users to query an integrated wildlife dataset published as a URL 4 and obtain data on
demand.

FOO was developed through qualitative analysis, including interviews with biologists,
ethnographic studies, and discussions with wildlife researchers. FOO was validated using
open-source tools, expert evaluations, and practical use cases with Competency Questions
(CQs) formulated as SPARQL queries. Whilst other ontologies and platforms provide
robust documentation and support, FOO’s iterative development process following the LOT
methodology ensures it meets the World Wide Web Consortium (W3C) recommendation and
the diverse needs of wildlife researchers and conservationists.

FooDS was generalised and applied to a case study in the IoT data marketplace (Chapter
5). An ontology was collaboratively developed with experts, including data scientists,
semantic web developers, and practitioners, by reusing the SOSA ontology. This ontology
was populated with six heterogeneous sensor datasets to construct knowledge graphs, and
semantic web Rule Language (SWRL) reasoning was applied to three use cases to evaluate
performance and recommend optimal data configurations for future deployments. The
findings demonstrated that SWRL can effectively assert rules within data whilst enabling
efficient data storage at the edge (close to the source) and remote access via SPARQL queries.

6.3 Future Work

This research provides a strong foundation for expanding the Forest Observatory Ontology
(FOO) to support a broad range of applications. Future work will focus on extending the
ontology, integrating AI-driven systems, and enhancing data interoperability to address
emerging challenges and opportunities in wildlife conservation.

Expanding the Ontology: FOO can be enriched with additional classes and properties
to represent diverse wildlife species and sensor types. For instance, whilst the current
ontology includes Asian elephants (Elephas maximus), it could be expanded to include
African elephants (Loxodonta africana) and forest elephants (Loxodonta cyclotis), enabling
comparative studies across species and regions. Similarly, integrating data types such as
crop data (e.g., grass, palm shoots, bananas), water sources, and deforestation metrics would

4https://w3id.org/def/fooDS
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significantly broaden its scope. Specific Competency Questions (CQs) .3, such as CQ14
(‘How did Elephant X’s movements change with climate change in 2014?’), CQ58 (‘What
locations could have snares?’), and CQ99 (‘Where are the water sources?’), highlight the
need for incorporating weather data, snare locations, and other critical metrics.

Addressing Data Gaps and Environmental Challenges: Field challenges encountered
during this research emphasised the need for reliable and protected sensor data collection.
Soil condition metrics, such as moisture and fertility, identified in CQs 61 (‘What is the
soil condition during certain times of the year?’) and 76 (‘What is the soil moisture in a
certain location?’), are essential for answering complex queries. However, interference from
wildlife—such as monkeys tampering with soil sensors and elephants damaging air quality
sensors—highlighted the importance of developing wildlife-proof sensor solutions.

Leveraging Advanced Technologies: Incorporating datasets from Light Detection and
Ranging (LiDAR), air quality, and noise/sound sensors can help address gaps caused by
unavailable or inaccessible data during this study. Integrating AI-driven systems such as
Large Language Models (LLMs) could facilitate natural language queries, making FOO
more user-friendly. Predictive recommender systems could support conservationists in
decision-making by identifying optimal interventions based on historical and real-time data.
Additionally, connecting predictive models to live data streams from GPS and other sensors
could enable real-time alert systems, helping rangers optimise patrol routes and respond
proactively to threats.

Privacy, Security, and Collaboration: Data privacy and security are crucial, particularly
for sensitive wildlife and geographic information in areas vulnerable to poaching. Future
developments should focus on implementing encryption, controlled access, and anonymi-
sation techniques to safeguard these data. Collaboration with universities, conservation
organisations, and industry will be key to encouraging widespread adoption of FOO. By
fostering community input and establishing clear processes for adding new data, classes, and
properties, FOO can remain relevant to the evolving needs of conservation.

Achieving System Interoperability: FOO has been automatically classified by BioPortal
as a view of the semantic web for Earth and Environment Technology Ontology (SWEET)
(bioportal.bioontology.org/ontologies/SWEET), aligning it with the SWEET ontology frame-
work. Integrating FOO further with platforms like the Global Biodiversity Information
Facility (GBIF) and the World Environment Situation Room (WESR) holds the potential to
enhance data sharing and aggregation significantly. This interoperability would elevate FOO
into a critical tool for global conservation efforts, fostering connections between datasets and
empowering researchers and conservationists to collaboratively tackle pressing challenges.
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6.4 Concluding Remarks

Wildlife research activities generate vast data on ecosystems and species interactions, often
collected from various independent projects. Forest Observatories are online platforms that
aggregate, curate, integrate, store, and analyse this data to support effective forest monitoring
and answer complex questions. However, integrating data from diverse sources can be
challenging due to different data formats and management systems.

A novel solution to this problem involves using knowledge graphs built on ontologies to
integrate diverse wildlife data into Forest Observatories. This thesis introduced the Forest
Observatory Ontology (FOO), created to link and standardise entities in wildlife research
data. FOO was developed through qualitative analysis, including interviews with eight
biologists, four ethnographic studies, and discussions with eleven wildlife researchers. FOO
reused classes and properties from existing ontologies (W3C recommendation) to standardise
FOO’s concepts and relationships. The ontology was populated with four semantically
modelled wildlife datasets, resulting in the Forest Observatory Ontology Data Store (FooDS)-
an ontology-based knowledge graph with over six million data triples. The structure and
usability of FOO were validated using open-source tools, expert evaluations, and practical
use cases. FOO in turtle format, FOO’s documentation and FooDS in turtle format and
their resource website are published at https://w3id.org/def/foo, https://w3id.org/def/fooDocs,
https://w3id.org/def/fooDS, and https://ontology.forest-observatory.cardiff.ac.uk

In conclusion, semantic web technologies, such as ontologies and knowledge graphs, offer
significant advantages for data scientists. These technologies enable computers to understand
and process data effectively, allowing for automated reasoning, data integration, and complex
querying. Integrating data science and advanced analytics in wildlife conservation can
revolutionise the field by enhancing predictive capabilities, optimising resource allocation,
and accurately measuring conservation efforts. Advanced models can predict poaching
incidents, optimise patrol routes, and assess conservation strategies’ effectiveness. Despite
challenges in wildlife data collection, these technologies provide cost-effective solutions
for underfunded conservation programmes, facilitating better resource distribution and
strategically deploying rangers and ground truth sensors in high-risk areas.
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.1 Appendix I: Methodology Details

Developing and testing a linked data store -Forest Observatory (Activity Plan)
Introduction
Forest Observatory is a linked data store that integrates heterogeneous data from

disparate sources and presents them in a unified manner. This project collaborates
between the School of Computer Science and the School of Biosciences (and its Danau
Girang Field Centre; DGFC) at Cardiff University. Purpose of the activity This activity
is part of a PhD project, and the purpose is to collect information from bioscience
researchers and environmental scientists to help develop the linked data store (Forest
Observatory). Proposed study structure: We aim at conducting twelve to twenty
interviews within two years. We will ask potential candidates from Danau Girange
Centre (DGFC) and Biosciences (BIOSI) at Cardiff University to participate in our study.
We will provide the nominated participant with the information sheet, demographic
survey, and consent form. We will give them five working days to read the information
sheet, ask questions about the study, and consider participation.

Once potential participants agreed and consent -unless they choose to withdraw at
any point, we will schedule online 60-minute semi-structured recorded interviews for
each one. We will use Zoom and Microsoft teams to conduct and record interviews plus
an online whiteboarding application (e.g., Miro).

Proposed questions during the interview:

• What are the types of collected data?

• How do you process the collected data?

• What are the tools and methods used to process the data?

• How do you access and interact with the data?

• What are the drawbacks of your current data system?

• What are the questions that you require your data environment to answer?

• What would the ideal data model look like for you (e.g., chronological data
catalogue,

• interactive interface with links to downloadable datasets)?
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• What is your feedback about the delivered linked data store prototype/ outcome?

We require participants to provide demographic information listed on the attached survey,
including three questions -with multiple choice answers - about their education level,
occupation, and years range of experience. We confirm that the demographic survey
provided is the complete list of questions.

Storing collected data All collected data will be stored securely through Cardiff
University’s OneDrive; we propose access to the data by: Academic staff: Professor
Omer Rana and Dr Charith Perera. Research students: Naeima Hamed and Omar Mussa.

Demographic Survey
Thank you for filling out this form.
What is your level of education?

1. Some high school

2. High school graduate or equivalent

3. Trade or Vocational Degree

4. Some college

5. Associate degree

6. Bachelor’s degree

7. Master’s degree

8. Doctorate (PhD and DPhil)

9. Prefer not to answer

What is your occupation? How many years of experience do you have?

1. 1 to 3

2. 4 to 10

3. 11 to 20

4. more than 20
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.2 Ontology Requirements Specification Document
(ORSD)

.2.1 Purpose
The Forest Observatory Ontology (FOO) aims to describe wildlife digital data generated by sensors. The
primary purpose is to backbone the Forest Observatory. That is, a linked datastore that allows unified
access to heterogeneous wildlife data and enables standardised data exchange between different computer
systems and applications.

.2.2 Scope
The Internet of Things (IoT) and wildlife make up the evolving scope of FOO. It adopts and combines
classes and properties from Sensor Observation Sample and Actuation (SOSA) and BBC Wildlife Ontology
(WO).

.2.3 Implementation Language
The Web Ontology Language (OWL2) is used to implement FOO.

.2.4 Intended End-Users
• Bioscientists.

• Wildlife Researchers.

• Computer Scientists.

• Data Scientists.

.2.5 Intended Uses
• To build linked data that offers data on-demand (i.e., granular data retrieval from disparate sources).

• For reasoning about the data of interest.

• Build Artificial Intelligence (AI) apps.

.2.6 Ontology Requirements

Functional Requirements

• FOO must include IoT elements, such as sensors.

• FOO must include wildlife concepts, such as taxon rank.
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• FOO must contain the relationship between the Internet of Things (IoT) and wildlife concepts.

• 106 curated Competency Questions (CQs),

• 10 Natural Language Statements (NLSs), see table 1.

Non-Functional Requirements

• FOO must be scalable to accommodate increasing amounts of wildlife and IoT data.

• FOO should be interoperable with existing wildlife data standards and systems.

• FOO The ontology must perform efficiently when reasoning over large datasets.

.3 Competency Questions and their formulated SPARQL
Queries

CQ 01: Where does Elephant Jasmine forage?

# Let the date be 2011-11-13

PREFIX geo:<http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo:<https://w3id.org/def/foo#>

SELECT * {

?observation a foo:gPSObservation ;

foo:localDate "2011-11-13"^^xsd:date ;

geo:latitude ?Latitude ;

geo:longitude ?longitude .}

Listing 1 SPARQL Query for Question 1

CQ 02: What are the daily movement patterns for Elephant X in June?

# Let elephant X be Abaw

PREFIX geo:<http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo:<https://w3id.org/def/foo#>

SELECT DISTINCT *

WHERE {

?observation a foo:gPSObservation ;

foo:madeBySensor foo:abawGPS ;

foo:localDate ?date;
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geo:longitude ?long;

geo:latitude ?lat.

FILTER(?date >= "2014-06-01"^^xsd:date && ?date <= "2014-06-30"^^xsd:date)

Listing 2 SPARQL Query for Question 2

CQ 03: What are the yearly movement patterns for Elephant X?

# Let elephant X be Puteri

PREFIX geo:<http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo:<https://w3id.org/def/foo#>

SELECT *{

?observation a foo:gPSObservation ;

foo:madeBySensor foo:puteriGPS ;

foo:localDate ?date ;

geo:latitude ?Latitude ;

geo:longitude ?longitude .

FILTER(?date >= "2013-12-31"^^xsd:date && ?date <= "2014-12-31"^^xsd:date)}

Listing 3 SPARQL Query for Question 3

CQ 04: How do the movements of Elephant X relate to human and urban areas?

# Let human and urban areas be the oil Plam Plantation and elpehant X be Jasmin

PREFIX geo:<http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo:<https://w3id.org/def/foo#>

SELECT * {

?observation a foo:gPSObservation ;

foo:madeBySensor foo:jasminGPS ;

foo:hasFeatureOfInterest foo:jasmin;

foo:localDate ?date ;

geo:latitude ?Latitude ;

geo:longitude ?longitude .

FILTER(?date >= "2012-02-07"^^xsd:date && ?date <= "2012-02-15"^^xsd:date)}

Listing 4 SPARQL Query for Question 4

CQ 05: Has elephant x died?
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# Let elephant x be Sandi

PREFIX geo:<http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo:<https://w3id.org/def/foo#>

SELECT DISTINCT * {

?observation a foo:gPSObservation;

foo:madeBySensor foo:sandiGPS ;

foo:hasFeatureOfInterest foo:sandi ;

foo:localDate ?date;

foo:cov ?cov;

foo:speed ?speed.

FILTER(?cov = "0.0"^^xsd:float && ?speed <= "0.1"^^xsd:float)}

Listing 5 SPARQL Query for Question 5

CQ 06: Why did Elephant X die?

# We do not know so we have to search near (10 Kilometer far) human domainated landscapes.

# This query works with the old modeling and using time ontology

SELECT DISTINCT * {

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX foo: <http://example.org/foo#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX unit: <http://qudt.org/vocab/unit#>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX time: <http://www.w3.org/2006/time#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

SELECT * {?s a sosa:Observation;

time:gMTDate "2011-11-13"^^xsd:date;

time:gMTTime ?GMTTime;

pos:long ?long; pos:lat ?lat;

geof:nearby (5.674 118.393 10 unit:Kilometer). #Assuming the oil palm pantation

is located with 10 Kilometer from this coordinates.

?s1

pos:long ?long1;

pos:lat ?lat1;

time:gMTDate "2011-11-13"^^xsd:date;

BIND (geof:distance(?s, ?s1, unit:Kilometer) as ?Distance) }

Listing 6 SPARQL Query for Question 6
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CQ 07: What are the optimal environmental conditions for Elephant X to survive?

# Elephants require large amounts of land to thrive and meet their ecological demands,

which include food, water, and space. Using GPS collars, behaviour and site sampling

help to understand recursion to forging sites. Elephants revisit certain sites for their

greater value. The amount of time animals spend at these locations and how frequently

they return to them can help us understand habitat quality and its value to animals, or

individual resource quality and its importance within foraging sites. If an animal

returns to a spot and spends more time there than at other sites, this may help to

locate high-quality areas or more vital resources. Longer time spent at a site.

However, recursion behaviour may be a signal of deteriorating acceptable habitat

quality or capacity since, as prime habitat becomes less available, recursion frequency

should increase while time spent at locations decreases. * elephants preferred food plants

like grass and bamboos. Foraging area focus as per English et al. on the areas between

Abai and Batu Puteh (5.18-N 5 42'N, 117.54-E 118.33-E), which were the downriver and upriver

limits of the LKWS elephant population's range. The study area also contains 7 sections,

each section refereed to as a 'lot' (approximately 218 km), including 89KM of protected

forest reserves. The elephant herds utilised their whole range throughout the year including

the use of privately owned forests and cultivated land, particularly oil palm plantations

that were adjacent to and between forested areas.

Another answer is protected areas in Southeast Sabah.

PREFIX foo: <http://w3id.org/def/foo#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX unit: <http://www.opengis.net/def/uom/OGC/1.0/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

SELECT ?s (geof:distance(?geom, ?targetGeom, unit:Meter) AS ?Distance)

{

?s a foo:gPSObservation;

foo:long ?long;

foo:lat ?lat.

BIND(STRDT(CONCAT('POINT(', STR(?long), ' ', STR(?lat), ')'), geo:wktLiteral) AS ?geom)

BIND(STRDT('POINT(117.54 5.18)', geo:wktLiteral) AS ?targetGeom)

FILTER(geof:distance(?geom, ?targetGeom, unit:Meter) < 10000)

}

Listing 7 SPARQL Query for Question 7

CQ 08: What can we learn from the movements of Elephants X, Y, and Z?
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# Let Elephants X, Y, and Z be Aqeela, Ita, and Dara. Querying their

geo-locations in a unified manner allows us to learn about their movements.

PREFIX foo:<https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

SELECT DISTINCT * {

{?AqeelaGPS a foo:gPSObservation;

pos:longitude ?longX;

pos:latitude ?latX;

?predicateX ?elephantAqeela.

FILTER(?elephantAqeela = <https://w3id.org/def/foo#aqeela>)

}

# UNION

{

?ItaGPS a foo:gPSObservation;

pos:longitude ?longY;

pos:latitude ?latY;

?predicateY ?elephantIta.

FILTER(?elephantIta = <https://w3id.org/def/foo#ita>)

}

UNION

{

?DaraGPS a foo:gPSObservation;

pos:longitude ?longZ;

pos:latitude ?latZ;

?predicateZ ?elephantDara.

FILTER(?elephantDara = <https://w3id.org/def/foo#dara>)

}}

Listing 8 SPARQL Query for Question 8

CQ 09: How does Elephant X use Habitat Site Y?

#According to English et al., 2014, the site is defined as the area covering a

100m radius surrounding each measurement point taken from the center of

the elephant herd.

#Let elephant X be Aqeela

PREFIX foo:<https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX unit: <http://www.opengis.net/def/uom/OGC/1.0/>

SELECT *

{
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?observation a foo:gPSObservation;

foo:madeBySensor ?elephantGPS ;

foo:hasFeatureOfInterest ?elephant ;

pos:longitude ?Longitude ;

pos:latitude ?Latitude.

BIND(STRDT(CONCAT("POINT(", STR(?Longitude), " ", STR(?Latitude), ")"),

geo:wktLiteral) AS ?observationPoint)

BIND(STRDT("POINT(118.3019 5.510)", geo:wktLiteral) AS ?referencePoint)

FILTER(geof:distance(?observationPoint, ?referencePoint, unit:metre) < 100)}}

Listing 9 SPARQL Query for Question 09

CQ 10: What is the range of habitat sites used by Elephants X, Y, and Z?

# let Elephants X Y, Z be Ita, Abaw and Jasmin

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo:<https://w3id.org/def/foo#>

SELECT *

{

?observation a foo:gPSObservation ;

foo:madeBySensor ?gpsCollar ;

geo:latitude ?latitude ;

geo:longitude ?longitude .

FILTER ( ?gpsCollar IN (foo:jasminGPS, foo:abawGPS, foo:itaGPS ))}

Listing 10 SPARQL Query for Question 10

CQ 11: Where was Elephant X located during the flood season in the Lower Kinabatangan area?

# Note: Flooding occurs between November and March during the west monsoon.

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo:<https://w3id.org/def/foo#>

SELECT DISTINCT *

{

?observation a foo:gPSObservation;

foo:madeBySensor ?elephantGPS ;

foo:hasFeatureOfInterest ?elpehant ;

foo:localDate ?date ;

pos:longitude ?long ;

pos:latitude ?lat .

FILTER(?date >= "2011-11-01"^^xsd:date && ?date <= "2012-03-30"^^xsd:date)}

Listing 11 SPARQL Query for Question 11
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CQ 12: What was the average speed of Elephant X during the flood season?

# Note: Flooding occurs between November and March during the west monsoon.

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo:<https://w3id.org/def/foo#>

SELECT (AVG(?Speed) AS ?AVGspeed)

{

?observation a foo:gPSObservation;

foo:speed ?speed ;

foo:date ?date .

FILTER (?date >= "2012-02-07"^^xsd:date && ?date < "2012-02-15"^^xsd:date)

}

Listing 12 SPARQL Query for Question 12

CQ 13: Is Elephant Dara near (5 Km) the danger zone (poachers’ area) today?

# Let poacher area be POINT(117.30193 5.510).

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo:<https://w3id.org/def/foo#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX unit: <http://qudt.org/vocab/unit#>

SELECT DISTINCT *

{

?observation a foo:gPSObservation;

pos:longitude ?Longitude;

pos:latitude ?Latitude.

# Define observation and reference points as WKT literals

BIND(STRDT(CONCAT("POINT(", STR(?Longitude), " ", STR(?Latitude), ")"),

geo:wktLiteral) AS ?observationPoint)

BIND("POINT(117.30193 5.510)"^^geo:wktLiteral AS ?referencePoint)

# Apply distance filter to select observations within 10 km of the reference point

FILTER(geof:distance(?observationPoint, ?referencePoint, unit:Kilometer) < 5)}

Listing 13 SPARQL Query for Question 13

CQ 14: How did Elephant X’s movements change with climate change in 2014?
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# We need weather data to answer this question.

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo:<https://w3id.org/def/foo#>

SELECT *

{

# Filter for Elephant X's movement observations in 2014

?observation a foo:gPSObservation ;

foo:localDate ?date ;

pos:latitude ?latitude ;

pos:longitude ?longitude .

FILTER (?date >= "2014-01-01"^^xsd:date && ?date <= "2014-12-31"^^xsd:date)

# # Link climate data with spatial and temporal proximity to Elephant X's observations

# ?climateObservation a climate:ClimateObservation ;

# climate:temperature ?temperature ;

# climate:precipitation ?precipitation ;

# foo:localTime ?date ;

# pos:lat ?latitude ;

# pos:long ?longitude .

}

# ORDER BY ?date

Listing 14 SPARQL Query for Question 14

CQ 15: What are Elephant X’s preferred habitats based on prolonged stays in areas?

# Foraging area focus as per English et al. on the areas

#between Abai and Batu Puteh (5.18-N 5 42'N, 117.54-E 118.33-E),

# which were the downriver and upriver limits of the LKWS elephant population's range.

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo:<https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?location ?latitude ?longitude (COUNT(?date) AS ?stayDuration)

{

?observation a foo:gPSObservation ;

foo:FeatureOfInterest ?elephant ;

foo:date ?date ;

pos:latitude ?latitude ;

pos:longitude ?longitude .

# Filter for locations within the specified latitude and longitude range

FILTER (?latitude >= "5.18"^^xsd:float && ?latitude <= "5.42"^^xsd:float)

FILTER (?longitude >= "117.54"^^xsd:float && ?longitude <= "118.33"^^xsd:float)

# Generate a location identifier (combination of lat and long) for grouping

BIND(CONCAT(STR(?latitude), ",", STR(?longitude)) AS ?location)
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}

GROUP BY ?location ?latitude ?longitude

HAVING (?stayDuration >= 0)

ORDER BY DESC(?stayDuration)

Listing 15 SPARQL Query for Question 15

CQ 16: How far was Elephant X from the oil plantation fencing?

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo:<https://w3id.org/def/foo#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX unit: <http://qudt.org/vocab/unit#>

SELECT DISTINCT ?s ?plantationLocation (geof:distance(?geo1,

?plantationLocation, unit:Kilometer) AS ?Distance)

{

?s a foo:gPSObservation;

pos:longitude ?long;

pos:latitude ?lat;

foo:localDate ?date.

# Bind geographic points for each observation

BIND(STRDT(CONCAT("POINT(", STR(?long), " ", STR(?lat), ")"), geo:wktLiteral) AS ?geo1)

# Define the fixed location point for the plantation

BIND("POINT(118.393 5.674)"^^geo:wktLiteral AS ?plantationLocation)

# Filter distances to be within 5 kilometers of the plantation location

FILTER (geof:distance(?plantationLocation, ?geo1, unit:Kilometer) <= 5)}

Listing 16 SPARQL Query for Question 16

CQ 17: When was Elephant X near the oil plantation fencing?

# Let elephant X be Ita.

PREFIX foo:<https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX unit: <http://qudt.org/vocab/unit#>

SELECT *

{

?s a foo:gPSObservation ;
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foo:madeBySensor foo:itaGPS;

foo:hasFeatureOfInterest foo:ita;

foo:localDate ?localDate;

foo:localTime ?localTime;

pos:longitude ?long;

pos:latitude ?lat.

# Construct the observation point as WKT literal

BIND(STRDT(CONCAT("POINT(", STR(?long), " ", STR(?lat), ")"), geo:wktLiteral)

AS ?observationPoint)

# Define the fixed reference point

BIND("POINT(118.393 5.674)"^^geo:wktLiteral

AS ?referencePoint)

# Calculate the distance

BIND(geof:distance(?observationPoint, ?referencePoint, unit:Kilometer) AS ?Distance)

# Filter to within 5 km distance

FILTER(?Distance <= 5)}

Listing 17 SPARQL Query for Question 17

CQ 18: What is the distance traveled between each of Elephant X’s stops (sleeping)? (Query took
184930 ms

# To calculate the distance traveled between each of Elephant X's stops,

# filtering for stops where "sleeping" or prolonged pauses are identified

# based on a significant time difference between consecutive observations.

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX unit: <http://qudt.org/vocab/unit#>

PREFIX foo: <https://w3id.org/def/foo#>

SELECT ?prevStop ?prevDate ?nextStop ?nextDate ?distanceTraveled{

# Get observations for Elephant ita with timestamp, lat, long

?prevStop a foo:gPSObservation ;

foo:hasFeatureOfInterest foo:ita ;

foo:localDate ?prevDate ;

pos:longitude ?prevLong ;

pos:latitude ?prevLat .

?nextStop a foo:gPSObservation;

foo:hasFeatureOfInterest foo:ita ;

foo:localDate ?nextDate ;

pos:longitude ?nextLong ;

pos:latitude ?nextLat .
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# Observations are ordered and calculate only for consecutive stops with a longer time gap

FILTER (?nextDate > ?prevDate)

# Calculate the distance between consecutive stops

BIND(STRDT(CONCAT("POINT(", STR(?prevLong), " ", STR(?prevLat), ")"), geo:wktLiteral)

AS ?prevLocation)

BIND(STRDT(CONCAT("POINT(", STR(?nextLong), " ", STR(?nextLat), ")"), geo:wktLiteral)

AS ?nextLocation)

BIND(geof:distance(?prevLocation, ?nextLocation, unit:Kilometer) AS ?distanceTraveled)}

ORDER BY ?prevDate

Listing 18 SPARQL Query for Question 18

CQ 19: Which elephants met this month?

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo:<https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?ElephantX ?ElephantY ?dateX ?dateY

WHERE {

?ObservationX a foo:gPSObservation;

foo:hasFeatureOfInterest ?ElephantX ;

foo:localDate ?dateX;

pos:longitude ?longX;

pos:latitude ?latX.

?ObservationY a foo:gPSObservation;

foo:hasFeatureOfInterest ?ElephantY ;

foo:localDate ?dateY;

pos:longitude ?longY;

pos:latitude ?latY.

FILTER(?ElephantX != ?ElephantY)

FILTER(MONTH(xsd:date(?dateX)) = MONTH(NOW()) && MONTH(xsd:date(?dateY)) = MONTH(NOW()))

# FILTER(?dateX = ?dateY)

FILTER(?longX = ?longY && ?latX = ?latY)}

Listing 19 SPARQL Query for Question 19

CQ 20: Which sites were revisited by Elephant X month?

# Let elephant X be Abaw

PREFIX foo: <https://w3id.org/def/foo#>
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PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?location (COUNT(?location) AS ?visits)

# SELECT *

WHERE {

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest foo:abaw;

foo:localDate ?date;

pos:longitude ?long;

pos:latitude ?lat.

# Constructing a simple identifier for a ""location"" based on its long/lat.

BIND(CONCAT(STR(?long), "-", STR(?lat)) AS ?location)

FILTER(MONTH(xsd:date(?date)) = MONTH(NOW()) && YEAR(xsd:date(?date)))}

GROUP BY ?location

HAVING (COUNT(?location) > 1)

Listing 20 SPARQL Query for Question 20

CQ 21: What environment or habitat does Elephant X prefer, based on the prolonged time spent in a
certain area?

# SPARQL query can be crafted that identifies the specific types of environments

# where Elephant X spends extended periods- focusing

# on areas where the time spent between consecutive observations exceeds a threshold.

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX unit: <http://qudt.org/vocab/unit#>

PREFIX foo: <https://w3id.org/def/foo#>

SELECT ?location ?prevDate ?nextDate ?timeSpent

WHERE {

# Get GPS observations for Elephant Ita with timestamp, lat, long

?obs1 a foo:gPSObservation ;

foo:hasFeatureOfInterest foo:ita ;

foo:localDate ?prevDate ;

pos:longitude ?prevLong ;

pos:latitude ?prevLat .

?obs2 a foo:gPSObservation ;

foo:hasFeatureOfInterest foo:ita ;

foo:localDate ?nextDate ;
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pos:longitude ?nextLong ;

pos:latitude ?nextLat .

# Ensure observations are ordered and calculate time spent in the area

FILTER (?nextDate > ?prevDate)

BIND((?nextDate - ?prevDate) AS ?timeSpent)

# Identify prolonged stays

FILTER(?timeSpent >= "PT8H"^^xsd:duration) # Adjust duration threshold as necessary

# Calculate location

BIND(STRDT(CONCAT("POINT(", STR(?prevLong), " ", STR(?prevLat), ")"), geo:wktLiteral)

AS ?location) }

ORDER BY DESC(?timeSpent)

Listing 21 SPARQL Query for Question 21

CQ 22: Was there any significant change in Elephant X’s movement patterns between June and July
2012?

# Elephant X was Putut

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?ElephantX ?year ?month

(AVG(?speed) AS ?avgSpeed)

(SUM(?distance) AS ?totalDistance)

(AVG(?direction) AS ?avgDirection)

WHERE {

?ObservationX a foo:gPSObservation;

foo:hasFeatureOfInterest ?ElephantX;

foo:localDate ?date;

pos:latitude ?latitude;

pos:longitude ?longitude;

foo:speed ?speed;

foo:direction ?direction;

foo:distance ?distance .

BIND(YEAR(?date) AS ?year)

BIND(MONTH(?date) AS ?month)

FILTER ((?date >= "2012-06-01"^^xsd:date && ?date <= "2012-07-31"^^xsd:date))}

GROUP BY ?ElephantX ?year ?month

ORDER BY ?year ?month

Listing 22 SPARQL Query for Question 22

184



.3 Competency Questions and their formulated SPARQL Queries

CQ 23: Has Elephant X visited Village Y in year Z?

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?ElephantX (COUNT(?ObservationX) AS ?visits)

WHERE {

?ObservationX a foo:gPSObservation;

foo:hasFeatureOfInterest ?ElephantX;

foo:localDate ?dateX;

pos:longitude ?longX;

pos:latitude ?latX.

# Geographic bounds for Village Y

FILTER (?longX >= 118.0000 && ?longX <= 118.8333 && ?latX >= 5.3333 && ?latX <= 5.8333)

# Filter for observations in the year 2012

FILTER (YEAR(?dateX) = 2012)}

GROUP BY ?ElephantX

Listing 23 SPARQL Query for Question 23

CQ 24: What is the movement range of Elephant X during Month Y?

# Let Elephant X be Jasmin and Month X be June 2011

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

{

?ObservationX a foo:gPSObservation;

foo:hasFeatureOfInterest foo:jasmin;

foo:localDate ?dateX;

pos:longitude ?longX;

pos:latitude ?latX.

FILTER ((?dateX >= "2011-11-01"^^xsd:date) && (?dateX <= "2012-11-30"^^xsd:date))}

Listing 24 SPARQL Query for Question 24
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CQ 25: What is Elephant’s activity (speed) during Month Y?

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?ElephantX ?dateX (AVG(?speed) AS ?averageSpeed)

{

?ObservationX a foo:gPSObservation;

foo:hasFeatureOfInterest ?ElephantX;

foo:localDate ?dateX;

foo:speed ?speed .

FILTER ((?dateX >= "2011-11-01"^^xsd:date) && (?dateX <= "2011-11-30"^^xsd:date))}

GROUP BY ?ElephantX ?dateX

Listing 25 SPARQL Query for Question 25

CQ 26: Are there any interactions between collared elephants during the flood season?

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?elephantA ?elephantB ?longA ?latA ?longB ?latB ?DateA ?DateB

WHERE {

?obsA a foo:gPSObservation ;

foo:localDate ?DateA;

foo:hasFeatureOfInterest ?elephantA;

pos:longitude ?longA;

pos:latitude ?latA.

?obsB a foo:gPSObservation ;

foo:localDate ?DateB;

foo:hasFeatureOfInterest ?elephantB;

pos:longitude ?longB;

pos:latitude ?latB.

# Ensure we're considering two different elephants

FILTER (?elephantA != ?elephantB)

# # Date range filter for observations within flood season (NOV 2011 - MARCH 2012)

# FILTER (?DateA >= "2013-11-01"^^xsd:dateTime && ?DateB >= "2013-11-01"^^xsd:dateTime)

# # Filter for interactions within a day

# FILTER (ABS(?DateA - ?DateB) <= "P1D"^^xsd:duration)

# Proximity filter: Approximate spatial interaction (adjusting to ~5km radius)
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FILTER (ABS(?longA - ?longB) <= 0.05 && ABS(?latA - ?latB) <= 0.05)

}

# ORDER BY ?DateA ?DateB

Listing 26 SPARQL Query for Question 26

CQ 27: What is the status of Elephant X’s tracking collar battery?

# Let elephant X be Ita

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

{

?observation foo:hasFeatureOfInterest foo:ita; # Linking to Elephant Ita

foo:madeBySensor ?GPScollar;

foo:localDate ?date ;

foo:speed ?speed .

# Filter for observations where speed is zero

FILTER(?speed = 0)}

Listing 27 SPARQL Query for Question 27

CQ 28: What habitat has Elephant X selected this season?

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?habitat (COUNT(?observation) AS ?visits)

WHERE {

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elpehantx;

foo:localDate ?date.

?location a foo:treeObservation ;

foo:site ?habitat ;

foo:date ?sitedate. }

GROUP BY ?habitat

ORDER BY DESC(?visits)

LIMIT 1

Listing 28 SPARQL Query for Question 28
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CQ 29: What is the average elevation of Elephant X during a specific time range?

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

# (AVG(?altitude) AS ?averageElevation)

WHERE {

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephantX;

foo:localDate ?date;

foo:altitude ?altitude.

# Filter for observations within the specified time range (November 2011 to March 2012)

FILTER (?date >= "2011-11-01"^^xsd:date && ?date <= "2012-03-31"^^xsd:date)}

LIMIT 1

Listing 29 SPARQL Query for Question 29

CQ 30: Which elephant came near the logged site?

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?elephantX

WHERE {

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephantX;

pos:latitude ?lat;

pos:longitude ?long.

FILTER (ABS(?lat - 5.0) < 0.01 && ABS(?long - 118.0) < 0.01)

## Assume it is the logged site location.}

Listing 30 SPARQL Query for Question 30

CQ 31: Which elephant came near the semi-logged site?

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo: <https://w3id.org/def/foo#>
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PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT *

WHERE {

# GPS sensor for elephant

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephantX;

pos:latitude ?lat;

pos:longitude ?long.

# Soil Sensor for land use information (we need geo-location)

?soilObservation a foo:soilObservation;

foo:landUse ?landUse.

# Filter for land use exactly 'logged'

FILTER (?landUse = "semi-logged")}

Listing 31 SPARQL Query for Question 31

CQ 32: Which elephants crossed the river?

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?elephant

{

?observationWest a foo:gPSObservation;

foo:madeBySensor ?elephant;

pos:latitude ?latWest;

pos:longitude ?longWest.

?observationEast a foo:gPSObservation;

foo:madeBySensor ?elephant;

pos:latitude ?latEast;

pos:longitude ?longEast.

FILTER(?longWest < 118.1 && ?longEast > 118.1)}

Listing 32 SPARQL Query for Question 32

CQ 33: What is the canopy height for the distance traveled by Elephant X during the flood season?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?date ?location (AVG(?canopyHeight) AS ?averageCanopyHeight)
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{

?observation a foo:gPSObservation;

foo:madeBySensor ?elephant;

foo:localDate ?date;

pos:latitude ?lat;

pos:longitude ?long.

?vegetation foo:treeHeight_m ?canopyHeight;

# Adjusted filter for the flood season spanning from November to March

FILTER ((?date >= "2011-11-01"^^xsd:date || ?date <= "2012-03-31"^^xsd:date))

# Bind the latitude and longitude as a single string for location

BIND(CONCAT(STR(?lat), ", ", STR(?long)) AS ?location)}

GROUP BY ?date ?location

ORDER BY ?date

Listing 33 SPARQL Query for Question 33

CQ 34: Which elephants are near the oil palm plantations this week?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?elephant {

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

pos:latitude ?elephantLat;

pos:longitude ?elephantLong .

foo:OilPalmPlantation a owl:Class; # we need reasoning or plantation location.

# pos:latitude ?plantationLat;

# pos:longitude ?plantationLong.

# # Proximity filter within ~11 km (0.1 degrees)

# FILTER (ABS(?elephantLat - ?plantationLat) < 0.1 &&

ABS(?elephantLong - ?plantationLong) < 0.1)

# # Date filter for the specific week (October 2 to October 8, 2023)

# FILTER (?observationTime >= "2011-10-02"^^xsd:date

&& ?observationTime <= "2011-10-08"^^xsd:date)}

Listing 34 SPARQL Query for Question 34

CQ 35: What is the home range for all collared elephants?
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# 35. What is the home range for all collared elephants?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?elephant (SAMPLE(?lat) AS ?latitude) (SAMPLE(?long) AS ?longitude)

(COUNT(?observation) AS ?observations)

WHERE {

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

foo:madeBySensor ?GPS;

pos:latitude ?lat;

pos:longitude ?long.}

GROUP BY ?elephant

Listing 35 SPARQL Query for Question 35

CQ 36: What is the distance traveled by Elephant Y over a specific period?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?elephant ?date {

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

foo:localDate ?date;

pos:latitude ?elephantLat;

pos:longitude ?elephantLong .

FILTER (?date >= "2012-01-01"^^xsd:date && ?date <= "2012-01-31"^^xsd:date)}

ORDER BY ?date

Listing 36 SPARQL Query for Question 36

CQ 37: What are the altitudes of the collared elephants?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?elephant (MAX(?date) AS ?latestObservationDate)

(SAMPLE(?altitude) AS ?latestAltitude)

{

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;
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foo:madeBySensor ?GPS;

foo:localDate ?date ;

foo:altitude ?altitude. }

GROUP BY ?elephant

Listing 37 SPARQL Query for Question 37

CQ 38: What are the body/environment temperatures for collared elephants?

# 38. What are the body/environment temperatures for collared elephants?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?elephant (MAX(?date) AS ?latestObservationDate) (SAMPLE(?bodyTemp)

AS ?latestBodyTemperature) WHERE {

?observation a foo:gPSObservation;

foo:madeBySensor ?sensor;

foo:localDate ?date ;

foo:gMTDate ?gMTDate ;

foo:temperature ?bodyTemp ;

foo:hasFeatureOfInterest ?elephant.

}

GROUP BY ?elephant

ORDER BY ?elephant

Listing 38 SPARQL Query for Question 38

CQ 39: What is the behavior of Elephants X and Y this month?

# Let Elephant X be Bikang1 and Elephant Y be Bikang2

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

?observationX a foo:gPSObservation;

foo:speed ?speedX;

foo:distance ?distanceX;

pos:longitude ?longX;

pos:latitude ?latX;

foo:localDate ?observationTimeX ;

foo:hasFeatureOfInterest foo:bikang1.

?observationY a foo:gPSObservation;
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foo:speed ?speedY;

foo:distance ?distanceY;

pos:longitude ?longY;

pos:latitude ?latY;

foo:localDate ?observationTimeY ;

foo:hasFeatureOfInterest foo:bikang2.

FILTER (?observationTimeX >= "2013-05-01"^^xsd:date &&

?observationTimeX <= "2013-05-30"^^xsd:date

&& ?observationTimeY>= "2013-05-01"^^xsd:date &&

?observationTimeY <= "2013-05-30"^^xsd:date)}

Listing 39 SPARQL Query for Question 39

CQ 40: Does Elephant X need help?

# Let Elephant X be Ita

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT (SAMPLE(?speed) AS ?latestValue) WHERE {

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest foo:ita ;

foo:localTime ?time ;

foo:speed ?speed.}

Listing 40 SPARQL Query for Question 40 label

CQ 41: What are the distribution patterns of Elephants X and Y during this month?

# Let Elephant X be Dara and Elephant Y be Kuma

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

?observationX a foo:gPSObservation;

pos:longitude ?longX;

pos:latitude ?latX;

foo:localDate ?observationTimeX ;

foo:hasFeatureOfInterest foo:dara.

?observationY a foo:gPSObservation;

pos:longitude ?longY;

pos:latitude ?latY;
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foo:localDate ?observationTimeY ;

foo:hasFeatureOfInterest foo:kuma.

FILTER (?observationTimeX >= "2013-05-01"^^xsd:date &&

?observationTimeX <= "2013-05-30"^^xsd:date &&

?observationTimeY>= "2013-05-01"^^xsd:date &&

?observationTimeY <= "2013-05-30"^^xsd:date)}

Listing 41 SPARQL Query for Question 41 label

CQ 42: Are Elephants X and Y’s favorite foods in a particular area?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

?observationX a foo:gPSObservation;

pos:longitude ?longX;

pos:latitude ?latX;

foo:localDate ?observationTimeX ;

foo:hasFeatureOfInterest ?ElephantX.

?observationY a foo:gPSObservation;

pos:longitude ?longY;

pos:latitude ?latY;

foo:localDate ?observationTimeY ;

foo:hasFeatureOfInterest ?ElephantY.

# Bornean elephants look for food near oil palm plantations in Sabah, Malaysia,

FILTER (?lat >= 4.23 && ?lat <= 5.32 && ?long >= 117.23 && ?long <= 118.40)}

Listing 42 SPARQL Query for Question 42 label

CQ 43: Do we need to create corridors along rivers/palm plantations, or is it not an obstacle for
elephants to cross the river?

# [NO SPARQL QUERY]: The decision to create corridors should be based

on a multidisciplinary approach, incorporating data-driven insights

from SPARQL queries and GIS analysis with on-the-ground ecological

knowledge and conservation strategies.

Listing 43 SPARQL Query for Question 43 label
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CQ 44: Why have the elephants’ collars been fitted for almost two years?

# P2062D is approximately 5 years and 238 days.

#Therefore, the duration of fitted collars are more than two years.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT

(MIN(?collarDate) AS ?oldestDate)

(MAX(?collarDate) AS ?latestDate)

((MAX(?collarDate) - MIN(?collarDate)) AS ?duration)

{

?observation a foo:gPSObservation;

foo:localDate ?collarDate.}

Listing 44 SPARQL Query for Question 44 label

CQ 45: What are the migration patterns of Elephants X during the flood season?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant ;

pos:longitude ?long;

pos:latitude ?lat;

foo:localDate ?date ;

# Filter observations to the flood season period

# flood season spans from November to March

FILTER (

(?date >= "2011-11-01"^^xsd:date && ?date <= "2011-12-31"^^xsd:date) ||

(?date >= "2012-01-01"^^xsd:date && ?date <= "2012-03-31"^^xsd:date))

}

ORDER BY ?date

Listing 45 SPARQL Query for Question 45 label

CQ 46: What are the favorite locations that Elephant X likes to visit during certain times of the year?
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# Let Elephant X be Jasmin

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?location (COUNT(?observation) AS ?visits)

{?observation a foo:gPSObservation;

foo:hasFeatureOfInterest foo:jasmin ;

pos:longitude ?long;

pos:latitude ?lat;

foo:localDate ?date ;

# Construct a simple identifier for a ""location"" based on lat/long

BIND(CONCAT(STR(?lat), "","", STR(?long)) AS ?location)

# Filter for a specific time frame, e.g., summer months

FILTER (?date >= "2012-06-01"^^xsd:date && ?date <= "2012-06-30"^^xsd:date)}

GROUP BY ?location

ORDER BY DESC(?visits)

Listing 46 SPARQL Query for Question 46 label

CQ47: Where are elephants likely to come into contact with humans?

# According to research, it's near oil palm planations.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT ?elephant ?elephantLat ?elephantLong ?plantationLat ?plantationLong ?comment{

# Elephant locations

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

pos:latitude ?elephantLat;

pos:longitude ?elephantLong.

# Oil Palm Plantation details

foo:OilPalmPlantation a owl:Class;

rdfs:comment ?comment.

# Assign hypothetical coordinates for the plantation

(since exact locations aren't shared)

BIND(5.6 AS ?plantationLat)

BIND(118.1 AS ?plantationLong)

# Filter to match within the same geographic area

FILTER (?elephantLat >= 5.24 && ?elephantLat <= 5.76 &&

?elephantLong >= 117.54 && ?elephantLong <= 118.86)

FILTER (?plantationLat >= 5.24 && ?plantationLat <= 5.76 &&
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?plantationLong >= 117.54 && ?plantationLong <= 118.86)}

Listing 47 SPARQL Query for Question 47 label

CQ48: What are the places where elephants may be vulnerable?

# Query for areas of human-elephant conflict (within 5Km radius from oil palm plantation)

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT ?elephant ?elephantLat ?elephantLong ?plantationLat ?plantationLong ?comment

{

# Elephant locations

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

pos:latitude ?elephantLat;

pos:longitude ?elephantLong.

# Oil Palm Plantation details

foo:OilPalmPlantation a owl:Class;

rdfs:comment ?comment.

# Assign hypothetical coordinates for the plantation (since exact locations aren't shared)

BIND(5.36 AS ?plantationLat)

BIND(118.66 AS ?plantationLong)

# Approximate distance calculation (flat-earth approximation)

BIND(

SQRT(

POW((?elephantLat - ?plantationLat) * 111.32, 2)

+ POW((?elephantLong - ?plantationLong) * 111.32, 2)

) AS ?distance

)

FILTER (?distance <= 5) # Keep only results within 5 km radius

}

Listing 48 SPARQL Query for Question 48 label

CQ49: Where can we assign locations to rangers?

# It's recommended to deploy rangers whree there are elephants herds.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
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SELECT ?rangerLocation ?centerLat ?centerLong (COUNT(?elephant) AS ?elephantCount)

WHERE {

# Elephant locations

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

pos:latitude ?lat;

pos:longitude ?long.

# Group elephant observations by clusters (assuming predefined ranger zones)

BIND(FLOOR(?lat * 10) / 10 AS ?centerLat) # Approximate grouping by latitude

BIND(FLOOR(?long * 10) / 10 AS ?centerLong) # Approximate grouping by longitude

BIND(CONCAT(STR(?centerLat), ",", STR(?centerLong)) AS ?rangerLocation)

}

GROUP BY ?rangerLocation ?centerLat ?centerLong

ORDER BY DESC(?elephantCount)

LIMIT 10

Listing 49 SPARQL Query for Question 49 label

CQ50: How to track (investigate) the last location of a dead elephant?

# if the speed is zero for long time

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?elephant ?lat ?long ?locationCluster (COUNT(?observation) AS ?durationCount){

# Observations of elephant locations

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

pos:latitude ?lat;

pos:longitude ?long;

foo:localDate ?observationTime;

foo:speed ?speed.

# Filter for zero speed

FILTER(?speed = 0)

# Group observations by the same location to track "no movement"

BIND(CONCAT(STR(?lat), ",", STR(?long)) AS ?locationCluster)

}

GROUP BY ?elephant ?lat ?long ?locationCluster

HAVING(COUNT(?observation) > 1) # Filter for extended time (e.g., >10 observations)

ORDER BY DESC(?durationCount)
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LIMIT 10

Listing 50 SPARQL Query for Question 50 label

CQ51: Will the elephants be arriving at DGFC soon?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?elephant ?currentLat ?currentLong ?speed ?direction ?distanceToDGFC ?date ?time

{

# Elephant observations

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

pos:latitude ?currentLat;

pos:longitude ?currentLong;

foo:speed ?speed;

foo:direction ?direction ;

foo:localDate ?date;

foo:localTime ?time.

# Coordinates of DGFC

BIND(5.41382 AS ?dgfcLat)

BIND(118.03771 AS ?dgfcLong)

# Calculate distance to DGFC using a simplified formula

BIND(

SQRT(

POW((?currentLat - ?dgfcLat) * 111.32, 2) + POW((?currentLong - ?dgfcLong)

* 111.32, 2)

) AS ?distanceToDGFC

)

# Check if the elephants are moving toward DGFC

FILTER (?distanceToDGFC < 1) # Threshold distance (e.g., within 1 km)

FILTER (?speed > 0) # Moving elephants only

}

ORDER BY ?distanceToDGFC

Listing 51 SPARQL Query for Question 51 label

CQ52: How many satellites did the collar detect? (COV=0, speed=0)

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>
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PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?elephant (COUNT(?satellite) AS ?satelliteCount)

{

# Observations with specific conditions

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

foo:speed ?speed;

foo:cov ?COV;

# Filters for COV=0 and speed=0

FILTER (?COV = 0)

FILTER (?speed = 0)

}

GROUP BY ?elephant

Listing 52 SPARQL Query for Question 52 label

CQ53 Which elephants are close to the river today?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?elephant ?lat ?long ?distanceToRiver

WHERE {

# Elephant observations

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

pos:latitude ?lat;

pos:longitude ?long;

foo:localDateTime ?observationTime.

# Today's date (filtering based on the current date)

FILTER (STRSTARTS(STR(?observationTime), STR(SUBSTR(STR(NOW()), 1, 10))))

# Coordinates of the river (approximation for the query)

BIND(5.5 AS ?riverLat)

BIND(118.0 AS ?riverLong)

# Calculate distance to the river using a simplified formula

BIND(

SQRT(

POW((?lat - ?riverLat) * 111.32, 2) + POW((?long - ?riverLong) * 111.32, 2)

) AS ?distanceToRiver

)

# Filter for elephants close to the river (e.g., within 1 km)

FILTER (?distanceToRiver <= 1)
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}

ORDER BY ?elephant

Listing 53 SPARQL Query for Question 53 label

CQ54: Which elephants are close to oil plantations?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

# For this query, the oil palm planation has been modelled inside FOO

# (w3id.org/def/foo#) on 20 November2024.

SELECT DISTINCT ?elephant ?lat ?long ?plantationLat ?plantationLong ?distanceToPlantation

{

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

pos:latitude ?lat;

pos:longitude ?long.

# Oil Palm Plantation locations

foo:plantation a foo:OilPalmPlantation ;

pos:latitude ?plantationLat;

pos:longitude ?plantationLong.

# Calculate distance to oil palm plantations using a simplified formula

BIND(

SQRT(

POW((?lat - ?plantationLat) * 111.32, 2) + POW((?long - ?plantationLong) * 111.32, 2)

) AS ?distanceToPlantation

)

# Filter for elephants close to plantations (e.g., within 5 km)

FILTER (?distanceToPlantation <= 5)

}

ORDER BY ?elephant

Listing 54 SPARQL Query for Question 54 label

CQ55: Which elephant roams near the Sabahmas site?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?elephant {
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# Elephant observations

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

pos:latitude ?lat;

pos:longitude ?long .

# # Approximate geographical filter for the Sabahmas site,

# adjust coordinates as necessary

# # This example uses a simple bounding box.

# FILTER (?lat >= ?sabahmasLatMin && ?lat <= ?sabahmasLatMax &&

# ?long >= ?sabahmasLongMin && ?long <= ?sabahmasLongMax)

}

Listing 55 SPARQL Query for Question 55 label

CQ56: Which elephant roams near the small steep site?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?elephant {

# Elephant observations

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

pos:latitude ?lat; \\

pos:longitude ?long .

# # Placeholder coordinates for the ""small steep site"", replace with actual values

# LET (?siteLat := 0.0) # Replace with the latitude of the site

# LET (?siteLong := 0.0) # Replace with the longitude of the site

# LET (?threshold := 0.01) # Define a threshold for proximity, e.g., ~1km, adjust as needed

# Filter for elephants near the site within the defined threshold

# FILTER (ABS(?lat - ?siteLat) < ?threshold && ABS(?long - ?siteLong) < ?threshold)

}

Listing 56 SPARQL Query for Question 56 label

CQ57: Which elephant is likely to visit Ribubonus, Kg. Kiabau, and Reka Halus 12ha?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
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SELECT ?elephant (COUNT(?observation) AS ?visits)

{

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

pos:latitude ?lat;

pos:longitude ?long .

# Example filter for a location, assuming known coordinates or identifiers

# Replace with actual conditions that define being ""near"" each location

# FILTER (

# # Conditions for Ribubonus

# (ABS(?lat - ?ribubonusLat) < ?threshold && ABS(?long - ?ribubonusLong) < ?threshold)

# OR

# # Conditions for Kg. Kiabau

# (ABS(?lat - ?kgKiabauLat) < ?threshold && ABS(?long - ?kgKiabauLong) < ?threshold)

# OR

# # Conditions for Reka Halus 12ha

# (ABS(?lat - ?rekaHalusLat) < ?threshold && ABS(?long - ?rekaHalusLong) < ?threshold))

}

GROUP BY ?elephant

ORDER BY DESC(?visits)

Listing 57 SPARQL Query for Question 57 label

CQ58: What locations could have snares?

# Foo knowledge graph does not have snares location data.

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbr: <http://dbpedia.org/resource/>

SELECT ?location ?riskFactor{

?location dbo:hasRiskFactor ?riskFactor .

?riskFactor dbo:type dbr:Snare .}

Listing 58 SPARQL Query for Question 58 label

CQ59: Is Elephant X sick, injured, or dead?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX elephant: <http://example.org/elephants#>

SELECT ?elephant ?speed ?cov (IF(?speed = 0 && ?cov = 0, "Dead",

IF(?speed > 0, "Alive", "Injured")) AS ?status)
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{

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

pos:latitude ?lat;

pos:longitude ?long;

foo:speed ?speed;

foo:cov ?cov.}

ORDER BY DESC(?observation)

LIMIT 1

Listing 59 SPARQL Query for Question 59 label

CQ60: Which elephant(s) are likely to conflict with human?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?elephant ?lat ?long (NOW() AS ?queryTime)

{

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

pos:latitude ?lat;

pos:longitude ?long;

foo:localTime ?time.

# Filter for observations within the last month

FILTER (?time > xsd:dateTime(NOW() - "P1M"^^xsd:duration))}

Listing 60 SPARQL Query for Question 60 label

CQ61: What is the soil condition during certain times of the year?

# Assume the area is "Danum Valley Conservation Area"

#Since dates are not included in the data,

# only soil parameters are retrieved.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

?observation a foo:soilObservation ;

foo:site "Danum Valley Conservation Area"^^ xsd:string ;

foo:horizon ?horizon ;

foo:landUse ?landUse ;
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foo:clay ?Clay ;

foo:silt ?Silt ;

foo:soilPH ?soilPH ;

foo:totalC ?totalC ;

foo:totalN ?totalN ;

foo:cNRatio ?CNRatio ;

foo:totalP ?totalP . }

Listing 61 SPARQL Query for Question 61 label

CQ62: What types of soil are available throughout the year? Dry, muddy, swamps.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?soilType {

?observation a foo:soilObservation ;

foo:horizon ?soilType.}

#soil's horizon resulted "Organic" "Mineral"

Listing 62 SPARQL Query for Question 62 label

CQ63: Where are the locations of the type of soil that elephants prefer? (e.g., in the forest, near the
river, open spaces, fields, and grass areas)

# FOO can't answer this question, need more data.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT DISTINCT ?soilType {

SELECT ?location ?soilType ?elephantDensity

WHERE {

# Step 1: Find elephant observations and their proximity

{

SELECT ?location (COUNT(?elephant) AS ?elephantDensity)

WHERE {

# Elephant observations with coordinates

?elephant a foo:gPSObservation ;

foo:latitude ?lat ;

foo:longitude ?long .
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# Relate these elephants to a location (using a predefined spatial relationship)

?location a foo:Location ;

foo:hasBoundary ?boundary .

FILTER(geof:sfWithin(?elephant, ?boundary))

# Optional: filter for proximity between individual elephants

?otherElephant a foo:gPSObservation ;

foo:latitude ?lat2 ;

foo:longitude ?long2 .

FILTER(bif:st_distance(bif:st_point(?lat, ?long), bif:st_point(?lat2, ?long2))

< 1000) # within 1 km}

GROUP BY ?location

HAVING (COUNT(?elephant) > 1) # Ensure there is more than one elephant}

# Step 2: Link the locations to soil types

?location foo:hasSoilType ?soilType .

# Optional: Filter for soil types elephants prefer

FILTER (?soilType IN ("forest_soil", "riverbank_soil", "open_space_soil",

"field_soil", "grassland_soil"))}

ORDER BY DESC(?elephantDensity)}

Listing 63 SPARQL Query for Question 63 label

CQ64: What is the mineral content (salt and others) in a particular location?

# Let a particular location be the oil palm plantation

# Soil pH: Determines acidity or alkalinity, influencing nutrient

availability and microbial activity.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?Observation ?soilPH ?acidityLevel ?lat ?long

WHERE {

?Observation a foo:soilObservation ;

foo:horizon "Mineral"^^xsd:string ;

foo:soilPH ?soilPH .

# Specifying the location; replace with actual plantation coordinates

foo:plantation pos:latitude ?lat ;

pos:longitude ?long .

# Determine soil acidity or alkalinity

BIND(

IF(?soilPH < 7.0, "Acidic", "Alkaline") AS ?acidityLevel)}

Listing 64 SPARQL Query for Question 64 label
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CQ65: Is there any metal in the soil in that area?

#FOO does not have metal data.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

SELECT * {

?Observation a foo:soilObservation ;

foo:containsMetal ?metal ;

foo:soilMetalConcentration ?metalConcentration ;

foo:horizon "Mineral"^^xsd:string .

?metal foo:metalType ?metalType .

# Specifying the location; replace with actual plantation coordinates

foo:plantation pos:latitude ?lat ;

pos:longitude ?long .

# Optional: Filter for significant metal concentration (adjust threshold as needed)

FILTER(?metalConcentration > 0)}

Listing 65 SPARQL Query for Question 65 label

CQ66: What are the chemicals, agrochemical concentrations in the soil of a certain area?

# To relate soil characteristics like totalC, totalN, soil pH, organicP, silt, clay, and

# sand to chemicals and agrochemical concentrations, we can integrate these components into

# a single SPARQL query. This query allows you to analyze the relationship

between agrochemical

# presence and soil properties at a specific location.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

# Soil observation with components and agrochemical data

?Observation a foo:soilObservation ;

foo:totalC ?totalC ;

foo:totalN ?totalN ;

foo:soilPH ?soilPH ;

foo:silt ?silt ;

foo:clay ?clay ;

foo:sand ?sand .
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# Specifying the location; replace with actual coordinates

foo:plantation pos:latitude ?lat ;

pos:longitude ?long .

# Optional Filters for meaningful thresholds

FILTER(?soilPH >= 5.5 && ?soilPH <= 7.5) # Neutral pH range

FILTER(?totalC > 2) # Significant carbon content

}

Listing 66 SPARQL Query for Question 66 label

CQ67: Does the soil in location X contain disease pathogens?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

# Soil observation with components and agrochemical data

?Observation a foo:soilObservation ;

foo:totalC ?totalC ;

foo:totalN ?totalN ;

foo:soilPH ?soilPH ;

foo:silt ?silt ;

foo:clay ?clay ;

foo:sand ?sand .

# Specifying the location; replace with actual coordinates

foo:plantation pos:latitude ?lat ;

pos:longitude ?long .

# Optional Filters for conditions potentially supporting pathogens

FILTER(?soilPH < 6.5 || ?soilPH > 7.5) # Favorable pH for pathogens

(e.g., acidic or alkaline soils)

FILTER(?totalC > 2) # High organic content, which can support pathogen growth

FILTER(?silt + ?clay > 50) # Fine-textured soils with high water retention}

Listing 67 SPARQL Query for Question 67 label

CQ68: Which area needs pesticide spraying?

# To determine which area needs pesticide spraying,

# you would typically assess the soil and environmental

# conditions that favor pests or pathogens, or analyze data

# indicating pest infestations. If we do not have direct pest data,

we can infer risk areas based on environmental
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# factors (e.g., soil properties, pathogen risks, crop types).

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

# Soil observations and location data

?observation a foo:soilObservation ;

foo:soilPH ?soilPH ;

foo:inorganicP ?organicP ;

foo:silt ?silt ;

foo:clay ?clay ;

foo:sand ?sand ;

foo:site ?site .

# Inference of risk level based on soil properties and environmental factors

BIND(

IF(?soilPH < 6.5 || ?soilPH > 7.5 || ?organicP > 1.5 || (?silt + ?clay > 50),

"High Risk", "Low Risk") AS ?riskLevel)

# Filter for high-risk areas that may need pesticide spraying

FILTER(?riskLevel = "High Risk")}

Listing 68 SPARQL Query for Question 68 label

CQ69: What is the soil moisture level in a specific location?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

# Soil observations with moisture and clay content

?observation a foo:soilObservation ;

foo:clay ?clay ;

foo:site ?site.

# # Specify the target location; replace with actual coordinates

# FILTER (?lat = SPECIFIC_LATITUDE^^xsd:decimal && ?long =

SPECIFIC_LONGITUDE^^xsd:decimal)}

Listing 69 SPARQL Query for Question 69 label

CQ70: What is the presence of minerals in the soil?
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PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *{

?observation a foo:soilObservation;

foo:site ?site ;

foo:horizon "Mineral".}

Listing 70 SPARQL Query for Question 70 label

CQ71: Are there signs of heavy metal in the soil?

#FOO does not have metal data.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

SELECT * {

?Observation a foo:soilObservation ;

foo:containsMetal ?metal ;

foo:soilMetalConcentration ?metalConcentration ;

foo:horizon "Mineral"^^xsd:string .}

Listing 71 SPARQL Query for Question 71 label

CQ72: Where are the salt licks located?

# Danum Valley Conservation Area has saltlicks

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

SELECT * {

?Observation a foo:soilObservation ;

foo:site "Danum Valley Conservation Area";

foo:horizon ?horizon .}

Listing 72 SPARQL Query for Question 72 label

CQ73: What are the mineral and salt concentrations in the soil that indicate the presence of salt licks
in a particular location?
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PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

# Soil observations and associated data

?observation a foo:soilObservation ;

foo:site ?site ;

foo:totalP ?Phosphours ;

foo:totalC ?Calcium .

# Filter for high mineral concentrations

(indicative of salt licks or significant deposits)

FILTER (

(?Calcium >= 300) ||

(?Phosphours >= 100))}

Listing 73 SPARQL Query for Question 73 label

CQ74: What is the pH level in the soil?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

# Soil observation with components and agrochemical data

?Observation a foo:soilObservation ;

foo:soilPH ?soilPH. }

Listing 74 SPARQL Query for Question 74 label

CQ75: What is the temperature reading from the soil sensor?

# FOO soil data do not contain temperature. GPS data do.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

?Observation a foo:soilObservation ;

foo:temperature ?temperature .}

Listing 75 SPARQL Query for Question 75 label
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CQ76: What is the soil moisture in a certain location?

# FOO does not contain soil moisture

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

?observation a foo:soilObservation ;

?p ?o ;

?p1 ?o2. }

Listing 76 SPARQL Query for Question 76 label

CQ77: Is the soil in this area healthy for animals?

# To determine whether the soil in a specific area is healthy for animals,

# the query should assess soil health metrics (e.g., pH) that influence animal health.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT *{

# Soil observations

?observation a foo:soilObservation ;

foo:site ?site ;

foo:soilPH ?soilPH ;

foo:totalP ?totalP ;

foo:totalC ?totalC .

# Soil health assessment

BIND(

IF(?soilPH >= 6.0 && ?soilPH <= 7.5 &&

?totalP > 50 && ?totalC > 2, "Healthy", "Unhealthy") AS ?healthStatus)}

Listing 77 SPARQL Query for Question 77 label

CQ78: Is the soil fertile in this area?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>
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PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT *

{# Soil observations

?observation a foo:soilObservation ;

foo:site ?site ;

foo:soilPH ?soilPH ;

foo:totalN ?totalN ;

foo:totalP ?totalP ;

foo:totalC ?totalC ;

foo:silt ?silt ;

foo:clay ?clay ;

foo:sand ?sand .

# Soil fertility assessment

BIND(

IF(

(?soilPH >= 6.0 && ?soilPH <= 7.5) && # Optimal pH range

(?totalN > 0.2) && # Minimum nitrogen content

(?totalP > 50) && # Minimum phosphorus content

(?totalC > 2) && # Adequate organic carbon

(?silt + ?clay + ?sand = 100), # Ensure valid soil texture percentages

"Fertile",

"Infertile"

) AS ?fertilityStatus

)

}

Listing 78 SPARQL Query for Question 78 label

CQ79: What is the moisture rate of the soil in this area (i.e., provide geolocation)?

# FOO needs location and soil moisture data

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT *{

# Soil observations with moisture and location data

?observation a foo:soilObservation ;

foo:soilMoisture ?soilMoisture ;

foo:site ?Site ;

pos:latitude ?latitude ;

pos:longitude ?longitude .
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# Filter for a specific geolocation; replace with actual coordinates

FILTER(?latitude = SPECIFIC_LATITUDE^^xsd:decimal && ?longitude

= SPECIFIC_LONGITUDE^^xsd:decimal)}

Listing 79 SPARQL Query for Question 79 label

CQ80: Where to plant crops for elephants (i.e., soil moisture rates)?

# FOO needs location and soil moisture data

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT * {

# Soil observations with location and moisture data

?Observation a foo:soilObservation ;

foo:soilPH ?soilPH ;

foo:silt ?silt ;

foo:clay ?clay ;

foo:sand ?sand ;

foo:site ?site .

# Filter for soil pH suitable for crops (e.g., 6.0-7.5)

FILTER(?soilPH >= 6.0 && ?soilPH <= 7.5)

# Ensure valid soil texture percentages (silt + clay + sand = 100)

FILTER((?silt + ?clay + ?sand) = 100)}

Listing 80 SPARQL Query for Question 80 label

CQ81: Could planting in safer areas (healthy soil) influence animal movements?

# Hypothesis:

# Planting in areas with healthy soil

(based on pH, organic content, nutrients, and absence of toxins)

encourages animal movement towards those areas due to:

# Availability of Nutritious Forage:

Plants grown in healthy soil are more palatable and nutrient-rich,

which attracts herbivores like elephants.

#Proximity to Resources: Healthy soil retains water better,

fostering consistent vegetation even during dry seasons,

influencing animal migration or foraging behavior.

#Avoidance of Toxicity: Healthy soil reduces risks of harmful elements

(e.g., heavy metals) affecting vegetation quality and animal health.
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PREFIX foo: <https://w3id.org/def/foo#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

# elephant movement observations

?movement a foo:gPSObservation ;

foo:hasFeatureOfInterest ?elephant;

foo:madeBySensor ?sensor ;

foo:localTime ?movementTime ;

pos:latitude ?latitude ;

pos:longitude ?longitude .

# Soil health data for planting sites

?soil a foo:soilObservation ;

foo:soilPH ?soilPH ;

foo:totalC ?totalC ;

foo:totalP ?totalP .

# Filter for healthy soil characteristics

FILTER(?soilPH >= 6.0 && ?soilPH <= 7.5) # Optimal soil pH

FILTER(?totalC > 2) # Sufficient organic carbon

FILTER(?totalP > 50) # Adequate phosphorus

}

Listing 81 SPARQL Query for Question 81 label

CQ82: Could we predict crop yield based on soil data?

# FOO needs crop data.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

# Soil observations

?observation a foo:soilObservation ;

foo:site ?site ;

foo:soilPH ?soilPH ;

foo:totalN ?totalN ;

foo:totalP ?totalP ;

foo:totalK ?totalK ;

foo:totalC ?totalC ;

foo:silt ?silt ;

foo:clay ?clay ;
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foo:sand ?sand .

# Crop data

?plantingSite a foo:PlantingSite ;

foo:cropType ?cropType ;

pos:latitude ?latitude ;

pos:longitude ?longitude .

# Soil fertility assessment

BIND(

IF(

(?soilPH >= 6.0 && ?soilPH <= 7.5) && # Optimal soil pH

(?totalN > 0.2) && # Sufficient nitrogen

(?totalP > 50) && # Sufficient phosphorus

(?totalC > 2) && # Sufficient organic carbon

(?silt + ?clay + ?sand = 100), # Valid soil texture

"Fertile",

"Infertile"

) AS ?fertilityStatus

)

# Predicted crop yield (simplified prediction logic for demonstration)

BIND(

IF(

?fertilityStatus = "Fertile" && ?soilMoisture >= 20 && ?soilMoisture <= 35,

"High Yield",

"Low Yield"

) AS ?predictedYield

)

}

Listing 82 SPARQL Query for Question 82 label

CQ83: What soil metrics help us predict floods?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT * {

# Soil observations with key metrics

?observation a foo:soilObservation ;

foo:site ?site ;

foo:soilPH ?soilPH ;

foo:totalN ?totalN ;

foo:totalP ?totalP ;
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foo:totalC ?totalC ;

foo:silt ?silt ;

foo:clay ?clay ;

foo:sand ?sand .

# Calculating flood risk based on soil texture and organic carbon

BIND(

IF(

(?clay > 40 && ?sand < 20) || # High clay content indicates poor drainage

(?silt > 40) || # Silt-heavy soils can lead to surface runoff

(?totalC < 2), # Low organic carbon reduces water retention

"High Risk",

"Low Risk"

) AS ?floodRisk

)

}

Listing 83 SPARQL Query for Question 83 label

CQ84: What are the metrics of healthy soil with less/no chemical pollution from oil palm plantations?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

# Soil observations

?observation a foo:soilObservation ;

foo:site ?Site ;

foo:soilPH ?soilPH ;

foo:totalC ?totalC ;

foo:totalN ?totalN ;

foo:totalP ?totalP ;

foo:silt ?silt ;

foo:clay ?clay ;

foo:sand ?sand .

# Oil Palm Plantation locations

foo:plantation a foo:OilPalmPlantation ;

pos:latitude ?plantationLat;

pos:longitude ?plantationLong.

# Soil health assessment

BIND(

IF(

(?soilPH >= 6.0 && ?soilPH <= 7.5) && # Healthy pH range
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(?totalC > 2) && # Sufficient organic carbon

(?totalN > 0.2) && # Adequate nitrogen

(?totalP > 50), # Adequate phosphorus

"Healthy", # Health classification

"Polluted"

) AS ?healthStatus

)

}

Listing 84 SPARQL Query for Question 84 label

CQ85: Why do elephants not like to walk on wet soil (movement prediction)?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

# Soil observations with elevation and soil metrics

?soilObservation a foo:soilObservation ;

foo:site ?Site ;

foo:clay ?clay .

# GPS elephant movements and elevations

?ElephantObservation a foo:gPSObservation ;

foo:altitude ?elevation ;

pos:latitude ?latitude ;

pos:longitude ?longitude .

# # Predict movement probability based on elevation and soil metrics

BIND(

IF(

(?clay > 40 || ?elevation < 50), # Wet, clay-heavy, or low elevation

"Low", # Low probability of movement

"High" # High probability of movement

) AS ?movementProbability

)

}

Listing 85 SPARQL Query for Question 85 label

CQ86: What are the chemical levels of the soil in Protected Area 1?
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# Let Protected Area 1 be "Maliau Basin Conservation Area"

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

# Soil observations in Protected Area 1

?observation a foo:soilObservation ;

foo:site ?site;

foo:totalN ?totalN ;

foo:totalP ?totalP ;

foo:totalC ?totalC .

# Filter for Protected Area 1 (replace with actual identifier or coordinates)

FILTER(?site = "Maliau Basin Conservation Area")

}

Listing 86 SPARQL Query for Question 86 label

CQ87: What are the soil nutrient levels?

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX foo: <https://w3id.org/def/foo#>

SELECT *

{?observation a foo:soilObservation ;

foo:site ?site ;

foo:totalN ?totalN ;

foo:totalP ?totalP ;

foo:totalC ?totalC .

FILTER (STRSTARTS(STR(?site), "D")) # search for sites }

Listing 87 SPARQL Query for Question 87 label

CQ88: What is the effect of moisture on nutrients and oxygen levels?

# Let Protected Area 1 be "Maliau Basin Conservation Area"

# neagtive correlation of -0.999

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT
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(SUM(?moistureLevel * ?oxygenLevel) AS ?sumXY)

(SUM(?moistureLevel) AS ?sumX)

(SUM(?oxygenLevel) AS ?sumY)

(SUM(?moistureLevel * ?moistureLevel) AS ?sumX2)

(SUM(?oxygenLevel * ?oxygenLevel) AS ?sumY2)

(COUNT(?moistureLevel) AS ?n)

((?n * ?sumXY - ?sumX * ?sumY) /

SQRT((?n * ?sumX2 - ?sumX * ?sumX) * (?n * ?sumY2 - ?sumY * ?sumY)) AS ?correlation)

{

?observation a foo:soilObservation ;

foo:site ?site ;

foo:soilPH ?soilPH ;

foo:totalC ?totalC ;

foo:totalN ?totalN ;

foo:totalP ?totalP .

# Calculate moisture level

BIND((?totalC * 0.8 + ?totalN * 0.5 + ?totalP * 0.3 + (7 - ABS(?soilPH - 7)) * 0.2)

AS ?moistureLevel)

# Calculate oxygen level

BIND((20 - (?moistureLevel * 0.6) + (?totalC * 0.3) - (ABS(?soilPH - 7) * 0.4))

AS ?oxygenLevel)}

Listing 88 SPARQL Query for Question 88 label

CQ89: What is the ideal soil moisture rate for an elephant to give birth?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT

?site

?soilPH

?totalC

?totalN

?totalP

((?totalC * 0.8 + ?totalN * 0.5 + ?totalP * 0.3 + (7 - ABS(?soilPH - 7)) * 0.2)

AS ?soilMoisture)

{

# Soil observations

?observation a foo:soilObservation ;

foo:site ?site ;

foo:soilPH ?soilPH ;

foo:totalC ?totalC ;
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foo:totalN ?totalN ;

foo:totalP ?totalP .

# Filter for ideal soil moisture range suitable for elephant births (20-35 is the range)

FILTER(

(?totalC * 0.8 + ?totalN * 0.5 + ?totalP * 0.3 + (7 - ABS(?soilPH - 7)) * 0.2) >= 20

&&

(?totalC * 0.8 + ?totalN * 0.5 + ?totalP * 0.3 + (7 - ABS(?soilPH - 7)) * 0.2) <= 35

)

}

Listing 89 SPARQL Query for Question 89 label

CQ90: What are the soil conditions in areas that have elephant grass?

# FOO needs to bind them with common geo-locations.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

# Soil observations with elevation and soil metrics

?soilObservation a foo:soilObservation ;

foo:site ?Site ;

foo:clay ?clay .

# areas with elephant grass

?vegObservation a foo:treeObservation ;

foo:date ?date ;

foo:id ?id ;

foo:treeID ?treeID ;

foo:treeIndividualNo ?treeindividual ;

foo:treeNLianas ?treeN;

foo:treeNotes ?treeNotes. }

Listing 90 SPARQL Query for Question 90 label

CQ91: How to conserve suitable soils for the elephants to have food in the future (e.g., reduce the use
of fertilizer)?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
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SELECT DISTINCT

?site

?soilPH

?totalC

?totalN

?totalP

((?totalC * 0.8 + ?totalN * 0.5 + ?totalP * 0.3 + (7 - ABS(?soilPH - 7)) * 0.2)

AS ?soilFertility)

WHERE {

# Soil observations

?observation a foo:soilObservation ;

foo:site ?site ;

foo:soilPH ?soilPH ;

foo:totalC ?totalC ;

foo:totalN ?totalN ;

foo:totalP ?totalP .

# Filter for high-fertility soils

FILTER((?totalC * 0.8 + ?totalN * 0.5 + ?totalP * 0.3 + (7 - ABS(?soilPH - 7))

* 0.2) >= 25)}

ORDER BY DESC((?totalC * 0.8 + ?totalN * 0.5 + ?totalP * 0.3 + (7 - ABS(?soilPH - 7)) * 0.2))

Listing 91 SPARQL Query for Question 91 label

CQ92: What soil moisture do elephants spend most time on?

# Based on palm leaves (food) and logged urban areas (oil palm plantation).

Query took 300959ms to run.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT

?elephant

?lat

?long

?plantationLat

?plantationLong

?distanceToPlantation

?site

?soilPH

?totalC

?totalN

?totalP

((?totalC * 0.8 + ?totalN * 0.5 + ?totalP * 0.3 +
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(7 - ABS(?soilPH - 7)) * 0.2) AS ?soilMoisture)

WHERE {

# Elephant GPS observations

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest foo:jasmin;

pos:latitude ?lat;

pos:longitude ?long.

# Oil Palm Plantation locations

foo:plantation a foo:OilPalmPlantation;

pos:latitude ?plantationLat;

pos:longitude ?plantationLong.

# Calculate approximate distance between elephant and plantation

BIND(

111.32 * SQRT(

POW((?lat - ?plantationLat), 2) + POW((?long - ?plantationLong), 2)

) AS ?distanceToPlantation

)

# Soil observations

?soilObservation a foo:soilObservation;

foo:site ?site;

foo:soilPH ?soilPH;

foo:totalC ?totalC;

foo:totalN ?totalN;

foo:totalP ?totalP.

# Link soil observations to elephant observations

FILTER(

?distanceToPlantation < 5 # Assuming 5 km radius for proximity to plantation

)

}

ORDER BY ASC(?distanceToPlantation) DESC(?soilMoisture)

Listing 92 SPARQL Query for Question 92 label

CQ93: What do elephants eat? Provide one example for each area with elephant grass (Napier),
other grass, bark, palm shoots, young leaves, trunks, soft plants, bananas?

# FOO needs elephant food types data (Future Work)

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT

?elephant
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?lat

?long

?plantationLat

?plantationLong

?distanceToPlantation

?site

?soilPH

?totalC

?totalN

?totalP

?foodType

(SAMPLE(?foodExample) AS ?example)

((?totalC * 0.8 + ?totalN * 0.5 + ?totalP * 0.3 + (7 - ABS(?soilPH - 7)) * 0.2)

AS ?soilMoisture)

{

?observation a foo:gPSObservation;

foo:hasFeatureOfInterest ?elephant;

pos:latitude ?lat;

pos:longitude ?long.

# Oil Palm Plantation locations

foo:plantation a foo:OilPalmPlantation;

pos:latitude ?plantationLat;

pos:longitude ?plantationLong.

# Calculate approximate distance between elephant and plantation

BIND(

111.32 * SQRT(

POW((?lat - ?plantationLat), 2) + POW((?long - ?plantationLong), 2)

) AS ?distanceToPlantation )

# Soil observations

?soilObservation a foo:soilObservation;

foo:site ?site;

foo:soilPH ?soilPH;

foo:totalC ?totalC;

foo:totalN ?totalN;

foo:totalP ?totalP.

# Feeding observations

?feedingObservation a foo:FeedingObservation;

foo:hasFeatureOfInterest ?elephant;

foo:consumes ?foodExample.

# Link food example to type

?foodExample foo:foodType ?foodType.

# Filter for specific food types

FILTER(?foodType IN (
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"elephant grass",

"other grass",

"bark",

"palm shoots",

"young leaves",

"trunks",

"soft plants",

"bananas" ))

# Link soil observations to elephant observations

FILTER(?distanceToPlantation < 10) # Assuming 10 km radius for proximity to plantation}

GROUP BY ?elephant ?lat ?long ?plantationLat ?plantationLong ?distanceToPlantation

?site ?soilPH ?totalC ?totalN ?totalP ?foodType

ORDER BY ASC(?distanceToPlantation) DESC(?soilMoisture)

Listing 93 SPARQL Query for Question 93 label

CQ94: Where do bamboo shoots grow?

# FOO requires :Bamboo Plantation informantion

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

?bambooPlantation a foo:BambooPlantation ;

pos:latitude ?latitude ;

pos:longitude ?longitude .}

Listing 94 SPARQL Query for Question 94 label

CQ95: Where could we find areas with the inner trunk of oil palms?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT * {

?oilpalm a foo:OilPalmPlantation;

pos:latitude ?latitude ;

pos:longitude ?longitude .}

Listing 95 SPARQL Query for Question 95 label
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CQ96: Where could we find areas with broad leaves?

# In Danum Valley Conservation Area and Maliau Basin

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

{

?area a foo:treeObservation ;

foo:siteName ?site;

FILTER(regex(?site, "Danum|Maliau Basin", "i"))

}

Listing 96 SPARQL Query for Question 96 label

CQ97: Where could we find areas with vines?

# In Kinabatangan River Basin

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

{

?area a foo:treeObservation ;

foo:siteName ?site;

FILTER(regex(?site, "Kinabatangan River Basin", "i"))

}

Listing 97 SPARQL Query for Question 97 label

CQ98: How can vegetation and site habitat information help understand the future patterns/locations
of elephants?

PREFIX foo: <http://w3id.org/def/foo#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX unit: <http://www.opengis.net/def/uom/OGC/1.0/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>
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SELECT * {

?s a foo:gPSObservation;

foo:longitude ?long;

foo:latitude ?lat.

BIND(STRDT(CONCAT('POINT(', STR(?long), ' ', STR(?lat), ')'), geo:wktLiteral) AS ?geom)

BIND(STRDT('POINT(118.33 5.42)', geo:wktLiteral) AS ?targetGeom)

# FILTER(geof:distance(?geom, ?targetGeom, unit:Meter) < 10000)}

Listing 98 SPARQL Query for Question 98 label

CQ99: Do elephants drink lots of water?

# FOO needs water source data

PREFIX foo: <http://w3id.org/def/foo#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX unit: <http://www.opengis.net/def/uom/OGC/1.0/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

SELECT ?elephant ?name ?waterConsumption ?waterSource ?distance ?latitude ?longitude

{

?elephant a foo:gPSObservation ;

foo:name ?name ;

foo:dailyWaterConsumption ?waterConsumption ;

pos:latitude ?latitude ;

pos:longitude ?longitude ;

foo:nearbyWaterSource ?waterSource .

?waterSource a foo:WaterSource ;

pos:latitude ?waterLat ;

pos:longitude ?waterLong .

BIND(geof:distance(?latitude, ?longitude, ?waterLat, ?waterLong) AS ?distance)

FILTER(?distance < 5000) # Only elephants within 5 km of a water source

OPTIONAL {

?elephant foo:waterNeeds ?waterNeeds .}

}

Listing 99 SPARQL Query for Question 99 label

CQ100: Where do we find fruit farms in Lower Kinabatangan?

# FOO can be expanded with agriculture data (fruits) near Kinabatangan River.

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>
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PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX unit: <http://www.opengis.net/def/uom/OGC/1.0/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

SELECT ?farm ?farmName ?fruitType ?latitude ?longitude

{?farm a foo:FruitFarm ;

foo:name ?farmName ;

foo:produces ?fruitType ;

pos:latitude ?latitude ;

pos:longitude ?longitude ;

geo:nearby foo:KinabatanganRiver .

?fruitType a foo:Fruit .

FILTER(regex(?farmName, "Lower Kinabatangan", "i"))}

Listing 100 SPARQL Query for Question 100 label

CQ101: What areas have fewer trees?

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

{?observation a foo:treeObservation;

foo:treeID ?treeID ;

foo:lianaDbhCm ?lianaDbhCm ;

foo:treeDbhCm ?treeDbhCm ;

foo:treeHeightM ?treeHeightM ;

foo:treeNLianas ?treeNLianas ;

foo:siteName ?siteName ;

foo:plotNo ?plotNo .

FILTER(?treeNLianas < 2) # Filter for trees with fewer than 2 lianas}

Listing 101 SPARQL Query for Question 101 label

CQ102: What plant species should be conserved in the areas the elephants visit?

# Vegetation data require geo-location information.

PREFIX foo: <http://w3id.org/def/foo#>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

SELECT *

{# GPS observation identifies areas elephants visit

?observation a foo:gPSObservation;
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foo:hasFeatureOfInterest ?elephant;

pos:latitude ?lat;

pos:longitude ?long.

# Tree observations in the same area

?treeobservation a foo:treeObservation;

foo:treeID ?treeID ;

foo:lianaDbhCm ?lianaDbhCm ;

foo:treeDbhCm ?treeDbhCm ;

foo:treeHeightM ?treeHeightM ;

foo:treeNLianas ?treeNLianas ;

foo:siteName ?siteName ;

foo:plotNo ?plotNo ;

pos:latitude ?lat;

pos:longitude ?long.}

ORDER BY ?lat ?long

Listing 102 SPARQL Query for Question 102 label

CQ103: What plant species effected by deforestation?

# FOO does not contain deforestation data.

PREFIX foo: <http://w3id.org/def/foo#>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

SELECT DISTINCT ?plantSpecies ?deforestedArea ?impactLevel

WHERE {

# Identify areas affected by deforestation

?area foo:hasDeforestationStatus "Deforested" ;

foo:impactLevel ?impactLevel .

# Link plant species to these areas

?area foo:containsPlant ?plant .

?plant foo:speciesName ?plantSpecies .

# Optional: Include additional details like region or deforestation cause

OPTIONAL {

?area foo:region ?deforestedArea .

}

}

ORDER BY ?impactLevel ?plantSpecies

Listing 103 SPARQL Query for Question 103 label

CQ104: Which plant species are cultivated by the Grow Borneo project?
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PREFIX foo: <http://w3id.org/def/foo#>

SELECT ?species

{

?species a foo:Tree ;

foo:isPlantedIn foo:growBorneo .

}

Listing 104 SPARQL Query for Question 104 label

CQ105: How many trees has the Grow Borneo project planted in the last five years?

# Tree count data are not available in FOO as of 2024.

PREFIX foo: <http://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT (SUM(?count) AS ?totalTrees)

{

?plantingEvent foo:isPartOfProject foo:growBorneo ;

foo:year ?year ;

foo:treeCount ?count .

FILTER(?year >= xsd:date("2019-01-01"))

}

Listing 105 SPARQL Query for Question 105 label

CQ105: Semantic Rule Language (SWRL) rule for hazard alert

INSERT {

?s a <https://w3id.org/def/foo#gPSObservation>;

<https://w3id.org/def/foo#hazard> ?hazard.

}

WHERE {

?s a <https://w3id.org/def/foo#gPSObservation>;

<https://w3id.org/def/foo#localDate> ?data ;

<https://w3id.org/def/foo#localTime> ?time ;

<http://www.w3.org/2003/01/geo/wgs84_pos#latitude> ?lat;

<http://www.w3.org/2003/01/geo/wgs84_pos#longitude> ?long.

# Retrieve plantation details

<https://w3id.org/def/foo#plantation> a <https://w3id.org/def/foo#OilPalmPlantation>;

<http://www.w3.org/2003/01/geo/wgs84_pos#latitude> ?plantationLat;

<http://www.w3.org/2003/01/geo/wgs84_pos#longitude> ?plantationLong.

# Convert coordinates to float (if stored as literals)
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BIND(xsd:float(?lat) AS ?latitude)

BIND(xsd:float(?long) AS ?longitude)

BIND(xsd:float(?plantationLat) AS ?oilpalmLat)

BIND(xsd:float(?plantationLong) AS ?oilpalmLong)

# Calculate distance using the Haversine formula

BIND(6371 * 2 * ASIN(SQRT(

POW(SIN((?latitude - ?oilpalmLat) * PI() / 180 / 2), 2) +

COS(?oilpalmLat * PI() / 180) * COS(?latitude * PI() / 180) *

POW(SIN((?longitude - ?oilpalmLong) * PI() / 180 / 2), 2)

)) AS ?distance)

# Determine poaching based on the calculated distance

BIND(IF(?distance <= 5, 1, 0) AS ?hazard. }

Listing 106 SWRL for hazard alert label
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Open Data Sensor Data

Natural Language Statements (NLSs) reflected in FOO So
il

Ve
g

G
PS

Im
ag

e

NLS1 Tracking elephant locations so that the wildlife department can give warnings to local people
about the arrival of elephants.

* *

NLS2 Examples of areas with elephant grass (Nappier), other grasses, bark, palm shoots, young leaf
trunks, soft plants, and bananas.

*

NLS3 Focus on the area of Lower Kinabatangan and the 14 collared elephants living there. *
NLS 4 Collared elephants will not go to primary forest sites. * *
NLS5 The datasets in this research could be used to generate predictions. *
NLS6 Elephants do not intend to cause damage. It may occur when their strong and huge bodies
come in contact with things.

* *

NLS 7 Nearly all wild pigs in the area of Kinabatangan died from influenza viruses.
NLS 8 There was a famous story about the rhino who lost one leg from poaching. It survived on
three legs for a long time.

*

NLS9 Female Asian elephants are tusk-less. * *
NL10 Male Asian elephants are more likely to explore human areas than females, attracted by food. *

Table 1 Natural language statements and what data set can fulfil the task.

NLS3: NLS3 Focus on the area of Lower Kinabatangan and the 14 collared elephants living there.

# 14 modelled elephants are Aqeela (Female), Liun (Female),

Jasmin (Female), Putut (Female), Puteri (Female),

# Ita (Female), Sejati (Male), Sandi (Female),

Kasih (Female), Gading (Male), Ratu (Female),

Koyah (Female), Girang (Female-poisoned), Sandy (Male-found dead).

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foo: <https://w3id.org/def/foo#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

{

?elephants a foo:ElephasMaximus;

foo:location ?location.

# Filter to focus on Lower Kinabatangan

FILTER regex(?location, "Lower Kinabatangan", "i")

}

Listing 107 SPARQL Query for Question 105 label

SWRL01: SWRL Rule in Turtle format: Detect Poaching Observations Near Oil Palm Plantations

@prefix foo: <https://w3id.org/def/foo#> .

@prefix swrl: <http://www.w3.org/2003/11/swrl#> .

@prefix swrlb: <http://www.w3.org/2003/11/swrlb#> .
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@prefix pos: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

### Define the SWRL Rule ###

foo:NearPlantationRule a swrl:Imp ;

swrl:body (

[ a swrl:ClassAtom ;

swrl:classPredicate foo:gPSObservation ;

swrl:argument1 ?s

]

[ a swrl:DatavaluedPropertyAtom ;

swrl:propertyPredicate pos:latitude ;

swrl:argument1 ?s ;

swrl:argument2 ?lat

]

[ a swrl:DatavaluedPropertyAtom ;

swrl:propertyPredicate pos:longitude ;

swrl:argument1 ?s ;

swrl:argument2 ?long

]

[ a swrl:ClassAtom ;

swrl:classPredicate foo:OilPalmPlantation ;

swrl:argument1 ?plantation

]

[ a swrl:DatavaluedPropertyAtom ;

swrl:propertyPredicate pos:latitude ;

swrl:argument1 ?plantation ;

swrl:argument2 ?plantationLat

]

[ a swrl:DatavaluedPropertyAtom ;

swrl:propertyPredicate pos:longitude ;

swrl:argument1 ?plantation ;

swrl:argument2 ?plantationLong

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:subtract ;

swrl:arguments (?latDiff ?lat ?plantationLat)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:subtract ;

swrl:arguments (?longDiff ?long ?plantationLong)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:multiply ;
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swrl:arguments (?latRadDiff ?latDiff 3.14159)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:divide ;

swrl:arguments (?latRadDiff ?latRadDiff 180)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:multiply ;

swrl:arguments (?longRadDiff ?longDiff 3.14159)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:divide ;

swrl:arguments (?longRadDiff ?longRadDiff 180)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:sin ;

swrl:arguments (?sinLatDiffHalf (/ ?latRadDiff 2))

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:sin ;

swrl:arguments (?sinLongDiffHalf (/ ?longRadDiff 2))

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:pow ;

swrl:arguments (?sinLatDiffHalfSq ?sinLatDiffHalf 2)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:pow ;

swrl:arguments (?sinLongDiffHalfSq ?sinLongDiffHalf 2)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:cos ;

swrl:arguments (?cosLat1 (/ ?lat 180 * 3.14159))

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:cos ;

swrl:arguments (?cosLat2 (/ ?plantationLat 180 * 3.14159))

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:multiply ;

swrl:arguments (?cosMult ?cosLat1 ?cosLat2)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:add ;
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swrl:arguments (?haversine ?sinLatDiffHalfSq ?cosMult)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:sqrt ;

swrl:arguments (?sqrtHaversine ?haversine)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:asin ;

swrl:arguments (?asinHaversine ?sqrtHaversine)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:multiply ;

swrl:arguments (?distance 6371 * 2 ?asinHaversine)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:lessThanOrEqual ;

swrl:arguments (?distance 5)

]

) ;

swrl:head (

[ a swrl:DatavaluedPropertyAtom ;

swrl:propertyPredicate foo:poaching ;

swrl:argument1 ?s ;

swrl:argument2 true

]

) .

Listing 108 SWRL Rule label

SWRL02: SWRL Rule: Identify GPS Observations Near Oil Palm Plantations as Hazard Areas

@prefix foo: <https://w3id.org/def/foo#> .

@prefix swrl: <http://www.w3.org/2003/11/swrl#> .

@prefix swrlb: <http://www.w3.org/2003/11/swrlb#> .

@prefix pos: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

### Define the SWRL Rule ###

foo:GPSObservationToPlantationHazardRule a swrl:Imp ;

swrl:body (

[ a swrl:ClassAtom ;

swrl:classPredicate foo:gPSObservation ;

swrl:argument1 ?observation
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]

[ a swrl:DatavaluedPropertyAtom ;

swrl:propertyPredicate pos:latitude ;

swrl:argument1 ?observation ;

swrl:argument2 ?obsLat

]

[ a swrl:DatavaluedPropertyAtom ;

swrl:propertyPredicate pos:longitude ;

swrl:argument1 ?observation ;

swrl:argument2 ?obsLong

]

[ a swrl:ClassAtom ;

swrl:classPredicate foo:OilPalmPlantation ;

swrl:argument1 ?plantation

]

[ a swrl:DatavaluedPropertyAtom ;

swrl:propertyPredicate pos:latitude ;

swrl:argument1 ?plantation ;

swrl:argument2 ?plantationLat

]

[ a swrl:DatavaluedPropertyAtom ;

swrl:propertyPredicate pos:longitude ;

swrl:argument1 ?plantation ;

swrl:argument2 ?plantationLong

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:subtract ;

swrl:arguments (?latDiff ?obsLat ?plantationLat)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:subtract ;

swrl:arguments (?longDiff ?obsLong ?plantationLong)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:pow ;

swrl:arguments (?latDiffSq ?latDiff 2)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:pow ;

swrl:arguments (?longDiffSq ?longDiff 2)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:add ;

swrl:arguments (?geoDistSq ?latDiffSq ?longDiffSq)
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]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:sqrt ;

swrl:arguments (?geoDistance ?geoDistSq)

]

[ a swrl:BuiltInAtom ;

swrl:builtin swrlb:lessThanOrEqual ;

swrl:arguments (?geoDistance 5)

]

) ;

swrl:head (

[ a swrl:ClassAtom ;

swrl:classPredicate foo:HazardArea ;

swrl:argument1 ?observation

]

) .

Listing 109 SWRL Rule label
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.4 Appendix II: Forest Observatory Ontology (FOO)
@prefix cc: <http://creativecommons.org/ns#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix foo: <https://w3id.org/def/foo#> .

@prefix ns1: <http://data.bioontology.org/metadata/> .

@prefix ns2: <http://www.w3.org/2003/06/sw-vocab-status/ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix pos: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix prov: <http://www.w3.org/ns/prov#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix schema: <https://schema.org/> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix sosa: <http://www.w3.org/ns/sosa/> .

@prefix vann: <http://purl.org/vocab/vann/> .

@prefix wo: <https://www.bbc.co.uk/ontologies/wildlife-ontology#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

### Ontology Declaration ###

foo: a owl:Ontology ;

cc:license <http://creativecommons.org/licenses/by-sa/4.0/> ;

dc:abstract "The Forest Observatory Ontology (FOO) comprises a novel

ontology that integrates wildlife data generated by sensors.

FOO borrows classes and properties from SOSA and

BBC wildlife ontology."@en ;

dc:contributor [

foaf:name "Professor Omer Rana"@en ;

foaf:homepage <https://profiles.cardiff.ac.uk/staff/ranaof> ;

schema:identifier <https://orcid.org/0000-0003-3597-2646>

],

[

foaf:name "Dr. Pablo Orozco-terWengel"@en ;

foaf:homepage <profiles.cardiff.ac.uk/staff/orozco-terwengelpa> ;

schema:identifier <orcid.org/0000-0002-7951-4148>

],

[

foaf:name "Professor Benoit Goossens"@en ;

foaf:homepage <profiles.cardiff.ac.uk/staff/goossensbr> ;

schema:identifier <https://orcid.org/0000-0003-2360-4643>

],

[

foaf:name "Dr. Charith Perera"@en ;
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foaf:homepage <profiles.cardiff.ac.uk/staff/pererac> ;

schema:identifier <https://orcid.org/0000-0002-0190-3346>

] ;

dc:creator [

foaf:name "Naeima Hamed"@en ;

foaf:homepage <cardiff.ac.uk/people/research-students/

view/2501164-hamed-naeima> ;

schema:identifier <orcid.org/0000-0002-2998-5056>

] ;

dc:description "This ontology describes wildlife observations

generated by sensors."@en ;

dc:title "Forest Observatory Ontology (FOO)"@en ;

dcterms:issued "2024-06-01"^^xsd:date ;

dcterms:license <http://creativecommons.org/licenses/by-sa/4.0/> ;

dcterms:publisher <https://ontoology.linkeddata.es/> ;

vann:preferredNamespacePrefix "foo"@en ;

vann:preferredNamespaceUri "https://w3id.org/def/foo#" ;

owl:imports sosa: ;

owl:versionIRI foo:V2.0 ;

owl:versionInfo "BBC Wildlife Ontology Reused 26 June 2024" ;

prov:generatedAtTime "2024-06-01T00:00:00+00:00"^^xsd:dateTime ;

prov:wasAttributedTo <https://github.com/Naeima> ;

prov:wasDerivedFrom <https://ontology.forest-observatory.org> ;

schema:citation "Cite this vocabulary as: Hamed, N., Rana, O.,

Goossens, B., Orozco-terWengel, P., Perera, C. (2023).

FOO: An Upper-Level Ontology for the Forest Observatory.

In: Pesquita, C., et al. The Semantic Web: ESWC 2023

Satellite Events. ESWC 2023. Lecture Notes in Computer Science,

vol 13998. Springer, Cham. doi.org/10.1007/978-3-031-43458-7_29"@en ;

foaf:logo <github.com/Naeima/Forest-Observatory-Ontology/

blob/main/logo.png?raw=true> ;

dcterms:doi <https://doi.org/10.1007/978-3-031-43458-7_29> ;

ns2:status "Active" ;

rdfs:seeAlso <https://naeima.github.io/foo_html/> ;

rdfs:seeAlso <https://naeima.github.io/foo_html/index.ttl> .

### Provenance Information ###

<https://github.com/Naeima> a prov:Agent,

foaf:Person ;

foaf:affiliation "Cardiff University"@en ;

foaf:mbox <mailto:naeima.hamed@cardiff.ac.uk> ;

foaf:name "Naeima Hamed"@en .

<https://ontology.forest-observatory.org> a prov:Entity ;

dc:creator "Data Provider"@en ;
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dc:description "The dataset from which this ontology was derived."@en ;

dc:title "Source Dataset"@en ;

dcterms:created "2023-01-15"^^xsd:date .

<https://link.springer.com/chapter/10.1007/978-3-031-43458-7_29> a prov:Agent,

foaf:Organization ;

foaf:homepage <https://rdcu.be/dKNG2> ;

foaf:name "Springer, Cham"@en .

### FOO Classes (Reused from BBC Wildlife Ontology (wo)) ###

#### BBC Wildlife Ontology Taxonomic Classes ####

wo:Kingdom a owl:Class .

wo:Phylum a owl:Class .

wo:Class a owl:Class .

wo:Order a owl:Class .

wo:Family a owl:Class .

wo:Genus a owl:Class .

wo:Species a owl:Class .

wo:TaxonRank a owl:Class .

#### Kingdom ####

foo:Animalia a owl:Class ;

rdfs:label "Animalia"@en-gb ;

rdfs:subClassOf owl:Thing ;

owl:equivalentClass wo:Animalia ;

skos:definition "Animalia is the scientific grouping that

includes all animals.Scientists, historians, and others

classify similar things together,using a taxonomy."@en.

#### Phylum ####

foo:Chordata a owl:Class ;

rdfs:label "Chordata"@en-gb ;

rdfs:subClassOf foo:Animalia ;

owl:equivalentClass wo:Chordata ;

skos:definition "A large phylum of animals that includes

the vertebrates together with the sea squirts and lancelets.

They are distinguished by the possession of a notochord

at some stage during their development."@en .

#### Class ####

foo:Mammalia a owl:Class ;

rdfs:label "Mammalia"@en-gb ;

rdfs:subClassOf foo:Chordata ;

owl:equivalentClass wo:Mammalia ;

skos:definition "The highest class of the subphylum
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Vertebrata comprising humans and all other animals

that nourish their young with milk secreted by mammary glands."@en.

foo:Reptilia a owl:Class ;

rdfs:label "Reptilia"@en-gb ;

rdfs:subClassOf foo:Chordata ;

owl:equivalentClass wo:Reptilia ;

skos:definition "Reptilia is a vertebrate animal

of a class that includes snakes,

lizards, crocodiles, turtles, and tortoises.

They are distinguished by having a dry

scaly skin and typically laying soft-shelled eggs on land."@en.

#### Order ####

foo:Proboscidea a owl:Class ;

rdfs:label "Proboscidea"@en-gb ;

rdfs:subClassOf foo:Mammalia ;

owl:equivalentClass wo:Proboscidea ;

skos:definition "Any of an order (Proboscidea)

of large mammals comprising the elephants and

extinct related forms."@en.

foo:Carnivora a owl:Class ;

rdfs:label "Carnivora"@en-gb ;

rdfs:subClassOf foo:Mammalia ;

owl:equivalentClass wo:Carnivora ;

skos:definition "Carnivora is a monophyletic

order of placental mammals consisting of the

most recent common ancestor of all cats and dogs,

and all descendants of that ancestor.

Members of this group are formally

referred to as carnivorans, and have evolved

to specialize in eating flesh."@en .

foo:Squamata a owl:Class ;

rdfs:label "Squamata"@en-gb ;

rdfs:subClassOf foo:Reptilia ;

owl:equivalentClass wo:Squamata .

#### Family ####

foo:Elephantidae a owl:Class ;

rdfs:label "Elephantidae"@en-gb ;

rdfs:subClassOf foo:Proboscidea ;

owl:equivalentClass wo:Elephantidae ;

skos:definition "ELEPHANTIDAE is a family of
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bulky mammals (order Proboscidea) comprising

the recent elephants and related extinct forms."@en.

#### Additional Families ####

foo:Species a owl:Class ;

rdfs:label "Species"@en-gb ;

owl:equivalentClass wo:Species ;

skos:definition "Generic class defining a biological species."@en.

foo:Genus a owl:Class ;

rdfs:label "Genus"@en-gb ;

owl:equivalentClass wo:Genus .

#############################################################################

#### FOO Observation and Sensor Classes (Reused from SOSA) ####

foo:Observation a owl:Class ;

rdfs:label "Observation"@en ;

rdfs:definedBy <https://w3id.org/def/foo> ;

owl:equivalentClass sosa:Observation ;

skos:definition "Act of carrying out an (Observation) Procedure

to estimate or calculate a value of a property of a

FeatureOfInterest (e.g., Elephant)."@en .

foo:Sensor a owl:Class ;

rdfs:label "Sensor"@en ;

rdfs:definedBy sosa:Sensor ;

owl:equivalentClass sosa:Sensor ;

skos:definition "Device, agent (including humans), or

software (simulation) involved in, or implementing, a Procedure."@en .

foo:ObservableProperty a owl:Class ;

rdfs:label "Observable Property"@en ;

rdfs:definedBy <https://w3id.org/def/foo> ;

owl:equivalentClass sosa:ObservableProperty ;

skos:definition "An observable quality (property, characteristic)

of a FeatureOfInterest."@en .

foo:FeatureOfInterest a owl:Class ;

rdfs:label "Feature Of Interest"@en ;

owl:equivalentClass sosa:FeatureOfInterest ;

rdfs:isDefinedBy sosa: .
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### FOO Object Properties (Reused from SOSA) ###

foo:hasFeatureOfInterest a owl:ObjectProperty ;

rdfs:label "has Feature Of Interest"@en ;

rdfs:comment "A relation between an Observation and the entity

whose quality was observed."@en ;

rdfs:domain foo:Observation ;

rdfs:range foo:FeatureOfInterest ;

owl:inverseOf sosa:isFeatureOfInterestOf ;

owl:equivalentProperty sosa:hasFeatureOfInterest .

foo:isFeatureOfInterestOf a owl:ObjectProperty ;

rdfs:label "is feature of interest of"@en ;

rdfs:comment "A relation between a FeatureOfInterest

and an Observation about it."@en ;

rdfs:domain foo:FeatureOfInterest ;

rdfs:range foo:Observation ;

owl:inverseOf sosa:hasFeatureOfInterest ;

owl:equivalentProperty sosa:isFeatureOfInterestOf .

foo:madeBySensor a owl:ObjectProperty ;

rdfs:label "made by sensor"@en ;

rdfs:comment "Relation between an Observation and the Sensor

which made the Observation."@en ;

rdfs:domain foo:Observation ;

rdfs:range foo:Sensor ;

owl:inverseOf foo:madeObservation ;

owl:equivalentProperty sosa:madeBySensor .

foo:observedProperty a owl:ObjectProperty ;

rdfs:label "observed property"@en ;

rdfs:comment "Relation linking an Observation to the property

that was observed."@en ;

rdfs:domain foo:Observation ;

rdfs:range foo:ObservableProperty ;

owl:equivalentProperty sosa:observedProperty .

foo:isObservedBy a owl:ObjectProperty ;

rdfs:label "is observed by"@en ;

rdfs:comment "Relation between an ObservableProperty and

the Sensor able to observe it."@en ;

rdfs:domain foo:ObservableProperty ;

rdfs:range foo:Sensor ;
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owl:inverseOf foo:observes ;

owl:equivalentProperty sosa:isObservedBy .

foo:madeObservation a owl:ObjectProperty ;

rdfs:label "made observation"@en ;

rdfs:comment "Relation between a Sensor and an

Observation made by the Sensor."@en ;

rdfs:domain foo:Sensor ;

rdfs:range foo:Observation ;

owl:inverseOf sosa:madeBySensor ;

owl:equivalentProperty sosa:madeObservation .

foo:observes a owl:ObjectProperty ;

rdfs:label "observes"@en ;

rdfs:comment "Relation between a Sensor and an

ObservableProperty that it is capable of sensing."@en ;

rdfs:domain foo:Sensor ;

rdfs:range foo:ObservableProperty ;

owl:inverseOf foo:isObservedBy ;

owl:equivalentProperty sosa:observes .

foo:based_near a owl:ObjectProperty ;

rdfs:label "near"@en ;

rdfs:domain foo:FeatureOfInterest ;

rdfs:range foo:Observation ;

owl:equivalentProperty foaf:based_near .

######################################################################

### FOO defined Classes###

foo:Primates a owl:Class ;

rdfs:label "Primates"@en-gb ;

rdfs:subClassOf foo:Mammalia ;

rdfs:definedBy <http://purl.bioontology.org/ontology/MESH/D011323> ;

skos:definition "An order of mammals consisting of more

than 300 species that include LEMURS; LORISIDAE; TARSIERS; MONKEYS;

and HOMINIDS. They are characterized by a relatively

large brain when compared with other terrestrial" .

foo:Cercopithecidae a owl:Class;

rdfs:label "Cercopithecidae"@en-gb ;

rdfs:subClassOf foo:Primates ;

rdfs:definedBy <purl.bioontology.org/ontology/CSP/0182-1650> .
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foo:Nasalis a owl:Class ;

rdfs:label "Nasalis"@en-gb ;

rdfs:subClassOf foo:Cercopithecidae ;

skos:definition "Nasalis is a genus within the family Cercopithecidae

(Old World monkeys), specifically part of the subfamily Colobinae,

which comprises leaf-eating monkeys.

The genus Nasalis is characterized by its sole species, Nasalis larvatus,

commonly known as the proboscis monkey."@en .

foo:NasalisLarvatus a owl:Class ;

rdfs:label "Proboscis Monkey"@en, "Nasalis larvatus"@la ;

rdfs:subClassOf foo:Nasalis ;

owl:equivalentClass <purl.obolibrary.org/obo/NCBITaxon_43780> .

foo:ElephasMaximus a owl:Class ;

rdfs:subClassOf foo:Elephantidae, foo:FeatureOfInterest ;

rdfs:label "Asian Elephant"@en, "Elephas maximus"@la .

foo:Pythonidae a owl:Class ;

rdfs:subClassOf foo:Squamata ;

owl:equivalentClass <purl.obolibrary.org/obo/NCBITaxon_34984> ;

rdfs:label "Pythonidae"@en .

foo:Malayopython a owl:Class ;

rdfs:subClassOf foo:Pythonidae ;

owl:equivalentClass <purl.obolibrary.org/obo/NCBITaxon_1496304> ;

rdfs:label "Malayopython"@en .

foo:MalayopythonReticulatus a owl:Class ;

rdfs:subClassOf foo:Malayopython, foo:FeatureOfInterest ;

rdfs:label "Reticulated Python"@en, "Malayopython reticulatus"@la ;

owl:equivalentClass <purl.obolibrary.org/obo/NCBITaxon_1496311> ;

rdfs:definedBy <orca.cardiff.ac.uk/id/eprint/152386/15/2022burgerphd.pdf> .

foo:ManisJavanica a owl:Class ;

rdfs:subClassOf foo:Mammalia, foo:FeatureOfInterest ;

rdfs:label "Sunda Pangolin"@en, "Manis javanica"@la ;

owl:equivalentClass <purl.bioontology.org/ontology/NCBITAXON/9974> .

### FOO Data Properties ###

245



Bibliography

foo:temperature a owl:DatatypeProperty ;

rdfs:label "Temperature" ;

rdfs:domain foo:gPSObservation ;

rdfs:range xsd:double ;

skos:definition "Estimated temperature of the elephant in

Celsius at the moment of data collection." .

foo:count a owl:DatatypeProperty ;

rdfs:label "Count"@en ;

rdfs:domain foo:gPSObservation ;

rdfs:range xsd:integer ;

skos:definition "Observation count per data set." .

foo:cov a owl:DatatypeProperty ;

rdfs:label "Cov" ;

rdfs:domain foo:gPSObservation ;

rdfs:range xsd:double ;

skos:definition "TBC" .

foo:direction a owl:DatatypeProperty ;

rdfs:label "Direction" ;

rdfs:domain foo:gPSObservation ;

rdfs:range xsd:integer ;

skos:definition "Direction of elephant travel

at the moment of data collection." .

foo:distance a owl:DatatypeProperty ;

rdfs:label "Distance"@en ;

rdfs:domain foo:gPSObservation ;

rdfs:range xsd:double ;

skos:definition "Distance (m) travelled from the last to the

current data collection point." .

foo:gMTDate a owl:DatatypeProperty ;

rdfs:label "GMT Date" ;

rdfs:domain foo:gPSObservation ;

rdfs:range xsd:date ;

skos:definition "The GMT date in Sabah, Malaysia, when the

GPS collar records its readings." .

foo:gMTTime a owl:DatatypeProperty ;

rdfs:label "GMT Time" ;

rdfs:domain foo:gPSObservation ;

rdfs:range xsd:time ;
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skos:definition "The GMT time in Sabah, Malaysia, when the

GPS collar records its readings." .

foo:hDOP a owl:DatatypeProperty ;

rdfs:label "HDOP" ;

rdfs:domain foo:gPSObservation ;

rdfs:range xsd:double ;

skos:definition "Horizontal Dilution of Precision (HDOP),

indicating GPS accuracy." .

foo:horizon a owl:DatatypeProperty ;

rdfs:label "Horizon"@en ;

rdfs:domain foo:soilObservation ;

rdfs:range xsd:string ;

skos:definition "Soil horizon sampled."@en .

foo:id a owl:DatatypeProperty ;

rdfs:label "id"@en ;

rdfs:domain foo:gPSObservation ;

rdfs:range xsd:string .

foo:landUse a owl:DatatypeProperty ;

rdfs:label "Land Use"@en ;

rdfs:domain foo:soilObservation ;

rdfs:range xsd:string ;

skos:definition "Land use of the study plots."@en .

foo:latitude a owl:DatatypeProperty ;

rdfs:label "Latitude" ;

rdfs:domain foo:gPSObservation ;

rdfs:range xsd:double ;

owl:equivalentProperty pos:lat ;

skos:definition "Latitudinal coordinate of the elephant." .

foo:localDate a owl:DatatypeProperty ;

rdfs:label "Local Date" ;

rdfs:domain foo:gPSObservation ;

rdfs:range xsd:date ;

skos:definition "The local date in Sabah, Malaysia." .

foo:localTime a owl:DatatypeProperty ;

rdfs:label "Local Time" ;

rdfs:domain foo:gPSObservation ;

rdfs:range xsd:time ;
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skos:definition "The local time in Sabah, Malaysia." .

foo:longitude a owl:DatatypeProperty ;

rdfs:label "Longitude" ;

rdfs:domain foo:gPSObservation ;

rdfs:range xsd:double ;

owl:equivalentProperty pos:long ;

skos:definition "Longitudinal coordinate of the elephant." .

foo:speed a owl:DatatypeProperty ;

rdfs:label "Speed" ;

rdfs:domain foo:gPSObservation ;

rdfs:range xsd:double ;

skos:definition "Speed of the elephant at the moment of data collection." .

### Soil Data Properties ###

foo:clay a owl:DatatypeProperty ;

rdfs:label "Clay"@en ;

rdfs:domain foo:soilObservation ;

rdfs:range xsd:double ;

skos:definition "Clay content of the soil sample."@en .

foo:silt a owl:DatatypeProperty ;

rdfs:label "Silt"@en ;

rdfs:domain foo:soilObservation ;

rdfs:range xsd:double ;

skos:definition "Silt content of the soil sample."@en .

foo:site a owl:DatatypeProperty ;

rdfs:label "Site"@en ;

rdfs:domain foo:soilObservation ;

rdfs:range xsd:string ;

skos:definition "Geographical area/site which samples were taken from."@en .

foo:soilPH a owl:DatatypeProperty ;

rdfs:label "Soil PH" ;

rdfs:domain foo:soilObservation ;

rdfs:range xsd:double ;

skos:definition "Measured pH of the soil sample."@en .

foo:subplot a owl:DatatypeProperty ;

rdfs:label "subPlot"@en ;

rdfs:domain foo:gPSObservation ;
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rdfs:range xsd:string ;

skos:definition "Number of subplot sampled within each 1 Ha plot."@en .

foo:totalC a owl:DatatypeProperty ;

rdfs:label "Total C"@en ;

rdfs:domain foo:soilObservation ;

rdfs:range xsd:double ;

skos:definition "Total carbon content of the soil sample."@en .

foo:totalN a owl:DatatypeProperty ;

rdfs:label "Total N"@en ;

rdfs:domain foo:soilObservation ;

rdfs:range xsd:double ;

skos:definition "Total nitrogen content of the soil sample."@en .

### Tree Observation Data Properties ###

foo:lianaDBH_cm a owl:DatatypeProperty ;

rdfs:label "lianaDBH_cm 10a"@en ;

rdfs:domain foo:treeObservation ;

rdfs:range xsd:string .

foo:subplotRadius_m a owl:DatatypeProperty ;

rdfs:label "SubplotRadius_m 30"@en ;

rdfs:domain foo:treeObservation ;

rdfs:range xsd:float .

foo:treeDBH_cm a owl:DatatypeProperty ;

rdfs:label "TreeDBH_cm 110"@en ;

rdfs:domain foo:treeObservation ;

rdfs:range xsd:float .

foo:treeHeight_m a owl:DatatypeProperty ;

rdfs:label "treeHeight_m 60"@en ;

rdfs:domain foo:treeObservation ;

rdfs:range xsd:float .

foo:treeID a owl:DatatypeProperty ;

rdfs:label "TreeID"@en ;

rdfs:domain foo:treeObservation ;

rdfs:range xsd:string .

foo:treeDBH_cm a owl:DatatypeProperty ;

rdfs:label "TreeDBH_cm 110"@en ;
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rdfs:domain foo:treeObservation ;

rdfs:range xsd:float .

foo:treeIndividualNo a owl:DatatypeProperty ;

rdfs:label "TreeIndividualNo"@en ;

rdfs:domain foo:treeObservation ;

rdfs:range xsd:integer .

foo:treeIndividualNo a owl:DatatypeProperty ;

rdfs:label "TreeIndividualNo"@en ;

rdfs:domain foo:treeObservation ;

rdfs:range xsd:integer .

### Camera Trap Image Data Properties ###

foo:name a owl:DatatypeProperty ;

rdfs:label "Image Name"@en ;

rdfs:domain foo:imageObservation ;

rdfs:range xsd:string ;

skos:definition "Name assigned to an image at collection time."@en .

foo:path a owl:DatatypeProperty ;

rdfs:label "Image Path"@en ;

rdfs:domain foo:imageObservation ;

rdfs:range xsd:anyURI ;

skos:definition "The URI pointing to the location of

the image in secure cloud storage."@en .

foo:localDate a owl:DatatypeProperty ;

rdfs:label "Local Date"@en ;

rdfs:domain foo:imageObservation;

rdfs:range xsd:date ;

skos:definition "Current local date in Sabah,

Malaysia when the GPS collar collects its readings."@en .

foo:localTime a owl:DatatypeProperty ;

rdfs:label "Local Time"@en ;

rdfs:domain foo:imageObservation ;

rdfs:range xsd:time ;

skos:definition "The current local time in Sabah,

Malaysia when the GPS collar collects its readings."@en .

foo:gMTDate a owl:DatatypeProperty ;

rdfs:label "GMT Date"@en ;
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rdfs:domain foo:imageObservation ;

rdfs:range xsd:date ;

skos:definition "The GMT date in Sabah, Malaysia

when the GPS collar collects its readings."@en .

foo:gMTTime a owl:DatatypeProperty ;

rdfs:label "GMT Time"@en ;

rdfs:domain foo:imageObservation ;

rdfs:range xsd:time ;

skos:definition "The GMT time in Sabah, Malaysia

when the GPS collar collects its readings."@en .

foo:model a owl:DatatypeProperty ;

rdfs:label "Camera Model"@en ;

rdfs:domain foo:imageObservation ;

rdfs:range xsd:string ;

skos:definition "The model of the trail camera

used to capture the image."@en .

foo:make a owl:DatatypeProperty ;

rdfs:label "Camera Make"@en ;

rdfs:domain foo:imageObservation ;

rdfs:range xsd:string ;

skos:definition "The make of the trail camera

used to capture the image."@en .

foo:imageFile a owl:DatatypeProperty ;

rdfs:label "Image File"@en ;

rdfs:domain foo:imageObservation ;

rdfs:range xsd:string ;

skos:definition "The image file name generated by

the image observation."@en .

foo:cameraLocation a owl:DatatypeProperty ;

rdfs:label "Camera Location"@en ;

rdfs:domain foo:imageObservation ;

rdfs:range xsd:string ;

skos:definition "The location information

(address) of the camera trap."@en .

foo:animalDetected a owl:DatatypeProperty ;

rdfs:label "Animal Detected"@en ;

rdfs:domain foo:imageObservation ;

rdfs:range xsd:string .
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### FOO Instances ###

#### Sensor Instances ####

foo:aqeelaGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Aqeela GPS"@en ;

foo:hasFeatureOfInterest foo:Aqeela ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Aqeela."@en ;

foo:observes foo:gPSObservation .

foo:bikang1GPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Bikang 1 GPS"@en ;

foo:hasFeatureOfInterest foo:Bikang1 ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Bikang 1."@en ;

foo:observes foo:gPSObservation .

foo:bikang2GPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Bikang 2 GPS"@en ;

foo:hasFeatureOfInterest foo:Bikang2 ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Bikang 2."@en ;

foo:observes foo:gPSObservation .

foo:binbinganGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Binbingan GPS"@en ;

foo:hasFeatureOfInterest foo:Binbingan ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Binbingan."@en ;

foo:observes foo:gPSObservation .

foo:guliGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Guli GPS"@en ;

foo:hasFeatureOfInterest foo:Guli ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Guli."@en ;

foo:observes foo:gPSObservation .

foo:itaGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Ita GPS"@en ;

foo:hasFeatureOfInterest foo:Ita;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Ita."@en ;

foo:observes foo:gPSObservation .
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foo:jasminGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Jasmin GPS"@en ;

foo:hasFeatureOfInterest foo:Jasmin ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Jasmin."@en ;

foo:observes foo:gPSObservation .

foo:jasperGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Jasper GPS"@en ;

foo:hasFeatureOfInterest foo:Jasper ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Jasper."@en ;

foo:observes foo:gPSObservation .

foo:kasihGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Kasih GPS"@en ;

foo:hasFeatureOfInterest foo:Kasih ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Kasih."@en ;

foo:observes foo:gPSObservation .

foo:kumaGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Kuma GPS"@en ;

foo:hasFeatureOfInterest foo:Kuma ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Kuma."@en ;

foo:observes foo:gPSObservation .

foo:liunGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Liun GPS"@en ;

foo:hasFeatureOfInterest foo:Luin ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Liun."@en ;

foo:observes foo:gPSObservation .

foo:maliauGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Maliau GPS"@en ;

foo:hasFeatureOfInterest foo:Maliau ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Maliau."@en ;

foo:observes foo:gPSObservation .

foo:merotaiGPS a owl:NamedIndividual, foo:Sensor ;
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rdfs:label "Merotai GPS"@en ;

foo:hasFeatureOfInterest foo:Merotai ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Merotai."@en ;

foo:observes foo:gPSObservation .

foo:puteriGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Puteri GPS"@en ;

foo:hasFeatureOfInterest foo:Puteri ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Puteri."@en ;

foo:observes foo:gPSObservation .

foo:pututGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Putut GPS"@en ;

foo:hasFeatureOfInterest foo:Putut ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Putut."@en ;

foo:observes foo:gPSObservation .

foo:sejatiGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Sejati GPS"@en ;

foo:hasFeatureOfInterest foo:Sejati ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Sejati."@en ;

foo:observes foo:gPSObservation .

foo:seriGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Seri GPS"@en ;

foo:hasFeatureOfInterest foo:Seri ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Seri."@en ;

foo:observes foo:gPSObservation .

foo:tulidGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Tulid GPS"@en ;

foo:hasFeatureOfInterest foo:Tulid ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Tulid."@en ;

foo:observes foo:gPSObservation .

foo:tunglapGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Tunglap GPS"@en ;

foo:hasFeatureOfInterest foo:Tunglap ;
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skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Tunglap."@en ;

foo:observes foo:gPSObservation .

foo:umas2GPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Umas2 GPS"@en ;

foo:hasFeatureOfInterest foo:Umas2 ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Umas2."@en ;

foo:observes foo:gPSObservation .

foo:daraGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Dara GPS"@en ;

foo:hasFeatureOfInterest foo:Dara ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Dara."@en ;

foo:observes foo:gPSObservation .

foo:abawGPS a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Abaw GPS"@en ;

foo:hasFeatureOfInterest foo:Abaw ;

skos:definition "A GPS collar sensor fitted around the neck of an

Asian elephant named Abaw ."@en ;

foo:observes foo:gPSObservation .

#### Animal Instances ####

foo:aqeela a owl:NamedIndividual, foo:ElephasMaximus ;

rdfs:label "Aqeela"@en ;

skos:definition "Female Asian Elephant."@en .

foo:guli a owl:NamedIndividual, foo:ElephasMaximus;

rdfs:label "Guli"@en ;

skos:definition "Male Asian Elephant."@en .

foo:bikang1 a owl:NamedIndividual, foo:ElephasMaximus;

rdfs:label "Bikang 1"@en ;

skos:definition "Female Asian Elephant."@en .

foo:bikang2 a owl:NamedIndividual, foo:ElephasMaximus;

rdfs:label "Bikang 2"@en ;

skos:definition "Female Asian Elephant."@en .

foo:dara a owl:NamedIndividual, foo:ElephasMaximus;
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rdfs:label "Dara"@en ;

skos:definition "Female Asian Elephant."@en .

foo:abaw a owl:NamedIndividual, foo:ElephasMaximus;

rdfs:label "Abaw"@en ;

skos:definition "Female Asian Elephant."@en .

foo:ita a owl:NamedIndividual, foo:ElephasMaximus ;

rdfs:label "Ita"@en ;

skos:definition "Female Asian Elephant."@en .

foo:jasmin a owl:NamedIndividual, foo:ElephasMaximus ;

rdfs:label "Jasmin"@en ;

skos:definition "Female Asian Elephant."@en .

foo:jasper a owl:NamedIndividual, foo:ElephasMaximus ;

rdfs:label "Jasper"@en ;

skos:definition "Male Asian Elephant."@en .

foo:kasih a owl:NamedIndividual, foo:ElephasMaximus ;

rdfs:label "Kasih"@en ;

skos:definition "Female Asian Elephant."@en .

foo:kuma a owl:NamedIndividual, foo:ElephasMaximus ;

rdfs:label "Kuma"@en ;

skos:definition "Male Asian Elephant."@en .

foo:liun a owl:NamedIndividual, foo:ElephasMaximus ;

rdfs:label "Liun"@en ;

skos:definition "Female Asian Elephant."@en .

foo:maliau a owl:NamedIndividual, foo:ElephasMaximus ;

rdfs:label "Maliau"@en ;

skos:definition "Male Asian Elephant."@en .

foo:merotai a owl:NamedIndividual, foo:ElephasMaximus ;

rdfs:label "Merotai"@en ;

skos:definition "Male Asian Elephant."@en .

foo:puteri a owl:NamedIndividual, foo:ElephasMaximus;

rdfs:label "Puteri"@en ;

skos:definition "Female Asian Elephant."@en .

foo:putut a owl:NamedIndividual, foo:ElephasMaximus ;
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rdfs:label "Putut"@en ;

skos:definition "Female Asian Elephant."@en .

foo:sejati a owl:NamedIndividual, foo:ElephasMaximus ;

rdfs:label "Sejati"@en ;

skos:definition "Male Asian Elephant."@en .

foo:seri a owl:NamedIndividual, foo:ElephasMaximus ;

rdfs:label "Seri"@en ;

skos:definition "Female Asian Elephant ."@en .

foo:tulid a owl:NamedIndividual, foo:ElephasMaximus ;

rdfs:label "Tulid"@en ;

skos:definition "Female Asian Elephant ."@en .

foo:tunglap a owl:NamedIndividual, foo:ElephasMaximus ;

rdfs:label "Tunglap"@en ;

skos:definition "Female Asian Elephant."@en .

foo:umas2 a owl:NamedIndividual, foo:ElephasMaximus ;

rdfs:label "Umas2"@en ;

skos:definition "Male Asian Elephant ."@en .

foo:gPSObservation a owl:NamedIndividual, foo:Observation ;

rdfs:label "GPS Observation"@en ;

foo:observedProperty foo:id, foo:altitude , foo:count , foo:cov ,

foo:direction , foo:distance , foo:gMTDate ,

foo:gMTTime , foo:hDOP , foo:latitude , foo:localDate ,

foo:local-time , foo:longitude , foo:speed , foo:temperature ;

foo:hasFeatureOfInterest foo:ElephasMaximus ;

foo:madeBySensor foo:AqeelaGPS, foo:Bikang1GPS,

foo:Bikang2GPS, foo:BinbinganGPS, foo:DaraGPS, foo:GuliGPS,

foo:ItaGPS, foo:JasminGPS, foo:JasperGPS, foo:KasihGPS,

foo:KumaGPS, foo:LiunGPS, foo:MaliauGPS, foo:MerotaiGPS,

foo:PuteriGPS, foo:PututGPS, foo:SejatiGPS, foo:SeriGPS,

foo:TulidGPS, foo:TunglapGPS, foo:Umas2GPS ;

foo:resultTime "2011-10-26T07:40:35"^^xsd:dateTime,

"2015-10-26T07:40:35"^^xsd:dateTime .

####Soil Modeling ####

foo:Soil a owl:Class ;

rdfs:label "Soil"@en ;

rdfs:subClassOf foo:FeatureOfInterest ;

owl:equivalentClass <saref.etsi.org/saref4agri/Soil> .
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#### Soil Sensor ####

foo:soilSensor a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Soil Sensor"@en ;

owl:sameAs <saref.etsi.org/saref4agri/SoilTensiometer> ;

foo:hasFeatureOfInterest foo:Soil .

#### Soil Observation ####

foo:soilObservation a owl:NamedIndividual, foo:Observation ;

rdfs:label "Soil Observation"@en ;

# Soil properties observed

foo:observedProperty foo:cNRatio ,

foo:clay,

foo:horizon ,

foo:identifier ,

foo:inorganicP ,

foo:landUse ,

foo:plotName ,

foo:sand ,

foo:silt ,

foo:site ,

foo:soilPH ,

foo:subplot ,

foo:totalC ,

foo:totalN ,

foo:totalP ;

# Link the observation to the soil feature and sensor

foo:hasFeatureOfInterest foo:Soil ;

foo:madeBySensor foo:soilSensor .

#### Tree Modeling ####

foo:Tree a owl:Class ;

rdfs:subClassOf foo:FeatureOfInterest ;

owl:equivalentClass <purl.dataone.org/odo/ECSO_00000501> ;

rdfs:label "Tree"@en .

#### Tree Observation ####

foo:treeSensor a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Tree Sensor"@en ;

foo:observes foo:treeProperties ;

foo:hasFeatureOfInterest foo:Tree .

foo:treeObservation a owl:NamedIndividual, foo:Observation ;

rdfs:label "Tree Observation"@en ;
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# Observation metadata

foo:observedProperty foo:date ,

foo:iD ,

# Tree measurements

foo:lianaDBH_cm ,

foo:subplotRadius_m ,

foo:treeDBH_cm ,

foo:treeHeight_m ,

foo:treeID ,

foo:treeIndividualNo ,

foo:treeNLianas ,

foo:treeNotes ;

# Link the observation to the feature of interest (tree) and sensor

foo:hasFeatureOfInterest foo:Tree ;

foo:madeBySensor foo:treeSensor .

#### Lianas as Feature of Interest ####

foo:lianas a owl:NamedIndividual, foo:Tree ;

rdfs:label "Lianas"@en ;

foo:isObservedBy foo:lianaSensor .

#### Liana Sensor ####

foo:lianaSensor a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Liana Sensor"@en ;

foo:observes foo:lianaProperties .

#### Grow Borneo Project ####

foo:Project a owl:Class ;

rdfs:label "Project" ;

rdfs:comment "Represents a reforestation project." .

### Object Properties

foo:isPlantedIn a owl:ObjectProperty ;

rdfs:label "is planted in" ;

rdfs:domain foo:Tree ;

rdfs:range foo:Project ;

rdfs:comment "Links a tree species to the reforestation project

where it's planted." .

### Individual (Grow Borneo Project)

foo:growBorneo a owl:NamedIndividual, foo:Project ;

rdfs:label "Grow Borneo" ;

rdfs:comment "A reforestation project in Borneo planting
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various tree species." .

### Link Tree Species to Grow Borneo

foo:bongkol a owl:NamedIndividual, foo:Tree ;

rdfs:label "Bongkol" ;

rdfs:comment "A tree species named Bongkol in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:selongapid a owl:NamedIndividual, foo:Tree ;

rdfs:label "Selongapid" ;

rdfs:comment "A tree species named Selongapid in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:binuang a owl:NamedIndividual, foo:Tree ;

rdfs:label "Binuang" ;

rdfs:comment "A tree species named Binuang in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:terosob a owl:NamedIndividual, foo:Tree ;

rdfs:label "Terosob" ;

rdfs:comment "A tree species named Terosob in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:kelumpang a owl:NamedIndividual, foo:Tree ;

rdfs:label "Kelumpang" ;

rdfs:comment "A tree species named Kelumpang in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:mangkapon a owl:NamedIndividual, foo:Tree ;

rdfs:label "Mangkapon" ;

rdfs:comment "A tree species named Mangkapon in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:nyatoh a owl:NamedIndividual, foo:Tree ;

rdfs:label "Nyatoh" ;

rdfs:comment "A tree species named Nyatoh in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:durian a owl:NamedIndividual, foo:Tree ;

rdfs:label "Durian" ;

rdfs:comment "A tree species named Durian in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:tarap a owl:NamedIndividual, foo:Tree ;
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rdfs:label "Tarap" ;

rdfs:comment "A tree species named Tarap in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:rambutan a owl:NamedIndividual, foo:Tree ;

rdfs:label "Rambutan" ;

rdfs:comment "A tree species named Rambutan in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:pulai a owl:NamedIndividual, foo:Tree ;

rdfs:label "Pulai" ;

rdfs:comment "A tree species named Pulai in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:payungPayung a owl:NamedIndividual, foo:Tree ;

rdfs:label "Payung Payung" ;

rdfs:comment "A tree species named Payung Payung in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:kayuMalam a owl:NamedIndividual, foo:Tree ;

rdfs:label "Kayu Malam" ;

rdfs:comment "A tree species named Kayu Malam in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:kerodong a owl:NamedIndividual, foo:Tree ;

rdfs:label "Kerodong" ;

rdfs:comment "A tree species named Kerodong in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:keruingPaya a owl:NamedIndividual, foo:Tree ;

rdfs:label "Keruing Paya" ;

rdfs:comment "A tree species named Keruing Paya in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:bayur a owl:NamedIndividual, foo:Tree ;

rdfs:label "Bayur" ;

rdfs:comment "A tree species named Bayur in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:tangkol a owl:NamedIndividual, foo:Tree ;

rdfs:label "Tangkol" ;

rdfs:comment "A tree species named Tangkol in Malay." ;

foo:isPlantedIn foo:growBorneo .
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foo:sepat a owl:NamedIndividual, foo:Tree ;

rdfs:label "Sepat" ;

rdfs:comment "A tree species named Sepat in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:belian a owl:NamedIndividual, foo:Tree ;

rdfs:label "Belian" ;

rdfs:comment "A tree species named Belian in Malay." ;

foo:isPlantedIn foo:growBorneo .

foo:keranji a owl:NamedIndividual, foo:Tree ;

rdfs:label "Keranji" ;

rdfs:comment "A tree species named Keranji in Malay." ;

foo:isPlantedIn foo:growBorneo .

### Individual (Grow Borneo Project)

foo:growBorneo a owl:NamedIndividual, foo:Project ;

rdfs:label "Grow Borneo" ;

rdfs:comment "A reforestation project in Borneo that

plants various tree species." .

##### Camera Trap Images Modeling ####

#### Image as a Feature of Interest ####

foo:Image a owl:Class ;

rdfs:subClassOf foo:FeatureOfInterest ;

owl:equivalentClass foaf:Image ;

rdfs:label "Camera Trap Image"@en ;

skos:definition "Image generated by motion-activated

wildlife cameras."@en ;

rdfs:comment "The image as feature of interest for the

camera trap because it carries data critical to wildlife

analysis such as species.

However, it should ideally have a clear, semantically relevant

role--such as representing visual evidence in an image

recognition or object detection model--otherwise,

it might dilute the clarity of the knowledge graph or ontology.";

rdfs:definedBy <http://w3id.org/def/foo#> .

#### Camera Trap Sensor ####

foo:cameraTrap a owl:NamedIndividual, foo:Sensor ;

rdfs:label "Camera Trap"@en ;

foo:observes foo:imageObservation ;

foo:observedProperty foo:model ,

foo:make ;

foo:hasFeatureOfInterest foo:Image .
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#### Image Observation ####

foo:imageObservation a owl:NamedIndividual, foo:Observation ;

rdfs:label "Image Observation"@en ;

foo:hasFeatureOfInterest foo:Image ;

foo:madeBySensor foo:cameraTrap ;

foo:observedProperty foo:imageFile ,

foo:cameraLocation ,

foo:animalDetected .

##### Oil Palm Plantation ######

foo:OilPalmPlantation a owl:Class ;

rdfs:label "Oil Palm Plantation" ;

rdfs:subClassOf foo:FeatureOfInterest ;

rdfs:comment "Oil palm plantations near the

Danau Girang Field Centre (DGFC) in Sabah, Malaysia,

are situated within the fragmented landscape of the

Lower Kinabatangan floodplain, approximately between

5.4°N to 5.6°N latitude and 117.9°E to 118.1°E longitude.

This region includes a mix of protected forests,

degraded habitats, and extensive plantations,

#often bordering riparian corridors along the Kinabatangan River.

These plantations have significantly impacted biodiversity

and habitat connectivity, posing challenges for

wildlife such as Bornean elephants and orangutans.";

owl:equivalentClass <purl.obolibrary.org/obo/ENVO_00000120> .

foo:plantation a owl:NamedIndividual, foo:OilPalmPlantation;

pos:latitude "5.36"^^xsd:float;

pos:longitude "118.66 "^^xsd:float.

#### University and Danau Girang Field Centre ####

# Define University as a subclass of foaf:Organization

foo:University rdf:type owl:Class ;

rdfs:label "University"@en ;

rdfs:comment "A subclass of FOAF's Organization

representing academic institutions involved in

research and higher education."@en ;

rdfs:subClassOf foaf:Organization ;

dcterms:description "Universities grant academic

degrees and conduct research, often partnering

with other organizations for projects like

wildlife conservation."@en .
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foo:WildlifeDepartment rdf:type owl:Class ;

rdfs:label "Wildlife Department"@en ;

rdfs:comment "A government or non-government

organization responsible for managing and

conserving wildlife and their habitats."@en ;

dcterms:description "Wildlife Departments

oversee policies, conservation programs,

and research to protect wildlife and their ecosystems."@en .

foo:FieldCentre rdf:type owl:Class ;

rdfs:label "Field Centre"@en ;

rdfs:comment "A facility dedicated to supporting research,

conservation, and education in specific ecological

or wildlife domains."@en ;

dcterms:description "Field Centres provide infrastructure

and expertise for field research and conservation activities,

often in partnership with other organizations."@en .

# Properties of a Field Centre and other buildings

foo:location rdf:type owl:ObjectProperty ;

rdfs:domain foo:FieldCentre ;

rdfs:range rdfs:Literal ;

rdfs:label "Location"@en ;

rdfs:comment "Specifies the geographical location of an entity."@en .

foo:supportedBy rdf:type owl:ObjectProperty ;

rdfs:domain foo:FieldCentre ;

rdfs:range foo:University ;

rdfs:label "Supported By"@en ;

rdfs:comment "Organizations or entities providing

financial, technical, or logistical support for the Field Centre."@en .

foo:focusArea rdf:type owl:DatatypeProperty ;

rdfs:domain foo:FieldCentre ;

rdfs:range rdfs:Literal ;

rdfs:label "Focus Area"@en ;

rdfs:comment "The main area of research or

conservation focus for the Field Centre."@en .

foo:mission rdf:type owl:DatatypeProperty ;

rdfs:domain foo:FieldCentre ;

rdfs:range rdfs:Literal ;

rdfs:label "Mission Statement"@en ;

rdfs:comment "The overarching goal or

purpose of the Field Centre."@en .

# Supporting Institutions
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foo:cardiffUniversity rdf:type foo:University ;

rdfs:label "Cardiff University"@en ;

foo:location "Wales, UK" .

foo:sabahWildlifeDepartment rdf:type foo:WildlifeDepartment ;

rdfs:label "Sabah Wildlife Department"@en ;

foo:location "Borneo, Malaysia" .

# DGFC

foo:danauGirangFieldCentre rdf:type foo:FieldCentre ;

rdfs:label "Danau Girang Field Centre"@en ;

dcterms:description "A field centre focused on wildlife research

and conservation in the Lower Kinabatangan Wildlife Sanctuary,

supported by Cardiff University and the Sabah Wildlife Department."@en ;

foo:location "Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia" ;

foo:supportedBy foo:cardiffUniversity, foo:sabahWildlifeDepartment ;

foo:focusArea "Conservation Research, Wildlife Studies,

Fragmented Landscapes"@en ;

foo:mission "Support Sabah's conservation priorities and

enhance understanding of wildlife issues in fragmented

landscapes through research."@en .

##### How to reuse FOO #######

# To enable effective reuse of this ontology, please follow these guidelines:

# 1. Create your own custom ontology using identical class and property

names as in this model.

# 2. Import the `FOO` ontology (https://w3id.org/def/foo#) directly into

the new ontology.

# 3. For each class and property, link your custom definitions to

those in FOO.

# using owl:equivalentClass, owl:equivalentProperty, and owl:sameAs.

# This approach will maintain semantic consistency and allow for

smooth interoperability

# across ontologies that reference shared terms and structures.
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RUN

URI

https://w3id.org/def/foo

Example: https://w3id.org/example (click here to enter this ontology)

Title: Forest Observatory Ontology (FOO)

URI: https://w3id.org/def/foo#

License: http://creativecommons.org/licenses/by-sa/4.0/

94%
Reusable (7.63/9)

Findable (9/9)

Accessible (3/3)

Interoperable (3/3)

Findable
F1: (meta)data are assigned a globally unique and persistent identifier

Description:

Explanation:

This check verifies if the ontology has a persistent URL (w3id, purl, DOI, or a W3C URL)

Ontology URI is persistent

PURL1: Persistent URL 100%

Description:

Explanation:

This check verifies if the ontology URI found within the ontology document is resolvable

Ontology URL is resolvable in application/rdf+xml

URI1: Ontology URI is resolvable 100%

Description:

Explanation:

This check verifies if there is an id for this ontology version, and whether the id is unique (i.e., different
from the ontology URI)

Version IRI defined, IRI is different from ontology URI

VER1: Version IRI 100%

VER2: Version IRI resolves 100%

10/19/24, 9:30 PM FOOPS!

https://foops.linkeddata.es/FAIR_validator.html 1/6

Figure 1 FOOPS! Score
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F2: data are described with rich metadata (defined by R1 below)

F3: metadata clearly and explicitly include the identifier of the data it describes

F4: (meta)data are registered or indexed in a searchable resource

Description:

Explanation:

This check verifies if the version IRI resolves

Version IRI resolves

Description:

Explanation:

This check verifies if the ontology URI is equal to the ontology ID

Ontology URI is equal to ontology id

URI2: Consistent ontology IDs 100%

Description:

Explanation:

This check verifies if the The following minimum metadata [title, description, license, version iri, creator,
creationDate, namespace URI] are present in the ontology

All the minimum metadata were found!

OM1: Minimum metadata 100%

Description:

Explanation:

This check verifies if an ontology prefix is available

Prefix declaration found in the ontology: foo

FIND1: Ontology prefix 100%

Description:

Explanation:

This check verifies if the ontology prefix can be found in prefix.cc or LOV registries. This check also
verifies if the prefix resolves to the same namespaceprefix found in the ontology.

Prefix declaration found with correct namespace (in LOV)

FIND2: Prefix is in registry 100%

Description:

Explanation:

This check verifies if the ontology can be found in a public registry (LOV)

Ontology namespace found in LOV repository

FIND3: Ontology in metadata registry 100%

Accessible
A1: (meta)data are retrievable by their identifier using a standardized communications protocol

CN1: Content negotiation for RDF and HTML 100%

10/19/24, 9:30 PM FOOPS!

https://foops.linkeddata.es/FAIR_validator.html 2/6
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A2: metadata are accessible, even when the data are no longer available

A1.1: the protocol is open, free, and universally implementable

Description:

Explanation:

This check verifies of the ontology URI is published following the right content negotiation for RDF and
HTML

Ontology available in: HTML, RDF

Description:

Explanation:

Metadata are accessible even when the ontology is no longer available. Since the metadata is usually
included in the ontology, this check verifies whether the ontology is registered in a public metadata
registry (LOV)

Ontology namespace found in LOV repository

FIND_3_BIS: Metadata are accessible, even when ontology is not 100%

Description:

Explanation:

This check verifies if the ontology uses an open protocol (HTTP or HTTPS)

The ontology uses an open protocol

HTTP1: Open protocol 100%

Interoperable
I1: (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge
representation

I2: (meta)data use vocabularies that follow FAIR principles

Description:

Explanation:

This check verifies if the ontology has an RDF serialization (ttl, n3, rdf/xml, json-ld)

Ontology available in RDF

RDF1: RDF Availability 100%

Description:

Explanation:

This check verifies if the ontology reuses other vocabularies for declaring metadata terms

Ontology reuses existing vocabularies for declaring metadata.

VOC1: Vocabulary reuse (metadata) 100%

Imported/Reused URIs:

- http://purl.org/dc/elements/1.1/

- http://purl.org/dc/terms/

- http://purl.org/vocab/vann/

- http://www.w3.org/2000/01/rdf-schema#

- http://www.w3.org/2002/07/owl#

- http://www.w3.org/ns/prov#

- http://xmlns.com/foaf/0.1/

10/19/24, 9:30 PM FOOPS!

https://foops.linkeddata.es/FAIR_validator.html 3/6
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- https://schema.org/

Description:

Explanation:

This check verifies if the ontology imports/extends other vocabularies (besides RDF, OWL and RDFS)

The ontology imports the following vocabularies:

VOC2: Vocabulary reuse 100%

Imported/Reused URIs:

- http://www.w3.org/ns/sosa/

Reusable
R1: meta(data) are richly described with a plurality of accurate and relevant attributes

Description:

Explanation:

This check verifies if the ontology has an HTML documentation

Ontology available in HTML

DOC1: HTML availability 100%

Description:

Explanation:

This check verifies if the following recommended metadata [NS Prefix, version info, creation date,
citation] are present in the ontology. It also checks if [contributor] is present, but with no penalty (as no
all ontologies may have a contributor)

All recommended metadata found!. Warning: The following OPTIONAL recommended metadata could
not be found: contributor. Please consider adding them if appropriate.

OM2: Recommended metadata 100%

Description:

Explanation:

This check verifies if the following detailed metadata [doi, publisher, logo, status, source, issued date] are
present in the ontology. It also checks if [previous version, backward compatibility, modified] are
present, but with no penalty (as no all ontologies may have, e.g., a previous version)

The following metadata was not found: doi, status, source. Warning: The following OPTIONAL detailed
metadata could not be found: previous version, backwards compatibility, modified. Please consider
adding them if appropriate.

OM3: Detailed metadata 50%

Description:

Explanation:

This check verifies the extent to which all ontology terms have labels (rdfs:label in OWL vocabularies,
skos:prefLabel in SKOS vocabularies)

Labels found for 68 out of 70 terms.

VOC3: Documentation: labels 97%

Affected URIs:

- https://w3id.org/def/foo#Family

- https://w3id.org/def/foo#Mammilia
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R1.1: (meta)data are released with a clear and accessible data usage license

R1.2: (meta)data are associated with detailed provenance

Description:

Explanation:

This check verifies whether all ontology terms have descriptions (rdfs:comment in OWL vocabularies,
skos:definition in SKOS vocabularies)

Descriptions found for 11 out of 70 terms

VOC4: Documentation: definitions 16%

Affected URIs:

- https://w3id.org/def/foo#Animalia

- https://w3id.org/def/foo#Carnivora

- https://w3id.org/def/foo#Cercopithecidae

- https://w3id.org/def/foo#Chordata

- https://w3id.org/def/foo#Elephantidae

Show more

Description:

Explanation:

This check verifies if a license associated with the ontology

A license was found http://creativecommons.org/licenses/by-sa/4.0/

OM4.1: License availability 100%

Description:

Explanation:

This check verifies if the ontology license is resolvable

License could be resolved

OM4.2: License is resolvable 100%

Description:

Explanation:

This check verifies if basic provenance is available for the ontology: [author, creation date]. This check
also verifies whether [contributor, previous version] are present, but with no penalty (as no all ontologies
may have a previous version or a contributor)

All basic provenance metadata found!. Warning: The following OPTIONAL provenance metadata could
not be found: contributor, previous version. Please consider adding them if appropriate.

OM5_1: Basic provenance metadata 100%

Description:

Explanation:

This check verifies if detailed provenance information is available for the ontology: [issued date,
publisher]

All detailed provenance metadata found!

OM5_2: Detailed provenance metadata 100%

10/19/24, 9:30 PM FOOPS!

https://foops.linkeddata.es/FAIR_validator.html 5/6
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Daniel Garijo & María Poveda-Villalón
Contact email: foops@delicias.dia.fi.upm.es
Built with Bootstrap
Latest revision July, 2021
Licensed under the Apache License 2.0
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