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Abstract

Background

Bipolar Disorder (BD) is a complex disease. It is heterogeneous, both at the phenotypic and

genetic level, although the extent and impact of this heterogeneity is not fully understood.

One way to assess this heterogeneity is to look for patterns in the subphenotype data.

Because of the variability in how phenotypic data was collected by the various BD studies

over the years, homogenizing this subphenotypic data is a challenging task, and so is repli-

cation. An alternative methodology, taken here, is to set aside the intricacies of subpheno-

type and allow the genetic data itself to determine which subjects define a homogeneous

genetic subgroup (termed ‘bicluster’ below).

Results

In this paper, we leverage recent advances in heterogeneity analysis to look for genetically-

driven subgroups (i.e., biclusters) within the broad phenotype of Bipolar Disorder. We first

apply this covariate-corrected biclustering algorithm to a cohort of 2524 BD cases and 4106

controls from the Bipolar Disease Research Network (BDRN) within the Psychiatric Geno-

mics Consortium (PGC). We find evidence of genetic heterogeneity delineating a statisti-

cally significant bicluster comprising a subset of BD cases which exhibits a disease-specific

pattern of differential-expression across a subset of SNPs. This disease-specific genetic

pattern (i.e., ‘genetic subgroup’) replicates across the remaining data-sets collected by the

PGC containing 5781/8289, 3581/7591, and 6825/9752 cases/controls, respectively. This

genetic subgroup (discovered without using any BD subtype information) was more preva-

lent in Bipolar type-I than in Bipolar type-II.
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Conclusions

Our methodology has successfully identified a replicable homogeneous genetic subgroup of

bipolar disorder. This subgroup may represent a collection of correlated genetic risk-factors

for BDI. By investigating the subgroup’s bicluster-informed polygenic-risk-scoring (PRS), we

find that the disease-specific pattern highlighted by the bicluster can be leveraged to elimi-

nate noise from our GWAS analyses and improve risk prediction. This improvement is par-

ticularly notable when using only a relatively small subset of the available SNPs, implying

improved SNP replication. Though our primary focus is only the analysis of disease-related

signal, we also identify replicable control-related heterogeneity.

Background

Overview

Bipolar disorder (BD) is a brain disorder characterized by shifts in mood, energy and atten-

tion/focus [1]. BD affects roughly 50 million people across the world, with a mean age of onset

of 20 years and an estimated lifetime prevalence of *1% [2–5]. BD is also highly heritable

[6], with heritability estimates of 40% or higher [7–11] and evidence of increased risk when

family-members exhibit other psychiatric disorders [7, 10, 11].

There is growing consensus that BD is heterogeneous, both at the phenotypic and genetic

level [12–23]. For example, diagnostic systems usually consider at least two subtypes of bipolar

disorder: bipolar I and bipolar II. The diagnostic criteria for bipolar I require the presence of at

least one manic episode, while those for bipolar II require at least one hypomanic and one

major depressive episode [1]. Response to medication (such as lithium) is highly heteroge-

neous across patients, and genetic predictors of drug-response have been difficult to clearly

determine and replicate [24–28].

The high degree of heterogeneity for BD at the clinical and phenotypic level may make it

more difficult to identify genetic risk-factors for BD. To briefly summarize: while the overall

heritability of BD is estimated at *40%, the overall single-nucleotide-polymorphism (SNP)

heritability is only* 18.6% [29], which is moderate when compared to many other psychiatric

and neurological disorders [6, 30–38]. Recent genome-wide association studies (GWASs) have

been used to identify several (i.e. * 100) independent loci associated with BDI and BDII, with

the overall variance explained by SNPs reaching * 15 − 18% [29]. However, many of the loci

that seem promising in one cohort fail to replicate in other cohorts [23, 39, 40]. Studies

attempting to uncover gene-environment interactions in BD have also encountered challenges

finding replicable signals [41–45].

Rather than focusing on small sets of loci, one can also consider collections of SNPs which

individually may not be of genome-wide significance. Along this vein, Polygenic-risk-scores

(PRSs), which are usually weighted sums of genetic variants, have been used to summarize the

genome-wide risk for BD [46]. These PRSs may provide an estimate of overall risk and/or

severity: those individuals with PRSs in the top 90% were 3.62 times more likely to be a case

than those with average PRSs. These PRSs also contain information regarding multiple pheno-

typic traits, including the risk of other psychiatric disorders, psychopathology, educational

attainment and more [47–55]. Despite these successes, to the best of our knowledge, no indi-

vidual PRS has yet been able to explain a large fraction of the variation between the main bipo-

lar subtypes.
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The high degree of heterogeneity within BD poses a challenge to understanding its etiology

and developing new interventions. Ultimately, a comprehensive depiction of the landscape of

BD will involve clear descriptions of the heterogeneity at the phenotypic level, as well as at the

genetic level.

To date, the main research efforts aimed at understanding the genetic heterogeneity under-

lying BD have focused on (i) increasing the power of BD meta-GWAS, (ii) running subpheno-

typic-specific meta-GWAS, and (iii) performing pathway-specific analyses [56–58]. These

research efforts are non-trivial and in some cases require insights we do not yet have. Generally

speaking, recruiting, assessing, and genotyping new subjects is expensive; there is often a

trade-off between the quantity of subjects that can be recruited and the ‘quality’ or accuracy

with which their data is processed. For example, one promising resource for genotyped data is

23andMe, but many of the data-sets available through this resource rely on self-reported diag-

noses [59]. Consequently, any synchronization effort involves the integration and harmoniza-

tion of data collected using different phenotypic instruments or genotyping methods and may

inadvertently introduce non-disease-related signal. Furthermore, in many cases, the relevant

subphenotypic information was not collected at all, forcing interested researchers to contact

prior participants or lose those data points entirely. Finally, even when promising results are

obtained, it is not always easy to find an appropriate replication sample [60]. Since we do not

yet know which trait or combination of subphenotypic traits (if any) is responsible for BD

genetic heterogeneity, it is not always clear how best to proceed.

Contribution

Ultimately, we seek to investigate the genetic heterogeneity of BD by using an approach which

does not require the user to provide pathways or subphenotypes. As described below, we intro-

duce a methodology which first uses the genotyped data to identify a genetic subgroup within

BD, and then uses that genetic subgroup for downstream analyses (in this case risk prediction).

To briefly summarize: we use a covariate-corrected biclustering algorithm to search for statisti-

cally significant biclusters comprising subsets of BD cases which exhibit disease-specific pat-

terns of differential-expression across subsets of SNPs. In this study we find one statistically-

significant disease-specific structure, which is limited to only a fraction of the case-subjects.

These case-subjects collectively exhibit a shared pattern of differential-expression—i.e., a form

of genetic homogeneity—which is not shared by the other BD-cases nor by the control-sub-

jects; we refer to this bicluster as a ‘genetic subgroup’. We then demonstrate that this genetic

subgroup is useful for risk-prediction.

In more detail, our analysis begins by collecting data within which to search for genetic sub-

groups of BD. As members of the Psychiatric Genomics Consortium (PGC), we had access to

the raw genotypes of * 18K BD cases and * 30K controls. This data was generated by 27

studies and genotyped on a variety of platforms (OMEX, Affymetrix, Illumina). When the

PGC analyzed this data [20], they synchronized the data using imputation. We were not cer-

tain how imputation might impact the potentially subtle relationships between BD cases, and

therefore decided to limit our analysis to the available raw genotyped data [60]. This choice to

limit ourselves to raw genotyped data placed constraints on our choices for the training and

testing data sets, as the various genotyping platforms types emphasize different SNP sets (see

Fig 1).

In order to minimize batch-effects and reduce the chances of spurious false-positives, we

chose to initially focus our primary analysis on a relatively large curated study from the Bipolar

Disorder Research Network (BDRN) comprising raw genotyped data collected across 2524 BD

cases and 4106 controls (OMEX platform) [18]. We use this BDRN study as our training-arm,
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and set aside the remaining independent data for subsequent replication analyses (i.e., our rep-

lication-arms). We grouped all the BD cases in our training-arm together and searched within

the training-arm for any subsets of subjects which exhibited a distinct genetic signature (i.e.,

differential expression) across a subset of SNPs. Any such subset of subjects along with the

associated subset of differentially-expressed SNPs is referred to as a ‘bicluster’, or a ‘genetic

subgroup’.

As described in [61, 62], many commonly used biclustering approaches suffer from two

methodological issues. First, a bicluster that is found within the case-population may not be

disease-related, as a similar signal may be found within the control-population (e.g., a bicluster

representing non-disease-specific heterogeneity). Second, many biclustering algorithms pro-

ceed under the assumption that biclusters exist, often identifying ‘false-positive’ structures that

are not statistically-significant.

To address these issues we searched for biclusters using the ‘half-loop’ algorithm of [63, 64].

As described in [64], this algorithm ensures that the pattern of differential-expression within

the bicluster is not similarly present within the control-population, reducing the likelihood

that we highlight structures unrelated to disease status. Second, the half-loop algorithm uses a

permutation-test to estimate the p-value of each bicluster found, allowing us to test against the

null hypothesis that no bicluster exists. Finally, the half-loop algorithm also allows us to correct

for other covariates, such as proxies for genetic-ancestry (see Methods). While our approach is

much simpler than some of the more recent machine-learning approaches, our biclusters are

directly associated with subject- and SNP-subsets, which can be directly interpreted and

assessed for homogeneity and/or used in downstream analyses.

Using the relatively conservative half-loop method mentioned above, we found strong evi-

dence for genetic heterogeneity. We discovered one bicluster which is statistically significant

and which replicates in all three other data-sets. This primary bicluster was enriched for (but

Fig 1. In this figure we illustrate the absolute (right) and relative (left) snp overlap between the studies available to us. The relative-overlap is calculated

using the Szymkiewicz–Simpson coefficient (i.e., the overlap-coefficient between sets X and Y is |X \ Y|/min(|X|, |Y|)). Guided by the relative-overlap

and genotyping platform used, we divided the studies into four arms (shown along the coordinate axes). The first arm contains only the single ‘BDRN’

data-set, which we use as a training/discovery set to search for heterogeneity (see Methods). We reserve the remaining studies (organized into three

arms) for replication. Note that the training-set overlaps strongly with arm-2, and less strongly with arm-3 and arm-4. The magnitude of this overlap

will constrain how faithfully any patterns of differential-expression found in arm-1 can possibly manifest within the other arms (see Figs 3–5).

https://doi.org/10.1371/journal.pone.0314288.g001
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not completely driven by) BDI over BDII. After removing this bicluster we saw further evi-

dence of residual heterogeneity, but our training data-set was not sufficiently powered to

clearly identify a secondary bicluster.

We then assessed the role of our bicluster in risk-prediction. We found that the subset of

case-subjects highlighted by the bicluster can be used to improve the performance of a PRS.

This advantage was more pronounced when (i) the SNPs included in the PRS were limited to

those of high estimated significance, and (ii) the case-population was limited to those diag-

nosed with BDI. These observations suggest that focusing on genetically identifiable subgroups

of BD-subjects might improve overall risk-prediction and enhance replication across the top

SNPs.

Finally, we also ran a simple gene-set over-representation analysis, revealing that the genetic

subgroup identified above (i.e., the bicluster) is significantly enriched for many pathways asso-

ciated with neuronal development and maintenance.

In summary, we find strong evidence for the genetic-heterogeneity of BD in the form of a

bicluster. Notably, BD subphenotype information was not required to identify this signature,

nor were rare-variants (i.e., we relied only on common SNPs with maf greater than 25% within

the training-arm). The signature of this bicluster has the potential to refine downstream analy-

ses (e.g., improving genome-wide risk-prediction), and the associated gene-enrichment sug-

gests an association with certain mechanisms of neuronal development.

Methods

In this section we describe several aspects of our methodology. An even more detailed descrip-

tion, including an outline of the steps involved and the considerations we made along the way,

is available in S1 Text.

Data

We make use of data from 27 of the cohorts described in [20]. These cohorts have been curated

as described in [20] and its supplementary information, and include de-identified subjects

from several countries in Europe, North America and Australia, totaling over 18000 cases and

29000 controls of European descent. Case-subjects were required to meet international con-

sensus criteria (DSM-IV, ICD-9, or ICD-10) for a lifetime diagnosis of BD established using

structured diagnostic instruments from assessments by trained interviewers, clinician-admin-

istered checklists, or medical record review. Control-subjects in most samples were screened

for the absence of lifetime psychiatric disorders, as indicated. For each of the 27 cohorts, we

had access to both the raw genotypes and the imputed data generated by Stahl et al. using the

1000 Genomes (1KG) European reference-panel (see [20]).

Due to the details of our heterogeneity analysis (described further below), we make three

additional choices. First, for our primary analysis we use only the raw genotyped data within

each cohort, but not the imputed data. This is because we want to avoid any concerns of spuri-

ous correlations that might arise from imputation [60]. Second, when running our biclustering

algorithm we do not explicitly correct for linkage-disequilibrium (LD) between genotyped

SNPs at the level of the data-set itself (e.g., by eliminating SNPs in strong LD with other SNPs).

Instead, we implicitly correct for LD within our biclustering algorithm by contrasting cases

against controls. Third, it is typically quite difficult to reliably detect signal associated with rare

variants (i.e., SNPs with a low minor-allele-frequency, a.k.a. ‘maf’), especially when the power

of the data-set is low. This difficulty is compounded when searching for heterogeneity, as the

effective sample-size (e.g., the number of subjects in a bicluster) is further reduced—often only

a fraction of the total subject-population [64]. Thus, in order to avoid spurious results
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associated with rare-variants, we limit our analysis to common variants (i.e., SNPs with maf

greater than 25%). This high maf-threshold has the added benefit that the signals that we do

find are described in terms of common variants, which will hopefully be easier to access in

future studies.

As shown in Fig 1, the common genotyped SNP-overlap between the cohorts varies signifi-

cantly. Cohorts that were genotyped using similar platforms tend to have large SNP-overlaps,

while those genotyped on different platforms tend to have smaller SNP-overlaps. After cluster-

ing the cohorts by platform (and removing any duplicate subjects across cohorts) we defined

four ‘arms’, as shown along the axes in Fig 1. Arm-1 consists of the single cohort labeled

‘BDRN’ (2524 cases, 4106 controls, OMEX). Arm-2 includes cohorts ‘may1’ through ‘rom3’

(5781 cases, 8289 controls, OMEX). Arm-3 includes cohorts ‘bonn’ through ‘bmpo’ (3581

cases, 7591 controls, Illumina). Arm-4 includes cohorts ‘dub1’ through ‘gain’ (6825 cases, 9752

controls, Affymetrix).

The first arm (comprising the single cohort ‘BDRN’) is relatively large and collected within

the UK, comprising case-subjects of European descent over the age of 17 (see [18, 65, 66] for

details). As a result, we expect this cohort to be less susceptible to spurious heterogeneity asso-

ciated with batch-effects, and we use this cohort as a ‘training’ or ‘discovery’ arm, reserving the

other three independent data-sets for validation (i.e., ‘replication’ arms). This training-arm has

a large SNP-overlap of * 85% with arm-2, and a smaller SNP-overlap with arms 3 and 4 (i.e.,

* 50% and * 30%, respectively). Correspondingly, we expect that any signal involving a

multi-SNP-pattern found in arm-1 will only have an opportunity to replicate strongly in arm-

2, and will not have the opportunity to replicate as strongly in arms 3 and 4 (as we will have

fewer SNPs to use for validation).

Ethics statement. We first obtained access to this data on 2013–11-25, and we have never

had access to any information that could identify individual participants during or after data

collection. This study was approved by the institutional review boards (IRBs) at University of

California, San Diego as well as New York University. Because all the data we were working

with had been de-identified, both IRBs certified our study as exempt from review and continu-

ing review. The metadata for the subjects included genome-wide principal-components,

which we used as a proxy for ancestry and corrected for in our primary- and secondary analy-

ses, as described below. The metadata also included sex, whose effect we assessed a-posteriori

(see Fig 17 in S1 Text). We did not have access to confounding variables such as socioeco-

nomic status, nutrition, environmental exposures, or other similar factors, and could not cor-

rect for these in our analysis.

Correcting for ancestry

We use the genome-wide principal-components calculated by Stahl et al. to assess relatedness

and correct for ancestry. Of the first 20 principal-components, denoted {U1, . . ., U20}, Stahl

et al. determined that the first six principal-components (U1-U6) and U19 showed significant

correlation with the main phenotype across the studies considered in [20].

In the discovery phase of our analysis we are restricted to the training-arm (arm-1). For this

sample we use an F-test applied to a nested logistic model, which selects only the first two prin-

cipal-components (i.e., U1 and U2) as significantly related to case-control status in arm-1.

Therefore, to mimic the analyses one might conduct with access only to arm-1, we correct our

biclustering algorithm for these two principal-components, under the assumption that they

are a proxy for ancestry.

In all but this initial biclustering analysis on arm-1, we remain consistent with [20] and cor-

rect for principal-components U1 through U6, as well as U19. This includes both the calculation
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of A U C in the subsequent replication studies (e.g., A(i) and A0(i) in Fig 3) as well as the PRS-

analysis described below.

Biclustering

For our initial biclustering of arm-1 we use the half-loop method of [64]. To briefly summarize

the method, we first introduce some notation. Assume that the data-set contains MD case-sub-

jects, and MX control-subjects, each measured across N allele-combinations (note, each SNP is

associated with three allele combinations: heterozygous and homozygous dominant and reces-

sive). We denote the array of case-subjects by D, with D(jD, k) referring to allele-combination-

k in case-subject-jD. Similarly, we denote the array of control-subjects by X, with X(jX, k) refer-

ring to allele-combination-k in control-subject-jX. We’ll use the generic subject-index j to refer

to both the jD and the jX.

In its most basic form, the half-loop algorithm proceeds as follows:

Step-0 First we load/initialize the data-arrays D and X.

Step-1 For each case jD and allele-combination k, we measure the fraction of other cases in D
which share that allele-combination, denoted by [D D](jD, k). Similarly, we measure the

fraction of controls in X which share that allele-combination, denoted by [D X](jD, k).

The difference between these two values, denoted by Q(jD, k) = [D D](jD, k) − [D X]

(jD, k) is a measure of differential-expression.

Step-2 After calculating Q(jD, k), we form the ‘row-scores’ Qrow(jD) = ∑k Q(jD, k), as well as the

‘column-scores’ QcolðkÞ ¼
P

jD
QðjD; kÞ and the ‘trace’ �Q ¼

P
jD ;k

QðjD; kÞ. The row- and col-

umn-scores measure how strongly each case-subject and allele-combination contribute to

the trace, which is itself a measure of the overall differential-expression exhibited between

D and X.

Step-3 We remove a small fraction of case-subjects and allele-combinations from D with the

lowest row- and column-scores.

Step-4 We return to Step-1, iterating until there are no more case-subjects within D.

The algorithm proceeds iteratively; at each iteration i we remove a small fraction γ of the

remaining case-subjects and allele-combinations. In this analysis we choose γ = 0.58 * 0.004,

which is sufficiently small that we expect statistical convergence of the algorithm’s accuracy

(see Fig 32 in supplementary section 7.3 in [64]). After each iteration i, a subset J ðiÞ compris-

ing M(i) case-subjects and a subset KðiÞ comprising N(i) allele-combinations remain, together

forming an M(i) × N(i) sub-array D(i) of the original D. If the case-array D were to contain a

bicluster with a sufficiently strong signal, then the rows and columns of that bicluster would be

retained until the end, with the other rows and columns eliminated earlier.

This half-loop method has detection-thresholds similar to spectral-clustering and message-

passing [67, 68], but has several additional useful features. First, the half-loop method allows

us to search for disease-specific heterogeneity by directly correcting for control-subjects. This

case-control correction also motivates the null-hypothesis H0 described below; the permuta-

tion-test allows us to avoid spurious structures that are unrelated to the disease-label. Second,

the half-loop scores in Step-1 allow us to (implicitly) correct for linkage-disequilibrium (LD).

More specifically, subsets of SNPs which are in equally strong LD in both the case- and con-

trol-populations will be excluded as the algorithm proceeds, unless some of those SNPs are

involved in a pattern of differential-expression specific to the remaining case-subjects, in

which case they will be retained (as desired). Third, the method also allows us to correct for
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continuous covariates. This covariate-correction is described in detail in [64], but essentially

amounts to a reweighting of the Q(j, k) in Step-1 to reduce the overall level of differential-

expression contributed by structures which are not evenly distributed in covariate-space.

Finally, the method itself is rather straightforward and does not require the fine-tuning of

parameters.

As mentioned in Step-2, the overall level of differential-expression between D(i) and X at

each iteration is recorded as the trace �QðiÞ. The significance-level of �Qð�Þ is determined with

respect to a null hypothesis (H0) which assumes that the heterogeneity is independent of case-

and control-labels. Samples from H0 are drawn by randomly permuting the case- and control-

labels in arm-1 (i.e., randomly interchanging rows of D and X) while respecting proximity in

covariate-space. By comparing the values of the �QðiÞ from the original data to the distribution

of �QðiÞ associated with the null-hypothesis, we assign an (empirical) training-p-value to the

individual �QðiÞ for each iteration i. Similarly, we calculate an overall empirical training-p-

value (across all iterations), which estimates the probability that the trace �Q from the original

data-set could be drawn from the null-hypothesis.

Within this context, the detection of a disease-specific bicluster corresponds to an elevated

(i.e., statistically-significant) value of �QðiÞ. The case-subjects and allele-combinations compris-

ing the bicluster can then be approximated by the subsets J ðiÞ and KðiÞ for those i.

Replication

When discussing any particular replication-arm (e.g., arm-2), we will use primed indices (e.g.,

cases and controls will be indexed via j0D and j0X). To assess replication we first consider the

set of allele-combinations K0 available within the replication-arm. This subset will limit the

alleles we can use from within the original training-arm (i.e., arm-1). For any iteration i, we

select the allele-subset KðiÞ from the training-data-set, and then construct the intersection

K0ðiÞ≔KðiÞ \K0. For the replication-arm arm-2 the allele set K0ðiÞ will have a size N0(i),
which is typically around 85% of N(i) (i.e., 85% of the full size of KðiÞ). For the other

replication-arms (i.e., arms 3 and 4) the overlap will be lower. Using K0ðiÞ as well as the case-

subject subset J ðiÞ, we define the M(i) × N0(i) submatrix D0(i) within the training data (note

D0(i) is a submatrix of the M(i) × N(i) submatrix D(i) defined above). We then calculate the

dominant SNP-wise principal-component vðiÞ 2 RN0ðiÞ
of D0(i).

We project each subject within the training-data-set onto v(i), producing a ‘bicluster-score’

(i.e., a single number) ujD
ðiÞ for each case-subject in the training-data-set, and ujX

ðiÞ for each

control-subject in the training-data-set (recall that jD and jX index the case- and control-sub-

jects in the training-data-set). Based on the definition of the bicluster, we expect that the typical

values of ujD
ðiÞ will be larger than the typical values of ujX

ðiÞ. We measure this difference by

calculating the area under the receiver-operator-characteristic curve (A U C) between the sets

fujD
ðiÞg and fujX

ðiÞg; we refer to this A U C as A(i). When calculating A(i) we correct for the

same ancestry-related covariates as in [20] (see Methods and [60]).

We also project each subject in the replication-arm onto the same vector v(i), producing

bicluster-scores u0j0DðiÞ for each case-subject in the replication-arm, and u0j0X ðiÞ for each control-

subject in the replication-arm. Once again, we expect that the typical values of u0j0DðiÞ will be

larger than the typical values of u0j0XðiÞ in the replication-arm. We measure this difference by

calculating the A U C A0(i), once again correcting for the ancestry-related covariates.

We assess the overall significance of the replication by considering a null-hypothesis where

the structure of the replication-arm is independent of disease-status. We can draw a sample

from this null-hypothesis (H0’) by randomly permuting the case- and control-labels within the
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replication-arm (while respecting proximity in covariate-space). In this manner we compare

the original replication A U C A0(�) (as a function of i) to the distribution of A0(�) obtained

under H0’.

Later on below (e.g., Fig 3) we calculate the average �A0 of A0(�) over a range of iterations,

and then compare �A 0 to the distribution of �A 0 obtained under this label-shuffled null-hypothe-

sis. We define the range of iterations by taking an interval which is significant for both the

trace �QðiÞ and the A U C A(i) defined using only the training-arm. For example, in Fig 3 we

consider the range of iterations i 2 [175, 350].

Polygenic-Risk-Scores (PRSs)

We calculate PRSs using the general strategy from [20], and further described in page 60 of the

S1 Text within that paper. To briefly summarize: We use the genotype-level data from [20],

which was imputed using the 1KG reference-panel. We then run a GWAS on this genotype-

level data. This GWAS produces summary-statistics defined by contrasting cases and controls

from the training-arm, while correcting for ancestry-related covariates. Once we have the sum-

mary-statistics defined by the GWAS, we run Plink’s ‘clump’ function to account for LD. We

perform this clumping step using the same parameters as in [20] (e.g., info-score threshold of

0.9, R2-threshold of 0.1, genomic window of 500Kb, and minor-allele-frequency threshold of

0.05.) As a technical note: our ultimate goal is to analyze these PRS scores in the context of our

heterogeneity analysis, which can be influenced by subtle relationships between SNPs. Conse-

quently, we wanted to use the most accurate available information regarding LD. After the

initial data-sets described in [20] were published, the Haplotype Reference Consortium Euro-

pean Reference Panel (HRC EUR panel) became available through the Wellcome Trust Sanger

Institute [69]. This HRC EUR panel dramatically increased the amount of information avail-

able for approximating LD, and we use this panel when clumping our summary statistics.

Finally, after clumping, we use the assigned weights for each SNP to form a PRS. We test the

performance of this PRS on our replication-arms.

For any subject j0 within a particular replication-arm, we denote by PRSwide(j0) the ‘popula-

tion-wide’ PRS defined by contrasting all the cases in the training-arm with the controls in the

training-arm (when generating the summary-statistics). We further denote by PRSwideðj0; ~pÞ
the population-wide PRS constructed after restricting the SNP-weight-vector to include only

those SNPs with individual GWAS p-values that are more significant than the threshold ~p
(when forming the PRS).

We also define a ‘bicluster-informed’ PRS, denoted by PRSbicl(j0;i), by contrasting only the

cases in D(i) with the controls from the training-arm (when generating the summary-statis-

tics). We further denote by PRSbiclðj0; i; ~pÞ the bicluster-informed PRS constructed after

restricting the SNP-weight-vector to include only those SNPs with individual GWAS p-values

that are more significant than the threshold ~p (when forming the PRS). With this notation

PRSwide(j0) and PRSwideðj0; ~pÞ are equivalent to PRSbicl(j0;1) and PRSbiclðj0; 1; ~pÞ, respectively.

However, we will typically consider PRSbicl for iterations i 2 [175, 350]; in this range

PRSwideðj0; ~pÞ and PRSbiclðj0; i; ~pÞ will differ.

We measure the performance of the population-wide PRSwide(j0) by calculating the AUC-

wide between the case-values fPRSwideðj0DÞg and the control-values fPRSwideðj0XÞg, once again

correcting for the ancestry-related covariates. Similarly, we measure the performance of

PRSwideðj0; ~pÞ, PRSbicl(j0;i) and PRSbiclðj0; i; ~pÞ by calculating the associated AUCs, denoted by

AUCwideð~pÞ, AUCbicl(i) and AUCbiclði; ~pÞ, respectively.
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Gene-enrichment analysis

We perform a simple over-representation analysis using the go_bp ontology from Seek [70].

We restrict our attention to the 132 neuronally-related pathways (i.e., those referencing neu-

rons, synapses or axons). For any given iteration i we consider the remaining allele-combina-

tions within KðiÞ, retaining those genes which have more than half their originally associated

alleles remaining. These retained genes form a gene-set GðiÞ which we then overlap with each

pathway Hl to obtain the intersection GðiÞ \Hl. From this intersection we obtain the gene-

count kði; lÞ ¼ jGðiÞ \Hlj for pathway l at iteration i.
We assess the significance of the gene-counts by considering the same null-hypothesis H0

used when biclustering. We compare each of the κ(i, l) to the distribution of κ(i, l) obtained

under the label-shuffled null-hypothesis. Later on below we calculate the average z-score �z of

the κ(i, l) over a range of iterations and all the neuronally-related pathways, and then compare

that �z to the distribution of �z obtained under H0.

Results

We apply the half-loop-counting algorithm (see Methods) to the ‘BDRN’ cohort used as the

training arm. The trace �Qð�Þ associated with the original data is shown in red in Fig 2. Were

the signal homogeneous, we would expect to see a trace that starts out high and gradually

decreases in magnitude. Instead, we see a trace that behaves non-monotonically, and is statisti-

cally insignificant for a range of iterations. The trace from the original data (in red) attains val-

ues that are significantly higher than the majority of the traces one would expect under the

null-hypothesis (black) near iteration i* 175. This is an indicator that the data is heteroge-

neous, and that a bicluster has been detected near iteration i* 175; the identity of the bicluster

can be approximated by one of the submatrices D(i) where the training-p-value is large. We

can calculate the empirical p-value associated with the entire trace �Qð�Þ by comparing the red

curve (across all iterations) to the black curves, estimating an overall p-value of p≲ 1/64.

In idealized scenarios where the ‘true’ bicluster is sharply defined, the trace typically has a

sharp peak near the D(i) that most closely corresponds to the bicluster [63, 64]. However, in

this case while the trace has a peak at around i* 175, this peak is not particularly sharp, and

the trace is nearly as significant across a range of iterations i 2 [175, 350]. The largest of these

submatrices (i.e., D(175)) corresponds to * 47% of the case-subjects and * 31% of the allele-

combinations. The smallest of these submatrices (i.e., D(350)) corresponds to * 21% of the

case-subjects and * 9% of the allele-combinations.

This ‘plateau’ of significance indicates that the true signal is not a perfectly crisp and well-

delineated bicluster. Instead, this plateau suggests that, while there are certain ‘core’ case-sub-

jects that exhibit a strong similarity across certain allele-combinations, there are additional

case-subjects that are ‘adjacent’ to those in the core. These adjacent subjects exhibit a slightly

weaker similarity involving a slightly expanded set of allele-combinations. Consequently, we

expect iterations in the interval i 2 [175, 350] to provide a range of approximations to the true

‘core’ signal (which is still unknown). One could certainly select the iteration with the highest

training-p-value to approximate the bicluster, but as nearby iterations have nearly the same

training-p-value, we expect them to also provide reasonable estimates of the true signal.

Given our approximation to the signal described above from the training-data-set, we test

for replication in each of the replication-arms 2, 3 and 4. We are interested in how strongly

our approximate signal replicates, as well as whether our approximation has been compro-

mised by overfitting. Because the signal spans a range of iterations in arm-1, we assess the

extent of replication across the plateau i 2 [175, 350]. This interval corresponds to significant

values of the trace �QðiÞ as well as the AUC A(i) defined only using the training-data.
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The results of this replication study for arm-2 are shown in Fig 3. The top subplot illustrates

the AUC A(i) (red) and A0(i) (green) as a function of i. The bottom subplot shows the associ-

ated p-value for each i (under a label-shuffled null-hypothesis). Note that the training-AUC

A(i) is high over the range of iterations i 2 [175, 350] for which the training-p value is signifi-

cant. Note also that the peak of A(i) occurs within a few iterations of the peak of the training

p-value. This correspondence corroborates the claims made above: we believe we have detected

a disease-related signal within the training-data-set that involves only a subset of subjects and

Fig 2. In this figure we show the output of the half-loop biclustering algorithm applied to the BDRN cohort in arm-1 (limited to those SNPs with maf

�0.25). As described in the main text, the algorithm proceeds iteratively, eliminating rows and columns from the case-subject-array D until all have been

removed. At each iteration i, the remaining submatrix D(i) comprises case-subjects J ðiÞ and allele-combinations KðiÞ. At each iteration we record the ‘row-

trace’ �QðiÞ, which is the covariate-corrected average level of differential-expression between D(i) and the control-subjects X. In the top row of subplots we show

the row-trace for the data (red) as well as for 128 label-shuffled trials (black). Each of the row-traces has been transformed into an iteration-dependent z-score

(estimated using the distribution of label-shuffled trials at that iteration). In the bottom row we show the corresponding empirical p-value, as estimated for each

iteration using the label-shuffled trials. The dashed black-line corresponds to the 95th percentile (i.e., a significance value of 0.05 if each iteration were

considered independently). If the signal were homogeneous we would expect to see the red trace begin at a high value and decay relatively monotonically. By

contrast, we see strong evidence for heterogeneity; the red trace is far from monotonic. The overall p-value for the data (red-trace), estimated using the strategy

in [64], is p≲ 1/64. Note that the trace is significant over a range of iterations, including i 2 [175, 350].

https://doi.org/10.1371/journal.pone.0314288.g002
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alleles. While the magnitude of the replication-AUC A0(i) is lower than the training-AUC A(i),
the value of A0(i) is also statistically significant over the range of iterations i 2 [175, 350], with

a peak at roughly the same point.

Similar results for arm-3 and arm-4 are shown in Figs 4 and 5. Note that the SNP-overlap

between these arms and the training-data-set is quite a bit lower than that for arm-2. Recall

that arm-2 has a overlap of * 85% with the SNPs in arm-1, while arm-3 and arm-4 have over-

laps of * 50% and * 30%, respectively.

We believe that this reduction in SNP-overlap is partially responsible for the reduction in

the magnitude of replication-AUCs observed in these arms. To test this hypothesis, we ran-

domly eliminate SNPs from arm-2 until the SNP-overlap between the training-data-set and

Fig 3. In this figure we illustrate the replication of the bicluster in arm-2. Note that the SNP-overlap between arm-1 and arm-2 is* 85%. On the top we show

A(i) in red and A0(i) in green. On the bottom we show the associated p-values for A(i) and A0(i), calculated with respect to H0 and H00 for each iteration

individually. Standard significance-levels 0.05 and 0.01 are shown in dashed- and dotted-lines, respectively. The interval i 2 [175, 350] is highlighted in white.

Note that both A(i) and A0(i) have peaks within the range that the trace was significant (c.f. Fig 2). The overall replication for arm-2 within the interval i 2 [175,

350] is estimated at p≲ 10-12.

https://doi.org/10.1371/journal.pone.0314288.g003
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arm-2 is equal to the SNP-overlap between the training-data-set and arm-3. The results of this

replication-study are shown in Fig 13 in S1 Text: note that the amplitude of A0(i) has degraded

in comparison to the values shown in Fig 3. We then randomly eliminate even more SNPs,

until the SNP-overlap between the training-data-set and arm-1 is equal to the SNP-overlap

between the training-data-set and arm-4 (see Fig 14 in S1 Text), and the amplitude A0(i)
degrades even further. More generally, by reducing the number of SNPs we include in the rep-

lication-arm, we can cause the values of A0(i) to drop; depending on the subset of SNPs

retained, the values of A0(i) for arm-2 can be reduced to values similar to those observed in

arm-3 and arm-4.

In summary, the AUC associated with the genotype-based bicluster score discovered in the

training-data-set replicates to varying degrees across all 3 replication arms. In each case the

average A0(i) calculated over the interval i 2 [175, 350] was significantly larger than what one

would expect were the case- and control-labels in the replication-arm randomly permuted

Fig 4. This figure is similar to Fig 3, except that we use arm-3 instead of arm-2. The overall replication for arm-3 within the interval i 2 [175, 350] is estimated

at p≲ 103. Note that the SNP-overlap between arm-1 and arm-3 is only* 50%.

https://doi.org/10.1371/journal.pone.0314288.g004
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(p≲ 1/1000). Consequently, we are fairly certain that—while our approximation of the biclus-

ter is far from perfect—we have indeed identified a robust disease-related signal which general-

izes across a variety of different BD studies.

Discussion

Interaction with covariates

Given the observations above, it is natural to ask what might be driving the signal associated

with this bicluster. We first checked to see if the bicluster was driven by the ancestry-related

covariates in our data-set. As shown in Figs 15 and 16 in S1 Text, the subjects in the bicluster

have a distribution of ancestries similar to the remainder of arm-1 (recall that we corrected for

ancestry as a covariate). By considering the subjects remaining in D(i), we also determined

that the bicluster does not seem to be associated with sex (see Fig 17 in S1 Text).

Fig 5. This figure is similar to Fig 3, except that we use arm-4 instead of arm-2. The overall replication for arm-3 within the interval i 2 [175, 350] is estimated

at p≲ 103. Note that the SNP-overlap between arm-1 and arm-4 is only* 30%.

https://doi.org/10.1371/journal.pone.0314288.g005
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Interaction with BD subtype

We then checked to see if the bicluster was associated with bipolar subtype. We measured the

fraction of subjects classified as bipolar-type-1 versus bipolar-type-2 as our algorithm pro-

ceeded. Specifically, we measured the fraction of case-subjects in J ðiÞ that were classified as

BDI and BDII. If the bicluster were driven by BDII subjects, then we would expect the propor-

tion of remaining BDII case-subjects to increase with the iteration-index i. Conversely, if the

bicluster were driven by BDI subjects, then we would expect the proportion of remaining BDI

case-subjects to increase with iteration-index. As shown in Fig 6, we found that this latter sce-

nario holds; the bicluster was significantly enriched for BDI relative to BDII. This enrichment

for BDI also impacts our risk-prediction results (see below). Note that, when determining this

enrichment, we compare the proportion of BDI and BDII case-subjects at each iteration to the

proportion at iteration i = 1 (i.e., across all case-subjects in arm-1). In this manner our enrich-

ment is defined relative to the starting proportion of BDI and BDII subjects in our training-

arm, and is not influenced by the recruitment rates for BDI and BDII (which can differ across

studies).

While significant, this BDI-enrichment was not completely overwhelming: the initial frac-

tion of BDII participants in arm-1 was* 31%, which dropped to* 26% at iteration i = 240.

Thus, while the majority of the case-subjects in the bicluster are classified as BDI, those classi-

fied with BDII do still contribute to the overall signal. It is possible that this BDI-enrichment is

due to a true difference between the BD-subtypes at the genetic level. However, it is also possi-

ble that this enrichment is partially driven by inaccuracies associated with classification [14].

Fig 6. This figure plots the ratio of BDI to BDII subjects within J ðiÞ (light-green, left y-axis) as a function of the iteration i (left) and the number of removed

case-subjects (right). The dark-green line corresponds to the negative-log-probability (right y-axis) of observing a ratio at least as large by chance. The dashed and

dotted horizontal lines indicate 0.05 and 0.01 significance values, respectively. Note that the BDI population is over-represented across a range of iterations

including i 2 [175, 350], implying that the bicluster we observe is significantly enriched for BDI subjects.

https://doi.org/10.1371/journal.pone.0314288.g006
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Bicluster-informed PRS performance

As described in the Methods section, we calculated the population-wide PRSwideðj0; ~pÞ and the

bicluster-informed PRSbiclðj0; i; ~pÞ across a variety of iterations i and ~p-thresholds. We com-

pared the bicluster-informed PRSbiclðj0; i; ~pÞ performance to the one generated by the popula-

tion-wide PRSwideðj0; ~pÞ across a variety of ~p-thresholds. Results for arm-2 are shown in Fig 7.

Results for arm-3 and arm-4 are shown alongside arm-2 in Fig 8, and individually in Figs 23

and 24 in S1 Text.

Note that, when constructing PRSbiclðj0; i; ~pÞ, we restrict ourselves to a subset of case-sub-

jects within the training-arm determined by J ðiÞ. In this case, when i 2 [175, 350] the case-

subset J ðiÞ retains only* 50% − 20% of the original case-subjects in arm-1. Typically, one

might expect a reduction in the number of case-subjects to yield a corresponding reduction in

power, giving rise to a reduced discriminability in the testing-arms 2,3 and 4. However, as we

see in Fig 8, the discriminability for PRSbiclðj0; i; ~pÞ is typically higher than PRSwideðj0; ~pÞ when

i 2 [175, 350]. This suggests that the case-subjects in J ðiÞ identified by the bicluster corre-

spond to a stronger genetic signal, likely arising from the increased homogeneity within J ðiÞ.

Fig 7. In each subplot we show in yellow the AUCwideð~pÞ (vertical) for arm-2 as a function of the number of SNPs corresponding to each ~p-threshold (horizontal,

log-scale). Additionally, we show AUCbiclði; ~pÞ for a particular iteration i (with i varying across subplots). The color-code used for AUCbiclði; ~pÞ ranges from blue to pink,

corresponding to the iteration index i. Note that, by using the bicluster to inform the PRS, the performance typically improves. This improvement in performance

becomes marked when the number of SNPs is limited to a relatively small fraction of the total (e.g.,* 1% of the total, corresponding to a log10(#) of * 3).

https://doi.org/10.1371/journal.pone.0314288.g007
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Note that PRSbicl and PRSwide are not capturing identical signals (see the Nagelkerke R2

analysis in the S1 Text). It is useful to compare the performance of PRSbicl with PRSwide as

there are features of PRSbicl which indicate that it is more robust than PRSwide. As one exam-

ple, we point out that AUCbiclði; ~pÞ is markedly higher than AUCwideð~pÞ when the number of

SNPs used (denoted by NSNP) is fewer; one begins to see the effect between 1K and 10K. This

suggests that the bicluster-informed PRSbiclðj0; i; ~pÞ is not only outperforming the population-

wide PRSwideðj0; ~pÞ, but also correctly attributing the largest PRS-weights to those SNPs that

truly carry the signal (and which are most important for replication). As one illustration, by

comparing the values of AUCbicl to AUCwide in Fig 8, we can directly see that the bicluster-

informed PRS would replicate across arms 2,3 and 4 for values of i = 225 and NSNP 2 [103,

104], while the population-wide PRS would not.

Motivated by the significant BDI-enrichment seen within the training-arm (see Fig 6), we

repeated these assessments for the BDI- and BDII-populations within the testing-arms. More

specifically, recall that, for any particular testing-arm, the AUCwideð~pÞ and AUCbiclði; ~pÞ values

shown in Figs 7 and 8 are defined using the values of PRSbiclðj0; i; ~pÞ across all case- and con-

trol-subjects j0 for that testing-arm. We can now use the same values of PRSwideðj0; ~pÞ and

PRSbiclðj0; i; ~pÞ, but only compare the BDI-case-subjects to the control-subjects in the testing-

arm. This produces ‘restricted’ AUC-values, which we denote by AUCwidejBDIð~pÞ and

Fig 8. This figure uses circles to displays the same information as Fig 7 (corresponding to replication arm-2). In this figure we use an algebraic-

scale for the horizontal-axis (rather than a log-scale) in order to better emphasize the interval where the number of SNPs used is between 1K and 10K.

The results for replication arm-3 and arm-4 are shown using squares and triangles, respectively.

https://doi.org/10.1371/journal.pone.0314288.g008
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AUCbicljBDIði; ~pÞ, respectively. In a similar fashion we can restrict the case-subjects in the test-

ing-arm to the BDII-case-subjects, and calculate AUCwidejBDIIð~pÞ and AUCbicljBDIIði; ~pÞ.
The results are shown in Figs 9 and 10, respectively. Note that the improvement to risk-pre-

diction persists for the BDI-population, but is not as robust for the BDII-population. The per-

formance of AUCbicljBDIIði; ~pÞ is particularly poor for the BDII-population in arm-3, for which

there were only M = 435 BDII-subjects (i.e., the fewest out of all the arms). It is possible that

the variation in the performance of AUCbicljBDIIði; ~pÞ for the BDII-population across the repli-

cation-arms has to do with these differences in power. It is also possible that there are other

systematic issues affecting the BDII-population, including variation in the life history of the

subjects or the metrics used for their clinical diagnosis [14].

To summarize the overall relationship between BD-subtype, the bicluster-informed PRS

and the population-wide PRS, we pool the subjects across the replication-arms and convert the

combined AUC-values into R2-values on a liability-scale [71] using prevalences of 2% for BD,

and 1% for BDI and BDII [72]. Using notation analogous to the AUC-values, we denote these

liability-scores as R2

wide
ð~pÞ, R2

widejBDI
ð~pÞ and R2

widejBDII
ð~pÞ, as well as R2

bicl
ði; ~pÞ, R2

bicljBDI
ði; ~pÞ

and R2

bicljBDII
ði; ~pÞ, respectively. The resulting liability-scores are shown in Fig 11.

Fig 9. This figure is similar to Fig 8, except that we limit ourselves only to those case-subjects in the replication-arms which are classified as BDI.

This subset corresponded to 66% (M = 3834), 84% (M = 2995) and 75% (M = 5107) of the case-population for arms 2, 3 and 4, respectively. The

corresponding AUC-values are denoted by AUCwidejBDIð~pÞ and AUCbicljBDIð~pÞ in the main text. For reference the training-arm had M = 1645 BDI case-

subjects, corresponding to 65% of the case-population in arm-1.

https://doi.org/10.1371/journal.pone.0314288.g009
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We believe that Fig 11 hints at the potential our methodology offers to researchers of com-

plex disease. By limiting our definition of a case to those with a more genetically homogeneous

BD signature, we were able to generate a PRSbicl which outperforms PRSwide in the following

ways:

• The maximum R2

bicl
is 20–40% higher than the maximum R2

wide
, depending on the iteration-

index i.

• This increase in liability-score occurs despite the fact that the PRSbicl is generated

using * 50% to 80% fewer cases than the PRSwide. For example, we considered only between

1191–526 cases in arm-1 to generate the PRSbiclðj0; i; ~pÞ values for i = [175, 350], whereas

2524 cases were used to generate the PRSwideðj0; ~pÞ values.

• The p-values assigned to the SNPs via the bicluster-informed GWAS were less noisy than

those p-values assigned using the population-wide GWAS. For example, Fig 11 indicates

that the first 10K SNPs of highest significance from the population-wide GWAS contained

almost no disease-related information. By contrast, the first 10K SNPs of highest significance

from the bicluster-informed GWAS typically contain most of the available disease-related

Fig 10. This figure is similar to Fig 8, except that we limit ourselves only to those case-subjects in the replication-arms which are classified as

BDII. This subset corresponded to 19% (M = 1082), 12% (M = 435) and 16% (M = 1060) of the case-population for arms 2, 3 and 4, respectively. The

corresponding AUC-values are denoted by AUCwidejBDIIð~pÞ and AUCbicljBDIIð~pÞ in the main text. For reference the training-arm had M = 788 BDII case-

subjects, corresponding to 31% of the case-population in arm-1.

https://doi.org/10.1371/journal.pone.0314288.g010

PLOS ONE Heterogeneity analysis of bipolar-disorder

PLOS ONE | https://doi.org/10.1371/journal.pone.0314288 January 29, 2025 19 / 36

https://doi.org/10.1371/journal.pone.0314288.g010
https://doi.org/10.1371/journal.pone.0314288


information. The bicluster-informed GWAS produces a R2

bicl
with only * 5K to 10K SNPs

that surpasses the maximum of R2

wide
(e.g., within the i = 225 subplot the value of R2

bicl
at 5K

SNPs is comparable to the value of R2

wide
at * 150K SNPs).

• Furthermore, the values of R2

bicl
ði; ~pÞ typically plateau somewhere between 10K–35K SNPs

(corresponding to ~p 2 ½0:22; 0:36�). Meanwhile, the values of R2

wide
ð~pÞ continue to increase

until ~p ¼ 1 (including all* 150K SNPs).

To summarize: The PRSbicl outperforms PRSwide overall, and when restricted to either

BDI and BDII, achieving a higher maximum for each subtype. The PRSbicl also achieves its

peak performance with far fewer SNPs, consistent with a far less noisy signal. Put another

way, the values of R2

bicl
, R2

bicljBDI
and R2

bicljBDII
all plateau earlier than R2

wide
, R2

widejBDI
and

R2

widejBDII
, indicating that the SNPs which are most relevant to the bicluster-informed PRS

performance have indeed been identified by the bicluster-informed GWAS as having low

individual p-values.

Fig 11. This figure is similar to Fig 8, and uses the data from Figs 8, 9 and 10. This time we combine the information across all three replication-

arms, and calculate replication AUC-values for this combined data-set. We then convert these AUC-values into liability-scores (see [71]). The results

for all the cases (R2

wide
and R2

bicl
) are shown with an asterisk ‘*’, whereas the results for only the BD1-cases (R2

widejBDI
and R2

bicljBDI
) are shown with an ‘×’,

and the results for only the BD2-cases (R2

widejBDII
and R2

bicljBDII
) are shown with a diamond. In each case the yellow curves correspond to the liability-

scores derived from the population-wide PRS, whereas the cyan-magenta curves correspond to the liability-scores derived from the bicluster-informed

PRS. Note that our overall results are closely matched by the BD1-cases, but not by the BD2-cases.

https://doi.org/10.1371/journal.pone.0314288.g011
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Additionally, we note that there is a close relationship between R2

bicl
and R2

bicljBDI
, but a dis-

crepancy between R2

bicl
and R2

bicljBDII
. The values of R2

bicljBDII
indicate that some subset of BDII

cases share the bicluster signature, but the maximum for R2

bicljBDII
is only 50% of the maximum

for R2

bicljBDI
. This could imply that the bicluster has focused on a signature that is associated

with BDI, perhaps serving as a risk factor for manic episodes in the presence of the necessary

epigenetic or environmental influences.

Gene-enrichment

We also perform a simple over-representation analysis, measuring the overlap κ(i, l) between

the bicluster D(i) at iteration i and the various neuronally-related pathways Hl from the go_
bp ontology (see Methods). The average z-score for the enrichment-values κ(i, l), averaged

over the interval i 2 [175, 350] and all neuronally-related pathways, is quite significant, with p
≲ 1e − 4 (as determined by a permutation-test). Examples of some of the more significantly

over-represented pathways are shown in Table 1.

Secondary bicluster

After discovering and analyzing the primary bicluster within arm-1 (described above), we

searched for a secondary bicluster. We first eliminated the structure associated with the pri-

mary bicluster by scrambling the entries of the submatrix D(175) (see [64] for details). We

then reran our half-loop algorithm on this scrambled version of arm-1. While we did find a

secondary trace that was indicative of heterogeneity, the overall level of differential-expression

was far lower than for the first bicluster (see Fig 25 in S1 Text). Moreover, the structure associ-

ated with this secondary trace did not significantly replicate (see Figs 26–28 in S1 Text). It is

possible that a secondary bicluster exists, but that we could not pinpoint it due to a lack of

power in our training-arm. It is also possible that the scrambled version of arm-1 is heteroge-

neous, but not in a way that can be described by a bicluster (see [64] for examples along these

lines). In either case, a larger sample size will be required to further probe this residual

heterogeneity.

Control biclusters

Up to this point we have only considered biclusters within the case-population; i.e., subsets of

case-subjects which exhibit a genetic-signature that is not shared by the control-subjects. It is

natural to ask if there are also biclusters that exist within the control-population (i.e., whether

or not the control-population is homogeneous). Such ‘control-biclusters’ might be induced by

batch effects or issues associated with recruitment; e.g., many of the BD controls may be

drawn from another disease study (such as cancer), thus being more likely to share certain

genetic features. It might also be the case that some of the control-biclusters are biologically

significant, corresponding to mechanisms which protect against the disease. In either scenario,

a better understanding of the heterogeneity within the control-population can assist in design-

ing homogeneous populations of controls for future studies.

We can easily carry out this analysis simply by reversing the labels within our biclustering

algorithm (i.e., swapping D and X). This reversed search will find biclusters that are driven by

genetic-signatures which are more prevalent within the controls than within the cases. As

mentioned above, we find that the control-population within arm-1 is quite homogeneous: the

trace decays monotonically with no distinguished peaks (see Fig 29 in S1 Text). This homoge-

neity can be viewed as a validation of our initial choice of arm-1 as a training- or discovery-

arm.
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On the other hand, we find strong evidence for heterogeneity within the control-popula-

tions of arms 2, 3 and 4 (see Figs 30—32 in S1 Text). In each case the trace has a significant dis-

tinguished maximum involving only a fraction of the control-subjects (i.e,. 13%, 28% and 15%

of the controls, respectively).

The heterogeneity observed in the control-populations of arms 2, 3 and 4 might be

expected; each of these arms comprises multiple smaller studies. Notably however, the ‘con-

trol-biclusters’ within these arms cannot all be easily dismissed as batch-effects. Indeed, each

of the dominant control-biclusters is also quite significant, while also usually well balanced

across the ancestry-related covariates and individual cohorts within each arm. Each of these

dominant control-biclusters also replicates across the majority of other arms.

Thus, while a portion of these control-biclusters might be driven by batch-effects or other

idiosyncrasies in the control-population, it is possible that some of these signals have biological

relevance, perhaps involving mechanisms which protect against BD (as the control-biclusters

Table 1. Here we list some of the pathways from the go_bp ontology. Shown here are only the 32 most significant pathways as determined by κ(175, l). Each pathway is

listed alongside approximations to its individual over-representation p-value (estimated using the hypergeometric-distribution). The −log10(p)-values are listed for itera-

tions 175–350 (see top row). Those annotations with an individual over-representation p-value smaller than 0.05 are in bold.

annotation 175 200 225 250 275 300 325 350 375

synaptic vesicle endocytosis 3.49 2.10 1.28 1.94 0.22 0.24 0.24 0.26 0.26

positive regulation of neurogenesis 3.29 2.36 0.36 0.39 0.75 0.08 0.11 0.13 0.15

neurological system process involved in regulation 3.10 2.88 2.10 1.07 1.46 1.74 0.21 0.22 0.23

positive regulation of neuroblast proliferation 2.97 0.71 0.18 0.20 0.22 0.23 0.24 0.26 0.30

neurological system process 2.94 1.10 1.78 2.14 1.11 0.84 0.43 0.98 1.20

synaptic vesicle exocytosis 2.86 3.03 3.62 4.31 2.22 0.17 0.19 0.19 0.19

regulation of neurogenesis 2.81 1.57 0.85 0.60 0.96 0.36 0.68 0.53 0.89

establishment of synaptic vesicle localization 2.78 2.03 2.70 3.66 1.85 0.15 0.17 0.18 0.18

synaptic vesicle localization 2.78 2.03 2.70 3.66 1.85 0.15 0.17 0.18 0.18

synaptic vesicle transport 2.78 2.03 2.70 3.66 1.85 0.15 0.17 0.18 0.18

positive regulation of neuron differentiation 2.63 0.99 0.47 0.34 0.54 0.87 1.27 0.16 0.20

axonogenesis 2.53 1.83 2.41 1.03 1.73 1.30 1.03 1.03 0.85

cell morphogenesis involved in neuron differentiat 2.52 2.18 3.19 1.44 2.42 1.67 1.45 1.53 1.51

generation of neurons 2.31 1.98 2.54 1.46 2.06 1.07 0.98 1.06 1.36

axon development 2.25 1.70 2.29 0.99 1.68 1.26 0.99 1.00 0.83

positive regulation of axonogenesis 2.17 3.36 0.64 0.43 0.64 0.13 0.15 0.18 0.19

axonal fasciculation 2.07 0.17 0.21 0.24 0.30 0.30 0.30 0.30 0.30

neuron development 2.04 1.73 2.73 2.08 2.62 1.32 0.95 1.25 1.30

central nervous system projection neuron axonogene 2.04 1.76 2.94 0.16 0.20 0.21 0.23 0.25 0.25

neurogenesis 2.01 1.64 2.38 1.57 2.42 0.90 0.86 0.92 1.16

neuron projection morphogenesis 1.91 1.53 2.23 1.13 1.96 1.18 0.92 0.90 0.72

central nervous system neuron axonogenesis 1.88 1.85 3.40 0.12 0.16 0.17 0.19 0.22 0.23

neurotransmitter uptake 1.87 0.41 0.12 0.15 0.17 0.18 0.20 0.22 0.24

neuron projection development 1.81 1.17 2.33 1.57 1.84 1.02 0.90 1.02 0.93

axon guidance 1.81 0.83 1.64 1.11 1.63 2.05 2.18 1.80 1.58

neuron projection guidance 1.81 0.83 1.64 1.11 1.63 2.05 2.18 1.80 1.58

synapsis 1.69 1.04 1.97 3.19 0.18 0.20 0.23 0.24 0.25

synaptic transmission 1.64 0.51 0.40 0.77 0.44 0.26 0.31 0.59 0.44

regulation of neurological system process 1.63 0.90 1.06 1.37 0.53 0.45 0.78 1.06 0.56

neuron differentiation 1.59 1.40 2.04 1.73 2.20 1.34 1.21 1.25 1.53

positive regulation of neurological system process 1.48 0.61 0.67 0.46 0.11 0.13 0.17 0.19 0.20

https://doi.org/10.1371/journal.pone.0314288.t001
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were identified specifically because they involved genetic patterns not as prevalent across the

cases). Consequently, we would recommend considering this heterogeneity when performing

other kinds of analysis. For example, one should not necessarily assume that the controls are

homogeneous, as small subgroups of controls can likely exhibit genetic-signatures that are dis-

tinct from the rest.

Conclusion

In this paper we have taken a ‘genotype-driven’ approach to investigating genotypic-heteroge-

neity. That is to say, first we used only basic phenotypic classification to divide subjects into

cases (BD) and controls (not BD). We then applied a biclustering analysis to identify genetic

subgroups within the case-population. Analyzing the BDI and BDII cases together as a whole

allowed us to identify a genetic subgroup (i.e., the bicluster described above). This bicluster

involved a genetically homogeneous subset of the BD-cases within the training-arm, which we

then used to inform a more robust PRS with better replication across studies.

Our results suggest two hypotheses for future work. Most directly, our replication- and

PRS-analyses indicate that the bicluster we found within the training-arm indeed represents a

genetic subgroup of BD which generalizes across data-sets. More generally, our results provide

a proof-of-principle for our overall methodology: a data-driven approach to identifying geneti-

cally homogeneous subsets of case-subjects can help construct more robust PRSs, with the

potential of improving SNP-replication in BD GWAS and, ultimately, a better understanding

of the etiology of Bipolar Disorder.

In some respects our approach can be termed ‘unsupervised’, as we did not use BD-subtype

(BDI vs. BDII) or subphenotype information to guide our primary analysis. This unsupervised

approach allows us to circumvent many of the challenges associated with phenotype classifica-

tion, such as missingness and variation in assessment and collection process (e.g., expert-led

vs. self-report). It also allows us to identify genetic patterns which straddle traditional classifi-

cations provided the signature is not present in the control group. E.g., though our bicluster

was enriched for BDI, it was by no means limited to BDI and included many BDII cases.

Along these lines, we believe that a similar unsupervised approach could be used to search

for interactions between the signals we have found and other diseases, as well as for cross-

psychiatric-disorder signals not present in the control group. There are many examples of

genetic interactions along these lines: the SNPs driving BD have a strong correlation with

those driving schizophrenia, and also share overlap with the SNPs driving MDD, OCD,

anorexia nervosa, ADHD, ASD and substance-abuse [34, 73, 74]. Many SNPs have also been

associated with other disorders [17, 75–77]. More generally speaking, BD shows substantial

overlap with other disorders; e.g., more than 90% of BD subjects exhibit lifetime comorbidity

[3] with at least one other psychiatric disorder [58, 78, 79], or non-psychiatric disorder [80–

82]. This high rate of comorbidity implies that BD is one of multiple disorders which perturb

several important regulatory systems [83, 84]. Given these relationships, it is possible that the

bicluster-score and/or the bicluster-limited PRSs may also correlate with some of the signals of

these other disorders. It is possible that we could discover interesting biclusters which cross

psychiatric disorders or are present in the control groups and predict resistance to psychiatric

illness more generally; we defer an investigation of these interactions to future work.

The biclustering algorithm we use also offers a ‘supervised’ option which uses additional

information (e.g., BD-subtype or other clinical data) to subdivide the case-population while

searching for heterogeneity. Sex might be one important variable to include in such a super-

vised BD analysis. For example, while most studies do not indicate large difference in BD prev-

alence between men and women (indeed, the bicluster we identified was not significantly
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enriched for sex), there is some evidence of a sex disparity in the prevalence of BDII, rapid-

cycling and mixed-episodes [85, 86]. Age may also be an important role-player, as an earlier

age of onset may be associated with higher severity and a poorer long-term prognosis (possibly

due to mis-diagnoses at an early stage) [57, 87].

One limitation of our current study is that it is restricted to common variants (i.e., SNPs

with a high minor-allele-frequency). While it is encouraging that the common variants alone

can be used to find replicable and robust signals, it is also likely that the rare variants also play

a role in the heterogeneity of BD. Analyzing the rare variants brings new challenges, as rare

variants often require more statistical power to detected and/or validate [88–93].

Another more serious limitation is that our training-arm is quite restricted in terms of

ancestry. More generally, almost all the individuals in our data-set are of European descent.

We expect that this lack of diversity will limit our ability to pinpoint the most biologically rele-

vant signals, as many previous GWAS analyses have not generalized well to cohorts of different

ancestry [29, 94–98]. An important future direction will be to investigate the interactions

between genotypic heterogeneity and ancestry.

We do not expect a full analysis of genetic-heterogeneity to be entirely trivial. For example,

appropriately correcting for ancestry is not always easy, even when searching for homogeneous

signals. When searching for heterogeneity such a correction becomes more complicated and,

necessarily, involves more parameters. Larger (and more diverse) sample sizes will likely be

necessary to clarify (i) the disease-specific genetic-subgroups (i.e., biclusters) within BD, as

well as (ii) the phenotypic subtypes of BD, and perhaps most importantly: (iii) the interaction

between these subgroups and subtypes and other covariates such as ancestry. We suspect that

a careful treatment of the associated statistical issues will pose a significant challenge. Never-

theless, these advancements will likely further improve our understanding of the etiology of

BD.

Supporting information

S1 Text. Contains a detailed description of our methods, including an outline of the steps

involved and the considerations we made along the way. Also contains the supporting fig-

ures referenced in the main text.

(PDF)
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