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Abstract

We characterise regions in the complex plane that contain all non-
embedded eigenvalues of a perturbed periodic Dirac operator on the real
line with real-valued periodic potential and a generally non-symmetric
matrix-valued perturbation V . We show that the eigenvalues are located
close to the end-points of the spectral bands for small V ∈ L1(R)2×2, but
only close to the spectral bands as a whole for small V ∈ Lp(R)2×2, p > 1.
As auxiliary results, we prove the relative compactness of matrix multi-
plication operators in L2p(R)2×2 with respect to the periodic operator
under minimal hypotheses, and find the asymptotic solution of the Dirac
equation on a finite interval for spectral parameters with large imaginary
part.
Keywords: Non-selfadjoint operator; periodic Dirac system; eigenvalue
enclosure
2020 MSC: 47B28; 34L40, 47A55, 81Q15

1 Introduction

In the present paper, we consider the one-dimensional perturbed periodic Dirac
operator

H = −i σ2
d

dx
+mσ3 + q(x) + V (x) (x ∈ R),

where σ2 and σ3 are Pauli matrices (see equation (18) below), m ≥ 0 is the
particle mass, q : R → R is a periodic potential and V : R → C

2×2 is a matrix-
valued perturbation. Although the unperturbed periodic operator

H0 = −i σ2
d

dx
+mσ3 + q(x) (x ∈ R),

∗corresponding author
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is a self-adjoint operator in L2(R)2, the operator H is not self-adjoint in general
as we do not assume that the matrix multiplication operator V is symmetric.
We assume that V is bounded and that V ∈ Lp(R)2×2 for some p ≥ 1. Then H
has the same essential spectrum as H0, consisting of closed intervals on the real
line (spectral bands), generally separated by spectral gaps, but may in addition
have discrete eigenvalues in the complex plane (see Theorem 2 below).

Our aim is to find a priori enclosures for these eigenvalues, i.e. regions char-
acterised in terms of the properties of the unperturbed periodic Dirac equation
and the p-norm of V which contain all (non-embedded) eigenvalues of H. In
the absence of a periodic background potential, q = 0, [5] proved that, for
V ∈ L1(R)2×2 with ‖V ‖1 < 1, the non-embedded eigenvalues of H lie within
circles around (but not centred at) the points ±m, the end-points of the two
intervals of essential spectrum σe(H) = (−∞,−m] ∪ [m,∞). The radii of the
circles tend to 0 as the 1-norm of V tends to 0, showing that when a coupling
parameter ǫ is employed, the eigenvalues of H0 + ǫV emanate from the points
±m only as ǫ increases from 0.

In the present study, we extend this observation to the case where a periodic
background potential q is present and allow V to be p-integrable with p ≥ 1. Our
main eigenvalue exclusion result (Theorem 3) states that a complex number λ
outside the essential spectrum ofH cannot be an eigenvalue ofH if the p-norm of
V (defined in equation (9) below) satisfies the inequality ‖V ‖p < Fp(λ), where
Fp is some non-negative function determined completely in terms of solution
properties of the unperturbed periodic equation. From our results, the following
picture emerges. For p = 1, F1 is bounded above by 1 and in fact tends to
1 as | Imλ| → ∞ (see Theorems 8, 9), so its level sets for levels < 1 lie in
neighbourhoods of the real line. Moreover, F1 tends to zero exactly at the
end-points of spectral bands (Theorems 4, 5, 6). This means that for small
‖V ‖1 < 1, the eigenvalues are confined to small neighbourhoods of the end-
points of spectral bands and, when a coupling parameter is applied, will emerge
from these end-points only. This behaviour appears to be a natural analogue to
that observed in [5] and [6].

However, for p > 1, Fp(λ) grows beyond all bounds as | Imλ| → ∞. There-
fore the level sets of Fp will be in neighbourhoods of the real line for all positive
levels, and we get eigenvalue enclosure regions for any size of ‖V ‖p. However,
Fp tends to 0 at all points of the essential spectrum of H, which means that for
small ‖V ‖p the eigenvalues are confined to small neighbourhoods of the whole
spectral bands. Although we do not show the actual appearance of eigenvalues
in such position here, this opens up the possibility of eigenvalues approaching
(or, with a coupling parameter, emerging from) any point of the essential spec-
trum of H, similar to the behaviour observed in [1] for Schrödinger operators.

We mention that in the recent study [2], a detailed spectral analysis of the
different, but related Dirac operator where, instead of a real periodic potential,
q is a purely imaginary jump potential was performed.

The present paper is structured as follows. In Section 2 we summarise the
relevant results from Floquet theory of the periodic Dirac equation, describing
in particular the definition of the complex quasimomentum used in this paper.

2



We also give a formula for the resolvent operator of H0 and show that it is a
bounded linear operator not only in L2(R)2, but also between a dual pair of non-
Hilbert Lebesgue spaces (Theorem 1). In Section 3 we first prove that H has
the same essential spectrum (for all five usual definitions for a non-selfadjoint
operator) as H0 and only discrete eigenvalues besides (Theorem 2). A key part
of the proof is the observation that the operator of multiplication with a matrix-
valued function in L2p(R) is H0-relatively compact (Lemma 2), for which we
provide a proof as it is not easily found in the literature in this generality, with
locally integrable q, and hence may be of independent interest. We then proceed
to the main eigenvalue exclusion theorem (Theorem 3) already described above.
In Section 4, we show that the function determining the exclusion criterion for
p = 1 tends to zero exactly at the end-points of the spectral bands. Finally,
in Section 5, we show that this function tends to 1 as Imλ → ∞. This result
is based on the general asymptotics of the fundamental system of the Dirac
equation on a finite interval for this limit (Theorem 7), which is here obtained
using a novel transformation of the Dirac equation into the pair of coupled
differential equation systems (21) and may be of interest in its own right.

As a matter of notation, we write |w| for the Euclidean norm
√

|w1|2 + |w2|2
of vectors w ∈ C

2.

2 The periodic equation

Let Φ(·, λ) be the canonical fundamental system of the periodic Dirac equation
with spectral parameter λ ∈ C, i.e. the solution of the (matrix) initial value
problem

−iσ2Φ
′(x, λ) + (mσ3 + q(x)) Φ(x, λ) = λΦ(x, λ) (x ∈ R), Φ(0, λ) = I, (1)

where I is the 2×2 unit matrix and q is a locally integrable, real-valued, periodic
function. The qualitative behaviour of the solutions can be studied by means
of Floquet theory considering the monodromy matrix M(λ) := Φ(a, λ) (λ ∈ C),
where a > 0 is the period of q, see [3]. As the (Wronskian) determinant of the
monodromy matrix is equal to 1, its eigenvalues are inverses of each other. Their
positions in the complex plane can be characterised in terms of the discriminant
D(λ) := TrM(λ). The characteristic equation for M(λ),

µ2 −D(λ)µ+ 1 = 0,

shows that M(λ) has two distinct eigenvalues if and only if D(λ) /∈ {−2, 2}.
In this case, either the eigenvalues lie on the unit circle and are complex con-
jugates of each other (this happens when D(λ) ∈ (−2, 2)), or one eigenvalue,
ρ(λ), lies outside, the other eigenvalue, 1/ρ(λ), lies inside the unit circle (this
happens when D(λ) ∈ C \ [−2, 2]). If D(λ) ∈ {−2, 2}, then either the geometric
multiplicity of the eigenvalue ±1 is 1 or M(λ) = ±I (see [3, Section 1.4]).

If µ is an eigenvalue of M(λ) and v ∈ C
2\{0} is a corresponding eigenvector,

then u(x) := Φ(x, λ) v (x ∈ R) is a Floquet solution of the Dirac equation

−iσ2u
′(x) + (mσ3 + q(x))u(x) = λu(x) (x ∈ R); (2)
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clearly u(0) = v. Then the function ϕ(x) := µ−x/a u(x) (x ∈ R) is a-periodic.
This shows that all solutions of the periodic Dirac equation are bounded if
D(λ) ∈ (−2, 2) and that there is one Floquet solution u+(·, λ) exponentially
small at −∞ and one Floquet solution u−(·, λ) exponentially small at ∞ if
D(λ) ∈ C \ [−2, 2]. If D(λ) ∈ {−2, 2}, then either one or all solutions are
bounded. Hence we can deduce that σ(H0) = {λ ∈ C | D(λ) ∈ [−2, 2]} ⊂ R for
the self-adjoint operator H0 = −iσ2

d
dx +mσ3 + q (see also [3, Theorem 4.7.1]).

The (entries of the) monodromy matrix M and hence also the discriminant
D are entire functions, cf. [7, Theorem 1.7.2]. Since m > 0 and q is real valued,
it follows that Φ(x, λ) = Φ(x, λ) (x ∈ R) and so M(λ) = M(λ) and D(λ) =
D(λ) for all λ ∈ C. If D(λ) /∈ [−2, 2], let v+(λ) and v−(λ) be eigenvectors
corresponding to the eigenvalues ρ(λ) and 1/ρ(λ) of M(λ), respectively. Then
ρ(λ) = ρ(λ) and we can choose the eigenvectors such that v±(λ) = v±(λ).
Therefore we focus on λ with Imλ ≥ 0 in the following.

The discriminant can be written in the form

D(λ) = 2 cos k(λ)a

= 2 cosh(a Im k(λ)) cos(aRe k(λ))− 2i sinh(a Im k(λ)) sin(aRe k(λ)) (3)

(λ ∈ C, Imλ ≥ 0), where the (continuous) function k with Im k(λ) ≥ 0 is called
the complex quasimomentum (see also e.g. [10]). As can be seen from equation
(3), for λ ∈ R, the quasimomentum k(λ) is real; it is closely related to the
rotation number (cf. [3, p.43]) in the intervals where D(λ) ∈ [−2, 2] (stability
intervals), whereas it has constant real part ∈ πZ and positive imaginary part
in the intervals where D(λ) /∈ [−2, 2] (instability intervals). More generally,
for λ ∈ C such that Imλ ≥ 0 and D(λ) /∈ [−2, 2], the eigenvalue of M(λ)
that lies outside the unit circle is ρ(λ) = e−ik(λ)a, the other eigenvalue being
1/ρ(λ) = eik(λ)a. Clearly k(λ) ∈ R implies that D(λ) ∈ [−2, 2] and so λ ∈ R.
We also note the following.

Lemma 1. Let λ ∈ C, Imλ ≥ 0. Then

Im k(λ) =
1

2a
Arcosh





|D(λ)|2
4

+

√

(

1− |D(λ)|2
4

)2

+ (ImD(λ))2



 . (4)

In particular,
lim

λ→λ0

Im k(λ) = 0 (5)

if D(λ0) ∈ [−2, 2].

Proof. If Im k(λ) = 0, then by equation (3) D(λ) = 2 cos ak(λ) ∈ [−2, 2] and
the right-hand side in equation (4) vanishes. If Im k(λ) > 0, then by equation
(3) we find

1 =
(ReD(λ))2

4 cosh2(a Im k(λ))
+

(ImD(λ))2

4 sinh2(a Im k(λ))

=
(ReD(λ))2(cosh(2a Im k(λ))− 1) + (ImD(λ))2(cosh(2a Im k(λ)) + 1)

2(cosh2(2a Im k(λ))− 1)
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and hence by solving the quadratic equation

cosh(2a Im k(λ)) =
|D(λ)|2

4
±
√

1 +
|D(λ)|4

16
− (ReD(λ))2 − (ImD(λ))2

2

=
|D(λ)|2

4
±

√

(

1− |D(λ)|2
4

)2

+ (ImD(λ))2.

Since

|D(λ)|2
4

−

√

(

1− |D(λ)|2
4

)2

+ (ImD(λ))2 ≤ 1

and cosh(2a Im k(λ)) > 1 in the case under consideration, the square root must
have the positive sign.

For Imλ < 0, the Floquet multiplier (eigenvalue) satisfies

ρ(λ) = ρ(λ) = e−ik(λ)a = e−i(−k(λ))a.

This motivates the definition of the quasimomentum in the complex lower half-

plane by setting k(λ) := −k(λ) (λ ∈ C, Imλ < 0). Then we have ρ(λ) = e−ik(λ)a

for all λ ∈ C such that D(λ) /∈ [−2, 2]. Note that this extended quasimomentum
function is not continuous at the real axis; nevertheless, its imaginary part is
continuous as Im k(λ) = −(− Im k(λ)) = Im k(λ).

We now express the resolvent operator (H0−λ)−1 in terms of a fundamental
system of Floquet solutions. Let λ ∈ C such that D(λ) /∈ [−2, 2]. Then the
Floquet solutions

u+(x, λ) = Φ(x, λ) v+(λ) = ρ(λ)x/a ϕ+(x, λ),

u−(x, λ) = Φ(x, λ) v−(λ) = ρ(λ)−x/a ϕ−(x, λ) (6)

with a-periodic functions ϕ±(·, λ) are linearly independent and hence form a
fundamental system of the Dirac equation. As u±(0, λ) = ϕ±(0, λ) = v±(λ), its
Wronskian is W (λ) = det(v+(λ), v−(λ)).

Theorem 1. Let λ ∈ ̺(H0). Then

((H0 − λ)−1f)(x) =

∫

R

G(x, t, λ) f(t) dt (x ∈ R; f ∈ L2(R)2)

with (matrix-valued) Green’s function

G(x, t, λ) = − eik(λ) |t−x|

det(v+(λ), v−(λ))

{

ϕ+(x, λ)ϕ−(t, λ)
T if t > x

ϕ−(x, λ)ϕ+(t, λ)
T if t < x

(x, t ∈ R).

For all x, t ∈ R, x 6= t, the Frobenius norm of the matrix G(x, t, λ) is

‖G(x, t, λ)‖F =
e− Im k(λ) |t−x|

| det(v+(λ), v−(λ))|

{

|ϕ+(x, λ)| |ϕ−(t, λ)| if t > x,
|ϕ−(x, λ)| |ϕ+(t, λ)| if t < x.
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Moreover, for any r ∈ (1, 2] and conjugate exponent r′ = 1/(1 − 1
r ) ≥ 2, the

integral operator Rr(λ) : L
r(R)2 → Lr′(R)2,

(Rr(λ)f)(x) =

∫

R

G(x, t, λ) f(t) dt (x ∈ R; f ∈ Lr(R)2)

is a bounded linear operator with operator norm ‖Rr(λ)‖ ≤ C(λ)
(

4
r′ Im k(λ)

)
2
r′

,

where

C(λ) :=
‖ϕ+(·, λ)‖∞ ‖ϕ−(·, λ)‖∞

| det(v+(λ), v−(λ))|
. (7)

Remarks. 1. The Green’s function G is in fact independent of the choice of the
eigenvectors v±(λ).

2. In the absence of a periodic background potential q, an operator norm
bound for Rr(λ) was obtained in [4, Theorem 3.1].

Proof. Let f ∈ L2(R)2; then solving the inhomogeneous Dirac equation

−iσ2u
′(x) + (mσ3 + q(x)− λ)u(x) = f(x) (x ∈ R)

by the variation of constants method on the basis of the fundamental system
(u+(·, λ), u−(·, λ)) gives

u(x) =

∫

R

G(x, t, λ) f(t) dt (x ∈ R).

For x 6= t, the Frobenius norm of the matrix G(x, t, λ) is

‖G(x, t, λ)‖F =
√

Tr(G(x, t, λ)∗ G(x, t, λ))

=
|eik(λ) |t−x||

| det(v+(λ), v−(λ))|

√

Tr(ϕ∓(t, λ)ϕ±(x, λ)∗ ϕ±(x, λ)ϕ∓(t, λ)T )

=
e− Im k(λ) |t−x|

| det(v+(λ), v−(λ))|

√

Tr(ϕ±(x, λ)∗ ϕ±(x, λ)ϕ∓(t, λ)T ϕ∓(t, λ))

=
e− Im k(λ) |t−x|

| det(v+(λ), v−(λ))|
√

|ϕ±(x, λ)|2 |ϕ∓(t, λ)|2

with the sign in the index depending on whether t > x or t < x. Setting
‖ϕ±(·, λ)‖∞ := sup

x∈R

|ϕ±(·, λ)|, we can estimate the operator norm

‖G(x, t, λ)‖ ≤ ‖G(x, t, λ)‖F ≤ C(λ) e− Im k(λ)|t−x| (8)
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(x, t ∈ R, t 6= x) with C(λ) defined in equation (7). Now let f ∈ Lr(R); then

‖Rr(λ)f‖r′ =
(

∫

R

∣

∣

∣

∣

∫

R

G(x, t, λ) f(t) dt

∣

∣

∣

∣

r′

dx

)
1
r′

≤
(

∫

R

(∫

R

‖G(x, t, λ)‖ |f(t)| dt
)r′

dx

)
1
r′

≤ C(λ)

(

∫

R

(∫

R

e− Im k(λ) |t−x| |f(t)| dt
)r′

dx

)
1
r′

≤ C(λ)

(∫

R

e− Im k(λ) |s| r′

2 ds

)
2
r′
(∫

R

|f(x)|r dx
)

1
r

= C(λ)

(

4

r′ Im k(λ)

)
2
r′

‖f‖r

by Young’s inequality, noting that 1
r +

2
r′ =

1
r′ +1. This shows that the integral

operator Rr(λ) (and in particular the resolvent operator (H0 − λ)−1 = R2(λ))
is well-defined and bounded, with the stated operator norm estimate.

3 Eigenvalue exclusion

We now consider the Dirac operator with an additional non-periodic perturba-
tion, H := H0 + V , where V is the operator of multiplication with the matrix-
valued function V : R → C

2×2. We assume that V is bounded and, for some
p ≥ 1, V ∈ Lp(R)2×2, which means that the norm (cf. [6])

‖V ‖p :=

(∫

R

‖V (x)‖p dx
)

1
p

(9)

is finite. Here ‖V (x)‖ is the operator norm of the matrix V (x), x ∈ R. This
is different from the operator norm ‖V ‖ of the multiplication operator V in
L2(R)2.

For each x ∈ R, we use the polar decomposition of V (x),

V (x) = B(x)A(x), B(x) = U(x) |V (x)| 12 , A(x) = |V (x)| 12 , (10)

where |V (x)| = (V (x)∗ V (x))
1
2 and U(x) is a partial isometry of C2, cf. [12,

Theorem VI.10]; then

‖A(x)‖ =
√

‖V (x)‖, ‖B(x)‖ ≤
√

‖V (x)‖ (x ∈ R). (11)

Thus we have matrix-valued functions A,B ∈ L2p(R)2×2 that give rise to
bounded multiplication operators A,B on L2(R)2.
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As we don’t assume that V is symmetric, the operator H is not self-adjoint
in general; however, as a sum of a closed (self-adjoint) operator and a bounded
operator, it is closed (cf. [15, Theorem 5.5]). Moreover, we have the following
statement about its essential spectrum, using any of the 5 usual definitions (cf.
[8, Section I.4]), e.g. the third,

σe(H) := {λ ∈ C | H − λ is not a Fredholm operator}.

Theorem 2. σe(H) = σe(H0) = {λ ∈ R | D(λ) ∈ [−2, 2]}. The spectrum of H
outside σe(H) only consists of isolated eigenvalues of finite multiplicity.

In the proof of this theorem, we use the relative compactness of the multi-
plication operator A with respect to H0. We give a full proof of this statement
(which holds for any A ∈ L2p(R)2×2), as it does not seem to be easily available
in the literature; note that we only assume that the periodic potential q is locally
integrable, so the results of e.g. [14, Theorem 4.1] or [4, Theorem 4.1] are not
directly applicable. We remark that in the case p = 1 the relative compactness
can be shown more easily by proving that A (H0 − λ)−1, an integral operator
with kernel A(x)G(x, t, λ), is a Hilbert-Schmidt operator, using the Frobenius
norm estimate (8).

Lemma 2. Let λ ∈ ̺(H0). Then the operator A (H0 − λ)−1 is compact.

Proof. (a) We first show that the statement is true for A ∈ C∞
0 (R)2×2. Let

a < b be such that suppA ⊂ [a, b]. Let (un)n∈N be a bounded sequence in
L2(R)2, ‖un‖2 ≤ K (n ∈ N), and set yn := A (H0 − λ)un (n ∈ N). Then, for
all x ∈ [a, b] and n ∈ N, we have by Theorem 1

|yn(x)| ≤ ‖A(x)‖
∣

∣

∣

∣

∫

R

G(x, t, λ)un(t) dt

∣

∣

∣

∣

≤ ‖A(x)‖
(∫

R

‖G(x, t, λ)‖2 dt
)

1
2

‖un‖2

≤ sup
z∈R

‖A(z)‖
(∫

R

e−2 Im k(λ) |t| dt

)
1
2

C(λ)K < ∞

and yn(x) = 0 for all x ∈ R \ [a, b], so the sequence of functions (yn)n∈N is
uniformly bounded. Also, for a ≤ x < z ≤ b we find, using the estimate (8),

|yn(x)− yn(z)| =
∣

∣

∣

∣

A(x)

∫

R

G(x, t, λ)un(t) dt−A(z)

∫

R

G(z, t, λ)un(t) dt

∣

∣

∣

∣

≤ 1

W

(

∫ x

−∞

∣

∣

∣

(

A(x) eik(λ) (x−t)ϕ−(x)−A(z) eik(λ) (z−t)ϕ−(z)
)

ϕ+(t)
T un(t)

∣

∣

∣ dt

+

∫ z

x

∣

∣

∣

(

A(x)eik(λ)(t−x)ϕ+(x)ϕ−(t)
T −A(z)eik(λ)(z−t)ϕ−(z)ϕ+(t)

T
)

un(t)
∣

∣

∣
dt

+

∫ ∞

z

∣

∣

∣

(

A(x) eik(λ) (t−x) ϕ+(x)−A(z) eik(λ) (t−z) ϕ+(z)
)

ϕ−(t)
T un(t)

∣

∣

∣ dt

)

,
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where we abbreviated W := det(v+(λ), v−(λ)). Here the first integral is less
than or equal to

∣

∣

∣eik(λ)xA(x)ϕ−(x)− eik(λ)zA(z)ϕ−(z)
∣

∣

∣

(

∫ b

−∞

e2 Im k(λ)t|ϕ+(t)|2 dt
)

1
2

K,

and as A and ϕ− are continuous and hence uniformly continuous on [a, b], this
integral tends to 0 as |x − z| → 0 uniformly on [a, b] and in n ∈ N. Analogous
reasoning applies to the third integral. The second integral can be estimated by

(∫ z

x

‖A(x)eik(λ) |t−x|ϕ+(x)ϕ−(t)
T −A(z)eik(λ) |t−z|ϕ−(z)ϕ+(t)

T ‖2dt
)

1
2

×
(∫ z

x

|un(t)|2dt
)

1
2

≤ 2 sup
t∈[a,b]

‖A(t)‖ sup
t∈[a,b]

|ϕ+(t)| sup
t∈[a,b]

|ϕ−(t)|K
√
z − x,

which tends to 0 as |x− z| → 0 uniformly on [a, b] and in n ∈ N. Consequently,
the sequence of functions (yn)n∈N is also equicontinuous. By the Arzelà-Ascoli
Theorem, it has a subsequence that is uniformly convergent and hence, in view
of the compact support, also converges in L2(R)2.

(b) Now let A ∈ L2p(R)2×2. Let u, v ∈ L2(R)2, ‖u‖2 = ‖v‖2 = 1. Then

|(A (H0 − λ)−1u, v)| =
∣

∣

∣

∣

∫

R

A(x)

∫

R

G(x, t, λ)u(t) dt v(x) dx

∣

∣

∣

∣

≤ C(λ)

∫

R

|u(t)|
(∫

R

e− Im k(λ) |t−x| ‖A(x)‖ |v(x)| dx
)

dt

= C(λ)

∫

R

F (|u|)F
(

e− Im k(λ) |·| ∗ (‖A(·)‖ |v|)
)

= C(λ)

∫

R

F (|u|)
√
2π F (e− Im k(λ) |·|)F (‖A(·)‖ |v|)

= 2 Im k(λ)C(λ)

∫

R

F (‖A(·)‖ |v|)(ξ) F (|u|)(ξ)
ξ2 + (Im k(λ))2

dξ

≤ 2 Im k(λ)C(λ)

(∫

R

|F (‖A(·)‖ |v|)|r
′

)
1
r′
(∫

R

∣

∣

∣

∣

F (|u|)(ξ)
ξ2 + (Im k(λ))2

∣

∣

∣

∣

r

dξ

)
1
r

,

where we used the Plancherel identity for the Fourier transform F and then
Hölder’s inequality with exponent r := 2p

p+1 ∈ [1, 2) and conjugate exponent r′.

(In the case p = 1, where r = 1, the above and the following estimates hold

with
(

∫

R
|F (‖A(·)‖ |v|)|r′

)1/r′

replaced with supx∈R |F (‖A(·)‖ |v|)(x)|.) By the

9



Hausdorff-Young inequality,

(∫

R

|F (‖A(·)‖ |v|)|r′
)

1
r′

≤
√
2π

1− 2
r

(∫

R

‖A(·)‖r |v|r
)

1
r

=
1

√
2π

1
p

(∫

R

(

‖A(·)‖2p
)

1
q
(

|v|2
)

1
q′

)
1
r

≤ 1
√
2π

1
p

(∫

R

‖A(·)‖2p
)

1
rq
(∫

R

|v|2
)

1
rq′

=
1

√
2π

1
p

‖A‖2p,

using Hölder’s inequality with exponents q := p + 1 = 2p
r and q′ = p+1

p = 2
r .

The same Hölder inequality gives

(∫

R

∣

∣

∣

∣

F (|u|)(ξ)
ξ2 + (Im k(λ))2

∣

∣

∣

∣

r

dξ

)
1
r

≤
(∫

R

(ξ2 + (Im k(λ))2)−2pdξ

)
1
2p

‖F (|u|)‖2.

As ‖F (|u|)‖2 = ‖u‖2 = 1, taking the supremum over u, v gives the bound for
the operator norm

‖A (H0 − λ)−1‖ ≤ 2 Im k(λ)C(λ)

(

1

2π

∫

R

(ξ2 + (Im k(λ))2)−2p dξ

)
1
2p

‖A‖2p.

As C∞
0 (R) is dense in L2p(R), there is a sequence (An)n∈N in C∞

0 (R)2×2 that
converges to A in ‖ · ‖2p; by the above estimate, An (H0 − λ)−1 converges to
A (H0 − λ)−1 in operator norm and the statement of the lemma follows from
(a) and the fact that the space of compact operators is closed in the operator
norm.

We are now ready to prove Theorem 2.

Proof of Theorem 2. The resolvent set of H, ̺(H), contains points in the upper
and the lower complex half-planes, as λ ∈ ̺(H) if | Imλ| > ‖V ‖. By the
resolvent identity, we find for λ ∈ ̺(H) ∩ ̺(H0)

(H0 − λ)−1 − (H − λ)−1 = (H − λ)−1 BA (H0 − λ)−1.

As (H−λ)−1 and B are bounded operators, this resolvent difference is compact
by Lemma 2. We can now apply Theorem IX.2.4 of [8] to conclude the equality
of the essential spectra (all five types) of H and of H0.

The complement of the essential spectrum of H, C \ σe(H), is open and
either connected (if H0 has at least one spectral gap) or has the upper and
lower complex half-planes as connected components (if σ(H0) = R — this hap-
pens if m = 0, see [13, Proposition 1]). In either case, each component of the
complement of σe(H) contains points of the resolvent set ̺(H), and we can
therefore apply Theorem XVII.2.1 of [9] to conclude that the spectrum of H
outside σe(H) only consists of isolated eigenvalues of finite multiplicity.

10



In the statement of the eigenvalue exclusion theorem, we use the function
Γ : D(Γ) → (0, 1], D(Γ) = {A ∈ C

2×2 | A has two distinct eigenvalues},

Γ(A) =
| det(v+, v−)|

|v+| |v−|
, (12)

where v± ∈ C
2 \ {0} are eigenvectors of A for the two different eigenvalues. As

the eigenvectors are uniquely determined up to a complex factor, Γ(A) does not
depend on the choice of eigenvectors and is therefore well-defined. The domain
D(Γ) is an open subset of C2×2 and Γ is continuous. However, Γ cannot be
continuously extended to all of C2×2; for example,

lim
ε→0

Γ

(

1 0
0 1 + ε

)

= 1 6= 0 = lim
ε→0

Γ

(

1 ε
ε2 1

)

,

so Γ has no continuous extension at the unit matrix. For the monodromy matrix
M of equation (1), we have the following statement.

Lemma 3. For all λ ∈ C, M(λ) ∈ D(Γ) if and only if D(λ) /∈ {−2, 2}.

We can now state the main eigenvalue exclusion theorem.

Theorem 3. Let p ≥ 1 and let V ∈ Lp(R)2×2∩L∞(R)2×2. Then λ ∈ C\σe(H)
is not an eigenvalue of H if

‖V ‖1 < Γ(M(λ)) γ+(λ) γ−(λ) (if p = 1),

‖V ‖p < Γ(M(λ)) γ+(λ) γ−(λ) (Im k(λ))
p−1
p

(

p

2(p− 1)

)
p−1
p

(if p > 1),

where

γ±(λ) =
|ϕ±(0, λ)|

supx∈[0,a] |ϕ±(x, λ)|
(13)

and ϕ± are the periodic functions in equation (6).

Remark. The additional factor that appears on the right-hand side of the in-
equality in Theorem 3 for p > 1 tends to 1 as p → 1, so the exclusion criterion
is formally continuous in p.

Proof. By the Birman-Schwinger Principle (see e.g. [2, Theorem B.2]), λ is an
eigenvalue of H0+V if and only if −1 is an eigenvalue of A (H0−λ)−1 B, where
A, B are as in equation (10).

Case 1: p = 1. For u, v ∈ L2(R)2, we obtain from Theorem 1 and the

11



estimate (8), noting that e− Im k(λ) |t−x| ≤ 1,

∣

∣(A(H0 − λ)−1Bu, v)
∣

∣ =

∣

∣

∣

∣

∣

∫ ∞

−∞

(

A(x)

∫ ∞

−∞

G(x, y, λ)B(y)u(y) dy

)T

v(x) dx

∣

∣

∣

∣

∣

≤
∫ ∞

−∞

‖A(x)‖ ‖G(x, y, λ)‖ ‖B(y)‖ |u(y)| |v(x)| dy dx

≤ C(λ)

(∫ ∞

−∞

‖A(x)‖ |v(x)| dx
)(∫ ∞

−∞

‖B(y)‖ |u(y)| dy
)

≤ C(λ) ‖V ‖1 ‖v‖2 ‖u‖2,

where we used Hölder’s inequality and the estimate (11) in the last step. Setting
v := A(H0−λ)−1Bu and taking the supremum over u, we hence find the estimate
for the operator norm of the Birman-Schwinger kernel

‖A(H0 − λ)−1B‖ ≤ C(λ) ‖V ‖1.

Case 2: p > 1. Let r := 2p
p+1 ∈ (1, 2) with conjugate exponent r′ = 2p

p−1 > 2.
We now associate the matrix-valued functions A and B with multiplication
operators Ar′,2 : Lr′(R)2 → L2(R)2, B2,r : L2(R)2 → Lr(R)2 and write the
Birman-Schwinger kernel as A(H0−λ)−1B = Ar′,2Rr(λ)B2,r, where the opera-

tor Rr(λ) : L
r(R)2 → Lr′(R)2 is defined as in Theorem 1. For u ∈ Lr′(R)2, we

find

‖Ar′,2u‖2 =

(∫

R

|A(x)u(x)|2 dx
)

1
2

≤
(∫

R

‖A(x)‖2
(

|u(x)|r′
)

2
r′

dx

)
1
2

≤
(∫

R

‖V (x)‖
r′

r′−2 dx

)
r′−2
2r′

‖u‖r′ ,

using Hölder’s inequality with exponents r′

2 and r′

r′−2 . As r′

r′−2 = p, we obtain

the operator norm estimate ‖Ar′,2‖ ≤ ‖V ‖
1
2
p . Similarly, we find for u ∈ L2(R)2

‖B2,ru‖r =

(∫

R

|B(x)u(x)|r dx
)

1
r

≤
(∫

R

‖B(x)‖r
(

|u(x)|2
)

r
2 dx

)
1
r

≤
(∫

R

‖V (x)‖ r
2−r dx

)
2−r
2r

‖u‖2,

using Hölder’s inequality with exponents 2
r and 2

2−r , and hence, as r
2−r = p,

the operator norm estimate ‖B2,r‖ ≤ ‖V ‖
1
2
p . In conjunction with Theorem 1,

we obtain

‖A(H0 − λ)−1B‖ = ‖Ar′,2Rr(λ)B2,r‖ ≤ ‖Ar′,2‖ ‖Rr(λ)‖ ‖B2,r‖

≤ C(λ)

(

2

Im k(λ)

p− 1

p

)
p−1
p

‖V ‖p,
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since 2
r′ =

p−1
p .

Now if λ is an eigenvalue of H, then −1 is an eigenvalue of A(H0 −λ)B and
therefore ‖A(H0 − λ)−1B‖ ≥ 1; noting that 1

C(λ) = Γ(M(λ)) γ+(λ) γ−(λ) since

ϕ±(0, λ) = v±(λ), we obtain the eigenvalue exclusion criteria in the theorem by
contraposition.

4 Behaviour near the essential spectrum

In this section we study the behaviour of the right-hand side of the inequalities
in Theorem 3, in particular as λ approaches the essential spectrum σe(H). We
begin by finding a positive lower bound for the factors γ±(λ) defined in equation
(13).

Theorem 4. (a) Let λ ∈ C such that D(λ) /∈ [−2, 2]. Then

e
−a

(

Im k(λ)+
√

m2+(Imλ)2
)

≤ γ±(λ) ≤ 1.

(b) Let λ0 ∈ R be such that D(λ0) ∈ [−2, 2]. Then

e−am ≤ lim inf
λ→λ0

γ±(λ) ≤ 1.

Proof. (a) The upper bound is immediate from the definition of γ±. For the
lower bound, we note that |ϕ±|2 satisfies the differential equation

d

dx
|ϕ±(x, λ)|2 = ϕ±(x, λ)

TB±(λ)ϕ±(x, λ) (x ∈ R), (14)

with

B±(λ) = 2

(

∓ Im k(λ) m− i Imλ
m+ i Imλ ∓ Im k(λ)

)

.

Indeed, the Floquet solutions u±(·, λ) are solutions of the differential equation
(2), which can be rewritten in the form

u′(x, λ) =

(

0 m− q(x) + λ
m+ q(x)− λ 0

)

u(x, λ) (x ∈ R);

so by differentiation of ϕ±(x, λ) = u±(x, λ) e
±ik(λ)x (x ∈ R) we find that

ϕ′
±(x, λ) = B±(x, λ)ϕ±(x, λ), where

B±(x, λ) =

(

±i k(λ) m− q(x) + λ
m+ q(x)− λ ±i k(λ)

)

(x ∈ R).

Hence

d

dx
|ϕ±(x, λ)|2 = ϕ±(x, λ)

T ϕ′
±(x, λ) + ϕ′

±(x, λ)
T ϕ±(x, λ)

= ϕ±(x, λ)
T
(

B±(x, λ) +B±(x, λ)
T
)

ϕ(x, λ)

13



and equation (14) follows noting that B±(λ) = B±(x, λ) + B±(x, λ)
T does not

depend on x. From (14),

d

dx
|ϕ±(x, λ)|2 ≤

∣

∣

∣

∣

d

dx
|ϕ±(x, λ)|2

∣

∣

∣

∣

= |ϕ±(x, λ)
TB±(λ)ϕ±(x, λ)|

≤ ‖B±(λ)‖ |ϕ±(x, λ)|2.

To find the operator norm of the symmetric matrix B±(λ), we calculate its
eigenvalues ∓2 Im k(λ) + 2

√

m2 + (Imλ)2 and ∓2 Im k(λ) − 2
√

m2 + (Imλ)2,
and hence the spectral radius

‖B±(λ)‖ = 2 Im k(λ) + 2
√

m2 + (Imλ)2.

Hence the above differential inequality gives

|ϕ±(x, λ)|2 ≤ |ϕ±(0, λ)|2 e(2 Im k(λ)+2
√

m2+(Imλ)2) x (x ∈ [0, a])

and so the lower bound in the Theorem.
(b) By part (a), we have

γ±(λ)− e
−a

(

Im k(λ)+
√

m2+(Imλ)2
)

≥ 0

for all λ ∈ C such that D(λ) /∈ {−2, 2}, so using equation (5), we find

0 ≤ lim inf
λ→λ0

(

γ±(λ)− e
−a

(

Im k(λ)+
√

m2+(Imλ)2
)
)

≤ lim inf
λ→λ0

γ±(λ)− lim
λ→λ0

e
−a

(

Im k(λ)+
√

m2+(Imλ)2
)

= lim inf
λ→λ0

γ±(λ)− e−am.

We now consider the function Γ(M(λ)), which, as a composition of a conti-
nous and an entire function, is continuous. By Lemma 3 and the definition of Γ,
we see that Γ(M(λ)) > 0 for all λ ∈ C for which D(λ) /∈ {−2, 2}. However, at
the points where D(λ) ∈ {−2, 2}, Γ(M(λ)) is not defined. These points are the
real values of λ where either M(λ) = ±I — then D

′(λ) = 0 and λ is an interior
point of a spectral band where two instability intervals meet — or M(λ) 6= ±I

has eigenvalue ±1 with algebraic multiplicity 2, but geometric multiplicity 1 —
then D

′(λ) 6= 0 and λ is an end-point of a spectral band (cf. [3, Theorem 1.6.1]).
In the following we investigate the limiting behaviour of Γ(M(λ)) at these ex-
ceptional points. We can characterise the derivative of M at such points as
follows. Let λ ∈ R. Denoting the columns of the canonical fundamental system
Φ of equation (1) by u and v, we have

M ′(λ) = M(λ)

(

I1(λ) I2(λ)
−I3(λ) −I1(λ)

)

(15)
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where

I1(λ) :=

∫ a

0

(u1(x, λ)v1(x, λ) + u2(x, λ)v2(x, λ)) dx,

I2(λ) :=

∫ a

0

(v1(x, λ)
2 + v2(x, λ)

2) dx,

I3(λ) :=

∫ a

0

(u1(x, λ)
2 + u2(x, λ)

2) dx

(see [3, eq. (1.6.4), (1.6.6)]). Note that I1(λ), I2(λ) and I3(λ) are complex in
general; however, for real spectral parameter they are real and have the following
property.

Lemma 4. For any λ ∈ R, I1(λ)
2 < I2(λ) I3(λ). In particular, I2(λ), I3(λ) 6= 0.

Proof. Since λ ∈ R, u and v are R
2-valued continuous functions. The Cauchy-

Schwarz inequality in L2(0, a)2 then gives

I1(λ)
2 =

(∫ a

0

u(x, λ)T v(x, λ) dx

)2

≤
∫ a

0

|u(x, λ)|2 dx
∫ a

0

|v(x, λ)|2 dx = I2(λ) I3(λ)

with equality if and only if u and v are linearly dependent functions; however,

the latter is impossible as u(0, λ) =

(

1
0

)

and v(0, λ) =

(

0
1

)

.

We can now find the limit of Γ(M(λ)) at a point λ0 ∈ R where D(λ0) = ±2,
distinguishing the cases of M(λ0) = ±I and of M(λ0) 6= ±I. Note that in the
following theorems 5 and 6, the limits λ → λ0 allow complex λ.

Theorem 5. Let λ0 ∈ R be such that M(λ0) = sI, where s ∈ {−1, 1}. Then

lim
λ→λ0

Γ(M(λ)) = 2

√

I2(λ0) I3(λ0)− I1(λ0)2

I2(λ0) + I3(λ0)
> 0.

Proof. Since M is entire, we have by equation (15) for λ ∈ C, abbreviating
Ij := Ij(λ0), j ∈ {1, 2, 3},

M(λ) = M(λ0) +M ′(λ0) (λ− λ0) +R(λ− λ0)

= sI+ sI

(

I1 I2
−I3 −I1

)

(λ− λ0) +R(λ− λ0)

= sI+ s (λ− λ0)N(λ− λ0),

where

N(Λ) :=

(

I1 I2
−I3 −I1

)

+
R(Λ)

Λ
(Λ ∈ C).
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Here R(Λ)/Λ is analytic with lim
Λ→0

R(Λ)/Λ = 0. Clearly, w ∈ C
2 is an eigenvec-

tor of N(λ− λ0) for eigenvalue µ ∈ C if and only if it is an eigenvector of M(λ)
for eigenvalue s (1 + (λ − λ0)µ). Therefore Γ(M(λ)) = Γ(N(λ − λ0)) and we
only need to find lim

Λ→0
Γ(N(Λ)).

Using Lemma 4, we see that the matrix N(0) =

(

I1 I2
−I3 −I1

)

has distinct

purely imaginary eigenvalues ±i
√

I2I3 − I21 with corresponding eigenvectors

w+ =

(

I2
−I1 + i

√

I2I3 − I21

)

, w− =

(

−I1 + i
√

I2I3 − I21
I3

)

.

Hence by equation (12)

Γ(N(0))2 =
|2(I2I3 − I21 + iI1

√

I2I3 − i21)|2
I2 (I2 + I3) I3 (I2 + I3)

= 4
I2I3 − I21
(I2 + I3)2

.

By analytic perturbation theory (see [11, Theorem II.1.8]), the eigenspaces of
N(Λ) converge to those spanned by w+ and w− as Λ → 0, and we conclude that

lim
λ→λ0

Γ(M(λ)) = lim
Λ→0

Γ(N(Λ)) = Γ(N(0)) = 2

√

I2I3 − I21
I2 + I3

,

which is positive by Lemma 4.

Theorem 6. Let λ0 ∈ R be such that D(λ0) = ±2, but M(λ0) 6= ±I. Then

lim
λ→λ0

Γ(M(λ)) = 0.

Proof. We can write the monodromy matrix as

M(λ) =

(

a(λ) b(λ)
c(λ) D(λ)− a(λ)

)

(λ ∈ C)

with entire functions a, b, c (and D). As the (Wronskian) detM(λ) = 1 for all
λ, we find

cb = aD− a2 − 1. (16)

Therefore, if b(λ0) = c(λ0) = 0, then a(λ0) = D(λ0)/2 and hence M(λ0) = ±I,
contradicting the hypotheses. So b(λ0) 6= 0 or c(λ0) 6= 0.

We first consider the case b(λ0) 6= 0. Then b 6= 0 in a neighbourhood of λ0.
For λ in this neighbourhood, we can write, using equation (16),

M(λ) =

(

a(λ) b(λ)
a(λ)D(λ)−a(λ)2−1

b(λ) D(λ)− a(λ)

)

,

with eigenvalues
D(λ)±

√
D(λ)2−4

2 and eigenvectors

w+(λ) =

(

b(λ)
D(λ)+

√
D(λ)2−4

2 − a(λ)

)

, w−(λ) =

(

b(λ)
D(λ)−

√
D(λ)2−4

2 − a(λ)

)

.
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Then |w±(λ)| ≥ |b(λ)| and, by equation (12),

Γ(M(λ)) ≤ | − b(λ)
√

D(λ)2 − 4|
|b(λ)|2 =

|
√

D(λ)2 − 4|
|b(λ)| → 0 (λ → λ0).

If b(λ0) = 0, then c 6= 0 in a neighbourhood of λ0, and for λ in this neighbour-
hood we can write

M(λ) =

(

a(λ) a(λ)D(λ)−a(λ)2−1
c(λ)

c(λ) D(λ)− a(λ)

)

;

this matrix has the same eigenvalues as above and eigenvectors

w±(λ) =

(

D(λ)±
√

D(λ)2−4

2 −D(λ) + a(λ)
c(λ)

)

,

so |w±(λ)| ≥ |c(λ)| and

Γ(M(λ)) ≤ |c(λ)
√

D(λ)2 − 4|
|c(λ)|2 =

|
√

D(λ)2 − 4|
|c(λ)| → 0 (λ → λ0).

5 Asymptotics for large Imλ

The results of the preceding section show that the functions γ± do not tend
to zero at any point in the complex plane and that Γ ◦ M tends to zero only
(and exactly) at the end-points of the spectral bands. However, they do not
yet preclude the possibility that these functions become small for λ far away
from the real axis; in fact, the lower bound in Theorem 4 (a) tends to zero as
| Imλ| → ∞ and hence is not very good in this respect. In the present section,
we show that in fact Γ(M(λ)) and γ±(λ) tend to 1 as | Imλ| → ∞, which implies
that the level sets of Γ(M(λ))γ+(λ)γ−(λ) are located in strip neighbourhoods
of the real axis. The basis for this is provided by the following asymptotic of
the canonical fundamental system of a Dirac system with real-valued potential
on a bounded interval; this result may be of interest in its own right.

We focus on the case Imλ > 0, as the asymptotics for Imλ → −∞ are the
same due to the symmetry of the Dirac equation (1) with real-valued q.

Theorem 7. Let q ∈ L1[0, a] be real-valued and m ≥ 0. Let Q(x) =
∫ x

0
q

(x ∈ [0, a]) and let µ ∈ R, α > 0. Then, for each x ∈ [0, a], the solution of the
initial value problem (1) with λ = µ+ iα has the asymptotic for α → ∞

e−αx Φ(x, µ+ iα) =
1

2

(

ei(Q(x)−µx) + e−2αxe−i(Q(x)−µx)
)

I

+
1

2

(

−ei(Q(x)−µx) + e−2αxe−i(Q(x)−µx)
)

σ2 +Ounif(
1
α ). (17)
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Here Ounif means that the bound is uniform in x ∈ [0, a].

Corollary 1. Under the hypotheses of Theorem 7,

e−αx Φ(x, µ+ iα) =
1

2
ei(Q(x)−µx) (I− σ2) +O( 1

α ) (α → ∞)

for each x ∈ (0, a].

Proof of Theorem 7. Write Φ =
3
∑

j=0

σj φj with complex-valued functions φ0, φ1,

φ2, φ3 and the Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

, σ0 =

(

1 0
0 1

)

= I. (18)

Then the initial value problem (1) is equivalent to the system

(

φ0

φ2

)′

= (−α− iq + iµ)σ1

(

φ0

φ2

)

+m

(

1 0
0 −i

)(

φ1

φ3

)

,

(

φ1

φ3

)′

= (−α− iq + iµ)(−σ2)

(

φ1

φ3

)

+m

(

1 0
0 i

)(

φ0

φ2

)

, (19)

with initial values φ0(0) = 1, φ1(0) = φ2(0) = φ3(0) = 0. We now make the
ansatz
(

φ0

φ2

)

=
er

2

(

1
1

)

u1+
e−r

2

(

1
−1

)

u2,

(

φ1

φ3

)

=
er

2

(

1
−i

)

u3+
e−r

2

(

1
i

)

u4, (20)

with functions u1, u2, u3, u4 and given r(x) = −αx − i(Q(x) − µx) (x ∈ [0, a]).
This is motivated by the fact that, with constants u1, u2, u3, u4, the above are
the general solution of the decoupled equation system when m = 0. The initial
conditions translate to u1(0) = u2(0) = 1, u3(0) = u4(0) = 0. Using this ansatz
in the coupled differential equation system (19) and then multiplying the first
equation (from the left) with the row vectors (1, 1) and (1,−1), the second
equation with the vectors (1, i) and (1,−i), respectively yields the two separate
differential equation systems

{

u′
1 = me−2r u4

u′
4 = me2r u1

{

u′
3 = me−2r u2

u′
2 = me2r u3

(21)

which are in fact the same system, but with different initial values. Focusing
on the system on the left-hand side first, we observe that

|u1|′(x) ≤ |u′
1(x)| = me2αx |u4|(x), |u4|′(x) ≤ |u′

4(x)| = me−2αx |u1|(x).

The solutions exist on [0, a] and, as continuous functions, are bounded. By an
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integration by parts and using the initial values,

|u4|(x) = |u4(0)|+
∫ x

0

|u4|′ ≤
∫ x

0

me−2αt |u1|(t) dt

= − m

2α
(e−2αx |u1|(x)− 1) +

m

2α

∫ x

0

e−2αt |u1|′(t) dt

≤ m

2α
− m

2α
e−2αx |u1|(x) +

m2

2α

∫ x

0

e−2αte2αt |u4|(t) dt (x ∈ [0, a]),

so

sup
x∈[0,a]

|u4(x)| ≤
m

2α
+

m2a

2α
sup

x∈[0,a]

|u4(x)|

and hence

sup
x∈[0,a]

|u4(x)| ≤
m

2α

1

1− m2a
2α

≤ m

α

for α > m2a. Consequently,

|u1(x)− 1| ≤
∫ x

0

|u′
1| =

∫ x

0

me2αt |u4(t)| dt ≤
m2

2α2
(e2αx − 1) (x ∈ [0, a]).

Now applying an analogous procedure to the right-hand side system in equation
(21), we find

|u2|(x) = |u2|(0) +
∫ x

0

|u2|′ ≤ 1 +m

∫ x

0

e−2αt |u3|(t) dt

= 1− m

2α
(e−αx |u3|(x)− 0) +

m

2α

∫ x

0

e−2αt |u3|′(t) dt

≤ 1− m

2α
e−2αx |u3(x)|+

m2

2α

∫ x

0

e−2αte2αt |u2|(t) dt,

so

sup
x∈[0,a]

|u2(x)| ≤ 1 +
m2a

2α
sup

x∈[0,a]

|u2(x)|

and hence

sup
x∈[0,a]

|u2(x)| ≤
1

1− m2a
2α

< 2

for α > m2a. Also,

|u3|(x) = |u3|(0) +
∫ x

0

|u3|′ ≤ m

∫ x

0

e2αt |u2|(t) dt

=
m

2α
(e2αx |u2|(x)− 1)− m

2α

∫ x

0

e2αt |u2|′(t) dt

≤ m

2α
(e2αx |u2|(x)− 1) +

m2

2α

∫ x

0

e2αte−2αt |u3|(t) dt
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and therefore

sup
t∈[0,x]

|u3(t)| ≤
m

2α

e2αx

1− m2a
2α

− m

2α
+

m2a

2α
sup

t∈[0,x]

|u3(t)|,

which gives

sup
t∈[0,x]

|u3(t)| ≤
1

1− m2a
2α

(

me2αx

2α−m2a
− m

2α

)

≤ 2m

α
(e2αx − 1

2 ) ≤
2m

α
e2αx

for all x ∈ [0, a] and α > m2a. Consequently,

|u2(x)− 1| ≤ m

∫ x

0

e−2αt |u3(t)| dt ≤
2m2a

α
(x ∈ [0, a]).

By equation (20), we have thus obtained the asymptotics
(

φ0

φ2

)

(x) =
e−αx

2
e−i(Q(x)−µx)

(

1
1

)

(1 +O(
e2αx

α2
))

+
eαx

2
ei(Q(x)−µx)

(

1
−1

)

(1 +Ounif(
1
α )),

(

φ1

φ3

)

(x) =
e−αx

2
e−i(Q(x)−µx)

(

1
−i

)

O(
e2αx

α
) +

eαx

2
ei(Q(x)−µx)

(

1
i

)

Ounif(
1
α ),

and equation (17) follows.

On the basis of the preceding theorem, we now find the asymptotics of the
quasimomentum and of Γ ◦M (in Theorem 8) and of ϕ± and γ± (in Theorem
9).

Theorem 8. Let µ ∈ R, α > 0. Then we have the following asymptotics as
α → ∞ for the monodromy matrix of the periodic Dirac equation (1)

e−αa M(µ+ iα) =
1

2
ei(Q(a)−µa)(I− σ2) +O( 1

α ),

the discriminant

e−αa
D(µ+ iα) = ei(Q(x)−µa) +O( 1

α ),

the quasimomentum

k(µ+ iα) = µ+ iα− Q(a)

a
+O( 1

α )

and the eigenvectors of M(µ+ iα)

v+(µ+ iα) =

(

1
−i

)

+O( 1
α ), v−(µ+ iα) =

(

1
i

)

+O( 1
α ).

Consequently,
Γ(M(µ+ iα)) = 1 +O( 1

α ).
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Proof. The asymptotics of the monodromy matrix and hence the discriminant
follow directly from Corollary 1. As e−αaM(µ+iα) has determinant e−2αa, solv-
ing its characteristic equation shows that the two eigenvalues of this matrix have
asymptotics ei(Q(a)−µa) + O( 1

α ) and e−2αa (e−i(Q(a)−µa) + O( 1
α )), respectively.

Hence the larger eigenvalue of M(µ+ iα) is

eαa (ei(Q(a)−µa) +O(
1

α
)) = e−i(µ+iα−

Q(a)
a

+O( 1
α
))a,

and we can read off the asymptotics for the quasimomentum. The asymptotic
form of the eigenvectors follows from that of the matrix e−αaM(µ+ iα) and its
eigenvalues.

Theorem 9. Let µ ∈ R, α > 0. For the periodic Dirac equation (1), the periodic
functions ϕ± of equation (6) have asymptotics

|ϕ±(x, µ+ iα)| = |ϕ±(0, µ+ iα)| (1 +Ounif(
1
α )) (α → ∞)

uniformly in x ∈ [0, a]. Consequently, the functions γ± of equation (13) satisfy

γ±(µ+ iα) = 1 +O( 1
α ) (α → ∞).

Proof. By Theorem 8 and equation (17), observing that

1
2 (I− σ2) v+(µ+ iα) = v+(µ+ iα) +O( 1

α ),
1
2 (I+ σ2) v+(µ+ iα) = O( 1

α ),

we obtain

ϕ+(x, µ+ iα) = eik(µ+iα)xΦ(x, µ+ iα) v+(µ+ iα)

= ei(µ−
Q(a)

a
+O( 1

α
))x e−αx Φ(x, µ+ iα) v+(µ+ iα)

= ei(Q(x)−
Q(a)

a
x+Ounif (

1
α
)) (v+(µ+ iα) +O( 1

α ))

+ e−2αxe−i(Q(x)+
Q(a)

a
x−2µx+Ounif (

1
α
)) O( 1

α ) +Ounif(
1
α )

and hence

|ϕ+(x, µ+ iα)| = (1 +Ounif(
1
α )) (v+(µ+ iα) +O( 1

α )) +Ounif(
1
α )

= |v+(µ+ iα)|+Ounif(
1
α ) = |ϕ+(0, µ+ iα)|(1 +Ounif(

1
α )).

Analogous reasoning for ϕ−(x, µ+iα) does not work since the exponentially large
factor e−ik(µ+iα)x (= ρ(λ)x/a in equation (6)) leads to uncontrolled amplification
of the O( 1

α ) error term. However, the Floquet solution u−(x, λ) is equal, up to
a constant factor, to σ3ũ+(a − x, λ) (x ∈ R), where ũ+ is the Floquet solution
corresponding to the eigenvalue of modulus greater than 1 of the periodic Dirac
equation with potential q̃(x) := q(a− x) (x ∈ R). Therefore the corresponding
periodic functions satisfy (up to a constant factor) |ϕ−(x, λ)| = |ϕ̃+(a−x, λ)|, so
we obtain the asymptotics of |ϕ−| by applying the above reasoning to |ϕ̃+|.
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[2] L. Boulton, D. Krejčǐŕık, T. Nguyen Duc, Spectral Analysis of Dirac
Operators for Dislocated Potentials with a Purely Imaginary Jump.
arXiv:2409.06480v1

[3] B.M. Brown, M.S.P. Eastham, K.M. Schmidt, Periodic Differential Opera-
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I , Birkhäuser, Basel 1990

[10] P. Kargaev, E. Korotyaev, The inverse problem for the Hill operator, a
direct approach. Invent. math. 127 (1997) 567–593

[11] T. Kato, Perturbation Theory for Linear Operators , Springer, New York
1980

[12] M. Reed, B. Simon, Methods of Modern Mathematical Physics I: Functional
Analysis , Academic Press, San Diego 1980

[13] K.M. Schmidt, Spectral Properties of Rotationally Symmetric Massless
Dirac Operators. Lett. Math. Phys. 92 (2010) 231–241

[14] B. Simon, Trace Ideals and Their Applications , 2nd ed., American Mathe-
matical Society, Providence, RI 2005

[15] J. Weidmann, Linear Operators in Hilbert Spaces , Springer, New York 1980

22


