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The genetics of neurodegenerative diseases is the genetics of
age-related damage clearance failure
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In this perspective we draw together the data from the genome wide association studies for Alzheimer’s disease, Parkinson’s
disease and the tauopathies and reach the conclusion that in each case, most of the risk loci are involved in the clearance of the
deposited proteins: in Alzheimer’s disease, the microglial removal of AB, in the synucleinopathies, the lysosomal clearance of
synuclein and in the tauopathies, the removal of tau protein by the ubiquitin proteasome. We make the point that most loci
identified through genome wide association studies are not strictly pathogenic but rather relate to failures to remove age related
damage. We discuss these issues in the context of copathologies in elderly individuals and the prediction of disease through
polygenic risk score analysis at different ages. Finally, we discuss what analytic approaches are needed now that we have

adequately sized case control analyses in white populations.
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BACKGROUND
The analysis of late onset neurodegenerative diseases through
genome wide association studies and whole exome and whole
genome sequencing has been extremely successful in terms of
finding variants which increase the risk of these diseases [1]. These
loci are often described as pathogenic (Oxford English Dictionary:
“capable of causing disease”). Most of the loci which have been
described, however, are in damage response pathways and are
loss of, or reduced function, alleles: in Alzheimer’s disease, they are
usually microglial and involved in lipid metabolism [2], in
Parkinson’s disease they are often lysosomal or involved in
mitophagy [3] and in tangle diseases, they seem to be involved in
the ubiquitin proteasome system (although in this case, the data is
less certain because the number of cases underlying the Genome-
Wide association studies (GWAS) studies are lower) [4]. Thus, a
general principle is that variants which increase the risk of disease
are reduced function variants in the pathways involved in the
removal of damaged proteins and other cellular components [4].
The diseases in general, are therefore, the results of age-related
failures in damage clearance. While the removal pathways
outlined above (microglia, lysosomes, ubiquitin proteasome) are
broadly distinguishable, they are clearly linked and not completely
separable [5-7]. In this context, therefore, the term “pathogenic” is
misleading since they are variants which are less good at stopping
disease rather than variants causing disease.

With this background, one can start to interpret disease
associated loci and perhaps to resolve some of the outstanding
questions about the pathogeneses of these diseases.

(1)  What underlies the specific protein depositions which occur
in the diseases?

(2) Why are co-pathologies very common in individuals with
late onset disease?

(3) Why are some loci associated with differing pathologies?

(4) What underlies the observation of incomplete penetrance in
near mendelian loci for neurodegenerative diseases?

(5) Why are these diseases, age dependent?

In this context, with a more holistic view of disease pathogen-
esis, we can discuss disease prediction in these age-related
diseases where allele frequencies in the population are influenced
by age. This will be useful as we try and develop therapies for
these complex diseases with mixed pathologies.

What underlies the specific protein depositions?

The deposited proteins, AR (from APP), synuclein and tau are all
derived from highly expressed proteins which are close to their
deposition thresholds. This has been determined both from
protein chemistry work [8] and from the genetic observations
that the major neurodegenerative diseases can all be caused by
gene duplications for the deposited proteins: APP, SNCA, MAPT
[9-11] and that normal genetic variability at these loci
contribute to disease risk [12, 13]. We now realise that this
variability may be direct, through promoter or splice site
variability, or more indirect through influencing the expression
of antisense transcripts or “pseudogenes” which can act as
dummy ligands. These observations in toto clearly show the
amount of synthesis of the deposited protein is one key factor in
determining risk. Work in vivo in Alzheimer’s disease, using non-
radioactive isotopic labelling has shown that in presenilin
mutation carriers the predominant problem relates to AP
production consistent with this view [14]. Genetic analysis of
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late onset sporadic diseases has, however, suggested that
genetic variability in the production of the proteins is not the
major determinant of risk but rather that most of the loci
identified in the analyses of these forms of the diseases relate to
the protein clearance pathways with risk variants, in general
being those which reduce flux through the relevant clearance
pathways. Again, in Alzheimer's disease this suggestion is
consistent with in vivo data suggesting late onset AD cases
have reduced clearance of AR [15].

To summarise, all the genetic data for these diseases are
consistent with the view that in the protein deposition disorders,
the major determinant of risk is the balance between production
of the deposited protein and its clearance: factors which increase
production or factors which reduce clearance increase that risk.
Furthermore, the capacity of the clearance pathways show age
related declines [16, 17] and this age related decline in clearance
capacity may be the underlying reason for these diseases being of
late onset.

Why are co-pathologies very common in individuals with late
onset disease?

Neuropathologists and epidemiologists often point to the fact
that, especially in the elderly, detailed brain examination
always shows the presence of multiple pathologies [18].
Alzheimer’s disease diagnosis requires the presence of amyloid
plaques and tau tangles, but often additionally has some Lewy
body pathology. Dementia with Lewy bodies is defined by the
presence of synuclein containing Lewy bodies, sometimes as
the sole pathology but often in the presence of amyloid
plagues and sometimes with some tau tangles too. These co-
pathologies also occur in other diseases: for example, Parkinson
Dementia Complex of Guam is classically a tau tangle disease
but frequently also has synuclein Lewy body pathology [19].
With all the protein deposition disorders, there is also typically
a contribution of vascular pathology [20]. This occurrence of
multiple pathologies is clearly mechanistically important and
has implications for therapeutic strategies since these are
usually aimed at one pathology. What has not been determined
is the extent to which the pathologies are dependent upon
each other or coincidental. This is difficult to assess because of
the possibility that ascertainment bias leads to the identifica-
tion of brains with multiple pathogies which might all
contribute independently to the clinical picture [21, 22]. No
direct links have been shown between any two pathologies,
although transgenic mouse work has suggested that
amyloid pathology can potentiate both tau [23] and synuclein
pathology [24].

Attempts to link the pathologies have generally focused on the
idea that one pathology is upstream of the other (e.g. [25])
although attempts to clearly link the different pathologies have
not generally been fruitful. The suggestion that each pathology
largely represents a failing protein clearance pathway:- plaques:
microglia, Lewy bodies: lysosomes, tangles: the ubiquitin protea-
some, suggests an alternative relationship between the patholo-
gies which is that spillover from one clearance pathway to the
others, causes their failure too. As support for this notion is the
observation that tangle formation is almost universal in the medial
temporal lobe and some subcortical structures in the elderly
(termed Primary Age Related Tauopathy: PART) [26]. Our
interpretation of this observation is that in these elderly
individuals the tau clearance pathway is failing in these cells. In
such a context the small additional load caused by cortical
amyloid deposition could cause spread of tangle pathology to the
cortex. In other words, one does not have to postulate a direct
relationship between the pathologies, but rather that failing inter-
related clearance pathways leads to spillover to other pathways
causing them to fail too.
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Why are some loci associated with differing pathologies?
The observation that some genetic loci could be associated with
completely different pathologies or anatomies has been a surprise,
although the fact APP and PSEN mutations could both lead to
amyloid pathology with a mixture of tangle and Lewy body
pathology has long been appreciated [27, 28]. That occurrence of
the same LRRK2 mutations can lead to the different pathologies,
Lewy bodies or tangles, with the same clinical features (Parkin-
son’s disease) in both cases [29] brought the paradox of differing
outcomes to the fore: the mutation could be the same and the
clinical picture seemed to be identical (suggesting the same
neurons were affected) and yet the histopathology was different.
This paradox is difficult to reconcile with the view that the
mutations actively “cause” the pathology but is easier to reconcile
with the view that the mutation leads to an inadequate response
to damage. In this scenario, the mutant allele exposes a failure in
damage response but the precise pathology will depend on the
type of damage. Thus, in this example, LRRK2 would be predicted
to encode a protein at a point of integration in different damage
repair pathways. Another similar example is the pathogenesis of
Frontotemporal dementia (FTD) and Motor Neurone disease
(MND). Both these clinical syndromes can be caused by point
mutations in either VCP or SQSTM or by the C9orf72 expansion
[30].

What underlies the observation of incomplete penetrance in
near mendelian loci for neurodegenerative diseases?

If disease loci are generally components of damage response and
clearance mechanisms with the deposited proteins revealing the
precise failing mechanism, then the occurrence of pathology will
depend on the age dependent capacity of the relevant clearance
system and how much other damage the is pathway dealing with
[17]. This last factor may be age related and environment-induced
damage may include spillover damage from other overloaded
pathways (Fig. 1). This, rather complex model of pathogenesis,
allows for the role of environmental factors in disease initiation
and suggests that incomplete penetrance may in part at least
reflect both genetic and environmental components.

Why are these diseases, age dependent?

It has always been a puzzle as to why these diseases occur in
middle-aged to elderly individuals when the underlying genetic
architecture is present from birth but, in the context of failing
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Fig. 1 Cartoon suggesting the possible relationships between the
different disease pathologies: amyloid, cleared largely by the
microglia: tau, clearly largely by the ubiquitin proteasome and
synuclein, cleared mainy through the lysosome. However, these
clearance pathways are not mutually exclusive, and as one fails, it
overloads the other pathways pushing them to fail and cause their
substrates to build up. Thus, the different pathologes need not have
direct connections, but rather be indirectly connected by clearance
failure.
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Fig. 2 Cartoon showing the reduction of clearance capacity by age (blue line), with the shading arpund the line suggesting variability.
Horizontal (orange lines) showing rate of production with shading around the line suggesting variability. Vertical (black lines) marking the

intercept when production exceeds clearance and deposition starts.

damage response systems, this clearly becomes easier to under-
stand [17]. As age related damage accrues, then clearance systems
which were adequate early in life, become overwhelmed.

DISEASE MANIFESTATION IN THE CONTEXT OF FAILING
DAMAGE CLEARANCE AND AGE DEPENDENT ALLELE
FREQUENCIES

Once we start to envision disease risk being a property of failing
interrelated homeostatic damage clearance systems during
ageing, it becomes clear both that mixed pathologies are almost
inevitable and that an individual’s pathology and precise risk will
be influenced by the rate of decline in the relevant clearance
capacity, as well as by the relevant allele effect sizes at that age.
Since these neurodegenerative diseases, especially Alzheimer's
disease, are major causes of mortality, the risk of pathology at any
age will vary dependent on the clearance capacity at that age
(Fig. 2). Thus, risk predictions need to incorporate the appropriate
allele frequencies for that pathology by age. This means, for
example, that risk for dementia will have a different genetic
architecture at different ages consistent with the different
pathological underpinning of dementia by age [31]. Related to
this risk variability, one might expect variable treatment efficacy
by age: for example, in the very elderly, where less amyloid
pathology may be present and responsible for less of the
dementia risk, amyloid removing treatments may have a smaller
clinical effect than in those who are younger even though both
groups might have the same Alzheimer’s diagnosis.

HOW SHOULD WE PROCEED WITH GENOME WIDE ANALYSES
TO BOTH INCREASE DIAGNOSTIC PREDICTION ACCURACY AND
DELINEATE PATHOGENIC PATHWAYS?

Diagnosis

A major lesson to be drawn from the GWAS which have been
reported is that for their interpretation, they need to be labelled
correctly. Most of the GWAS for “Alzheimer’s disease” have, in fact,
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been GWAS for dementia [32]. Such GWAS may have some value
in predicting who will develop dementia but it is hazardous to
interpret them in terms of pathogenic mechanism (and thus for
clinical trial inclusion) since they are likely to include cases with
different underlying pathologies. Ideally, one would like to carry
out GWAS of pathologically confirmed cases and use these as the
basis for prediction. However, the case series available for these
types of pathology confirmed GWAS are small. Because of this,
restricted analyses of loci implicated in the clinically based GWAS
are a partial substitute. The value of complementing these clinical
and pathological case series, with analyses of biomarker defined
phenotypes is that, although these biomarker-defined analyses
are too small for genome wide studies, their utility is that they
break the pathogenesis of disease into component parts as
exemplified by the GWAS of amyloid PET positivity has shown [33]
(see below).

Age specific analyses

As discussed above, there are two age dependent variables which
complicate the application of polygenic risk score at different
ages. The first is that the pathologic substrates of diseases
changes by age with more mixed pathology at later ages [34, 35].
This changing landscape of pathology by age will depend, at least
in part, on the different age dependencies of damage.

This will include mitochondrial damage [36] and oxidative stress
[37] leading to mitophagy [36, 38], membrane and white matter
damage [39, 40] leading to inflammation and microglial activation
[41] and autophagy [42].

For us to maximise the utility of polygenic risk scores in the
context of this changing pattern of damage we will need to
develop GWAS analyses stratified by age with cases and controls
being adequately age matched. Most of the published GWAS for
neurodegenerative disorders are not age matched and thus are
unsuitable as substrates for these analyses. The second issue is
that the background allele frequencies change because of allele
specific mortalities by age; this is especially true at the APOE locus
[43-45] but is also true of others [46, 47] (Fig. 3).

SPRINGER NATURE
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APOE-e4 allele frequency depending on age
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Fig. 3 APOE4 allele frequency by age in cases (red) and controls
(blue) showing that the odds ratio between cases and controls
alters by age. Since APOE4 has the largest effect on Alzheimer risk,
it is likely that this allele shows the largest interaction with age but
other risk alleles are likely to have the same type of age dependent
effect.

STUDIES IN NON-EUROPEAN POPULATIONS
Nearly all the published studies of the genetic wide analyses of
neurodegenerative diseases have been carried out in Northern
European cohorts. This is unsatisfactory for three reasons: firstly, it
means that any therapies which are based upon genetic knowl-
edge will be incompletely available to other populations, secondly
as we identify more variants associated with disease in diverse
populations it will give us deeper insights into mechanisms, and
thirdly, the different haplotype structures mean that precise
localisation of pathogenic loci is facilitated by cross ethnic
comparisons. In the last period, some progress in the genome
wide analyses has begun to be made with GWAS for both
Alzheimer's disease and Parkinson’s disease being published in
Asian and African cohorts [48-51]. These analyses have shown, in
general, that the same loci are involved in disease across ethnic
groups, but that the weights and precise and mechanisms variants
at those loci are different. As examples of this the ABCA7 internally
deleted allele in African American samples is associated with an
increased risk of Alzheimer’s disease in such populations [52] and
the prevalent GBAP allele associated with PD risk in African derived
samples [51] are both examples where the profiles of risk and the
precise disease mechanisms are different in different populations.
Genetic risk differences between populations occur for three
main reasons, (a) allele frequency variations, (b) linkage disequili-
brium structure, and (c) disease risk effect sizes caused by gene x
environment interactions. Therefore, to develop interventions and
theatments, with focus shifted from individual genes to the
underlying biological pathways they are compenents of.

THE ROAD AHEAD

Genome wide studies have revolutionised our views of the
underlying biology of neurodegenerative disease and there has
naturally been an inclination to continue to increase the size of
such studies since larger studies inevitably identify more loci. We
would argue that rather than simply increasing the sizes of such
studies, resources would be better allocated to carrying out more
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focused analyses. These should include analyses of quantitative
biomarkers and pathology and of rates of disease progression. Our
research, along with others’, shows that variations in CSF and
plasma biomarkers—specifically free AR peptides (chain lengths
40 and 42), glial fibrillary acidic protein (GFAP), neurofilament light
(NFL), and p-Tau 181 and 217—are not fully captured by genetic
factors, and can enhance disease risk prediction accuracy [53]. All
of these biomarkers, however, were also associated with age at
the time of sample collection, suggesting that they are sensitive to
age or to preclinical age-related neurodegenerative pathologies.
Therefore, as is the case for genetic risk prediction, age should be
factored in when interpreting disease risk using biomarkers.

Pathology confirmed GWAS
By examining the genetcs of different components of the disease
pathology we should be able to derive a more fine grained
dissection of their pathogenetic mechanisms. For example, we
have shown that amyloid deposition and the occurrence of
dementia involve distinct biological processes: the former being
almost exclusively apoe dependent and the latter dependent on
the microglial response [33]. More recently, a pathology based
study [54] found that genes associated with specific neuropathol-
ogy endophenotypes often concurred with previous GWAS of
neurodegenerative diseases: thus amyloid plaques and tangle
numbers were apoe dependent, tdp43 pathology was associated
with the FTD genes GRN and TMEM106B and vascular pathology
showed an association with the stroke locus COL4A1 [55].
Clearly therefore, these genetic findings go some way to
aligning with the observations of frequent co-pathologies in the
elderly. In addition to these previously described loci, however,
there are many entirely new loci which may relate directly to the
occurrence of copathology since a key point is whether
pathologies are dependent or independent. To understand mixed
dementia, the outcome in the pathology confirmed GWAS should
develop from the assessment of specific neuropathologies to
endophenotype to clusters of such co-pathologies. Such analyses
would not attempt to prove genome wide (107°) significance
since numbers will inevitably be small but rather would test the
GWAS from clinical samples as candidate genes to determine
which loci were genuinely associated with “mixed” disease
pathogenesis.

GWAS of age specific risks of disease. Again, such analyses would
not require the proof of genome wide significance. These analyses
will be needed for developing polygenic risk analysis predictions
to aid with early diagnoses at different ages.

GWAS of imaging and fluid biomarkers and of disease related
phenotypes, and of age at onset and rate of decline in the
disease. Such analyses have the potential to dissect the path-
ways to pathogenesis as two examples illustrate (a) the GWAS of
amyloid positivity compared to the GWAS of pathologically
confirmed Alzheimer’s disease broke Alzheimer pathogenesis into
amyloid deposition and then dementia in that context (b) the
comparison of the GWAS for the rapid eye movement (REM)
behaviour disorder, Parkinson’s disease and Dementia with Lewy
bodies shows many overlapping loci as well as many loci with
different effects allowing the discrimination of different elements
of the pathogenic cascade.

CONCLUSIONS

To a surprising degree, GWAs have revealed not only the genetic
risks and pathways underlying neurodegenerative disease and
their relationships to the ageing process, they are also illuminating
the unappreciated mechanisms of gene regulation. By moving
beyond case control analyses and by comparing biomarker GWAS
with disease GWAS and contrasting GWAS of related phenotypes
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with each other we are beginning to dissect different stages of
disease pathogenesis: through the comparison of GWAS in
different populations we are getting a greater window into the
richness and complexity of genetic mechanisms. There is still
much to be done: improving genetic prediction in non-white
populations and investigating whether epistatic interactions
explain missing heritability are two examples where progress is
needed.
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