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Abstract: Pathological alterations in Alzheimer’s disease (AD) begin several years prior to
symptom onset. Cortical mean diffusivity (cMD) may be used as a measure of early grey
matter damage in AD as it reflects the breakdown of microstructural barriers preceding
volumetric changes and affecting cognitive function. We investigated cMD changes early
in the disease trajectory and evaluated the influence of amyloid-β (Aβ) and tau deposition.
In this cross-sectional study, we analysed multimodal PET, DTI, and MRI data of 87 par-
ticipants, and stratified them into Aβ-negative and -positive, cognitively normal, mildly
cognitively impaired, and AD patients. cMD was significantly increased in Aβ-positive
MCI and AD compared with CN in the frontal, parietal, temporal cortex, hippocampus,
and medial temporal lobe. cMD was significantly correlated with cortical thickness only in
patients without Aβ deposition but not in Aβ-positive patients. Our results suggest that
cMD is an early marker of neuronal damage since it is observed simultaneously with Aβ

deposition and is correlated with cortical thickness only in subjects without Aβ deposition.
cMD changes may be driven by Aβ but not tau, suggesting that direct Aβ toxicity or
associated inflammation causes damage to neurons. cMD may provide information about
early microstructural changes before macrostructural changes.

Keywords: alzheimer’s disease; amyloid-β; cortical mean diffusivity; mild cognitive
impairment; tau

1. Introduction
Pathological alterations in Alzheimer’s disease (AD) begin several years before the

onset of symptoms [1,2]. During this period, the accumulation of toxic proteins, such as
amyloid-β (Aβ) and tau, alongside neuroinflammation, synaptic dysfunction, and other
pathological processes, leads to neuronal damage. Although Aβ and tau play crucial roles
in AD pathophysiology, how these two critical pathological proteins interact and influence
neurodegenerative processes and cortical atrophy remains to be deciphered [2–5].

The identification of pre-symptomatic patients can help track the pathology, assist
in the differentiation of normal ageing from dementia, and enable intervention in the
pre-symptomatic phase of AD [6–8]. In the last decade, the development and validation of
Positron Emission Tomography (PET) imaging biomarkers has enabled the early detection
of Aβ, tau deposition, and cerebral glucose metabolism in AD trajectory. In addition to
PET imaging, several magnetic resonance imaging (MRI) approaches have been used to
quantify hippocampal and regional cortical volume loss [9], cortical thickness [6,10], and
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microstructural abnormalities in the early stages of neurodegeneration using diffusion-
weighted MRI techniques [11–21].

Diffusion tensor imaging (DTI) of grey matter in AD has been used in several stud-
ies [21]. Mean diffusivity (MD) is the most widely used metric to assess the average degree
of diffusion in all directions, as opposed to fractal anisotropy (FA), which quantifies the
directionality of diffusion [21–23]. FA is mostly used for assessing white matter fibre tract
integrity. However, cortical mean diffusivity (cMD) can be used to assess microstructural
alterations in the brain’s grey matter [24–26]. Increased cMD in grey matter is a reflec-
tion of the breakdown of microstructural barriers to diffusion, which precede volumetric
changes [21]. Increased hippocampal cMD and whole brain grey matter cMD have been
reported in patients with mild cognitive impairment (MCI) compared with those who are
cognitively normal (CN) [20,27]. Increased cMD is demonstrated in patients with MCI
who convert to AD compared with patients with MCI who remain stable [17,27,28]. These
findings highlight the importance of using grey matter cMD as a useful measure of early
grey matter damage in AD.

Several diffusion imaging studies have predominantly focused on white matter
changes. Tau has been associated with white matter integrity loss and multiple cogni-
tive functions in AD [29]. Pathological studies suggest that grey matter changes occur
prior to white matter changes [21]. Since Aβ and tau have differential spatial patterns, they
likely have varying association with grey matter cMD across the AD continuum [30,31]—in
individuals that are CN and patients with MCI and AD.

We hypothesised that cortical grey matter cMD is associated with the onset of Aβ

deposition—with early and late stages of AD (MCI to AD) serving as a surrogate to the
duration of Aβ deposition in this pilot study. We predict that grey matter cMD will
be correlated with structural imaging biomarkers, including cortical thickness with MD
providing information independent of cortical thickness. The aim of this project was to
investigate if we can detect changes in cMD early in the disease trajectory, and to evaluate
the impact of Aβ deposition and tau aggregation, and changes in cortical thickness in CN,
MCI, and AD.

2. Materials and Methods
2.1. Subjects

The study was approved by the London Riverside Research Ethics Committee and
the National Health Research Services, Health Research Authority, UK (V105/07/2010).
The Administration of Radioactive Substances Advisory Committee (ARSAC) gave its
approval for the administration of PET tracers. Written informed consent was obtained
from all subjects.

The inclusion criteria of the study were as follows: (1) diagnosis of mild cognitive
impairment (MCI) was made by a specialist consultant at memory clinics, and the study
investigators reviewed the patient according to the Petersen and National Institute of Aging
and Alzheimer’s Association (NIA-AA) criteria or Alzheimer’s disease (AD) according
to NIA-AA or normal cognitive function for healthy volunteers [32]. Objective memory
loss was measured by education-adjusted scores on the Wechsler Memory Scale—Logical
Memory; (2) aged between 50 and 85 years; (3) Mini-Mental State Examination (MMSE)
score ≥ 28 was considered normal for CN subjects, ≥ 24 for MCI, and ≥ 15 for AD patients.
MMSE is a valuable tool to evaluate mental status, which comprises an 11-question test of
five areas of cognitive function: orientation, registration, attention and calculation, recall,
and language. The maximum score is 30. The MMSE can be administered and is practical
to be repeated routinely as it is just 5–10 min long. The instrument is based mainly on
verbal response and reading and writing.



Cells 2025, 14, 155 3 of 18

Candidates with the following conditions were excluded: (1) major depression,
schizophrenia, or schizoaffective disorders; (2) history or signs of other neurological dis-
eases; (3) malignancy within the last 5 years; (4) contraindications for MRI scanning.

In total, 87 subjects were recruited into the study: 50 MCI, 16 AD, and 21 CN subjects.
Patients were recruited from the Imperial College memory clinics, dementia registry, and
memory clinics around London. All subjects had detailed clinical, neurological, and
neuropsychometric evaluation. All participants then underwent MRI scanning and had
[18F]flutemetamol PET. Meanwhile, 14 MCI, 10 AD, and 6 CN had [18F]AV1451 PET scans.

2.2. Image Acquisition
2.2.1. MRI

MRI scans were acquired with a 3 Tesla Siemens Verio scanner using a 32-channel head
coil. T1-weighted magnetisation-prepared rapid gradient echo sequence (MPRAGE) images
were acquired with TR = 2300 ms, TE = 2.98 ms, FA = 9◦, TI = 900 ms, 1 × 1 × 1 mm3 voxel,
anteroposterior phase encoding, and FOV = 256 × 256 mm2. Diffusion tensor images were
acquired in 64 diffusion directions as 62 axial slices using an EPI sequence TR = 9000 ms,
TE = 99 ms, anteroposterior phase encoding, 2 × 2 × 2 mm3 voxel, FOV = 256 × 256 mm2,
bandwidth = 1562 Hz/Px, and echo spacing = 0.72 ms.

2.2.2. PET

[18F]flutemetamol was manufactured by GE Healthcare, Amersham, UK. Scans were
performed at the Imperial College Clinical Imaging Facility with a Siemens Biograph
6 scanner. [18F]flutemetamol at a dose of 183.4 (±5.3) MBq was injected intravenously in
8 mL saline followed by a 10 mL saline flush. Data were acquired in 3D list mode from 90
to 120 min following injection (6 × 5 min frames). Image reconstruction was performed by
filtered back projection with an attenuation correction. Post-reconstruction 5 mm Gaussian
smoothing was performed.

[18F]AV1451 was manufactured by Imanova/Invicro, and the scans were performed
on a Siemens Biograph 6 scanner. A target dose of 180 MBq [18F]AV1451 was injected
intravenously in 8 mL saline followed by a 10 mL saline flush. Data were acquired in
3D list mode from 0 to 120 min. Image reconstruction was performed by filtered back
projection with an attenuation correction. Post-reconstruction 5 mm Gaussian smoothing
was performed.

2.3. Image Processing
2.3.1. MRI

Regional cortical thickness was measured on T1 images using FreeSurfer v.6.0 (Har-
vard Medical School; http://surfer.nmr.mgh.harvard.edu/ (accessed on 16 January 2025)).
Briefly, Freesurfer’s method uses intensity and continuity information from the T1-weighted
MR volume to generate cortical thickness representations, which are estimated as the dis-
tance between the grey/white and grey/CSF boundaries [33].

Diffusion tensor images were denoised, motion-, distortion-, and eddy-current-
corrected, and brain-extracted using FSL software (FMRIB Software Library, v6.0) with the
FSL FDT package. Skull and non-brain tissue were removed, and then the tensor model
was fitted to calculate the cMD maps for each participant individually. The tensor model
was used to calculate diffusion in the principal direction and the two perpendicular direc-
tions. cMD was obtained by taking the sum of the diffusion in the principal direction and
diffusion in the two perpendicular directions and dividing it by three. cMD images were
co-registered to each subjects’ anatomical scan. The resulting images were then spatially
normalised and co-registered to the MNI space using FSL v6.0 [34].

http://surfer.nmr.mgh.harvard.edu/
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2.3.2. PET

PET image processing was performed using Statistical Parametric Mapping 12 (SPM12,
Wellcome Trust Centre for Neuroimaging, UCL, London, UK). PET images were co-
registered to their T1 MRI and transformed into the Montreal Neurological Institute (MNI)
space. We calculated a 90–120 min standard uptake value ratio (SUVR) of [18F]flutemetamol
using cerebellum grey matter as the reference region, as previously validated [35].

Using SPM12, an individualised object map was created for each participant using
the following steps: (1) Individual MRI was segmented into grey matter, white matter, and
CSF. The binarised grey matter mask was created using a threshold of 0.5; (2) the binarised
individual grey matter mask was then applied to the probabilistic region of interest (ROI)
using Hammers’ atlas in MNI space [36] to create an individualised object map. Regional
imaging parameters were estimated for frontal, temporal, parietal, and occipital cortical
regions. We further evaluated hippocampus and medial temporal lobes separately.

2.4. Determining the Aβ Status

Based on ROI analysis of the [18F]flutemetamol SUVR image, subjects were classified
as Aβ-positive or Aβ-negative. Since we were interested in evaluating early changes in
Aβ deposition and cortical diffusivity, we wanted to identify patients with minimal Aβ

deposition before Aβ levels reached the Aβ positivity cut off described in the literature;
subjects were determined as Aβ-positive if there were one more or cortical regions (frontal,
parietal, temporal, occipital lobe) with binding greater than the CN mean + 2 standard
deviations as previously published [35,37]. Using “CN mean + 2 standard deviations” as
the cut off for positivity, we had 43 subjects who were Aβ-positive. This number would
have been reduced to 29, if we were to use the [18F]flutemetamol SUVR threshold of 1.57 as
the Aβ positivity cut off [35].

2.5. Statistical Analysis

Statistical analyses of numeric variables were performed using GraphPad Prism
version 9.2.0 for Windows, GraphPad Software, San Diego, CA, USA, www.graphpad.com
(accessed on 16 January 2025). p-values were calculated by one-way ANOVA and the Tukey
post hoc test. The imaging parameters were correlated using Spearman’s rho correlation
coefficient. A p-value < 0.05 was considered significant.

3. Results
3.1. Demographic Characteristics

We removed Aβ-positive CN (n = 4) and Aβ-negative AD (n = 3) from further analysis
(Figure 1). Of the remaining 80 patients, there were 17 CN, 26 Aβ-negative MCI, 24
Aβ-positive MCI, and 13 AD.

The demographic and clinical characteristics of the diagnostic groups are summarised
in Table 1. Mean ages (±SD) were higher in Aβ-positive MCI (73.9 ± 7.3, p = 0.003) and
AD (75.0 ± 5.7, p = 0.005) than those of the CN clinical diagnostic group (62.9 ± 8.4). Mean
MMSE scores were significantly lower in the AD group (24 ± 4; p < 0.001) than in the three
other clinical diagnostic groups (i.e., 29 ± 2 for CN; 28 ± 2 for Aβ-negative MCI and 27 ± 2
for Aβ-positive MCI). There were no group differences in education between the three
different groups.

www.graphpad.com
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29 (2) 28 (2) p = 0.540 27 (2) p = 0.421 24 (4) p < 0.001 F (3, 64) = 9.84 p < 0.001 
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Figure 1. Flow diagram demonstrating patients screening and inclusions. CN Aβ-positive and
Aβ-negative AD were excluded from further analysis. AD—Alzheimer’s disease; CN—cognitively
normal; MCI—mild cognitive impairment.

Table 1. Demographics and clinical characteristics according to the clinical diagnostic group.

CN Aβ-Negative MCI Aβ-Positive MCI AD One-Way ANOVA

Mean
(SD) Mean (SD)

Tukey Post
Hoc Test
vs. CN

Mean
(SD)

Tukey Post
Hoc Test
vs. CN

Mean (SD)
Tukey Post

Hoc Test
vs. CN

F p-Value

Age, y (SD) 62.9 (8.4) 67.6 (9.5) p = 0.400 73.9 (7.3) p = 0.003 75.0 (5.7) p = 0.005 F (3, 63) = 6.45 p < 0.001
Sex,

Female (%) 47 48 p = 0.971 40 p = 1.000 46 p = 1.000 F (3, 74) = 0.12 p = 0.951

MMSE
(SD) 29 (2) 28 (2) p = 0.540 27 (2) p = 0.421 24 (4) p < 0.001 F (3, 64) = 9.84 p < 0.001

Data are expressed as the mean (SD) or percentage. p-values were calculated by one-way ANOVA and the Tukey
post hoc test. A p-value < 0.05 was considered as significant. AD—Alzheimer’s disease; CN—cognitively normal;
MCI—mild cognitive impairment; MMSE—Mini-Mental State Examination.

3.2. cMD Changes Are Observed Simultaneously as Aβ Deposition

Individual representations of cMD, Aβ and tau deposition, and cortical thickness are
illustrated in Figure 2 for the frontal cortex (Figure 2A), parietal cortex (Figure 2B), temporal
cortex (Figure 2C), and regional cortical thickness (Figure 2D).

For each region of interest, i.e., the frontal, parietal, temporal cortex, hippocampus,
and medial temporal lobe, a one-way ANOVA was performed to compare the means
of the four different groups, and cMD was significantly different among the groups:
F (3, 71) = 5.84, p = 0.001 in the frontal cortex; F (3, 71) = 5.05, p = 0.003 in the temporal
cortex; F (3, 71) = 5.60; p = 0.002 in the parietal cortex; F (3, 71) = 4.25, p = 0.008 in the
hippocampus; F (3, 71) = 3.40, p = 0.022 in the medial temporal lobe (Table 2). Tukey post
hoc tests revealed that, compared to CN, cMD was significantly increased in AD subjects in
all tested regions, and cMD was significantly increased in Aβ-positive MCI compared with
CN in the frontal cortex, parietal cortex, and hippocampus (Table 2, Figure 2A–C).
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Figure 2. Bar charts representing cMD (A); Aβ deposition ([18F]flutemetamol SUVR; (B) and tau
deposition ([18F]AV1451 SUVR; (C) in frontal, parietal, and temporal cortex. Line and error bars
represent mean and 95% confidence interval. Aβ and tau are expressed as SUVR. cMD is expressed
as 0.103 mm2/s. Bar charts (D) of clinical diagnostic group comparison of mean, frontal, parietal, and
temporal cortical thickness.

Table 2. Comparison of mean diffusivity, [18F]flutemetamol SUVR, [18F]AV1451 SUVR, and cortical
thickness values in the ROIs.

CN Aβ-Negative MCI Aβ-Positive MCI AD One-Way ANOVA

Parameter Brain Region
Mean
(SD)

Mean
(SD)

Tukey Post
Hoc Test
vs. CN

Mean
(SD)

Tukey Post
Hoc Test
vs. CN

Mean
(SD)

Tukey Post
Hoc Test
vs. CN

F p-Value

Mean
Diffusivity

Frontal cortex
0.00105

(0.00009)
0.00106

(0.00009)
p = 0.989

0.00116
(0.00012)

p = 0.015
0.00116

(0.00010)
p = 0.041 F (3, 71) = 5.84 p = 0.001

Temporal
cortex

0.00098
(0.00008)

0.00103
(0.00015)

p = 0.628
0.00108

(0.00010)
p = 0.057

0.00114
(0.00014)

p = 0.004 F (3, 71) = 5.05 p = 0.003

Parietal
cortex

0.00111
(0.00011)

0.00113
(0.00011)

p = 0.987
0.00122

(0.00013)
p = 0.027

0.00124
(0.00014)

p = 0.026 F (3, 71) = 5.60 p = 0.002

Hippocampus
0.00090

(0.00008)
0.00105

(0.00032)
p = 0.311

0.00112
(0.00018)

p = 0.074
0.00125

(0.00039)
p = 0.005 F (3, 71) = 4.25 p = 0.008

Medial
temporal lobe

0.00091
(0.00007)

0.00102
(0.00025)

p = 0.306
0.00106

(0.00012)
p = 0.106

0.00113
(0.00024)

p = 0.015 F (3, 71) = 3.40 p = 0.022

[18F]flutemetamol
SUVR

Frontal cortex
1.29

(0.07)
1.25

(0.07)
p = 0.893

1.74
(0.26)

p < 0.001
1.88

(0.27)
p < 0.001 F (3, 76) = 54.13 p < 0.001

Temporal
cortex

1.20
(0.07)

1.14
(0.07)

p = 0.709
1.53

(0.23)
p < 0.001

1.63
(0.25)

p < 0.001 F (3, 76) = 38.88 p < 0.001

Parietal
cortex

1.25
(0.07)

1.21
(0.06)

p = 0.884
1.71

(0.24)
p < 0.001

1.87
(0.27)

p < 0.001 F (3, 76) = 65.56 p < 0.001

Hippocampus
1.42

(0.08)
1.30

(0.15)
p = 0.078

1.41
(0.17)

p = 1.0
1.39

(0.19)
p = 0.982 F (3, 76) = 3.113 p = 0.031

Medial
temporal lobe

1.27
(0.07)

1.18
(0.11)

p = 0.159
1.32

(0.15)
p = 0.544

1.33
(0.19)

p = 0.583 F (3, 76) = 6.135 p = 0.001



Cells 2025, 14, 155 7 of 18

Table 2. Cont.

CN Aβ-Negative MCI Aβ-Positive MCI AD One-Way ANOVA

Parameter Brain Region
Mean
(SD)

Mean
(SD)

Tukey Post
Hoc Test
vs. CN

Mean
(SD)

Tukey Post
Hoc Test
vs. CN

Mean
(SD)

Tukey Post
Hoc Test
vs. CN

F p-Value

[18F]AV1451
SUVR

Frontal cortex
1.04

(0.10)
1.02

(0.06)
p = 0.999

1.20
(0.26)

p = 0.430
1.26

(0.23)
p = 0.158 F (3, 26) = 2.679 p = 0.068

Temporal
cortex

1.06
(0.08)

1.05
(0.05)

p = 0.999
1.30

(0.23)
p = 0.266

1.53
(0.33)

p = 0.003 F (3, 26) = 7.605 p = 0.001

Parietal
cortex

1.03
(0.08)

1.02
(0.07)

p = 1.000
1.22

(0.21)
p = 0.604

1.40
(0.42)

p = 0.069 F (3, 26) = 3.367 p = 0.034

Hippocampus
1.13

(0.16)
1.07

(0.06)
p = 0.952

1.42
(0.21)

p = 0.054
1.49

(0.25)
p = 0.008 F (3, 26) = 8.187 p = 0.001

Medial
temporal lobe

1.06
(0.11)

1.00
(0.06)

p = 0.961
1.35

(0.24)
p = 0.041

1.46
(0.22)

p = 0.002 F (3, 26) = 10.15 p < 0.001

Cortical
thickness

Frontal cortex
2.45

(0.10)
2.49

(0.11)
p = 0.730

2.48
(0.12)

p = 0.872
2.41

(0.10)
p = 0.670 F (3, 76) = 1.804 p = 0.154

Temporal
cortex

2.90
(0.11)

2.82
(0.18)

p = 0.261
2.80

(0.11)
p = 0.178

2.61
(0.14)

p < 0.001 F (3, 76) = 10.08 p < 0.001

Parietal
cortex

2.33
(0.11)

2.33
(0.13)

p = 1.000
2.29

(0.12)
p = 0.747

2.08
(0.11)

p < 0.001 F (3, 76) = 14.80 p < 0.001

Mean cortical
thickness

2.45
(0.09)

2.43
(0.11)

p = 0.986
2.41

(0.09)
p = 0.747

2.27
(0.09)

p < 0.001 F (3, 76) = 10.01 p < 0.001

Data are mean ± SD values, and p-values were calculated by one-way ANOVA and the Tukey post hoc test. A
p-value < 0.05 was considered as significant. AD—Alzheimer’s disease; CN—cognitively normal; MCI—mild
cognitive impairment; SUVR—standardised uptake volume ratio.

As expected, Aβ deposition characterised by [18F]Flutemetamol SUVR was also signif-
icantly different among the groups, and Tukey post hoc tests revealed that, compared with
CN, Aβ deposition was significantly increased in AD and Aβ-positive MCI subjects in the
frontal cortex, temporal cortex, and parietal cortex (p < 0.001 for all, Table 2, Figure 2A–C).

We also found that tau deposition, characterised by [18F]AV1451 SUVR, was signifi-
cantly different among groups in the temporal cortex (F (3, 26) = 7.605, p = 0.001), parietal
cortex (F (3, 26) = 3.367, p = 0.034), hippocampus (F (3, 26) = 8.187, p = 0.001), and MTL
(F (3, 26) = 10.15, p < 0.001, Table 2, Figure 2A–C). Tukey post hoc tests revealed that, com-
pared with CN, tau deposition was significantly increased in AD subjects in the temporal
cortex (p = 0.003), hippocampus (p = 0.008), and MTL (p = 0.002), and tau deposition was
also significantly increased in Aβ-positive MCI compared with CN in MTL (p = 0.041,
Table 2, Figure 2A–C).

Lastly, we also found that cortical thickness was significantly different among groups
in the temporal cortex (F (3, 76) = 10.08, p < 0.001), parietal cortex (F (3, 76) = 14.80, p < 0.001),
and in the whole brain-averaged cortical thickness (F (3, 76) = 10.01, p < 0.001, Table 2,
Figure 2D). Tukey post hoc tests revealed that, compared with CN, cortical thickness was
significantly decreased in AD subjects in the temporal cortex (p < 0.001), the parietal cortex
(p < 0.001), and mean cortical thickness (p < 0.001, Table 2, Figure 2D).

From this ROI analysis, we found that cMD was significantly increased as early as
Aβ deposition in various brain regions, and cMD was not significantly increased in Aβ-
negative MCI compared with CN.

3.3. cMD Is Significantly Associated with Cortical Atrophy When Other Pathologies Are
Not Present

We then investigated the relationship between cortical thickness and cMD in each
ROI and each clinical diagnostic group. In the whole cohort, higher levels of cMD were
associated with lower cortical thickness in the frontal (rho = −0.30, p = 0.010), temporal
(rho = −0.41, p = <0.001), parietal cortices (rho = −0.36, p = 0.002), and hippocampus
(rho = −0.36, p = 0.002). Higher levels of Aβ were associated with higher cMD in the frontal
(rho = 0.30, p = 0.010), temporal (rho = 0.28, p = 0.015), and parietal cortices (rho = 0.31,
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p = 0.008). No significant association was observed between tau and cMD in the frontal
(rho = 0.32, p = 0.095), temporal (rho = 0.30, p = 0.120), parietal cortices (rho = 0.04, p = 0.842),
and hippocampus (rho = 0.17, p = 0.397).

Based on subgroup analysis (Figure 3), we found a strong negative correlation between
cortical thickness and cMD in subjects who were Aβ-negative (i.e., CN and Aβ-negative
MCI) in the parietal (Figure 3A, rho = −0.51, p < 0.001), temporal cortex (Figure 3C,
rho = −0.53, p < 0.001), and whole brain (Figure 3E, rho = −0.49, p = 0.001). Interestingly,
we found no correlation in subjects who were Aβ-positive (i.e., Aβ-positive MCI and AD)
in the same regions: parietal cortex (Figure 3B, rho = −0.06, p = 0.738), temporal cortex
(Figure 3D, rho = −0.22, p = 0.211), and whole brain (Figure 3F, rho = −0.0328, p = 0.852).
Spearman correlation analysis between Aβ and cMD in the Aβ-positive and -negative
populations showed no significant correlations (Figure 4). These results suggest that cortical
thickness and cMD are only related in the absence of pathologies such as Aβ deposition.
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are used to determine r and p-values in the parietal cortex ((A) rho = −0.51, p < 0.001; (B) rho = −0.06,
p = 0.738), temporal cortex ((C) rho = −0.53, p < 0.001; (D) rho = −0.22, p = 0.211), and whole brain
((E) rho = −0.0328, p = 0.852; (F) rho = −0.0328, p = 0.852). AD—Alzheimer’s disease; CN—cognitively
normal; MCI—mild cognitive impairment; cMD—mean diffusivity. Figure 3A, rho = −0.51, p < 0.001),
temporal cortex (Figure 3C, rho = −0.53, p < 0.001) and whole brain (Figure 3E, rho = −0.49, p = 0.001).
Interestingly, we found no correlation in subjects who were Aβ-positive (i.e., Aβ-positive MCI and
AD) in the same regions: parietal (Figure 3B, rho = −0.06, p = 0.738), temporal cortex (Figure 3D,
rho = −0.22, p = 0.211), and whole brain (Figure 3F, rho = −0.0328, p = 0.852).
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Figure 4. Relationship between amyloid deposition and mean diffusivity in the Aβ-negative (CN and
Aβ-negative MCI) and Aβ-positive subjects (Aβ-positive MCI and AD). Spearman’s rank correlation
are used to determine r and p-values in parietal cortex ((A) rho = −0.125, p = 0.440; (B) rho = 0.087,
p = 0.616), temporal cortex ((C) rho = −0.151, p = 0.350; (D) rho = 0.078, p = 0.654), and whole brain
((E) rho = −0.135, p = 0.405; (F) rho = 0.132, p = 0.447). No correlation was observed between Aβ

and cMD. AD—Alzheimer’s disease; CN—cognitively normal; MCI—mild cognitive impairment;
cMD—mean diffusivity.
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We did not find any significant correlation in subjects who were Aβ-positive
(i.e., Aβ-positive MCI and AD) in the same regions: hippocampus (rho = −0.32, p = 0.06)
and in the medial temporal lobe (rho = −0.28, p = 0.102).

In Aβ-negative and Aβ-positive subjects, we did not find any significant correlations
between cMD and tau deposition in any of the previously tested brain regions. Spearman
correlation analysis between tau deposition and cMD in the Aβ-positive and -negative
populations showed no significant correlations (Figure 5). Cortical thickness was also not
significantly correlated with tau or Aβ deposition, neither at a regional nor a global level in
those Aβ-negative and Aβ-positive subjects.
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are used to determine r and p-values in parietal cortex ((A) rho = −0.091, p = 0.797; (B) rho = −0.174,
p = 0.503), temporal cortex ((C) rho = 0.400, p = 0.225; (D) rho = −0.064, p = 0.809), and whole brain
((E) rho = 0.273, p = 0.418; (F) rho = 0.113, p = 0.666). No correlation was observed between tau
and cMD. AD—Alzheimer’s disease; CN—cognitively normal; MCI—mild cognitive impairment;
cMD—mean diffusivity.

4. Discussion
This pilot study examined the potential relationship between the mean diffusivity of

cMD and the initiation of Aβ deposition, considering different stages of AD as a proxy for
the duration of Aβ accumulation. We demonstrated that cMD was significantly increased
in Aβ-positive MCI and AD compared with CN in the frontal, parietal, temporal cortex, hip-
pocampus, and medial temporal lobe. We also found that cMD was significantly correlated
with cortical thickness only in patients without Aβ deposition, and was not significant in
Aβ-positive patients. We anticipated a correlation between cMD and structural imaging
biomarkers, particularly cortical thickness, as cMD offers unique information independent
of cortical thickness. The primary objective of this investigation was to identify early
changes in cMD during the disease trajectory and establish its relationship with Aβ and
tau deposition, and alterations in cortical thickness across the cognitive continuum encom-
passing CN, MCI, and AD patients. This enabled us to understand the influence of Aβ, one
of the earliest changes in the AD trajectory along with gaining insights into the potential
utility of cMD as an early marker of AD pathology and neurodegenerative changes. Our
hypotheses were guided by the notion that Aβ deposition may have a deleterious effect
on cMD early in the disease trajectory and serve as a sensitive marker of microstructural
alterations associated with Aβ deposition. This may provide valuable information comple-
mentary to traditional measures like cortical thickness. While Aβ deposition was associated
with changes in cMD, no such association was found with tau deposition in this relatively
small number of subjects.

Our findings shed light on several important aspects related to cMD and its association
with AD pathology: (1) cMD is an early marker of neuronal damage, and it appears in
Aβ-positive MCI, and may coincide with the Aβ deposition. Significant increases in cortical
cMD were observed in brain regions of symptomatic Aβ-positive MCI and AD participants
compared with symptomatic Aβ-negative MCI and CN participants. (2) cMD changes
are driven by Aβ but not by tau, which may suggest that direct Aβ toxicity or associated
inflammation causes damage to dendrites. (3) cMD is associated with cortical thickness
when Aβ is not present (Figure 6). cMD is correlated with cortical thickness only in CN
and Aβ-negative MCI participants, suggesting that cMD might be associated with cortical
atrophy when other pathologies (such as Aβ deposition) are not present. When other
pathologies are present, those pathologies influence the cortical thickness. This suggests
that Aβ deposition may have an independent effect on neuronal damage, which further
underscores the potential utility of cMD as an early biomarker. Detecting and monitoring
disease progression over time can be crucial in the early stages of AD, and cMD holds
promise as a valuable tool.

Our findings highlight the significance of cortical cMD as a sensitive indicator of
neuronal damage in the context of AD pathology, particularly Aβ deposition. The observed
independent effect of Aβ on cMD underscores its potential as an early biomarker for
tracking disease progression, providing insights into the underlying mechanisms, and
guiding future research and therapeutic interventions.
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Figure 6. Hypothetical framework of pathological events leading to neuronal damage in normal
ageing and dementia. cMD is correlated with cortical thickness only in CN and Aβ-negative MCI
participants. This suggests that cMD is associated with cortical atrophy when other pathologies
(such as Aβ deposition) are not present. When other pathologies are present, such as neuroinflam-
mation and tau aggregation, those pathologies induce damage to the dendrites and influence the
cortical thickness.

Our findings are consistent with the Aβ cascade hypothesis which assumes a serial
model of causality whereby Aβ initiates a series of events leading to tau hyperphospho-
rylation and neurodegeneration [38]. We show here that cMD is not significantly affected
in individuals who are Aβ-negative MCI. This could imply that prior to the presence of
Aβ, the grey matter topology may not be significantly impacted. The accrual of Aβ as
observed in Aβ-positive MCI may cause local disruption of the dendrites. This suggests
that the integrity of the dendrites is compromised even in the early stages of the AD tra-
jectory, as observed in the present study. These findings demonstrate that grey matter
diffusivity is an early finding in the AD trajectory and is influenced by Aβ deposition,
and is perhaps associated with neuroinflammation [13,17,19,21]. Changes in grey matter
diffusivity is hypothesised to be the consequence of the breakdown of microstructural
barriers (intracellular organelles, cell membranes, etc.), associated with and/or amplified
by the simultaneous presence of Aβ [21,25,26,39]. There may be an inflammatory state
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associated with neuronal/glial swelling and inflammatory cell recruitment. This could
disrupt the cell membrane, leading to changes in cMD.

cMD was negatively associated with cortical thickness in patients who were Aβ-
negative in this study. This suggests that cMD closely reflects disease activity in the
period [40] approaching Aβ positivity, since this correlation between cMD and cortical
thickness was lost in patients who were Aβ-positive. In agreement with our findings,
a study by Weston et al. (2020) found that most significant cortical MD changes are ob-
served in the pre-symptomatic familial AD phase, but disappear during the symptomatic
phases [40]. This suggests that MD indicates disease activity in the period approaching
the onset of clinical symptoms [41–44]. A study in AD showed different clinical diag-
nostic patterns (CN, MCI, AD) in the association between whole brain cMD and cortical
volumes. However, their Aβ status was not assessed [27]. Our pilot study demonstrates
that cMD might be a valuable biomarker of neurodegeneration reflecting the upstream
microstructural changes happening prior to macrostructural changes like atrophy. Multi-
modal and longitudinal imaging studies on large datasets would be needed to evaluate
these propositions.

We found that cortical thickness was significantly lower in AD participants compared
with the three other cognitive diagnostic groups. Interestingly, we also found that cortical
thickness was strongly correlated with cMD in CN and Aβ-negative MCI, with increasing
cMD being associated with decreasing cortical thickness. In the absence of other patholo-
gies, increased cMD may lead to neuronal damage and a subsequent reduction in cortical
thickness. In the presence of Aβ and tau deposition, these pathological processes may
influence cMD and contribute to a subsequent reduction in cortical thickness. Measurement
of cortical thickness using the FreeSurfer package is a common and well-validated method
of assessing macrostructural cortical change [40,41]. The relationship between thickness
and MD thus provides further face validity for cortical MD as a marker of cortical in-
tegrity/degeneration, with both decreased thickness and increasing MD likely constituting
part of the same pathological continuum. The presence of an association among healthy
ageing non-carriers also supports this theory, indicating that both cortical MD and cortical
thickness are measuring an underlying metric, i.e., neuronal integrity/degeneration (albeit
differing factors and/or time points). These measurements continually change in a pro-
gressive manner, albeit to a milder degree in both neurodegenerative disease and healthy
ageing. Changes in microstructural measures like MD may be upstream to macrostructural
changes in thickness, which may provide an earlier measure change. However, this will
need confirmation through further studies, preferably with longitudinal assessment.

We did not find any increase in either cMD or cortical thickness, on the ROI analysis,
in Aβ-negative MCI participants compared with CN participants. Even if we assume
that neuronal death occurs early in the course of the disease, several mechanisms may
explain the absence of increased cMD in Aβ-negative MCI participants: (1) there could
be an inflammatory state associated with neuronal/glial swelling and inflammatory cell
recruitment that could lead to a decreased cMD. Some evidence suggests a biphasic evo-
lution of cMD, with an initial decrease in the early stages of the disease, followed by an
increase in cMD [39]. This may be consistent with the early and late peaks of microglial
activation described in AD [45]. There is strong evidence supporting this hypothesis, with
several studies showing the effect of cell hypertrophy, glial recruitment, and activation,
thus modifying the diffusion properties of water molecules and adding new barriers to
induce a decrease in diffusivity in those areas [46,47]. Further studies with simultaneous
inflammation, Aβ, tau, and diffusion imaging in the early stages of dementia would be of
particular interest for identifying the biological processes involved in diffusivity changes.
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There are technological considerations for the non-significant changes observed in
Aβ-negative MCI compared with CN. The present study used PET imaging, which de-
tects fibrillar forms of Aβ but not soluble oligomers. It has been suggested that soluble
Aβ oligomers, readily measured by measuring CSF acquired through lumbar puncture,
precedes PET measurements of Aβ fibrils [48,49]. The oligomeric forms of Aβ have been
considered the most toxic and pathogenic [50]. Aβ42 oligomers isolated from typical late-
onset AD brains decrease synapse density, inhibit LTP, and enhance long-term synaptic
depression in rodent hippocampus, and their intraventricular injection impairs memory
in healthy adult rats [50]. Moreover, human Aβ42 oligomers induce tau hyperphospho-
rylation at AD-relevant epitopes and cause neuritic dystrophy in cultured rat neurons;
co-administering Aβ antibodies fully prevents this [50]. Future studies should elucidate
the relationship between Aβ oligomers and their effects on diffusivity parameters in Aβ-
negative MCI.

Our results demonstrate that Aβ and tau have distinct accumulation patterns but
overlap with changes in cMD in various brain regions. In the prodromal stage of AD
dementia, Aβ accumulation was found to be significantly increased in the frontal, temporal,
and parietal regions, but not in the medial temporal regions, including the hippocampus, in
keeping with sites of early Aβ accumulation [51]. Meanwhile, tau deposition was confined
to the medial temporal cortex at the prodromal stage but spread to the frontotemporal
regions (higher-order association areas) in patients with AD [52]. Our preliminary obser-
vations suggest that the changes in cMD overlap with Aβ and tau, with cMD changes
preceding tau deposition. For example, tau accumulation occurred in the frontotemporal
regions at AD dementia stage, while cMD changes were observed at the stage of MCI in
patients who were Aβ-positive as well as in patients with AD.

One of the limitations of our study was the relatively low number of subjects in each
diagnostic group. Nonetheless, we had well characterised 87 subjects with data acquired on
the same scanner with the same acquisition parameters, thus strengthening the reliability
of measures, but limiting the number of subjects. To analyse and compare a substantial
number of subjects data, multicentric studies are needed with the need for standardisation
and harmonisation of imaging protocols, crucial for attaining reliable and comparable data.
DTI has a relatively poor imaging resolution compared with anatomical structural imaging,
and the CSF contribution in the cMD signal is important to consider [24,53]. This study has
demonstrated for the first time that in the absence of Aβ deposition, cMD is associated with
cortical thickness, while Aβ and tau may have significant influences on cortical thickness.
While this preliminary cross-sectional study suggests that microstructural changes occur
due to Aβ toxicity, prospective longitudinal studies are required with repetitive imaging
and blood sampling to validate the present findings. Moreover, the effects of comorbidities,
including hypertension, diabetes, and hypercholesteremia, on cMDs in AD should be
thoroughly investigated.

The annual rates of 0.5% for global atrophy have been reported in healthy ageing [54].
The annual rates for global atrophy are more pronounced in neurodegenerative diseases,
i.e., 2.4% in patients with AD, 3.2% in patients with FTD, and 1.4% in patients with
DLB [55,56]. Further longitudinal studies are required to determine the threshold needed
to distinguish between regular age-related changes in cortical atrophy in AD and other
neurodegenerative diseases, and to determine their relationship with cMD signal alongside
Aβ and tau pathologies.

5. Conclusions
We investigated the cortical changes using structural MRI, DTI, and PET imaging

markers. We demonstrated that cMD is increased simultaneously with Aβ deposition.
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In subjects without Aβ pathology (i.e., CN and Aβ-negative MCI), we found a strong
association of cMD with cortical thickness. This association between cMD and cortical
thickness was not found in the later stages of the disease (i.e., Aβ-positive MCI and AD).
Taken together, cMD provides valuable information about early microstructural changes
before macrostructural changes.
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