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Abstract
Human memory is reconstructive and thus fundamentally imperfect. One of its critical flaws is false recall—the erroneous 
recollection of unstudied items. Despite its significant implications, false recall poses a challenge for existing computational 
models of serial recall, which struggle to provide item-specific predictions. Across six experiments, each involving 100 young 
adults, we address this issue using the Embedded Computational Framework of Memory (eCFM) that integrates existing 
accounts of semantic and episodic memory. While the framework provides a comprehensive account of memory process-
ing, its innovation lies in the inclusion of a comprehensive lexicon of word knowledge derived from distributional semantic 
models. By integrating a lexicon that captures orthographic, phonological, and semantic relationships within an episodic 
memory model, the eCFM successfully accounts for patterns of veridical serial recall (e.g., proportion correct, intralist 
errors, omissions) while also capturing false recall (e.g., extralist errors including both critical lures and non-critical lures). 
We demonstrate the model’s capabilities through simulations applied to six experiments, with lists of words (Experiments 
1A, 1B, 2A, and 2B) and non-words (Experiments 3A and 3B) that are either related or unrelated semantically (Experiments 
1A and 1B), phonologically (Experiments 2A and 2B), or orthographically (Experiments 3A and 3B). This approach fills 
a computational gap in modelling serial recall and underscores the importance of integrating traditionally separate areas of 
semantic and episodic memory to provide more precise predictions and holistic memory models.

Keywords  Serial recall · False recall · Distributional semantic models · Computational model

Verbal memory plays a pivotal role in all facets of our 
lives, yet it is fundamentally imperfect and prone to errors 
(Bartlett, 1932). Understanding these errors is one of the 
most important and challenging questions in cognitive sci-
ence, with significant theoretical and practical ramifications 
(Henson, 1998). Among the various memory errors, false 
recall or extralist errors, which occur when you recall an 
unpresented word like 'club' after studying a list of words 
like 'golf, member, ball, dance, organization, house' (Tehan, 
2010), poses a significant challenge for short-term memory 

models. In this study, we take up the challenge and propose a 
mechanistic explanation of false recall based on our recently 
proposed Embedded Computational Framework of Memory 
(eCFM: Guitard et al., 2025).

False recall (Deese, 1959; Roediger & McDermott, 
1995) has been instrumental in revealing the reconstruc-
tive nature of human memory, with substantial implica-
tions for our understanding of memory processes (see 
Chang & Brainerd, 2021). Despite its importance, most 
empirical and computational efforts have focused on rec-
ognition tasks (e.g., Reid & Jamieson, 2023; Arndt & 
Hirshman, 1998), where participants identify whether 
a word was studied or is new after studying a list, and 
free recall tasks (e.g., Kimball et al., 2007; Sirotin et al., 
2005), where participants recall all words they remember 
from a list without considering their order. These para-
digms have yielded a rich and consistent pattern of results 
across semantically related (e.g., Deese, 1959; Roediger & 
McDermott, 1995), phonologically related (e.g., Sommers 
& Lewis, 1999), and orthographically related words (e.g., 
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Ballardini et al., 2008) and non-words (e.g., Zeelenberg 
et al., 2005). Taken together, those results demonstrate 
the generality of the phenomenon over the three dominant 
principal linguistic dimensions.

While prior research in recognition and free recall has 
provided valuable theoretical and practical insights (e.g., 
Benedek & Schetky, 1987; Loftus, 1996, 2003; Schacter 
et al., 1997), serial recall offers a unique opportunity to 
explore a rich and precise pattern of veridical and erroneous 
memories unmatched by other memory protocols (Henson, 
1998). Here, we leverage this unique opportunity to investi-
gate false recall through both empirical and computational 
methods. This approach seeks to address the difficulties that 
traditional memory models (e.g., Brown et al., 2007; Hen-
son, 1998; Murdock, 1993; Nairne, 1988, 1990; Saint-Aubin 
et al., 2021) have faced in accounting for memory errors 
at word-level precision. By systematically examining these 
errors with semantically, phonologically, and orthographi-
cally related and unrelated memoranda, we aim to provide a 
mechanistic account of false recall that overcomes previous 
practical limitations in modeling word-level recall and offers 
a rich empirical database for model development.

In serial recall tasks, participants study a list of words and 
then are tasked with recalling them in order. In addition to 
correct recall, participants can make various errors, such as 
omissions (failing to recall a word), intralist errors (recalling 
a word in a different position), and false recall (i.e., recalling 
a word that was never presented; often called extralist errors 
or intrusions). These errors have been observed across the 
lifespan and have significantly influenced the development 
of computational models and the field’s understanding of 
human memory (e.g., Henson, 1998; Maylor et al., 1999; 
McCormack et al., 2000; Tehan, 2010). They can occur in 
lists artificially created using the DRM paradigm (Deese, 
1959; Roediger & McDermott, 1995) in which studied mate-
rials (e.g., bird, peace, white, beak, bar) are related to a spe-
cific critical lure (e.g., dove) (Tehan, 2010) or in lists without 
such structure (e.g., Maylor et al., 1999; McCormack et al., 
2000). Therefore, a comprehensive account should be able 
to precisely capture both instances, which was our goal in 
this study.

While most memory models can account for the differ-
ences in the rates at which the different categories of error 
occur (e.g., Henson, 1998; Maylor et al., 1999), they fall 
short in making word specific predictions. For example, 
models might predict the probability of false recall (e.g., 
predicting the total number of errors or the distribution of 
errors) but they do not actually recall words, making it dif-
ficult to predict memory errors in a manner directly com-
parable to people’s recall behavior. In other words, most 
memory models neither account for the rich lexical-semantic 
relationships of the studied materials nor produce behavior 
that can be directly evaluated against memory performance.

This is an important disconnect with empirical inves-
tigations, given the growing evidence that specific verbal 
characteristics of the to-be-remembered information can 
have drastic consequences on memory performance (see 
e.g., Guitard et al., 2018). Indeed, it is now well-established 
that various lexical (e.g., orthographic, phonological) and 
semantic properties affect serial recall performance (e.g., 
Guitard et al., 2018; Hulme et al., 1991, 2003; Majerus, 
2019; Neath et al., 2022; Roodenrys et al., 2022; Oberauer 
et al., 2018). Therefore, building models without the ability 
to account for these important relationships is likely to fall 
short in understanding the complex influence of our linguis-
tic knowledge on verbal memory performance.

Among these errors, false recall poses the most significant 
challenge because it requires a lexicon or long-term memory 
that captures the richness of lexical representation, that tradi-
tional models lack. Consequently, current short-term mem-
ory models either fail to produce false recall or struggle to 
do so with precision. To address this, models need to capture 
the influence of complex lexico-semantic knowledge, which 
requires accurately representing the relationships between 
studied words. Traditionally, many serial recall models have 
been agnostic about these relationships by using randomly 
generated vectors (i.e., arbitrary sequences of numbers with-
out any inherent meaning) to represent item information 
(e.g., Murdock, 1993; Brown et al., 2007; Henson, 1998; 
Nairne, 1988; Saint-Aubin et al., 2021; cf. Raaijmakers & 
Shiffrin, 1981). While this approach allows researchers to 
focus on the structural components of model architecture 
and has provided valuable theoretical insights (e.g., Osth 
et al., 2020), it remains atheoretical regarding the relation-
ship between information in the studied lists and information 
from our past experiences. As a result, models with ran-
domly generated representations often fail to capture the full 
picture of lexical relationships formed by language experi-
ence, thereby missing the complexity and structural richness 
inherent in natural language (e.g., Johns & Jones, 2010).

To overcome the full complexity of false recall and 
human memory in general, traditional memory models 
(e.g., Brown et al., 2000, 2007; Burgess & Hitch, 1999; Hen-
son, 1998; Nairne, 1990; Murdock, 1995) need a solution. 
Here, we propose a solution that has shown initial success 
in accounting for false memory in recognition (e.g., Johns 
et al., 2012, 2020; Osth et al., 2020) and free recall (Kimball 
et al., 2007; Sirotin et al., 2005): structured word representa-
tions that reflect the nuanced interrelations between words 
as they are known to individuals.

Traditionally, like serial recall models, recognition and 
free recall models have utilized randomly generated vectors 
to represent memory information (e.g., Arndt & Hirshman, 
1998; Hintzman, 1984, 1986, 1988; Raaijmakers & Shif-
frin, 1981; Shiffrin & Steyvers, 1997). However, recently, 
researchers have highlighted the potential of integrating 
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distributional semantic models (DSMs), like Latent Semantic 
Analysis (LSA; Landauer & Dumais, 1997), BEAGLE (Jones 
& Mewhort, 2007), and the Random Permutation Model 
(Sahlgren et al., 2008; Recchia et al., 2015) into established 
memory models to capture the complexity of word knowl-
edge relative to language experience. DSMs are computa-
tional models that represent the meanings of words based 
on their distributional properties in large text corpora. They 
provide a way to understand complex relationships between 
words by analyzing patterns of co-occurrence, thereby creat-
ing vector representations of word meanings that captured 
nuanced relationships between words both to one another 
and, more critically, to all words stored in the lexicon (Reid 
& Katz, 2018; Lenci, 2018).

Memory models that have integrated DSM-based lexical 
representations into established recognition and free recall 
models have significantly advanced our understanding of 
memory. For example, the Recognition through Semantic 
Synchronization (RSS) model by Johns et al. (2012, 2020; 
see also Chang et al., 2025) incorporates DSM representa-
tions and accounts for numerous false recognition phenom-
ena observed in DRM paradigms with an insightful level of 
precision. This includes increased false recognition when 
more associates are studied (Robinson & Roediger, 1997), 
situational knowledge-based false recognition (Cann et al., 
2011), and false recognition at the individual item level 
(Gallo & Roediger, 2002; Roediger et al., 2001; Stadler 
et al., 1999).

Likewise, Osth et al. (2020) used BEAGLE's seman-
tic representations alongside the diffusion decision model 
(Ratcliff, 1978) to investigate global similarity effects on 
recognition memory performance. They found that global 
semantic similarity, as measured by BEAGLE, impaired 
recognition performance for both targets and lures, with 
stronger impairments for lures.

More similar to our current approach, Reid and Jamie-
son (2023) employed DSM representations derived from 
LSA within the MINERVA 2 framework to simulate false 
recognition for words, sentences, and even metaphors. The 
combined model was called “MINERVA S”, with the S 
standing for “semantics” (Reid & Jamieson, 2022). With 
the LSA semantic representations, the model was able to 
account for false recognition of critical lures from DRM 
word lists (Arndt & Hirshman, 1998; Roediger & McDer-
mott, 1995), for literal sentences containing similar ideas 
(Bransford & Franks, 1971), and for figurative expres-
sions containing similar metaphorical themes expressed 
in different words (Reid & Katz, 2018, 2022; Yang et al., 
2022). The model was recently extended to account for 
orthographic, phonological and semantic information in 
an extension called MINERVA OPS (Reid et al., 2023a, b) 
and was able to account for the effect of false recognition 
across orthographic, phonological, and semantic materials 

(see also Chang & Johns; 2023; Chang et al., 2025; Cox 
et al., 2011; Osth & Zhang, 2023; Steyvers, 2000; Zhang 
& Osth, 2024). In this study, we build on these insights to 
extend the methods to the problem of short-term memory.

Beyond recognition, DSMs have shown their versatil-
ity and potential in explaining the complexities of human 
memory in other contexts (Gatti et al., 2022; Jamieson 
et  al., 2022; Johns & Jones, 2010; Johns & Jamieson, 
2019; Jones, 2019; Kelly et al., 2020; Kimball et al., 2007; 
Mewhort et al., 2018; Morton & Polyn, 2016; Petilli et al., 
2024; Polyn et al., 2009). For example, Sirotin et al. (2005) 
and Kimball et al. (2007) integrated similarity scores based 
on LSA (Landauer & Dumais, 1997) and word association 
space (WAS; Steyvers et al., 2005) into Raaijmakers and 
Shiffrin’s Search of Associative Memory (SAM) model 
(1980, 1981). This approach effectively explained pat-
terns of false recall and memory errors using a relatively 
small lexicon (e.g., 750 words; 250 words). Mewhort et al. 
(2018) employed a large lexicon containing 39,076 words 
represented by BEAGLE vectors within a holographic 
model for recall. This model successfully accounted for 
phenomena such as the Hebb effect (memory improvement 
for repeated sequences), the von Restorff effect (enhanced 
memory performance for a distinctive item), and the 
release of proactive interference (improved memory per-
formance following the introduction of a novel semantic 
category after several trials of words from the same cat-
egory). Because the models are tested directly against the 
same word lists used in experiments, the demonstrations 
take modelling of human memory from demonstrations 
in principle (with random vectors) to demonstrations in 
particular (with word specific DSM word vectors).

Inspired by these advancements, we have moved beyond 
traditional conceptions of short-term memory models to 
investigate the opportunities gained by embedding seman-
tic information in memory for studied lists (Guitard et al., 
2025). By integrating successful aspects of episodic and 
semantic memory models from recognition (e.g., Reid & 
Jamieson, 2022) and recall (e.g., Mewhort et al., 2018), 
we developed the Embedded Computational Framework 
of Memory (eCFM) to illustrate how embedding a lexicon 
in a model of episodic memory can enhance the predictive 
specificity of short-term memory models.

The eCFM is a computational model that incorporates 
structured word representations, encoding, storage, retrieval, 
and decision processes. By embedding semantic structures such 
as those derived from Latent Semantic Analysis (LSA; Lan-
dauer & Dumais, 1997) into the episodic memory framework 
of MINERVA 2 (Hintzman, 1986), the eCFM achieves a more 
nuanced and accurate prediction of verbal memory perfor-
mance. This approach aligns with the principles championed by 
Murdock and Lewandowsky through TODAM and its iterations 
(e.g., Murdock, 1982, 1993, 1995, 1997, 2006; Lewandowsky 
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& Murdock, 1989), which demonstrated the utility of episodic 
memory models in capturing short-term memory processes.

This integration follows a well-established tradition in 
cognitive science, emphasizing that short-term memory 
processes are not isolated but emerge from broader mem-
ory processes (e.g., Oberauer, 2009; Cowan, 1988, 2019, 
Cowan et al., 2024; Murdock, 1995). While there has been 
a long-standing and vigorous debate regarding the divi-
sion between episodic and short-term memory systems (see 
Baddeley, 2012; Morey, 2018; Murdock & Kahana, 1993, 
Nairne, 1990; Shallice & Warrington, 1970; Surprenant, & 
Neath, 2009), this discussion falls outside the scope of the 
current work. Regardless of one’s preferred theoretical per-
spective, the key solution proposed in this study—embed-
ding a lexicon into a memory model—offers a robust and 
practical approach to addressing limitations in short-term 
memory models while remaining compatible across different 
theoretical frameworks.

By demonstrating how semantic and episodic processes 
interact, eCFM offers insights into the mechanisms under-
pinning verbal memory, paving the way for more compre-
hensive and integrated approaches to memory modeling. 
For example, in our recent demonstrations with the eCFM 
model, we have shown its capability to capture both item-
specific and overall predictions of various phenomena, such 
as the beneficial effect of semantic relatedness in serial recall 
and its reduction in serial reconstruction, the influence of 
semantic relatedness on migration errors, the interaction 
between task difficulty and semantic relatedness, the detri-
mental effects of semantic relatedness on order information, 
and the influence of the number of studied words related 
to the critical lure on the likelihood that participants will 
falsely recall semantic associates (Guitard et al., 2025). The 
eCFM appears well-suited for assessing the value of embed-
ding a lexicon to capture patterns in word specific false recall 
across materials. However, our original implementation that 
considers only semantic information is incomplete because 
other lexical characteristics such as orthographic and pho-
nological information, both of which affect verbal short-
term memory performance, were unrepresented and thus 
unconsidered (e.g., Cowan et al., 2022; Guitard et al., 2018; 
Roodenrys et al., 2022; Saint-Aubin et al., 2023). To address 
the shortcoming we have expanded our model’s lexicon to 
include the orthographic and phonological relationships 
between words, in addition to their semantic relationships.

To gain traction on the issue, we demonstrate how the 
eCFM lexicon can be extended to capture orthographic and 
phonological relationships, building on the recent work of 
Reid et al. (2023a, b). We systematically investigated the 
model's ability to capture false recall across six experi-
ments, encompassing semantic (Experiments 1A and 1B), 
phonological (Experiments 2A and 2B), and orthographic 
(Experiments 3A and 3B) information. Each experiment tests 

the model’s ability to both handle lists of related and unre-
lated words using traditional critical lures (e.g., Tehan, 2010) 
and move beyond this metric to capture common extralist 
errors that might have served as critical lures but have not 
been traditionally classified as critical lures in experimental 
work (e.g., Maylor et al., 1999; McCormack et al., 2000). 
Additionally, we evaluated whether a more comprehensive 
lexicon, which simultaneously captures orthographic, phono-
logical, and semantic relationships amongst words, can more 
accurately account for the specificity of these memory errors.

In summary, the aim of this study was to evaluate whether 
embedding a lexicon of structured representations that cap-
ture word relationships can overcome the current limitations 
of immediate ordered recall models, enabling them to pre-
dict human memory errors at an improved level of precision 
for implementation in existing models of episodic memory.

Embedded computational framework 
of memory

As mentioned, the eCFM is a computational model that 
incorporates a lexicon along with encoding, storage, 
retrieval, and decision processes (Guitard et  al., 2025). 
The original model integrated structured word representa-
tions from the LSA model of semantic memory (Landauer 
& Dumais, 1997) into the MINERVA 2 (Hintzman, 1986) 
model of episodic memory. In this study, we have extended 
the model’s lexicon and applied the eCFM to serial recall 
tasks involving semantically, phonologically, and ortho-
graphically related lists (Experiment 1A, Experiment 2A, 
Experiment 3A) as well as unrelated lists (Experiment 1B, 
Experiment 2B, Experiment 3B) of words and non-words. 
The following sections will briefly describe the model’s 
architecture and representations, after which we will apply 
the model to a series of experimental tests (for an illustration 
of each parameter see Appendix D).

Item representation

To model false remembering in serial recall, the eCFM 
involves the memorial representation of the study list as 
well as a complete lexicon where words are represented 
based on their similarity. In our current model version, we 
use semantic, phonological, and orthographic lexical repre-
sentations that match the task design. This approach aligns 
with recent empirical and computational advances suggest-
ing that list structure can focus encoding on relevant lexico-
semantic dimensions (e.g., Caplan, 2023; Caplan & Guitard, 
2024a, b). For example, participants presented with a list 
of related words might process those words for meaning, 
whereas participants presented with a list of nonsense letter 
strings might process those items for orthography. In the final 
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demonstrations, after showing the model's ability to track false 
recall with subsetted representations, we illustrate how it can 
operate upon integrated representations (that include ortho-
graphic, phonological, and semantic information) to capture 
false recall for both phonological and semantic information.

Semantic representations  In the eCFM, semantic represen-
tations are derived using LSA, a widely-used DSM (Lan-
dauer & Dumais, 1997). To derive these vectors, we con-
structed a word-by-document matrix from the Touchstone 
Applied Science Associates Inc. (TASA) corpus, performed 
singular value decomposition of that matrix, and represented 
each word’s meaning as a reduced 300-dimensional projec-
tion. The LSA vectors are available on the OSF page associ-
ated with this project. For our simulation, we applied several 
constraints to refine the lexicon to better reflect participants' 
language experience. First, we limited the vectors to include 
only words from the SUBTLEXus database (Brysbaert et al., 
2012) with a Zipf word frequency between 1 and 7. Sec-
ond, we included only specific parts of speech that typically 
reflect studied and extralist errors produced by participants: 
adjectives, adverbs, names, nouns, numbers, verbs, and 
interjections. Additionally, we removed a list of 442 prob-
lematic words due to their high co-occurrence with all words 
in the lexicon (e.g., "all," "and," "a"), as detailed on the OSF 
page associated with this manuscript.

Furthermore, we included only words for which we can 
derive orthographic, phonological, and semantic representa-
tions. This ensured a consistent lexicon size across simula-
tions and mitigated the risk of differences being attributed 
to variations in lexicon size depending on which lexical 
characteristic we were examining. Consequently, the final 
lexicon comprised 41,005 words. We believe this refined 
lexicon reasonably represents the vocabulary of a typical 
participant in our empirical study. These semantic vectors 
were employed to represent words in Experiment 1, where 
we manipulated semantic similarity.

Phonological Representations  To capture phonological rep-
resentations, we employed a recently proposed method by 
Parrish (2017) that breaks the phonemes of a word down into 
their sound features. Because phonemes are not pronounced 
discretely but depend on the phonemes that come before and 
after (i.e., coarticulation), the model uses an “interleaved 
bigram” scheme where the sound features of adjacent pho-
nemes interact. For instance, for the word “knee”, the sound 
features of the phoneme /n/, “alveolar” and “nasal”, interact 
with the sound feature of /i/, “front”, “high”, “unrounded”, 
“vowel”, to produce the following eight pairs of sound fea-
tures: alveolar-front, alveolar-high, alveolar-unrounded, 
alveolar-vowel, nasal-front, nasal-high, nasal-unrounded, 
nasal-vowel. For each word, these pairs are stored in a 
word-by-sound matrix. We then performed singular value 

decomposition on that matrix and represented each word as 
a 300-dimension projection to maintain consistency with the 
dimensionality of our semantic representations. Reid et al. 
(2023a, b) previously employed these vector representations 
within MINERVA OPS to capture false recognition effects 
for study lists made of up of phonological associates. Like 
with the semantic vectors, we applied the same constraints 
to subset the lexicon. The final lexicon was composed of 
41,005 words. These phonological vectors are accessible on 
the OSF page associated with this project. We used these 
vectors to represent memory for words in Experiment 2, 
where we manipulated phonological similarity.

Orthographic representation  To capture orthographic rep-
resentations for non-words, we created vector representa-
tions inspired by the open-bigram scheme from SERIOL 
and SERIOL2 (Whitney, 2001; Whitney & Marton, 2013). 
In that model, words are encoded as non-contiguous bigrams 
with specific activation rules. The activation weights were 
assigned based on the number of intervening letters, employ-
ing values of 1, 0.7, and 0.5 for bigrams with 0, 1, and 2 
intervening letters (see Hannagan et al., 2011). Special 
markers denoted by * were used to represent the beginning 
and end of words and were treated like extra letters in the 
word, which helps to emphasize letters on the edge of the 
word. As an example, for the word “cat”, the bigrams *c, ca, 
at, t* would have activation values of 1, the bigrams *a, ct, 
and a* would have activation values of 0.7, and the bigrams 
*t and c* would have activation values of 0.5. These bigrams 
were recorded in a word-by-bigram matrix, with weights 
added rather than counts. For words with repeated bigrams, 
the weights were summed. The matrix was then reduced to 
300 dimensions using singular value decomposition, main-
taining consistency with the dimensionality of our semantic 
and phonological representations already described. This 
same representational technique was used by Reid et al. 
(2023a, b) in combination with MINERVA S to model false 
recognition of pseudowords in item-method directed forget-
ting. The lexicon was composed of all possible three-letter 
combinations (e.g., 17,576 three-letters combinations) and 
is accessible on the OSF page associated with this project. 
The orthographic representations were used to represent 
items in Experiment 3, where orthographic similarity was 
manipulated for three-letter non-words. The same technique 
was also used to derive orthographic representations for the 
41,005 words used in the simulation with the full represen-
tations (orthographic, phonological, semantic) in the final 
demonstrations.

Order representation

In the eCFM, we assume participants encode words at their 
studied serial positions and then use these serial positions as 
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cues for recalling words at test. This addition is an important 
enhancement to the traditional model of episodic memory 
MINERVA 2 (Hintzman, 1986), and is necessary to capture 
serial recall performance. Serial position representations are 
based on item-independent context models (e.g., see Logan 
& Cox, 2023; Osth & Hurlstone, 2023). More exactly, to 
represent order information, we generate a random vector 
of dimensionality n for the first position where each dimen-
sion takes the value of a random deviate from a Normal 
distribution with mean 0 and standard deviation 1∕

√
n (e.g., 

Jones & Mewhort, 2007; Murdock, 1982). Subsequently, 
for each successive serial position, a new vector is gener-
ated by copying the representation from the preceding serial 
position and sampling a new deviate from the same normal 
distribution for each dimension with probability d that con-
trols the degree of similarity over successive serial position 
representations. This approach creates a series of vector-
based serial position representations that vary in similarity 
as a function of serial distance. As will become clear when 
we describe retrieval more fully, the model suffers the most 
retrieval interference from events encoded at immediately 
adjacent serial positions and the least retrieval interference 
from events at the most distant serial positions, with the 
value of d controlling the degree of interference.

Encoding

We posit that individuals encode a study list as a sequence 
of traces, where each trace contains both the relevant serial 
position representation, and the word presented at that serial 
position. To translate this assumption into computational 
terms, we utilize a matrix, M. Each row in this memory 
matrix constitutes a 600-dimensional vector. The first 300 
dimensions encode serial order information (serial position) 
and the second 300 dimensions encode item information 
(lexical representation). Therefore, for a study list consisting 
of six items, M is a 6 x 600 matrix.

We assume that memory encoding for a studied word 
and its corresponding order information is imperfect. In the 
current implementation, items presented earlier are better 
encoded, and the last item is encoded equally well as the 
previous one. This assumption aligns with the idea that peo-
ple have more opportunities to use maintenance strategies, 
such as rehearsal (e.g., Bhatarah et al., 2009; Rundus, 1971), 
that attentional resources deplete as a function of serial posi-
tion (e.g., Popov & Reder, 2020), and models suggesting an 
activation gradient (e.g., Page & Norris, 1998). Addition-
ally, this is consistent with previous models indicating that 
later items are less likely to suffer from retroactive interfer-
ence (e.g., Nairne, 1990; Saint-Aubin et al., 2021) or are 
protected because of their privileged position at the end of 
the list (e.g., Henson, 1998; Brown et al., 2007). Although 
other encoding assumptions are possible, our goal is to 

demonstrate the value of embedding a lexicon to capture 
specificity, so we have adopted general assumptions rather 
than committing to a specific theoretical framework. This 
serves as a proof of concept for the value of embedding a 
lexicon, and further work is ongoing to improve these encod-
ing mechanisms.

To incorporate our encoding assumptions into the eCFM, 
we copy each feature in a trace at serial position p with prob-
ability Lp,

Here, L corresponds to the effectiveness of encoding the 
first presented item in a study list, p represents the serial 
position, g signifies the rate at which encoding diminishes 
with serial position, and LL denotes the total number of 
items in the studied list (i.e., the list length). As shown in 
Eq. 1, each item is encoded less effectively than its prede-
cessor at a rate g, with the exception of the last item that is 
encoded as effectively as the second-last item (for an illus-
tration of each parameter and its influence on encoding see 
Appendix D).

Retrieval

In the model, retrieval is parallel, cue-specific, and similarity 
driven. This means that when a cue is introduced (i.e., the 
intact serial position representation), it triggers the retrieval 
of memory traces that are similar to it, including those from 
all adjacent serial positions; albeit to differing degrees 
controlled by d. Crucially, because a cue retrieves whole 
memory traces, and these traces contain both serial posi-
tion (order) and word (item) information, a cue that includes 
only serial position information retrieves the associated word 
information it co-occurred with at study.

More specifically, after encoding information into mem-
ory, an intact cue (e.g., representing the first serial position 
to recall the first word) is presented during recall. This cue 
interacts with all serial position representations in memory 
in parallel. The decision process arises from this reconstruc-
tion. Due to the similarity-driven nature of retrieval, the cue 
activates the most similar traces most strongly. The retrieved 
trace, or echo, is then used to extract the word information 
associated with that representation. A decision to recall a 
specific word is made based on the cosine similarity between 
that item information in the echo and all item representa-
tions in the lexicon. If the cosine similarity between the echo 
and the item it is most similar to in the lexicon is greater 
than a recall threshold, the item is reported (see also, Johns 
et al., 2020). In the next section, we describe in more detail 
how this process is applied to account for serial recall 
performance.

(1)Lp =

{
L − (p − 1)g , p < LL

L − (p − 2)g , p = LL
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Serial recall simulation

In the eCFM, serial recall unfolds over two computational 
steps. First, after the presentation of items, recall at each 
serial position LL is simulated by presenting the relevant 
serial position representation as a cue, q, and retrieving the 
corresponding echo, e, from memory,

where qj is feature j in the cue, Mij is feature j in trace i in 
memory, 1…n/2 is the dimensionality of the serial position 
cue in each memory trace (i.e., dimensions 1…300), and m 
is the number of traces in memory (i.e., the length of the 
study list, or LL, in the simulations that follow).

In psycholinguistic terms, the echo corresponds to a men-
tal representation, a lemma, encapsulating the underlying 
thought behind a language expression. Usually, this echo, 
e, mirrors the word at the cued serial position. However, 
due to the fact that related study words have similar rep-
resentations and that words in the embedded lexicon have 
incidental similarities to one another, retrieved information 
from memory holds the potential to produce a false recall 
(i.e., an extralist error).

Secondly, we compute the similarity between the infor-
mation retrieved in the last 300 dimensions of the echo (i.e., 
dimensions 301…600), representing the lexical features of 
the item, and every word within the lexicon. If the word in 
the lexicon with the highest cosine similarity surpasses a 
specified recall threshold, T, it is chosen for report. Con-
versely, if no word in the lexicon meets or exceeds T, no 
word is reported, resulting in an omission. To prevent con-
tinuous retrieval of the same item (repetition error) after 
it has been recalled, the model can suppress report of an 
already reported word at rate s. Importantly, this does not 
stop the model from recalling a word multiple times within 
a single trial, but rather indicates some level of resistance 
to such repetition (see e.g., Armstrong & Mewhort, 1995; 
Cowan & Hardman, 2021; Greene, 1990).

Finally, we assess the model’s recall using scoring meth-
ods commonly applied to human recall performance in serial 
recall studies. For example, for proportion correct, a point is 
awarded only if the item reported at serial position p matches 
the item presented at that position. An omission occurs when 
no item is reported at serial position p because the level of 
similarity between the echo and the items in the lexicon was 
below the recall threshold, T. An intralist error, also known 
as an order error, occurs when the item reported at position 
p was presented at a different serial position in the study list. 
An extralist error, also known as a false recall, occurs when 

(2)� =
�i=m

i=1
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the extralist error matches a targeted unstudied word. This 
happens when the model recalls a word that was not part of 
the list: an extralist error can be scored as a critical lure if the 
reported word at serial position p corresponds to the critical 
lure; if not, it is scored as a general extralist error.

In each experiment, we simulated recall for 100 simu-
lated participants within each condition and report average 
performance over those 100 simulated participants. This 
approach enables us to present model results in the same 
way as empirical results: as average serial position functions 
plus proportions of errors and false recalls across different 
scoring procedures.

In summary, the eCFM assumes that individuals encode 
words-in-position at study to varying degrees of accuracy. 
During recall, they use serial positions as cues to retrieve 
echoes that include the item information. The item informa-
tion in the echo is compared to all words in the lexicon, and 
the best matching word is reported. The reported words are 
then compared to the studied list and scored similarly to par-
ticipant behavior in terms of correct recalls, order errors, and 
false recalls. We report results from the model in the same 
way as we report results from participants in corresponding 
experiments using the same word lists and test conditions.

Serial recall demonstration

Before presenting the empirical and computational demon-
strations, we first ensure readers' understanding of the model 
by presenting simulations of serial recall with three lists that 
manipulate the number of related words. Specifically, we 
conducted simulations with 6 related words (RRR​RRR​), 
3 related words and 3 unrelated words (RRR​UUU​), and 6 
unrelated words (UUU​UUU​) to the critical non-presented 
word “bass.”

A total of 100 simulations was conducted, for each list 
with the following parameters: L = 0.265, g = 0.03, d = 
0.3, T = 0.30, s = 0, and the semantic representations (see 
Table 1). The results are presented in Fig. 1. In Panels A, 
B, and C, you can see the echo similarity retrieved for each 
position with all the words in the lexicon. The red region 
corresponds to the words with the highest level of similarity/
activation, echoing the activated long-term memory concept 
of Cowan (1988, 2019; Cowan et al., 2024). In Panels D, E, 
and F, for simplicity, we removed the overlapping words 
and show the similarity to the critical word “bass” for each 
position and each list, along with the recall threshold (the red 
line). We also highlight the words above the recall threshold 
in red, indicating words that could be recalled. Words below 
the line would not be recalled and would result in an omis-
sion if no words are above the recall threshold.

As shown, the likelihood of recalling the critical word 
“bass” increased with the number of related words. The 
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word “bass” shows the highest similarity when all of the 
studied words are related, relative to when half of or none of 
the studied words are related. This demonstration captures 
a critical assumption in false recall: when the number of 
studied words associated with the critical word increases, 
the likelihood of falsely recalling that critical word also 
increases (see, e.g., Spens & Burgess, 2024; Robinson & 
Roediger, 1997; Guitard et al., 2025). It also shows that 
recall in the model is not limited to the words in the study 
list or to some subset of critical lures to measure false recall; 
rather, the model predicts recall of every word in the lexicon 
and presents a picture of memory that extends to the whole 
lexicon that a participant possesses when they arrive to a 
laboratory experiment.

To help readers understand the value of embedding struc-
tured word representations, we re-ran the simulations in 
Fig. 2, but this time we replaced the structured semantic rep-
resentation with random and thus approximately orthogonal 
representations, as is traditionally used in memory models. 
Specifically, we created representations for each word in the 
lexicon sampling values from a normal distribution with a 
mean of 0 and a standard deviation of 1∕

√
n (e.g., Jones & 

Mewhort, 2007; Murdock, 1982).
The results show that the model can still recall the pre-

sented words, as this is primarily driven by encoding and 
retrieval of studied words. However, there are two notable 
distinctions from these simulations. First, the level of simi-
larity/activation is much lower for all non-presented words 
because they are approximately orthogonal and thus do not 
rise to the level of potential extralist errors. Second, the criti-
cal word now has a similarity level near 0 and is unaffected 
by the number of related words in the studied list, clearly 
demonstrating the value of having structured representations 
to make meaningful predictions beyond the typical distinc-
tion between correct versus incorrect recall.

Additionally, we observe that traditional veridical mem-
ory performance, while capable of capturing memory for 

specific words, makes little theoretical sense. It suggests that 
only the presented words would be activated, which violates 
key underlying assumptions of memory models (e.g., Cowan 
et al., 2024). This highlights the importance of using struc-
tured representations in making more comprehensive, item 
specific, and theoretically sound predictions.

With these demonstrations in mind, we now proceed to an 
examination of whether we can empirically (and computa-
tionally) capture false recall performance for lists of words 
that are related or unrelated semantically (Experiments 1A 
and 1B), phonologically (Experiments 2A and 2B), and 
orthographically (Experiments 3A and 3B).

Semantic: Experiment 1A & Experiment 1B

In this experiment, we investigated the influence of semantic 
information on the production of false memories. To do so, 
we tested memory for semantically related (Experiment 1A) 
and semantically unrelated lists (Experiment 1B) in serial 
recall. Our goal across these two experiments was to provide 
experimental data under a common experimental protocol to 
evaluate if the eCFM, by embedding a lexicon into a simple 
memory model, can capture false recall. We present Experi-
ments 1A and 1B together to facilitate understanding of the 
key empirical and simulation findings.

Method

Participants

The experiment followed the prior demonstration by Tehan 
(2010) in which 40 participants were recruited, and false 
memories were detected in short-term immediate and 
delayed serial recall tasks. However, to ensure stability 
in estimation for computational modeling, we increased 
the number of participants to 100 in each experiment. A 

Table 1   Parameters and vectors used for each demonstration

Demonstra-
tion

Study Materials Vectors L d g T s

0 Model Illustration Semantic Words Semantic 0.265 0.30 0.03 0.30 0
0 Model Illustration Semantic Words Random 0.265 0.30 0.03 0.30 0
1 Experiments 1A and 1B Semantic Words Semantic 0.265 0.30 0.03 0.30 0
2 Experiments 2A and 2B Phonological Words Phonological 0.215 0.30 0.03 0.30 0
3 Experiments 3A and 3B Orthographic Non-words Orthographic 0.190 0.30 0.03 0.30 0
4 Experiments 1A and 1B Semantic Words Orthographic, 

Phonological, 
Semantic

0.250 0.30 0.03 0.40 0

5 Experiments 2A and 2B Phonological Words Orthographic, 
Phonological, 
Semantic

0.215 0.30 0.03 0.40 0
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Note: Panels A (all related (RRRRRR) words), B (half related (RRR), half unrelated words 
(UUU)), and C (all unrelated (UUUUUU)) correspond to the average cosine similarity for 
100 simulations between the echo of each word presented on the x-axis and all the words in 
the lexicon, with words having the highest level of similarity shown in red and words with 
the lowest level shown in blue. Panels D, E, and F show the words above the recall threshold 
(T) in red and the critical word “bass” presented in a white box. For simplicity, in Panels D, 
E, and F, we plotted only the non-overlapping words with the highest similarity, but all the 
words above the recall threshold could be recalled. 

Fig. 1   Illustration of the model simulation for serial recall as a function of the number of related words associated with the critical lure “bass” 
(six related, three related, none related)
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Note: Panels A (all related (RRRRRR) words), B (half related (RRR), half unrelated words 
(UUU)), and C (all unrelated (UUUUUU)) correspond to the average cosine similarity for 
100 simulations between the echo of each word presented on the x-axis and all the words in 
the lexicon, with words having the highest level of similarity shown in red and words with 
the lowest level shown in blue. Panels D, E, and F show the words above the recall threshold 
(T) in red and the critical word “bass” presented in a white box. For simplicity, in Panels D, 
E, and F, we plotted only the non-overlapping words with the highest similarity, but all the 
words above the recall threshold could be recalled. 

Fig. 2   Illustration of the model simulation for serial recall as a function of the number of related words associated with the critical lure “bass” 
(six related, three related, none related) with orthogonal representations (random vectors)
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one-sample t-test sensitivity analysis conducted with 
G*Power 3.1.9.7 (Faul et al., 2007) with alpha set to 0.05 
and power set to 0.95 revealed that 100 participants would 
allow us to detect a small effect of Cohen’s d = 0.33. For all 
experiments, we adopted this sample size to ensure reliable 
estimation.

One hundred participants recruited via Prolific (https://​
www.​proli​fic.​com/) took part in Experiment 1A and 100 
were recruited to take part in Experiment 1B. All partici-
pants received £9.00 per hour (pro-rated) for their participa-
tion. To participate in this experiment, participants had to 
meet the following criteria: (a) be a native speaker of Eng-
lish, (b) have nationality from the United Kingdom, United 
States, or Canada, (c) have normal or corrected-to-normal 
vision, (d) have no cognitive impairment or dementia, (e) 
have no language-related disorders or literacy difficulties, (f) 
be between 18 and 25 years of age, and (g) have an approval 
rating of at least 90% on prior submissions at Prolific. All 
inclusion criteria were self-reported by the participants 
except for the approval rating, which is computed by Prolific. 
In addition, a new sample of 100 participants was recruited 
for Experiment 1B.

In Experiment 1A, the participants had a mean age of 
22.09 years (SD = 2.05). Among the 100 participants, 60 
self-identified as female, 36 as male, and 4 preferred not 
to specify their gender. In Experiment 1B, the participants 
had a mean age of 22.90 years (SD = 1.81). Of the 100 
participants, 64 self-identified as female, 32 as male, and 4 
preferred not to specify their gender.

Materials

The stimuli in Experiment 1A included 20 word lists, each 
comprising six words that were thematically related to an 
unpresented critical lure. These semantic related lists were 
created using the University of South Florida’s free associa-
tion, rhyme, and word fragments norms (Nelson et al., 2004). 
Specifically, 20 target one-syllable words, ranging from 3 to 
5 letters, and their stronger associates were selected. These 
words were selected to maximize the likelihood of detecting 
a false recall for the critical unstudied but related lures. In 
Experiment 1B the same words were used but the lists were 
re-arranged to minimize the similarity among words within 
presented lists. The stimuli for both experiments are pre-
sented in Appendix A. For both stimulus sets, we presented 
the mean cosine similarity among the words and the critical 
lure for each list. The average cosine similarity across all 
lists for Experiment 1A was higher (M = .412, SD = .102) 
than the average cosine similarity for Experiment 1B (M 
= .221, SD = .032) as revealed by a Bayesian t-test with a 
Bayes factor (BF10) greater than 10,000.

In both experiments, all participants were tested on all 
20 lists which were presented in randomized order for each 

participant, but the order of the words within a list was fixed. 
Therefore, words within each list were always presented in 
the same position, but the lists themselves could be pre-
sented in a different order.

Ethics

All experiments were approved by the School of Psychology 
Ethics Committee of Cardiff University.

Procedure

All the experiments were programmed using PsyToolKit 
(Stoet, 2010, 2017), and participants took approximately 12 
minutes to complete the experiment. The experiment pro-
ceeded at the participant's own pace; they initiated each trial 
by pressing the space bar within 60 seconds after completing 
the preceding trial. If the participant did not initiate the next 
trial within the 60-second window, the next trial was auto-
matically presented to ensure the procedure was completed 
within the expected timeframe.

During the trials, the six words to be remembered were 
presented sequentially on the computer screen at a rate of 
one word per second (1000 ms on, 0 ms off), with the words 
displayed in white lowercase 30-point Times New Roman 
font against a black background at the center of the screen. 
After the presentation of the last word, participants engaged 
in a parity judgment task lasting 6 seconds. In this task, a 
random integer from 0 to 9 appeared at the center of the 
screen, with the instruction “Press the Z key for odd num-
ber” displayed at the bottom left and “Press the M key for 
even number” at the bottom right. During these 6 seconds, 
participants were instructed to complete as many parity 
judgments as possible. The parity judgments were not ana-
lyzed in the present study. However, they are available on the 
OSF page associated with this manuscript. The parity judg-
ment task was included to increase the likelihood of detect-
ing specific false recalls, based on the higher number of false 
recalls in previous demonstrations of performance under a 
delayed recall compared to immediate recall protocol, as 
shown by Tehan (2010). However, based on our recent work 
in immediate serial recall (e.g., Guitard et al., 2025) without 
such delays, we anticipate that the results will be similar.

Immediately after the parity judgment task, a recall cue 
(“Type the first word”) appeared at the top of the com-
puter screen. Participants were required to type the words 
in the order they were presented, pressing the return key 
after typing each word. Once a response was entered, the 
typed word was cleared from the screen, and the instruc-
tion was updated to “Type the second word.” This process 
continued until all responses were entered. Participants 
were not allowed to go back and change a response once 
it was registered.

https://www.prolific.com/
https://www.prolific.com/
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The procedure was identical for both Experiment 1A and 
Experiment 1B with the only exception of the to-be-remem-
ber stimuli as mentioned above.

Data analysis

Availability  All data for the experiments are accessible on 
the Open Science Framework page associated with this pro-
ject (OSF). Additionally, R markdown files for each experi-
ment, including analysis and modelling codes, are also pro-
vided on the same page.

Scoring  In all experiments, a strict spelling criterion was 
applied. Recalled words were considered correct only if they 
were spelled accurately. For each experiment, we calculated 
the proportion of correct responses, omissions, intralist 
errors, false recalls of the critical lure, and extralist errors 
for each serial position. In addition, we present the item gra-
dient for each position. The proportion of correct responses 
was determined using a strict serial recall criterion, where a 
word had to be recalled in its presented serial position to be 
deemed correct. An omission occurred when the participants 
either did not recall an item at a given serial position or typed 
a response indicating an omission (e.g., "skip", "unknown", 
etc.). The omissions were checked for each experiment by 
a research assistant who was blinded to the purpose of the 
experiment. An intralist error occurred when a presented 
word was recalled in a different position (e.g., a word pre-
sented in position 1 but recalled in position 2, 3, 4, 5, or 6) 
or was repeated (e.g., a word presented in position 1, but 
recalled twice in positions 2 and 3). The position uncertainty 
curves for each item were calculated by counting the propor-
tion of time each word (e.g., word 1) was recalled in each 
serial position (1, 2, 3, 4, 5, 6) inspired by the seminal works 
of Estes (1991; Lee & Estes, 1977, 1981; Nairne 1991).

To assess false recall, we examined the specific critical 
lure and other extralist errors. A false recall was recorded as 
a critical lure when the recalled word corresponded to the 
lure associated with the immediately studied list. An extralist 
intrusion was defined as words recalled by participants that 
were not presented in the list, were not a critical lure of that 
list, and are included in the model's lexicon (41,006 words). 
For both types of false memory (critical lure and extral-
ist error), only the first occurrence of a word was counted. 
More precisely, if a word was repeated (e.g., "bass, guitar, 
bass" in the same recall trial), only the first occurrence was 
considered.

Statistical analyses  All statistical analyses were conducted 
using the statistical software R (R Core Team, 2024), 
employing both frequentist and Bayes factor analyses. Our 
frequentist analyses were performed using the 'ez' package 

(version 4.4-0; Lawrence, 2016) for ANOVA. Our Bayes 
factor analyses were conducted with the 'BayesFactor' R 
package, utilizing the default priors (version 0.9.12-4.2; 
see Morey & Rouder, 2018; Rouder et al., 2009, 2012). 
These analyses involved 100,000 iterations, followed by an 
additional 10,000 iterations until the proportional error of 
the computation was reduced to less than 5%. Main effects 
and interactions in all Bayes factor ANOVAs were tested 
by omitting each effect from the full model, with partici-
pants included as a random factor (see Guitard et al., 2021, 
2022; Guitard & Cowan, 2023 for similar procedures). For 
the Bayes factor analyses, we adopted the nomenclature 
where BF10 represents evidence for the alternative hypoth-
esis and BF01 (BF01 = 1/BF10) indicates evidence for the 
null hypothesis. These procedures were conducted for each 
scoring procedure, considering serial position (1 to 6) as 
the only within-participants factor and experiment (related 
lists: Experiment 1A, unrelated list: Experiment 1B) as the 
only between-participants factor.

Simulation parameters  Two hundred participants were 
simulated, 100 simulations for Experiment 1A and 100 
simulations for Experiment 1B. Due to the unavailability of 
the word “misfiling” in the model’s lexicon, “misfiling” was 
replaced by the word “filer” in our simulations. The same 
parameters were used for the simulation in Experiment 1A 
and Experiment 1B in which semantic representations were 
embedded in the eCFM: L = 0.265, g = 0.03, d = 0.3, T = 
0.30, s = 0. For all the simulations, the simulations param-
eters are also presented in Table 1.

Results

The experimental and simulation results of Experiment 1A 
and Experiment 1B are presented in Fig. 3, illustrating the 
proportion of correct responses, the proportion of intralist 
errors, omissions error and false memory as defined by criti-
cal lure and extralist intrusion as mentioned in the scoring 
section.

Experimental Results

In this section, we briefly present the main experimental 
results by comparing across experiments for each scoring 
procedure before presenting the model.

Proportion Correct  For the proportion of correct responses, 
participants’ performance was comparable between the 
related lists (M = .603, SD = .186) and the unrelated lists 
(M = .575, SD = .167), F(1,198) = 1.217, �2

p
 = .006, BF01 

= 8.461. Although not the main theoretical focus, it is worth 
noting that the absence of a semantic similarity effect across 
our experiments appears inconsistent with the previously 
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well-established semantic similarity advantage typically 
observed in within-participants manipulations (see Gui-
tard et al., 2025; Neath et al., 2022, for a review). However, 
despite this general trend, there are some notable exceptions 
in which semantic similarity did not influence the overall 
recall performance. Unfortunately, these discrepant findings 
are often ignored to the benefit of the overall pattern. For 
instance, Baddeley (1966) reported a small but significant 
detrimental effect of semantic similarity on the proportion 
correct. Later, in their second experiment, using an imme-
diate serial recall task, Saint-Aubin and Poirier (1999a) did 
not observe any benefit of semantic similarity on the pro-
portion of correct recall. In addition, Poirier et al. (2015), 
reported that when all words in a list were related to a spe-
cific word, the semantic similarity advantage diminished, 
accompanied by an increase in intralist errors in the related 
conditions. This reduction in the advantage is likely due to 
the combined effect of increased intralist errors and a higher 
recall of critical lures in the semantically related condition, 
which constrained the distribution of errors and correct 
responses. As we previously argued, although necessary for 
comparisons across studies, the proportion of correct recall 
is not as informative as the distinct analysis of item and 
order recall reported in the section below (Saint-Aubin & 
Poirier, 1999b). Returning to the main analysis, as expected, 
we observed a main effect of serial position, reflecting the 
standard pattern: a primacy effect, with better recall of early-
presented items, and a recency effect, with better recall of 
the last-presented items. F(5,990) = 430.068, �2

p
 = .685, 

BF10 > 10,000. There was no interaction between serial 
position and experiment (i.e., recall of semantically related 
versus semantically unrelated lists), F(5,990) = 2.026, �2

p
 = 

.010, BF01 = 90.328.

Intralist error  Participants in the related lists experiment 
made more intralist errors (M = .172, SD = .093) than par-
ticipants in the unrelated lists experiment (M = .134, SD = 
.079), F(1,198) = 9.884, �2

p
 = .048, BF10 = 3.433. The anal-

yses also revealed a main effect of serial position, F(5,990) 
= 115.454, �2

p
 = .368, BF10 > 10,000, and an interaction 

between serial position and experiment, F(5,990) = 5.400, �2
p
 

= .027, BF10 = 589.272. The interaction is not of theoretical 
interest to the present investigation and reflects some minor 
differences in the number of intralist errors in later serial 
position across experiments.

Omission error  The number of omissions was comparable 
between the experiment with related lists (M = .082, SD = 
.110) and the experiment with unrelated lists (M = .103, SD 
= .120), F(1,198) = 1.640, �2

p
 = .008, BF01 = 6.258. The 

analysis also revealed the presence of a main effect of serial 
position, F(5,990) = 104.692, �2

p
 = .346, BF10 > 10,000, but 

no two-way interaction, F(5,990) = 0.521, �2
p
 = .003, BF01 

= 770.881, between serial position and experiment.

Critical lure  As expected, participants were more likely to 
recall the specific critical lure with related lists (M = .015, 
SD = .016) relative to unrelated lists (M = .000, SD = .001), 
F(1,198) = 90.673, �2

p
 = .314, BF10 > 10,000. In addi-

tion, there was a main effect, of serial position, F(5,990) = 
6.314, �2

p
 = .031, BF10 = 20.092, and a two-way interaction 

between serial position and experiment, F(5,990) = 6.638, 
�2
p
 = .032, BF10 = 256.182, reflecting the smaller increase 

of false memories in mid serial position for related lists.

Extralist error  Participants made more extralist errors with 
unrelated lists (M = .153, SD = .103) relative to related lists 
(M = .097, SD = .103), F(1,198) = 14.881, �2

p
 = .070, BF10 

= 49.880. The analysis also revealed a main effect of serial 
position, F(5,990) = 59.243, �2

p
 = .230, BF10 > 10,000, and 

a two-way interaction between serial position and related/
unrelated lists, F(5,990) = 6.638, �2

p
 = .017, BF10 = 65.238.

Summary experimental results  Overall, participants' perfor-
mance was comparable in terms of the overall proportion of 
correct responses and the proportion of omissions. However, 
it differed with regard to intralist errors, with more errors 
associated with related lists than unrelated lists. More impor-
tantly, there was a higher proportion of false memories of 
the critical lures for related lists compared to unrelated lists. 
However, there were more extralist intrusions for unrelated 
lists compared to related lists. This reflects how the struc-
ture of the lists influences patterns of false memories. These 
results nicely confirm and extend the finding of Tehan (2010) 
in both immediate and delay serial recall. We now turn to an 
assessment of the model’s ability to track those outcomes.

Simulation results

Performance across experiments and serial positions  As 
shown in Fig. 3, the simulation results captured most of the 
key details, both at the overall level (lower panels) and as 
a function of serial position (upper panels). More exactly, 
for the proportion of correct responses, serial position 
functions show standard primacy and recency effects. For 
errors, simulations track the key details for intralist errors, 
such as fewer intralist errors at early serial positions with a 
minor discrepancy of predicting fewer intralist errors in the 
last serial position. The model tracks the main features of 
omission errors, with fewer omissions for early relative to 
late serial position, but produce fewer omissions in Experi-
ment 1A relative to the data. Most importantly, the model 
produced false memories as defined by the critical lure and 
extralist intrusions at a similar rate to participants with the 
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match between false recalls in the experiment and in the 
model simulations measured by precise word match (i.e., 
the model and people falsely recalled the same specific 
word rather than recalling a critical lure in principle) with 
only minor discrepancies, such as the model producing 
slightly more intrusions than we observed in the experi-
mental data. Overall, across Experiment 1A, Experiment 

1B, and the eCFM equipped with semantic word repre-
sentations from LSA demonstrate an excellent fit to the 
empirical data, achieving an R2 = 0.97.

Positional uncertainty  Overall, the model represents an 
important initial step that allows for the direct comparison 
of participant behavior with that of a computational model. 

Note. Results by serial position (1 to 6) are shown in the top rows, while the bottom rows 
present data collapsed across positions. Error based corresponds to 95% credible interval. 

Fig. 3   Model simulation results and experimental data for the mean 
proportion of correct recalls, intralist errors, omission errors, critical 
lure, and extralist error as a function of serial position in Experiment 

1A (semantically related lists) and in Experiment 1B (semantically 
unrelated lists)
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Before delving into specifics, we explore whether the imple-
mentation of order representation in Fig. 4, a novel feature 
in a model based on the MINERVA 2 (Hintzman, 1986) 
framework, can capture some aspects of the classic positional 
uncertainty curves. In line with Estes (1991, Lee & Estes, 
1977, 1981) and Nairne (1991), the distributions are locality-
constrained around the presented position, with more errors 
occurring at immediately adjacent serial positions than at 

serial positions farther away. We observe that the model mim-
ics some of these features with errors more tightly clustered 
around adjacent positions compared to the data. There is still 
room for improvement, but the overall fit was good, achieving 
an R2 = 0.98. Importantly, these observations were not fitted; 
they are presented to illustrate some limitations while also 
highlighting potential directions for future research. We now 
return to our main focus, false memories.

Fig. 4   Model simulation results and experimental data for the proportion trials for each word (items 1–6) was recalled in each serial position 
(1–6) in Experiment 1A (semantically related lists) and in Experiment 1B (semantically unrelated lists)
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Critical lure and extralist errors  Although the results presented 
in Fig. 6 and Fig. 4 are promising and represent a successful 
first step, having a lexicon allows us to further investigate 
whether the model accurately tracks specific false recalls 
reported by participants. To gain a deeper understanding of 
our ability to detect human memory errors, we examined at 
the item level, as shown in Fig. 5, whether the model tracked 
the specific critical lure and the 20 most common extralist 

intrusions that were available in the model’s lexicon. Readers 
who would like more information about the specific number 
of occurrences for each word are invited to consult the OSF 
page associated with this paper for each experiment.

Figure 5 illustrates whether the model was able to detect 
specific false memories and whether the frequency of these 
errors, represented by the size of the circles, was consistent 
with those of the participants. Overall, in Experiment 1A 

Note. The y-axis displays words organized by their frequency of occurrence, with the most 
frequently produced words by participants at the top and the least frequent at the bottom. The 
x-axis reflects the model’s detection outcomes, with "no" signifying that the model did not 
produce the word and "yes" indicating the model produce that word. The size of each circle 
represents the number of participants who recalled the word for the particular list; grey 
circles denote participant recall, and red circles indicate model simulations. Perfectly 
overlapping circles show that both the model and participants produced the word with equal 
frequency. A larger red circle indicates that the model produced the word more frequently 
than the participants did, whereas a smaller red circle suggests less frequent production by 
the model compared to the participants. 

Fig. 5   Illustration of the number of participants’ responses and num-
ber of model responses detections for the critical lure (left panels) 
and the 20 most common extralist intrusions collapsed across all lists 

(right panels) for Experiment 1A (semantically related words) and 
Experiment 1B (semantically unrelated words)
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with semantically related lists, the model tracked 11 out of 19 
produced critical lures with only minor divergences between 
the errors produced by the participants and the model, and 1 
out of the 20 most common extralist errors, suggesting some 
deviation between the specificity of what the model and par-
ticipants recalled at the item level—an insight not available 
without a structured lexicon. For semantically unrelated lists 
in Experiment 1B, the participants produced 2 out of 20 criti-
cal lures, and the model did not produce any, but the model 
tracked 3 out of the 20 most common extralist intrusions. 
Although these results might seem underwhelming, this is an 
important initial step as the overall predictions appear rela-
tively accurate, but closer inspection has revealed important 
insights that additional work is needed to capture the precise 
specificity of human memory errors with semantically related 
materials.

Similarity between experimental data and model’s most 
common extralist errors  A natural question that arises is 
whether the most common extralist intrusions produced by 
the model are similar to those produced by participants, even 
though the model does not replicate the exact most com-
mon errors. To address this issue, we examined the cosine 

similarity matrix between the 20 most common extralist 
errors made by the participants and those generated by the 
model, aggregated across all lists, which is presented in 
Fig. 6. As Fig. 6 illustrates, in some instances, the most 
common responses of the participants matched those of 
the model, albeit with some words that are less related to 
the participants' most common responses (e.g., 'alcoholic'). 
Importantly, if the model behaved randomly, Fig. 6 would 
appear mostly white, corresponding to cosine values close 
to 0. The fact that we can capture some level of similarity 
between the most common errors of the participants and the 
model is an important initial step and provides some insight 
into the influence of semantic representation on memory 
performance.

Exploratory: Similarity between types of extralist errors in 
the data and the model  In previous sections, we demon-
strated the overall similarity between the specific and com-
monly occurring extralist errors produced by the model and 
those produced by participants. Based on a reviewer's rec-
ommendation, we now investigate the distribution of these 
extralist errors to more transparently highlight the strengths 
and limitations of the current approach, guiding areas for 

Note. The y-axis displays words organized by their frequency of occurrence, with the most 
frequently produced words by the model at the top and the least frequent at the bottom. 
Likewise, the x-axis displays the organized by their frequency of occurrence, with the most 
frequently produced words by the participants at the left and the least frequent at the right. 

Fig. 6   Cosine similarity matrix between the 20 most common extralist intrusions collapsed across all lists produced by the participants (x-axis) 
and the model (y-axis) for Experiment 1A (semantically related lists) and Experiment 1B (semantically unrelated lists)



	 Psychonomic Bulletin & Review

improvement in future work. Figure 7 presents the number of 
errors produced by participants and the model, categorized 
as prior-list intrusions, subsequent-list intrusions, and extra-
experiment intrusions.

A prior-list intrusion involves a word presented in any 
lists before the current one but not in the current list (e.g., 

the word cat recalled on list n but presented on list n–1). A 
subsequent-list intrusion involves a word presented later in 
the experiment but not before the current list (e.g., the word 
cat recalled on list n but presented on list n+1). An extra-
experiment intrusion involves a word neither presented in 
the experiment, nor a critical lure.

Note. We replotted the extralist intrusions to assist the readers. The sum of the prior-list 
intrusions, subsequent-list intrusions, and extra-experiment intrusions corresponds to the total 
extralist intrusions.

Fig. 7   Model simulation results and experimental data for the number of extralist intrusions, prior list intrusions, subsequent list intrusions, and 
extra experiment intrusions in Experiment 1A (semantically related lists) and Experiment 1B (semantically unrelated lists)
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Overall, the model fit the data well (R2 = 0.85), with 
minor and expected discrepancies. As shown in Fig. 7, the 
total number of extralist intrusions was relatively compara-
ble between participants and the model, though the model 
slightly overproduced these errors. Examining the distribu-
tion of errors, extra-experiment intrusions were the most 
frequent type, which the model also slightly overproduced. 
Prior-list intrusions occurred more often in the data than 
subsequent-list intrusions, a pattern more pronounced in the 
unrelated lists from Experiment 1B. This difference is likely 
because participants tested with related lists in Experiment 
1A produced more critical lures, which were more strongly 
activated in memory than prior-list items.

Due to the trial-unit nature of the current model—where 
memory is reset after each trial—it was unable to capture 
this subtle difference. A discussion of potential model exten-
sions to address these limitations is deferred to the general 
discussion.

Discussion

In Experiments 1A and 1B, we aimed to examine whether 
the eCFM, by embedding a lexicon that contains semantic 
relationships among words, could capture false memories 
with both semantically related and unrelated materials while 
tracking memory performance across key metrics. Overall, 
the model does a good job of capturing memory perfor-
mance across various measures, such as proportion correct, 
intralist errors, omissions, and false memories of the critical 
lure and non-critical extralist intrusions. Although the model 
produces a relatively good fit to the data at the global level, 
we were able to further investigate at the item level due to 
the embedded lexicon. Overall, at the item level, there was 
some initial success in detecting word specific false recalls.

Phonological: Experiment 2A & Experiment 
2B

Experiments 1A and 1B provided clear evidence of the ben-
efits of embedding a lexicon to capture semantic relation-
ships in accounting for false memories involving semanti-
cally related and unrelated materials. In Experiments 2A 
and 2B, our goal was to investigate the flexibility of the 
model in capturing phonologically related false recalls. This 
was achieved by altering the study lists and substituting the 
model's lexicon of semantic word representations (Landauer 
& Dumais, 1997) with a lexicon of phonological word repre-
sentations (Parrish, 2017). Like Experiment 1A and Experi-
ment 1B, we present Experiment 2A that tested people’s 
serial recall for related lists and Experiment 2B that tested 

people’s serial recall for unrelated lists together, to facilitate 
understanding of the key empirical and simulation findings.

Method

Participants

The sample size justification and inclusion criteria were 
identical to Experiment 1, with the additional condition that 
participants from Experiment 1A and Experiment 1B were 
excluded from participating in these experiments. There-
fore, another 200 participants were recruited via Prolific. In 
Experiment 2A, the participants had a mean age of 22.58 
years (SD = 2.04). Of these, 52 self-identified as female, 45 
as male, and 3 chose not to specify their gender. In Experi-
ment 2B, the participants had a mean age of 22.39 years (SD 
= 1.99). Among them, 58 self-identified as female and 42 
self-identified as male.

Materials

In Experiments 2A, like in Experiments 1A, a total of 20 
lists were employed, each comprising six words phonologi-
cally related to an unpresented critical lure. For this experi-
ment, the phonological study lists were curated using the 
English Lexicon Project (Balota et al., 2007). Specifically, 
we selected 20 one-syllable target words, varying from 3 to 
6 letters in length, along with their corresponding phono-
logical neighbors. In Experiment 2B, like Experiment 1B, 
the words were arranged to minimize the similarity among 
the words. The specific lists used in both experiments are 
presented in Appendix B, along with the mean cosine simi-
larity among the words and the critical lure for each list. The 
average cosine similarity across all lists in Experiment 2A 
was higher (M = .376, SD = .059) than that in Experiment 
2B (M = .162, SD = .020), as revealed by a Bayesian t-test, 
with a Bayes factor (BF10) greater than 10,000.

Procedure and data analysis

The experimental procedure and data analysis methods in 
Experiments 2A and 2B matched those of Experiments 1A 
and 1B, except for the stimuli. In this experiment, words in 
the same list as well as their critical lure were phonologi-
cally rather than semantically related in Experiment 2A and 
phonologically rather than semantically unrelated in Experi-
ment 2B.

Simulation parameters

Like Experiments 1A and 1B, 200 simulations, 100 
simulations for Experiment 2A and 100 simulations for 
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Experiment 2B, were conducted with the eCFM. All 
parameters were identical to Experiment 1A and 1B except 
for the embedded representations (see Table 1), which were 
changed to the phonological representations to reflect a 
phonological encoding strategy and the learning rate which 
was set slightly lower: L = 0.215, g = 0.03, d = 0.3, T = 
0.30, s = 0.

Results

Figure 8 shows the experimental and simulation results of 
Experiment 2A with related lists and Experiment 2B with 
unrelated lists, illustrating the proportion of correct responses, 
the proportion of intralist errors, omission errors, and false 
recalls for the critical lures and noncritical extralist intrusions.

Note. Results by serial position (1 to 6) are shown in the top rows, while the bottom rows 
present data collapsed across positions. Error based corresponds to 95% credible interval. 

Fig. 8   Model simulation results and experimental data for the mean 
proportion of correct recalls, intralist errors, omission errors, critical 
lure, and extralist error as a function of serial position in Experiment 

2A (phonologically related lists) and in Experiment 2B (phonologi-
cally unrelated lists)
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Experimental results

Like Experiments 1A and 1B, we first summarize the main 
findings from each scoring method across Experiments 2A 
and 2B before presenting the model.

Proportion correct  Participants’ performance was compara-
ble in the unrelated lists experiment (M = .409, SD = .191) 
compare to the related lists experiment (M = .378, SD = 
.173), F(1,198) = 1.476, �2

p
 = .005, BF01= 7.125. Although 

numerically consistent with the classic within-participants 
detrimental effect of phonological similarity, our experi-
ments do not exhibit the large detrimental effect of similarity 
typically observed in other phonological similarity manip-
ulation studies (see Roodenrys et al., 2022, for a review). 
Once more, this pattern has also been observed in the past 
(e.g., Fallon et al., 1999, 2005). Most importantly, this pat-
tern is not theoretically consequential, as it likely reflects a 
redistribution of correct and error responses when words 
are related to a specific target. This phenomenon has also 
been observed by Saint-Aubin et al. (2023), who reported 
that when words were orthographically and phonologically 
related to a specific item, the expected detrimental effect 
was reduced. However, in line with the previous experi-
ments there was a main effect of serial position, F(5,990) 
= 455.546, �2

p
 = .697, BF10 > 10,000, and no interaction 

between serial position and list type, F(5,990) = 1.590, �2
p
 

= .008, BF01 = 662.525.

Intralist error  Like in the previous experiments, there were 
more intralist errors in the related lists experiment (M = 
.228, SD = .094) relative to the unrelated lists experiment 
(M = .107, SD = .070), F(1,198) = 106.235, �2

p
 = . 349, 

BF10 >10,000. There was also a main effect of serial posi-
tion, F(5,990) = 85.079, �2

p
 = .301, BF10 > 10,000, and 

an interaction between serial position and experiment, 
F(5,990) = 13.030, �2

p
 = .062, BF10 > 10,000, with a more 

pronounced rate of intralist errors in the middle serial posi-
tions for related lists.

Omission error  There were more omissions in the unre-
lated lists experiment (M = .176, SD = .176) compare to the 
related lists experiment (M = .120, SD = .170), F(1,198) = 
5.262, �2

p
 = .026, but the evidence was inconclusive, BF10 = 

1.173. The results from the analysis show evidence in favor 
of a main effect of serial position, F(5,990) = 123.435, �2

p
 = 

.384, BF10 > 10,000, and a two-way interaction, F(5,990) 
= 2.473, �2

p
 = .012, BF10 > 10,000.

Critical lure  As expected and like in the previous experi-
ments, there were more critical lure errors in the related lists 
experiment (M = .030, SD = .017) compared to unrelated 
lists experiment (M = .000, SD = .002), F(1,198) = 287.996, 

�2
p
 = .593, BF10 > 10,000. There was also a main effect 

of serial position, F(5,990) = 13.260, �2
p
 = . 063, BF10 > 

10,000, and an interaction between serial position and experi-
ment, F(5,990) = 13.260, �2

p
 = .063, BF10 > 10,000.

Extralist error  Like the previous experiments, extralist errors 
were more common in the unrelated lists experiment (M = 
.256, SD = .160) than the related lists experiment (M = .180, 
SD = .094), F(1,198) = 12.644, �2

p
 = .060, BF10 = 23.178. 

There was also a main effect of serial position F(5,990) 
= 44.252, �2

p
 = . 183, BF10 > 10,000, and an interaction 

between serial position and experiment, F(5,990) = 9.456, 
�2
p
 = .046, BF10 > 10,000.

Summary experimental results  Similar to Experiments 
1A and 1B, the proportion of correct responses showed 
that participant performance was relatively similar across 
experiments. However, there were more intralist errors in 
the experiment with related lists compared to the experi-
ment with unrelated lists; a result that is consistent with 
numerous findings on memory for phonologically related 
lists (e.g., Roodenrys et al., 2022, for a review and empiri-
cal results). The number of omissions was comparable 
between the related lists and the unrelated lists. Impor-
tantly, for the present study, there was a higher incidence 
of false memories related to the critical lures in the related 
lists compared to the unrelated lists, and fewer extralist 
intrusions in the related lists compared to the unrelated 
lists. Overall, our empirical results nicely extend the find-
ings of Tehan (2010) with semantic material to phonologi-
cal materials. In the next section, we explore the eCFM’s 
ability to track these outcomes.

Simulation results

Performance across experiments and serial positions  As 
shown in Fig. 8, the simulation results captured many key 
empirical findings at both the overall level (bottom pan-
els) and as a function of serial position (upper panels). The 
eCFM accurately captured empirical results, including fea-
tures such as correct responses, proportion correct for early 
versus later serial positions, intralist errors, along with criti-
cal lure and extralist intrusions. However, there were some 
challenges in accurately capturing certain features, such as 
slightly overpredicting performance for related lists and 
underpredicting performance for unrelated lists in terms of 
proportion correct and omissions, as well as producing more 
intralist errors in late serial positions (5 and 6) for related 
lists. Again, and more important for the present study that 
incorporates a lexicon of phonological rather than semantic 
word representations, the model produced false recalls at a 
rate comparable to that of the participants with only minor 
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divergence. In summary, the eCFM, across Experiment 2A 
and Experiment 2B, equipped with phonological representa-
tions, provides a reasonably good fit to the empirical data, 
achieving an R2 = 0.89.

Positional uncertainty  We again briefly examined the posi-
tional uncertainty curves in Fig. 9, this time with phono-
logical representations. Like Experiments 1A and 1B, the 
distributions are locality-constrained around the presented 

position, with more errors occurring at immediate and near 
adjacent positions than at positions farther away. Overall, 
the fit was good, achieving an R2 = 0.95. However, the model 
often shows more clustering around adjacent positions com-
pared to the empirical data, which exhibits a gentler slope 
across adjacent positions.

Critical lure and extralist errors  Although the initial results 
presented in Fig. 8 and 9 are promising and represent an 

Fig. 9   Model simulation results and experimental data for the proportion trials for each word (item 1–6) was recalled in each serial position 
(1–6) in Experiment 2A (phonologically related lists) and in Experiment 2B (phonologically unrelated lists)
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important first step at model evaluation, having a lexicon 
allows for an additional level of investigation, like in Experi-
ments 1A and 1B. As shown in Fig. 10, we examined whether 
the model accurately tracked the specific critical lures people 
recalled and the 20 most common and noncritical extralist 
intrusions available in the model’s lexicon. Figure 9 shows 
whether the model was able to detect specific false memo-
ries and whether the frequency of these errors, represented 
by the size of the circles, was consistent with those of the 

participants. Overall, in Experiment 2A with phonologically 
related lists, the model tracked 16 out of 20 produced criti-
cal lures with only minor divergences in terms of frequency, 
with some instances where the model overproduced or under-
produced false recall of a specific word. For unrelated lists, 
participants produced 3 of the 20 critical lures at a low fre-
quency, and this idiosyncratic property of the experimental 
results was not captured by the model. For the extralist errors 
in the related lists experiment, the model captured 5 out of 

Note. The y-axis displays words organized by their frequency of occurrence, with the most 
frequently produced words by participants at the top and the least frequent at the bottom. The 
x-axis reflects the model’s detection outcomes, with "no" signifying that the model did not 
produce the word and "yes" indicating the model produce that word. The size of each circle 
represents the number of participants who recalled the word for the particular list; grey 
circles denote participant recall, and red circles indicate model simulations. Perfectly 
overlapping circles show that both the model and participants produced the word with equal 
frequency. A larger red circle indicates that the model produced the word more frequently 
than the participants did, whereas a smaller red circle suggests less frequent production by 
the model compared to the participants.

Fig. 10   Illustration of the number of participants’ responses and number of model responses detections for the critical lure (left panels) and the 
20 most common extralist intrusions collapsed across all lists (right panels) for Experiment 2A (phonologically related words)
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the 20 most common extralist errors, and 11 out of 20 for the 
unrelated lists. This level of precision, although not perfect, is 
an important demonstration of the value of having a lexicon 
capturing phonological representations.

Similarity between experimental data and the model’s most 
common extralist errors  Like in previous experiments, we 
examined the similarity between the most common extralist 
intrusions produced by the model and those produced by 
the participants. To visualize and explore that comparison, 
we present the cosine similarity matrix in Fig. 11 between 
the 20 most common extralist errors made by participants 
(x-axis) and those generated by the model (y-axis), aggre-
gated across all lists. As shown, some of the participants’ 
most common responses matched those of the model iden-
tically, and some shared phonological features (e.g., ‘dog’ 
and ‘tod’), while others were more distinct (e.g., ‘yoke’). 
Importantly, the model produced many responses similar to 
those of the participants, providing additional evidence of 
the influence of embedding phonological representations on 
predicting memory performance.

Exploratory: Similarity between types of extralist errors in 
the data and the model  As in Experiment 1, we analyzed 
the distribution of extralist errors presented in Fig. 12, which 
categorizes the errors made by participants and the model 
into prior-list intrusions, subsequent-list intrusions, and 
extra-experiment intrusions.

Overall, the model fits the data reasonably well (R2 = 0.81), 
with only minor and expected discrepancies. For instance, 
prior-list intrusions were more pronounced in the data com-
pared to the model. As shown in Fig. 12, the total number of 
extralist intrusions was comparable between participants and 
the model. Consistent with Experiments 1A and 1B, extra-
experiment intrusions were the most frequent type of error, 
which the model once again slightly overproduced. Prior-list 
intrusions occurred more frequently in the data than subse-
quent-list intrusions, a pattern more evident in the unrelated 
list experiment. This discrepancy likely arises because partici-
pants in the related condition produced more critical lures, as 
these lures were more strongly activated than items from prior 
lists. As expected and consistent with earlier experiments, the 
model produced similar rates of prior and subsequent intru-
sions, highlighting a current limitation of this approach.

Note. The y-axis displays words organized by their frequency of occurrence, with the most 
frequently produced words by the model at the top and the least frequent at the bottom. 
Likewise, the x-axis displays the organized by their frequency of occurrence, with the most 
frequently produced words by the participants at the left and the least frequent at the right. 

Fig. 11    Cosine similarity matrix between the 20 most common extralist intrusions collapsed across all lists produced by the participants (x-axis) 
and the model (y-axis) for Experiment 2A (phonologically related lists) and Experiment 2B (phonologically unrelated lists)
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Discussion

When studying phonologically related lists in Experiment 
2A, participants recalled the critical unpresented words 
more than when participants in Experiment 2B studied unre-
lated lists. More critically, our simulations with the eCFM 

demonstrate that embedding a lexicon into a memory model 
enables the generation of phonologically-related false mem-
ories, while also accurately replicating many key features 
across various memory measures, such as the proportion 
of correct responses and better recall for words presented 
early in the list. More exactly, upon closer examination 

Note. We replotted the extralist intrusions to assist the readers. The sum of the prior-list 
intrusions, subsequent-list intrusions, and extra-experiment intrusions corresponds to the total 
extralist intrusions.

Fig. 12   Model simulation results and experimental data for the number of extralist intrusions, prior list intrusions, subsequent list intrusions, and 
extra experiment intrusions in Experiment 2A (phonologically related lists) and in Experiment 2B (phonologically unrelated lists)



	 Psychonomic Bulletin & Review

of specific items, the model was able to capture nearly all 
the critical lures for related lists and more than half of the 
extralist errors for the unrelated experiment. This detailed 
exploration is made possible by integrating a lexicon into an 
episodic memory account of serial recall to capture phono-
logical relationship between the words in the lexicon.

Orthographic: Experiment 3A & Experiment 
3B

Our previous experiments provide evidence supporting the 
value of embedding a lexicon to capture both semantic and 
phonological false memories. In this experiment, our goal was 
to investigate the model's flexibility in capturing orthographi-
cally related non-word false memories with orthographically 
related lists in Experiment 3A and orthographically unrelated 
lists in Experiment 3B. This was achieved by altering the study 
lists and substituting the model's lexicon with non-word repre-
sentations inspired by the open-bigram scheme from SERIOL 
and SERIOL2 (Whitney, 2001; Whitney & Marton, 2013). 
Like previous experiments, Experiment 3A with related lists 
and Experiment 3B with unrelated lists are presented together 
to facilitate understanding of the key empirical and simulation 
findings.

Method

Participants

The sample size justification and inclusion criteria for 
Experiments 3A and 3B remained consistent with our previ-
ous experiments. However, participants who had taken part 
in the previous experiments were excluded from participat-
ing in Experiments 3A and 3B.

Thus, an additional 200 participants were recruited 
through Prolific. The 100 participants in Experiment 3A 
had an average age of 22.53 years (SD = 1.72). Of these 
participants, 67 self-identified as female, 30 as male, and 
3 chose not to specify their gender. The 100 participants 
in Experiment 3B had an average age of 22.47 years (SD 
= 2.12). Of these participants, 59 self-identified as female, 
37 as male, and 4 chose not to specify their gender.

Materials

In Experiment 3A, as in Experiments 1A and 2A, a total of 
20 related lists were constructed. Each list consisted of six 
three-letter non-words that were orthographically related to 
one another and to an unpresented critical lure. Because all 
non-words were three-letter consonant strings (i.e., no vow-
els including “sometimes y”), we were confident that none 

of the items was a word. However, to ensure the exclusion 
of real words, these non-words were carefully examined by 
the experimenter who also confirmed their absence in the 
English Lexicon Project (Balota et al., 2007). In Experiment 
3B, the non-words were arranged to minimize the similarity 
among the non-words. The specific non-words used for each 
experiment are presented in Appendix C, along with the 
mean cosine similarity among the non-words and the criti-
cal lure for each list. The average cosine similarity across all 
lists in Experiment 3A was superior (M = .501, SD = .011) 
compared to that in Experiment 3B (M = .217, SD = .020), 
as revealed by a Bayesian t-test, with a Bayes factor (BF10) 
greater than 10,000. Like the preceding experiments, the 
item sequence within each list remained constant, but the 
order of presentation for the 20 lists was randomized for 
each participant.

Procedure and data analysis

The experimental procedure and data analysis methods in 
Experiments 3A and 3B were identical to those of previous 
experiments, with the exception of the memoranda. In these 
experiments, the stimuli consisted of non-words that were 
orthographically related in Experiment 3A and orthographi-
cally unrelated Experiment 3B.

Simulation parameters

Like previous experiments, 200 simulations, 100 simula-
tions for Experiment 3A and 100 simulations for Experiment 
3B, were conducted with the eCFM using the same word 
lists from the experiment. All parameters were identical to 
Experiment 2A and 2B except for the embedded representa-
tions (see Table 1), which were changed to the orthographic 
representations to reflect the features of the task and the 
learning rate which was set slightly lower: L = 0.19, g = 
0.03, d = 0.3, T = 0.30, s = 0.

Results

Figure 13 presents the experimental and simulation results 
from Experiment 3A, which used related lists, and Experi-
ment 3B, which used unrelated lists. It illustrates the propor-
tion of correct responses, the proportion of intralist errors, 
omission errors, and false memories for both the critical 
items and the extralist intrusions.

Experimental results

Like previous experiments, we first summarize the main 
findings from each scoring method across Experiments 3A 
and 3B before presenting results from the model.



Psychonomic Bulletin & Review	

Proportion correct  The performance of participants in the 
unrelated lists experiment (M = .131, SD = .159) was similar 
to the performance of participants in the experiment with 
the related lists (M = .128, SD = .146), F(1,198) = 0.015, 
�2
p
 = .000, BF01 = 11.914. These results are consistent with 

our previous findings, which showed no credible difference 
between related and unrelated experiments, and align with 
prior studies in which words were organized to be related to 
a key item (e.g., Saint-Aubin et al., 2023). Again there was 
a main effect of serial position, F(5,990) = 163.539, �2

p
 = . 

Note. Results by serial position (1 to 6) are shown in the top rows, while the bottom rows 
present data collapsed across positions. Error based corresponds to 95% credible interval. 

Fig. 13   Model simulation results and experimental data for the mean 
proportion of correct recalls, intralist errors, omission errors, critical 
lure, and extralist error as a function of serial position in Experiment 

3A (orthographically related lists) and in Experiment 3B (orthograph-
ically unrelated lists)
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452, BF10 > 10,000, but no interaction, F(5,990) = 1.455, 
�2
p
 = .007, BF01 = 33.646.

Intralist error  Once more, the proportion of intralist errors 
in the related lists experiment (M = .076, SD = .076) was to 
superior to that in the unrelated lists experiment (M = .052, 
SD = .050), but the difference was not statistically reliable, 
F(1,198) = 7.082, �2

p
 = . 035, BF10 = 1.259. The results 

from the analyses also confirmed a main effect of serial posi-
tion, F(5,990) = 22.362, �2

p
 = .101, BF10 > 10,000, and the 

absence of interaction between serial position and experi-
ment, F(5,990) = 0.072, �2

p
 = .000, BF01 > 10,000.

Omission error  The proportion of omissions was compara-
ble between the unrelated lists experiment (M = .145, SD = 
.253) and the related lists experiment (M = .112, SD = .217), 
F(1,198) = 0.977, �2

p
 = .005, BF01 = 4.105. Again there was 

a main effect of serial position, F(5,990) = 40.925, �2
p
 = .171, 

BF10 > 10,000, and some evidence in favor of a two-way 
interaction, F(5,990) = 0.651, �2

p
 = .003, BF10 = 20.803.

Critical lure  In line with the previous experiments, partici-
pants recalled the critical lure in the related lists experi-
ment (M = .019, SD = .016) more often than participants 
in the unrelated lists experiment (M = .000, SD = .000), 
F(1,198) = 127.339, �2

p
 = .391, BF10 > 10,000. The analy-

ses also revealed the main effect of serial position, F(5,990) 
= 14.010, �2

p
 = . 066, BF10 > 10,000, and the interaction 

between serial position and experiment, F(5,990) = 14.010, 
�2
p
 = . 066, BF10 > 10,000.

Extralist error  In this experiment, the proportions of extralist 
errors were comparable between the unrelated lists experi-
ment (M = .652, SD = .265) and the related lists experiment 
(M = .634, SD = .265), F(1,198) = 0.215, �2

p
 = .001, BF01 = 

8.058. A main effect of serial position was observed, F(5,990) 
= 19.599, �2

p
 = .090, BF10 > 10,000, with no evidence of a 

statistically significant interaction between serial position and 
experiment, F(5,990) = 0.630, �2

p
 = .003, BF01 > 10,000.

Summary experimental results  As in previous experiments, 
the proportion of correct responses was comparable across 
experiments with both related and unrelated lists. The pro-
portion of intralist errors, omissions, and extralist errors 
was similar between the experiments involving related 
and unrelated lists defined by semantic, phonological, and 
orthographic similarity. However, in line with our previous 
findings and as expected, there were more false memories 
related to the critical lures in the related lists compared to 
the unrelated lists. These results nicely extend the findings 
of Tehan (2010), who studied semantic material, to ortho-
graphic non-words materials. We now investigate the mod-
el's ability to track these findings.

Simulation eesults

Performance across experiments and serial positions  As 
illustrated in Fig. 15, the eCFM effectively captured many 
key features of the findings both overall and across serial 
positions. The eCFM accurately accounts for many empiri-
cal results, capturing aspects such as correct responses, a 
slight advantage for early versus later serial positions, intral-
ist errors, as well as critical lure and extralist intrusions. 
However, there were some challenges in accurately predict-
ing the pattern of omissions in both related and unrelated 
lists, with the model underestimating the number of omis-
sion errors and slightly overpredicting the rate of extralist 
intrusions—such as at serial position 1 for the related lists 
experiment and across most serial positions for the unrelated 
experiment. Importantly, for the current study that incorpo-
rates a lexicon of orthographic representations, the model 
produced false recalls at a rate comparable or slightly greater 
than participants. In summary, the eCFM, equipped with 
orthographic representations, provides a reasonably good 
fit to the empirical data on both accurate and false recall of 
orthographically related lists, achieving an R2 = 0.95.

Positional uncertainty  Consistent with prior findings, the 
distributions are clustered around the studied serial position, 
though with some minor discrepancies. For example, the 
model underestimated the proportion of trials in which items 
5 and 6 were recalled in their presented positions. However, 
the model once again captured many important features, 
such as the expected decrease across adjacent positions for 
items at serial positions 2 and 3. The fit was good, but poorer 
compared to the previous experiment, R2 = 0.86.

Critical lure and extralist errors  The results presented in 
Fig. 13 and 14 are promising and demonstrate the model's 
ability to track the overall pattern of memory performance. 
However, as in previous experiments, the integration of a 
lexicon into our model enables us to explore word-level pre-
dictions, which are presented in Fig. 15.

Figure 15 shows the extent to which the model accurately 
tracked the specific critical lures and the 20 most common 
extralist intrusions contained within the model’s lexicon. As 
shown, the model successfully detected all specific critical 
lures at a frequency comparable to that observed in the related 
lists experiment, and neither the model nor the participants 
produced any of these critical lures in the unrelated experi-
ment. For the extralist errors in the related lists experiment, 
the model captured 11 out of the 20 most common extralist 
errors, and 13 out of 20 for the unrelated lists. This level of 
precision provides further evidence of the value of including 
a lexicon for precise prediction; even for the very non-wordy 
3-letter consonant strings that we used in our experiment.
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Similarity between experimental data and model’s most 
common extralist errors  In this section, as in the previous 
experiments, we examined the similarity between the most 
common extralist intrusions produced by the model and 
those produced by participants. The results are presented in 
the cosine similarity matrix between the 20 most common 
extralist errors made by the participants and those generated 
by the model, aggregated across all lists in Fig. 16. If there 

were no overlap between the participants and the model, the 
cosine similarity matrix would be completely white. How-
ever, we can clearly see that almost all the most common 
responses of the participants shared many orthographic fea-
tures with at least one response of the model (e.g., 'pbp' and 
'jpj'), while a few responses of the model were more distinct 
(e.g., 'vow').

Fig. 14   Model simulation results and experimental data for the proportion trials for each word (item 1–6) was recalled in each serial position 
(1–6) in Experiment 3A (orthographically related lists) and in Experiment 3B (orthographically unrelated lists)
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Exploratory: Similarity between types of extralist errors in 
the data and the model  We further examined the distribu-
tion of extralist errors, as presented in Fig. 17. This figure 
illustrates the number of errors made by participants and the 
model, categorized into prior-list intrusions, subsequent-list 
intrusions, and extra-experiment intrusions.

Overall, the model performed reasonably well (R2 = 
0.90). As shown in Fig. 17, the total number of extralist 

intrusions and extra-experiment intrusions was comparable 
between participants and the model in the related experi-
ment but was underproduced by the model in the unre-
lated experiment. Consistent with previous experiments, 
prior-list intrusions were more frequent in the data than 
subsequent-list intrusions, with this pattern being more pro-
nounced in the unrelated experiment than related experi-
ment. However, these errors were relatively rare compared 

Note. The y-axis displays non-words organized by their frequency of occurrence, with the 
most frequently produced non-words by participants at the top and the least frequent at the 
bottom. The x-axis reflects the model’s detection outcomes, with "no" signifying that the 
model did not produce the non-word and "yes" indicating the model produce that non-word. 
The size of each circle represents the number of participants who recalled the non-word for 
the particular list; grey circles denote participant recall, and red circles indicate model 
simulations. Perfectly overlapping circles show that both the model and participants 
produced the non-word with equal frequency. A larger red circle indicates that the model 
produced the non-word more frequently than the participants did, whereas a smaller red 
circle suggests less frequent production by the model compared to the participants.

Fig. 15   Illustration of the number of participants’ responses and num-
ber of model responses detections for the critical lure (left panels) 
and the 20 most common extralist intrusions collapsed across all lists 

(right panels) for Experiment 3A (orthographically related non-
words) and Experiment 3B (orthographically unrelated non-words)
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to extra-experiment intrusions. As expected, and consistent 
with earlier findings, the model produced similar rates of 
prior and subsequent intrusions but failed to capture this 
particular feature of the data.

Discussion

With orthographically related lists in Experiment 3A, partic-
ipants were more likely to recall critical unpresented words 
compared to participants in Experiment 3B who studied 
unrelated lists. However, in both experiments, participants 
produced a larger number of extralist intrusions. More 
importantly, our simulations with the eCFM demonstrate 
that embedding a lexicon that integrates orthographic rep-
resentations in a model of episodic memory enables the gen-
eration of false memories for both orthographically related 
and unrelated lists. Additionally, it captures key features 
across various memory measures, such as superior memory 
performance for early non-words in the list. Pertinent to 
this study, when examining specific items, the model suc-
cessfully captured all the critical lures for related lists and 

more than half of the extralist errors for both related and 
unrelated experiments. Overall, this provides clear evidence 
that embedding a lexicon into a memory model enhances the 
operative depth of predictive precision.

Semantic: Simulation full model

The results of our previous six experiments are clear and 
provide evidence of the benefits of embedding a lexicon 
into a memory model to capture memory performance for 
semantically (Experiments 1A, 1B), phonologically (Experi-
ments 2A, 2B), and orthographically (Experiments 3A, 3B) 
related versus unrelated materials. One potential caveat is 
that our earlier simulations employed a lexicon tailored to 
the experiment materials—for instance, only semantic rep-
resentations were used for simulating semantically related 
versus semantically unrelated lists in Experiments 1A and 
1B. Although there is growing evidence that participants 
can attend to specific features of memoranda based on task 
demands and materials in both serial recall (e.g., Guitard 
et al., 2021, 2022, 2023) and recognition (e.g., Caplan, 2023; 

Note. The y-axis displays non-words organized by their frequency of occurrence, with the 
most frequently produced non-words by the model at the top and the least frequent at the 
bottom. Likewise, the x-axis displays the organized by their frequency of occurrence, with the 
most frequently produced non-words by the participants at the left and the least frequent at 
the right. 

Fig. 16   Cosine similarity matrix between the 20 most common extralist intrusions collapsed across all lists produced by the participants (x-axis) 
and the model (y-axis) for Experiment 3A (orthographically related lists) and Experiment 3B (orthographically unrelated lists)
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Caplan & Guitard, 2024a, b), it is indisputable that memory 
performance is influenced by semantic, phonological, and 
orthographic characteristics in tandem (e.g., Guitard & 
Cowan, 2020; Neath et al., 2022; Roodenrys et al., 2022). 

For example, people might falsely recall puff after studying 
tough (phonological) and falsely recall car after studying 
truck (semantic) within the same recall trial. To address this 
fact, we implemented a comprehensive model that integrates 

Note. We replotted the extralist intrusions to assist the readers. The sum of the prior-list 
intrusions, subsequent-list intrusions, and extra-experiment intrusions corresponds to the total 
extralist intrusions. 

Fig. 17   Model simulation results and experimental data for the number of extralist intrusions, prior list intrusions, subsequent list intrusions, and 
extra experiment intrusions in Experiment 3A (orthographically related lists) and Experiment 3B (orthographically unrelated lists)
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orthographic, phonological, and semantic representations. 
We examined whether this enhanced lexicon could still 
track the performance of semantically related and unrelated 
materials.

Method

Simulation parameters  All simulation details were iden-
tical to Experiments 1A and 1B except for the following 
changes (see Table 1). Each word representation was a 
300-dimensional vector, similar to previous experiments. 
The number of dimensions was selected to maintain a simi-
lar structure in the model, 300 dimensions to represent con-
text information and another 300 to represent item infor-
mation. However, this time the 300 dimensions that were 
composed of the first 100 dimensions for orthographic 
representations, the next 100 dimensions for phonological 
representations, and the final 100 dimensions for seman-
tic representations. The optimal mix of dimensions among 
orthographic, phonological, and semantic representations 
is beyond the scope of the current study, but dimensions 
were kept equal to prevent giving unequal weight to any 
specific representation.

The same parameters were used for the simulations in 
Experiments 1A and 1B with the full model. For the full 
model, the parameters were similar to those used with the 
model that only included semantic representation, except the 
learning rate (L) was slightly lower and the recall threshold 
(T) was slightly increased: L = 0.25, g = 0.03, d = 0.3, T = 
0.40, s = 0.

Simulation results

In this section, we briefly present the results of our simula-
tion using the full model across the same measures. Our 
goal was to evaluate whether the model, with its more com-
prehensive representation of each feature of every word in 
our lexicon could still capture the main aspects of memory 
performance for semantically related lists (Experiment 1A) 
and semantically unrelated lists (Experiment 1B).

Performance across experiments and serial positions  The 
results are presented in Fig. 18, alongside the experimental 
data for proportion correct, intralist error, omission, criti-
cal lure, and extralist error. Overall, despite changes in the 
lexicon, the model nearly tracked all main features including 
proportion correct, the standard serial position curve, intralist 
errors, omissions, and critical lures. The model also captured 
extralist errors with some minor discrepancies; it overpre-
dicted the rate of extralist errors. Outside that discrepancy, 
the model provides a good fit to the overall data, and across 

serial positions for both related and unrelated semantic lists. 
More precisely, across Experiments 1A and 1B, the eCFM, 
utilizing orthographic, phonological, and semantic represen-
tations, demonstrated an excellent fit to the empirical data, 
achieving an R2 = 0.96. Overall, the fit is comparable at the 
overall level to the model with only semantic representations.

Positional uncertainty  For positional uncertainty presented 
in Fig. 19, as observed in Experiments 1A and 1B, the posi-
tional uncertainty curves of the experimental data and the 
model share many similarities, such as distributions that are 
locality-constrained (i.e., clustered) around the cued posi-
tion, with more errors occurring at immediately adjacent 
positions than at positions farther away. Overall, the fit to the 
empirical data was good, R2 = 0.98, and comparable to the 
model with only semantic representations. However, again 
the model is more constrained around adjacent positions 
than the experimental data, which shows a more gradual 
decrease for adjacent serial positions.

Critical lure and extralist errors  In this section, we examine 
whether the full model can accurately track specific critical 
lures and the 20 most common extralist intrusions available 
in the model’s lexicon at the item level. Figure 20 illus-
trates how the model tracked these specific false memories 
and whether the frequency of these errors, represented by 
the size of the circles, aligns with those made by partici-
pants. For related lists, the model identified 5 out of 19 
critical lures, while also producing 1 critical lure that was 
not identified by participants, compared to 11 out of 19 with 
the semantic-only representation. For semantic unrelated 
lists, participants produced 2 out of 20 critical lures, and 
the model did not identify any which is identical to the 
semantic-only model. For the top 20 most common extralist 
errors, the model identified 4 out of 20 for both related and 
unrelated lists, slightly outperforming the semantic-only 
model, which captured 1 and 3 out of 20 for the related and 
unrelated experiments, respectively. This suggests a slight 
improvement in capturing general extralist errors relative to 
critical lures with a more comprehensive lexicon.

Similarity between experimental data and model’s most 
common extralist errors  In this section, we examine the 
cosine similarity matrix between the 20 most common 
extralist errors made by participants and those generated 
by the model, aggregated across all lists, which is presented 
in Fig. 21. As shown in Fig. 21, the words produced by 
the model were related to those produced by participants, 
with some sharing orthographic and phonological similari-
ties (e.g., 'dance' and 'chance') and others semantic without 
orthographic and phonological similarity (e.g., 'file' and 
'folders'). Overall, there are some differences in the words 
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produced by the most common extralist errors from the full 
model (100 dimensions for orthographic representations, 
the next 100 dimensions for phonological representations, 
and the final 100 dimensions for semantic representations) 

compared to those produced by the semantic-only represen-
tation model (300 dimensions semantic representations). 
However, these results support the value of embedding a 
lexicon to capture a more diverse array of extralist errors.

Note. Results by serial position (1 to 6) are shown in the top rows, while the bottom rows 
present data collapsed across positions. Error based corresponds to 95% credible interval. 

Fig. 18   Full model (orthographic, phonological, and semantic rep-
resentation embedded in the memory model) simulation results and 
experimental data for the mean proportion of correct recalls, intralist 

errors, omission errors, critical lure, and extralist error as a function 
of serial position in Experiment 1A (semantically related lists) and in 
Experiment 1B (semantically unrelated lists)
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Word‑level predictions

In this final section, we leverage the comprehensive lexicon 
to make word-level predictions. Specifically, in Fig. 22, we 
examined the relationship between the model and data for 
related and unrelated materials to classify each word into the 
following categories: proportion correct (the likelihood of 

each word being recalled in its presented position), intralist 
error (the likelihood of each word being recalled in a dif-
ferent position), omission (the likelihood of each word not 
being recalled), critical lure (the likelihood of each word being 
replaced by a critical lure), and extralist error (the likelihood 
of each word being replaced by a word that was not studied 
and not a critical lure).

Fig. 19   Full model (orthographic, phonological, and semantic rep-
resentation embedded in the memory model) simulation results and 
experimental data for the proportion trials for each word (item 1–6) 

was recalled in each serial position (1–6) in Experiment 1A (semanti-
cally related lists) and in Experiment 1B (semantically unrelated lists)
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Overall, we observe that the model tracks not only the 
overall performance (Fig. 18) but also the word-level perfor-
mance with a reasonable degree of accuracy, with fits rang-
ing from R2 = 0.28 to 0.49. It is evident that the model does 
not perfectly track the classification of all words; for exam-
ple, it slightly overpredicts extralist errors for some words 

compared to the data. The novelty of this approach lies in its 
ability to determine if the processes accounting for average 
performance can also account for word-level predictions. For 
comparable investigations using lexicons corresponding to 
the study material in previous experiments, please refer to 
the OSF page associated with this manuscript.

Note. The y-axis displays words organized by their frequency of occurrence, with the most 
frequently produced words by participants at the top and the least frequent at the bottom. The 
x-axis reflects the model’s detection outcomes, with "no" signifying that the model did not 
produce the word and "yes" indicating the model produce that word. The size of each circle 
represents the number of participants who recalled the word for the particular list; grey 
circles denote participant recall, and red circles indicate model simulations. Perfectly 
overlapping circles show that both the model and participants produced the word with equal 
frequency. A larger red circle indicates that the model produced the word more frequently 
than the participants did, whereas a smaller red circle suggests less frequent production by 
the model compared to the participants.

Fig. 20   Illustration of the number of participants’ responses and num-
ber of model responses detections for the critical lure (left panels) 
and the 20 most common extralist intrusions collapsed across all lists 
(right panels) for Experiment 1A (semantically related words) and 

Experiment 1B (semantically unrelated words) with the full model 
(orthographic, phonological, and semantic representation embedded 
in the memory model)
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Note. The y-axis displays words organized by their frequency of occurrence, with the most 
frequently produced words by the model at the top and the least frequent at the bottom. 
Likewise, the x-axis displays the organized by their frequency of occurrence, with the most 
frequently produced words by the participants at the left and the least frequent at the right. 

Fig. 21   Cosine similarity matrix between the 20 most common extra-
list intrusions collapsed across all lists produced by the participants 
(x-axis) and the full model with orthographic, phonological, and 

semantic representation embedded in the memory model (y-axis) 
for Experiment 1A (semantically related lists) and Experiment 1B 
(semantically unrelated lists)

Note. The model's performance is displayed on the y-axis, with results from Experiments 1A 
and 1B shown on the x-axis. Semantically related lists are represented in red, and 
semantically unrelated lists are represented in grey.

Fig. 22   Simulation results of the full model (including orthographic, 
phonological, and semantic representations embedded in the memory 
model) and experimental data for the mean proportion of times each 
word was scored as strictly correct, intralist error, omission, critical 

lure, and extralist error, along with the overall fit for each scoring pro-
cedure in Experiment 1A (semantically related lists) and Experiment 
1B (semantically unrelated lists)
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Discussion

In Experiments 1A and 1B, we captured many key features 
of memory performance with the eCFM by embedding a 
lexicon that contains semantic relationships among words. 
Here we address an important potential limitation by extend-
ing the representation to include orthographic, phonologi-
cal, and semantic relationships among words. Despite these 
changes in representation, the model provides a good over-
all level and item level fit to the data, with similar issues 
in capturing the specificity of the positional uncertainty 
curves (e.g., more locality-constrained than the experimen-
tal data). The full model also slightly overpredicts extralist 
errors. However, at the item level for related lists, it per-
forms slightly worse in capturing the specific critical lures 
but slightly better for both related and unrelated lists for the 
most common extralist intrusions. The results from these 
simulations provide initial success in capturing memory 
performance with a more comprehensive representation of 
each word.

Phonological: Simulation full model

The results from our previous simulations, using the full 
model for the semantically related and unrelated experi-
ments, provide strong evidence that a model incorporat-
ing orthographic, phonological, and semantic representa-
tions can still effectively capture memory performance. 
Before concluding the success of embedding a more 
comprehensive representation scheme into the model, we 
aimed to evaluate its efficacy for phonologically related 
lists (Experiment 2A) and phonologically unrelated lists 
(Experiment 2B). Thus, in the subsequent sections, we 
will examine whether this full model can accurately track 
the performance of phonologically related and unrelated 
materials.

Method

Simulation parameters  The simulation details were similar 
to the semantic simulation with the full model (see Table 1) 
except we now simulated Experiment 2A (phonological 
related) and Experiment 2B (phonological unrelated). The 
parameters were identical to those used with the model con-
taining only phonological representation except for the recall 
threshold (T) which was identical to the simulation with the 
full model of the experiments involving semantically related 
and unrelated materials: L = 0.215, g = 0.03, d = 0.3, T = 
0.40, s = 0.

Simulation results

In this section, we briefly present the main findings from 
our simulations using the full model for the phonologically 
related lists in Experiment 2A and the phonologically unre-
lated lists in Experiment 2B.

Performance across experiments and serial positions  As 
shown in Fig. 23, similar to the model with phonological 
representations, the full representation model captures the 
pattern or proportion of correct responses. Despite minor 
discrepancies, it better captures memory for items presented 
early, the pattern of intralist errors, fewer intralist errors for 
early presented items, critical lures, and extralist errors, with 
more errors occurring in later positions. However, it slightly 
underpredicts the proportion of omissions for related lists at 
later serial position (e.g., 4, 5, 6). Nonetheless, despite these 
minor discrepancies, the eCFM—equipped with combined 
orthographic, phonological, and semantic representations—
provides a reasonably good fit to the empirical data for both 
experiments, achieving slightly superior value than the 
model with phonological representation only with R2 = 0.91.

Positional uncertainty  Like the model with only phono-
logical representations, the full model captures many key 
features for each position of the positional uncertainty (see 
Fig. 24), albeit with the distributions again locality-con-
strained around the presented position. However, similar to 
previous simulations, the model exhibits a slower decline in 
recall rates across adjacent positions, R2 = 0.94.

Critical lure and extralist errors  In this section, we briefly 
assess whether the full model accurately tracked the specific 
critical lure and the 20 most common extralist intrusions 
available in the model’s lexicon. As shown in Fig. 25, the 
full model detected specific false memories with a degree 
of accuracy. For the phonologically related lists, the model 
identified 10 out of 20 critical lures, compared to 17 with 
the phonological-only representation model, with only minor 
discrepancies in frequency. For unrelated lists, like previ-
ous simulations, the model did not produce the participants 
3 of 20 critical lures. In terms of extralist errors, for the 
related lists, the model captured 9 out of the 20 most com-
mon errors, compared to 5 with the phonological-only rep-
resentation. For the unrelated lists, it captured 6 out of 20, 
compared to 11 with the phonological-only representation. 
Overall, while the full model lost some level of precision 
in capturing extralist errors for unrelated lists and critical 
lures for related lists, it gained precision in detecting extral-
ist errors for phonologically related lists. We attribute the 
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difference to participants’ encoding focus; if participants 
focused on phonology at study as the lists encouraged, 
including semantic and orthographic information serves to 
misrepresent that encoding focus.

Similarity between experimental data and model’s most com‑
mon extralist errors  Once again, we examined the similarity 
between the most common extralist intrusions produced by 
the model and those produced by participants, this time using 

Note. Results by serial position (1 to 6) are shown in the top rows, while the bottom rows 
present data collapsed across positions. Error based corresponds to 95% credible interval. 

Fig. 23   Full model (orthographic, phonological, and semantic rep-
resentation embedded in the memory model) simulation results and 
experimental data for the mean proportion of correct recalls, intralist 

errors, omission errors, critical lure, and extralist error as a function of 
serial position in Experiment 2A (phonologically related lists) and in 
Experiment 2B (phonologically unrelated lists)
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the full representational model. As illustrated in Fig. 26, the 
most common responses of the participants matched those of 
the phonological-only model less often than identical matches 
seen in Fig. 26. However, there is some level of similarity 
between the most common errors produced by the model and 
those made by participants. Overall, these simulations suggest 

that embedding orthographic, phonological, and semantic rep-
resentations can capture specific aspects of memory errors. 
However, additional work may be required to accurately 
capture the specificity of human error, such as exploring the 
potential weighting in terms of representations, encoding 
strategies, and task characteristics.

Fig. 24   Full model (orthographic, phonological, and semantic rep-
resentation embedded in the memory model) simulation results and 
experimental data for the proportion trials for each word (item 1–6) 

was recalled in each serial position (1–6) in Experiment 2A (phono-
logically related lists) and in Experiment 2B (phonologically unre-
lated lists)
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Word‑level predictions

As in the previous simulation for semantic materials, we ana-
lyzed the word-level predictions. More exactly, in Fig. 27, 
we explored the relationship between the model and the data 
for related and unrelated materials, classifying each word 

for proportion correct recall and for the different classes of 
error: intralist, omission, critical lure, and extralist.

Overall, Fig. 27 demonstrates that, similar to previous 
simulations, the model not only captures overall memory 
performance but also provides reasonable word-level pre-
dictions, with fits ranging from R2 = 0.26 to 0.66. While 

Note. The y-axis displays words organized by their frequency of occurrence, with the most 
frequently produced words by participants at the top and the least frequent at the bottom. The 
x-axis reflects the model’s detection outcomes, with "no" signifying that the model did not 
produce the word and "yes" indicating the model produce that word. The size of each circle 
represents the number of participants who recalled the word for the particular list; grey 
circles denote participant recall, and red circles indicate model simulations. Perfectly 
overlapping circles show that both the model and participants produced the word with equal 
frequency. A larger red circle indicates that the model produced the word more frequently 
than the participants did, whereas a smaller red circle suggests less frequent production by 
the model compared to the participants. 

Fig. 25   Illustration of the number of participants’ responses and num-
ber of model responses detections for the critical lure (left panels) 
and the 20 most common extralist intrusions collapsed across all lists 
(right panels) for Experiment 2A (phonologically related words) and 

Experiment 2B (phonologically unrelated words) with the full model 
(orthographic, phonological, and semantic representation embedded 
in the memory model).
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Note. The y-axis displays words organized by their frequency of occurrence, with the most 
frequently produced words by the model at the top and the least frequent at the bottom. 
Likewise, the x-axis displays the organized by their frequency of occurrence, with the most 
frequently produced words by the participants at the left and the least frequent at the right. 

Fig. 26   Cosine similarity matrix between the 20 most common extra-
list intrusions collapsed across all lists produced by the participants 
(x-axis) and the full model with orthographic, phonological, and 

semantic representation embedded in the memory model (y-axis) 
for Experiment 2A (phonologically related lists) and Experiment 2B 
(phonologically unrelated lists)

Note. The model's performance is displayed on the y-axis, with results from Experiments 2A 
and 2B shown on the x-axis. Phonologically related lists are represented in red, and 
phonologically unrelated lists are represented in grey.

Fig. 27   Simulation results of the full model (including orthographic, 
phonological, and semantic representations embedded in the memory 
model) and experimental data for the mean proportion of times each 
word was scored as strictly correct, intralist error, omission, critical 

lure, and extralist error, along with the overall fit for each scoring pro-
cedure in Experiment 2A (phonologically related lists) and Experi-
ment 2B (phonologically unrelated lists)
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the model is not yet perfect, this level of specificity is 
highly promising, indicating that simple assumptions can 
account for both macro and micro-level aspects in memory 
performance.

Discussion

Our aim was to examine whether extending the represen-
tation to include orthographic, phonological, and semantic 
relationships among words could still capture many key fea-
tures of memory performance with the eCFM for phonologi-
cally related (Experiment 2A) and phonologically unrelated 
lists (Experiment 2B). Overall, the model provides an ade-
quate overall and word-level fit to the data, albeit with some 
loss in the precision of word-level predictions. Despite this 
slight loss of precision, the results from these simulations 
provide additional evidence that a comprehensive represen-
tation of each word can still capture memory performance.

General discussion

When traditional computational memory models of serial 
recall attempt to account for verbal memory performance of 
related and unrelated materials (e.g., semantically, phono-
logically, orthographically related or unrelated words or non-
words), most can predict the overall pattern of veridical and 
error responses (e.g., Henson, 1998; Maylor et al., 1999; Saint-
Aubin et al., 2021, 2023). However, nearly all models of serial 
recall do not encode or recall specific words. Consequently, 
they fall short in making predictions that match such specific 
behaviours in experiments, because they fail to capture the 
intrinsic relationships formed by our linguistic experiences. 
This oversight misses the complexity and richness inherent 
in natural language (e.g., Johns & Jones, 2010), which in turn 
affects short-term memory performance (e.g., Guitard et al., 
2018, 2019, 2025; Hulme et al., 1991, 2003; Majerus, 2019; 
Neath et al., 2022; Roodenrys et al., 2022; Oberauer et al., 
2018).

In this study, our goal was to overcome that limitation 
and evaluate an extension of traditional memory models of 
serial recall by embedding a lexicon derived from distribu-
tional models of semantic memory (eCFM). Our aim was to 
capture the complexity and richness of interactions in natu-
ral language for semantic, phonological, and orthographic 
information, to coordinate those within a process model of 
episodic memory and evaluate if that amalgamation can cap-
ture memory performance that more directly matches human 
memory performance.

Across six experiments, we provided converging evidence 
that eCFM, by embedding a lexicon, not only captures typical 
features such as the proportion of correct responses, intralist 

errors, and omissions but also predicts false recalls, defined 
by specific critical lures or more general extralist errors. 
These predictions were consistent with participants’ behavior 
for semantically (Experiments 1A and 1B), phonologically 
(Experiments 2A and 2B), and orthographically (Experiments 
3A and 3B) related and unrelated lists in serial recall.

This was accomplished using a subset lexicon correspond-
ing to the studied material (e.g., semantic lists and semantic 
representations) and a more comprehensive lexicon includ-
ing orthographic, phonological, and semantic representations 
against which information retrieved in the echo is compared 
for report. Overall, adding a lexicon capable of capturing the 
intrinsic relationships between studied and non-studied infor-
mation supports modelling verbal memory performance at 
an improved level of specificity. This enhancement enables 
us to determine if the basic mechanisms we proposed still 
hold within a more holistic model of memory, with important 
theoretical ramifications for our understanding of memory.

In the next section, we briefly summarize the empirical 
and computational findings before discussing future direc-
tions and implications.

Empirical summary

Here we summarize the key results related to extralist errors. 
Our empirical findings are clear and consistent with previous 
results in serial recall (e.g., Maylor et al., 1999; McCormack 
et al., 2000; Tehan, 2010). When participants studied lists of 
words that were related to a specific critical lure, semantically 
(Experiment 1A), phonologically (Experiment 2A), or ortho-
graphically (Experiment 3A), they were more likely to recall 
that specific critical lure compared to when participants studied 
unrelated lists (Experiment 1B, Experiment 2B, Experiment 
3B). However, the pattern reverses for semantic and phono-
logical extralist errors that are not the critical lure: participants 
were more likely to make extralist errors with unrelated lists 
(Experiment 1B and Experiment 2B) compared to related lists; 
an empirical fact that might be predicted in principle but not in 
particular with random word representations.

These results extend previous studies in serial recall 
across orthographic, phonological, and semantic informa-
tion for both related and unrelated word lists. The findings 
suggest that lists related to specific critical words constrain 
which words will be falsely recalled. Traditionally, the study 
of extralist errors and false memory has used the DRM para-
digm (Deese, 1959; Roediger & McDermott, 1995), where 
studied materials (e.g., table, sit, legs, wood, chair) are 
related to a specific critical lure (e.g., desk). However, here, 
in line with previous research (Maylor et al., 1999; McCor-
mack et al., 2000), we demonstrated that moving beyond this 
traditional paradigm allows for a richer and more complex 
investigation of extralist errors.
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Not only were these extralist errors more common than 
critical lures (i.e., the traditional measure of false memory), 
but they were also more diverse and harder to reconcile with 
traditional computational accounts of memory, which strug-
gle to precisely predict the likelihood of recalling a specific 
word. In addition, the detailed analysis revealed that the most 
common extralist errors were words that were never presented 
in the experiment (extra-experiment errors), further demon-
strating the necessity of embedding a comprehensive lexicon 
that captures both presented and unpresented information. 
Moving forward, including both traditional DRM procedures 
and unrelated lists has potential to provide a richer and more 
comprehensive empirical dataset, helping to build a deeper 
understanding of these important human memory errors.

Computational summary

Our computational results are straightforward to summarize 
and align well with the growing efforts to build comprehen-
sive models that integrate advances in the study of knowl-
edge, memory, and cognition (e.g., Chubala et al., 2016; 
Johns et al., 2012; Kimball et al., 2007; Mewhort et al., 
2018; Monaco et al., 2007; Morton & Polyn, 2016; Osth 
et al., 2020; Osth & Zhang, 2023; Polyn et al., 2009; Reid 
& Jamieson, 2022, 2023; Steyvers, 2000).

In this study, we used eCFM as proof of principle for 
the value of integrating structured word representations into 
a memory model (Guitard et al., 2025). We extended the 
model by embedding semantic, phonological, and ortho-
graphic representations using a DSM, and for the first time 
within this framework, investigated its ability to track veridi-
cal memory performance (proportion correct, intralist errors, 
omissions) and extralist errors simultaneously at both the 
overall and item levels.

Across the experiments, we demonstrated that the model 
can track key features of memory performance across veridi-
cal and extralist errors for related and unrelated semantic, 
phonological, and orthographic studied materials such as the 
serial position function, the distribution of errors, and posi-
tion uncertainty with some level of success. Our work also 
shows that the model can track false recall of specific critical 
lures as well as extralist words that were related to the word 
list but were not a “critical lure.” While the model is not 
complete and further work is needed (which we will briefly 
discuss in the future directions), we believe that integrating 
a lexicon of word representations into an episodic memory 
model of storage and retrieval illustrates a necessary next 
step to advance our investigations of human memory. Specif-
ically, our model may not be perfect and there is likely a bet-
ter solution, but it demonstrates a valuable framework lev-
eraging existing theories of semantic and episodic memory 
that can be extended to explore the important interactions 

between knowledge and memory that are necessary to a full 
account of memory. It also offers a framework for making 
word specific rather than general predictions about people’s 
behavior in studies of serial recall.

Implications and future directions

The implications of our results suggest that integrating struc-
tured representations for words provides valuable insights 
and predictive precision in our predictions of human mem-
ory. While there are potentially other solutions, we have pro-
vided clear evidence of the value of considering how infor-
mation is represented and the implications for predicting 
recall at the word-level. Traditional models of serial recall 
have offered valuable theoretical insights that we leveraged 
in our framework. The solution we have implemented can 
likely be incorporated into existing models of memory (e.g., 
Brown et al., 2000; Brown et al., 2007; Burgess & Hitch, 
1999; Henson, 1998; Nairne, 1990; Murdock, 1995; Saint-
Aubin et al., 2021). This approach has been extremely fruit-
ful in recognition (e.g., Johns et al., 2012, 2020; Osth et al., 
2020) and free recall (Kimball et al., 2007; Sirotin et al., 
2005) but remains relatively uncommon in accounting for 
serial recall (e.g., Guitard et al., 2025; Mewhort et al., 2018). 
We encourage researchers to integrate representations based 
on articulated theoretical frameworks to investigate whether 
the mechanisms implemented in general can be extended to 
provide an account of serial recall in the specific.

Although our framework provides good evidence for 
accounting for memory performance at the specific list level, 
it remains relatively simple. There are important future direc-
tions that we aim to investigate beyond the scope of this paper.

Trial unit model of memory  Like many serial recall theo-
ries, our current implementation of the eCFM (e.g., Brown 
et al., 2007; Henson, 1998; Nairne, 1990) operates as a trial 
unit model. This means that information from previous trials 
does not affect current memory performance. However, as 
highlighted in our detailed analysis of extralist errors, this 
current version of the model falls short in accounting for 
several important findings, such as the influence of prior 
list intrusions—where participants recall information from 
earlier trials (e.g., Henson, 1998; Osth & Dennis, 2015)—
and the effects of proactive interference, where earlier lists 
influence memory for the current list (e.g., Carroll et al., 
2010; Beaudry et al., 2014; Ralph et al., 2011).

In our exploratory analysis, we found that participants 
made more prior list intrusions than subsequent list intrusions 
(i.e., recalling words from previous trials rather than words 
presented later in the experiment; a kind of control condition 
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by comparison). However, the model produced a similar num-
ber of errors in both cases. This outcome was expected, as the 
model was not designed to address these factors, and previous 
trials were effectively removed from memory.

To address this limitation, we are working on extend-
ing the model to capture the more dynamic and continuous 
nature of memory. There are several potential approaches to 
achieving this, such as reducing the forgetting rate of pre-
vious trials (instead of completely forgetting earlier trials, 
slightly reducing their memory influence), or adding a list 
context similar to serial position effects but tailored to each 
list. This would allow items from the current trial to be more 
readily retrieved, while still accounting for the influence of 
previous trials. Regardless of the specific approach, both 
solutions aim to make current information more active than 
prior information without fully erasing the memory of previ-
ous trials. In our ongoing work, we will explore and evaluate 
these approaches to enhance the model and provide a better 
account of the continuous nature of human memory.

Importantly, the solution we propose—embedding a 
lexicon—is not incompatible with a continuous memory 
model. For example, Mewhort et al. (2018) used a large 
lexicon of 39,076 words represented by BEAGLE vectors 
in a holographic recall model, demonstrating how a lexi-
con can provide precise predictions regarding the release of 
proactive interference. This approach could be integrated 
into our framework to deepen our understanding of human 
memory and related phenomena, offering a more compre-
hensive model of memory. Thus, embedding a lexicon does 
not conflict with the inclusion of prior information in mem-
ory models. However, the challenge remains to develop a 
continuous memory model that incorporates the influence of 
prior trials in the current context (see, for example, Kimball 
et al., 2007; Sirotin et al., 2005, in the context of free recall).

Representations  Currently, we have embedded orthographic, 
phonological, and semantic information to represent item 
information. We have not evaluated the optimal weight-
ing between these parameters (see Reid et al., 2023a, b for 
possible solution in recognition). Based on our simulations 
with subset representations (e.g., semantic representations 
for semantic materials) and a comprehensive lexicon (ortho-
graphic, phonological, and semantic), it seems that partici-
pants attend more heavily to features that advance perfor-
mance in the local task (e.g., focusing more on phonological 
features when studying phonologically-related materials). 
These tentative conclusions appear consistent with the notion 
that we attend to a subset of features based on task demand 
and re-attend to these specific features during the memory 
test (e.g., Caplan, 2023; Caplan & Guitard, 2024a, b). How-
ever, further work is needed to understand this dynamic at 
both encoding and retrieval before further implementation. In 

future work, we will systematically investigate these mecha-
nisms and the optimal weightings between representations 
using Nosofsky’s work as a guideline for integrating attention 
weighting in the Generalized Context Model (GCM).

We have adopted a standard distributional model of 
semantics for our representations. It is likely that other rep-
resentation structures would provide a richer understand-
ing and integration of information. For example, we could 
integrate neurosemantic representations using neuroimaging 
techniques to extract representations of meaning from brain 
activity (e.g., Mitchell et al., 2008; Mason & Just, 2020; Just 
et al., 2010) or combine them to provide a richer understand-
ing (see also Fyshe et al., 2014). We also assume that our 
representations are stable across participants, but it is clear 
that, although there are shared representations as revealed 
by the field of neurosemantics, our representations are also 
shaped by variations in a person’s language environment 
(e.g., Aujla, 2021; Jamieson et al., 2018; Johns, 2024; Mon-
tag et al., 2015; Vong et al., 2024). Future work will attempt 
to make sense of people’s performance more accurately by 
integrating and comparing different kinds of word repre-
sentation schemes, perhaps using experiential optimization 
(Johns et al., 2018).

Beyond a model of tasks  Our work has shown that the eCFM 
can be applied to serial recall, serial reconstruction of order 
(Guitard et al., 2025), and across studied materials, includ-
ing words and non-words. Because it is based on MIN-
ERVA 2 (Hintzman, 1986), the framework can be extended 
to recognition (Reid et al., 2023a, b), cued recall, catego-
rization, associative learning, decision making, and more 
(see Jamieson et al., 2022 for a review). Our next objective 
is to demonstrate that the model can capture key memory 
performance metrics within a comparable empirical and 
computational framework. Models of memory should seek 
to integrate data over a range of tasks and contexts. How-
ever, the field has largely focused on building models for 
specific tasks while giving limited attention to the general 
processes or principle of how memory works and how to 
integrate them (but see Surprenant, & Neath, 2009; Kahana 
et al., 2024). Our framework is neither unique nor novel; it 
uses simple processes that have been around for decades and 
demonstrates how they can be integrated to provide precise 
predictions of human memory performance. The framework 
is flexible and imperfect, but with additional work, it will 
demonstrate how simple assumptions grounded in previous 
effort and hard-earned wisdom can account for a broad range 
of findings from the study of human memory and cognition.

Simon’s (1969) Parable of the ant  Independent of the specif-
ics, our approach is informed by insights that Herbert Simon 
(1956) and others (Todd & Gigerenzer, 2012) have argued. 
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Simon (1956) presented the argument that models of cogni-
tion often ignore the environment for the internal world. In 
doing so, our theories too often misattribute sophistication to 
complex processing mechanisms in the brain. Todd and Gig-
erenzer’s (2012) book provides a range of scenarios in which 
the case plays out. In both cases, the theorists have argued that 
a full account of memory might be better envisaged by assum-
ing memory is a relatively simple process (as in MINERVA 2) 
but that it exhibits complex behaviour when operating against 
a structured environment (as in the representations from LSA). 
Our modelling in this paper bears the point out. By equipping 
a MINERVA 2 with a semantic memory to borrow representa-
tions from, we are able to demonstrate some sophistication of 
the memory system with regards to false recall and remember-
ing of unstudied but reasonable words in error. However, the 
point is larger than that context alone and our account repre-
sents a branch of the ecological cognition school in the present 
and of Simon’s arguments about cognition from the past. In 
that sense, we not only see our work as joining current efforts 
to model memory performance at word-level precision but also 
a more general demonstration of old ideas on the importance 
of modelling representation and how those representations 
play out in remembering. Although we do not draw out those 
connections here due to an already lengthy paper, we plan to 
draw those connections more explicitly in future work.

Conclusion

It is well-established that verbal memory is fundamentally 
imperfect and reconstructive. However, traditional models 
have omitted a critical component: a lexicon that reflects 
how linguistic information is related. In this manuscript, 
we have demonstrated how the eCFM, by integrating 
structured representations that account for the intrinsic 
lexical relationships of verbal information, can over-
come this limitation. Specifically, we have shown how 
the eCFM can account for veridical and false memory at 
both the macro (overall performance) and micro levels 
(word-level performance) across semantic, phonological, 
and orthographically related and unrelated materials. This 
work nicely extends the efforts of our predecessors in rec-
ognition (e.g., Johns et al., 2012, 2020; Osth et al., 2020) 
and recall (e.g., Kimball et al., 2007; Mewhort et al., 
2018; Sirotin et al., 2005), demonstrating the value of 
having a more holistic model of memory. We encourage 
researchers to consider integrating memory within a more 
comprehensive architecture that coordinates accounts 
of semantic and episodic memory to move away from 
abstract predictions, towards more specific and testable 
predictions of human memory performance as a function 
of the specific words presented in study lists.
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Appendix A

Table 2   Semantically related lists used in Experiment 1A and semantically unrelated lists used in Experiment 1B

Semantically Related Lists
Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Lure Mean Cosine 

Similarity
guitar treble drum fish music boom bass 0.404
stop pedal car clutch accelerate speed brake 0.481
oyster seafood shell chowder pearl mussel clam 0.322
hold tight vise chisel tool metal clamp 0.522
golf member ball dance organization house club 0.283
bird peace white beak bar feather dove 0.347
scared fright terror anxiety monster snake fear 0.389
tonic alcohol vodka drink liquor drunk gin 0.639
panther pretty purple lemonade rose dress pink 0.392
jet air fly sky travel geometry plane 0.360
cabinet paper folder drawer document misfiling file 0.475
light camera bulb bright back flood flash 0.341
fake cheat lie crime false money fraud 0.303
methane station energy stove heat liquid gas 0.315
window crystal cup bottle clear jar glass 0.387
tree maple branch flower fall pot leaf 0.360
throat tie collar necklace shoulder long neck 0.424
beef pork cook turkey oven dinner roast 0.498
suit jacket shirt blouse coat pants vest 0.642
mile meter inch grass stick foot yard 0.355
Semantically Unrelated Lists
Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Lure Mean Cosine 

Similarity
mile jacket cook necklace fall jar bass 0.241
guitar meter shirt turkey shoulder pot brake 0.219
stop treble inch blouse oven long clam 0.234
oyster pedal drum grass coat dinner clamp 0.224
hold seafood car fish stick pants club 0.270
golf tight shell clutch music foot dove 0.253
bird member vise chowder accelerate boom fear 0.168
scared peace ball chisel pearl speed gin 0.187
tonic fright white dance tool mussel pink 0.222
panther alcohol terror beak organization metal plane 0.193
jet pretty vodka anxiety bar house file 0.191
cabinet air purple drink monster feather flash 0.234
light paper fly lemonade liquor snake fraud 0.183
fake camera folder sky rose drunk gas 0.198
methane cheat bulb drawer travel dress glass 0.188
window station lie bright document geometry leaf 0.232
tree crystal energy crime back misfiling neck 0.205
throat maple cup stove false flood roast 0.284
beef tie branch bottle heat money vest 0.226
suit pork collar flower clear liquid yard 0.262

Note. Each row corresponds to a list and each column corresponds to the position of the item within the list. All participants were tested on all 
lists in a random order. The mean cosine similarity reflects the average similarity between studied words, including the critical lure
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Appendix B

Table 3   Phonologically related lists used in Experiment 2A and phonologically unrelated lists used in Experiment 2B

Phonologically Related Lists
Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Lure Mean Cosine 

Similarity
barge ban bang bash bat batch badge 0.382
chase check choice guess yes less chess 0.316
burp chap chop churn church chip chirp 0.365
date dot doubt hurt shirt dart dirt 0.255
fig cog dog hog jog log fog 0.353
fat feet fought fight fit soot foot 0.299
gas goose cease piece niece lease geese 0.419
seethe sued booth soup suit soon soothe 0.409
theme sheaf reef leaf beef chief thief 0.500
chum dumb hum rum sum mum thumb 0.397
birth balm barb barn bard path bath 0.327
calf cuff cob con cop cot cough 0.368
deaf den deck debt dead doth death 0.433
fun fuzz budge judge forge nudge fudge 0.460
jerk choke poke soak woke yolk joke 0.377
mush mash marsh mess met men mesh 0.368
noose nerve curse purse verse worse nurse 0.310
ship shape shop shark harp carp sharp 0.395
teach team tease teethe1 heath wreath teeth 0.359
terse term turn tiff tough surf turf 0.436
Phonologically Unrelated Lists
Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Lure Mean Cosine 

Similarity
terse team shop purse met yolk badge 0.181
barge term tease shark verse men chess 0.143
chase ban turn teethe harp worse chirp 0.157
burp check bang tiff heath carp dirt 0.164
date chap choice bash tough wreath fog 0.146
fig dot chop guess bat surf foot 0.168
fat cog doubt churn yes batch geese 0.135
gas feet dog hurt church less soothe 0.147
seethe goose fought hog shirt chip thief 0.155
theme sued cease fight jog dart thumb 0.173
chum sheaf booth piece fit log bath 0.159
birth dumb reef soup niece soot cough 0.191
calf balm hum leaf suit lease death 0.190
deaf cuff barb rum beef soon fudge 0.205
fun den cob barn sum chief joke 0.169
jerk fuzz deck con bard mum mesh 0.135
mush choke budge debt cop path nurse 0.149
noose mash poke judge dead cot sharp 0.147
ship nerve marsh soak forge doth teeth 0.139
teach shape curse mess woke nudge turf 0.178

Note. Each row corresponds to a list and each column corresponds to the position of the item within the list. All participants were tested on all 
lists in a random order. The mean cosine similarity reflects the average similarity between studied words, including the critical lure
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Appendix C

Table 4   Orthographically related three letters non-words lists used in Experiment 3A and orthographically unrelated three letters non-words lists 
Experiment 3B

Orthographically Related Lists
Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Lure Mean Cosine 

Similarity
tqs txs pcs tcz lcs tjs tcs 0.508
xdj xdk xlf xnf xdp xtf xdf 0.536
zqg dkg dng dqb sqg fqg dqg 0.506
qgv wjv wdv wsv wgp bgv wgv 0.507
dmr qcr qmp fmr qmg qmh qmr 0.495
bfk bpg wpk spk bph bpd bpk 0.498
psh jxh pxd pxz pnh lxh pxh 0.488
jbz jpz jwz jkg jkn lkz jkz 0.509
cfs cvb jfb cfw cfz pfb cfb 0.496
znp qnw zcw znl zsw jnw znw 0.493
vlt rlc rqt plt rlg wlt rlt 0.498
vsw vgm rsm vsq vtm vlm vsm 0.507
ztj htn hpj htg htk hsj htj 0.498
lcp lqp lwg lwf swp ldp lwp 0.508
szd szl skx sbx mzx gzx szx 0.490
gjn kbn kjw kjf kjs kxn kjn 0.506
frd frz brl mrl fnl frk frl 0.492
nbq gbq mbl sbq mcq mxq mbq 0.504
nht lhc ghc nhd qhc nkc nhc 0.493
gmd gjd gvz gvl bvd wvd gvd 0.490
Orthographically Unrelated Lists
Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Lure Mean Cosine 

Similarity
gmd lhc mbl mrl kjs gzx tcs 0.236
tqs gjd ghc sbq fnl kxn xdf 0.214
xdj txs gvz nhd mcq frk dqg 0.201
zqg xdk pcs gvl qhc mxq wgv 0.229
qgv dkg xlf tcz bvd nkc qmr 0.199
dmr wjv dng xnf lcs wvd bpk 0.204
bfk qcr wdv dqb xdp tjs pxh 0.205
psh bpg qmp wsv sqg xtf jkz 0.219
jbz jxh wpk fmr wgp fqg cfb 0.231
cfs jpz pxd spk qmg bgv znw 0.199
znp cvb jwz pxz bph qmh rlt 0.216
vlt qnw jfb jkg pnh bpd vsm 0.194
vsw rlc zcw cfw jkn lxh htj 0.238
ztj vgm rqt znl cfz lkz lwp 0.237
lcp htn rsm plt zsw pfb szx 0.227
szd lqp hpj vsq rlg jnw kjn 0.223
gjn szl lwg htg vtm wlt frl 0.267
frd kbn skx lwf htk vlm mbq 0.206
nbq frz kjw sbx swp hsj nhc 0.223
nht gbq brl kjf mzx ldp gvd 0.179

Note. Each row corresponds to a list and each column corresponds to the position of the item within the list. All participants were tested on all 
lists in a random order. The mean cosine similarity reflects the average similarity between studied words, including the critical lure
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Appendix D

Illustration of the free parameters of the models. L denotes 
the base learning rate, g represents the rate at which encod-
ing decreases with serial position, and d reflects the degree 
of similarity or dissimilarity between successive serial posi-
tions in memory for a study list. The top left panel shows 
the impact of L, the base learning rate, when g is set to 0 
across all positions. The top right panel demonstrates the 

effect of g when L is fixed at 1. The four bottom panels dis-
play the cosine similarity of serial position representations 
as a function of d. These panels can be interpreted by cross-
referencing the numbers within the graph with the serial 
positions on the x-axis. For example, the cosine similarity 
profile at serial position 3 in each graph, indicated by the 
green line with points labelled “3,” shows the similarity of 
each serial position from 1 through 6 to the representation 
of the third serial position
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