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Abstract. Bland-Altman plots are useful in paired data settings such as measurement method 
comparison studies. A Bland-Altman plot has differences, percentage differences or ratios on the y-
axis, and a mean of the data pairs on the x-axis. 95% limits of agreement are added to the plot, 
indicating the central 95% range of differences, percentage differences or ratios. This range can vary 
with the mean. We introduce the community-contributed blandaltman command, which uniquely in 
Stata can (1) create Bland-Altman plots featuring ratios in addition to differences and percentage 
differences, (2) allow the limits of agreement for ratios and percentage differences to vary as a 
function of the mean, and (3) add confidence intervals, prediction intervals and tolerance intervals 
to the plots.  

 

Keywords: blandaltman, Bland-Altman plot, limits of agreement, agreement, baplot, batplot, 
concord, prediction, tolerance, interval, ratio, percentage difference 

 

1   Introduction 

When paired data arise from two different measurement techniques, e.g. a new method A and a 
conventional method B, the data can be plotted as in Figure 1a to visualise the correlation between 
the two methods. However, this plot is not the best for clearly showing the differences between the 
methods (Bland and Altman 1986). Bland and Altman (1986, 1999) introduced a plot for visualising 
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agreement, which plots the difference between data pairs versus their arithmetic mean (Figure 1b). 
This is known as the Bland-Altman plot, and it can be used in other paired data settings such as 
measurement repeatability (Bland and Altman 1986, 1999) or longitudinal studies (Kirkwood and 
Sterne 2003). Variants of the Bland-Altman plot have ratios or percentage differences on the y-axis, 
and may have the geometric mean of data pairs on the x-axis (Dewitte 2002). Note that in geometric 
terms, the Bland-Altman plot rotates Figure 1a clockwise by 45˚ and linearly rescales the axes. Figure 
1b shows the data inside the grey box on Figure 1a.  
 
According to Bland and Altman (1999), 95% limits of agreement (LOA) provide an interval within 
which 95% of differences between measurements are expected to lie. If these limits are not too 
large (this is a contextual consideration in light of the intended use of the measurement method), 
then the methods can be considered interchangeable. Assuming differences are normally 
distributed, the LOA can be calculated using the mean and standard deviation (SD) of the paired 
differences (as mean ± 1.96 SD), and they are routinely added to a Bland-Altman plot as a pair of 
horizontal lines towards the top and bottom of the data cloud. 
 
However, horizontal LOA are “meaningful only if we can assume the bias [the mean difference] and 
variability [the SD of the difference] are uniform throughout the range of measurement, assumptions 
which can be checked graphically” (Bland and Altman 1999, italics ours). In Figure 1b the mean 
difference changes little as the mean of data pairs varies, but the SD of the difference increases 
steeply with the mean of data pairs, so that the data cloud is shaped like a left-pointing arrowhead. 
Bland and Altman (1999) suggest this arrowhead pattern is the most common departure from the 
assumptions underlying horizontal LOA. In this instance, the LOA need to reflect the varying SD. The 
plot shows LOA calculated assuming that the SD increases linearly with the mean of data pairs, using 
the regression-based approach of Bland and Altman (1999) to adjust for non-constant means or SDs 
of differences.  
 

 
Figure 1. (a) Plot of two methods for measuring retinol-binding-protein-4 (µmol/L) from Brindle et al. 
(2017), with the line of equality. (b) Bland-Altman plot featuring differences with regression-based 
estimates of 95% limits of agreement (thin grey solid lines) and mean difference or “bias” (dashed 
line). The boxes show how rotating (a) clockwise by 45˚ and rescaling the axes leads to (b). 
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Log transformation often leads to the mean and SD of differences being constant, which in turn 
justifies using horizontal LOA. Figure 2a shows the same data as Figure 1a, but with the axes scaled 
logarithmically. Figure 2b is the corresponding Bland-Altman plot, where ratios (A/B) are plotted on 
the y-axis, and the geometric mean of the data pairs is plotted on the x-axis. Both axes are scaled 
logarithmically. Plotted this way the rotational symmetry between the plot of raw data and the 
Bland-Altman plot is preserved.  

Bland-Altman plots can also have percentage differences on the y-axis, where the percentage 
difference is defined by dividing a difference by the arithmetic mean of the data pairs and 
multiplying by 100%. These percentage differences (which can range from -200% to +200%) are 
often plotted against the arithmetic mean of the data pairs (Dewitte 2002). Other ways of defining 
percentage differences are possible (Cole and Altman 2017). Dividing a difference by the logarithmic 
mean of the data pairs was recommended by economists (Tornqvist, Vartia, and Vartia 1985), and 
multiplying by 100% produces a percentage difference that can be calculated simply as 100(lnA – 
lnB) (Cole 2000). These percentage differences (which can range from -∞ to +∞) could be plotted 
instead of ratios on the y-axis of Figure 2b, and rotational symmetry preserved. 
 

 
Figure 2. (a) Log-log plot of two methods for measuring retinol-binding-protein-4 (µmol/L) from 
Brindle et al. (2017), with the line of equality. (b) Bland-Altman plot featuring ratios with estimates 
of horizontal 95% limits of agreement (thin grey solid lines) and the geometric mean of ratios 
(dashed line). The boxes show how rotating (a) clockwise by 45˚ and rescaling the axes leads to (b). 

Stata has no official Bland-Altman plot command, but there are several community-contributed 
commands. None of them create Bland-Altman plots with ratios, and only the agree command 
(Doménech 2021) gives percentage differences. For differences, batplot (Mander 2005) and biasplot 
(Taffé 2017) can draw regression-based LOA for datasets with one measurement per method per 
subject, and those with several measurements for the reference method per subject. The commands 
concord (Steichen and Cox 1998), baplot (Seed 2000), kappaetc (Klein 2018), agree (Doménech 
2021) and rmloa (Linden 2021) present only horizontal LOA.  

Bland and Altman (1986, 1999) recommended calculating 95% confidence intervals for LOA. Yet 
surprisingly, none of the commands cited above displays confidence intervals on the plot1. Some 
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authors have recommended prediction and tolerance intervals. (Ludbrook 2010, Vock 2016, Carkeet 
and Goh 2018, Francq, Berger, and Boachie 2020).   

In this article we introduce the blandaltman command (Chatfield 2022), which uniquely in Stata can: 
(1) create Bland-Altman plots featuring ratios in addition to differences and percentage differences, 
(2) allow LOA for ratios and percentage differences to vary with the mean of data pairs, and (3) add 
confidence intervals, prediction intervals and tolerance intervals to the plots. We show how, by 
offering variants of Bland-Altman plots, the command can help decide how best to present LOA for 
measurement method comparison studies, based on how close to horizontal the regression-based 
LOA are.  
 
The remainder of the article is organized as follows: section 2 presents the blandaltman command, 
syntax and options; section 3 shows the command in action, and section 4 has some conclusions. 

 

2   The blandaltman command 

2.1   Description 

blandaltman produces Bland-Altman plots featuring differences, ratios or percentage differences on 
the y-axis. By default, regression-based estimates of bias and LOA appear on the plot to show how 
the distribution of differences, ratios or percentage differences, varies with the mean of data pairs. 
See Appendix for detail. Horizontal lines for bias and LOA can be produced instead.  

Summary statistics are provided in the output. The distribution of differences and percentage 
differences are summarised by mean and SD, and these are used to calculate horizontal LOA. The 
distribution of ratios is summarised by geometric mean (GMean) and geometric standard deviation 
(GSD) (Limpert and Stahel 2011). These can be calculated by anti-logging the mean and SD of 
differences in log-transformed data. For ratios, all calculations are done using log-transformed data, 
before results such as LOA are anti-logged. 

Confidence intervals for the bias and LOA can also be displayed, as well as a prediction interval and 
(up to three) tolerance intervals (see Appendix for detail), assuming the distribution of differences, 
ratios or percentage differences does not vary with the mean of data pairs.  

 

2.2   Syntax  

blandaltman varA varB [if exp] [in range], plot(plot_type_list) [horizontal noregloa noregbias hloa 
hbias level(#) predinterval ticonfidence(#) ticonfidence2(#) ticonfidence3(#) cibias ciloa cilevel(#) 
minor_options] 

where plot_type_list is any combination of plot_types:   

plot_type    Y-axis      X-axis    

difference  A – B      (A+B)/2 

ratio   A/B*      GMean(A,B)*    

percentlmean  100(A – B)/LMean(A,B) = 100(lnA-lnB)  GMean(A,B)*   
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percentmean  100(A – B)/{(A+B)/2}    (A+B)/2* 

*axis has a logarithmic scale  

Multiple plots are created if several plot_types are chosen. 

GMean(A,B) = (A×B)1/2  is the geometric mean.  

LMean(A,B) = (A – B)/(lnA – lnB) if A≠B, LMean(A,B) = A if A=B, is the logarithmic mean (Cole 2000). 

Only positive-valued data are used with the options: ratio and percentlmean. With the exception of 
A=B=0, data pairs where A≥0 and B≥0 are used with the percentmean option.  

 

2.3   Options 

Main options 

horizontal  display horizontal rather than regression-based LOA and bias. Equivalent to specifying: 
noregloa noregbias hloa hbias.    

noregloa   prevents display of regression-based LOA.   

noregbias   prevents display of regression-based bias and LOA. 

hloa   display horizontal LOA. 

hbias   display horizontal bias. This option is assumed whenever horizontal LOA or a prediction 
interval or a tolerance interval is requested.  

level(#) specifies the level, in percent, for #% LOA, #% prediction interval, #% tolerance interval with 
ticonf% confidence. The default is level(95). 

predinterval  display (horizontal) lines for a level% prediction interval.  

ticonfidence(#)  display (horizontal) lines for a level% tolerance interval with #% confidence. 

ticonfidence2(#)  display a second level% tolerance interval with #% confidence. 

ticonfidence3(#)  display a third level% tolerance interval with #% confidence. 

ciloa  display (exact) cilevel% confidence intervals for horizontal LOA. Requires horizontal or hloa to 
also be specified. 

cibias  display a cilevel% confidence interval for horizontal bias. Requires horizontal or hbias to also 
be specified.  

cilevel(#) specifies the level, in percent, for confidence intervals for the bias and LOA. The default is 
cilevel(95). 

 

Minor options 

scopts(scatter_options)   alter the display of the scatterplot.  

regloaopts(tw_function_options)   alter the display of the regression-based LOA.  
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regbiasopts(tw_function_options)   alter the display of the regression-based bias.  

loaopts(tw_function_options)   alter the display of the horizontal LOA.  

biasopts(tw_function_options)   alter the display of the horizontal bias line. 

piopts(tw_function_options)   alter the display of the prediction interval. 

tiopts(tw_function_options)   alter the display of the first tolerance interval.  

tiopts2(tw_function_options)   alter the display of the second tolerance interval.  

tiopts3(tw_function_options)   alter the display of the third tolerance interval.   

ciloaopts(tw_pcarrowi_options)   alter the display of the confidence interval for the LOA.  

cibiasopts(tw_pcarrowi_options)   alter the display of the confidence interval for the bias.  

addplot(plots)  add other plots to the Bland-Altman plot; see [G-3] addplot_option. 

twoway_options  any of the options for twoway graphs; see [G-3] twoway_options. 

 

where 

scatter_options are any of the options allowed with scatter; see [G-2] graph twoway scatter. 

tw_function_options are any of the options allowed with twoway function; see [G-2] graph twoway 
function. 

tw_pcarrowi _options are any of the options allowed with twoway pcarrowi; see [G-2] graph twoway 
pcarrowi. 
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3 Examples  

This section illustrates blandaltman in action. The first example shows how the estimated LOA on a 
Bland-Altman plot vary throughout the range of measurement. The second example shows how to 
add confidence intervals, a prediction interval, and tolerance intervals to a plot.  

 

3.1 Laboratory measurements: exploring how LOA vary throughout the range of measurement 

Brindle et al. (2017) described the simultaneous assessment of seven micronutrient and 
inflammation status biomarkers via a multiplex immunoassay method in a population of pregnant 
women. Results from their 7-Plex assay were compared with conventional immunoassay results on 
N=206 plasma samples. We focus on retinol-binding-protein-4 (Figure 1a), a surrogate biomarker for 
vitamin A deficiency, where low levels indicate deficiency. For simplicity we generate variables 
named A and B to represent measurements obtained using the new and conventional methods 
respectively.  
 

. use http://fmwww.bc.edu/repec/bocode/l/labmeasures.dta, clear 

. generate A = plexrbp4µmoll  

. generate B = nimanurbp4µmoll 

. blandaltman A B, plot(difference ratio percentlmean percentmean) 

(see output in Appendix) 

The above line of syntax produces the four Bland-Altman plots shown in Figure 3. As seen in Figure 
3a, the estimated LOA for differences are far from horizontal. In contrast, the estimated LOA for 
ratios (Figure 3b) and percentage differences (Figure 3c and 3d) are close to horizontal, so horizontal 
LOA would be justified. Note that Figures 3b and 3c are equivalent (they differ only in their y-axis 
labelling). Figure 3d looks similar to Figure 3c, but plots a different definition of percentage 
difference against a different mean. 
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Figure 3. Bland-Altman plots featuring (a) differences, (b) ratios, (c) percentage differences using the 
logarithmic mean as denominator and (d) percentage differences using the arithmetic mean as 
denominator. Each plot shows regression-based estimates of LOA (grey solid lines) and bias (dashed 
line). (b) and (c) are equivalent plots, while (d) is different. 

 

The values for horizontal LOA are displayed when the option horizontal is specified: 

. blandaltman A B, plot(ratio percentlmean percentmean) horizontal 
  
A: A                      
B: B 
 
RATIOS... 
Calculation              N       GMean        GSD       Interval(s) 
A/B                    206    .9033576   1.188854 
                           95% limits of agreement:  .6435914  1.267971 
 
PERCENTAGE DIFFERENCES (using Logarithmic Mean as denominator)... 
Calculation              N        Mean         SD       Interval(s) 
100*(A-B)/LMean(A,B)   206   -10.16367   17.29902 
                           95% limits of agreement: -44.06912  23.74177 
 
PERCENTAGE DIFFERENCES (using Mean as denominator)... 
Calculation              N        Mean         SD       Interval(s) 
100*(A-B)/[(A+B)/2]    206   -10.07663   17.10901 
                           95% limits of agreement: -43.60967  23.45642 
 

LOA from both definitions of percentage difference will often be very similar, as is the case here. 
Assuming both percentage differences are approximately normally distributed, and ratios are 
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approximately lognormally distributed, there is little to choose between the 3 LOA above. 
Convention or personal preference may be the deciding factor in selecting one.  

The previous code produces three Bland-Altman plots with horizontal LOA, one of which is shown in 
Figure 4. It features percentage differences (using arithmetic mean as denominator) on the y-axis 
and arithmetic mean on the x-axis, which is a popular choice in bioanalytical method validation 
studies (Dewitte 2002). By default, the x-axis is scaled logarithmically, which helps to space the data 
out more evenly. However, if a user wants a linear scale instead, they can specify the option 
xscale(nolog). Assuming these percentage differences are approximately normally distributed, LOA 
are estimated to be -44% and +23%. 

 

Figure 4. Bland-Altman plot featuring percentage differences (using arithmetic mean as 
denominator) assuming horizontal 95% LOA (grey solid lines) and bias (dashed line). 

 

For control over the labelling of axes, xlabel() or ylabel() options can be specified. For example, in 
our plots featuring ratios (Figures 2b and 3b), we specified ylabel(0.6 (0.2) 1.6). See Cox (2018, 2020) 
for other ways of labelling log scaled axes.   

 

3.2 Peak Expiratory Flow Rate (PEFR) data: adding confidence intervals, prediction interval, and 
tolerance intervals 

To demonstrate their method, Bland and Altman (1986) measured peak expiratory flow rate in 17 
persons using both a Wright flow meter and a mini Wright flow meter. Like them, and others 
(Ludbrook 2010, Carkeet 2015, Vock 2016), we use the first measurement by each method. Figure 5 
shows the data on an (overly busy) Bland-Altman plot. Bland and Altman saw no obvious relation 
between differences and means, and assumed differences were normally distributed. They 
estimated2 95% LOA to be -2.1 ± 2 × 38.8 l/min.  
 
Figure 5 illustrates the various intervals that blandaltman can produce—see the Appendix and the 
references in this section for the meaning of prediction and tolerance intervals. The figure was 
created with the following syntax: 
 
. use http://fmwww.bc.edu/repec/bocode/p/PEFR.dta, clear 
 
. blandaltman Wright Mini, plot(difference) horizontal /// 
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  ciloa cibias predinterval ticonfidence(95) /// 
  loaopts(lc(gs11) lp(solid)) ciloaopts(mc(gs11) lc(gs11) lp(solid)) ///  
  piopts(lc(gs1) lp(dash_dot)) ///  
  tiopts(lc(gs1) lp(dot)) ///  
  legend(on order(2 "Bias (& 95% CI)" 4 "95% limits of agreement (& exact 95% CI)" 
6 "95% prediction interval" 8 "95% tolerance interval with 95% confidence") 
rowgap(*.7) col(1))  
  
A: Wright                Wright peak expiratory flow rate (l/min) 
B: Mini                  Mini Wright peak expiratory flow rate (l/min) 
  
DIFFERENCES... 
Calculation              N        Mean         SD       Interval(s) 
A-B                     17   -2.117647   38.76513 
                           95% limits of agreement: -78.09591  73.86061 
                           95% prediction interval: -86.67853  82.44323 
        95% tolerance interval with 95% confidence: -113.4634  109.2281 
                                     95% CI (LLOA): -124.1608 -53.09493 
                                     95% CI (ULOA):  48.85964  119.9255 
                               95% CI (Mean diff.): -22.04884  17.81354 

 

Figure 5. Bland-Altman plot of two methods measuring peak expiratory flow rate (l/min), illustrating 
the variety of intervals that blandaltman can produce. No one author has suggested using all of 
these intervals. 
 
We now report which of these intervals different authors have recommended, and how they can be 
implemented with blandaltman. Bland and Altman recommended estimates of 95% LOA and 95% 
confidence intervals for LOA, and this advice features in reporting standards (Gerke 2020). Royston 
and Matthews (1991) considered methods to provide a best estimate of an interval containing the 
central 95% of a distribution. They considered the interval bounded by mean ± 1.96 SD (i.e. LOA) to 
be a good estimate, and they viewed a 95%-expectation tolerance interval (equivalent to a 95% 
prediction interval) to be of questionable value, as they did a 95% tolerance interval with ≥90% 
confidence. 

A few authors prefer not to present estimates of LOA (Ludbrook 2010, Vock 2016, Carkeet and Goh 
2018, Francq, Berger, and Boachie 2020). Some prefer a 95% prediction interval instead (Ludbrook 
2010, Francq, Berger, and Boachie 2020), but not Vock (2016) who argued this is rarely appropriate. 
Others prefer a 95% tolerance interval with 50% confidence (Carkeet and Goh 2018).   
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Vock (2016) encouraged reporting a 95% tolerance interval with 95% confidence, as did Ludbrook 
(2010)3. Francq, Berger, and Boachie (2020) thought this interval may be too large (see Table A1 for 
how intervals depend on sample size), and suggested a 95% tolerance interval with 80% or 90% 
confidence might be presented if needed. Carkeet and Goh (2018) recommended reporting a 95% 
tolerance interval with 2.5% confidence as well as a 95% tolerance interval with 97.5% confidence.  
 
The following syntax creates Bland-Altman plots with intervals recommended by the above-
mentioned authors: 
 
. blandaltman Wright Mini, plot(difference) name(Bland_Altman)  /// 
horizontal ciloa /// 
legend(on order(2 "Bias" 4 "95% limits of agreement (& exact 95% CI)") col(1)) 
 
. blandaltman Wright Mini, plot(difference) name(Ludbrook)  /// 
noreg hbias predinterval ticonfidence(95) /// 
legend(on order(2 "Bias" 4 "95% prediction interval" 6 "95% tolerance interval with 
95% confidence") col(1)) 
 
. blandaltman Wright Mini, plot(difference) name(Francq_et_al) /// 
noreg hbias predinterval ticonfidence(80) /// 
legend(on order(2 "Bias" 4 "95% prediction interval" 6 "95% tolerance interval with 
80% confidence") col(1)) 
 
. blandaltman Wright Mini, plot(difference) name(Vock) /// 
noreg hbias ticonfidence(95) /// 
legend(on order(2 "Bias" 4 "95% tolerance interval with 95% confidence") col(1)) 
 
. blandaltman Wright Mini, plot(difference) name(Carkeet_Goh) /// 
noreg hbias ticonfidence(2.5) ticonfidence2(50) ticonfidence3(97.5) ///  
legend(on order(2 "Bias" 4 "95% tolerance interval with 2.5% confidence" 6 "95% 
tolerance interval with 50% confidence" 8 "95% tolerance interval with 97.5% 
confidence") col(1)) 
 

4   Conclusion 

The blandaltman command should help Stata users assessing agreement in measurement method 
comparison studies to follow the advice of Bland and Altman by visually assessing how estimated 
LOA vary throughout the range of measurement, and by reporting corresponding confidence 
intervals. The command is also flexible enough to allow users to follow recommendations of other 
authors involving the presentation of a prediction interval and/or a tolerance interval(s). More 
generally, in other paired data settings, the command could help users decide whether to 
summarise differences, ratios or percentage differences defined in one of two ways. 
 
 
Notes 
 
<Footnotes to go here instead of at the end of this document> 
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6 Programs and supplemental materials 

To install the latest version of software files, type 

. ssc install blandaltman     (to install program files) 

. net get blandaltman              (to install ancillary files) 
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A Appendix 
 

A.1 Calculation and reporting of regression-based estimates for bias and 95% LOA 

The approach described in Bland and Altman (1999, sec 3.2), for differences, can be written as 
follows:  

A linear regression is used to estimate how the mean of differences (Mean_Y) varies linearly with the 
mean of the data pairs. A second linear regression is used to estimate how the SD of differences 
(SD_Y) varies linearly with the mean of the data pairs. These two relationships are then combined to 
estimate LOA (95%LOA_Y) that vary linearly with an average of the data pairs. 

Equivalently, for a Bland-Altman plot of differences against means, use Y = A – B and X = (A+B)/2 in 
the more general approach we outline below. 

 

Mean_Y (or Bias): 

Fit a linear regression of Y on X 

. regress Y X 

The resulting regression equation estimates the mean of Y as a linear function of X: 

Mean_Y =  b0 + b1 X  

 

SD_Y 

First, obtain the residuals from the above regression. 
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. predict resid, resid 

Second, calculate the absolute values of the residual, and adjust by multiplying by �π
2

 . (Given a 

value of X, it is assumed that residuals are normally distributed with standard deviation σ, and 

therefore the mean of absolute residuals is σ�2
π

 .)  

. generate adj_abs_resid = abs(resid) * sqrt(_pi/2) 

Third, fit a linear regression of adj_abs_resid on X  

. regress adj_abs_resid  X 

The resulting regression equation estimates the standard deviation of Y as a linear function of X: 

SD_Y = b2 + b3 X 

 

Estimated 95% LOA for Y 

95%LOA_Y = Mean_Y ± 1.96 SD_Y  

     = b0 + b1 X ± 1.96 (b2 + b3 X)  

i.e. 

Lower limit (LLOA) = b0 – 1.96 b2 + (b1 – 1.96 b3)X    

Upper limit (LLOA) = b0 + 1.96 b2 + (b1 + 1.96 b3)X    

 

For a Bland-Altman plot of ratios against geometric means, we apply the approach to log-
transformed data but express relationships in terms of ratios and geometric means: 

we use Y = lnA – lnB = ln(A/B) = ln(Ratio)  and X = (lnA + lnB)/2 = ln(GMean(A,B))  

For a Bland-Altman plot of percentage differences 100(lnA – lnB)%, against geometric means:  

we use Y = 100(lnA – lnB) and X = (lnA + lnB)/2 = ln(GMean(A,B)) 

For a Bland-Altman plot of percentage differences 100(A – B)/[(A+B)/2]%, against arithmetic means:  

we use Y = 100(A – B)/[(A+B)/2] and X = ln((A+B)/2) = ln(Mean(A,B)) 

 

The following output relates to section 3.1: 

 
. blandaltman plexrbp4µmoll nimanurbp4µmoll, /// 
plot(difference percentmean percentlmean ratio) 
  
A: plexrbp4µmoll         7-Plex RBP4 (µmol/L) 
B: nimanurbp4µmoll       NiMaNu RBP4 (µmol/L) 
  
DIFFERENCES... 
Calculation              N        Mean         SD       Interval(s) 
A-B                    206   -.1022816   .2013955 
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. regress difference mean 
 
      Source |       SS           df       MS      Number of obs   =       206 
-------------+----------------------------------   F(1, 204)       =      1.51 
       Model |  .061142301         1  .061142301   Prob > F        =    0.2204 
    Residual |  8.25368545       204  .040459242   R-squared       =    0.0074 
-------------+----------------------------------   Adj R-squared   =    0.0025 
       Total |  8.31482775       205  .040560135   Root MSE        =    .20114 
 
------------------------------------------------------------------------------ 
    __000002 | Coefficient  Std. err.      t    P>|t|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
    __000003 |  -.0445447   .0362355    -1.23   0.220    -.1159888    .0268994 
       _cons |  -.0559129   .0402386    -1.39   0.166    -.1352497     .023424 
------------------------------------------------------------------------------ 
              -> regression-based bias:      -.0559129 + -.0445447 × Mean(A,B) 
  
. regress adj_abs_resid mean 
 
      Source |       SS           df       MS      Number of obs   =       206 
-------------+----------------------------------   F(1, 204)       =     48.97 
       Model |  1.22288054         1  1.22288054   Prob > F        =    0.0000 
    Residual |  5.09388346       204  .024970017   R-squared       =    0.1936 
-------------+----------------------------------   Adj R-squared   =    0.1896 
       Total |  6.31676401       205  .030813483   Root MSE        =    .15802 
 
------------------------------------------------------------------------------ 
    __00000C | Coefficient  Std. err.      t    P>|t|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
    __000003 |   .1992128   .0284665     7.00   0.000     .1430865    .2553392 
       _cons |   -.027725   .0316114    -0.88   0.381    -.0900519    .0346019 
------------------------------------------------------------------------------ 
              -> regression-based SD:         -.027725 +  .1992128 × Mean(A,B) 
              -> regression-based 95% LLOA:  -.0015729 + -.4349947 × Mean(A,B) 
              -> regression-based 95% ULOA:  -.1102529 +  .3459053 × Mean(A,B) 
  
PERCENTAGE DIFFERENCES (using Mean as denominator)... 
Calculation              N        Mean         SD       Interval(s) 
100*(A-B)/[(A+B)/2]    206   -10.07663   17.10901 
  
. regress percentmean ln_mean 
 
      Source |       SS           df       MS      Number of obs   =       206 
-------------+----------------------------------   F(1, 204)       =      0.10 
       Model |  29.4792833         1  29.4792833   Prob > F        =    0.7518 
    Residual |  59977.7646       204   294.00865   R-squared       =    0.0005 
-------------+----------------------------------   Adj R-squared   =   -0.0044 
       Total |  60007.2439       205  292.718263   Root MSE        =    17.147 
 
------------------------------------------------------------------------------ 
    __000005 | Coefficient  Std. err.      t    P>|t|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
    __00000A |   1.027934   3.246288     0.32   0.752    -5.372644    7.428513 
       _cons |  -10.04945   1.197744    -8.39   0.000      -12.411   -7.687909 
------------------------------------------------------------------------------ 
              -> regression-based bias:  -10.04945 +  1.027934 × ln(Mean(A,B)) 
  
. regress adj_abs_resid ln_mean 
 
      Source |       SS           df       MS      Number of obs   =       206 
-------------+----------------------------------   F(1, 204)       =      1.33 
       Model |   239.33826         1   239.33826   Prob > F        =    0.2503 
    Residual |  36737.0171       204  180.083417   R-squared       =    0.0065 
-------------+----------------------------------   Adj R-squared   =    0.0016 
       Total |  36976.3554       205  180.372465   Root MSE        =     13.42 
 
------------------------------------------------------------------------------ 
    __00000E | Coefficient  Std. err.      t    P>|t|     [95% conf. interval] 
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-------------+---------------------------------------------------------------- 
    __00000A |   2.928957   2.540644     1.15   0.250    -2.080331    7.938246 
       _cons |   16.74617   .9373909    17.86   0.000     14.89795    18.59439 
------------------------------------------------------------------------------ 
          -> regression-based SD:         16.74617 +  2.928957 × ln(Mean(A,B)) 
          -> regression-based 95% LLOA:  -42.87134 + -4.712716 × ln(Mean(A,B)) 
          -> regression-based 95% ULOA:   22.77244 +  6.768585 × ln(Mean(A,B)) 
  
PERCENTAGE DIFFERENCES (using Logarithmic Mean as denominator)... 
Calculation              N        Mean         SD       Interval(s) 
100*(A-B)/LMean(A,B)   206   -10.16368   17.29902 
  
. regress percentlmean ln_gmean 
 
      Source |       SS           df       MS      Number of obs   =       206 
-------------+----------------------------------   F(1, 204)       =      0.24 
       Model |  72.0980071         1  72.0980071   Prob > F        =    0.6247 
    Residual |  61275.3688       204  300.369455   R-squared       =    0.0012 
-------------+----------------------------------   Adj R-squared   =   -0.0037 
       Total |  61347.4668       205  299.255936   Root MSE        =    17.331 
 
------------------------------------------------------------------------------ 
    __000006 | Coefficient  Std. err.      t    P>|t|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
    __000009 |   1.609633   3.285436     0.49   0.625    -4.868133    8.087398 
       _cons |   -10.1131   1.211925    -8.34   0.000     -12.5026   -7.723594 
------------------------------------------------------------------------------ 
          -> regression-based bias:      -10.1131 +  1.609633 × ln(GMean(A,B)) 
  
. regress adj_abs_resid ln_gmean 
 
      Source |       SS           df       MS      Number of obs   =       206 
-------------+----------------------------------   F(1, 204)       =      0.78 
       Model |  145.256099         1  145.256099   Prob > F        =    0.3771 
    Residual |  37812.2272       204  185.354055   R-squared       =    0.0038 
-------------+----------------------------------   Adj R-squared   =   -0.0011 
       Total |  37957.4833       205  185.158455   Root MSE        =    13.614 
 
------------------------------------------------------------------------------ 
    __00000G | Coefficient  Std. err.      t    P>|t|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
    __000009 |   2.284716    2.58087     0.89   0.377    -2.803884    7.373317 
       _cons |   16.89376   .9520259    17.75   0.000     15.01669    18.77084 
------------------------------------------------------------------------------ 
          -> regression-based SD:        16.89376 +  2.284716 × ln(GMean(A,B)) 
          -> regression-based 95% LLOA: -43.22427 + -2.868329 × ln(GMean(A,B)) 
          -> regression-based 95% ULOA:  22.99807 +  6.087595 × ln(GMean(A,B)) 
  
RATIOS... 
Calculation              N       GMean        GSD       Interval(s) 
A/B                    206    .9033576   1.188854 
  
. regress ln_ratio ln_gmean 
 
      Source |       SS           df       MS      Number of obs   =       206 
-------------+----------------------------------   F(1, 204)       =      0.24 
       Model |  .007209808         1  .007209808   Prob > F        =    0.6247 
    Residual |  6.12753704       204  .030036946   R-squared       =    0.0012 
-------------+----------------------------------   Adj R-squared   =   -0.0037 
       Total |  6.13474685       205  .029925594   Root MSE        =    .17331 
 
------------------------------------------------------------------------------ 
    __000008 | Coefficient  Std. err.      t    P>|t|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
    __000009 |   .0160963   .0328544     0.49   0.625    -.0486813     .080874 
       _cons |   -.101131   .0121192    -8.34   0.000     -.125026   -.0772359 
------------------------------------------------------------------------------ 
          -> regression-based GMean Ratio:     .9038146 × GMean(A,B)^ .0160963 
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. regress adj_abs_resid ln_gmean 
 
      Source |       SS           df       MS      Number of obs   =       206 
-------------+----------------------------------   F(1, 204)       =      0.78 
       Model |  .014525613         1  .014525613   Prob > F        =    0.3771 
    Residual |   3.7812229       204  .018535406   R-squared       =    0.0038 
-------------+----------------------------------   Adj R-squared   =   -0.0011 
       Total |  3.79574851       205  .018515846   Root MSE        =    .13614 
 
------------------------------------------------------------------------------ 
    __00000I | Coefficient  Std. err.      t    P>|t|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
    __000009 |   .0228472   .0258087     0.89   0.377    -.0280388    .0737332 
       _cons |   .1689376   .0095203    17.75   0.000     .1501669    .1877084 
------------------------------------------------------------------------------ 
          -> regression-based GSD Ratio:       1.184046 × GMean(A,B)^ .0228472 
          -> regression-based 95% LLOA Ratio:  .6490518 × GMean(A,B)^-.0286833 
          -> regression-based 95% ULOA Ratio:  1.258576 × GMean(A,B)^  .060876 
 
The output for ratios makes use of the fact: exp(α + βln(GMean(A,B)))  = exp(α) × GMean(A,B)β   
 
 
 
 
A.2 Confidence intervals for LOA, prediction interval and tolerance intervals  

Here we detail the calculation of confidence intervals for LOA, and the calculation and meaning of 
prediction and tolerance intervals produced by blandaltman. 

It is assumed that differences (or percentage differences or log ratios) y = {y1, y2, … yn} are 
randomly sampled from a normal distribution with mean μ, standard deviation σ, and cumulative 
distribution function F. We denote the sample size n, the sample mean 𝑦𝑦�, and the sample standard 
deviation s. 

 

95% confidence intervals for LOA 

Bland and Altman (1999) viewed 𝑦𝑦� ± 1.96 s as estimates of: 
 lower limit of agreement (LLOA)  = μ – 1.96 σ  (i.e. 2.5th percentile of population) 
 upper limit of agreement (ULOA) = μ + 1.96 σ (i.e. 97.5th percentile of population) 

 
They acknowledged that sampling error affects the estimates of μ, σ and LOA, and proposed 
calculating a 95% confidence interval for LOA. They described approximate methods assuming the 
sample size is large. However, there exists an exact method based on the noncentral t distribution 
(Carkeet 2015, Shieh 2018) which is implemented in blandaltman.4 The formulae are:  
 
for the ULOA:   𝑦𝑦� + 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑠𝑠   to    𝑦𝑦� + 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖 × 𝑠𝑠 

for the LLOA:   𝑦𝑦� − 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖 × 𝑠𝑠   to    𝑦𝑦� − 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑠𝑠 

where   𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  =  𝑡𝑡𝑖𝑖−1,1.96√𝑖𝑖,0.025� 1
𝑖𝑖

    and   𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖  =  𝑡𝑡𝑖𝑖−1,1.96√𝑖𝑖,0.975� 1
𝑖𝑖

  

 
and the quantities 𝑡𝑡𝑖𝑖−1,1.96√𝑖𝑖,0.025 and 𝑡𝑡𝑖𝑖−1,1.96√𝑖𝑖,0.975  are the 0.025 and 0.975 quantiles of the 
noncentral t-distribution with 𝑛𝑛 − 1 degrees of freedom and noncentrality parameter 1.96√𝑛𝑛. In 
contrast to the approximate confidence intervals, these exact confidence intervals will not appear 
symmetric about the LOA. 
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Prediction interval  
 
A two-sided 95% prediction interval for a single future observation yn+1 (Vardeman 1992, Meeker, 
Hahn, and Escobar 2017) is a random interval [L(y), U(y)] constructed such that  

Prob{L < yn+1 < U} = 0.95 
 
That is, if the process of {(i) gathering a sample of size n, (ii) constructing a 95% prediction interval, 
and (iii) gathering a single additional yn+1} is repeated infinitely many times, then 95% of the 
prediction intervals will contain yn+1. 
 
The 95% prediction interval is calculated as:  𝑦𝑦� ± 𝑘𝑘𝑃𝑃𝑃𝑃 × 𝑠𝑠 

where 𝑘𝑘𝑃𝑃𝑃𝑃  =  𝑡𝑡𝑖𝑖−1,0.975�1 +  1
𝑖𝑖

  

and the quantity 𝑡𝑡𝑖𝑖−1,0.975 is the 0.975 quantile of Student’s t-distribution with 𝑛𝑛 − 1 degrees of 
freedom. 
 
 
Tolerance intervals 

Tolerance intervals are statistical intervals that contain at least a specified percentage of a 
population, either (a) on average, or (b) with a stated confidence (Vangel 2005, Vardeman 1992).  
 
(a) 95%-expectation tolerance interval 
A two-sided 95%-expectation tolerance interval is a random interval [L(y), U(y)] constructed such 
that  

E{F(U) – F(L)} = 0.95 
 
That is, if the process of {(i) gathering a sample of size n, (ii) constructing a 95%-expectation 
tolerance interval, and (iii) calculating what percentage of the population is contained by the 
interval} is repeated infinitely many times, then the mean (i.e. expected) percentage will be 95%. 
 
Mathematically, it is equivalent to the above-mentioned 95% prediction interval. 
 
(b) 95% tolerance interval with C% confidence 
A two-sided 95% tolerance interval with C% confidence is a random interval [L(y), U(y)] constructed 
such that  

Pr{F(U) – F(L) ≥ 0.95} = C% 
 
That is, if the process of {(i) gathering a sample of size n, (ii) constructing a 95% tolerance interval 
with C% confidence, and (iii) calculating what percentage of the population is contained by the 
interval} is repeated infinitely many times, then C% of these intervals will contain at least 95% of the 
population. 
 
There is no closed-form expression. blandaltman calculates an approximate two-sided 95% 
tolerance interval with C% confidence (Howe 1969): 𝑦𝑦� ± 𝑘𝑘𝑇𝑇𝑃𝑃 × 𝑠𝑠 

where 𝑘𝑘𝑇𝑇𝑃𝑃  =  1.96��1 +  1
𝑖𝑖
� � 𝑖𝑖−1

𝜒𝜒𝑛𝑛−1,1−𝐶𝐶/100
2 � �1 + 

𝑖𝑖−3−𝜒𝜒𝑛𝑛−1,1−𝐶𝐶/100
2

2(𝑖𝑖+1)2
�  

and the quantity 𝜒𝜒𝑖𝑖−1,1−𝐶𝐶/100
2  is the (1 – C/100) quantile of a 𝜒𝜒2 distribution with 𝑛𝑛 − 1 degrees of 

freedom.  
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Table A1. Factors used to calculate (i) a 95% confidence interval for LOA, (ii) a 95% prediction 
interval and (iii) approximate 95% tolerance intervals with C% confidence. Intervals are calculated as 
described in A.2. 

n (i) 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖 (ii) 𝑘𝑘𝑃𝑃𝑃𝑃 
 

(iii) 𝑘𝑘𝑇𝑇𝑃𝑃 
C = 50 C = 95 

     
10 1.16, 3.80 2.37 2.13 3.41 
20 1.36, 3.01 2.14 2.04 2.76 
50 1.55, 2.53 2.03 1.99 2.38 

100 1.66, 2.34 1.99 1.98 2.23 
∞ 1.96, 1.96 1.96 1.96 1.96 

 
 

1 Confidence intervals are reported in the non-graphical output using agree. 
2 Factors 2 and 1.96 respectively are used in their 1986 and 1999 articles. 
3 Vock (2016) also considered an interval formed by the outer confidence limits for the LOA as an alternative. 
4 While this method is currently not implemented in [R] centile, it is now implemented in the recently revised 
community-contributed command tolerance (Chatfield 2021). 


