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Featured Application: The application of Artificial Intelligence (AI) in architectural
design can significantly enhance design efficiency, foster innovation, and improve the
sustainability of building projects. AI-driven tools, such as parametric design and AI-
assisted design methods, are already helping architects optimize layouts, reduce material
waste, and create energy-efficient structures. As AI continues to evolve, its potential to
streamline construction processes, provide predictive analytics for building performance,
and enable smarter facility management could reshape the entire building lifecycle,
making the construction industry more adaptive and resilient to future challenges.

Abstract: At present, Artificial Intelligence (AI) technology is developing rapidly, and
the construction industry is facing three major trends: industrialization, greening, and
digital intelligence. This paper explores the application of AI technology in the field of
architectural design and its impact on design efficiency, with 1810 articles screened from
the Science Direct, Web of Science, Scopus, and China National Knowledge Network
(CNKI) search engines, 92 of which were selected for meta-analysis and review. The results
show that AI has great potential in the architectural design process, including creative
development, data analysis, and problem-solving. In addition, AI has other applications
throughout the building lifecycle, such as predictive analytics, construction supervision,
and facility maintenance. In addition, through the discussion of traditional architectural
design methods and AI-driven architectural design methods, this paper summarizes the
advantages and challenges of AI technology in architectural design. Finally, through case
analysis, this paper believes that the future of AI in the field of construction is full of
infinite possibilities; through the correct guidance and regulation of its development, it will
certainly bring more innovation and progress for the construction industry.

Keywords: artificial intelligence (AI); architectural design; parametric design; AI-assisted
design; human–machine collaboration

1. Introduction
Architectural design is a complex creative activity that requires balancing aesthetics

and functionality while considering multiple factors, including technology, economics,
environment, and socio-cultural aspects [1]. For large-scale, high-complexity projects and
increasingly stringent environmental requirements, design teams face growing pressure in
information processing, consuming more time and resources.
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Therefore, Artificial Intelligence (AI) technology not only optimizes processes but also
improves efficiency for traditional building design. Through machine learning, natural
language processing, and algorithm optimization, AI assists designers in making faster
and more accurate decisions in areas such as creative exploration, data analysis, and
problem-solving. Additionally, parameterized design enhances the innovation and quality
of design solutions.

At the same time, the application scope of AI is not limited to the early design process,
but it can also support the entire lifecycle of the building [2], covering project prediction
analysis, construction supervision, and continuous facility maintenance [3]. This compre-
hensive integration of AI technology can promote the development of the built environment
toward greater intelligence and sustainability.

Finally, in the face of the meta-universe [4], how to let AI give full play to its potential in
architectural design to revitalize the construction industry remains an open question. This
paper reviews the traditional architectural design methods, summarizes cutting-edge AI
technologies in construction, analyzes AI’s impact on design efficiency, identifies potential
challenges, and explores future prospects.

AI technology is now at a critical juncture of rapid development, with the rise of
Generative Artificial Intelligence (GAI) signaling transformative changes in visual, artistic,
and language-related fields across various industries [5]. These technologies have moved
beyond the experimental phase into commercial applications, demonstrating immense
potential. In the future, GAI is expected to expand into areas like building information
modeling and intelligent design, critical to the complex construction industry, fostering
creativity and innovation [6].

Amidst market shifts and emerging influences, the construction industry faces three
major trends: industrialization, green development [7], and digital–intelligent transforma-
tion [8]. Industrialization emphasizes modular, automated construction methods [9], while
green development focuses on lifecycle energy conservation and the use of sustainable mate-
rials [10]. Digital–intelligent transformation integrates digitization and intelligent systems,
leveraging technologies like GAI to optimize processes and enhance value creation.

AI’s evolution from rule-based systems to large-scale models is accelerating the digital–
intelligent transformation of the construction sector. This shift improves collaboration,
supply chain management, and data-driven decision-making, boosting the competitiveness
of organizations and individuals. Conversely, those unable to adapt to this trend risk higher
costs and diminished market standing. Continuous innovation in AI is paving the way for
a smarter, more efficient, and sustainable future in the construction industry [11].

In response to these technological advancements, the National Council of Architec-
tural Registration Boards (NCARB) has established clear guidelines emphasizing that
while AI can serve as a labor-saving tool, architects must maintain responsibility and
accountability for all work. NCARB states that AI is not a replacement for professional
judgment, and architects must remain in responsible control of all technical submissions
under their seal [12,13]. Significant legal uncertainty exists globally and locally regarding
intellectual property rights for AI-generated architectural designs. For instance, in the U.S.,
the Copyright Office has revoked copyrights for AI-generated works, highlighting chal-
lenges architects face when using AI. Similarly, the European Union’s AI Act outlines strict
requirements for high-risk AI systems, including mandatory documentation, testing, and
accountability measures [14]. In China, recent guidelines focus on ensuring transparency
and ethical use of AI in creative fields. These examples underline the need for robust AI
governance frameworks and transparent operational practices across jurisdictions [15].
Architects and related stakeholders must navigate technical documentation, regular testing,
and evolving regulations to responsibly integrate AI into practice.
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As proven in Ji’s study, AI has the potential to revolutionize architectural design by
optimizing outcomes, enhancing efficiency, and fostering sustainability, surpassing the
limits of traditional methods. In the face of the rapid rise of AI and the development
trend and dilemma of the construction industry, this paper aims to systematically review
the application of AI in architectural design and its impact on the efficiency of architec-
tural design, aiming to provide new momentum for industry development and uncover
novel opportunities.

As is shown in Figure 1, this paper first outlines the rise of AI and the three major trends
in the development of the construction industry, as well as the efficiency dilemma currently
faced by the construction industry. Then, it introduces AI technology and principles in
detail, as well as its applications in architectural design, including early design management
and later-stage operation. Then, the traditional architectural design method and GAI design
method are analyzed theoretically, highlighting efficiency advantages and addressing
emerging challenges. Finally, some case studies are made to look forward to the future.
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2. Materials and Methods
This paper uses Science Direct, Google Scholar, and other search engines to review

the application research of AI in architectural design, including the research of AI and
architectural design methods. Due to the continuous progress of China in the field of AI and
architectural design, Chinese scholars have published many articles in Chinese in this field,
so an analysis of the English literature alone cannot accurately and comprehensively sum-
marize the research on AI and architectural design. China National Knowledge Network
(CNKI) is the largest continuously updated Chinese academic literature database in China.
It effectively complements the English database and presents a comprehensive picture of
the current state of research in the world. In this paper, we aim to achieve the following:

1. Understand the definition of AI and the AI technology that can be used in architec-
tural design.
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2. Discuss and summarize traditional and modern architectural design methods and
workflow research.

2.1. Retrieval Process

In the first phase of this review, diverse sources of research (conference papers,
books, research papers, journal articles, and other literature reviews) are considered. The
search terms are defined and expanded according to the article’s topic: “AI”, “Artificial
Intelligence-generated Content (AIGC)”, “Parameterization”, “Human-machine collabo-
ration”, “Building energy consumption”, and “Architectural design”. The research field
covers computer, engineering, environment, energy, and building disciplines. The search
syntax is different for different databases. In the databases of Science Direct, Web of science,
and Scopus, a fuzzy search was performed using titles and keywords that the literature
might use. In the CNKI database, keywords and indexes are used to search.

The study protocol follows the Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) Program Guidelines [16], consisting several stages: (a) identifying
the publication, (b) screening the publication, (c) assessing the eligibility of the publication
against predefined criteria, and (d) conducting a synthesis and meta-analysis. We use
inclusion and exclusion criteria in order to select papers to analyze:

1. Research papers on the application of AIGC, machine learning, AI in the fields of
parameterization, energy consumption simulation, human–machine collaboration, etc.

2. Exclude papers that study the application of AI in computer, programming, clinical
medicine, agriculture, and other fields.

3. This study takes the influence of AI on architectural design efficiency as the main
research topic.

4. The study focuses on the feasibility and future potential of the technology to draw
conclusions.

2.2. Analysis of Search Results

Shown in Figure 2 is the PRISMA flow chart tracking and summarizing the article
selection process. In the first stage, duplicate papers were deleted, leaving 657 papers.
In the second phase, articles on programming, medicine, and agronomy were excluded.
At the same time, the literature was filtered according to the influence of the source of
the article, reducing the count to 366. In the third stage, the development history of AI
and architectural design was systematically expounded, and the application of specific
AI technology in architectural design was studied in detail, excluding 283 papers, leaving
83 for detailed analysis and review.
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The 83 articles, classified by year, as shown in Figure 3, reveal that traditional ar-
chitectural design methods include five parts—“model and theory”, “problem”, “think-
ing”, “philosophy and ontology”, and “tool”—and AI can transform this information into
vectorized representations in computer-processable formats, thus greatly improving the
processing and generation efficiency. Across all stages—program design, construction, and
operation—AI can provide substantial technical support, such as AIGC, artificial neural
networks (ANNs), deep neural networks (DNNs), Random Forest (RF), etc.
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3. Overview of AI Technology
3.1. Basic Principles and Key Technologies of AI

AI is a cutting-edge science and technology discipline that extends the application
range of technology by simulating human learning and innovation. At the second session
of the 14th National People’s Congress of China, the concept of “AI+” was recognized as
a new quality of productivity, alongside new industrialization, the digital economy, and
professional innovation, marking its strategic importance. Driven by this macro policy,
integrating AI technology has become an inevitable trend aligned with contemporary needs
and innovative development.

AIGC technology utilizes machine learning and natural language processing capabili-
ties [14] to enable computers to simulate human creativity and judgment and automatically
produce content that meets requirements [17]. In the field of images, AIGC technology has
advanced from passive analysis to automatic generation, and then to composite AI.

3.2. Application of AI in Architectural Design
3.2.1. Design Automation Generation and Optimization

GAI is reshaping architectural design by streamlining processes across various stages.
In the conception stage, AI uses genetic algorithms and other technologies to automate
site layouts and building plans, which greatly improves the design efficiency. In terms
of rendering, advancements in AI improve image and video quality, fostering creative
inspiration. In terms of model generation, AI can generate three-dimensional structures by
means of parameterization [18]. For instance, platforms like “Construction Drawing Tong”
and Professional Knowledge-based Preprocessing & Modelling System (PKPM)-AI Checker
automate detailed construction drawings and structural compliance reviews. In addition,
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AI also facilitates human–computer interaction, parametric design, building performance
simulation, and other links [19].

In urban planning, generative design can integrate a variety of key elements, and
AI can produce numerous solutions quickly, meeting planning objectives and constraints,
greatly improving efficiency and innovation potential. In addition, the simulation capabili-
ties of AI [20–22] also help design teams to explore and evaluate different solutions from
multiple perspectives.

In architectural scheme design, the integration of generative design and large language
models provides architects with new design tools. Transformer-based language models
capture key information in the design description text, enabling natural language input. AI
products such as Midjourney and Stable Diffusion can generate high-quality visual images
based on text [23], accelerating the realization of creative concepts [24].

In the construction drawing design phase, the application of AI algorithms is revolu-
tionizing design output, inspection, and optimization work.

In the process of building models and drawing construction drawings, intelligent
algorithms can extract design information, construction methods, and material usage data
from building models and summarize them into a multidimensional database [25]. This
not only ensures the floorability of the design, but also improves design quality, ensures
feasibility, accurately conveys design intent, and reduces construction change risks.

In the following phase, AI also streamlines construction drawing reviews by iden-
tifying and following building codes and guidelines. The intelligent system can quickly
identify design problems and track design results in real time, such as material specifi-
cation deviations, labeling errors, and insufficient red line distance. The introduction of
natural language processing (NLP) technology enables precise interpretation of complex
guidelines, shortening review cycles, reducing manual effort, and improving design safety
and compliance [26–28].

In addition, AI algorithms have further improved parametric design by allowing users
to adjust parameters for greater flexibility and diversity while ensuring design consistency
and accuracy.

In the creative process of architecture, AI plays a crucial role in improving human–
computer interaction (HCI) [29]. With advanced natural language understanding and
image recognition, AI algorithms enable design tools to interpret designers’ intentions
and offer quick recommendations. For example, designers can use voice commands to
interact with software to articulate design ideas, while AI can quickly generate a first draft
of a design. At the same time, these interactive systems can learn the user’s behavior and
preferences, and the user interface presents personalized characteristics, ensuring that the
user is more direct and efficient.

In the field of parametric design, AI technologies like genetic algorithms (GAs) and
ANNs efficiently handle complex rules and parameters, creating both novel and practical
design results. AI-assisted parametric design allows designers to explore multiple de-
sign possibilities and evaluate the performance of different solutions through simulation,
supporting better initial stage decisions.

With the popularity of building information modeling (BIM) technology, AI enhances
building performance simulations by analyzing building performance such as energy con-
sumption, sunshine, and lighting and assists designers in continuous optimization of the
scheme. In addition, AI also shows great potential in structural performance optimiza-
tion [30], such as optimizing the structural form of long-span buildings through GAs or
predicting stress outcomes with machine learning models.
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3.2.2. Building Industrialization and Intelligent Construction

In the application of AI in the field of building industrialization and intelligent con-
struction, data serve as a central driver. In prefabricated buildings, a key aspect of this
new construction model lies in effective data application. By combining the strengths
of industrialization and modularization, prefabricated buildings not only improve the
traditional building process subversively but also enable data-driven decision-making and
optimization, advancing intelligence across the entire building lifecycle [31].

At the manufacturing stage, AI algorithms process data into precise instructions.
Through big data analysis and machine learning, they enable intelligent production of
prefabricated components, optimize cutting routes, refine processes, and enhance quality.
In the construction phase, real-time data collection and analysis are pivotal. The intelligent
sensor [32] network captures multiple data, transforming it into actionable insights through
platform analysis. Intelligent monitoring ensures safety, and predictive analysis adjusts
construction plans and resource allocation based on real-time data, demonstrating the
efficiency and flexibility of data-driven construction management [33].

3.2.3. Building Energy Consumption Forecast

In building design, predicting energy consumption is a key step in achieving energy
efficiency goals and AI has emerged as a research hotspot [34–36]. AI technology excels
in analyzing historical data, adapting to environmental changes, and capturing complex
nonlinear relationships to estimate energy performance accurately [36,37]. Table 1 illustrates
how various AI technologies are applied in predicting building energy consumption.

Table 1. Application of different AI technologies in building energy consumption prediction.

Author Position AI Technology Used Conclusions

Amasyali, K. and
El-Gohary,
N.M. [34]

Support Vector
Machine (SVM)
ANN
Decision Tree algorithm

Review data-driven building energy consumption
prediction, focusing on model scope, data
attributes, algorithms, and performance.
Emphasize diversity, trade-offs, and growing
interest in the field. Future research should target
long-term, residential, and lighting energy
prediction, improve data availability, and address
model limitations to drive progress in
the discipline.

Debrah, C., Chan,
A.P.C. and Darko,
A. [35]

SVM
ANN
Decision Tree algorithm
GA
Fuzzy logic and fuzzy sets
Convolutional Neural
Networks (CNNs)

Provide a comprehensive review of AI
applications in green buildings, highlighting
research trends and knowledge gaps. Trace the
transition from expert systems and fuzzy logic to
data mining and intelligent optimization. Future
research should focus on integrating AI with
emerging technologies, addressing legal and
ethical issues, and driving innovation in
green buildings.

Li, A. et al. [36] Hong Kong,
China

Recurrent Neural
Network (RNN)

Focus on leveraging attention mechanisms to
enhance RNN performance for energy
consumption prediction, revealing periodic trends
and guiding energy management.
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Table 1. Cont.

Author Position AI Technology Used Conclusions

Seyedzadeh, S.
et al. [37]

America
Switzerland
Germany

RF algorithm
Non-dominated Sorting
Genetic Algorithm II
(NSGA-II) algorithm

Propose a multi-objective optimization (MOO)
method to enhance machine learning models for
building energy load prediction, outperforming
traditional methods by reducing time complexity
and improving accuracy. Highlight the importance
of feature selection and model optimization,
contributing to energy management research and
supporting industry development.

Wong, S.L., Wan,
K.K.W. and Lam,
T.N.T. [38]

Hong Kong,
China

Feedforward Multilayer
Perception (MLP) neural
networks

Develop an ANN model for energy analysis of
office buildings with daylighting systems in
subtropical climates. With 9 input variables and 4
power consumption outputs, the model achieves
high prediction accuracy, particularly for lighting
power. It effectively captures nonlinear
relationships, supporting energy-efficient
building design.

Milion, R.N.,
Paliari, J.C. and
Liboni,
L.H.B. [39]

Brazil ANN

Propose an ANN-based method for estimating
electrical material consumption, outperforming
traditional methods in handling multidimensional
nonlinear problems and proving suitable for early
project stages. Address data limitations by
integrating BIM for improved quality, with future
potential for applying other algorithms to broader
material estimation tasks.

Macas, M.
et al. [40] Italy ANN

Focus on improving neural network performance
in predicting building heating variables. Training
sample size and input dimensions significantly
affect performance, with overfitting addressed
through early stopping. The study suggests
refining input selection strategies and enhancing
comfort prediction for future improvements.

Ascione, F.
et al. [41] Italy Feedforward MLP neural

networks

Review Transformer-based Generative Adversarial
Networks (GANs) in computer vision and
introduce a novel approach using ANNs to predict
building energy performance and transformation
scenarios. The ANN application to office buildings
in southern Italy demonstrates high reliability, low
error, and a regression coefficient close to 1,
supporting energy transformation planning while
reducing computational burden. This approach is
expected to enhance the widespread adoption of
related methods.

Mat Daut, M.A.
et al. [42]

SVM
ANN
ANN/SVM combined with
swarm intelligence (SI)

Review building power consumption forecasting
methods, highlighting AI’s strength in handling
nonlinear problems. SVM excels with small
samples, while hybrid methods show great
potential. The paper emphasizes the importance of
input factors in improving prediction accuracy.
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Table 1. Cont.

Author Position AI Technology Used Conclusions

Olu-Ajayi, R.
et al. [43] Britain

Gradient Boosting (GB)
algorithm
RF algorithm
SVM
Decision Tree (DT)
algorithm
K-nearest Neighbor
Algorithm (KNN)
Feedforward MLP neural
networks

By comparing various machine learning
algorithms, the study reveals GB as the most
accurate for building energy performance
prediction. Feature selection and hyperparameter
tuning impact model performance, and while GB
excels in accuracy, each algorithm has unique
strengths depending on the scenario, offering
valuable insights for energy evaluation in
building design.

Geyer, P. and
Singaravel,
S. [44]

Belgium ANN

Propose a component-based machine learning
method to predict building energy performance,
validated through testing. It simplifies modeling,
provides inter-component information, and
expands the design space, but is limited by the
range of training data. Future work will explore
the link between model effectiveness and training
data to handle complex designs.

Pan, Y. et al. [45] Shanghai,
China DNN

Propose a Deep Reinforcement Learning
(DRL)-based multi-objective optimization method
for green building design, demonstrating the Deep
Deterministic Policy Gradient (DDPG) model’s
superiority over traditional algorithms in
optimization rate, strategy stability, and
generalization. Future work will improve the
evaluation system to enhance its practicability and
address ethical considerations.

Ahmad, M.W.,
Mourshed, M.
and Rezgui,
Y. [46]

Spain ANN
RF algorithm

Focus on comparing ANN and RF for predicting
hotel HVAC (Heating, Ventilation, and Air
Conditioning) energy consumption, finding that
ANN is more accurate, while RF has shorter
training time and better handling of missing
values. Future studies should explore additional
algorithms and factors to improve prediction
accuracy and energy management.

Deng, H.,
Fannon, D. and
Eckelman,
M.J. [47]

America

SVM
RF algorithm
ANN
GB algorithm

Focus on predicting energy consumption in U.S.
commercial buildings using multiple algorithms.
SVM and RF excel in Total Energy Use Intensity
(EUI) prediction, with linear regression showing
advantages in some cases. Future work should
address performance variations across
energy subsystems.

Wang, Z.
et al. [48] America

RF algorithm
Regression Tree (RT)
algorithm
SVR

Focus on using RF to predict hourly building
energy consumption, showing superior accuracy
and variable sensitivity compared to RT and SVR.
It reveals energy factor changes across semesters,
offering a new approach for building
energy management.

ANN is a common AI technology for predicting building energy consumption [39–41].
A study showed that ANNs demonstrate strong performance in predicting daily electricity
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use in office buildings and net energy consumption in Turkey. However, ANNs have
limitations in adapting to changes in different building components or systems.

In addition to ANNs, SVMs are also considered a powerful data mining technique [42,43].
The application of SVMs in predicting building energy consumption shows good prediction
results, though optimizing their parameters remains a challenge.

With advances in computer configuration, the application of deep learning in pre-
dicting building energy consumption is also increasing [44]. DNNs significantly improve
the accuracy of energy consumption prediction by learning building characteristics [45].
In addition, traditional linear regression (LR) models, RF [46–48], and gradient-boosting
models such as XGBoost have all been shown to be effective in predicting the heating and
cooling loads of buildings.

More recently, machine learning models based on gene expression have also been
developed to predict building shear strength, offering improved accuracy by capturing
complex variable relationships, albeit with greater implementation complexity.

3.2.4. Optimize Building Energy Consumption

Energy optimization is a crucial part of building projects, covering strategies ranging
from efficient design, intelligent system selection, and operational practices to user behavior
modification and renewable energy integration. Central to this process are modern energy-
efficient design principles, considering factors such as building orientation, window to
wall ratio, insulation of the envelope, efficient HVAC systems, and intelligent control
systems connected to the Internet of Things (IoT). According to the International Energy
Agency’s (IEA) Efficient World Scenario (EWS) and predictions in Energy Efficiency 2019,
the building industry is expected to be 40% more energy-efficient by 2040 than in 2017,
driven by advancements in technology and policy measures. Specifically, building space
heating, water heating, cooking, and lighting will see improved efficiency, while space
cooling and appliances will shift from negative growth in 2017 to positive growth by
2040 [9].

To identify optimal solutions, researchers often use software such as DesignBuilder and
EnergyPlus for energy simulations, generating and filtering multiple design combinations.
For example, Ferrara et al. [49] applied dynamic energy simulation software to optimize
residential building energy performance. However, these methods often require long
computations and highly detailed information models.

With AI advancements, researchers began to use evolutionary optimization algorithms,
such as GA and the Particle Swarm Optimization (PSO) algorithm, to optimize building en-
velope parameters. Tuhus-Dubrow et al. [50] combined GA and EnergyPlus for residential
building optimization. Saryazdi, S. Mohammad et al. [51] combined an ANN model with
GA to optimize classical residential design.

Multi-objective evolutionary optimization techniques have been applied to optimize
building enclosures. Azari et al. [52] explored energy use and lifecycle environmental
impact, and Hosamo et al. [53] utilized NSGAII optimization algorithms to optimize
various building elements, such as walls, roofs, floors, and HVAC systems. These studies
highlight the potential of evolutionary and intelligent algorithms to address multiple goals
and constraints, achieving energy-efficient and cost-effective solutions.

However, such studies often depend on tools, such as Transient System Simulation
Tool (TRNSYS) and EnergyPlus, to run repeated energy simulations. These simulations are
time-consuming and require detailed parameter settings, which can be impractical during
early-stage design adjustments. The integration of multiple repeated simulations into the
optimization process adds complexity, especially when managing variable parameters and
optimization goals.
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Recently, Elbeltagi et al. [54] proposed an integrated optimization approach that
combines energy simulation, ANN, and GA to optimize sustainable building design. The
results of the study provide valuable information for reducing energy consumption in
residential buildings; it focused solely on energy goals, omitted cost considerations, and
relied on a single optimization algorithm, without exploring other advanced machine
learning algorithms that might improve prediction accuracy.

4. Traditional and Modern Processes of Architectural Design
4.1. Research on Traditional Architectural Design Methods

As early as the 19th century, Violet Le Duc stressed the importance of methodological
research in architectural design [55]. In “On Method”, he argues that this helps architects
apply knowledge, skills, and experience more effectively to practice. About 150 years later,
contemporary theorists such as Cross [56] and Negan [57] categorized the evolution of
design research into three stages: the origins of design methodology, its progression, and
the maturity of design cognition. In China, there are also scholars who have carried out
research on this generation [58].

The study of architectural design methods is not a total denial of the previous stage
but a supplement and deepening, and the design theory is reconstructed from different
perspectives and depths. Based on the research of Shen Kening [59] and Brodpenter [60],
design methodology research can be divided into five categories, encompassing both spe-
cific design issues and critical reflections on design theory. Through the in-depth analysis
of this methodology, the complexity of the design process can be more comprehensively
understood and offers more abundant theoretical and practical support for architects.

In architectural design, methodology serves as a key tool for understanding the design
process. Christopher [61] first introduced the analytical comprehensive design model,
which was further developed by researchers such as Ascher [62] and Asimov [63]. As basic
design methods, trial-and-error and generation-test models are often combined with other
methods to guide the design process. Case-Based Reasoning (CBR) was proposed by Roger
to preserve advanced knowledge by abstracting cases, such as Peirce’s concept [64] of icon
and Brodpenter’s [65] concept of type. Wei et al. [66] combined CBR with machine learning
to explore a new path of architectural grammar.

Newell’s research [67] provides a theoretical basis and practical guidance for computer-
aided architectural design, highlighting the role of information processing in creative work.
The problem-space programming model solves complex design problems through Decision
Tree optimization. Simon’s [68] heuristic method simplifies the problem-solving process to
achieve a satisfactory rather than optimal solution, which Perkins [69] describes as effective
yet limited. Luo [70] further points out that heuristics include a variety of techniques
ranging from explicit decision rules to analogy, similarity, and model building.

In the field of design, problems are presented and solved in various ways. Ascher used
clear mathematical or procedural methods to solve the “well defined problem”. Christopher
points out that the initial stage of design problems is unclear in purpose and means, that
is, the “ill-defined problem”, common in architecture and urban planning. Simon regards
the design problem as an “evil problem” as it characterized by interconnectedness and
unclear objectives, and puts forward the hierarchical decomposition method to solve it.
Some studies have shown the problem of knowledge and rule consensus in architectural
design, involving conflicting goals due to architecture’s public nature. This type of problem,
termed a “divergence problem”, is more complex than an “evil problem”. Subsequently,
the problems that can be optimally solved by the procedural method of the first-generation
design methodology are defined as simple problems, while those that are difficult to
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decompose are classified as complex problems, which helps us to understand the diversity
of design challenges and the complexity of solution strategies.

In the early stage of design method research, the main way to solve problems is to rely
on logical reasoning. After the application of information processing methods, scholars at
that time used computer algorithms to simulate human brain thinking. During this time,
Simon’s exploration of rational and intuitive models became significant in understanding
complex problem-solving. Since 1980, the study of designer cognitive mechanism has
become mainstream, and Chen [71] and Cross [56] delve into its intricacies. The growing
use of computers has reshaped traditional cognitive models, as highlighted by discussions
in the Symposium on Design Computers and Cognition, enriching the understanding
of design thinking and providing new perspectives and methods for design education
and practice.

The research of design philosophy and ontology shows that the core of creative activity
is problem-solving. Simon views it as a process, and Darke and Hillier stressed its role
in forming preliminary plans. With the deepening of the understanding of the problem,
problem structuring continues to appear in the design, which helps to clarify the design
goals and sub-goals. Design activity is an active process of narrowing the scope of a
proposal by setting goals and applying constraints; Lawson distinguishes between external
and internal constraints, the former determined by objective conditions and the latter by
the experience of the architect. Cross emphasized the unique nature of design and the
need to integrate science and art in training designers. Simon proposes that design is an
independent body of knowledge alongside technology.

In the study of design tools, Christopher’s analysis–synthesis model introduced di-
agrams to rationalize problem structures. As a tool, the Decision Tree is often used to
visualize problem space and knowledge form, while computer technology, especially
Computer-Aided Design (CAD), profoundly impacted architectural design. Libich outlined
the evolution of CAD, identifying BIM as its advanced stage, first proposed by Isch in 1975
and expanded by Letherin in 2002. The concept of parametric design is derived from East-
man’s architectural description system. Brodpenter suggested that assessing computers’
strengths and limitations can enhance designers’ creative freedom.

4.2. GAI-Driven Architectural Design Workflow

As shown in Figure 4, in the architectural design workflow driven by GAI, the design-
ers first build a computational model or AI keywords according to the design objectives
and constraints. GAI generates the design through the model or keywords, iterating to
generate numerous variations for evaluation. If the evaluation is passed, the designer
combines the AI design to refine the solution and finally integrates it into a complete
design, while failed evaluations or improved ideas prompt adjustments to the model or
keywords for recalculation.
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In the pre-analysis phase, shapefile data of the urban space are used to extract building
outlines and heights, providing precise geographic and architectural information. These
data are then imported into platforms such as Noah or the Rhino and Grasshopper-based
solution scheduling mini-program, for initial block arrangement and optimization, ensuring
compliance with planning conditions such as floor area ratio and height limits.

Further performance simulations and data analysis ensured that the scheme’s daylight,
lighting, and wind environment complied with building codes and standards. Through
these analyses, the optimal block model can be selected, or adjustments to optimize the
design based on the results can be made.

During the conceptual optimization phase, GAI tools such as Midjourney, Stable
Diffusion, and Runway generate diverse realistic renderings, offering designers a wide
range of visual references and options.

The finalized conceptual scheme uses algorithms and simulations to enhance the
structure, components, and building performance to maximize building quality and eco-
nomic benefits.

As a result, GAI workflows can be applied at different stages of the entire design pro-
cess, fully reflecting the integration of technology and innovation, which not only enhances
efficiency, but also ensures compliance and revolutionizes the architectural design industry.

4.2.1. Quantitative and Qualitative Analysis of AI’s Impact on Architectural Design
Efficiency and Accuracy

Although limited studies have compared the performance of AI platforms with similar
functions, key quantitative metrics like Inception Score (IS) and Fréchet Inception Distance
(FID) have emerged as reliable indicators due to their high discriminability and strong
correlation with perceptual outcomes. However, while classification-based metrics demon-
strate robust discriminability, they often fail to capture the full spectrum of design diversity.
Traditional measures such as average log-likelihood have limited utility due to their weak
correlation with visual quality and human perception [72,73].

On the qualitative side, human evaluation remains a critical component, despite being
subjective and time-consuming. Supplementary methods like nearest neighbor analysis
can help identify potential overfitting, but their quantitative comparison capabilities are
somewhat constrained [74].

In Nervana’s study on AI’s role in the design process, platforms such as DALL-E,
Midjourney, and Stable Diffusion were compared across various design phases. The
study found that DALL-E and Stable Diffusion were more efficient in generating ideations,
sketches, and diverse building and style variants than Midjourney, leading to faster con-
cept development. When it comes to accurate representation of construction plans and
interior/exterior designs, Stable Diffusion excels in accuracy, closely followed by DALL-E.
DALL-E is also effective in handling a wide range of ideation needs, offering strong editing
support. Midjourney, while lacking in features like in/out-painting and image combina-
tion, is still useful for basic sketches. Stable Diffusion strikes a balance, excelling in both
generative design and detailed construction planning.

Despite these valuable insights, the literature remains sparse in comprehensive, real-
world comparisons of AI platforms in architectural design. Most available studies provide
brief estimations or generalized assessments, leaving a gap in practical guidance for practi-
tioners seeking to implement AI efficiently in their design processes.

4.2.2. Supplement to the Traditional Framework from the Theoretical Point of View
of Information

In 1960, Lichridder [75] proposed the concept of “human-machine symbiosis”, em-
phasizing the complementary roles of humans and machines in complex tasks. Norman
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et al. [76] emphasized the distinction between humans and machines, suggesting that
computers could support human innovation. Liu et al. [77] integrated designers and AI
in stages in the Double Diamond design process model, emphasizing the importance of
information exchange in human–machine collaboration.

Hu Wei et al. [55] proposed a new architectural design framework with informa-
tion representation as the core, linking environmental data collection, scheme generation,
design evaluation, and outcomes. Unlike traditional frameworks, this model integrates
AI-extracted information and human architect outputs through algorithms, leveraging AI’s
computational power and human perceptual strengths.

4.2.3. The Key of Architectural Design Information Processing

Effective information representation is vital for processing architectural design data,
involving the organization and description of information. Architectural design informa-
tion is represented in various forms, including sketches, drawings, models, parameter
definitions, code generation, assignment books, and research reports. These representations
can be structured, such as vectorized data suitable for computation, or unstructured, such
as videos or sketches, which are challenging for computers to interpret.

The core of human–machine collaborative design lies in converting unstructured
human representations into vectorized representations. AI facilitates this by structuring
unstructured data for computer processing and converting structured data back into
human-readable formats.

AI has been widely used in the representation of architectural design information.
For example, traditional algorithms such as Principal Component Analysis (PCA) and
SVM [78] are capable of data simplification and filtering. Modern algorithms, such as
Auto-Encoders (AEs), can be trained to reduce information loss [79] by characterizing raw
data into desired dimensions. Vector embedding [80] is another method used to convert
high-dimensional discrete data into vector representations, commonly applied in text
processing to transform text data into vector groups. Sun and Hu’s research [81] combined
deep neural networks and vector embedding techniques to process descriptive texts of
architectural styles, enhancing human–computer collaboration.

4.2.4. Three Key Elements of Architectural Design

The three key elements of architectural design include environmental information
collection, plan generation, and design evaluation.

Building environment information extraction is a foundation in the design process,
which involves collecting and screening the information that is essential to building design
from the environment. Buildings act as interfaces between internal and external environ-
ments, requiring environmental data to shape the design’s initial state. The combination
of modern sensor technology [82] and AI algorithms makes data collection and analysis
more efficient. For example, AI can work with sensors to collect information about human
activity patterns, brain wave signals, and social media sentiment, understanding public
concerns and preferences.

Plan generation is the creative phase of the design process that generates alternatives
based on environmental information and evaluation feedback. AI is increasingly used in
this process, including planning algorithms, reinforcement learning, swarm intelligence,
and combinatorial variation-based algorithms, helping architects optimize designs. For
example, genetic algorithms can optimize the layout of photovoltaic panels on building
surfaces to enhance solar energy utilization.

The goal and evaluation of architectural design is the key to ensure that the design
meets human needs and expectations. AI aids by optimizing designs for diverse user
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groups, extracting preferences implicitly, and accelerating evaluations. For example, the
use of feedforward neural networks to assess environmental changes and the qualitative
assessment of wind environments in architectural buildings through deep neural networks
are effective applications of AI in architectural design evaluation.

4.2.5. The Impact of AI on Workflow

In the field of architectural design, AI not only enhances architectural workflows by
streamlining information exchange but also significantly improves the efficiency of task
organization through advanced computational capabilities.

In terms of information exchange, AI algorithms such as Pix2Pix, developed by a
conditional GAN and interactive sketch program based on CNNs, can generate sketches
into architectural drawings or models. In combination with VR, architects can fully experi-
ence and modify designs in a virtual environment. At the same time, augmented reality
and mixed reality technologies build bridges between the real and virtual worlds, further
optimizing the way information is exchanged.

In terms of task organization, the decomposition and organization of architectural
design tasks are crucial to achieve efficient design processes. AI analyzes information
flow by Design Structural Matrix (DSM) and optimizes the complex matrix using heuristic
algorithms such as clustering and genetic algorithms, helping to create cohesive task
modules, reducing information loss, and improving design efficiency.

4.3. Advantages and Challenges of AI Technology in Architectural Design

AI is widely used in the architectural design industry. It transforms architectural de-
sign by automating repetitive tasks like generating documents and construction drawings,
which reduces errors, shortens design cycles, and allows designers to focus on creativity.
AI-supported project management tools can efficiently allocate resources and schedules to
ensure timely completion of projects [83].

AI is outstanding in enhancing design innovation by analyzing vast datasets and
cases to inspire designers [84]. It diversifies algorithm-driven and parametric methods,
while its simulation capabilities aid in material selection, structural optimization [85], and
evaluating energy-saving performance, unlocking new design possibilities.

AI also improves design accuracy, offering precise control over details to optimize
building performance and functionality. For example, when designing energy efficiency,
it can accurately calculate heat load and light mode, providing customized solutions to
improve accuracy and calculation efficiency.

However, AI faces many difficulties in the field of construction. In terms of technology,
the quality and quantity of data are the key issues. AI requires high-quality data, but
architectural factors are complex, making it difficult to obtain accurate, comprehensive
datasets. Algorithm stability and complexity are also concerns, as developing robust
algorithms that account for multiple variables is difficult, and unstable outputs may arise.
In addition, integration with other technologies is also a problem; architectural design
requires a variety of software and tools, and achieving seamless integration of AI with
existing technologies to optimize the design process is a challenge.

The use of AI in construction raises ethical concerns, including shifts in designer
roles and over-reliance on AI, which may lead to loss of control in the design process.
AI generation schemes may raise copyright and intellectual property issues, especially
if they resemble existing works. The AI decision-making process is opaque, making it
difficult for designers and customers to understand and evaluate its rationality and to
determine responsibility when things go wrong. The widespread use of similar AI tools
risks homogenizing designs, reducing diversity and innovation.
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User acceptance [86] is an important challenge for AI in the construction sector. While
some teams embrace AI-driven solutions, some designers worry that the AI-generated solu-
tion is not user-friendly and personalized and have doubts about its reliability and stability.

5. Case Studies
5.1. Training of Stable Diffusion and LoRA Models

Stable Diffusion, launched by StabilityAI and academia in 2022, is an advanced AI
tool for generating images from text descriptions or reference drawings [24,87]. It is unique
in the use of the Low-Rank Adaptation (LoRA) model for natural language processing.

The LoRA model, as a low-rank adjustment method for large language models, allows
for behavior modification by adding and training new network layers without changing the
parameters of the original model. As a Stable Diffusion plug-in, LoRA can generate images
with a specific style using minimal data on the basis of maintaining the model’s original
feature extraction capabilities, significantly reducing training time and improving accuracy.

As shown in Figure 5, the training process of the LoRA model first needs to prepare
the training set and target style images, followed by generating text prompts using WD1.4
tagging. The BooruDatasetTagManager software was used to manually correct the prompt
words to clarify the features of removal and retention. The training script then processes
the images and prompts, and model performance is optimized using X/Y/ZPlot tools. In
the model testing phase, X/Y/ZPlot tools were used to compare and analyze the training
parameters to optimize the model performance. The application of the ControNet model
and Ultimate plug-in further enable detailed control by incorporating conditions like depth
maps and line drawings for more precise image generation. On an ASUS laptop with
an RTX 3060 6 GB GPU and an additional 6 GB RAM upgrade, sourced from K-Tronics
(Suzhou), Jiangsu Province, China, first-time generation with LoRA can take up to 18 min
due to initial model loading, while standard LoRA inference takes approximately 1 min
per image after initial loading.
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5.2. FUGenerator Platform and Interactive Architectural Design Inference

The FUGenerator platform [88] integrates the Diffusion Model, GAN, CLIP (Collab-
orative Layout Integration Platform), and other algorithm models to support multiple
application scenarios from semantic description to sketch generation and control genera-
tion. According to the architectural design workflow, the FUGenerator platform fosters
collaboration between AI and architects by using a specialized architectural vocabulary
library and an interactive interface to enable iterative design optimization.

The FUGenerator platform leverages a Diffusion Model architecture, especially the
Stable Diffusion algorithm for semantic to image conversion, Latent Diffusion Models for
potential space modeling, and Transformer for encoding semantic information. By repre-
senting potential spatial vectors, semantic information is integrated into image generation,
enabling the creation of images that align with specific semantics. In addition, the platform
can realize image-to-image conversion through image feature combination.
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As shown in Figure 6, in terms of interaction mode, FUGenerator adopts the circular
strategy of “model reasoning—generation—result optimization—model reasoning”. Unlike
Midjourney, Stable Diffusion, Dall-E, and other platforms, FUGenerator is designed for ar-
chitects, facilitating iterative design processes. The platform focuses on workflow efficiency
rather than raw generation speed, prioritizing the quality and accuracy of architectural
renderings over speed. Users can adjust and optimize generated results semantically,
reintroducing AI to refine models and align with architectural workflows. Based on
self-evaluation, generation time depends on the complexity of the design and selected
parameters, ranging from a few seconds for simple tasks to up to 10 h for medium-scale
projects (250 MB to 10 GB) when using high-performance equipment.
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6. Future Prospects
With advancements in computing and machine learning, AI is gradually becoming

a strong support for the construction field [89]. Future AI will show a higher level of
intelligence and greater adaptability. It can predict design outcomes with incredible preci-
sion, providing designers with customized solutions. For example, when combined with
augmented reality (AR), Virtual Reality (VR) [90], and mixed reality (MR) technologies, AI
enables vivid design visualizations, allowing designers and clients to evaluate proposals
early, enhancing design quality and client satisfaction [91,92].

Furthermore, the application of AI will extend beyond architectural design into other
areas of the construction industry. In construction management, AI-assisted robotic tech-
nologies will enhance safety and efficiency by handling high-risk or delicate tasks. During
facility operations, AI will monitor building performance, predict maintenance needs, and
help extend the life of the building while reducing overall costs. In the realm of market
analysis, AI can leverage big data to forecast demand and costs for building materials,
optimizing supply chain management processes [93].

7. Conclusions
In conclusion, the integration of AI into the construction industry presents significant

opportunities to enhance efficiency, foster innovation, and transform workflows. By au-
tomating repetitive tasks, supporting parametric design, and enabling faster, data-driven
decision-making, AI has been proven to optimize building performance and streamline design
processes. Its application also inspires creative solutions through advanced data analysis and
algorithm-driven methods, while contributing to material selection, structural optimization,
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and energy efficiency. Furthermore, AI extends beyond the design phase, playing a vital role
in project forecasting, construction monitoring, and lifecycle management.

However, challenges remain in achieving the widespread adoption of AI technologies.
High costs and the limited availability of AI-compatible hardware and software hinder
accessibility for many professionals. Future technological advancements should focus
on improving software performance and reducing costs to encourage broader usage. Ef-
forts should also aim at improving data quality, building comprehensive databases, and
developing robust algorithms that address the complexity of architectural design.

A notable gap in the current research landscape is the lack of comprehensive studies
and detailed case analyses that document the progress and practical applications of AI in
architecture. Many existing resources provide only brief estimations, leaving practitioners
with little guidance on efficiently applying AI technologies. This lack of in-depth research
often results in additional time spent experimenting with various AI tools, which is not
ideal for optimizing efficiency. To address this, there is a need for clearer task division
across different sectors of architectural design, ensuring that AI tools are appropriately
matched to specific tasks and user needs.

Over-reliance on AI is another concern, as it could lead to the homogenization of
designs driven solely by efficiency. It is crucial to define the collaborative roles of architects
and AI to preserve creativity and diversity in architectural outcomes. Policymakers and
industry leaders must establish clear legal frameworks and policies, particularly concerning
intellectual property, to safeguard originality and innovation.

With the right guidance and regulation, AI is poised to drive continuous progress
in architectural design and construction. Its ability to enhance creativity and improve
processes ensures a dynamic and innovative future for the built environment.
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Nomenclature

AI Artificial Intelligence
GAI Generative Artificial Intelligence
CNKI China National Knowledge Network
AIGC Artificial Intelligence-generated Content
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analysis
ANN artificial neural network
DNN deep neural networks
RF Random Forest
PKPM Professional Knowledge-based Preprocessing & Modelling System
NLP natural language processing
HCI human–computer interaction
GA genetic algorithm
BIM building information modeling
SVM Support Vector Machine
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CNN Convolutional Neural Network
RNN Recurrent Neural Network
MOO multi-objective optimization
NSGA-II Non-dominated Sorting Genetic Algorithm II
MLP Feedforward Multilayer Perception
GANs Generative Adversarial Networks
CAD Computer-Aided Design
SI swarm intelligence
GB Gradient Boosting
DT Decision Tree
KNN K-nearest Neighbor Algorithm
DRL Deep Reinforcement Learning
DDPG Deep Deterministic Policy Gradient
HVAC Heating, Ventilation, and Air Conditioning
EUI Energy Use Intensity
RT Regression Tree
LR linear regression
LoT Internet of Things
IEA International Energy Agency
EWS Efficient World Scenario
PSO Particle Swarm Optimization
TRNSYS Transient System Simulation Tool
CBR Case-Based Reasoning
PCA Principal Component Analysis
AE Auto-Encoders
DSM Design Structural Matrix
LoRA Low-Rank Adaptation
CLIP Collaborative Layout Integration Platform
AR augmented reality
VR Virtual Reality
MR mixed reality
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82. Kučera, A.; Pitner, T. Semantic BMS: Allowing usage of building automation data in facility benchmarking. Adv. Eng. Inform.
2018, 35, 69–84. [CrossRef]

83. Li, L.X.; Liu, Y.Q.; Jin, Y.; Cheng, T.C.E.; Zhang, Q.J. Generative AI-Enabled Supply Chain Management: The critical role of
coordination and dynamism. Int. J. Prod. Econ. 2024, 277, 109388. [CrossRef]

84. Singaravel, S.; Suykens, J.; Geyer, P. Deep-learning neural-network architectures and methods: Using component-based models
in building-design energy prediction. Adv. Eng. Inform. 2018, 38, 81–90. [CrossRef]

85. Barhemat, R.; Mahjoubi, S.; Meng, W.N.; Bao, Y. Automated design of architectured polymer-concrete composites with high
specific flexural strength and toughness using sequential learning. Constr. Build. Mater. 2024, 449, 138311. [CrossRef]

86. Wei, L. Application of Deep Learning based Artificial Intelligence in Architectural Scheme Creation. Ceramics 2024, 7, 170–172.
[CrossRef]

87. Li, J.Y.; Zhao, H.Y.; Wu, J.Y.; Dai, S.Y.; Xu, H.H. Discussion and Exploration of Rural Small Building Design Based on Al-assisted
Architectural Design Technology Taking Stable Diffusion as an Example. In Proceedings of the 2023 National Symposium on
Teaching and Research of Building Digital Technology in Architecture Department, Changsha, China, 14 October 2023. [CrossRef]

88. Gu, S.J.; Wang, R.X.; Wu, Y.F.; Xu, X.H.; Yan, C.; Gao, T.Y.; Yuan, F. Exploration of AI- inspired Architectural Design Generation
Process Based on FUGenerator Platform. In Proceedings of the 2023 National Symposium on Teaching and Research of Building
Digital Technology in Architecture Department, Changsha, China, 14 October 2023. [CrossRef]

89. Li, Y. “Will artificial intelligence platforms replace designers in the future?” analyzing the impact of artificial intelligence platforms
on the engineering design industry through color perception. Eng. Appl. Artif. Intell. 2024, 138, 109369. [CrossRef]

90. Zhang, Y.X.; Liu, H.X.; Kang, S.C.; Al-Hussein, M. Virtual reality applications for the built environment: Research trends and
opportunities. Autom. Constr. 2020, 118, 103311. [CrossRef]

91. Chen, X.X.; Gao, W.Z.; Chu, Y.N.; Song, Y.H. Enhancing interaction in virtual-real architectural environments: A comparative
analysis of generative AI-driven reality approaches. Build. Environ. 2024, 266, 112113. [CrossRef]

92. Lyu, K.; Brambilla, A.; Globa, A.; Dear, R.D. An immersive multisensory virtual reality approach to the study of human-built
environment interactions. Autom. Constr. 2023, 150, 104836. [CrossRef]

93. Tuzov, V.; Lin, F. Two paths of balancing technology and ethics: A comparative study on AI governance in China and Germany.
Telecommun. Policy 2024, in press. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cviu.2021.103329
https://doi.org/10.1016/j.cviu.2022.103525
https://doi.org/10.1109/THFE2.1960.4503259
https://doi.org/10.1007/978-3-030-39512-4_99
https://doi.org/10.13614/j.cnki.11-1962/tu.2020.08.01
https://doi.org/10.1016/j.procs.2023.10.050
https://doi.org/10.19892/j.cnki.csjz.2021.07.23
https://doi.org/10.1016/j.aei.2018.01.002
https://doi.org/10.1016/j.ijpe.2024.109388
https://doi.org/10.1016/j.aei.2018.06.004
https://doi.org/10.1016/j.conbuildmat.2024.138311
https://doi.org/10.19397/j.cnki.ceramics.2024.07.048
https://doi.org/10.26914/c.cnkihy.2023.091754
https://doi.org/10.26914/c.cnkihy.2023.091745
https://doi.org/10.1016/j.engappai.2024.109369
https://doi.org/10.1016/j.autcon.2020.103311
https://doi.org/10.1016/j.buildenv.2024.112113
https://doi.org/10.1016/j.autcon.2023.104836
https://doi.org/10.1016/j.telpol.2024.102850

	Introduction 
	Materials and Methods 
	Retrieval Process 
	Analysis of Search Results 

	Overview of AI Technology 
	Basic Principles and Key Technologies of AI 
	Application of AI in Architectural Design 
	Design Automation Generation and Optimization 
	Building Industrialization and Intelligent Construction 
	Building Energy Consumption Forecast 
	Optimize Building Energy Consumption 


	Traditional and Modern Processes of Architectural Design 
	Research on Traditional Architectural Design Methods 
	GAI-Driven Architectural Design Workflow 
	Quantitative and Qualitative Analysis of AI’s Impact on Architectural Design Efficiency and Accuracy 
	Supplement to the Traditional Framework from the Theoretical Point of View of Information 
	The Key of Architectural Design Information Processing 
	Three Key Elements of Architectural Design 
	The Impact of AI on Workflow 

	Advantages and Challenges of AI Technology in Architectural Design 

	Case Studies 
	Training of Stable Diffusion and LoRA Models 
	FUGenerator Platform and Interactive Architectural Design Inference 

	Future Prospects 
	Conclusions 
	References

