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Abstract
We introduce a set of axioms for locally topologically ordered quantum spin systems in terms of nets of local
ground state projections, and we show they are satisfied by Kitaev’s Toric Code and Levin-Wen type models. For a
locally topologically ordered spin system on Z𝑘 , we define a local net of boundary algebras on Z𝑘−1, which provides
a mathematically precise algebraic description of the holographic dual of the bulk topological order. We construct
a canonical quantum channel so that states on the boundary quasi-local algebra parameterize bulk-boundary states
without reference to a boundary Hamiltonian. As a corollary, we obtain a new proof of a recent result of Ogata
[Oga24] that the bulk cone von Neumann algebra in the Toric Code is of type II, and we show that Levin-Wen
models can have cone algebras of type III. Finally, we argue that the braided tensor category of DHR bimodules for
the net of boundary algebras characterizes the bulk topological order in (2+1)D, and can also be used to characterize
the topological order of boundary states.
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1. Introduction

In 2+1 dimensions, topologically ordered spin systems display a number of interesting phenomena, from
non-trivial braiding statistics of quasi-particles to robust error correction properties. The most widely
studied class of topological spin systems are exactly solvable with commuting projector Hamiltonians
[Kit06, LW05]. These have the property that the useful error correction features of the system are present
in the local ground state spaces, which has led to these systems being called local topological ordered.

In this article, we propose an axiomatization for local topological order (LTO) in terms of nets
of projections in the quasi-local algebra (Definition 2.10). Our axioms are stronger than previous
axiomatizations of topological quantum order (the ‘TQO conditions’) [BHM10, BH11], but we show
that our stronger axioms hold for the Levin–Wen models [LW05] and Kitaev’s Toric Code [Kit03].1
The primary motivation for our stronger axiomatization is that LTOs in our sense give rise to a local
net of boundary algebras (Construction 2.28). These are nets of C∗-algebras defined on a lattice in one
spatial dimension lower than the original LTO. In general, the local boundary algebras do not factorize
as tensor products of algebras assigned to sites, and thus carry important topological information about
the bulk system. In general, they do not embed as unital subalgebras of the original quasi-local algebra.

The first main result of our paper is that Kitaev’s Toric Code model and the Levin-Wen models satisfy
our axiomatization. This provides a new proof (in the case of the Levin-Wen model) for the quantum
error correction properties for these classes [Kit03, CDH+2, QW20]. We also identify the boundary
nets as fusion categorical nets. Such nets first emerged from subfactor theory [EK98, PV15], and have
recently also found use in applications to topological phases of matter [LDV22, LDOV23, Kaw20,
Kaw21, Jon24] and have connections to conformal field theory [BG17, HLO+22, VLVD+22, Hol23].
Theorem A. The Toric Code and Levin-Wen models satisfy the LTO axioms (LTO1)–(LTO4). The
boundary nets are fusion categorical nets over the lattice Z.

Our primary motivation for the stronger axiomatization of local topological order is that the resulting
boundary net gives us a powerful tool to rigorously analyze the entire system in at least two ways.
1. States on the boundary algebra correspond to states on the bulk-boundary system which restrict to

the canonical ground state in the bulk. This gives a Hamiltonian-free approach to boundary states.
2. The boundary algebra of an LTO can be viewed as a discrete algebraic quantum field theory in

one dimension lower, holographically dual to the bulk theory. The topological order of the bulk
should then be algebraically characterized by the category of DHR bimodules of the net of boundary
algebras (see Conjecture 6.4), giving a precise mathematical formulation of topological holography
in the sense of [IW23, CW23].
With a concrete description of the boundary nets in hand given by Theorem A, we can explicitly

study boundary states and their relation to topological order. There are several salient boundary states
to investigate. Of particular interest are the canonical boundary states, obtained from the LTO axioms

1Our stronger axioms were recently shown to hold for Kitaev’s Quantum Double model in [CHK+24] and for twisted quantum
double models in [CGR24].
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by simply ‘compressing’ (that is, projecting the observables down to a suitable subspace) the canonical
bulk ground states. We show that these states can be viewed as equilibrium states (or more properly,
KMS states) for natural locally representable 1-parameter automorphism groups. We use this to prove
the following surprising theorem.

Theorem B. For a Levin-Wen model over a fusion category C, the canonical boundary state is a factor
state on the quasi-local algebra of the boundary. The corresponding factor is of type II1 if and only if
all simple objects in C are invertible (𝑑𝑐 = 1 for all 𝑐 ∈ Irr(C)); otherwise, it is of type III.

In the approach to the superselection theory of topologically ordered spin systems introduced in
[Naa11, FN15], a fundamental role is played by the cone algebras. These are the von Neumann algebras
constructed from completing (in the weak or strong operator topology) the C∗-algebras assigned to an
infinite cone in the GNS representation of the bulk ground state. Ogata showed that for Kitaev quantum
double models, the cone algebras with rough edges are type I𝐼∞ [Oga24].2 As an application of our
previous theorem, we have the following result.

Corollary C. For Levin-Wen models over the fusion category C, the cone algebras are of type I𝐼∞ if and
only if all simple objects in C are invertible (𝑑𝑐 = 1 for all 𝑐 ∈ Irr(C)); otherwise they are of type III.

This should be contrasted with the conformal nets or local algebras in algebraic quantum field theory,
which are generically type III independent of the corresponding category of superselection sectors. In
the appendix, authored by Masaki Izumi, the analysis of the type III case is refined to obtain the type
III𝜆. We note that the type of the von Neumann algebra is of relevance in the context of embezzlement of
entanglement [vLSWW24]. In particular, any normal state on a type III1-factor is a so-called universal
embezzler.

One of the main motivations for studying the boundary nets is topological holography. Recall that
anyonic excitations in the Levin-Wen model for C are described by the quantum double/Drinfeld center
𝑍 (C). If the boundary algebra is truly a holographic dual of the bulk theory, it should recover the
topological order. We show this for (2+1)D Levin-Wen models based on a fusion category C and for
Kitaev’s Toric Code model on the plane.3 For a net of algebras𝔉 overZ𝑛, there is braided tensor category
DHR(𝔉) of DHR bimodules [Jon24], inspired by the Doplicher–Haag–Roberts theory of superselection
sectors (see [Haa96, HM06] for an introduction). For nets of algebras 𝔉 built from a fusion category
C, DHR(𝔉) � 𝑍 (C). Our characterization of the boundary algebras in the Levin-Wen and Toric Code
models leads to the following corollary:

Corollary D. Let𝔉 be the boundary net of the Levin-Wen model over the fusion category C (respectively
the boundary net for the Toric Code). Then DHR(𝔉) � 𝑍 (C) (with C = Hilbfd (Z/2) for the Toric Code
model).

This result immediately leads to an interesting observation in light of Corollary C, given that
inequivalent fusion categories can have the same Drinfeld center 𝑍 (C). In particular, there are two Levin-
Wen models that yield the Drinfeld double D(𝐺) topological order for a finite group G: C = Hilbfd (𝐺)
and C = Rep(𝐺). The first is pointed (all simple objects are invertible), but the second is only pointed
when G is abelian. Thus, the type of the cone algebras is specific to the model, and does not only depend
on the bulk topological order. We come back to this point later in Remark 4.10.

Finally, we can use the above to give a categorical analysis of the superselection theory of boundary
states. Given a boundary state 𝜙 on the boundary net 𝔅, its superselection category, called the ‘boundary
order,’ is the category of representations of the boundary quasi-local algebra that are quasi-contained
in the GNS representation of 𝜙 restriced to the algebras of operators localized outside any sufficiently
large interval (see Definition 6.8). The superselection category naturally forms a module category over
DHR(𝔅), and choosing the GNS representation as a distinguished object, taking internal end produces a

2Ogata only claims the result for abelian quantum double models, but the result can be obtained in the more general setting by
combining her proof with remarks made in [FN15].

3This is was also recently proven for Kitaev’s Quantum Double model in [CHK+24].

https://doi.org/10.1017/fms.2025.16 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.16


4 C. Jones, P. Naaijkens, D. Penneys, and D. Wallick, appendix by M. Izumi

W∗-algebra object 𝐴𝜙 internal to the unitary tensor category DHR(𝔅) in the sense of [JP17]. We say the
boundary order of a state 𝜙 is topological if 𝐴𝜙 is a Lagrangian algebra object [DMNO13, Definition.
4.6]). This is the case we expect to match with ‘gapped boundaries’ in the usual sense [KK12]. We show
that for the boundary state associated to the vacuum in Levin-Wen type models built from the fusion
category C, this algebra is indeed the canonical Lagrangian algebra in DHR(𝔉) � 𝑍 (C).

The examples we consider in this paper are mostly restricted to 2D topological order, but we note that
our nets of boundary algebras work in arbitrary dimensions. In higher dimensions, topological order
is characterized by a braided fusion n-category rather than simply a braided fusion category [JF22].
Thus the tensor category of DHR bimodules at the boundary is not sufficient to fully characterize the
topological order. However, we expect that the category of DHR bimodules has a higher categorical
generalization, which we plan to pursue in future work.

In §2, we introduce the basic setup and our local topological order axioms. We use these axioms to
show that we have a canonical state in the bulk, and a quantum channel from boundary to bulk states.
The reader mostly interested in applications to physical systems may wish to skip over these operator-
algebraic constructions at first reading, and jump straight to §3 and §4, where we discuss the Toric Code
and Levin-Wen examples. In §5 we take a closer look at states on the boundary algebra, and study the
type of the von Neumann algebra generated by the ‘canonical’ boundary state. Finally, details on the
bulk-boundary correspondence are given in §6.

2. Nets of algebras and local topological order

In this section, we work with nets of C∗-algebras on square lattices, i.e., Zℓ for some ℓ. The methods
here work in greater generality, but passing to more general lattices would require substantially more
space and heavier notation. We therefore restrict to the simpler case for clarity.

2.1. Nets of algebras and nets of projections

Definition 2.1 (Nets of algebras). Suppose L is the Zℓ lattice. An ℓD (local) net of algebras4 on L in
the (unital) ambient C∗-algebra 𝔄 (called the quasi-local algebra) is an assignment of a C∗-subalgebra
𝔄(Λ) ⊂ 𝔄 to each bounded rectangle Λ ⊂ L such that
(N1) 𝔄(∅) = C1𝔄 ,
(N2) if Λ ⊂ Δ , then 𝔄(Λ) ⊂ 𝔄(Δ),
(N3) if Λ ∩ Δ = ∅, then [𝔄(Λ),𝔄(Δ)] = 0, and
(N4)

⋃
Λ 𝔄(Λ) is norm dense in 𝔄.

The first and second conditions above are equivalent to the data of a functor from the poset of rectangles
in L ordered by inclusion to the poset of unital C∗-subalgebras of 𝔄 ordered by inclusion.

We will only be considering nets of algebras which satisfy the locality condition (N3), and will
subsequently drop the adjective ‘local’.
Remark 2.2. In some circumstances, we are not concerned with all ℓD rectangles, but only rectangles
Λ which are sufficiently large, meaning there is a global constant 𝑟 > 0 such that Λ contains a closed
𝑟ℓ-cube. An assignment of C∗-subalgebras 𝔄(Λ) ⊂ 𝔄 for sufficiently large rectangles Λ satisfying
(N2), (N3), and (N4) can be canonically augmented to a net of algebras for all rectangles by defining
𝔄(Δ) := C1𝔄 whenever Δ is not sufficiently large.
Definition 2.3. Let L be the Zℓ lattice, and write Auttr (L) for its group of translation symmetries, where
we write Λ ↦→ 𝑔 + Λ for 𝑔 ∈ Auttr (L). A net of algebras Λ ↦→ 𝔄(Λ) is called translation invariant
if there is an Auttr (L)-action on 𝔄 by unital ∗-automorphisms such that 𝑔 · 𝔄(Λ) = 𝔄(𝑔 + Λ) for all
𝑔 ∈ Auttr (L).

4A local net of algebras such that 𝔄 (Λ) is finite dimensional for all Λ could be called an abstract spin system, cf. the following
Example 2.4 of a (concrete) quantum spin system where the local algebras 𝔄 (Λ) are tensor products of full matrix algebras.
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Example 2.4. The canonical example of a net of algebras on a lattice is a quantum spin system. We
take the lattice L = Zℓ , and at each site/vertex, we view a copy of C𝑑 . For each bounded rectangle
Λ ⊂ L, we define 𝔄(Λ) :=

⊗
𝑣 ∈Λ 𝑀𝑑 (C). When Λ ⊂ Δ , we have obvious inclusions 𝔄(Λ) ⊆ 𝔄(Δ).

The quasi-local algebra 𝔄 is the colimit of this directed system in the category of C∗-algebras. Observe
that 𝔄 carries a canonical action of Zℓ = Auttr (Zℓ ), and translation invariance means with respect to
this canonical action.

Example 2.5. We define a 1D net 𝐼 ↦→ 𝔉(𝐼) from a unitary tensor category C and a choice of object
𝑋 ∈ C. For any interval 𝐼 ⊆ Z with n points, we set 𝔉(𝐼) := EndC (𝑋𝑛). If 𝐼 ⊆ 𝐽, there are natural
inclusions 𝔉(𝐼) ↩→ 𝔉(𝐽) given by tensoring with id𝑋 on the left and/or right depending on the relative
position of I and J. The quasi-local algebra 𝔉 is the colimit in the category of unital C∗-algebras, and
we identify 𝔉(𝐼) with its image in this colimit. That is, we regard 𝔉(𝐼) as a C∗-subalgebra of 𝔉.

When C is a unitary fusion category, we call nets constructed in this way fusion categorical nets.
We will see such nets arise as the net of boundary algebras for Levin-Wen models (see §4, Remark 4.9)
and the Toric Code (in §3, Construction 3.8). We note that if X strongly generates the fusion category
(i.e., there exists an n such that every simple is isomorphic to a direct summand of 𝑋𝑛), then the net
of algebras 𝔉 satisfies weak algebraic Haag duality by [Jon24, Proposition 4.3], which allows one to
define and identify its category of DHR bimodules; we refer the reader to §6 below for more details.

A natural equivalence relation between nets of algebras on a lattice is bounded spread isomorphism.
Many interesting properties, such as the category of DHR bimodules that we introduce later, are
preserved under bounded spread isomorphism. This seems to be a good notion of equivalence for
discrete nets, so we include it here.

Definition 2.6 (Bounded spread isomorphism). Suppose we have two nets of algebras, Λ ↦→ 𝔄(Λ) in 𝔄
and Λ ↦→ 𝔅(Λ) in 𝔅, on the same lattice L = Zℓ . A unital ∗-algebra isomorphism Ψ : 𝔄 → 𝔅 is said to
have bounded spread if there is an 𝑠 > 0 such that Ψ(𝔄(Λ)) ⊆ 𝔅(Λ+𝑠) and Ψ−1(𝔅(Λ)) ⊆ 𝔄(Λ+𝑠) for
all rectangles Λ, where Λ+𝑠 is the smallest rectangle containing Λ and all points of distance at most s.

Notation 2.7. Suppose L is the Zℓ lattice. We write 𝜕Λ for the vertices (or sites) at the boundary of a
rectangle Λ. We say that a rectangle Δ surrounds Λ by 𝑠 > 0 if

◦ Λ ⊂ Δ ,
◦ 𝜕Λ ∩ 𝜕Δ is either empty or an (ℓ − 1)D rectangle, and
◦ Every vertex 𝑣 ∈ Δ \ Λ is contained in some closed 𝑠ℓ-cube contained entirely in Δ \ Λ.

If 𝜕Λ∩ 𝜕Δ = ∅, we say Δ completely surrounds Λ by 𝑠 > 0, and we denote this by Λ �𝑠 Δ . If 𝜕Λ∩ 𝜕Δ
is non-empty, we denote this by Λ �𝑠 Δ . Here are two examples where 𝑠 = 2 and ℓ = 2:
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Definition 2.8. Suppose we have a translation-invariant net of algebras Λ ↦→ 𝔄(Λ) ⊂ 𝔄 on the lattice
L = Zℓ . By convention, whenever Λ is not sufficiently large, 𝔄(Λ) = C1𝔄 , and thus for the empty
rectangle, 𝔄(∅) := C1𝔄 .

A net of projections on L is an assignment of a non-zero orthogonal projection 𝑝Λ ∈ 𝔄(Λ) associated
to every rectangle Λ in L ordered by reverse inclusion, i.e., Λ ⊂ Δ implies 𝑝Δ ≤ 𝑝Λ. A net of projections
is called translation invariant if 𝑔 · 𝑝Λ = 𝑝𝑔+Λ for all rectangles Λ.

2.2. Local topological order axioms

In this section, we assume 𝔄 is a translation invariant net of algebras and 𝑝 = (𝑝Λ) is a translation
invariant net of projections on L = Zℓ .

The following algebras play an important role in the local topological order conditions below.

Definition 2.9. Given 𝑠 > 0 and subsets Λ and Δ of L with Λ �𝑠 Δ , we define

𝔅(Λ �𝑠 Δ) := {𝑥𝑝Δ |𝑥 ∈ 𝑝Λ𝔄(Λ)𝑝Λ and 𝑥𝑝Δ′ = 𝑝Δ′𝑥 whenever Λ �𝑠 Δ ′ with 𝜕Λ ∩ 𝜕Δ ′ = 𝜕Λ ∩ 𝜕Δ}.

Observe that 𝔅(Λ �𝑠 Δ) is a unital ∗-algebra with unit 𝑝Δ . Similar algebras were considered for
annular regions in [Haa16, KN20].

We now have introduced all necessary notation to state the local topological order axioms, which are
the main object of study in this paper.

Definition 2.10. We say (𝔄, 𝑝) is locally topologically ordered if it satisfies the following four axioms
for sufficiently large Λ (for 𝑟 > 0) and a globally fixed ‘surrounding constant’ 𝑠 > 0:

(LTO1) Whenever Λ �𝑠 Δ , 𝑝Δ𝔄(Λ)𝑝Δ = C𝑝Δ .
(LTO2) Whenever Λ �𝑠 Δ , 𝑝Δ𝔄(Λ)𝑝Δ = 𝔅(Λ �𝑠 Δ) (which is equal to 𝔅(Λ �𝑠 Δ)𝑝Δ ).
(LTO3) Whenever Λ1 ⊂ Λ2 �𝑠 Δ with 𝜕Λ1 ∩ 𝜕Δ = 𝜕Λ2 ∩ 𝜕Δ , 𝔅(Λ1 �𝑠 Δ) = 𝔅(Λ2 �𝑠 Δ).

(LTO4) Whenever Λ �𝑠 Δ1 ⊂ Δ2 with 𝜕Λ ∩ 𝜕Δ1 = 𝜕Λ ∩ 𝜕Δ2, if 𝑥 ∈ 𝔅(Λ �𝑠 Δ1) with 𝑥𝑝Δ2 = 0,
then 𝑥 = 0.

https://doi.org/10.1017/fms.2025.16 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.16


Forum of Mathematics, Sigma 7

Observe that the algebra 𝔅(Λ �𝑠 Δ) in (LTO2) plays the role of C from (LTO1).

The first condition (LTO1) implies the topological quantum order conditions (TQO1) and (TQO2)
of [BHM10], and hence the LTO axioms are stronger (see Proposition 2.26 below). Nevertheless, these
stronger conditions are satisfied by the Toric Code and Levin-Wen examples, as we show in §3 and §4
respectively below. The remaining three LTO axioms allow us to talk about operators acting along a
boundary of a region that are ‘compatible’ with the bulk. In concrete examples, these are the operators
that create excitations along the boundary only, but not in the bulk. The definition of boundary algebras,
however, depends on the choice of region Δ , which should not matter as long as Δ is large enough,
and we should be able to identify the algebras for different choices of Δ . Axioms (LTO3) and (LTO4)
guarantee that this identification can be done consistently, allowing us to define an abstract local net of
boundary operators.

Example 2.11. Our first example in this article is Kitaev’s Toric Code [Kit03], which appears in §3
below.

Example 2.12. Our main example in this article is the (2+1)D Levin-Wen string net model [LW05]
associated to a unitary fusion category, which appears in §4 below.

For the above models, we verify a simplified/stronger version of (LTO2)–(LTO4) based on the
following observation.

Lemma 2.13. Suppose we have a quadrilateral of rectangles

Λ2 �𝑠 Δ2

∪ ∪
Λ1 �𝑠 Δ1

such that 𝜕Λ1 ∩ 𝜕Δ1 = 𝜕Λ1 ∩ 𝜕Δ2.

The map 𝔅(Λ1 �𝑠 Δ1) → 𝔅(Λ2 �𝑠 Δ2) given by multiplication by 𝑝Δ2 is an injective ∗-algebra map
onto 𝔅(Λ1 �𝑠 Δ2). If moreover 𝜕Λ1 ∩ 𝜕Δ1 = 𝜕Λ2 ∩ 𝜕Δ2, then this map is an isomorphism.

Proof. By definition, 𝑝Δ2 commutes with 𝔅(Λ1 �𝑠 Δ1) = 𝑝Δ1𝔄(Λ1)𝑝Δ1 (by (LTO2)) inside 𝔄(Δ2).
Again by (LTO2), we see

𝔅(Λ1 �𝑠 Δ1)𝑝Δ2 =
(LTO2)

𝑝Δ2 𝑝Δ1𝔄(Λ1)𝑝Δ1 𝑝Δ2 = 𝑝Δ2𝔄(Λ1)𝑝Δ2 =
(LTO2)

𝔅(Λ1 �𝑠 Δ2).
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Thus multiplication by 𝑝Δ2 is a well-defined surjective unital ∗-algebra map 𝔅(Λ1 �𝑠 Δ1) → 𝔅(Λ1 �𝑠
Δ2). By (LTO4) applied to Λ1 �𝑠 Δ1 ⊂ Δ2, this map is also injective. Since 𝜕Λ1 ∩ 𝜕Δ1 = 𝜕Λ1 ∩ 𝜕Δ2,
clearly

𝔅(Λ1 �𝑠 Δ2) =
(LTO2)

𝑝Δ2𝔄(Λ1)𝑝Δ2 ⊆ 𝑝Δ2𝔄(Λ2)𝑝Δ2 =
(LTO2)

𝔅(Λ2 �𝑠 Δ2).

When in addition 𝜕Λ1 ∩ 𝜕Δ1 = 𝜕Λ2 ∩ 𝜕Δ2, 𝔅(Λ1 �𝑠 Δ2) = 𝔅(Λ2 �𝑠 Δ2) by (LTO3) applied to
Λ1 ⊂ Λ2 � Δ2. �

The above lemma says that 𝔅(Λ �𝑠 Δ) really only depends on sites near the boundary interval
𝐼 := 𝜕Λ ∩ 𝜕Δ , together with a chosen ‘side of I’ on which Λ �𝑠 Δ live. Indeed, let Λ𝐼 ⊂ Λ to be the
smallest sufficiently large rectangle with 𝜕Λ𝐼 ∩ 𝜕Δ = 𝐼, and let Δ 𝐼 ⊂ Δ be the smallest rectangle such
that Λ𝐼 �𝑠 Δ 𝐼 . Setting

𝔅(𝐼) := 𝔅(Λ𝐼 �𝑠 Δ 𝐼 ), (2.14)

Lemma 2.13 says that 𝔅(𝐼)𝑝Δ = 𝔅(Λ �𝑠 Δ). We suppress the dependence on the fixed ‘side of I’ in
the notation.5 This leads to an alternative characterisation of (LTO2)–(LTO4).
Proposition 2.15. The axioms (LTO2), (LTO3), and (LTO4) are equivalent to the following two axioms:
(LTO2′) Whenever Λ �𝑠 Δ with 𝜕Λ ∩ 𝜕Δ = 𝐼, 𝑝Δ𝔄(Λ)𝑝Δ = 𝔅(𝐼)𝑝Δ .
(LTO4′) Whenever Λ𝐼 �𝑠 Δ 𝐼 ⊂ Δ , 𝑥𝑝Δ = 0 implies 𝑥 = 0 for all 𝑥 ∈ 𝔅(𝐼).
Proof. The forward direction is immediate by Lemma 2.13 as noted right above the proposition.

Now suppose (LTO2′) and (LTO4′) hold. To see (LTO2), observe that

𝑝Δ𝔄(Λ)𝑝Δ =
(LTO2′)

𝔅(𝐼)𝑝Δ = 𝑝Λ𝔅(Λ𝐼 �𝑠 Δ 𝐼 )𝑝Λ𝑝Δ ⊆ 𝔅(Λ �𝑠 Δ)𝑝Δ ⊆ 𝑝Δ𝔄(Λ)𝑝Δ ,

so equality follows.
Note that (LTO3) is now immediate as whenever Λ1 ⊂ Λ2 �𝑠 Δ with 𝜕Λ1 ∩ 𝜕Δ = 𝐼 = 𝜕Λ2 ∩ 𝜕Δ ,

𝔅(Λ1 �𝑠 Δ) =
(LTO2)

𝑝Δ𝔄(Λ1)𝑝Δ =
(LTO2′)

𝔅(𝐼)𝑝Δ =
(LTO2′)

𝑝Δ𝔄(Λ2)𝑝Δ =
(LTO2)

𝔅(Λ2 �𝑠 Δ).

Finally, to prove (LTO4), suppose Λ �𝑠 Δ1 ⊂ Δ2 with 𝜕Λ∩ 𝜕Δ1 = 𝐼 = 𝜕Λ∩ 𝜕Δ2. Since 𝑝Δ2 ≤ 𝑝Δ1 ,
the map

𝔅(Λ �𝑠 Δ1) = 𝔅(𝐼)𝑝Δ1

·𝑝Δ2−−−→ 𝔅(𝐼)𝑝Δ2 = 𝔅(Λ �𝑠 Δ2)

given by multiplication by 𝑝Δ2 is always surjective. If 𝑥 ∈ 𝔅(Λ �𝑠 Δ1) = 𝔅(𝐼)𝑝Δ1 with 𝑥𝑝Δ2 = 0, let
𝑦 ∈ 𝔅(𝐼) such that 𝑥 = 𝑦𝑝Δ1 . Then

𝑦𝑝Δ2 = 𝑦𝑝Δ1 𝑝Δ2 = 𝑥𝑝Δ2 = 0,

so 𝑦 = 0 by (LTO4′). We conclude that 𝑥 = 𝑦𝑝Δ1 = 0, and thus (LTO4) holds. �

Remark 2.16. For our examples in §3 and §4 below, we actually prove something slightly stronger.
For each interval I, let Λ𝐼 be the minimal sufficiently large rectangle (chosen such that I is always
on the same side of Λ𝐼 ) as mentioned above equation (2.14). We identify an abstract C∗-algebra
ℭ(𝐼) ⊂ 𝑝Λ𝐼𝔄(Λ𝐼 )𝑝Λ𝐼 which commutes with every 𝑝Λ such that Λ𝐼 ⊂ Λ with 𝜕Λ𝐼 ∩ 𝜕Λ = 𝐼. We
then show that whenever Λ �𝑠 Δ with 𝜕Λ ∩ 𝜕Δ = 𝐼, then 𝑝Δ𝔄(Λ)𝑝Δ = ℭ(𝐼)𝑝Δ , and that 𝑥𝑝Δ = 0
implies 𝑥 = 0 for 𝑥 ∈ ℭ(𝐼). Thus ℭ(𝐼) � ℭ(𝐼)𝑝Δ 𝐼 = 𝔅(𝐼), but it lives inside 𝑝Λ𝐼𝔄(Λ𝐼 )𝑝Λ𝐼 rather than
𝑝Δ 𝐼𝔄(Λ𝐼 )𝑝Δ 𝐼 .

5The algebras 𝔅(𝐼 ) depend on a choice of half-space in which Λ𝐼 �𝑠 Δ 𝐼 live. It is possible one could choose Λ̃𝐼 �𝑠 Δ̃ 𝐼 with
𝜕Λ̃𝐼 ∩ 𝜕Δ̃ 𝐼 = 𝐼 on the ‘other side’ of I such that 𝔅(Λ̃𝐼 �𝑠 Δ̃ 𝐼 ) may not be isomorphic to 𝔅(𝐼 ) .
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Before getting to our examples, we now analyze a canonical state on 𝔄 from (LTO1) and a canonical
quantum channel from 𝔄 to a ‘quasi-local boundary algebra’ 𝔅 = lim−−→𝔅(𝐼) coming from (LTO2),
(LTO3), and (LTO4). If the reader is more interested in the examples, they may skip directly to §3 and
§4 below.

2.3. Canonical state of a locally topologically ordered net of projections

We now show that a net of projections (𝑝Λ) on a net of algebras𝔄 satisfying (LTO1) has a canonical state.
Recall that if ground states are locally indistinguishable, all of them will converge to the same ground
state when taking the thermodynamic limit. To see this, consider an increasing sequence Λ1 ⊂ Λ2 ⊂ . . .
of rectangles exhausting L. Suppose that 𝜙𝑛 : 𝔄 → C is a sequence of states such that 𝜙𝑛 |𝔄 (Λ) is
a ground state for the local dynamics 𝐻𝑛 on 𝔄(Λ𝑛). Then the weak-* limit 𝜙 is a ground state of
the thermodynamic limit. Suppose that 𝜓𝑛 is another such sequence. Then for 𝑥 ∈ 𝔄(Λ), by local
indistinguishability we have that 𝜓𝑛 (𝑥) = 𝜙𝑛 (𝑥) for n large enough. Hence the weak-* limits coincide.
Coming back to our setting of nets of projections satisfying our LTO axioms, if the (𝑝Λ) are the local
ground state projections of a quantum spin model with local topological quantum order, this state is
precisely the canonical state that we define here (see Remark 2.25 below).

Below, we write � instead of �𝑠 to ease the notation.

Lemma 2.17. Suppose (𝔄, 𝑝) satisfies (LTO1). For Λ sufficiently large with Λ � Δ and 𝑥 ∈ 𝔄(Λ),
define 𝜓Δ (𝑥) ∈ C as the scalar such that 𝑝Δ𝑥𝑝Δ = 𝜓Δ (𝑥)𝑝Δ . Then 𝜓Δ (𝑥) is independent of Δ . We may
thus denote 𝜓Δ (𝑥) simply by 𝜓(𝑥).

Proof. If Λ � Δ 𝑖 for 𝑖 = 1, 2, then pick Δ3 containing Δ1 ∪ Δ2. Since 𝑝Δ3 ≤ 𝑝Δ𝑖 for 𝑖 = 1, 2,

𝑝Δ3𝑥𝑝Δ3 = 𝑝Δ3 𝑝Δ𝑖𝑥𝑝Δ𝑖 𝑝Δ3 = 𝑝Δ3𝜓Δ𝑖 (𝑥)𝑝Δ𝑖 𝑝Δ3 = 𝜓Δ𝑖 (𝑥)𝑝Δ3 for 𝑖 = 1, 2,

and so 𝜓Δ1 (𝑥) = 𝜓Δ3 (𝑥) = 𝜓Δ2 (𝑥). �

The following lemma and corollary are certainly known to experts. We include a proof for convenience
and completeness.

Lemma 2.18. Suppose 𝐴 = lim−−→ 𝐴𝑛 is a unital AF C∗-algebra where each 𝐴𝑛 is a finite dimensional
C∗-algebra. Then 𝐴+ = lim−−→ 𝐴+𝑛.

Proof. Suppose 𝑎𝑛 ∈ 𝐴𝑛 with 𝑎𝑛 → 𝑎 ∈ 𝐴+. Then 𝑎∗𝑛 → 𝑎, so 𝑏𝑛 := 𝑎𝑛+𝑎∗𝑛
2 → 𝑎. This means for every

𝜀 > 0, there is an 𝑁 > 0 such that 𝑛 > 𝑁 implies

spec(𝑏𝑛) ⊂ 𝑁𝜀/2 (spec(𝑎)) ⊂ [−𝜀/2, ‖𝑎‖ + 𝜀/2],

where 𝑁𝜀/2 (spec(𝑎)) is an 𝜀/2 neighborhood of spec(𝑎). Since each 𝐴𝑛 is closed under functional
calculus, we see that applying the function ( · )+ : 𝑟 ↦→ max{0, 𝑟} to 𝑏𝑛 gives a positive sequence (𝑏𝑛)+
such that ‖(𝑏𝑛)+ − 𝑏𝑛‖ ≤ 𝜀/2 for all 𝑛 > 𝑁 . Picking 𝑁 ′ > 𝑁 such that ‖𝑏𝑛 − 𝑎‖ < 𝜀/2, for all 𝑛 > 𝑁 ′,

‖(𝑏𝑛)+ − 𝑎‖ ≤ ‖(𝑏𝑛)+ − 𝑏𝑛‖ + ‖𝑏𝑛 − 𝑎‖ < 𝜀.

Hence (𝑏𝑛)+ → 𝑎, and the result follows. �

Corollary 2.19. Suppose 𝐴 = lim−−→ 𝐴𝑛 is a unital AF C∗-algebra and B is another unital C∗-algebra. A
unital (completely) positive map 𝜙 :

⋃
𝐴𝑛 → 𝐵 uniquely extends to a unital (completely) positive map

𝐴→ 𝐵.

Proof. Since 𝜙 is unital, for all 𝑎 ∈
⋃

𝑛 𝐴𝑛,

𝜙(𝑎∗𝑎) ≤ ‖𝑎∗𝑎‖𝜙(1) = ‖𝑎∗𝑎‖.
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Since positives in
⋃

𝑛 𝐴𝑛 span
⋃

𝑛 𝐴𝑛, we see 𝜙 is bounded. Hence 𝜙 uniquely extends to a map 𝐴→ 𝐵,
and (complete) positivity follows directly from Lemma 2.18. �

Definition 2.20. By Lemma 2.17, 𝜓 is a well-defined positive linear functional on
⋃

Λ 𝔄(Λ) such that
𝜓(1𝔄) = 1C, and thus extends to a unique state on 𝔄 by Corollary 2.19. We call this the canonical state
associated to the net (𝑝Λ).

Corollary 2.21. When 𝔄 and (𝑝Λ) are translation invariant, so is the state 𝜓.

Proof. For every rectangle Λ and 𝑔 ∈ Auttr (L) there is a rectangle Δ with both Λ � Δ and 𝑔 + Λ �
Δ ⇔ Λ � −𝑔 + Δ . Then using the notation from Lemma 2.17,

𝜓(𝑔 · 𝑥) = 𝜓Δ (𝑔 · 𝑥) = 𝜓−𝑔+Δ (𝑥) = 𝜓Δ (𝑥) = 𝜓(𝑥) ∀ 𝑥 ∈ 𝔄(Λ). �

The next lemma follows by a simple application of the Cauchy-Schwarz inequality.

Lemma 2.22 [AFH07, §2.1.1]. Let A be a unital C∗-algebra and 𝜙 : 𝐴 → C be a state. Suppose 𝑥 ∈ 𝐴
satisfies 𝑥 ≤ 1𝐴 and 𝜙(𝑥) = 1. Then for all 𝑦 ∈ 𝐴,

𝜙(𝑥𝑦) = 𝜙(𝑦𝑥) = 𝜙(𝑦).

Corollary 2.23. For every rectangle Λ, 𝜓(𝑥) = 𝜓(𝑝Λ𝑥) = 𝜓(𝑥𝑝Λ) for all 𝑥 ∈ 𝔄.

Proof. Whenever Λ � Δ , 𝑝Δ 𝑝Λ𝑝Δ = 𝑝Δ . Thus 𝜓(𝑝Λ) = 1 for every rectangle Λ. Now apply
Lemma 2.22. �

Corollary 2.24. If 𝜙 is a state on 𝔄 satisfying 𝜙(𝑝Λ) = 1 for all rectangles Λ, then 𝜙 = 𝜓. In particular,
𝜓 is pure.

Proof. It suffices to prove that 𝜙 = 𝜓 on every 𝔄(Λ) for Λ sufficiently large. Pick any rectangle Δ with
Λ � Δ . Then for all 𝑥 ∈ 𝔄(Λ),

𝜙(𝑥) =
(Lem. 2.22)

𝜙(𝑝Δ𝑥𝑝Δ ) =
(Lem. 2.17)

𝜓(𝑥) · 𝜙(𝑝Δ ) =
(Lem. 2.22)

𝜓(𝑥).

Purity of 𝜓 now follows quickly. Indeed, suppose 𝜑 : 𝔄 → C is a functional satisfying 0 ≤ 𝜑 ≤ 𝜓. Then
for all rectangles Λ,

0 ≤ 𝜑(1𝔄 − 𝑝Λ) ≤ 𝜓(1𝔄 − 𝑝Λ) = 0.

Hence 𝜑(𝑝Λ) = 𝜑(1) for all rectangles Λ, so 𝜑 = 𝜑(1𝔄) · 𝜓. �

While the quasi-local algebra 𝔄 carries a canonical pure state 𝜓, we do not, a priori, have a local
Hamiltonian for which 𝜓 is the ground state.

Remark 2.25. Suppose that 𝔄 arises from a translation-invariant frustration free local Hamiltonian H
on a spin system. Recall that an interaction is an assignment 𝑋 ↦→ Φ(𝑋) = Φ(𝑋)∗ ∈ 𝔄(𝑋) to each
finite subset 𝑋 ⊂ L. The interaction 𝑋 ↦→ Φ(𝑋) is called frustration free if Φ(𝑋) ≥ 0 and the ground
states of the local Hamiltonians are given by ker(𝐻Λ), with 𝐻Λ =

∑
𝑋 ⊂Λ Φ(𝑋). This implies that if 𝑝Λ

is the projection onto the local ground space of 𝐻Λ, we have 𝑝Δ = 𝑝Δ 𝑝Λ = 𝑝Λ𝑝Δ if Λ ⊂ Δ , and so
(𝑝Λ) is a net of projections. Suppose that (𝑝Λ) satisfies (LTO1). We claim that the canonical state 𝜓
is the unique translation-invariant ground state for H. Translation invariance follows immediately from
Corollary 2.21.
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It is easy to check that 𝜓(𝐻Λ) = 0 for every sufficiently large Λ, which is the minimum possible
value a state can take on 𝐻Λ. Indeed, using the spectral theorem locally, we can write 𝐻Λ = 𝜆0𝑝Λ +∑
𝜆𝑖𝑞𝑖 where each 𝜆𝑖 > 𝜆0 = 0, and the 𝑝Λ, 𝑞𝑖 are commuting non-zero projections that sum to 1.

Since

𝜓(𝑞𝑖) = 𝜓(𝑝Λ𝑞𝑖) = 𝜓(0) = 0 ∀ 𝑖, =⇒ 𝜓(𝐻Λ) = 𝜆0𝜓(𝑝Λ) +
∑
𝑖

𝜆𝑖𝜓(𝑞𝑖) = 0.

This immediately implies 𝜓(𝐻Λ) = 0 for every rectangle Λ by considering Λ ⊂ Δ with Δ suitably large.
Moreover, if 𝜙 is a state on 𝔄 such that 𝜙(𝐻Λ) = 0 for every Λ, then necessarily 𝜙(𝑞𝑖) = 0 for all i, so

𝜙(𝑝Λ) = 𝜙(𝑝Λ) +
∑
𝑖

𝜙(𝑞𝑖) = 𝜙(1𝔄) = 1 ∀Λ

and thus 𝜙 = 𝜓 by Corollary 2.24. It now follows by [BR97, Theorem 6.2.58] that 𝜓 is the unique
translation-invariant ground state for H.

The article [BHM10] considers a finite 2D quantum spin system defined on Γ := Z𝐿 × Z𝐿 for
sufficiently large integers L, with periodic boundary conditions. Furthermore, they assume in [BHM10,
§II.A] that they have a frustration-free commuting projector local Hamiltonian. In this setting, for each
rectangle Λ ⊂ Γ, we define a projection 𝑝Λ onto the ground space of the local Hamiltonian supported
on Λ. This gives a net Λ ↦→ 𝑝Λ of projections as above. The authors then define a pair of topological
quantum order conditions. We paraphrase them here for convenience using our notation:

1. (TQO1) For 𝑎 ∈ 𝔄(Λ) with Λ small enough compared to the system size, we have 𝑝Γ𝑎𝑝Γ ∈ C𝑝Γ.
2. (TQO2) Let Λ be square that is small enough compared to the system size. Then ker TrΛ𝑐 (𝑝Γ) =

ker TrΛ𝑐 (𝑝Λ+1 ).

Here TrΛ𝑐 : 𝔄 → 𝔄(Λ) is the tr-preserving conditional expectation which traces out the degrees of
freedom localized in Λ𝑐 := Γ\Λ. The condition (TQO2) can be interpreted as the “local” ground spaces
being compatible with the “global” one. Our (LTO1) condition implies both of these conditions.

Proposition 2.26. The condition (LTO1) in the setup of [BHM10] implies both topological quantum
order conditions (TQO1) and (TQO2) of [BHM10].

Proof. Since we now consider a finite quantum system, 𝑝Γ is a projection in 𝔄. If a rectangle Λ is small
compared to the system size L, we have for all 𝑥 ∈ 𝔄(Λ)

𝑝Γ𝑥𝑝Γ = 𝜓(𝑥)𝑝Γ

as before. This is precisely (TQO1).
Now let tr be the unique tracial state on 𝔄 and suppose that Λ again is a rectangle which is small

compared to L. LetΔ be such thatΛ �2 Δ .6 Consider the state on𝔄 given by 𝜙(𝑥) = (tr(𝑝Δ ))−1 ·tr(𝑝Δ𝑥).
Then by Lemma 2.17,

𝜙(𝑥) = tr(𝑝Δ𝑥𝑝Δ )
tr(𝑝Δ )

=
𝜓(𝑥) tr(𝑝Δ )

tr(𝑝Δ )
= 𝜓(𝑥) ∀ 𝑥 ∈ 𝔄(Λ).

Since 𝜙|𝔄 (Λ) (𝑥) = tr(𝑝Δ )−1 tr(TrΛ𝑐 (𝑝Δ )𝑥) and 𝜓 |𝔄 (Λ) (𝑥) = tr(𝑝Γ)−1 tr(TrΛ𝑐 (𝑝Γ)𝑥), and both these are
equal for all 𝑥 ∈ 𝔄(Λ), we see that tr(𝑝Γ)−1 TrΛ𝑐 (𝑝Γ) = tr(𝑝Δ )−1 TrΛ𝑐 (𝑝Δ ). In particular, TrΛ𝑐 (𝑝Γ)
and TrΛ𝑐 (𝑝Δ ) have the same kernel, which is (TQO2) of [BHM10].7 �

6The �2 matches the assumptions on the locality of the local terms in the Hamiltonian in [BHM10, §II.B].
7Note that we have shown something strictly stronger than (TQO2); in fact, not only do these operators share the same kernel,

but they are actually proportional.

https://doi.org/10.1017/fms.2025.16 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.16


12 C. Jones, P. Naaijkens, D. Penneys, and D. Wallick, appendix by M. Izumi

2.4. The boundary net

In this section, we use (LTO2), (LTO3), and (LTO4) to build a canonical boundary net of algebras 𝔅
on a codimension one Zℓ−1 sublattice K of L. For a choice of half-plane H bounded by K, setting

𝔄H := lim−−→
Λ⊂H

𝜕Λ∩K≠∅

𝔄(Λ),

we construct a unital completely positive (ucp) map8 E : 𝔄H → 𝔅 satisfying

𝑝Δ𝑥𝑝Δ = E(𝑥)𝑝Δ ∀ 𝑥 ∈ 𝔄(Λ), ∀Λ � Δ with 𝜕Δ ∩K ≠ ∅. (2.27)

Thus one way to think of 𝔅 is as a generalization of the role played by C in (LTO1) as a receptacle for
the canonical state 𝜓, whose role here is played by E.

Construction 2.28 (The boundary net). Consider a net of projections (𝔄, 𝑝) satisfying the axioms
(LTO1)–(LTO4). For an interval 𝐼 ⊂ K, let Λ𝐼 ⊂ H be the smallest sufficiently large rectangle with
𝜕Λ𝐼 ∩ K = 𝐼. Let Δ 𝐼 be the smallest rectangle with Λ𝐼 �𝑠 Δ 𝐼 and 𝜕Λ𝐼 ∩ 𝜕Δ 𝐼 = 𝐼. As in (2.14), we
define 𝔅(𝐼) := 𝔅(Λ𝐼 �𝑠 Δ 𝐼 ).

We now show that 𝐼 ↦→ 𝔅(𝐼) defines a net of algebras. By convention, Λ∅ := ∅, so 𝔅(∅) = C, and
(N1) holds.

If 𝐼 ⊂ 𝐽 ⊂ K, the map 𝔅(𝐼) → 𝔅(𝐽) given by 𝑥 ↦→ 𝑥𝑝Δ𝐽 is a well-defined injective ∗-algebra
homomorphism by Lemma 2.13. Since 𝑝Δ𝐾 ≤ 𝑝Δ𝐽 whenever 𝐽 ⊂ 𝐾 ⊂ K, the algebras 𝔅(𝐼) form an
inductive limit system. Setting 𝔅 := lim−−→𝔅(𝐼), we see (N2) and (N4) hold.

Finally, suppose we have disjoint intervals 𝐼 ∩ 𝐽 = ∅ in K, so that also Λ𝐼 ∩Λ𝐽 = ∅. For 𝑥𝑝Δ 𝐼 ∈ 𝔅(𝐼)
with 𝑥 ∈ 𝑝Λ𝐼𝔄(Λ𝐼 )𝑝Λ𝐼 and 𝑦𝑝Δ𝐽 ∈ 𝔅(𝐽) with 𝑦 ∈ 𝑝Λ𝐽𝔄(Λ𝐽 )𝑝Λ𝐽 , [𝑥, 𝑦] = 0. Thus for any interval
𝐾 ⊂ K containing 𝐼 ∪ 𝐽, 𝑥𝑦𝑝Δ𝐾 = 𝑦𝑥𝑝Δ𝐾 , so (N3) holds.

Lemma 2.29. Suppose (𝔄, 𝑝) satisfies (LTO2), (LTO3), and (LTO4). For Λ �𝑠 Δ with 𝜕Λ ∩ 𝜕Δ = 𝐼,
and 𝑥 ∈ 𝔄(Λ), the operator EΔ (𝑥) ∈ 𝔅(𝐼) satisfying 𝑝Δ𝑥𝑝Δ = EΔ (𝑥)𝑝Δ is independent of the choice
of Δ . We may thus denote EΔ (𝑥) simply by E(𝑥).

Proof. Suppose Λ �𝑠 Δ 𝑖 with 𝐼 = 𝜕Λ ∩ 𝜕Δ 𝑖 ≠ ∅ for 𝑖 = 1, 2, and let E𝑖 (𝑥) ∈ 𝔅(𝐼) such that
𝑝Δ𝑖𝑥𝑝Δ𝑖 = E𝑖 (𝑥)𝑝Δ𝑖 . Picking Δ3 containing Δ1 ∪Δ2 such that 𝐼 = 𝜕Λ∩ 𝜕Δ3, since 𝑝Δ3 ≤ 𝑝Δ𝑖 for both
𝑖 = 1, 2, we have

𝑝Δ3𝑥𝑝Δ3 = 𝑝Δ3 𝑝Δ𝑖𝑥𝑝Δ𝑖 𝑝Δ3 = 𝑝Δ3E𝑖 (𝑥)𝑝Δ𝑖 𝑝Δ3 = E𝑖 (𝑥)𝑝Δ3 for 𝑖 = 1, 2.

Hence (E1 (𝑥) − E2(𝑥))𝑝Δ3 = 0, and so E1 (𝑥) = E2(𝑥). Hence EΔ is independent of Δ as claimed. �

Definition 2.30. Identifying each boundary algebra 𝔅(𝐼) with its image in 𝔅 = lim−−→𝔅(𝐼), by
Lemma 2.29, we get a well-defined map

E :
⋃
Λ⊂H

𝜕Λ∩K≠∅

𝔄(Λ) → 𝔅.

satisfying the formula (2.27) above. Observe that E is manifestly ucp, as it is defined by compressing
by a projection. Thus E uniquely extends to a ucp map E : 𝔄H → 𝔅 by Corollary 2.19.

Remark 2.31. Although 𝔅 is not a unital subalgebra of 𝔄, so E is not technically a conditional
expectation, we do have the property that E(𝑥) = 𝑥 for all 𝑥 ∈ 𝔅(𝐼), which we show below. This means
E is like a conditional expectation, but onto a subalgebra with a different unit than the ambient algebra.

8Such a map is also called a quantum channel in the Heisenberg picture.
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Indeed, since [𝑥, 𝑝Δ ] = 0 whenever Λ �𝑠 Δ with 𝜕Λ ∩ 𝜕Δ = 𝐼, we have

E(𝑥)𝑝Δ = 𝑝Δ𝑥𝑝Δ = 𝑥𝑝Δ .

Thus (E(𝑥) − 𝑥)𝑝Δ = 0, which implies E(𝑥) = 𝑥.

Remark 2.32. Observe that if Λ ⊂ H is far enough from K, i.e., there is a Δ ⊂ H with Λ �𝑠 Δ , then
E|𝔄 (Λ) = 𝜓. Indeed, pick Λ′ �𝑠 Δ ′ with 𝜕Λ′ ∩ 𝜕Δ ′ ⊂ K and Λ ⊂ Λ′ and Δ ⊂ Δ ′. Then for 𝑥 ∈ 𝔄(Λ),

E(𝑥)𝑝Δ′ = 𝑝Δ′𝑥𝑝Δ′ = 𝑝Δ′ 𝑝Δ𝑥𝑝Δ 𝑝Δ′ = 𝜓(𝑥)𝑝Δ′ .

By (LTO4), E(𝑥) = 𝜓(𝑥) as claimed.
This means that every state on the boundary algebra 𝔅 canonically extends to a state on 𝔄H which

looks like the canonical state 𝜓 in the bulk. Indeed, for an arbitrary state 𝜙𝔅 on𝔅, we define 𝜙 : 𝔄H → C
by 𝜙 := 𝜙𝔅 ◦ E. Thus the boundary algebra 𝔅 gives us a state-based approach to boundary conditions.
We will study such states in more detail in §5.

Example 2.33. Observe that 𝜓 gives a canonical translation-invariant state 𝜓𝔅 on the boundary net of
algebras 𝔅 by 𝜓𝔅 (𝑥𝑝Δ 𝐼 ) := 𝜓(𝑥𝑝Δ 𝐼 ) = 𝜓(𝑥) by Lemma 2.22.

At this time, we do not know if (LTO2)–(LTO4) imply 𝜓𝔅 is faithful on 𝔅. In our examples, 𝜓𝔅 is a
KMS state and 𝔅 is simple which implies 𝜓𝔅 is faithful by [BR97, Corollary 5.3.9]. See §5.1–§5.3 for
more details.

3. Example: Kitaev’s Toric Code

As a first example, we consider Kitaev’s Toric Code [Kit03]. To follow conventions used in most of the
literature on the Toric Code, here we will not exactly follow the definitions of §2; the spins/degrees of
freedom now live on the edges of a Z2 lattice instead of the vertices, and we will still use rectangles
along these edges for regions. In Remark 3.13 below, we make the connection to the exact setup of §2.

The Toric Code is defined on a square Z2 lattice with a copy of C2 placed at each edge of the lattice.
If Λ is a finite subset of edges, we have 𝔄(Λ) �

⊗
ℓ∈Λ 𝑀2 (C). A star s is the set of four edges incident

to some vertex v, and a plaquette p consists of the four edges around a face/plaquette. We define star
operators 𝐴𝑠 and plaquette operators 𝐵𝑝 as

𝐴𝑠 :=
⊗
𝑗∈𝑠

𝜎𝑋
𝑗 , 𝐵𝑝 :=

⊗
𝑗∈𝑝

𝜎𝑍
𝑗 ,

where 𝜎𝑋
𝑗 and 𝜎𝑍

𝑗 denote the Pauli matrices 𝜎𝑋 and 𝜎𝑍 acting on the site j. The local Hamiltonians
are then defined as

𝐻Λ :=
∑
𝑠⊂Λ

(1 − 𝐴𝑠) +
∑
𝑝⊂Λ

(1 − 𝐵𝑝). (3.1)

This model has been studied extensively in the literature. Here we just mention that in the thermodynamic
limit, the model has a unique frustration-free ground state (which is also translation invariant), as well
as non-frustration-free (and non-invariant) ground states associated to the superselection sectors of the
model [AFH07, CNN18].

The Toric Code satisfies the local TQO conditions [CDH+20], and we will exploit this to define a net
of projections satisfying (LTO1)–(LTO4). If Λ ⊂ L is a rectangle, define the projections

𝑝Λ :=
∏
𝑠⊂Λ

(
1 + 𝐴𝑠

2

) ∏
𝑝⊂Λ

(1 + 𝐵𝑝

2

)
, (3.2)

which locally project onto the ground state of our Hamiltonian (3.1).
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We briefly discuss the intuition behind the algebras of the form 𝑝Δ𝔄(Λ)𝑝Δ with Λ �2 Δ , which goes
back to methods employed in [AFH07]. Recall that (pairs of) excitations are created by path operators.
To a path 𝜉 on the lattice, we can associate an operator 𝐹𝜉 that acts with a 𝜎𝑍 on each of the edges in
the path. Similarly, to a path 𝜉 on the dual lattice, we can associate an operator 𝐹𝜉 acting with 𝜎𝑋 on
all edges that the dual path crosses. It is easy to check that if the path is not closed, 𝐹𝜉 anti-commutes
with 𝐴𝑠 at the start and endpoints of the path, and commutes with all other 𝐴𝑠 . The same is true for 𝐹𝜉

and the plaquette operators. Moreover, path operators associated to closed paths (closed paths on the
dual lattice) are a product of plaquette (star) operators.

The local algebras are linear spans of products of path operators on the lattice and dual lattice. If
𝑥 ∈ 𝔄(Λ) is such a product, it either commutes or anti-commutes with any given star or plaquette
operator. Suppose it anti-commutes with 𝐴𝑠 for some 𝑠 ⊂ Δ where Λ �2 Δ . Then we have

(1 + 𝐴𝑠)𝑥(1 + 𝐴𝑠) = (1 + 𝐴𝑠) (1 − 𝐴𝑠)𝑥 = 0,

and hence 𝑝Δ𝑥𝑝Δ = 0. Note that this has a clear physical interpretation: x creates an excitation at the
star s, so it takes us out of the ground state space. If there is no star or plaquette operator in 𝔄(Δ) that
anti-commutes with x and 𝜕Λ ∩ 𝜕Δ = ∅, it follows that x is a product of star and plaquette operators
supported on Λ [AFH07] (see also Algorithm 3.10 below). Thus 𝑝Δ𝑥𝑝Δ = 𝑝Δ , i.e., the unit of the
compressed algebra 𝑝Δ𝔄(Λ)𝑝Δ . Observe that this argument above did not depend on Δ beyond relying
on the condition that Λ �2 Δ with 𝜕Λ ∩ 𝜕Δ = ∅.

However, this argument breaks down if 𝜕Λ∩𝜕Δ =: 𝐼 ≠ ∅, as in this case, the plaquette operators near
the boundary I no longer appear in 𝑝Δ . In this case, 𝑝Δ𝔄(Λ)𝑝Δ can be identified with the operators that
create excitations at sites of I, but leave the bulk untouched. We provide a proof of this in Algorithm 3.10
below.

There are two cases for the 1D boundary K: rough (shown on the left below) and smooth (in the right
picture) depending on the choice of Z hyperplane in Z2.

(3.3)

While these two boundaries appear to break the translation symmetry assumed for our net of algebras
𝔄, there is an additional 1

2 -translation dualizing symmetry which shifts all edges 45◦ to the northeast
and swaps horizontal and vertical edges. This 1

2 -translation dualizing symmetry maps between these
two 1D boundaries.
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In either case, we can fully describe the string operators which create excitations at the boundary.
These boundary operators are supported not only on K, but at sites in the bulk closest to K as well. For
a rough boundary interval I of Λ, we write 𝐼̃ for I union the next row or column of Λ adjacent to I.
Similarly, for a smooth boundary interval J of Λ, we write 𝐽 for J union the next row or column of Λ
adjacent to J. In the diagrams below depicting the regions 𝐼̃ , 𝐽, we assume that the rectangle Λ meeting
K at the boundary has interior on the left of K. We also define corresponding C∗-algebras ℭ(𝐼) and
𝔇(𝐽) as follows:

(3.4)

Here, the operators 𝐶ℓ , 𝐷 𝑝 ∈ ℭ(𝐼) are the portions of the corresponding star and plaquette terms
which are included in Λ, i.e., 𝐶ℓ = 𝜎𝑋

ℓ for the edge ℓ, and 𝐷 𝑝 =
⊗

𝑗∈𝑝 𝜎
𝑍
𝑗 where p is a truncated

plaquette. The operators 𝐶𝑠 , 𝐷ℓ ∈ 𝔇(𝐽) are defined similarly.
While they have different abstract descriptions, ℭ(𝐼) and 𝔇(𝐽) are isomorphic when the intervals I

and J contain the same number of sites (even if 𝐼̃ and 𝐽 contain a different number of sites). We omit
the proof of the following lemma, which is straightforward.

Lemma 3.5. When a rough boundary interval I has 𝑛 + 1 horizontal sites, ℭ(𝐼) has the following
abstract presentation as a ∗-algebra:

◦ generators: 𝑥1, . . . , 𝑥𝑛+1, 𝑦1, . . . , 𝑦𝑛
◦ relations:

1. The 𝑥𝑖 , 𝑦 𝑗 are self-adjoint unitaries: 𝑥𝑖 = 𝑥∗𝑖 , 𝑥2
𝑖 = 1, 𝑦 𝑗 = 𝑦∗𝑗 , and 𝑦2

𝑗 = 1,
2. [𝑥𝑖 , 𝑥 𝑗 ] = 0,
3. [𝑦𝑖 , 𝑦 𝑗 ] = 0,
4. {𝑥𝑖 , 𝑦𝑖} = 𝑥𝑖𝑦𝑖 + 𝑦𝑖𝑥𝑖 = 0 and {𝑥𝑖+1, 𝑦𝑖} = 0, and
5. [𝑥 𝑗 , 𝑦𝑖] = 0 whenever 𝑗 ≠ 𝑖, 𝑖 + 1.

The same presentation also holds for𝔇(𝐽) when J is a smooth boundary interval with 𝑛+1 vertical sites.
In either case, a canonical basis for this ∗-algebra is given by the monomials 𝑥𝑎1

1 · · · 𝑥𝑎𝑛+1
𝑛+1 𝑦𝑏1

1 · · · 𝑦𝑏𝑛𝑛
with 𝑎𝑖 , 𝑏 𝑗 ∈ {0, 1}. Thus this ∗-algebra has dimension 22𝑛+1 and is isomorphic to 𝑀2𝑛 (C) ⊕ 𝑀2𝑛 (C).

Corollary 3.6. There is an isomorphism of the nets of algebras ℭ and 𝔇.

Remark 3.7. There is a nice description of the ∗-algebra ℭ(𝐼) in terms of the operators from the
transverse-field Ising model. Identify I with 𝑛 + 1 = #𝐼 contiguous sites on a 1D lattice, where each site
hosts C2-spins. The ∗-algebra ℭ(𝐼) is isomorphic to the algebra ℭ′(𝐼) generated by the operators 𝜎𝑋

𝑖
acting at site 𝑖 ∈ {1, . . . , 𝑛+1} and 𝜎𝑍

𝑗 𝜎
𝑍
𝑗+1 acting at sites j and 𝑗 + 1 for 𝑗 ∈ {1, . . . , 𝑛}. Indeed, this just

corresponds to forgetting the third 𝜎𝑍 operator for each 𝐷 𝑝 which lives on 𝐼̃ \ 𝐼, which plays no role in
the abstract characterization of ℭ(𝐼).

Now consider the |±〉 = 1√
2
(|0〉 ± |1〉) ONB which diagonalizes 𝜎𝑋

𝑖 (so C2 = C|+〉 ⊕C|−〉). Working

in this computational basis for
⊗𝑛+1

C
2 � C2𝑛+1 , we see that every operator in ℭ′(𝐼) preserves the

subspaces with even numbers of |−〉 and odd numbers of |−〉, which exactly corresponds to the direct
sum decomposition ℭ(𝐼) = 𝑀2𝑛 (C) ⊕ 𝑀2𝑛 (C) ⊂ 𝑀2𝑛+1 (C).
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Similarly, we have an isomorphism 𝔇(𝐽) � 𝔇′(𝐽) where the latter algebra is generated by operators
𝜎𝑍
𝑗 at each site 𝑗 ∈ {1, . . . , 𝑛+1} and 𝜎𝑋

𝑗 𝜎
𝑋
𝑗+1 at each site 𝑗 ∈ {1, . . . , 𝑛} when #𝐽 = 𝑛 + 1. One now

works in the computational ONB {|0〉, |1〉} for C2, observing these operators preserve parity as before.

Construction 3.8. We now construct an isomorphism of nets of algebras from the fusion categorical
net 𝔉 for C = Hilbfd (Z/2) from Example 2.5 with 𝑋 = 1 ⊕ 𝑔, where 1, 𝑔 ∈ Z2, to either ℭ′ or 𝔇′

from Remark 3.7 above. This isomorphism is essentially a planar algebra embedding from the C planar
algebra with generator X to the C2-spin model planar algebra from [Jon21, Ex. 2.8].

The ‘box space’ 𝔉(𝐽) = EndC (𝑋#𝐽 ) where #𝐽 = 𝑛, is spanned by Temperley-Lieb string diagrams
with n top boundary points and n bottom boundary points with three types of strands, 𝑋, 1C , 𝑔 subject
to the following relations (in addition to 1C being the empty strand):

The first diagram denotes an orthogonal direct sum, which suppresses distinguished isometries 𝜄1 :
1C → 𝑋 and 𝜄𝑔 : 𝑔 → 𝑋 satisfying 𝜄1𝜄

†
1 + 𝜄𝑔 𝜄

†
𝑔 = id𝑋 . The rotations of 𝜄1 and 𝜄𝑔 are their adjoints. We

may always expand every diagram with X strands, so we see that𝔉(𝐽) is spanned by diagrams with only
1 and g strands; we only work with these string diagrams. Multiplication is stacking of boxes, where we
get zero if the string types of 1C and g do not match.

Observe that 𝑋𝑛+1 � 2𝑛 · 1C ⊕ 2𝑛 · 𝑔, so EndC (𝑋𝑛+1) � 𝑀2𝑛 (C) ⊕ 𝑀2𝑛 (C). Let 𝑝1, 𝑝𝑔 ∈ EndC (𝑋)
be the orthogonal projections onto the first and second copy of 𝑀1 (C) � C for 𝑛 = 0. The operator
𝑢 := 𝑝1 − 𝑝𝑔 ∈ EndC (𝑋) is a self-adjoint unitary generating EndC (𝑋). Now consider the morphism

Here, the crossings mean mapping between the two orthogonal copies of g in 𝑋2 � 2 · 1C ⊕ 2 · 𝑔. It
is easily verified that v is a self-adjoint unitary which anticommutes with 𝑢 ⊗ id𝑋 and id𝑋 ⊗𝑢. For the
algebra 𝔉(𝐽) = EndC (𝑋#𝐽 ) where #𝐽 = 𝑛 + 1, we write 𝑢𝑖 for the copy of u on the i-th strand, and we
write 𝑣 𝑗 for the copy of v on the j-th and ( 𝑗 + 1)-th strands, where 𝑖 = 1, . . . , 𝑛 + 1 and 𝑗 = 1, . . . , 𝑛.
Observe that the 𝑢𝑖 , 𝑣 𝑗 give 2𝑛+1 self-adjoint unitaries satisfying the relations of Lemma 3.5. This gives
an abstract isomorphism 𝔉 � ℭ′ � 𝔇′, where ℭ′ and 𝔇′ are the concrete realizations in terms of Pauli
matrices of the abstract presentations ℭ and 𝔇, as defined above. We now give a concrete isomorphism.

The C2-spin model planar algebra is a diagrammatic representation of the 1D spin chain with C2-
spins at each site of Z, with a local 𝑀2 (C) acting at each site. We represent a distinguished ONB of
C

2 by an unshaded and a red node . (For the isomorphism 𝔉 → ℭ′, = |+〉 and , while for the
isomorphism 𝔉 → 𝔇′, = |0〉 and in the notation of Remark 3.7). Product tensors in

⊗𝑛
C

2 are
represented by drawing n nodes on a line, for example:

Matrix units for this computational basis |𝜂〉〈𝜉 | are represented by rectangles where |𝜂〉 is represented
by nodes on the top of the rectangle and |𝜉〉 is represented by nodes on the bottom of the rectangle, e.g.:

Composition is the bilinear extension of stacking boxes, where we get zero unless all nodes match along
the middle.
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When #𝐽 = 𝑛+1, we get an injection𝔉(𝐽) ↩→
⊗𝑛+1

𝑀2 (C) = 𝑀2𝑛+1 (C) by mapping a string diagram
in the 1C and g strings to the matrix unit which only remembers the shadings at the end points, e.g.:

This map is well-defined and injective as all relations in C lie in its kernel. Indeed, observe that recabling
the red strands has no effect on the location of the endpoints. Denote by 𝐽 + 1 the interval obtained from
J by including one site to the right, and denote by 1 + 𝐽 the interval obtained from J by adding one site
to the left. The following squares commute:

𝑥 ↦→ 1 ⊗ 𝑥
𝑀2𝑛+1 (C) ↩→ 𝑀2 (C) ⊗ 𝑀2𝑛+1 (C)

↩→ ↩→

𝔉(𝐽) ↩→ 𝔉(1 + 𝐽)

𝑓
· · ·

· · ·
↦→ 𝑓

· · ·

· · ·

𝑥 ↦→ 𝑥 ⊗ 1
𝑀2𝑛+1 (C) ↩→ 𝑀2𝑛+1 (C) ⊗ 𝑀2 (C)

↩→ ↩→

𝔉(𝐽) ↩→ 𝔉(𝐽 + 1)

𝑓
· · ·

· · ·
↦→ 𝑓

· · ·

· · ·

Moreover, these squares fit into a larger commutative cube with𝔉(1+ 𝐽 +1), as adding strings/tensoring
on the left and right commute.

We have thus constructed an embedding of nets of algebras from𝔉 into the 1D spin chain. It remains
to identify the image of𝔉 under this map. By inspection, the image is exactly spanned by those diagrams
with an even number of = |−〉 boundary nodes, which is exactly the subalgebra of 𝑀2𝑛+1 (C) which
preserves the subspaces spanned by product tensors in the { , } computational ONB which have an
even or odd number of = |−〉 nodes. Hence if = |+〉 and = |−〉, the image is exactly ℭ′, where
the image of 𝑢𝑖 is 𝜎𝑋

𝑖 and the image of 𝑣 𝑗 is 𝜎𝑍
𝑗 𝜎

𝑍
𝑗+1. If = |0〉 and = |1〉, the image is exactly 𝔇′,

where the image of 𝑢𝑖 is 𝜎𝑍
𝑖 and the image of 𝑣 𝑗 is 𝜎𝑋

𝑗 𝜎
𝑋
𝑗+1.

Proposition 3.9. Suppose we have rectangles Λ �2 Δ with 𝐼 = 𝜕Λ ∩ 𝜕Δ ≠ ∅ and let 𝑝Δ be as in
Equation (3.2).
(1) If I is rough as in the left hand side of (3.4), then 𝑥 ∈ ℭ(𝐼) and 𝑥𝑝Δ = 0 implies 𝑥 = 0.
(2) If I is smooth as in the right hand side of (3.4), then 𝑥 ∈ 𝔇(𝐼) and 𝑥𝑝Δ = 0 implies 𝑥 = 0.
Proof. We prove the first case, and the second is similar and left to the reader. Without loss of generality,
we may assume that 𝜕Δ is rough on all sides of Δ; if this is not the case, we can replace Δ with a larger
region satisfying this property. Observe that 𝑥𝑝Δ preserves the space of ground states for 𝐻Δ , which
is isomorphic to C22𝑖+2 𝑗−1 where Δ has dimensions 𝑖 × 𝑗 (with 𝑛 + 1 ≤ 𝑖 + 4 as Λ �2 Δ). Indeed, the
space of ground states for 𝐻Δ can be identified with the space of states along 𝜕Δ spanned by the simple
tensors with an even number of |−〉’s in the |±〉 computational basis. Comparing with the faithful action
of ℭ(𝐼) on C2𝑛+1 from Remark 3.7 above, we can view the even-parity subspace of C2𝑛+1 as a subspace
of the 𝜕Δ subspace by extending by all |+〉 outside sites in I, and we can view the odd-parity subspace
of C2𝑛+1 as a subspace of the 𝜕Δ subspace by extending by all |+〉 outside sites in I except for a single
site 𝑗 ∈ 𝜕Δ \ 𝐼 which is always |−〉. These two subspaces witness a faithful action of ℭ(𝐼) on the ground
state subspace, and thus the map 𝑥 ↦→ 𝑥𝑝Δ is injective. �

To demonstrate that the axioms (LTO1)–(LTO4) hold, we adapt the algorithm presented in [Wal23,
p. 6], which in turn is based on work in [AFH07]. We thank Shuqi Wei for a simplification in Step 1
below.
Algorithm 3.10. Suppose we have rectangles Λ �2Δ or Λ �2Δ , and set J := 𝜕Λ ∩ 𝜕Δ . We assume
either J = ∅ or J is rough, and the case when J is smooth is entirely similar. The following algorithm
expresses a local operator a ∈ 𝔄(Λ) which is a monomial in the Pauli operators that commutes with all
As, Bp for s, p ⊆Δ as a product of the As, Bp for s, p ⊆Λ times an operator in ℭ(J).
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Step 1: We only apply this step if a is supported entirely on two adjacent columns or two adjacent
rows of sites, e.g.,

or (3.11)

We call these two rows or columns H. If a is supported on a larger region, go to Step 2.
First, if H ∩ J = ∅, we claim a = 1. The Pauli operator for a on the outermost edge ℓ commutes

with the As for the outermost vertex s, and thus must be either 1ℓ or 𝜎ℓ
X , where 1ℓ is the unit of the

algebra at edge ℓ. But it also commutes with the Bp next to it, so it must be either 1ℓ or 𝜎ℓ
Z . We

conclude it is 1ℓ . Working from the outside in, the result follows.
Otherwise, H ∩ J≠∅, and arguing as in the previous paragraph, we may assume H ⊆J~. We claim

a ∈ ℭ(J). We assume J~ is oriented similar to the left hand side of (3.11) as in the left hand side of
(3.4); the other cases are similar. First, consider an extremal vertical edge ℓ of J~ beyond any rough
horizontal edges as in (3.4). These extremal edges must always be 1ℓ , as they commute with the Bp
to the left and the As above or below.

Now, consider a non-extremal vertical edge ℓ of J~. By considering the plaquette term on the left
side of ℓ, we know that a must be 1ℓ or 𝜎ℓ

Z on this edge, as this plaquette only intersects J~ at ℓ.
If a is 𝜎ℓ

Z here, we can multiply a by a Dp ∈ ℭ(J) operator to the right of ℓ and thus assume that a
acts as the identity on this edge. Hence, we may assume that the support of a is contained in J, the
horizontal rough edges. Now, considering the star terms to the left of these edges, we know that a
must be 1ℓ or 𝜎ℓ

X = Cℓ ∈ ℭ(J) for each rough edge ℓ, as the star term to the right of ℓ only intersects
J at ℓ. Thus a ∈ ℭ(J).
Step 2: Now suppose a is supported on a larger region. We pick a distinguished side of 𝜕Λ which is
necessarily either rough or smooth. If J = ∅, any side of 𝜕Λ works. If J≠∅, we pick the distinguished
side of 𝜕Λ which is opposite J. If the distinguished side is rough, go to Step 3; if it is smooth, go to
Step 4.
Step 3: Since the distinguished edge is rough, the Pauli operators on the rough edges must commute
with As terms for vertices s on the outside of the rough edges, which are necessarily in Δ \Λ. This
means these Pauli operators must be either 1ℓ or 𝜎ℓ

X . For each 𝜎ℓ
X that appears, multiply by an As

for the star s ⊆Λ containing ℓ to ‘cancel’ the 𝜎ℓ
X . This will work except possibly at the two edges

of the distinguished edge, where the canceling star s may not be contained in Λ. In this case, we
see the edge in question also commutes with a plaquette operator in Δ , forcing the Pauli operator
to be 1ℓ .

We may now view a′ as a monomial supported on a smaller rectangle Λ′⊆Λ with a smooth edge
opposite J. Go back to Step 1 with a′ supported on Λ′.
Step 4: Since the distinguished edge is smooth, the Pauli operators on the smooth edges must commute
with Bp terms for plaquettes p on the outside of the smooth edges, which are necessarily in Δ \Λ. This
means these Pauli operators must be either 1ℓ or 𝜎ℓ

Z . For each 𝜎ℓ
Z that appears, multiply by a Bp for

the plaquette p ⊆Λ containing ℓ to ‘cancel’ the 𝜎ℓ
Z . This will work except possibly at the two edges

of the distinguished edge, where the canceling plaquette p may not be contained in Λ. In this case, we
see the edge in question also commutes with a star operator in Δ , forcing the Pauli operator to be 1ℓ .

We may now view a′ as a monomial supported on a smaller rectangle Λ′⊆Λ with a rough edge
opposite J. Go back to Step 1 with a′ supported on Λ′.
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Observe that the product obtained from this algorithm is independent of the choice of Δ beyond that Λ
�2Δ or Λ �2Δ with J = 𝜕Λ ∩ 𝜕Δ .

Construction 3.8 and Algorithm 3.10 immediately imply the following theorem.

Theorem 3.12. The axioms (LTO1)–(LTO4) hold for the Toric Code where 𝔅(𝐼) is ℭ(𝐼) or 𝔇(𝐼)
depending on whether we choose I to be rough or smooth.

Remark 3.13. The above analysis did not exactly follow the conventions of §2. Indeed, our Hilbert
spaces were placed on edges in our lattice, which is not strictly speaking Z2 ⊂ R2. However, if we draw
the edges as points and rotate our heads 45◦, we again see a Z2 lattice, and we can consider rectangles
on this lattice. In this setup, both the star operators 𝐴𝑠 and the plaquette operators appear as plaquette
operators.

(3.14)

We can define the 𝑝Λ as the product of the local commuting projectors, but we observe that our net of
projections (𝑝Λ) is only translation invariant by even translations. One must ‘coarse grain’ in order to
obtain a true translation invariant net of projections.

We can now pick a 1D hyperplane K in this rotated Z2 lattice and consider rectangles whose
boundaries intersect K. By an algorithm analogous to Algorithm 3.10, for every sufficiently large
interval I in K and sufficiently large Δ with 𝜕Δ ∩ K = 𝐼, 𝑝Δ𝑎𝑝Δ = 𝛾𝑎𝑝Δ for a unique operator 𝛾𝑎
(independent of Δ) in an algebra 𝔈(𝐼) generated by certain monomials of Pauli operators. Based on the
parity of sites in I, these generating Pauli monomials can be taken to be of the form

1 ⊗ · · · ⊗ 1 ⊗ 𝜎𝑍 ⊗ 𝜎𝑍 ⊗ 1 ⊗ · · · ⊗ 1 and 1 ⊗ · · · ⊗ 1 ⊗ 𝜎𝑋 ⊗ 𝜎𝑋 ⊗ 1 ⊗ · · · ⊗ 1,

where the 𝜎𝑍 always occur on, say, sites 2𝑖 and 2𝑖 +1 and the 𝜎𝑋 always occur on sites 2𝑖 +1 and 2𝑖 +2,
and we again write 1 for the unit operator of the local algebra at an edge. For example, when I is the
northeast edge of Λ in (3.14), 𝔈(𝐼) is generated by

𝜎𝑋 ⊗ 𝜎𝑋 ⊗ 1 ⊗ 1, 1 ⊗ 𝜎𝑍 ⊗ 𝜎𝑍 ⊗ 1, and 1 ⊗ 1 ⊗ 𝜎𝑋 ⊗ 𝜎𝑋 .

It is clear that these operators satisfy the relations of Lemma 3.5, but observe that the algebras 𝔈(𝐼)
grow at roughly half the rate of ℭ(𝐼) or 𝔇(𝐼). Thus the net of algebras 𝔈 is ‘coarse grained’ bounded
spread isomorphic to ℭ and 𝔇. While this equivalence relation can be made rigorous, we leave it to a
future paper as it would take us too far afield. We also note that boundary algebras of Toric Code have
recently appeared in a slightly different form in [AHLM23] as a host for measurement-based quantum
cellular automata. We plan to expand on this connection in future work.

4. Example: Levin-Wen string nets

In this section, we prove that the Levin-Wen string net model [LW05, LLB21] for a unitary fusion
category (UFC) C has a net of projections Λ ↦→ 𝑝Λ satisfying (LTO1)–(LTO4). We first recall the
definition of the model following [GHK+24, §2] which was adapted from [KK12, Kon14] before we
define the projections 𝑝Λ.
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Let C denote a UFC, and denote its quantum double (Drinfeld center) by 𝑍 (C) [EGNO15, §7.13].
We write C (𝑎 → 𝑏) to denote the space of morphisms 𝑎 → 𝑏 in C. For simplicity we will only consider
the model on a square lattice in two dimensions. Schematically, the Hilbert space can be visualized as
follows, where the black edges carry labels from Irr(C).

Here, we read from bottom left to top right. The total Hilbert space is the tensor product of local Hilbert
spaces over all sites:

where the direct sum is orthogonal. The space H𝑣 is equipped with the ‘skein-module’ inner product

〈
𝑎 𝑑

𝑏

𝑐

𝜉

�������� 𝑎′ 𝑑′

𝑏′

𝑐′

𝜉 ′

〉
= 𝛿𝑎=𝑎′𝛿𝑏=𝑏′𝛿𝑐=𝑐′𝛿𝑑=𝑑′

1
√
𝑑𝑎𝑑𝑏𝑑𝑐𝑑𝑑

· trC (𝜉† ◦ 𝜉 ′).

Here, † is the dagger structure on C and trC is the categorical trace using the unique unitary spherical
structure [Yam04, Pen20].

Consider now a rectangle Λ in our lattice L. We consider the canonical spin system from this setup
as in Example 2.4, i.e., 𝔄(Λ) :=

⊗
𝑣 ∈Λ 𝐵(H𝑣 ). We set 𝔄 := lim−−→𝔄(Λ) =

⊗
𝑣 𝐵(H𝑣 ).

For a rectangle Λ ⊂ L, we say

◦ an edge/link ℓ ⊂ Λ if the two vertices at the endpoints of ℓ are contained in Λ, and
◦ a face/plaquette 𝑝 ⊂ Λ if the four vertices at the corners of ℓ are contained in Λ.

For each edge ℓ ⊂ Λ, we have an orthogonal projector 𝐴ℓ ∈ 𝔄(Λ) which enforces that the edge
labels on ℓ match from either side:

𝐴ℓ

������
𝑎 𝑑

𝑏

𝑐

𝜂 ⊗ 𝑒 ℎ

𝑓

𝑔

𝜉

������
:= 𝛿𝑑=𝑒 𝑎 𝑑

𝑏

𝑐

𝜂 ⊗ 𝑑 ℎ

𝑓

𝑔

𝜉

We define 𝑝𝐴
Λ :=

∏
ℓ∈Λ 𝐴ℓ .

For each plaquette 𝑝 ⊂ Λ, we have an orthogonal projector 𝐵𝑝 ∈ 𝑝𝐴
Λ𝔄(Λ)𝑝

𝐴
Λ using the usual

definition from the Levin-Wen local Hamiltonian [LW05, Kon14, LLB21]:
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Here, 𝐷C :=
∑

𝑐∈Irr(C) 𝑑
2
𝑐 is the global dimension of C, and we use the convention from [HP17] writing

a pair of shaded vertices to denote summing over an orthonormal basis for the trivalent skein module
(see (4.4) below) and its dual. Using these conventions, the fusion relation in C is given by

(4.1)

These conventions have also been used in other descriptions of the Levin-Wen model [Che14, HBJP23,
CGHP23].
Lemma 4.2 [GHK+24, Lemma 2.8], see also [Hon09]. For

𝜉 =

𝜉2,1

𝜉1,2

𝜉1,1

𝜉2,2

𝑎

𝑏 𝑐

𝑑

𝑒

𝑓𝑔

ℎ

𝜉 ′ =

𝜉 ′2,1

𝜉 ′1,2

𝜉 ′1,1

𝜉 ′2,2

𝑎′

𝑏′ 𝑐′

𝑑′

𝑒′

𝑓 ′𝑔′

ℎ′

,

the constant 𝐶 (𝜉 ′, 𝜉) above is given by

𝐶 (𝜉 ′, 𝜉) = 𝛿𝑎=𝑎′ · · · 𝛿ℎ=ℎ′
1

𝐷C
√
𝑑𝑎 · · · 𝑑ℎ

·

𝜉 ′2,1

𝜉 ′1,2

𝜉 ′1,1

𝜉 ′2,2

𝜉 †2,1

𝜉 †1,2 𝜉 †1,1

𝜉 †2,2

𝑎

𝑏

𝑐

𝑑

𝑒
𝑓𝑔

ℎ

.

Hence the 𝐵𝑝 are orthogonal projections and [𝐵𝑝 , 𝐵𝑞] = 0 for 𝑝 ≠ 𝑞.
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For a rectangle Λ, we define 𝑝𝐵Λ :=
∏

𝑝⊂Λ 𝐵𝑝 . We now define our net of projections.

Definition 4.3 (Net of projections for the Levin-Wen string net). For each rectangle Λ in L, define

𝑝Λ := 𝑝𝐴
Λ𝑝

𝐵
Λ =

∏
𝑝⊂Λ

𝐵𝑝

∏
ℓ⊂Λ

𝐴ℓ .

Clearly Λ ⊂ Δ implies 𝑝Δ ≤ 𝑝Λ.

There is a nice description of the image of 𝑝𝐵Λ on 𝑝𝐴
Λ

⊗
𝑣 ∈Λ H𝑣 in terms of the skein moduleSC (#𝜕Λ)

for C with 𝑛 := #𝜕Λ boundary points, defined as the orthogonal direct sum

⊕
𝑥1 ,...,𝑥𝑛

C (1 → 𝑥1 ⊗ · · · ⊗ 𝑥𝑛)

with inner product given by

〈
𝑐1 · · · 𝑐𝑛

𝜉

����� 𝑐′1 · · · 𝑐′𝑛

𝜉 ′

〉
:= 𝛿𝑐1=𝑐′1

· · · 𝛿𝑐𝑛=𝑐′𝑛
1√

𝑑𝑐1 · · · 𝑑𝑐𝑛
𝜉† ◦ 𝜉 ′. (4.4)

There is an obvious linear map eval : 𝑝𝐴
Λ

⊗
𝑣 ∈Λ H𝑣 → SC (#𝜕Λ) called evaluation which writes a

vector in 𝑝𝐴
Λ

⊗
𝑣 ∈Λ H𝑣 as an element of SC (#𝜕Λ).

The proof of the following lemma from [Kon14] appears in [GHK+24, Theorem 2.9].

Lemma 4.5 [Kon14]. For a rectangle Λ, on 𝑝𝐴
Λ

⊗
𝑣 ∈ΛH𝑣 ,

𝑝𝐵Λ = 𝐷−#𝑝⊂Λ
C eval† ◦ eval .

where #𝑝 ⊂ Λ is the number of plaquettes internal to Λ. Hence 𝑝Λ
⊗

𝑣 ∈Λ H𝑣 is unitarily isomorphic
to SC (#𝜕Λ) via the map 𝐷−#𝑝/2

C eval.

The article [Jon24] studied the 1D net of algebras on Z given by 𝔉(𝐼) := EndC (𝑋#𝐼 ) where 𝑋 :=⊕
𝑐∈Irr(C) 𝑐.

Definition 4.6 (Boundary action of 𝔉(𝐼) = EndC (𝑋#𝐼 ) on 𝔄(Λ)). Suppose Λ ⊂ Z2 is a rectangle,
𝐼 ⊂ 𝜕Λ is an interval, and 𝜑 ∈ EndC (𝑋#𝐼 ). Then 𝜑 defines an operator Γ𝜑 ∈ 𝔄(Λ) given by first
applying 𝑝Λ and then gluing 𝜑 into the I-boundary on the outer edge of Λ. If I is on the top or right side
of Λ, then the map Γ : EndC (𝑋#𝐼 ) → 𝑝Λ𝔄(Λ)𝑝Λ is a ∗-algebra map; if I is on the bottom or left side of
Λ, then Γ is a ∗-anti-algebra map. We must also multiply by a ratio of 4th roots of quantum dimensions
in order to make this map a ∗-(anti-)algebra map.

We give a graphical example below with #𝐼 = 3, where we assume I is at the top of Λ and we suppress
Λ \ 𝐼 from the picture. If 𝜑 ∈ C (𝑟 ⊗ 𝑠 ⊗ 𝑡 → 𝑥 ⊗ 𝑦 ⊗ 𝑧) ⊂ End(𝑋3), then Γ𝜑 is the map

https://doi.org/10.1017/fms.2025.16 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.16


Forum of Mathematics, Sigma 23

𝑎 𝑑

𝑏

𝑐

𝜂 ⊗ 𝑒 ℎ

𝑓

𝑔

𝜉
⊗ 𝑖 ℓ

𝑗

𝑘

𝜁

𝑝Λ↦−→ 𝛿𝑑=𝑒𝛿ℎ=𝑖
𝑎

𝑑 ℎ
ℓ

𝑏

𝑐

𝑓

𝑔

𝑗

𝑘

𝜂 𝜉 𝜁

↦−→ 𝛿𝑑=𝑒𝛿ℎ=𝑖𝛿𝑐=𝑟 𝛿𝑔=𝑠𝛿𝑘=𝑡

(
𝑑𝑥𝑑𝑦𝑑𝑧

𝑑𝑟 𝑑𝑠𝑑𝑡

)1/4

𝑎
𝑑 ℎ

ℓ

𝑏

𝑐

𝑥

𝑓

𝑔

𝑦

𝑗

𝑘

𝑧

𝜂 𝜉 𝜁

𝜑

This final picture must be interpreted as a vector in
⊗

𝑣 ∈𝐼 H𝑣 by decomposing into simples in the usual
way.
Lemma 4.7. Suppose Λ is a rectangle and 𝐼 ⊂ 𝜕Λ is an interval which is on the top or right side of Λ.
Whenever Λ ⊆ Δ with 𝐼 ⊂ 𝜕Λ ∩ 𝜕Δ (compare with Remark 2.16), [Γ𝜑 , 𝑝Δ ] = 0 and Γ𝜑 𝑝Δ = 0 implies
𝜑 = 0. In particular, the map Γ : 𝔉(𝐼) → 𝑝Λ𝔄(Λ)𝑝Λ given by 𝜑 ↦→ Γ𝜑 is injective.
Proof. By Lemma 4.5, 𝑝Δ

⊗
𝑣 ∈Δ H𝑣 is unitarily isomorphic to SC (#𝜕Δ), and Γ𝜑 acts by gluing 𝜑

onto the sites in 𝐼 ⊂ 𝜕Δ . Clearly Γ𝜑 preserves 𝑝Δ
⊗

𝑣 ∈Δ H𝑣 , so [Γ𝜑 , 𝑝Δ ] = 0. That Γ𝜑 𝑝Δ = 0 implies
𝜑 = 0 is easily verified using the positive definite skein module inner product. Finally, if Γ𝜑 𝑝Λ = 0,
then Γ𝜑 𝑝Δ = 0, so 𝜑 = 0. �

The first part of the next theorem shows that the Levin-Wen string net model satisfies (LTO1), which
implies (TQO1) and (TQO2) of [BHM10] by Proposition 2.26. We supply a short conceptual proof
using (an algebra Morita equivalent to) the tube algebra [Izu00, Izu01, Müg03]. The axioms (TQO1)
and (TQO2) for the Levin-Wen model were originally proven in [QW20].9
Theorem 4.8. The Levin-Wen string net model satisfies (LTO1)–(LTO4) with 𝑠 = 1.
Proof. (LTO1) : Suppose Λ �1 Δ . We define the 𝜕Δ-tube algebra TubeC (𝜕Δ) with internal and

external boundaries given by 𝜕Δ:

Observe that 𝑝𝐴
Δ

⊗
𝑣 ∈Δ H𝑣 carries a TubeC (𝜕Δ)-action where we resolve the C-morphism from

the annulus into the outer-most vertex spaces. (This action is similar to [GHK+24, Eq. (10)].) Since
Λ � Δ , every 𝑝𝐴

Δ𝑥𝑝
𝐴
Δ commutes with this TubeC (𝜕Δ)-action for 𝑥 ∈ 𝔄(Λ).

9The article [QW20] proves the modified (TQO2) axiom from [BH11], which is implied by the (TQO2) condition from
[BHM10] by [BHM10, Corollary 2.1].
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Now consider the evaluation map into the skein module eval : 𝑝𝐴
Δ

⊗
𝑣 ∈Δ H𝑣 → S (#𝜕Δ). Observe

that S (#𝜕Δ) also carries a TubeC (𝜕Δ)-action, and the evaluation map clearly intertwines the actions.
We also observe that S (#𝜕Δ) is an irreducible TubeC (𝜕Δ)-module, as all rank-one operators on
S (#𝜕Δ) can be realized by operators in an annulus with no C-strings going around the annulus. By
Lemma 4.5, for any 𝑥 ∈ 𝔄(Λ),

𝑝Δ𝑥𝑝Δ = 𝑝𝐴
Δ 𝑝

𝐵
Δ 𝑝

𝐴
Δ𝑥𝑝

𝐴
Δ 𝑝

𝐵
Δ 𝑝

𝐴
Δ = 𝐷−2#𝑝∈Δ

C 𝑝𝐴
Δ eval† eval(𝑝𝐴

Δ𝑥𝑝
𝐴
Δ ) eval†︸������������������︷︷������������������︸

∈EndTubeC (𝜕Δ ) (S (#𝜕Δ))�C

eval 𝑝𝐴
Δ .

This means that the compression of x above lies in

C(eval† eval) =
(Lem. 4.5)

C𝑝𝐵Δ

acting on 𝑝𝐴
Δ

⊗
𝑣 ∈Δ H𝑣 . Thus 𝑝Δ𝔄(Λ)𝑝Δ = C𝑝Δ .

(LTO2) : Suppose Λ �1 Δ with 𝜕Λ ∩ 𝜕Δ = 𝐼 ≠ ∅. Without loss of generality, we may assume I is
at the top or right of Λ. We claim that 𝑝Δ𝔄(Λ)𝑝Δ = 𝔉(𝐼)𝑝Δ . This will prove (LTO2) as

𝔉(𝐼)𝑝Δ ⊆
(Lem. 4.7)

𝔅(Λ �1 Δ) ⊆ 𝑝Δ𝔄(Λ)𝑝Δ = 𝔉(𝐼)𝑝Δ .

It remains to prove 𝑝Δ𝔄(Λ)𝑝Δ ⊆ 𝔉(𝐼)𝑝Δ . By Lemma 4.5, 𝑝Δ
⊗

𝑣 ∈Δ H𝑣 � S (#𝜕Δ), which can
be identified with ⊕

�𝑐𝜕Δ\𝐼 , �𝑐𝐼

C ( �𝑐𝜕Δ\𝐼 → �𝑐𝐼 ) � C (𝑋#𝜕Δ\𝐼 → 𝑋#𝐼 )

with the skein module inner product, where �𝑐𝜕Δ\𝐼 = 𝑐𝑖1 · · · 𝑐𝑖𝑚 is a tensor product of simples in C
over the sites of 𝜕Δ \ 𝐼, and �𝑐𝐼 = 𝑐 𝑗1 · · · 𝑐 𝑗𝑛 is a tensor product of simples over the sites of I. Observe
that this space is canonically an invertible EndC (𝑋#𝐼 ) −EndC (𝑋#𝜕Δ\𝐼 ) bimodule, i.e., these algebras
are each other’s commutants by the Yoneda Lemma.

Now given 𝑥 ∈ 𝔄(Λ), 𝑝Δ𝑥𝑝Δ acts as the identity on all tensorands H𝑣 with 𝑣 ∈ 𝜕Δ \ 𝐼. Thus the
action of 𝑝Δ𝑎𝑝Δ commutes with the right action of EndC (𝑋#𝜕Δ\𝐼 ) transported back to 𝑝Δ

⊗
𝑣 ∈Δ H𝑣

from the skein module. We conclude that there is a 𝜑 ∈ EndC (𝑋#𝐼 ) such that 𝑝Δ𝑥𝑝Δ = Γ𝜑 𝑝Δ .
(LTO3) : Suppose Λ1 ⊂ Λ2 �1 Δ with 𝜕Λ1 ∩ 𝜕Δ = 𝜕Λ2 ∩ 𝜕Δ = 𝐼 ≠ ∅. Without loss of generality,
we may assume I is at the top or right of Λ𝑖 for 𝑖 = 1, 2. By the proof of (LTO2) above,

𝔅(Λ1 �1 Δ) = 𝔉(𝐼)𝑝Δ = 𝔅(Λ2 �1 Δ).

(LTO4) : Suppose Λ �1 Δ1 ⊂ Δ2 with 𝜕Λ ∩ 𝜕Δ1 = 𝜕Λ ∩ 𝜕Δ2 = 𝐼 ≠ ∅. Without loss of generality,
we may assume I is at the top or right of Λ. We saw in the proof of (LTO2) above that 𝔅(Λ �1 Δ1) =
𝔉(𝐼)𝑝Δ1 . By Lemma 4.7 applied to Λ �1 Δ2, Γ𝜑 𝑝Δ2 = 0 implies 𝜑 = 0, so Γ𝜑 𝑝Δ1 = 0.

�

Remark 4.9. It follows immediately from the proof of (LTO2) above that 𝔅(𝐼) is isomorphic to
𝔉(𝐼) = EndC (𝑋#𝐼 ) depending on if we choseH to be on the left or bottom of the boundary K; otherwise,
we would obtain 𝔉(𝐼)op = EndCop (𝑋#𝐼 ). (Here, H and K are chosen as in §2.4.)

Remark 4.10. The most common operational definition of an equivalence between topologically ordered
states is a finite depth quantum circuit which takes one state to the other [CGW10]. In particular, the
articles [BA09, GKMR10] mapped between Kitaev’s quantum double model for a finite group G [Kit03]
and the Levin-Wen string net model for Rep(𝐺). The recent article [LVDCSV22] constructs a finite
depth quantum circuit mapping between the Levin-Wen string net models for arbitrary Morita equivalent
UFCs.
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However, it is important to note that even though finite depth quantum circuits should preserve
topological order of the bulk (as characterized by, say, topological string operators), they will not
necessarily preserve the boundary algebra 𝔅. This is because finite depth circuits will generally
not intertwine the local ground state spaces, and thus will not naturally map boundary algebras
to boundary algebras without explicitly requiring this. Indeed, we now give an explicit example of
two Levin-Wen string nets with the same topological order but non-isomorphic boundary quasi-local
algebras.

The boundary quasi-local algebra for the Levin-Wen model constructed from Hilbfd (𝑆3) has a Bratteli
diagram with 6 vertices at each level, and in the first level, each vertex corresponds to a copy of C.
Going from one level to the next corresponds to alternately tensoring on the left and right by the direct
sum of all simple objects, which yields a complete graph between each consecutive layer. The resulting
AF-algebra is isomorphic to the UHF algebra 𝑀6∞ , the infinite tensor product of 𝑀6 (C). The pairing
with the unique trace gives an order isomorphic from the 𝐾0 group to the subgroup of R of ‘6-adic’
rationals, namely the additive group of the ring Z[ 1

6 ]. In particular, the pairing of the unique trace with
𝐾0 is injective.

The boundary quasi-local algebra for the Levin-Wen model constructed from Rep(𝑆3) has a Bratteli
diagram with 3 vertices at each level (corresponding to the isomorphism classes) of irreducible rep-
resentations. Let 𝜌 denote the 2-dimensional irrep. Note that 𝜌2 is the sum of all simples, each with
multiplicity 1. Therefore, the Bratelli diagram is given by tensoring on the left and right (alternatively)
by 𝜌2, which is isomorphic to just repeatedly tensoring on the right with 𝜌2 since the category is sym-
metric. The resulting diagram is just a coarse-graining of the AF-algebra constructed by taking tensor
powers of the simple object 𝜌 itself. By [AE20, Ex. 4.1], this AF-algebra has 𝐾0 group Z[𝑡]/〈1− 𝑡−2𝑡2〉
with positive cone given by

{
[𝑝(𝑡)]

��𝑝( 1
2 ) > 0

}
∪ {0}. Since the Bratteli diagram is connected and sta-

tionary, there is a unique trace on 𝐾0, which pairs with K-theory by evaluating a class of polynomial at
1
2 (which is well-defined since 1

2 is a root of 1 − 𝑡 − 2𝑡2). This map is not injective on 𝐾0 (or in other
words, this group has infinitesimals), since [2𝑡 − 1] is in the kernel of this map, but it is non-zero on the
ring since 1 − 𝑡 − 2𝑡2 cannot divide 2𝑡 − 1. In particular, this implies this AF-algebra cannot be UHF,
hence not isomorphic to the boundary quasi-local algebra for Hilbfd (𝑆3).

5. Boundary states and applications to cone algebras

Suppose (𝔄, 𝑝) is a translation-invariant net of algebras and net of projections satisfying (LTO1)–
(LTO4). In this section, we study states on the boundary net 𝔅 for our examples. The states necessarily
extend to states on the half-plane algebra 𝔄H which look like the ground state 𝜓 locally on the bulk of
H away from the boundary. We begin by analyzing the canonical boundary state from Example 2.33 for
our examples. We then show it is a KMS state for Levin-Wen models, and we use it to study the cone
algebras in the case that 𝔄 is a quantum spin system, making connections to [Naa11, FN15, Oga22].
Finally, we study other canonical boundary states on Levin-Wen models associated to Q-systems.

5.1. Toric Code boundary states

Here, we give three states on the boundary net of the Toric Code.

Example 5.1. It is straightforward to compute the canonical state 𝜓𝔅 on the boundary net 𝔅, which
we recall is isomorphic to the nets ℭ and 𝔇. By Lemma 3.5, we see that each ℭ(𝐼) is linearly spanned
by monomials in the Pauli operators supported on 𝐼̃, and similarly for 𝔇(𝐽). Observe further that every
such monomial in this canonical basis which is not the identity monomial anti-commutes with some star
𝐴𝑠 or plaquette operator in a large enough region Δ containing 𝐼̃. Since 𝜓(𝑥)𝑝Δ = 𝑝Δ𝑥𝑝Δ for 𝑥 ∈ ℭ(𝐼)
and Δ sufficiently large, arguing as in Algorithm 3.10, we see that 𝜓𝔅 (𝑥) is exactly the coefficient of the
identity monomial. We have not only determined 𝜓𝔅, but we have also shown it is a normalized trace
on 𝔅 satisfying 𝜓𝔅 (𝑎𝑏) = 𝜓𝔅 (𝑏𝑎) for all 𝑎, 𝑏 ∈ 𝔅(𝐼). Under the isomorphism 𝔅 � 𝔉 to the fusion
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categorical net for Hilbfd (Z/2) from Example 2.5 with 𝑋 = 1⊕ 𝑔, 𝜓𝔅 corresponds to the unique Markov
trace [GdlHJ89, §2.7] on 𝔉 given by tr𝔉 (𝑥) = 𝑑−𝑛𝑋 trC (𝜑) for 𝜑 ∈ EndC (𝑋𝑛).

In the example below, we discuss two other canonical states on the Toric Code boundary net 𝔅. These
states translate directly to canonical boundary states on fusion categorical nets discussed in §5.5 below.

Example 5.2. We use the diagrammatic description of the boundary net 𝔅 � 𝔇′ from Remark 3.7 and
Construction 3.8. When #𝐼 = 𝑛+1, the ∗-algebra 𝔅(𝐼) � 𝔇′(𝐼) is generated by the operators 𝜎𝑍

𝑖 acting
at site 𝑖 ∈ {1, . . . , 𝑛+1} and 𝜎𝑋

𝑗 𝜎
𝑋
𝑗+1 acting at sites j and 𝑗 + 1 for 𝑗 ∈ {1, . . . , 𝑛}. We get a pure state

𝜙𝐼
𝑍 = 〈𝜉 𝐼𝑍 | · |𝜉

𝐼
𝑍 〉 on 𝔇′(𝐼) by choosing the product state vector |𝜉 𝐼𝑍 〉 =

⊗𝑛+1
𝑖=1 |0〉 ∈

⊗𝑛+1
𝑖=1 C

2, which
lives in the +1 eigenspace for each 𝜎𝑍

𝑖 . When 𝐼 ⊂ 𝐽, 𝔇′(𝐼) includes into 𝔇′(𝐽) by tensoring with I, so
𝜙𝐽
𝑍 |𝔇′ (𝐼 ) = 𝜙𝐼

𝑍 . We define 𝜙𝑍 := lim−−→ 𝜙𝐼
𝑍 .

We will now show that the e particle condenses at this boundary, so it corresponds to the ‘rough
boundary’ in the sense of [KK12]. Note that e particles correspond to violations of 𝐴𝑠 terms in the
Hamiltonian. Thus two e particles are created by applying a single 𝜎𝑍 operator. Since |𝜉 𝐼𝑍 〉 is a +1
eigenvector for all 𝜎𝑍 operators, this state absorbs 𝜎𝑍 , so it condenses the e particle.

Similarly, we can define an inductive limit state 𝜙𝑋 := lim−−→ 𝜙𝐼
𝑋 where 𝜙𝐼

𝑋 = 〈𝜉 𝐼𝑋 | · |𝜉
𝐼
𝑋 〉 and

|𝜉 𝐼𝑋 〉 =
⊗𝑛+1

𝑖=1 |+〉 ∈
⊗𝑛+1

𝑖=1 C
2. By similar analysis, 𝜙𝑋 condenses the m particle, so it corresponds to

the ‘smooth boundary’ in the sense of [KK12].

Remark 5.3. Under the isomorphism 𝔉 � 𝔇′ from Construction 3.8, 𝜙𝑍 on 𝔇′ corresponds to 𝜙1C on
𝔉 from Example 5.19 below, as 𝜙𝑍 takes the coefficient of the empty diagram in 𝔉(𝐼) = EndC (𝑋#𝐼 )
because

⊗𝑛+1
𝑖=1 |0〉 is the first standard basis vector in C2𝑛+1 . On the other hand, 𝜙𝑋 corresponds to 𝜙𝑄

for 𝑄 = C[Z/2] with normalized multiplication on 𝔉 from Example 5.20 below, as 𝜙𝑋 maps every
diagrammatic basis element in𝔉(𝐼) to 2−#𝐼 because

⊗𝑛+1
𝑖=1 |+〉 is 2−(𝑛+1)/2 times the all 1s vector inC2𝑛+1 .

5.2. The canonical Levin-Wen string net boundary state

We now consider the Levin-Wen string net model for the UFC C discussed in §4.
The interactions Φ of the Levin-Wen string-net system are given by a map from the finite subsets Λ

of our infinite square lattice to self-adjoint operators of 𝔄 such that Φ(Λ) ∈ 𝔄(Λ). In our setting, the
interactions are easily defined: Φ(ℓ) = 1𝔄 − 𝐴ℓ for each edge ℓ and Φ(𝑝) = 1𝔄 − 𝐵𝑝 for a plaquette p,
and Φ(𝐹) = 0 for all other finite subsets. On

⊗
𝑣 ∈ΛH𝑣 , we define the local Hamiltonian

𝐻Λ :=
∑
𝐹 ⊂Λ

Φ(𝐹) =
∑
ℓ⊂Λ

(1𝔄 − 𝐴ℓ) +
∑
𝑝⊂Λ

(1𝔄 − 𝐵𝑝),

which is clearly a commuting projector local Hamiltonian.

Remark 5.4. We can construct the canonical state 𝜓 from a net of state vectors |ΩΛ〉 on our local
algebras 𝔄(Λ). On

⊗
𝑣 ∈Λ H𝑣 , we normalize the empty state vector |∅〉 ∈ 𝑝𝐴

Λ

⊗
𝑣 ∈ΛH𝑣 after applying

𝑝𝐵Λ to get the state vector

|ΩΛ〉 := 𝐷 (#𝑝⊂Λ)/2
C 𝑝𝐵Λ |∅〉 ∈

⊗
𝑣 ∈Λ

H𝑣 .

We set 𝜔Λ := 〈ΩΛ | · |ΩΛ〉 : 𝔄(Λ) → C to be the corresponding vector state. Clearly 𝜔Λ (𝑝Λ) = 1, so by
Lemma 2.22,𝜔Λ(𝑎) = 𝜔Λ(𝑝Λ𝑎) = 𝜔Λ (𝑎𝑝Λ) for all 𝑎 ∈ 𝔄(Λ). Moreover, if 𝑎 ∈ 𝔄(Λ) and Λ � Δ , then

𝜔Δ (𝑎) =
(Lem. 2.22)

𝜔Δ (𝑝Δ𝑎𝑝Δ ) =
(Thm. 4.8)

𝜓(𝑎) · 𝜔Δ (𝑝Δ ) = 𝜓(𝑎).

We now compute the canonical state 𝜓𝔅 from Example 2.33 on the boundary algebra 𝔅 of the Levin-
Wen model. By Theorem 4.8, operators in 𝔅(𝐼) where 𝜕Λ ∩ K = I are products of the form Γ𝜑 𝑝Δ
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where 𝜑 ∈ EndC (𝑋#𝐼 ) and Λ � Δ with 𝜕Λ ∩ 𝜕Δ = 𝐼. (Without loss of generality, we have assumed
I is at the top or right of Λ.) Thus to compute 𝜓𝔅 on 𝔅, it suffices to calculate 𝜓(Γ𝜑) = 𝜓(Γ𝜑 𝑝Δ )
for 𝜑 ∈ End(𝑋#𝐼 ) along some boundary interval I. This will also give us a formula for the canonical
boundary state transported to the fusion categorical net 𝔉 for C from Example 2.5.

Fix 𝜑 ∈ C (𝑎1⊗· · ·⊗𝑎𝑛 → 𝑏1⊗· · ·⊗𝑏𝑛), an interval I alongK in Z2 with #𝐼 = 𝑛, and a large squareΔ
surrounding I such that 𝜕Δ ∩ 𝐼 = ∅. We compute 𝑝ΔΓ𝜑 𝑝Δ𝜉 where 𝜉 is a simple tensor in 𝑝𝐴

Δ

⊗
𝑣 ∈Δ H𝑣 .

Here, we have colored the first-acting 𝑝Δ red and the second acting 𝑝Δ blue, which will be reflected in
the color of the strings used in the plaquette operators in the diagrammatic proof below. We will further
make the simplification that 𝑛 = 3, and it will be clear what the formula will be when n is arbitrary.

First, starting with 𝜉, we apply 𝑝Δ , screening all punctures corresponding to the plaquettes. In order
to apply the gluing operator Γ𝜑 , we must first use (4.1) to resolve all plaquette operators which act on
the sites in I. In the diagrams below, to ease the notation, we suppress all unnecessary sums over simples
and scalars, only keeping track of labels, sums, and scalars for sites in I, which are marked in cyan in
the diagram on the left.

We now apply Γ𝜑 and then 𝑝Δ to obtain

where we have used that 𝐵2
𝑝 = 𝐵𝑝 for all un-resolved plaquette operators. We now assume 𝑎𝑖 = 𝑏𝑖 for

all i, and we use the screening property of the blue 𝐵𝑝 operators with respect to the resolved red 𝐵𝑝

operators to obtain
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We can thus reduce to the analysis of the sub-diagram

Above, we claim that the morphism on the left is equal to a scalar times the identity id𝑥1𝑥2𝑥3 ; this scalar
will necessarily be equal to 𝜓(Γ𝜑). First, we use the fusion relation (4.1) to contract along the 𝑟1 string
to obtain

Next, we use the fusion relation (4.1) to contract along the 𝑦1 string to obtain
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We then use the fusion relation (4.1) to contract along the 𝑟2 string to obtain

At this point, it is clear that we can then contract along the 𝑦2 string using (4.1), followed by the 𝑟3
string afterward to obtain

We have just proven the following proposition.

Proposition 5.5. The canonical state 𝜓𝔉 on the boundary net of algebras 𝔉 is given by

𝜓𝔉 (Γ𝜑) =
1
𝐷𝑛

X

∑
𝑐1 ,...,𝑐𝑛
∈Irr(C)

𝑑𝑐1 · · · 𝑑𝑐𝑛 trC (𝜑 · 𝑝𝑐1⊗···⊗𝑐𝑛 ) 𝜑 ∈ EndC (𝑋𝑛)

where 𝑝𝑐1⊗···⊗𝑐𝑛 ∈ EndC (𝑋𝑛) is the orthogonal projection onto 𝑐1 ⊗ · · · ⊗ 𝑐𝑛 ⊂ 𝑋𝑛.

It is clear that the above formula gives a well-defined inductive limit state 𝜓𝔉 on 𝔉.

Remark 5.6. Surprisingly, 𝜓 is a trace on 𝔅 � 𝔉 if and only if C is pointed, i.e., 𝑑𝑐 = 1 for all 𝑐 ∈ Irr(C).
In this case, 𝔉 has a unique Markov trace, namely tr := lim−−→ 𝑑−𝑛𝑋 trC : lim−−→EndC (𝑋𝑛) → C, satisfying

tr
������

· · ·

· · ·
𝜑

������
= tr(𝜑) = tr

������
· · ·

· · ·
𝜑

������
∀ 𝜑 ∈ EndC (𝑋𝑛),

as the centers 𝑍 (𝔉(𝐼)) have dimension globally bounded by # Irr(C) [GdlHJ89]. Thus 𝜓𝔉 is the unique
Markov trace, and 𝔉′′ in the GNS representation of 𝜓𝔉 is a II1 factor. Above, since X is self-dual,

= coev𝑋 ◦ coev†𝑋 = ev†𝑋 ◦ ev𝑋
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where (𝑋, ev𝑋 , coev𝑋 ) is any standard solution of the conjugate equations for X. (Observe⊕
𝑎,𝑏,𝑐,𝑑

C (𝑎𝑏 → 1) ⊗ C (1 → 𝑐𝑑)

is of the form K ⊗K∗ for the Hilbert space K = C (𝑋𝑋 → 1), and summing over an ONB and its adjoint
is independent of the choice of ONB.)

5.3. The KMS condition for the Levin-Wen string net boundary state

We now show that the canonical state 𝜓𝔉 on the fusion categorical net 𝔉 is the unique KMS 𝛽 = 1 state
for a dynamics coming from a certain unbounded operator.

First, we use 𝜓𝔉 to complete 𝔉 to a Hilbert space on which 𝔉 acts by left translation by bounded
operators. The operator 𝐻𝜕 = −

∑
𝑣 ∈Z𝐶𝑣 with 𝐶𝑣 :=

∑
𝑐∈Irr(C) log(𝑑𝑐) id𝑐 ∈ EndC (𝑋) acting locally at

site v is an unbounded operator acting in 𝐿2 (𝔉, 𝜓𝔉), containing each 𝜑 ∈ 𝔉(𝐼) = EndC (𝑋𝑛) in its domain
for each bounded interval I (we write 𝑛 = #𝐼 here). Observe that exp(−𝑖𝑡𝐶𝑣 ) =

⊕
𝑐∈Irr(C) 𝑑

−𝑖𝑡
𝑐 id𝑐

acting at site v, and thus exp(𝑖𝑡𝐻𝜕) =
∏

𝑣 exp(−𝑖𝑡𝐶𝑣 ) acts locally at each site v. For 𝑡 ∈ R and
𝜑 ∈ C (𝑎1 ⊗ · · · ⊗ 𝑎𝑛 → 𝑏1 ⊗ · · · ⊗ 𝑏𝑛) ⊂ 𝔉(𝐼), we have

𝜎𝑡 (𝜑) := exp(𝑖𝑡𝐻𝜕)𝜑 exp(−𝑖𝑡𝐻𝜕) =
∏
𝑢,𝑣 ∈𝐼

exp(−𝑖𝑡𝐶𝑢)𝜑 exp(𝑖𝑡𝐶𝑣 ) =
(
𝑑𝑖𝑡𝑎1 · · · 𝑑

𝑖𝑡
𝑎𝑛

𝑑𝑖𝑡𝑏1
· · · 𝑑𝑖𝑡𝑏𝑛

)
𝜑. (5.7)

Clearly on such 𝜑, 𝑡 ↦→ 𝜎𝑡 (𝜑) can be analytically continued to an entire function, and we observe

𝜎𝑖𝑡 (𝜑) =
(
𝑑−𝑡𝑎1 · · · 𝑑

−𝑡
𝑎𝑛

𝑑−𝑡𝑏1
· · · 𝑑−𝑡𝑏𝑛

)
𝜑 =

(
𝑑𝑡𝑏1

· · · 𝑑𝑡𝑏𝑛
𝑑𝑡𝑎1 · · · 𝑑𝑡𝑎𝑛

)
𝜑.

Recall that 𝜓𝔉 is a KMS-𝛽 state for (𝔉, 𝜎) and 𝛽 > 0 if for all 𝑥, 𝑦 ∈ 𝔉 with y entire (𝑡 ↦→ 𝜎𝑡 (𝑦)
extends to an entire function), 𝜓𝔉 (𝑥𝜎𝑖𝛽 (𝑦)) = 𝜓𝔉 (𝑦𝑥). When 𝜑 : 𝑎1 ⊗ · · · ⊗ 𝑎𝑛 → 𝑏1 ⊗ · · · ⊗ 𝑏𝑛 and
𝜙 : 𝑏1 ⊗ · · · ⊗ 𝑏𝑛 → 𝑎1 ⊗ · · · ⊗ 𝑎𝑛 are in 𝔉(𝐼), we calculate

𝜓𝔉 (𝜑𝜎𝑖𝛽 (𝜙)) =
(
𝑑
𝛽
𝑎1 · · · 𝑑

𝛽
𝑎𝑛

𝑑
𝛽
𝑏1
· · · 𝑑𝛽𝑏𝑛

)
𝜓𝔉 (𝜑𝜙) =

1
D𝑛

𝑋

(
𝑑
𝛽
𝑎1 · · · 𝑑

𝛽
𝑎𝑛

𝑑
𝛽
𝑏1
· · · 𝑑𝛽𝑏𝑛

)
(𝑑𝑏1 · · · 𝑑𝑏𝑛 ) trC (𝜑𝜙)

=
(𝛽=1)

1
D𝑛

𝑋

(𝑑𝑎1 · · · 𝑑𝑎𝑛 ) trC (𝜙𝜑) = 𝜓𝔉 (𝜙𝜑).

We have thus shown 𝜓𝔉 is KMS-1 for (𝔉, 𝜎).
Moreover, 𝜓𝔉 is the unique KMS-1 state on 𝔉 by [Kis00, Proposition 4.1] and uniqueness of the

Frobenius-Perron eigenvector (up to scaling), as the Bratteli diagram of𝔉 = lim−−→𝔉([−𝑛, 𝑛]) is connected
and stationary. Hence letting𝔉′′ be the von Neumann algebra generated by𝔉 in the GNS representation
𝐿2 (𝔉, 𝜓𝔉), we have that 𝔉′′ is a factor. Recall that 𝜓𝔉 and 𝜎 both extend to 𝔉′′, and this extension is
still a KMS-1 state [BR97, Corollary 5.3.4], so the modular automorphism group is given by 𝑡 ↦→ 𝜎𝑡 .
We write (𝜓𝔉, 𝜎) for this extension again.

Lemma 5.8. The canoncial state 𝜓𝔉 is faithful and normal on𝔉′′. Since𝔉 is simple, 𝜓𝔉 is faithful on𝔉.

Proof. By [BR97, Corollary 5.3.9], the canonical cyclic vectorΩ𝜓𝔉 in the GNS representation 𝐿2 (𝔉, 𝜓𝔉)
is separating for 𝔉′′, and thus 𝜓𝔉 = 〈Ω𝜓𝔉 | · |Ω𝜓𝔉 〉 is normal and faithful. The last claim is then
immediate. �

Our next task is to prove the following theorem.
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Theorem 5.9. If there is a 𝑐 ∈ Irr(C) with 𝑑𝑐 ≠ 1, then for all but countably many 𝑡 ∈ R, 𝜎𝑡 from (5.7)
is outer. In particular, 𝔉′′ is a type III factor.

To prove this theorem, we make the following definition.

Definition 5.10. Given a von Neumann algebra M and a faithful state 𝜙, a 𝜙-central sequence is a norm
bounded sequence (𝑥𝑛) ⊂ 𝑀 such that ‖𝑦𝑥𝑛 − 𝑥𝑛𝑦‖𝜙 → 0 for all 𝑦 ∈ 𝑀 𝜙 , where 𝑀 𝜙 is the centralizer
of 𝜙.

Lemma 5.11. Let 𝛼 be a 𝜙-preserving automorphism of M and (𝑥𝑛) a 𝜙-central sequence. If 𝛼 is inner,
then | |𝛼(𝑥𝑛) − 𝑥𝑛 | |𝜙 → 0.

Proof. If 𝛼 = Ad(𝑢) is 𝜙-preserving, then 𝑢 ∈ 𝑀 𝜙 , and 𝜙(𝑦𝑢) = 𝜙(𝑢𝑦) for all 𝑦 ∈ 𝑀 . Thus right
multiplication by u (and 𝑢∗) is a | | · | |𝜙-isometry. We conclude

0 = lim | |𝑢𝑥𝑛 − 𝑥𝑛𝑢 | |𝜙 = lim | |𝑢𝑥𝑛𝑢∗ − 𝑥 | |𝜙 = lim | |𝛼(𝑥𝑛) − 𝑥𝑛 | |𝜙 . �

We also need an observation about centralizers. Recall that there is a canonical 𝜙-preserving
conditional expectation 𝐸 : 𝑀 → 𝑀 𝜙 defined as follows. First, consider the canonical injection
𝜄 : 𝐿2 (𝑀 𝜙 , 𝜙) ↩→ 𝐿2 (𝑀, 𝜙). Then for 𝑥 ∈ 𝑀 , 𝐸 (𝑥) := 𝜄∗𝑥𝜄 ∈ 𝐵(𝐿2 (𝑀 𝜙 , 𝜙)) and commutes with the
bounded right 𝑀 𝜙-action, and thus defines an element of 𝑀 𝜙 .

Now suppose 𝑀 =
⋃

𝑀𝑛
𝑆𝑂𝑇

is a hyperfinite von Neumann algebra with each 𝑀𝑛 finite dimensional.
We then get a conditional expectation 𝐸𝑛 : 𝑀𝑛 → 𝑀

𝜙
𝑛 as above.

Lemma 5.12. Let 𝑡 ↦→ 𝜎
𝜙
𝑡 be the modular automorphism group of M for the state 𝜙. Suppose 𝜎

𝜙
𝑡

preserves 𝑀𝑛 for all n and all 𝑡 ∈ R. Then 𝐸 |𝑀𝑛 = 𝐸𝑛. In particular, 𝑀 𝜙 =
⋃

𝑀
𝜙
𝑛

𝑆𝑂𝑇

.

Proof. Since each 𝜎
𝜙
𝑡 preserves each 𝑀𝑛, 𝐿2 (𝑀𝑛, 𝜙) is an invariant subspace for each unitary Δ 𝑖𝑡

on 𝐿2 (𝑀, 𝜙), where Δ is the modular operator. This means that Δ 𝑖𝑡 commutes with the orthogonal
projection 𝑝𝑛 onto each 𝐿2 (𝑀𝑛, 𝜙) for all n, so the von Neumann algebra generated by all Δ 𝑖𝑡 and 𝑝𝑛 is
abelian. Hence for each 𝑡 ∈ R, the spectral projection 𝑒𝑡 onto the 𝜆 = 1 eigenspace forΔ 𝑖𝑡 commutes with
each 𝑝𝑛. The orthogonal projection e onto the intersection of these eigenspaces is given by 𝑒 =

∏
𝑡 ∈R 𝑒𝑡 ,

where the limit is taken in SOT. Hence e is in the von Neumann algebra generated by the Δ 𝑖𝑡 and 𝑝𝑛,
so it commutes with each 𝑝𝑛. Since each 𝑒𝑡 projects onto the invariant subspace for Δ 𝑖𝑡 , it follows that
e projects onto 𝐿2 (𝑀 𝜙 , 𝜙) embedded in 𝐿2 (𝑀, 𝜙), so 𝐸 (𝑥)Ω = 𝑒𝑥Ω for 𝑥 ∈ 𝑀 . Thus for 𝑥 ∈ 𝑀𝑛,

𝐸 (𝑥)Ω = 𝑒𝑥Ω = 𝑒𝑝𝑛𝑥Ω = 𝑝𝑛𝑒𝑥Ω = 𝑝𝑛𝐸 (𝑥)Ω,

and thus 𝐸 (𝑥)Ω ∈ 𝐿2 (𝑀𝑛, 𝜙). We conclude that 𝐸𝑛 (𝑥) = 𝐸 (𝑥).
To prove the final claim, suppose 𝑥 ∈ 𝑀 𝜙 and 𝑥𝑛 ∈ 𝑀𝑛 with 𝑥𝑛 → 𝑥 SOT. Then 𝐸𝑛 (𝑥𝑛) = 𝐸 (𝑥𝑛) →

𝐸 (𝑥) = 𝑥 SOT. Since 𝐸𝑛 (𝑥𝑛) ∈ 𝑀
𝜙
𝑛 , we are finished. �

Proof of Theorem 5.9. Suppose there is a 𝑐 ∈ Irr(C) with 𝑑𝑐 ≠ 1. Let 𝑡 ∈ R such that 𝑑2𝑖𝑡
𝑐 ≠ 1. We

define a 𝜓𝔉-central sequence using the map ev𝑐 : 𝑐 ⊗ 𝑐 → 1C . To begin, 𝑥0 = ev𝑐 localized at sites 0, 1
in our Z-lattice K. We then set 𝑥𝑛 := 𝜏𝑛 (ev𝑐), where 𝜏𝑛 is translation by 𝑛 ∈ N, i.e.:

𝑥𝑛 = · · · 𝑋

𝑛−1

𝑛
𝑐 𝑐

𝑛+1

𝑋

𝑛+2

· · ·

Note that 𝜎𝑖 (𝑥𝑛) = 𝑑−2
𝑐 𝑥𝑛 for all n. We claim that (𝑥𝑛) is 𝜓𝔉-central. Indeed, for 𝑦 ∈ (𝔉′′)𝜓𝔉 ,

‖𝑦𝑥𝑛‖2
𝜓𝔉

= 𝜓𝔉 (𝑥∗𝑛𝑦∗𝑦𝑥𝑛) = 𝜓𝔉 (𝑦𝑥𝑛𝜎𝑖 (𝑥∗𝑛)𝑦∗) = 𝑑−2
𝑐 𝜓𝔉 (𝑦𝑥𝑛𝑥∗𝑛𝑦∗)

≤ 𝑑−2
𝑐 ‖𝑥𝑛‖2𝜓𝔉 (𝑦∗𝑦) = 𝑑−2

𝑐 ‖𝑥𝑛‖2‖𝑦‖2
𝜓𝔉
. (5.13)
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Let 𝜀 > 0, and choose a finite interval 𝐼 ⊂ Z and 𝑧 ∈ 𝔉(𝐼)𝜓𝔉 such that ‖𝑦 − 𝑧‖𝜓𝔉 < 𝜀 (which exists
as

⋃
𝔉(𝐼) is SOT-dense in 𝔉′′ together with Lemma 5.12). Pick 𝑁 ∈ N large so that 𝑛 > 𝑁 implies

𝑥𝑛𝑧 − 𝑧𝑥𝑛 = 0. We now calculate that when 𝑛 > 𝑁 ,

‖𝑦𝑥𝑛 − 𝑥𝑛𝑦‖𝜓𝔉 = ‖𝑦𝑥𝑛 − 𝑧𝑥𝑛 + 𝑥𝑛𝑧 − 𝑥𝑛𝑦‖𝜓𝔉

≤ ‖(𝑦 − 𝑧)𝑥𝑛‖𝜓𝔉 + ‖𝑥𝑛 (𝑧 − 𝑦)‖𝜓𝔉

≤ (𝑑−2
𝑐 + 1)‖𝑥𝑛‖‖𝑦 − 𝑧‖𝜓𝔉 by (5.13)

≤ (𝑑−2
𝑐 + 1)𝐶 · 𝜀

where𝐶 = ‖𝑥𝑛‖ is independent of n by translation invariance of𝜓𝔉. We conclude that (𝑥𝑛) is𝜓𝔉-central.
However,

‖𝜎𝑡 (𝑥𝑛) − 𝑥𝑛‖𝜓𝔉 = ‖(𝑑2𝑖𝑡
𝑐 − 1)𝑥𝑛‖𝜓𝔉 = |𝑑2𝑖𝑡

𝑐 − 1| · ‖𝑥𝑛‖𝜓𝔉 = |𝑑2𝑖𝑡
𝑐 − 1| · 𝐾

where 𝐾 = ‖𝑥𝑛‖𝜓𝔉 is independent of n. By Lemma 5.11, 𝜎𝑡 is not inner.
The last claim follows immediately by [Tak03b, Theorem VIII.3.14]. �

Remark 5.14. Recall that type III factors can be further classified by a parameter 𝜆 ∈ [0, 1]. In
Appendix A authored by Masaki Izumi, he shows there are two cases, based on the fusion rules for C.
If the set {

𝑑𝑎𝑑𝑏
𝑑𝑐

����𝑎, 𝑏, 𝑐 ∈ Irr(C) and 𝑁𝑐
𝑎𝑏 ≥ 1

}
generates R>0 as a closed subgroup, then 𝔉′′ is of type III1. We call a triple (𝑎, 𝑏, 𝑐) such that 𝑁𝑐

𝑎𝑏 ≥ 1
admissible. If the generated subgroup is not dense, there is a 0 < 𝜆 < 1 such that for all admissible
triples (𝑎, 𝑏, 𝑐), we have

𝑑𝑎𝑑𝑏
𝑑𝑐

= 𝜆𝑍
𝑐
𝑎𝑏 for some 𝑍𝑐

𝑎𝑏 ∈ Z,

and the integers 𝑍𝑐
𝑎𝑏 together generate Z. In this case, 𝔉′′ is of type III𝜆.

Example 5.15. Let C be the Fibonacci category with simple objects 1, 𝜏 satisfying 𝜏 ⊗ 𝜏 � 1 ⊕ 𝜏 and
𝑑𝜏 = 𝜙, the golden ratio. Since

𝑑𝑖𝑡𝜏 = 𝜙𝑖𝑡 = exp(log(𝜙𝑖𝑡 )) = exp(𝑖𝑡 log(𝜙)),

whenever 𝑡 ∈ 2𝜋
log(𝜙)Z, 𝑑𝑖𝑡𝜏 = 1. Since 1𝑖𝑡 is always 1, this says that 𝜎𝑡 is inner for these t. We conclude that

𝔉′′ is not type III1 [Con73, Theorem 3.4.1]. In fact, using the results in Appendix A, we can determine
the type. Note that the only non-trivial admissible triples are (𝜏, 𝜏, 1) and (𝜏, 𝜏, 𝜏), leading to the ratios
𝑑2
𝜏 and 𝑑𝜏 . Since these generate the non-zero part of 𝑆(𝔉′′), it follows that 𝜆 = 𝑑−1

𝜏 and 𝔉′′ is of type
III𝑑−1

𝜏
.

The above example can be modified to any near-group or Tambara-Yamagami UFC.
Remark 5.16. The classification program for topologically ordered phases of matter is about gapped
phases. That is, one considers equivalence classes of (local) Hamiltonians which have a spectral gap
in the thermodynamic limit. This means that in the GNS repersentation, the (unbounded) Hamiltonian
implementing the dynamics in the GNS representation of the ground state has a spectral gap between its
lowest eigenvalue and the rest of the spectrum. Our framework does not make reference to the spectral
gap directly (although in our examples, the nets of projections come from gapped Hamiltonians), but a
natural question to ask is if the canonical state associated to (𝔄, 𝑝) can be realized as the ground state
of a gapped Hamiltonian. Because we want the dynamics to be local, this is a non-trival question.

In the projected entangled pair state (PEPS) setting, a particular class of tensor network states, it
turns out that there is a relation between the spectral gap of the 2D bulk state, and properties of the
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1D boundary state.10 It is known that every PEPS is the ground state of a local Hamiltonian, called
the parent Hamiltonian, but showing if this is gapped is generally very difficult. However, important
progress has been made. For a 2D PEPS, there is a canonical way to define a 1D boundary state, and a
corresponding boundary Hamiltonian [CPSV11]. Based on numerical evidence, it was conjectured that
the bulk Hamiltonian is gapped if and only if the boundary Hamiltonian is short-ranged. Later, it was
shown that if the boundary state is “approximately factorizable”, then the bulk state indeed is gapped,
and that 1D thermal states of finite range Hamiltonians satisfy this property [CPGSV17, KLPG19].

In the example above, we have shown that our boundary state 𝜓𝔉 is a thermal state for a local
Hamiltonian. Moreover, the bulk state is the Levin-Wen model, which has a spectral gap. Hence this
is consistent with the result in the PEPS setting, even if our framework does not make reference to
Hamiltonians. On the other hand, it is known that for the boundary states of topologically ordered PEPS
(such as the G-injective PEPS for G a finite group), the local density operators do not have full rank, in
contrast to KMS states. One can, however, project down to the support of the local density operators and
define a boundary Hamiltonian on this subspace (cf. §5.6 of [KLPG19]). But this is essentially what
happens already on the algebra level in the construction of the boundary algebras.11

Hence it is an interesting question how our results relate to the PEPS setting, also because we do not
assume that the canonical state on the bulk has a PEPS representation. For example, one could ask if our
canonical boundary state coincides with that defined in [CPSV11]. We hope to return to this question
at a later point.

5.4. Cone algebras

In this section, we specialize to the case when our net (𝔄, 𝑝) is a quantum spin system as in Example 2.4
with a translation-invariant net of projections. We now discuss the connection between the canonical
state on the boundary algebra 𝔅 and the analysis of the cone algebras 𝔄(Λ)′′ of the Toric Code and
Kitaev quantum double models from [Oga24]. A cone Λ ⊂ Z2 is a region of the form

Λ

and the algebra 𝔄(Λ) is the C∗-subalgebra of 𝔄 supported on sites in Λ. The cone algebra is then
𝔄(Λ)′′, where the von Neumann completion is taken in the GNS representation on 𝐿2 (𝔄, 𝜓). These
algebras are of interest as these cone regions are used to describe the excitations of topologically ordered
spin systems using superselection theory [Naa11, FN15, Oga22]. In particular, the excitations for Toric
Code [Naa11] and the abelian quantum double model [FN15] have been described by localized and
transportable endomorphisms of the quasi-local algebra 𝔄 (superselection sectors), where the localizing
regions used are precisely these cones. Since the intertwining morphisms between two sectors live in
the cone algebras, and since these endomorphisms can be uniquely extended to the cone algebras in a
WOT-continuous fashion, the cone algebras become of interest when studying these models.

When we have a net of projections (𝑝Λ) satisfying (LTO1), we can use the canonical state 𝜓 to
employ the argument in [Naa11] to show the cone algebras are factors.

10Many 2D states with topological order have a PEPS representation (including the states we consider here), but it is still an
open problem if every gapped quantum phase contains at least one PEPS representative [CGRPG19].

11As we remark at the end of §2.4, we do not know if the boundary state is faithful in general, but it is for all our examples.

https://doi.org/10.1017/fms.2025.16 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.16


34 C. Jones, P. Naaijkens, D. Penneys, and D. Wallick, appendix by M. Izumi

Proposition 5.17. LetΛ be any subset of the lattice. Then𝔄(Λ)′′ in the GNS representation on 𝐿2 (𝔄, 𝜓)
is a factor. When Λ is a cone, 𝔄(Λ)′′ is infinite.
Proof. This is a standard argument, but we repeat it here for convenience. First, since 𝜓 : 𝔄 → C is a
pure state, we have that

𝔄(Λ)′′ ∨ 𝔄(Λ𝑐)′′ = 𝔄′′ = 𝐵(𝐿2 (𝔄, 𝜓)).

This immediately implies

Z (𝔄(Λ)′′)′ = (𝔄(Λ)′′ ∩ 𝔄(Λ)′)′ ⊇ 𝔄(Λ)′ ∨ 𝔄(Λ)′′ ⊇ 𝔄(Λ𝑐)′′ ∨ 𝔄(Λ)′′ = 𝐵(𝐿2 (𝔄, 𝜓)),

and thus 𝔄(Λ)′′ is a factor.
When Λ is a cone, the argument from [Naa11, Theorem 5.1] shows that 𝔄(Λ)′′ is infinite. �

In [Oga24], Ogata proves that the cone algebras 𝔄(Λ)′′ ⊂ 𝐵(𝐿2 (𝔄, 𝜓)) with rough edges for
the Kitaev quantum double model are type II∞ factors by essentially12 showing there is a projection
𝑝Λ ∈ 𝔄(Λ)′′ such that the ground state restricted to the corner 𝑝Λ𝔄(Λ)′′𝑝Λ is a trace. Here, we use the
suggestive notation 𝑝Λ, as the chosen projection in [Oga24] is essentially

∏
𝑠⊂Λ 𝐴𝑠

∏
𝑝⊂Λ 𝐵𝑝 , which

exists as an infimum of projections in𝔄(Λ)′′. (In Kitaev’s quantum double model, 𝐴𝑠 , 𝐵𝑝 are orthogonal
projections, in contrast to 𝐴𝑠 , 𝐵𝑝 from Kitaev’s Toric Code model.)

Kitaev’s quantum double model is simultaneously a model for Hilbfd (𝐺) and Rep(𝐺); really, it is
a model for the quantum double D(𝐺), which is the center of both Hilbfd (𝐺) and Rep(𝐺). (See also
Remark 4.10.) For theC = Hilbfd (𝐺) Levin-Wen model, the compression of the cone algebra 𝑝Λ𝔄(Λ)′′𝑝Λ
is almost13 exactly the von Neumann algebra 𝔉′′ in the GNS representation of the canonical state 𝜓𝔉.
Indeed, consider Λ to be the third quadrant (including the sites on the axes).

Let Δ𝑛 be the 𝑛2-rectangle in Λ with northeast corner at the origin. Given a local operator 𝑥 ∈ 𝔄(Δ𝑛) ⊂
𝔄(Λ), by an argument similar to the proof of (LTO2) for Theorem 4.8, there is a unique 𝜑 ∈ EndC (𝑋2𝑛)
such that for every 𝑘 > 𝑛, 𝑝Δ𝑘 𝑥𝑝Δ𝑘 = Γ𝜑 𝑝Δ𝑘 , where Γ𝜑 now glues 𝜑 onto the northeast boundary of Δ𝑛.

Observe now that lim−−→ 𝑝Δ𝑛+1𝔄(Δ𝑛)𝑝Δ𝑛+1 � 𝔉; on this algebra, the ground state is exactly the canonical
state 𝜓𝔉 from Proposition 5.5 above. Since 𝔄(Λ) = lim−−→𝔄(Δ𝑛) and 𝑝Δ𝑘 → 𝑝Λ SOT, we conclude that
𝑝Λ𝔄(Λ)′′𝑝Λ is exactly the von Neumann algebra 𝔉′′ in the GNS representation of the canonical state
𝜓𝔉. In the case C = Hilbfd (𝐺), which is analogous to Kitaev’s quantum double model, 𝜓𝔉 = tr, the
unique Markov trace as discussed in Remark 5.6.

The recent article [CHK+24] computes the boundary algebras for Kitaev’s quantum double model
and indeed verifies that the canonical state is again a trace. This gives more direct confirmation of the
result in [Oga24] using the argument we just outlined above.

12Really, Ogata proves this for a region Λ′ differing from the original cone by a finite number of edges. She does this by
intersecting Λ′ by larger and larger rectangles and showing that when you cut down by the support projection for the state 𝜓 on
these finite regions, the obtained state is a trace.

13We get the boundary algebra on the nose if the sites in Λ are connected by edges and plaquettes contained entirely in Λ.
However, if sites are disconnected, we will get an amplification of a boundary algebra by a certain finite dimensional algebra.
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However, we remark that when C is not pointed, the cone algebras are no longer type I𝐼∞, but rather
type III!

Corollary 5.18 (Cor. C). The cone algebra 𝔄(Λ)′′ is type II∞ if C is pointed; otherwise 𝔄(Λ)′′ is type
III.

Proof. By Proposition 5.17, 𝔄(Λ)′′ is an infinite factor. Since 𝔉′′ � 𝑝Λ𝔄(Λ)′′𝑝Λ is either a type II1
factor when C is pointed by Remark 5.6 or a type III factor when C is not pointed by Theorem 5.9, the
result follows. �

5.5. Additional boundary states on the Levin-Wen boundary net

In this section, we define some additional states on the Levin-Wen boundary net of algebras 𝔉 in terms
of the UFC AF approximation EndC (𝑋𝑛) where 𝑋 =

⊕
𝑐∈Irr(C) 𝑐. In future work, we will analyze the

superselection theory for the boundary nets for these states.

Example 5.19. Consider the inclusion isometry 𝜄 : 1C → 𝑋 and its adjoint 𝜄†. We denote 𝜄, 𝜄† by a
univalent vertex on the X-string. We define a state 𝜙1 on 𝔉 by

𝜙1(𝜑) := 𝜑

· · ·

· · ·
𝜑 ∈ EndC (𝑋𝑛).

Observe that 𝜙1(𝜑) = 𝜙1(𝜑 ⊗ id𝑋 ) = 𝜙1(id𝑋 ⊗𝜑) as 𝜄† ◦ 𝜄 = id1, so we get a well-defined inductive limit
state.

The previous example can be generalized substantially. Recall that that a Q-system in C is an algebra
object (𝑄, 𝑚, 𝑖) ∈ C satisfying the following axioms:

Here, we denote Q by an orange strand, the multiplication m by a trivialent vertex, and the unit i by a
univalent vertex. We denote adjoints by vertical reflections. In the example below, we use a standard
Q-system which satisfies that 𝑖† ◦ 𝑚 ∈ C (𝑄 ⊗ 𝑄 → 1) and 𝑚† ◦ 𝑖 ∈ C (1 → 𝑄 ⊗ 𝑄) is a standard
(minimal) solution to the conjugate equations [LR97]. We refer the reader to [CHPJP22] for the basics
of Q-systems in unitary tensor categories.

Example 5.20. Pick a standard Q-system𝑄 ∈ C, and for each 𝑐 ∈ Irr(C), choose an ONB {𝛼𝑐} ⊂ C (𝑐 →
𝑄) using the isometry inner product, i.e., 𝛼†𝑐 ◦ 𝛼′𝑐 = 𝛿𝛼𝑐=𝛼′𝑐 and

∑
𝛼𝑐 𝛼𝑐 ◦ 𝛼†𝑐 is the projection onto the

isotypic component of c in Q. Note that
∑

𝑐∈Irr(C)
∑

𝛼𝑐 𝛼𝑐 ◦ 𝛼†𝑐 = id𝑄 and 𝛼†𝑐 ◦ 𝛼′𝑑 = 0 when 𝑐 ≠ 𝑑.
We define 𝜙𝑄 on 𝔉 by

Here, we write a single multi-valent orange vertex to denote the product of n copies of Q, and the orange
cup and cap are the standard solution to the conjugate equations built from 𝑖, 𝑚 and their adjoints.
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One checks that 𝜙𝑄 (𝜑) = 𝜙𝑄 (𝜑 ⊗ id𝑋 ) = 𝜙𝑄 (id𝑋 ⊗𝜑) using associativity and separability of Q and
sphericality of C. We thus get a well-defined inductive limit state.

In [KK12], the authors study topological boundaries of Levin-Wen models in terms of module
categories. A Q-system 𝑄 ∈ C gives the module category C𝑄 of right Q-modules in C. The states above
should correspond to the ground states of the corresponding commuting projector Hamiltonians. In
future work, we plan to analyze these states in more detail and rigorously study their superselection
sectors, making this connection more explicit.

Remark 5.21. Even though the canonical state 𝜓𝔉 is not always tracial, we may consider the canonical
inductive limit trace tr𝔉 as a state on the boundary algebra. This represents the unique infinite temperature
boundary equilibrium state.

6. Bulk topological order from the boundary algebra net in 2+1 D

The boundary algebras in Construction 2.28 can yield highly non-trivial nets. Even starting with an
ordinary spin system such as the Toric Code we already obtain a non-trivial net. In fact, Examples 6.5
and 6.6 below indicate that the algebraic structure of boundary nets contain information about the bulk
topological order. We conjecture that this is a general phenomenon, and that the algebraic structure of
the net of boundary algebras completely captures the topological order of the bulk Hamiltonian alone,
without reference to a Hamiltonian, just the net of projections. From a mathematical perspective, this
observation is somewhat surprising. In this section we provide the key points behind this idea.

The idea is to consider the category of DHR bimodules associated to the boundary net of C∗-algebras
introduced in [Jon24, §3], which was shown to be a braided unitary tensor category for lattices. The
definitions utilize the theory of correspondences over C∗-algebras, for which we refer the reader to
[Jon24, §3.1] and references therein.

Definition 6.1. Consider a rectangleΛ ⊆ L. A right finite correspondence X over the quasi-local algebra
𝔄 is localizable in Λ if there exists a finite projective basis (PP-basis) {𝑏𝑖} ⊆ 𝑋 such that 𝑎𝑏𝑖 = 𝑏𝑖𝑎 for
all 𝑎 ∈ 𝔄(Λ𝑐) := C∗(

⋃
Δ⊂Λ𝑐 𝔄(Δ)). Here {𝑏𝑖} being a PP-basis (after Pimsner and Popa) means that∑

𝑖 𝑏𝑖 〈𝑏𝑖 |𝑥〉 = 𝑥 for all 𝑥 ∈ 𝑋 , where 〈·|·〉 is the 𝔄-valued inner product on X.

Definition 6.2. A right finite correspondence X is called localizable if X is localizable in all rectangles
sufficiently large relative to X, i.e., there exists an 𝑟 > 0 (depending on X) such that for any Λ ⊆ L
containing an 𝑟𝑛-cube, X is localizable in Λ. We denote by DHR(𝔄) the full C∗-tensor subcategory of
right finite correspondences consisting of localizable bimodules.

Definition 6.3. A net satisfies weak algebraic Haag duality if there is a global 𝑡 > 0 such that for all
sufficiently large rectangles Λ, 𝔄(Λ𝑐)′ ⊂ 𝔄(Λ+𝑡 ), where the prime denotes the commutant in 𝔄 and
Λ+𝑡 is as in Definition 2.6. (This definition of weak algebraic Haag duality is equivalent to the one given
in [Jon24].)

By [Jon24, Proposition 2.11], weak algebraic Haag duality is preserved by bounded spread isomor-
phism. More importantly, it allows one to prove the following result, which is central to the bulk-boundary
correspondence. It tells us that the DHR bimodules can be endowed with a braiding, which is expected if
they are to describe the topological excitations in the bulk. Moreover, invariance under bounded spread
isomorphism (up to equivalence) allows us to relate the boundary nets to fusion categorical nets 𝔉, for
which DHR(𝔉) can be found explicitly.

Theorem [Jon24, Theorem B]. If a net 𝔄 satisfies weak algebraic Haag duality, then DHR(𝔄) admits
a canonical braiding. If 𝔄 is isomorphic to 𝔅 by a bounded spread isomorphism, then DHR(𝔄) �
DHR(𝔅).

We can define the braiding in fairly simple terms, and the technicalities arise in showing it is a well-
defined bimodule intertwiner. (This definition and strategy is very similar to that used in [CJP24].) Let
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𝑋,𝑌 be DHR bimodules, {𝑏𝑖}, {𝑐 𝑗 } be projective bases localized in sufficiently large balls F and G
which are sufficiently far apart (see [Jon24] for details). Define

𝑢𝐹,𝐺
𝑋,𝑌 : 𝑋 � 𝑌 → 𝑌 � 𝑋 by 𝑢𝐹,𝐺

𝑋,𝑌

(∑
𝑖, 𝑗

𝑏𝑖 � 𝑐 𝑗𝑎𝑖 𝑗

)
:=

∑
𝑖, 𝑗

𝑐 𝑗 � 𝑏𝑖𝑎𝑖 𝑗 .

One can show that this is a well-defined, unitary bimodule intertwiner which does not depend on the
balls 𝐹, 𝐺 as long as they are sufficiently large and sufficiently far apart. (In the case 𝑛 = 1, they must
also have the same ordering, i.e., we require 𝑓 < 𝑔 for all 𝑓 ∈ 𝐹 and 𝑔 ∈ 𝐺.)

Conjecture 6.4 (Bulk-Boundary Correspondence). For 2D Hamiltonians on a spin system satisfying
(LTO1)–(LTO4), the bulk topological order is the braided DHR category of bimodules of the net of
boundary algebras.

Of course, for the category of DHR bimodules on the boundary to be braided, we need the boundary
net to satisfy weak algebraic Haag duality. This happens in practice (see Examples 6.5 and 6.6) but
appears to not be automatic. Our justification for Conjecture 6.4 is that it gives the correct result for
the Toric Code and for Levin-Wen string nets, as we show in the following two examples, using the
following theorem.

Theorem [Jon24, Theorem C]. If 𝔉 is the 1D net constructed from a unitary fusion category C from
Example 2.5, and 𝑋 ∈ C strongly tensor generates C, then DHR(𝔉) � 𝑍 (C).

Example 6.5. Consider the Toric Code model from §3. The boundary net 𝔅 is isomorphic to ℭ and
𝔇 by Corollary 3.6 and Theorem 3.12, which is also isomorphic to the fusion category net 𝔉 from
Example 2.5 for C = Hilbfd (Z/2) and 𝑋 = 1 ⊕ 𝑔. Because the object 𝑋 = 1 ⊕ 𝑔 strongly tensor generates
Hilbfd (Z/2), the net 𝔉 satisfies weak algebraic Haag duality by [Jon24, Theorem C]. Since 𝔅 and 𝔇 are
isomorphic to𝔉 by bounded spread isomorphism, they also satisfy weak algebraic Haag duality [Jon24,
Proposition 2.11]. Furthermore, by [Jon24, Theorem B], the category of DHR bimodules is preserved
under bounded spread isomorphism, and thus

DHR(𝔅) �
[Jon24, Thm. B]

DHR(𝔇) �
[Jon24, Thm. B]

DHR(𝔉) �
[Jon24, Thm. C]

𝑍 (Hilbfd (Z/2)).

This recovers the well-known bulk topological order of the Toric Code, supporting Conjecture 6.4.

Example 6.6. Just as in the Toric Code case, the boundary net 𝔅 for the Levin-Wen model for C is
isomorphic to the fusion categorical net 𝔉 for the UFC C by Remark 4.9. Thus

DHR(𝔅) � DHR(𝔉) �
[Jon24, Thm. C]

𝑍 (C).

This recovers the well-known bulk topological order of the Levin-Wen string net model, providing
further support for Conjecture 6.4.

6.1. Heuristic for DHR bimodules

Physically, we can think of the category of DHR bimodules as existing in the emergent ‘time’ direc-
tion. This is compatible with the viewpoint of [KZ22], and allows us to think of DHR bimodules as
topologically Wick-rotated point defects, which gives some justification for this correspondence.

Here, we give a heuristic in terms of string operators that is somewhat model independent. Suppose
we have a topological string operator, terminating in an excitation in the boundary K ⊂ L.
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Given a string operator S with endpoint localized at a vertex 𝑣 ∈ K ⊂ L, we define a DHR bimodule Y
for the boundary algebra 𝔅 as follows. We define a defect Hilbert space localized at v, and we define
Y = lim−−→Y𝑛 where each Y𝑛 is defined in a certain rectangle Δ𝑛 (see below for details). Without loss of
generality, we assume that K is oriented vertically and we have chosen a distinguished half-plane H to
the left of K.

First, we define Λ𝑛 to be the smallest sufficiently large rectangle whose right edge has length 2𝑛 + 1
and is centered at v, and Δ𝑛 is the smallest rectangle such that Λ𝑛 �𝑠 Δ𝑛 with 𝜕Λ𝑛 ∩ 𝜕Δ𝑛 ⊂ K. Here is
a cartoon of Λ1 �𝑠 Δ1 with 𝑟 = 3 and 𝑠 = 1:

We define Y𝑛 to be the space of homs between the tensor product Hilbert spaces localized in Λ𝑛 from
sites in our original lattice to sites in our lattice with our new defect Hilbert space. However, we cut down
on both sides by projectors; we precompose with 𝑝Δ𝑛 , and we post-compose with the projector 𝑞Δ𝑛
corresponding to the new tensor product space which carries the defect space at 𝑣 ∈ Δ𝑛. For example,

The right action of 𝔅(𝐼) := 𝔅(Λ𝐼 � Δ 𝐼 ) where 𝜕Λ∩K = 𝐼 is the standard composition of bounded
operators, where we implicitly embed 𝔅(𝐼) ↩→ 𝔅(𝐼)𝑝Δ𝑛 using (LTO4). That is, the right action of
𝑎 ∈ 𝔅(𝐼) is given by Y𝑛 � 𝑓 ↦→ 𝑓 ◦ 𝑎 ∈ Y𝑛. Using the same arguments as in Construction 2.28, this
action should stabilize for large n.

The left action of 𝔅(𝐼) is more interesting. First, we use a unitary hopping operator h to move our
excitation completely out of Δ𝑛 where n is large so that Δ 𝐼 ⊂ Δ𝑛. We then post-compose with a, and
then re-apply the adjoint ℎ† of the hopping operator h to bring the excitation back where it started, i.e.,
Y𝑛 � 𝑓 ↦→ ℎ† ◦ 𝑎 ◦ ℎ ◦ 𝑓 ∈ Y𝑛. Again, using the arguments of Construction 2.28, this action should
stabilize for large n.
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6.2. Implementation of the DHR bimodules for Levin-Wen

We now give a brief construction of a DHR bimodule for the fusion categorical net 𝔉 of the UFC C
associated to a string operator for 𝑧 ∈ 𝑍 (C) following the above heuristic. These give all DHR bimodules
for 𝔉 by [Jon24, Theorem C]. First, we define a defect Hilbert space

where 𝐹 : 𝑍 (C) → C is the forgetful functor. Choosing a distinguished vertex 𝑣 ∈ Z2, we can modify
the total Hilbert space by replacing H𝑣 with D𝑣 at v. For a rectangle Λ containing v, whereas we defined
H(Λ) :=

⊗
𝑢∈Λ H𝑢 , we now define Ĥ(Λ, 𝑣) := D𝑣 ⊗

⊗
𝑢∈Λ\{𝑣 }H𝑢 . We define the projector 𝐶𝑣 at v

to be the operator which selects the copy of 1 ∈ 𝑍 (C) on the orange wavy string. We also modify the
plaquette operator in the northwest plaquette to v to incorporate the half-braiding for z as follows:

By an argument similar to [GHK+24, Proposition 3.2], the coefficient

and thus this modified plaquette operator is a self-adjoint projector. For rectangles Λ containing the
distinguished vertex v, we define the projector 𝑞Λ :=

∏
ℓ⊂Λ 𝐴ℓ

∏
𝑝⊂Λ 𝐵𝑝 , where the plaquette operator

𝐵𝑝 for the plaquette northwest to v has been modified as above.
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For any two 𝑢, 𝑣 ∈ L, rectangle a Λ containing 𝑢, 𝑣, and a localized excitation 𝑧 ∈ Irr(C) at u, we
have a unitary hopping operator 𝐻𝑧

𝑣,𝑢 : Ĥ(Λ, 𝑢) → Ĥ(Λ, 𝑣) given by

where we implicitly use the fusion relation to resolve the z-excitation into each edge along the path.
We now focus on the case that the distinguished vertex lies in our codimension 1 hyperplane K ⊂ Z2.

The DHR-bimodule discussed in the heuristic above is given by

Y 𝑧 = lim−−→Y 𝑧
𝑛 = lim−−→ 𝑞Δ𝑛 Hom

(
H(Λ𝑛) → Ĥ(Λ𝑛, 𝑣)

)
𝑝Δ𝑛 . (6.7)

We now show Y 𝑧
𝑛 carries commuting left and right actions of 𝔉(𝐼) with 𝐼 = 𝜕Λ𝑛 ∩ K. Below, we

write Δ = Δ𝑛 to ease the notation. By Lemma 4.5, 𝑝ΔH(Δ) = 𝑝Δ
⊗

𝑢∈Δ H𝑢 � S (#𝜕Δ), which can be
identified with ⊕

�𝑐𝜕Δ\𝐼 , �𝑐𝐼

C ( �𝑐𝜕Δ\𝐼 → �𝑐𝐼 ) � C (𝑋#𝜕Δ\𝐼 → 𝑋#𝐼 ) 𝑋 :=
⊕

𝑐∈Irr(C)
𝑐

with the skein module inner product, where �𝑐𝜕Δ\𝐼 = 𝑐𝑖1 · · · 𝑐𝑖𝑚 is a tensor product of simples in C over
the sites of 𝜕Δ \ 𝐼, and �𝑐𝐼 = 𝑐 𝑗1 ⊗ · · · ⊗ 𝑐 𝑗𝑛 is a tensor product of simples over the sites of I. Similarly,
by [GHK+24, Theorem 3.4], 𝑞ΔĤ(Δ) = 𝑞Δ

(
D𝑣 ⊗

⊗
𝑢∈Δ\{𝑣 }H𝑢

)
is isomorphic to an ‘enriched’ skein

module of the form ⊕
�𝑐𝜕Δ\𝐼 , �𝑐𝐼

C ( �𝑐𝜕Δ\𝐼 → �𝑐𝐼 ⊗ 𝐹 (𝑧)) � C (𝑋#𝜕Δ\𝐼 → 𝑋#𝐼 ⊗ 𝐹 (𝑧))

where 𝐹 : 𝑍 (C) → C is the forgetful functor. Hence operators in Y 𝑧
𝑛 from (6.7) can be viewed as

operators

C (𝑋#𝜕Δ\𝐼 → 𝑋#𝐼 ) → C (𝑋#𝜕Δ\𝐼 → 𝑋#𝐼 ⊗ 𝐹 (𝑧))

which commute with the left EndC (𝑋#𝜕Δ\𝐼 )-action. By the Yoneda Lemma, we can identify

Y 𝑧
𝑛 = C (𝑋#𝐼 → 𝑋#𝐼 ⊗ 𝐹 (𝑧)).

The right 𝔉(𝐼)-action on Y 𝑧
𝑛 is exactly precomposition, and the left 𝔉(𝐼)-action which uses the hop-

ping operator 𝐻𝑧
𝑣,𝑢 to move the z-excitation out of I before acting and then move it back is exactly
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postcomposition on the 𝑋#𝐼 tensorand. In diagrams:

where the orange 𝐹 (𝑧)-string should be viewed as in the target of the above morphism.
Now suppose J is obtained from I by adding k boundary points below I and k boundary points above

I, where we view I as the right hand side of 𝜕Λ𝑛. Then as we have

Λ𝑛+2𝑘 �𝑠 Δ𝑛+2𝑘

∪ ∪
Λ𝑛 �𝑠 Δ𝑛

such that 𝜕Λ𝑛 ∩ 𝜕Δ𝑛 = 𝐼 = 𝜕Λ𝑛 ∩ 𝜕Δ𝑛+2𝑘 ,

we get an inclusion Y 𝑧
𝑛 ↩→ Y 𝑧

𝑛+2𝑘 by adding 2𝑘 through strings as follows:

Observe that the inclusion Y 𝑧
𝑛 ↩→ Y 𝑧

𝑛+2𝑘 is compatible with the inlcusions 𝔉(𝐼) ↩→ 𝔉(𝐽) from
Lemma 2.13 under both the left and right actions. We thus get an inductive limit 𝔉 −𝔉 bimodule Y 𝑧 ,
and this bimodule is exactly the one constructed for 𝑧 ∈ 𝑍 (C) in [Jon24]. It follows that this bimodule
is localizable.

6.3. Boundary states and W∗-algebras in DHR(𝔅)

In this section, we focus on the case of a translation invariant 2D lattice model (𝔄, 𝑝) satifying (LTO1)–
(LTO4), and let 𝔅 be the 1D boundary net. For a separable C∗-algebra A, we write Rep(𝐴) for the
W∗-category of separable Hilbert space representations [GLR85]. If 𝐻, 𝐾 ∈ Rep(𝐴), we say H is quasi-
contained in K, denoted 𝐻 � 𝐾 , if H is isomorphic to a summand of 𝐾𝑛 for some 𝑛 ∈ N ∪ {∞}. The
reader should compare the following definition to [SV93, NS97].

Definition 6.8. Let 𝔅 be a net of finite dimensional C∗-algebras on the lattice Z as in Definition 2.1, and
let 𝜙 be a state on 𝔅. A superselection sector of 𝜙 is a Hilbert space representation H of 𝔅 satisfying
the following property:

◦ There exists an 𝑟 > 0 such that for any interval I of length at least r, 𝐻 |𝔅(𝐼 𝑐) � 𝐿2 (𝔅, 𝜙) |𝔅(𝐼 𝑐) .

Here, 𝔅(𝐼𝑐) is the unital C∗-subalgebra of 𝔅 generated by the 𝔅(𝐽) for all 𝐽 ⊂ 𝐼𝑐 . We denote by
Rep𝜙 (𝔅) the full W∗-subcategory of Rep(𝔅) of superselection sectors of 𝜙.

Note that by definition, Rep𝜙 (𝔅) is unitarily Cauchy complete (closed under orthogonal direct sums
and orthogonal summands). We now assume that DHR(𝔅) is a unitary tensor category, so that each
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𝑋 ∈ DHR(𝔅) is dualizable and 𝔅 has trivial center, which is satisfied in all of our examples. We refer
the reader to [KW00, KPW04, CHPJP22] for dualizable criteria for Hilbert C∗ 𝔅−𝔅 correspondences.

Proposition 6.9. Rep𝜙 (𝔅) is a DHR(𝔅)-module W∗-category with action given by 𝑋 ⊲ 𝐻 := 𝑋 �𝔅 𝐻.

Proof. Suppose 𝐻 ∈ Rep𝜙 (𝔅). Then there exists some 𝑟 > 0 so that for any interval I with at least r
sites, 𝐻 |𝔅(𝐼 𝑐) � 𝐿2 (𝔅, 𝜙) |𝔅(𝐼 𝑐) . For 𝑋 ∈ DHR(𝔅), there exists some 𝑠 > 0 such that X is localizable in
any interval with at least s sites. We claim 𝑋 �𝔅𝐻 ∈ Rep𝜙 (𝔅) with localization constant 𝑡 = max{𝑟, 𝑠}.

Indeed, let I be an interval with at least t sites, and let {𝑏𝑖}𝑛𝑖=1 be a PP-basis of X such that 𝑥𝑏𝑖 = 𝑏𝑖𝑥 for
all 𝑥 ∈ 𝔅(𝐼𝑐), as in Definition 6.1. Observe that 〈𝑏𝑖 |𝑏 𝑗〉 ∈ 𝔅(𝐼𝑐)′ ∩𝔅. Since the action of 𝔅(𝐼𝑐)′ ∩𝔅
commutes with 𝔅(𝐼𝑐) in any representation, we have 𝑀𝑛 (𝔅(𝐼𝑐)′ ∩𝔅) ⊂ End𝔅(𝐼 𝑐 ) (𝐻⊕𝑛).

Now consider the orthogonal projection 𝑃 = (〈𝑏𝑖 |𝑏 𝑗〉)𝑖, 𝑗 ∈ 𝑀𝑛 (𝔅(𝐼𝑐)′ ∩ 𝔅), so 𝐾 := 𝑃𝐻⊕𝑛 is a
summand of (𝐻 |𝔅(𝐼 𝑐 ) ) ⊕𝑛. We claim (𝑋 �𝔅 𝐻) |𝔅(𝐼 𝑐 ) is unitarily isomorphic to K. Consider the map
𝑣 : 𝑋 ⊗ 𝐻 → 𝐾 given by

𝑣

(
𝑛∑
𝑖=1

𝑏𝑖 ⊗ 𝜉𝑖

)
:= 𝑃

⎡⎢⎢⎢⎢⎢⎣
𝜉1
...
𝜉𝑛

⎤⎥⎥⎥⎥⎥⎦ .
By definition of P, v extends to a unitary isomorphism 𝑣̃ : 𝑋 �𝔅 𝐻 → 𝐾 . Observe 𝑣̃ intertwines the
𝔅(𝐼𝑐)-actions as each 𝑏𝑖 centralizes 𝔅(𝐼𝑐).

We have thus shown 𝑋 �𝔅 𝐻 |𝔅(𝐼 𝑐 ) � 𝐻 |𝔅(𝐼 𝑐 ) . Since 𝐻 |𝔅(𝐼 𝑐 ) � 𝐿2 (𝔅, 𝜙) |𝔅(𝐼 𝑐) and � is transitive,
the claim follows. �

Note there is a distinguished object 𝐿2 (𝔅, 𝜙) ∈ Rep𝜙 (𝔅), which gives this module W∗-category
a canonical pointing (more specifically, it gives the full module subcategory generated by DHR(𝔅)
and 𝐿2 (𝔅, 𝜙) a pointing). By [JP17], we get a canonical W∗-algebra object 𝐴𝜙 ∈ Vect(DHR(𝔅)) :=
Fun(DHR(𝔅)op → Vect) associated to (Rep𝜙 (𝔅), 𝐿2 (𝔅, 𝜙)) given by

𝐴𝜙 (Y) := HomRep𝜙 (𝔅) (Y �𝔅 𝐿2 (𝔅, 𝜙) → 𝐿2 (𝔅, 𝜙)).

Here, the W∗-algebra object 𝐴𝜙 = EndDHR(𝔅) (𝐿2 (𝔅, 𝜙)) is in general too large to live in DHR(𝔅), but
rather it lies in the ind-completion Vect(DHR(𝔅)). We refer the reader to [JP17] for more details.

Definition 6.10. For a boundary state 𝜙 on 𝔅, we define the boundary order to be the isomorphism
class of the W∗-algebra object 𝐴𝜙 ∈ Vect(DHR(𝔅)).

We call the state 𝜙 a topological boundary if 𝐴𝜙 ∈ Vect(DHR(𝔅)) is Lagrangian. (Recall that a W∗-
algebra object in a braided tensor category is called Lagrangian if it is commutative and its category of
local modules is trivial.)

Example 6.11. When C is a fusion category, the canonical Lagrangian in 𝑍 (C) is 𝐼 (1C) where 𝐼 : C →
𝑍 (C) is adjoint to the forgetful functor 𝑍 (C) → C, as 𝐼 (1C) = End𝑍 (C) (1C) for the module action of
𝑍 (C) on C given by the forgetful functor.

Remark 6.12. In future work we will study fusion of superselection sectors for topological boundaries.
One could actually use the above definition of topological boundary to define fusion of superselection
sectors, as 𝐴𝜙-modules in Vect(DHR(𝔅)) again form a tensor category.

We now specialize to the case that 𝔅 = 𝔉, the fusion categorical net from our UFC C. All the
states constructed from Q-systems in Example 5.20 above give topological boundaries. Indeed, every
Q-system in the fusion category C gives a canonical Lagrangian algebra in the center 𝑍 (C) � DHR(𝔉).
We explicitly illustrate this for the case 𝜙 = 𝜙1 for the trivial Q-system 1 ∈ C, which corresponds to the
canonical Lagrangian algebra in 𝑍 (C). The argument for the other Q-systems in C is analogous, and we
plan to carry out a more systematic analysis of these states in future work.
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Let M𝜙 be the full subcategory of Rep𝜙 (𝔉) generated by 𝐿2 (𝔉, 𝜙1) under the DHR(𝔉)-action under
taking orthogonal direct sums and orthogonal subobjects.

Construction 6.13. We now build a left 𝑍 (C)-module functor C →M𝜙 .
First, for each non-empty interval 𝐼 ⊂ Z, we have a fully faithful functor 𝐻−(𝐼) : Cop → Rep(𝔉(𝐼))

given by

𝐻𝑎 (𝐼) := C (𝑎 → 𝑋#𝐼 ) 〈𝜂 |𝜉〉 := trC (𝜂† ◦ 𝜉).

Observe that 𝐻𝑎 (𝐼) is a left𝔉(𝐼)-module where the action is given by postcomposition. That this𝔉(𝐼)-
action is compatible with † in 𝔉 follows by the unitary Yoneda embedding [JP17, Remark 2.28] (see
also [GMP+23, Remark 3.61]). Moreover, precomposition with 𝜑 ∈ C (𝑎 → 𝑏) gives a bounded 𝔉(𝐼)-
linear map 𝜑∗ : 𝐻𝑏 (𝐼) → 𝐻𝑎 (𝐼), and (𝜑∗)† = (𝜑†)∗ again by the unitary Yoneda embedding. We thus
have a unitary functor 𝐻−(𝐼) : Cop → Rep(𝔉(𝐼)) which is fully faithful by the Yoneda Lemma as every
simple object is a subobject of 𝑋#𝐼 .

For 𝐼 ⊂ 𝐽, we have an isometry 𝐻𝑎 (𝐼) ↩→ 𝐻𝑎 (𝐽) given by tensoring with 𝐽 \ 𝐼 copies of the unit
isometry 𝜄 : 1C → 𝑋 .

Moreover, the inclusion isometry 𝐻𝑎 (𝐼) ↩→ 𝐻𝑎 (𝐽) is compatible with the left actions of𝔉(𝐼) ↩→ 𝔉(𝐽),
so the inductive limit 𝐻𝑎 := lim−−→𝐻𝑎 (𝐼) has a left 𝔉-action. We thus get a unitary functor 𝐻 : Cop →
Rep(𝔉). Finally, we precompose with the canonical unitary duality C → Cmop,14 noting that Cmop � Cop

as categories where we have forgotten the monoidal structure. This gives us a functor 𝐻̌ : C → Rep(𝔉)
given by 𝐻̌𝑎 := 𝐻𝑎.

We can identify 𝐻̌1C � 𝐿2 (𝔉, 𝜙) as follows. We have a unitary isomorphism 𝐿2 (𝔉(𝐼), 𝜙) � 𝐻̌1C (𝐼) =
C (1C → 𝑋#𝐼 ) given by

𝜑Ω =
𝜑

· · ·

· · ·

· · ·

↦→ 𝜑

· · ·

· · ·
,

and this map clearly intertwines the left𝔉(𝐼)-action. Taking inductive limits, we get an𝔉-linear unitary
𝐿2 (𝔉, 𝜙) � 𝐻̌1C .

We now construct a natural unitary isomorphism 𝜇𝑧,𝑐 : Y 𝑧 �𝔉 𝐻̌𝑐 → 𝐻̌𝑧�𝑐 , where Y 𝑧 is the DHR
bimodule associated to 𝑧 ∈ 𝑍 (C) from §6.2 above. This isomorphism will clearly satisfy unital and
associative coherences, which will endow 𝐻̌ with the structure of a 𝑍 (C)-module functor. Observe that
𝑍 (C) � 𝑍 (C)rev � 𝑍 (Cop) as tensor categories where we have forgotten the braiding, and the forgetful
functor 𝑍 (Cop) → Cop is dominant. Since 𝐻̌1 � 𝐿2 (𝔉, 𝜙) ∈ Rep𝜙 (𝔉), this will show that the image of
𝐻̌ lies in M𝜙 .

Now for every interval 𝐼 ⊂ Z containing the defect point for Y 𝑧 , we have a unitary isomorphism

𝜇𝑧,𝑐 (𝐼) : Y 𝑧 (𝐼) �𝔉 (𝐼 ) 𝐻̌𝑐 (𝐼) = Y 𝑧 (𝐼) �𝔉 𝐻𝑐 (𝐼) → 𝐻̌𝑧�𝑐 (𝐼) = 𝐻𝑐⊗𝐹 (𝑧) (𝐼)

by gluing diagrams and bending the z-string down and to the right of 𝑐:

14Here, mop means taking both the monoidal and arrow opposite of C.
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The isomorphism 𝜇𝑧,𝑐 (𝐼) clearly satisfies the unit and associativity axioms for a modulator. Moreover,
if 𝐼 ⊂ 𝐽, we get a commutative square

Y 𝑧 (𝐽) �𝔉 (𝐽 ) 𝐻̌𝑐 (𝐽)
𝜇𝑧,𝑐 (𝐽 )−−−−−−→ 𝐻̌𝑧�𝑐 (𝐽)

↩→ ↩→

Y 𝑧 (𝐼) �𝔉 (𝐼 ) 𝐻̌𝑐 (𝐼)
𝜇𝑧,𝑐 (𝐼 )−−−−−−→ 𝐻̌𝑧�𝑐 (𝐼).

We thus get a well-defined unitary 𝜇𝑧,𝑐 := lim−−→ 𝜇𝑧,𝑐 (𝐼) : Y 𝑧 �𝔉 𝐻̌𝑐 → 𝐻̌𝑧�𝑐 , which endow 𝐻̌ with the
structure of a 𝑍 (C)-module functor.

With these considerations, we can prove the following theorem.

Theorem 6.14. Let C be a UFC, let 𝔉 be the associated fusion categorical net, and let 𝜙 = 𝜙1 be the
boundary state associatied to the trivial Q-system from Example 5.19 above. The functor 𝐻̌ : C →
Rep𝜙 (𝔉) from Construction 6.13 above is a 𝑍 (C)-module equivalence onto M𝜙 . In particular, 𝜙 is a
topological boundary.

Proof. We first show 𝐻̌ is fully faithful. To show Rep(𝔉) (𝐻̌𝑎 → 𝐻̌𝑏) � C (𝑏 → 𝑎) � C (𝑎 → 𝑏)
for 𝑎, 𝑏 ∈ C, we show that every Rep(𝔉)-intertwiner 𝑇 : 𝐻̌𝑎 → 𝐻̌𝑏 maps 𝐻̌𝑎 (𝐼) → 𝐻̌𝑏 (𝐼) for every
interval 𝐼 ⊂ Z. Since every 𝐻̌−(𝐼) is fully faithful, and since 𝐻̌ = lim−−→ 𝐻̌−(𝐼), this will prove the result.

For 𝐼 ⊂ Z and 𝑛 ≥ #𝐼, we define an orthogonal projection 𝑞𝑛 (𝐼) which is id𝑋 on sites in I and 𝜄𝜄† on
the n sites to the left and on the n sites to the right of I, where 𝜄 : 1C → 𝑋 is the inclusion.

𝑞𝑛 (𝐼) := · · ·
· · ·

· · ·

· · ·

· · ·
∈ 𝔉(𝑛 + 𝐼 + 𝑛).

Since T intertwines the𝔉-actions, we have that 𝑇𝑞𝑛 (𝐼) = 𝑞𝑛 (𝐼)𝑇 . Thus if 𝑥 ∈ 𝐻̌𝑎 (𝐼), 𝑥 = 𝑞𝑛 (𝐼)𝑥 for all
𝑛 ∈ N, and thus 𝑇𝑥 = 𝑇𝑞𝑛 (𝐼)𝑥 = 𝑞𝑛 (𝐼)𝑇𝑥 for all 𝑛 ∈ N. We claim this means 𝑇𝑥 ∈ 𝐻̌𝑏 (𝐼). Indeed, 𝐻̌𝑏 is
filtered by the finite dimensional subspaces 𝐻̌𝑏 (𝐼), and thus we can write 𝐻̌𝑏 as an orthogonal direct sum

𝐻̌𝑏 = 𝐻̌𝑏 (𝐼) ⊕
⊕
𝑛∈N

[𝐻̌𝑏 (𝑛 + 𝐼 + 𝑛)  𝐻̌𝑏 ((𝑛 − 1) + 𝐼 + (𝑛 − 1))] .

Observe that the subspace 𝐻̌𝑏 (𝑛 + 𝐼 + 𝑛)  𝐻̌𝑏 ((𝑛 − 1) + 𝐼 + (𝑛 − 1)) on the right is given by adding a
id𝑋 −𝜄𝜄† on both outer-most strands. Now writing 𝑇𝑥 = (𝑇𝑥)𝐼 +

∑
𝑛∈N(𝑇𝑥)𝑛 in this decomposition, we

see that 𝑇𝑥 = 𝑞𝑛 (𝐼)𝑇𝑥 for all n, and 𝑞𝑛 (𝐼) (𝑇𝑥)𝑘 = 0 for all 𝑘 = 1, . . . , 𝑛−1. We conclude that (𝑇𝑥)𝑛 = 0
for all n, and thus 𝑇𝑥 = (𝑇𝑥)𝐼 ∈ 𝐻̌𝑏 (𝐼) as claimed.

Now since M𝜙 was defined as the full W∗-subcategory of Rep𝜙 (𝔉) generated by 𝐿2 (𝔉, 𝜙1) under
the DHR(𝔉) � 𝑍 (C)-action, 𝐻̌ is dominant. Since both C and M𝜙 are unitarily Cauchy complete, 𝐻̌ is
a unitary equivalence. �
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A. Path algebras and type III factors, by Masaki Izumi

In this appendix authored by Masaki Izumi, we further classify the type of the factor𝔉′′ for the boundary
states 𝜓𝔉 (see §5.2) of Levin-Wen models (defined in §4) in the type III case. We first prove a general
result on the type of the von Neumann algebra 𝑀 = 𝐵′′ generated by a certain KMS state 𝜙 on an
AF-algebra B defined in terms of a finite oriented graph G. The key point in the proof is that we can
identify Krieger’s ratio set [Kri70b], which gives us Connes’ invariant 𝑆(𝑀) [Con73]. See [FM77b, §2]
or [Tak03a, §XIII.2] for the equality between the two sets. This result can then be applied to the setting
of the Levin–Wen model, leading to a proof of the claim in Remark 5.14.

A.1. Path C∗-algebras

Throughout this appendix, let G be a finite oriented graph. We write G (0) and G (1) for the set of vertices
and edges respectively. With 𝑠, 𝑟 : G (1) → G (0) we denote the source and range maps. We furthermore
assume the choice of a distinguished vertex ∗ ∈ G (0) . For simplicity, we make the following assumption:

◦ For any pair of vertices 𝑣1, 𝑣2, there is an edge 𝑒 ∈ G (1) with 𝑠(𝑒) = 𝑣1 and 𝑟 (𝑒) = 𝑣2.

We define

Path𝑛𝑣 (G) := {𝜉1𝜉2 · · · 𝜉𝑛 |𝑟 (𝜉𝑖) = 𝑠(𝜉𝑖+1), 𝑠(𝜉1) = 𝑣}

as the set of all paths of length n starting at the vertex v. For any finite path 𝜉, we will write |𝜉 | for its
length, and 𝑟 (𝜉) for the range of the last edge in the path.

The paths starting in the distinguished vertex ∗ can be used to define a tower of finite dimensional
C∗-algebras (𝐵𝑛) as in [Ocn88, GdlHJ89, EK98, JS97, JP11]. For each pair 𝜉, 𝜂 ∈ Path𝑛∗ (G), define the
formal symbol |𝜉〉〈𝜂 | and let

𝐵𝑛 := span
C

{
|𝜉〉〈𝜂 |

��𝜉, 𝜂 ∈ Path𝑛∗ (G), 𝑟 (𝜉) = 𝑟 (𝜂)
}
,

with multiplication and ∗-structure given by

|𝜉1〉〈𝜉2 | · |𝜂1〉〈𝜂2 | := 𝛿𝜉2=𝜂1 |𝜉1〉〈𝜂2 | and |𝜉〉〈𝜂 |∗ := |𝜂〉〈𝜉 |.

Since G is finite, 𝐵𝑛 is a C∗-algebra which is the direct sum of
��G (0) �� full matrix algebras. For each

𝑣 ∈ G (0) , the corresponding summand is an 𝑛𝑣 × 𝑛𝑣 matrix algebra, where 𝑛𝑣 is the number of paths
from ∗ to v of length n. One can think of |𝜉〉〈𝜂 | as a loop of length 2𝑛 on G starting at ∗ where you first
travel 𝜉 to 𝑟 (𝜉) = 𝑟 (𝜂), and then travel 𝜂 in the reverse direction. This gives the loop algebra convention
of [JP11].

The inclusion 𝜄𝑛 : 𝐵𝑛 ↩→ 𝐵𝑛+1 is given by

𝜄𝑛 (|𝜉1〉〈𝜉2 |) :=
∑

𝑟 ( 𝜉1)=𝑠 (𝜂)
|𝜂 |=1

|𝜉1𝜂〉〈𝜉2𝜂 |. (A.1)

That is, we extend each pair of paths by one edge in all possible ways satisfying the loop condition,
and sum the result. By our assumptions on G, 𝜄𝑛 : 𝐵𝑛 ↩→ 𝐵𝑛+1 is injective and unital, and the Bratteli
diagram can be identified with G. We write

𝐵 := lim−−→
𝑛→∞

𝐵𝑛

for the corresponding AF-algebra.
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A.2. Edge and vertex weighting and a KMS state

To define a KMS state on B we need to specify a weight on our graph G.

Definition A.2. Consider a weight 𝑤 : G (0) ∪ G (1) → (0,∞) on the vertices and edges of G. Then for
𝜉 ∈ Path𝑛𝑣 (G), we set 𝑤(𝜉) := 𝑤(𝜉1)𝑤(𝜉2) · · ·𝑤(𝜉𝑛).

We now assume that our weight w on G satisfies the following condition:

◦ there is a 𝛿 > 0 satisfying that for all 𝑣 ∈ G (0) , we have∑
|𝜂 |=1
𝑠 (𝜂)=𝑣

𝑤(𝜂)𝑤(𝑟 (𝜂)) = 𝛿𝑤(𝑣). (A.3)

In the final subsection of this appendix we will give an example of such a weight.

Remark A.4. Observe the condition above is a system of linear equations, with one equation and variable
for each vertex 𝑣 ∈ G (0) . So any solution of this system is a formula for the weights of the vertices as
a function of the weights of the edges, with possibly some free parameters. If all edges have weight 1,
then w is a Frobenius-Perron eigenvector associated to 𝛿. If all vertices are weighted 1, this is roughly
the 𝛿-fairness condition of [DCY15] (without the balancing and even number of loops conditions).

Let us now introduce dynamics on B. For 𝑡 ∈ R and |𝜉〉〈𝜂 | ∈ 𝐵𝑛, define

𝜎𝑡 (|𝜉〉〈𝜂 |) :=
𝑤(𝜉)𝑖𝑡

𝑤(𝜂)𝑖𝑡 |𝜉〉〈𝜂 |. (A.5)

This induces a one-parameter group of ∗-automorphism on 𝐵𝑛 which is compatible with the inclusion
𝐵𝑛 ↩→ 𝐵𝑛+1 defined above. Hence we can extend it to a one-parameter group 𝜎𝑡 ∈ Aut(𝐵).

Next define a state 𝜙 on 𝐵𝑛 by

𝜙(|𝜉〉〈𝜂 |) := 𝛿𝜉=𝜂
1
𝛿𝑛

𝑤(𝜉)𝑤(𝑟 (𝜉)), 𝜉, 𝜂 ∈ Path𝑛∗ (G). (A.6)

Using A.3, it is straightforward to see that 𝜙 is a positive linear functional on 𝐵𝑛 with 𝜙(1) = 1 which is
compatible with the inclusion 𝐵𝑛 ↩→ 𝐵𝑛+1. Hence 𝜙 extends uniquely to a state on B by Corollary 2.19.

Furthermore, observe that every |𝜉〉〈𝜂 | is entire with respect to 𝜎𝑡 , and when 𝛽 = −1,

𝜙(|𝜉1〉〈𝜂1 | · 𝜎−𝑖 (|𝜉2〉〈𝜂2 |)) =
𝑤(𝜉2)
𝑤(𝜂2)

𝜙(|𝜉1〉〈𝜂1 | · |𝜉2〉〈𝜂2 |)

= 𝛿𝜂1=𝜉2𝛿𝜉1=𝜂2

𝑤(𝜉2)
𝛿𝑛𝑤(𝜂2)

𝑤(𝜉1)𝑤(𝑟 (𝜉1))

= 𝛿𝜂1=𝜉2𝛿𝜉1=𝜂2

1
𝛿𝑛

𝑤(𝜉2)𝑤(𝑟 (𝜂2))

= 𝛿𝜂1=𝜉2𝛿𝜉1=𝜂2

1
𝛿𝑛

𝑤(𝜉2)𝑤(𝑟 (𝜉2))

= 𝜙(|𝜉2〉〈𝜂2 | · |𝜉1〉〈𝜂1 |)

for all |𝜉1〉〈𝜂1 |, |𝜉2〉〈𝜂2 | ∈ 𝐵𝑛 (recall here that 𝑟 (𝜉2) = 𝑟 (𝜂2) as |𝜉2〉〈𝜂2 | ∈ 𝐵𝑛).
Since the Bratteli diagram for B is connected and stationary, by [Kis00, Proposition 4.1] and unique-

ness of the Frobenius-Perron eigenvector (up to scaling), 𝜙 is the unique 𝛽 = −1 KMS state for the
dynamics 𝜎.

We have just proved the following proposition.

Proposition A.7. The state 𝜙 is the unique 𝛽 = −1 KMS state on B for the dynamics 𝜎. Thus 𝑀 := 𝐵′′

acting on 𝐿2 (𝐵, 𝜙) is a factor.
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Note that B is simple because G is connected. Hence as before (see §5.3), 𝜙 extends to a faithful
normal state on 𝐵′′ acting on 𝐿2 (𝐵, 𝜙), and the extension of 𝜎 to 𝐵′′ corresponds to the modular
automorphism group with respect to the canonical cyclic vector in 𝐿2 (𝐵, 𝜙).

A.3. Type of the von Neumann completion using Krieger’s ratio set

Recall that a maximal abelian von Neumann subalgebra A of a von Neumann algebra M is called
a Cartan subalgebra if there exists a faithful normal conditional expectation 𝐸 : 𝑀 → 𝐴 and its
normalizer generates M, i.e., N𝑀 (𝐴)′′ = 𝑀 where

N𝑀 (𝐴) := {𝑢 ∈ U (𝑀) |𝑢𝐴𝑢∗ = 𝐴}.

This latter condition, called regularity of 𝐴 ⊂ 𝑀 , is equivalent to 𝑀 = 𝐴 ∨N𝑀 (𝐴).
We now consider the von Neumann algebra 𝑀 := 𝐵′′ in the GNS representation 𝐿2 (𝐵, 𝜙) and the

abelian von Neumann subalgebra

𝐴 :=

{
|𝜉〉〈𝜉 |

�����𝜉 ∈ ⋃
𝑛

Path𝑛∗ (G)
} ′′

.

Lemma A.8. A is a Cartan subalgebra of M.
Proof. Clearly A is abelian. Note that for each 𝑛 ∈ N, the algebra 𝐵𝑛 is globally fixed by all 𝜎𝑡 , that is
𝜎𝑡 (𝐵𝑛) = 𝐵𝑛 for all 𝑡 ∈ R. Since 𝜎 is the modular automorphism group for 𝜙, by a theorem of Takesaki
[Tak03b, Theorem IX.4.2] this implies the existence of a sequence of normal conditional expectations
𝐸𝑛 : 𝑀 → 𝐵𝑛 such that 𝜙 ◦ 𝐸𝑛 = 𝜙. Then for all 𝑥 ∈ 𝑀 , we have that 𝐸𝑛 (𝑥) → 𝑥 in the strong-∗
topology. Indeed, to see this, recall that on the unit ball of M, the topology induced by ‖ · ‖𝜙 coincides
with the 𝜎-strong topology [Tak02, Proposition III.5.4]. It follows that for 𝑥 ∈ 𝑀 , we can choose
(𝑥𝑖) ∈

⋃
𝑛 𝐵𝑛 with ‖𝑥𝑖 − 𝑥‖𝜙 → 0. Then

lim
𝑛
‖𝐸𝑛 (𝑥) − 𝑥‖𝜙 = lim

𝑛
‖𝐸𝑛 (𝑥 − 𝑥𝑖) − (𝑥 − 𝑥𝑖) + 𝐸𝑛 (𝑥𝑖) − 𝑥𝑖 ‖𝜙

≤ 2‖𝑥 − 𝑥𝑖 ‖𝜙 + lim
𝑛→∞

‖𝐸𝑛 (𝑥𝑖) − 𝑥𝑖 ‖𝜙︸��������������������︷︷��������������������︸
=0

for all i, and similarly for 𝑥∗. Hence ‖𝐸𝑛 (𝑥)−𝑥‖𝜙+‖𝐸𝑛 (𝑥∗)−𝑥∗‖𝜙 → 0 for all 𝑥 ∈ 𝑀 . Since (𝐸𝑛 (𝑥)−𝑥)𝑛
and (𝐸𝑛 (𝑥∗) − 𝑥∗)𝑛 are both norm-bounded sequences, the claim follows.

Now consider 𝑎′ ∈ 𝑀 ∩ 𝐴′, so that 𝐸𝑛 (𝑎′) ∈ (𝐴∩ 𝐵𝑛)′ ∩ 𝐵𝑛. Because 𝐴∩ 𝐵𝑛 is maximal abelian in
𝐵𝑛, it follows that 𝐸𝑛 (𝑎′) ∈ 𝐴 ∩ 𝐵𝑛, and from the strong-∗ convergence of 𝐸𝑛 (𝑎′) to 𝑎′, it follows that
𝑎′ ∈ 𝐴, and hence A is a MASA.

Since A is also globally fixed by all 𝜎𝑡 , as above there exists a normal conditional expectation
𝐸 : 𝑀 → 𝐴 such that 𝜙 ◦ 𝐸 = 𝜙. Since 𝜙 is faithful, it follows that E is faithful as well.

It remains to check that 𝐴 ⊂ 𝑀 is regular. For each pair of paths 𝜉, 𝜂 ∈ Path𝑛∗ (G) with 𝑟 (𝜉) = 𝑟 (𝜂)
but 𝜉 ≠ 𝜂, define the operator

𝑢 𝜉 ,𝜂 := |𝜉〉〈𝜂 | + |𝜂〉〈𝜉 | + 1 − |𝜉〉〈𝜉 | − |𝜂〉〈𝜂 |. (A.9)

It is straightforward to check that these are self-adjoint unitaries, and that 𝑢 𝜉 ,𝜂𝐴𝑢
∗
𝜉 ,𝜂 = 𝐴, and therefore

𝑢 𝜉 ,𝜂 ∈ N𝑀 (𝐴). Finally, note that 𝑢 𝜉 ,𝜂 |𝜂〉〈𝜂 | = |𝜉〉〈𝜂 |, from which it is clear that A together with the
𝑢 𝜉 ,𝜂 generate 𝑀 = 𝐵′′. �

By the Feldman–Moore Theorem [FM77b, Theorem 1] 𝑀 � 𝐿R where R is a countable standard
relation on a Borel measure space Ω and 𝐴 � 𝐿∞(Ω, 𝜇). We will show this explicitly for M by
identifying a measure space (Ω, 𝜇) such that 𝐴 = 𝐿∞(Ω, 𝜇), together with an action 𝐺 � Ω, where G

https://doi.org/10.1017/fms.2025.16 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.16


48 C. Jones, P. Naaijkens, D. Penneys, and D. Wallick, appendix by M. Izumi

is the group generated by the unitaries of (A.9) in Lemma A.8. The equivalence relation R is then the
orbit equivalence relation. This explicit description makes it possible to compute Krieger’s ratio sets
and determine the type of M.

We first claim that 𝐴 = 𝐿∞(Ω, 𝜇), where we define the measure space Ω as follows. Let Ω be the
Cantor set Path∞∗ (G) of infinite paths on G. For 𝜉 ∈ Path𝑛∗ (G), define the cylinder set

𝐸 𝜉 := {𝜂 ∈ Ω | 𝜉𝑖 = 𝜂𝑖 for all 𝑖 ≤ |𝜉 |}.

For two finite paths 𝜉, 𝜂 starting at ∗ and |𝜉 | ≤ |𝜂 | we have 𝐸 𝜉 ∩ 𝐸𝜂 = ∅ if the first |𝜉 | edges of 𝜂 do not
agree with those of 𝜉, or 𝐸𝜂 ⊂ 𝐸 𝜉 otherwise. Thus the cylinder sets form a basis for a topology on Ω.

Let 𝜒𝐸𝜉 be the indicator function for a cylinder set. Then we can map 𝜒𝐸𝜉 ↦→ |𝜉〉〈𝜉 | ∈ 𝐴, and this is
compatible with multiplication on both sides: 𝜒𝐸𝜉 · 𝜒𝐸𝜂 = 𝜒𝐸𝜉∩𝐸𝜂 ↦→ |𝜉〉〈𝜉 | · |𝜂〉〈𝜂 |. For 𝜉 ∈ Path𝑛∗ (G),
define

𝜇(𝐸 𝜉 ) := 𝜙(|𝜉〉〈𝜉 |) = 1
𝛿𝑛

𝑤(𝜉)𝑤(𝑟 (𝜉)). (A.10)

Since 𝜙 is a normal state, it follows from the discussion above that 𝜇 extends to a regular Borel measure
on Ω. The map 𝜋 := 𝜒𝐸𝜉 ↦→ |𝜉〉〈𝜉 | mentioned earlier extends to a ∗-homomorphism of a (SOT) dense
subalgebra of 𝐿∞(Ω, 𝜇) onto a dense subalgebra of A. Write 𝜇 again for the state on 𝐿∞(Ω, 𝜇) induced
by the probability measure. Since 𝜇( 𝑓 ) = 𝜙(𝜋( 𝑓 )) on this dense subalgebra and both states are normal
and faithful, it follows that 𝜋 extends to a spatial isomorphism of von Neumann algebras, and we may
write 𝐴 = 𝐿∞(Ω, 𝜇).

Now let G be the (countable) group generated by our normalizing unitaries 𝑢 𝜉 ,𝜂 as in (A.9) which
together with A generate M. We now identify the action of G on A under the identification 𝐴 = 𝐿∞(Ω, 𝜇).
Since 𝑀 = 𝐿R acts on 𝐿2 (Ω, 𝜇), we first identify the action of the ket-bra operators |𝜉〉〈𝜂 | for
𝜉, 𝜂 ∈ Path𝑛∗ (G) such that 𝑟 (𝜉) = 𝑟 (𝜂). Given 𝜔 ∈ Ω, we can write 𝜔 = 𝜁 𝜁 ′, where 𝜁 consists of the first
n edges in the path, so 𝜔 ∈ 𝐸𝜁 , and 𝜁 ′ the rest of the infinite path. We have

|𝜉〉〈𝜂 | · 𝜔 =

{
𝜉𝜁 ′ if 𝜂 = 𝜁, equivalently 𝜔 ∈ 𝐸𝜂 = 𝐸𝜁

0 otherwise,

and thus the action of (the generators of) G on Ω is given as follows:

𝑢 𝜉 ,𝜂 · 𝜔 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜂𝜁 ′ if 𝜁 = 𝜉, equivalently 𝜔 ∈ 𝐸 𝜉 = 𝐸𝜁

𝜉𝜁 ′ if 𝜁 = 𝜂, equivalently 𝜔 ∈ 𝐸𝜂 = 𝐸𝜁

𝜔 otherwise.
(A.11)

In particular, 𝑢 𝜉 ,𝜂 sends single points inΩ to single points, since 𝑟 (𝜉) = 𝑟 (𝜂). Note that 𝑢 𝜉 ,𝜂 replaces
the first part of the path 𝜔 with the path 𝜂 (resp. 𝜉) if 𝜔 starts with the path 𝜉 (resp. 𝜂). In all other cases
it acts trivially. Thus (A.11) is indeed a G-action on Ω. Since the cylinder sets generate the topology on
Ω, G acts by Borel automorphisms on Ω, and we have the standard Borel orbit equivalence relation

R := {(𝜔, 𝑔 · 𝜔) | 𝑔 ∈ 𝐺, 𝜔 ∈ Ω},

which is a Borel subset of Ω × Ω. Note that two elements in Ω are equivalent if and only if the
corresponding infinite paths differ in finitely many places only.
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For every 𝑢 𝜉 ,𝜂 ∈ 𝐺, we define a new measure via 𝑢 𝜉 ,𝜂 · 𝜇(𝐸) := 𝜇(𝑢−1
𝜉 ,𝜂 · 𝐸) as usual. The Radon–

Nikodym derivatives are given by

𝑑 (𝑢 𝜉 ,𝜂 · 𝜇)
𝑑𝜇

(𝜔) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑤 (𝜂)
𝑤 ( 𝜉 ) 𝜔 ∈ 𝐸 𝜉
𝑤 ( 𝜉 )
𝑤 (𝜂) 𝜔 ∈ 𝐸𝜂

1 otherwise,
(A.12)

which can be directly verified using (A.10) and (A.11). In particular, it follows that 𝜇 is quasi-invariant
with respect to the action of G.

To compute Connes’ invariant 𝑆(𝑀) it suffices to determine Krieger’s ratio set 𝑟 (Ω, 𝐺, 𝜇) [Kri70a].
We recall the definition here (adapted slightly to the case at hand).

Definition A.13 [Kri70a]. The ratio set 𝑟 (Ω, 𝐺, 𝜇) is the set of all 𝑟 ∈ [0,∞) such that for all measurable
𝐴 ⊂ Ω with 𝜇(𝐴) > 0 and 𝜖 > 0, there is a measurable 𝐵 ⊂ 𝐴 with 𝜇(𝐵) > 0 together with a 𝑔 ∈ 𝐺
such that 𝑔 · 𝐵 ⊂ 𝐴 satisfying that ����𝑑 (𝑔 · 𝜇)𝑑𝜇

(𝜔) − 𝑟

���� < 𝜖 (A.14)

for almost every 𝜔 ∈ 𝐵.

We claim that the ratio set is generated by quotients of the form 𝑤(𝜉)/𝑤(𝜂), where 𝜉 and 𝜂 are finite
paths starting in ∗ and ending in the same vertex. To prove this we will use the following lemma.

Lemma A.15. For all 𝜉, 𝜂 ∈ Path𝑛∗ (G) with 𝑟 (𝜉) = 𝑟 (𝜂), there is an ℓ > 0 such that for all cylinder sets
𝐸𝜁 , the following holds: There are 𝐴, 𝐵 ⊂ 𝐸𝜁 , together with a 𝑔 ∈ 𝐺 with 𝑔2 = 1 such that 𝑔 · 𝐴 = 𝐵
and the following bounds are satisfied:

𝜇(𝐴) ≥ ℓ𝜇(𝐸𝜁 ) and 𝜇(𝐵) ≥ ℓ𝜇(𝐸𝜁 ).

Moreover, 𝐴, 𝐵 and g can be chosen such that we have

𝑑 (𝑔 · 𝜇)
𝑑𝜇

(𝜔) =
{
𝑤 ( 𝜉 )
𝑤 (𝜂) for 𝜔 ∈ 𝐴
𝑤 (𝜂)
𝑤 ( 𝜉 ) for 𝜔 ∈ 𝐵,

and g acts trivially on 𝐸𝜁 ′ if 𝐸𝜁 ∩ 𝐸𝜁 ′ = ∅.

Proof. For each vertex 𝑣 ∈ G (0) , choose an edge 𝑒𝑣,∗ ∈ G (1) going from v to ∗. Define

ℓ :=
1

𝛿𝑛+1
𝑚

𝑀
𝑤(𝑟 (𝜂)) · min{𝑤(𝜉), 𝑤(𝜂)},

where 𝑚 := min𝑣 ∈G (0) 𝑤(𝑒𝑣,∗) is the minimum weight of the edges ending in the distinguished point
and 𝑀 := max𝑣 ∈G (0) 𝑤(𝑣) the maximum vertex weight. Define the two sets 𝐴 := 𝐸𝜁 𝑒𝑟 (𝜁 ) ,∗𝜂 and
𝐵 := 𝐸𝜁 𝑒𝑟 (𝜁 ) ,∗ 𝜉 . Then clearly 𝐴, 𝐵 ⊂ 𝐸𝜁 . Using (A.10) it follows that

𝜇(𝐴)
𝜇(𝐸𝜁 )

=
1

𝛿𝑛+1
𝑤(𝑒𝑟 (𝜁 ) ,∗)𝑤(𝜂)𝑤(𝑟 (𝜂))

𝑤(𝑟 (𝜁)) ≥ ℓ.

Since 𝑟 (𝜉) = 𝑟 (𝜂), we obtain 𝜇(𝐵) ≥ ℓ𝜇(𝐸𝜁 ) similarly.
Now set 𝑔 := 𝑢𝜁 𝑒𝑟 (𝜁 ) ,∗ 𝜉 ,𝜁 𝑒𝑟 (𝜁 ) ,∗𝜂 . Then 𝑔 · 𝐸𝜁 ⊂ 𝐸𝜁 , 𝑔 · 𝐴 = 𝐵, and 𝑔2 = 1. The claim on the Radon–

Nikodym derivative follows from (A.12). Finally, if 𝐸𝜁 ∩ 𝐸𝜁 ′ = ∅, our choice of g acts trivially on 𝐸𝜁 ′

by (A.11). �

Theorem A.16. For all 𝑛 ∈ N and 𝜉, 𝜂 ∈ Path𝑛𝑣 (G) with 𝑟 (𝜉) = 𝑟 (𝜂), we have 𝑤 ( 𝜉 )
𝑤 (𝜂) ∈ 𝑟 (Ω, 𝐺, 𝜇).
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Proof. We first consider the case where 𝑣 = ∗. Let 𝐸 ⊂ Ω be a Borel set with 𝜇(𝐸) > 0. Since 𝜇 is
regular, for all 𝜖 > 0, there exists 𝑈 ⊂ Ω open such that 𝐸 ⊂ 𝑈 and 𝜇(𝑈 \ 𝐸) < 𝜖𝜇(𝐸). The cylinder
sets generate the topology of Ω, and since two cylinder sets are either disjoint or one is contained in the
other, it follows that there is a sequence (𝜉𝑘 ) ⊂

⋃
𝑛 Path𝑛∗ (G) such that

𝑈 =
∞⋃
𝑘=1

𝐸 𝜉𝑘 , 𝐸 𝜉𝑖 ∩ 𝐸 𝜉 𝑗 = ∅ whenever 𝑖 ≠ 𝑗 ,

where we allow 𝐸 𝜉𝑘 to be the empty set. Choose 𝑚 ∈ N such that 𝜇(𝑈) −
∑𝑚

𝑘=1 𝜇(𝐸 𝜉𝑘 ) < 𝜖𝜇(𝐸) and
set 𝐸 ′ :=

⋃𝑚
𝑘=1 𝐸 𝜉𝑘 . Then

𝜇(𝐸Δ𝐸 ′) = 𝜇(𝐸 \ 𝐸 ′) + 𝜇(𝐸 ′ \ 𝐸) ≤ 𝜇(𝑈 \ 𝐸 ′) + 𝜇(𝑈 \ 𝐸) < 2𝜖 𝜇(𝐸).

For each 𝑘 = 1, . . . , 𝑚, choose sets 𝐴𝑘 , 𝐵𝑘 ⊂ 𝐸 𝜉𝑘 and a group element 𝑔𝑘 as in the statement of
Lemma A.15. Set 𝐴 :=

⋃
𝑘 𝐴𝑘 and 𝐵 :=

⋃
𝑘 𝐵𝑘 . Since the sets 𝐸 𝜉𝑘 are disjoint it follows that

𝜇(𝐴) ≥ ℓ𝜇(𝐸 ′) and 𝜇(𝐵) ≥ ℓ𝜇(𝐸 ′),

where ℓ is the constant from Lemma A.15 (note that it only depends on the choice of 𝜉, 𝜂). Let
𝑔 = 𝑔1𝑔2 · · · 𝑔𝑚 (since the 𝑔𝑘 act non-trivially only on mutually disjoint sets, they all commute). Again
by Lemma A.15,

𝑑 (𝑔 · 𝜇)
𝑑𝜇

(𝜔) =
{
𝑟 for 𝜔 ∈ 𝐴

𝑟−1 for 𝜔 ∈ 𝐵,

where we set 𝑟 := 𝑤(𝜉)/𝑤(𝜂).
Using the results so far, we obtain the following estimates:

𝜇((𝐸 ∩ 𝐴)Δ𝐴) ≤ 𝜇(𝐸 \ 𝐸 ′) < 2𝜖 𝜇(𝐸)

𝜇(𝑔(𝐸 ∩ 𝐵)Δ𝐴) = 𝜇(𝑔((𝐸 ∩ 𝐵)Δ𝐵)) = 1
𝑟
𝜇((𝐸 ∩ 𝐵)Δ𝐵) < 2𝜖

𝑟
𝜇(𝐸)

𝜇(𝐴) ≥ ℓ𝜇(𝐸 ′) > ℓ(𝜇(𝑈) − 𝜖 𝜇(𝐸)) ≥ ℓ(1 − 𝜖)𝜇(𝐸).

In the second line, we used that 𝑔𝐴 = 𝐵 and 𝑔2 = 1 in the first equality, and that the Radon–Nikodym
derivative is equal to 𝑟−1 on B in the second equality. The last inequality in the last line follows because
𝐸 ⊂ 𝑈.

Define the following sets:

𝐴1 := 𝐸 ∩ 𝐴 and 𝐴2 := 𝑔(𝐸 ∩ 𝐵) ∩ 𝐴.

Then clearly 𝜇(𝐴) ≥ 𝜇(𝐴1) + 𝜇(𝐴2) − 𝜇(𝐴1 ∩ 𝐴2). Without loss of generality (since ℓ is independent
of 𝜖) we may assume that 𝜖 < ℓ

(ℓ+2+2𝑟−1) We claim that in this case, we have 𝜇(𝐴1 ∩ 𝐴2) > 0. Indeed,
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we calculate using the estimates above

𝜇(𝐴1 ∩ 𝐴2) ≥ 𝜇(𝐴1) + 𝜇(𝐴2) − 𝜇(𝐴)

≥ 𝜇(𝐴) − 2𝜖 𝜇(𝐸) + 𝜇(𝐴) − 2𝜖
𝑟
𝜇(𝐸) − 𝜇(𝐴)

>

(
ℓ(1 − 𝜖) − 2𝜖 − 2𝜖

𝑟

)
𝜇(𝐸)

=

(
ℓ −

(
ℓ + 2 + 2

𝑟

)
𝜖

)
𝜇(𝐸)

> 0.

Finally, define

𝐴′ = (𝐸 ∩ 𝐴) ∩ 𝑔(𝐸 ∩ 𝐵) ⊂ 𝐸.

Then by construction we have 𝑔 · 𝐴′ ⊂ 𝐸 , 𝜇(𝐴′) ≥ 𝜇(𝐴1 ∩ 𝐴2) > 0, and moreover 𝑑 (𝑔 ·𝜇)
𝑑𝜇 (𝜔) = 𝑟 for

all 𝜔 ∈ 𝐴′. Hence 𝑟 ∈ 𝑟 (Ω, 𝐺, 𝜇) as claimed.
To prove the general case, pick an arbitrary finite path 𝜁 with 𝑠(𝜁) = ∗ and 𝑟 (𝜁) = 𝑣. Then

𝜁𝜉, 𝜁𝜂 ∈ Path𝑛+|𝜁 |∗ (G), so 𝑤(𝜁𝜉)/𝑤(𝜁𝜂) ∈ 𝑟 (Ω, 𝐺, 𝜇). But since 𝑤(𝜁𝜉) = 𝑤(𝜁)𝑤(𝜉) and similarly for
𝑤(𝜁𝜂), the claim follows. �

We note that the Krieger ratio set can more generally be described in terms of the “asymptotic range”
of a Radon–Nikodym cocycle (see [FM77a, Defn. 8.2]). But the asymptotic range is equal to the Connes
invariant S [Con73] of the Krieger factor by [FM77b, Proposition 2.11]. Thus we arrive at the following
corollary.

Corollary A.17. Let 𝐺𝑅 be the subgroup of R>0 generated by the set{
𝑤(𝜉)
𝑤(𝜂)

����𝑛 ∈ N, 𝜉, 𝜂 ∈ Path𝑛∗ (G), 𝑟 (𝜉) = 𝑟 (𝜂)
}
.

Then the Connes invariant 𝑆(𝑀) is given by the closure of 𝐺𝑅.

Proof. From the proof of Theorem A.16 it is enough to consider paths starting in ∗. By the same
theorem, each ratio 𝑤 ( 𝜉 )

𝑤 (𝜂) is in 𝑆(𝑀). Since 𝑆(𝑀) is a closed subset of [0,∞), and 𝑆(𝑀) ∩ R>0 is a
multiplicative subgroup of R>0, the closure of 𝐺𝑅 is contained in 𝑆(𝑀).

Now each 𝑔 ∈ 𝐺 is a finite product of operators of the form 𝑢 𝜉𝑘 ,𝜂𝑘 from (A.9). One can then see (for
example, using (A.12) and the chain rule for Radon–Nikodym derivatives) that all values of 𝑑 (𝑔 ·𝜇)

𝑑𝜇 are
products of ratios of the weights of a pair of paths as above. Hence 𝑆(𝑀) cannot be any larger. �

A.4. Application: type of the boundary algebra in the Levin-Wen model

We associate a graph G to a unitary fusion category C as follows. The set of vertices is G (0) = Irr(C),
with distinguished vertex ∗ = 1C the tensor unit. For 𝑐1, 𝑐2 ∈ G (0) , the set of edges G (1) is a disjoint
union of orthonormal bases for C (𝑐2 → 𝑎 ⊗ 𝑐1 ⊗ 𝑏) over 𝑎, 𝑏 ∈ Irr(C), with the isometry inner product
determined by 〈 𝑓 |𝑔〉 id𝑐2 = 𝑓 † ◦ 𝑔. Since C is rigid, there is an edge between every pair of vertices. Thus
we can define algebras 𝐵𝑛 again as in §A.1.

To illustrate this, first consider the case 𝑛 = 1. Recall that 𝑋 =
⊕

𝑐∈Irr(C) 𝑐. We can identify an edge
𝜉 from ∗ to c with a morphism 𝜉 ∈ C (𝑐 → 𝑎 ⊗ 𝑏), which we can identify with 𝜉 ∈ C (𝑐 → 𝑋 ⊗ 𝑋).
If 𝜂 is another edge from ∗ to c, we have 𝜉 ◦ 𝜂† ∈ End(𝑋 ⊗2), which can be identified with |𝜉〉〈𝜂 |. By
considering all 𝑐 ∈ Irr(C), we see that 𝐵1 = EndC (𝑋 ⊗2).
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If 𝜉1 ∈ C (𝑐2 → 𝑎1⊗𝑐1⊗𝑏1) and 𝜉2 ∈ C (𝑐3 → 𝑎2⊗𝑐2⊗𝑏2) are two edges, the path 𝜉 := 𝜉1𝜉2 is defined
by (id𝑎2 ⊗𝜉1 ⊗ id𝑏2) ◦ 𝜉2. As before, we can again see 𝜉 as an element of C (𝑐3 → 𝑋 ⊗ 𝑋 ⊗ 𝑐1 ⊗ 𝑋 ⊗ 𝑋).
Generalizing this to paths of length n, it follows that each algebra 𝐵𝑛 � EndC (𝑋 ⊗2𝑛). Moreover, the
inclusion 𝜄𝑛 : 𝐵𝑛 ↩→ 𝐵𝑛+1 as defined in (A.1) is given by 𝜉 ↦→ id𝑋 ⊗𝜉 ⊗ id𝑋 .

Next we define a weight w on G. For vertices, set 𝑤(𝑐) := 𝑑𝑐 , where 𝑑𝑐 is the quantum dimension of
𝑐 ∈ Irr(C). Since an edge from 𝑐1 to 𝑐2 is an element 𝜂 ∈ C (𝑐2 → 𝑎 ⊗ 𝑐1 ⊗ 𝑏) for some irreducible a and
b, we can set 𝑤(𝜂) := 𝑑𝑎𝑑𝑏 . We see (A.3) is satisfied with 𝛿 =

(∑
𝑐∈Irr(C) 𝑑

2
𝑐

)2: for fixed 𝑐1 ∈ Irr(C),∑
𝑎,𝑏,𝑐2∈Irr(C)

∑
𝜂∈ONB(𝑐2→𝑎⊗𝑐1⊗𝑏)

𝑤(𝜂)𝑤(𝑟 (𝜂)) =
∑

𝑎,𝑏,𝑐2 ,𝑒∈Irr(C)
𝑁𝑐2
𝑎𝑒𝑁

𝑒
𝑐1𝑏

𝑑𝑎𝑑𝑏𝑑𝑐2

=
∑

𝑎,𝑏,𝑒∈Irr(C)
𝑁𝑒
𝑐1𝑏

𝑑2
𝑎𝑑𝑏𝑑𝑒 =

���
∑

𝑎,𝑏∈Irr(C)
𝑑2
𝑎𝑑

2
𝑏
���𝑑𝑐1 .

Now suppose that 𝑐 ≺ 𝑎 ⊗ 𝑏 for 𝑎, 𝑏, 𝑐 ∈ Irr(C). That is, c appears in the direct sum composition of
𝑎 ⊗ 𝑏. We call such a triple (𝑎, 𝑏, 𝑐) admissible.

Lemma A.18. The following set{
𝑑𝑎𝑑𝑏
𝑑𝑐

���� (𝑎, 𝑏, 𝑐) is admissible
}
⊂ R>0

generates a dense subgroup of 𝑆(𝑀).

Proof. Let (𝑎, 𝑏, 𝑐) be an admissible triple. Then there exist non-zero

𝜉 ∈ C (𝑐 → 𝑎 ⊗ 1 ⊗ 𝑏) and 𝜂 ∈ C (𝑐 → 𝑐 ⊗ 1 ⊗ 1).

We can choose both of them to be edges from 1 to c, and identify 𝜉 and 𝜂 with paths of length one. Note
that 𝑤(𝜉) = 𝑑𝑎𝑑𝑏 and 𝑤(𝜂) = 𝑑𝑐 . Hence by Corollary A.17 it follows that 𝑑𝑎𝑑𝑏

𝑑𝑐
∈ 𝑆(𝑀).

Now let 𝜉 = 𝜉1 · · · 𝜉𝑛 be a path from ∗ to c, with 𝜉𝑖 ∈ C (𝑐𝑖+1 → 𝑎𝑖 ⊗ 𝑐𝑖 ⊗ 𝑏𝑖), and thus 𝑐1 = ∗ and
𝑐𝑛+1 = 𝑐. Using the fusion rules and semisimplicity, it follows that such a (non-zero) 𝜉𝑖 only exists if
there is some k such that (𝑐𝑖 , 𝑏𝑖 , 𝑘) and (𝑎𝑖 , 𝑘, 𝑐𝑖+1) are both admissible. Using the first part, this means
that (

𝑑𝑐𝑖𝑑𝑏𝑖
𝑑𝑘

)
·
(
𝑑𝑎𝑖𝑑𝑘

𝑑𝑐𝑖+1

)
=
𝑑𝑎𝑖𝑑𝑏𝑖𝑑𝑐𝑖
𝑑𝑐𝑖+1

is in the generated group. Taking the product over all 𝑖 = 1, . . . , 𝑛 gives 𝑤(𝜉)/𝑑𝑐 . If 𝜂 is another path
from ∗ to c of the same length, the same argument gives that 𝑤(𝜂)/𝑑𝑐 is in the generated group. Thus
𝑤(𝜉)/𝑤(𝜂) is as well. The claim then follows from Corollary A.17. �

From the characterization of the net of algebras (𝐵𝑛), it follows that the limit algebra B is the same as
that of the fusion categorical net 𝐼 ↦→ 𝔉(𝐼) for the Levin–Wen model studied in §5.2. Using the proof of
Lemma A.18 and the observations made earlier, we see that the state 𝜙 defined on B via (A.6) is exactly
the canonical boundary state 𝜓𝔉, which is described explicitly in Proposition 5.5. (Alternatively, since
the dynamics (A.5) on B is inverse to the dynamics (5.7) on 𝔉, the 𝛽 = −1 KMS state 𝜙 on B agrees
with the 𝛽 = 1 KMS state 𝜓𝔉 on 𝔉.) Thus we have obtained the following lemma.

Lemma A.19. The von Neumann algebra M is isomorphic to the boundary algebra 𝔉′′ for the Levin–
Wen model for C.

We are now in a position to determine the type of the boundary algebra. Since 𝑆(𝑀) is closed in
[0,∞) and 𝑆(𝑀) ∩ R>0 is a subgroup of R>0 it follows that 𝑆(𝑀) must be one of the following four
cases [Con73]:
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◦ 𝑆(𝑀) = {1}, in which case M is semi-finite. From Lemma A.18 this is true if and only if all 𝑑𝑎 = 1,
i.e., C is pointed. In this case, it is also easy to see directly that the state 𝜙 defined in §A.2 is a trace.

◦ 𝑆(𝑀) = {0, 1}, in which case M is type III0. Note that 𝑔 · 𝜇 and 𝜇 are mutually absolutely con-
tinuous. Hence the Radon–Nikodym derivative 𝑑 (𝑔 ·𝜇)

𝑑𝜇 cannot be zero on a non-negligible set. By
Corollary A.17, if 0 ∈ 𝑆(𝑀), it must be the limit of non-zero points in 𝑆(𝑀). This is in contradiction
with 1 being the only other point in 𝑆(𝑀), so the type III0 case cannot occur.

◦ 𝑆(𝑀) = {0}∪ {𝜆𝑛 |𝑛 ∈ Z} for some 𝜆 ∈ (0, 1), in which case M is of type III𝜆. Note that Lemma A.18
implies that for each admissible triple (𝑎, 𝑏, 𝑐), there is an integer 𝑍𝑐

𝑎𝑏 such that

𝑑𝑎𝑑𝑏
𝑑𝑐

= 𝜆𝑍
𝑐
𝑎𝑏 ,

and the set {𝑍𝑐
𝑎𝑏} generates Z as a group.

◦ 𝑆(𝑀) = [0,∞), in which case M is of type III1. This is equivalent to the set{
𝑑𝑎𝑑𝑏
𝑑𝑐

���� (𝑎, 𝑏, 𝑐) admissible
}

(A.20)

generating a dense subgroup of R>0.

This result refines Theorem 5.9.
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