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Host Plasma Microenvironment in Immunometabolically
Impaired HIV Infection Leads to Dysregulated Monocyte
Function and Synaptic Transmission Ex Vivo
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Risk stratification using multi-omics data deepens understanding of
immunometabolism in successfully treated people with HIV (PWH) is
inadequately explained. A personalized medicine approach integrating blood
cell transcriptomics, plasma proteomics, and metabolomics is employed to
identify the mechanisms of immunometabolic complications in prolonged
treated PWH from the COCOMO cohort. Among the PWHs, 44% of PWH are
at risk of experiencing immunometabolic complications identified using the
network-based patient stratification method. Utilizing advanced machine
learning techniques and a Bayesian classifier, five plasma protein biomarkers;
Tubulin Folding Cofactor B (TBCB), Gamma-Glutamylcyclotransferase
(GGCT), Taxilin Alpha (TXLNA), Pyridoxal Phosphate Binding Protein (PLPBP)
and Large Tumor Suppressor Kinase 1 (LATS1) are identified as highly
differentially abundant between healthy control (HC)-like and
immunometabolically at-risk PWHs (all FDR<10−10). The personalized
metabolic models predict metabolic perturbations, revealing disruptions in
central carbon metabolic fluxes and host tryptophan metabolism in at-risk
phenotype. Functional assays in primary cells and cortical forebrain organoids
(FBOs) further validate this. Metabolic perturbations lead to persistent
monocyte activation, thereby impairing their functions ex vivo. Furthermore,
the chronic inflammatory plasma microenvironment contributes to synaptic
dysregulation in FBOs. The endogenous plasma inflammatory
microenvironment is responsible for chronic inflammation in treated
immunometabolically complicated at-risk PWH who have a higher risk of
cardiovascular and neuropsychiatric disorders.
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1. Introduction

The complex and multifactorial relation-
ship between immune and metabolic func-
tion in individuals living with HIV (PWH)
receiving antiretroviral therapy (ART) can
provide additional insights beyond clinical
phenotypes for PWH.[1] While ART can
help to control HIV replication and improve
immune function, prolonged ART can also
contribute to metabolic dysregulation and
chronic inflammation.[2] Early-generation
ART can contribute to mitochondrial
dysfunction,[2b] impacting immune and
metabolic function. A fraction of the PWH
receiving long-term ART experience clini-
cal complications, including chronic comor-
bidities, mitochondrial toxicities after early-
generation ART, metabolic abnormalities,
and adipose tissue redistribution.[3]

The systems-level analyses of integra-
tive multi-omics can represent a func-
tional readout of the biological pathways,
which is not convoluted in understand-
ing the pathobiology of PWH with long-
term ART. Earlier global or cell-type specific
blood transcriptomic studies have provided
valuable insights into biological mecha-
nisms of disease progression, susceptibil-
ity to infection, or natural immune control
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mechanisms.[2b,4] No studies have been performed to identify
personalized or disease-specific immune signatures after pro-
longed successful ART in PWH. These could provide novel
mechanistic insights that explain complex relationships and sys-
tematic understanding of the disease phenotype and immune
status in PWH. Our recent Copenhagen Comorbidity Cohort
(COCOMO) systems biology study identified PWH with at-
risk metabolic complications by applying molecular data-driven
network-based patient stratification despite a favorable HIV-
related clinical profile.[1] However, the molecular mechanism
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underlying the dysregulated metabolic traits in PWH is not yet
fully elucidated.

The main objective of this study was to identify the mecha-
nisms of immunometabolic complications, i.e., dysregulation
or disruption in the balance between immune function and
metabolism in prolonged treated PWH through personalized
multi-omics data-driven health profiling. Here, we performed
genome-wide transcriptomics analysis of the peripheral blood
mononuclear cells (PBMCs) and high-throughput plasma pro-
teomics analysis targeting nearly 3000 proteins in a cohort
of 158 HIV-infected individuals with prolonged successful
treatment. We applied network-based patient stratification of
PWH at risk of clinical complications and identified the plasma
protein biomarkers of the at-risk phenotype by using advanced
machine learning algorithms. Further, we implemented disease
state-specific and personalized metabolic models to predict the
biological mechanism of the metabolic perturbation behind
the at-risk phenotype. Finally, we validated the findings using
functional assays in primary cells and complex human induced
pluripotent stem cells (iPSCs) differentiated functional cortical
forebrain organoids (FBOs). Identifying the mechanism behind
the clinical complications despite successful immune reconsti-
tution and viral suppression opens new avenues for metabolic
perturbation targeted therapy for improving the health of
PWH.
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2. Results

2.1. Multi-Omics-Driven Network Analysis Identifies PWH with
Clinical Complications

The patient populations (n = 158) included in this study were
selected randomly and were part of the larger COCOMO cohort
(n = 1099) of PWH with successful ART. We also used 155 clini-
cal, demographic, and lifestyle parameters from the COCOMO
database (Table S1, Supporting Information).[1] The key clini-
cal features resembled the overall cohort at the time of sam-
ple collection (Table S2, Supporting Information). We performed
the PBMC RNAseq data (Illumina NovaSeq6000) and plasma
secretome (Olink® Explorer 3072) and used untargeted plasma
metabolomics from our earlier study[5] to stratify the PWH based
on molecular data. Two clusters of PWH were identified based
on two heuristics from the similarity network fusion (SNF) of
the transcriptomics, proteomics, and metabolomics (Figure 1A).
The clustering was driven mainly by proteomics (Figure 1B) and
showed good separation of samples based on SNF (Figure 1C).
The patient similarity network further validated the SNF classifi-
cation with high precision (mean accuracy = 0.84) (Figure 1D).

When the single omics layers were analyzed, the proteomics
dataset demonstrated the highest proportion of variance ex-
plained by the first two principal components (PC1: 36%, PC2:
7%) compared to metabolomics (PC1: 14%, PC2: 10%) and tran-
scriptomics (PC1: 16%, PC2: 11%). This further supports that
proteomics captures more dominant patterns in the data, as ob-
served in the SNF (Figure 1E). Clinically, we defined the two
groups as healthy control-like (HC-like herein) PWH with a me-
dian (IQR) CD4/CD8 ratio of 1.05 (0.68-1.33) and at-risk of im-
munometabolic complications (at-risk herein) with a median
(IQR) CD4/CD8 ratio of 0.78 (0.55-1.06) (p < 0.05). The at-risk
group displayed increased visceral adipose tissue (VAT), subcuta-
neous adipose tissue (SAT), hypertension, waist circumference,
and systolic blood pressure (all p < 0.05) compared to the HC-
like group (Table 1 and Table S1, Supporting Information). Based
on the coronary artery disease (CAD) data, we categorized it into
no atherosclerosis or normal (no stenosis), non-obstructive CAD
(atherosclerosis that obstructs 1%–49% of the lumen), and ob-
structive CAD (atherosclerosis that obstructs 50% or more of the
lumen) groups. Though there were no statistically significant dif-
ferences (p = 0.158), the at-risk group had a higher incidence of
non-obstructive CAD (39% vs. 28%) and obstructive CAD (20%
vs. 15%) than the HC-like group (Table 1). This further empha-
sizes our earlier conclusions that relying solely on clinical data
cannot offer comprehensive insights into the intricate dysregu-
lated metabolic traits observed in PWH.[1]

2.2. Plasma Biomarkers Determine the At-Risk Phenotype
Associated with Myeloid Cell Senescence

The patient stratification identified that proteomics had the
highest impact on the clustering (Figure 1B). Therefore, we
aimed to identify the biological mechanisms of systemic
immunometabolic dysregulation in at-risk PWH, analyzing
proteomics data alone. The differential protein abundance
(DPA), after adjustment for ethnicity, smoking, fruit, and beef
intake, identified 1141 proteins differing between the groups

(False Discovery Rate; FDR<0.05), of which 1120 proteins were
highly abundant in the at-risk PWH (Figure 2A and Table S3,
Supporting Information). Based on the expression of the genes
in single-cell RNA sequencing (scRNAseq) data [(n = 11 860
cells) downloaded from 10X Genomics from healthy PBMCs],
the significantly altered proteins were mainly expressed by the
myeloid lineage cells [classical monocytes (CM), nonclassical
monocytes (NCM), and dendritic cells] (Figure 2A inset). To
systematically identify enriched categories of proteins and the
associated global molecular pathways, we performed Gene On-
tology (GO) enrichment analysis using BiNGO v3.0.3 (Table S4,
Supporting Information). The top 30 over-represented GO cat-
egories were mainly associated with the metabolic and cellular
processes linked to response to external factors like stress that
potentially regulate cell death and proliferation (Figure S1,
Supporting Information). Therefore, we used directed protein
set enrichment analysis using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) restricted to metabolic pathways to
identify the specific metabolic process. We identified the amino
acid (AA) linked modulation of the central carbon metabolism
(FDR<0.1) (Figure 2B and Table S5, Supporting Information).
As AA-metabolism significantly influences metabolic rewiring
and facilitates diverse immune cell functions,[6] we posit that the
altered AA-metabolism caused immunometabolic complications
in the at-risk PWH. Therefore, we aimed to identify biomarkers
defining the at-risk PWH. In a stepwise manner, we first use
the Random Forest (RF) consensus feature selection to reduce
the number of features, followed by Bayesian Belief Networks
(BBNs) to narrow down the list of biomarkers. The RF consen-
sus feature selection identified 187 proteins that separated the
clusters (Accuracy = 91.14, Sensitivity = 0.94, Specificity = 0.87)
(Figure 2C). We used the structural causal modeling (SCM)
method to improve further the biomarker prediction based
on these 187 most informative proteins for cluster separation
identified in RF. The directed acyclic graph (DAG) represented
the causal effects of proteins among each other, and five driver
proteins were identified to have a decisive influence on the
whole network structure (Figure 2D). Tubulin Folding Cofactor
B (TBCB) had the most influence on the network [Bayesian
Information Criterion (BIC) difference = 25.6], followed by
Gamma-Glutamylcyclotransferase (GGCT) (DBIC = 12.57), Tax-
ilin Alpha (TXLNA) (DBIC = 8.6), Pyridoxal Phosphate Binding
Protein (PLPBP) and Large Tumor Suppressor Kinase 1 (LATS1).
These proteins identified were also highly differentially abun-
dant between HC-like and at-risk (all FDR<10−10) (Figure 2E).
Given that five proteins were identified in the BBNs, we further
aimed to identify how these proteins influenced the systemic
dysregulation in the at-risk PWH by performing a multi-omics
weighted co-expression analysis. The consensus association
network consisted of 4536 nodes and 381 404 edges belonging to
ten communities identified by the Leiden algorithm. The most
central community (c3) (centrality = 36, n = 705) was mainly
driven by proteins (n = 683) and metabolites (n = 21) (Figure 2F;
Table S6, and Figure S2, Supporting Information) and contained
all the driver proteins. Interestingly, 81% (85/105) of the sig-
nificant senescence-associated proteins (SAP) [defined by com-
bining the detected proteins Senescence-Associated Secretory
Phenotype (SASP), cell senescence genes database, and the Cel-
lAge database] differing between HC-like and at-risk (FDR<0.05)
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Table 1. Patient demographical, HIV-related, clinical, and lifestyle data. Only significant and relevant clinical and lifestyle data are presented.

SNF-1 [HC-like] SNF-2 [At-risk] P value

N 88 70

Age in years, Median (IQR) 52 (47–61.25) 54 (47–63) 0.13Ø)

Sex, Male, N (%) 73 (83) 66 (94) 0.053*)

Ethnicity Caucasian, N (%) 70 (80) 66 (97) 0.003*)

Mode of transmission, N (%)
Homosexual/bisexual
Heterosexual
Other/unknown

57 (65)
23 (26)

8 (9)

53 (77)
12 (17)

4 (6)

0.26*)

CD4 Nadir, cells mL−1, Median (IQR) 229 (100–300) 231.5 (91.5–300) 0.41Ø)

CD4 at ART Initiation, cells mL−1, Median (IQR) 240 (142.5–350) 279 (82–320) 0.84#)

Viral Load at ART initiation, log copies mL−1, Median (IQR) 5.08 (4.3–5.7) 4.94 (4.31–5.34) 0.51#)

CD4 at sampling, cells mL−1, Median (IQR) 685 (558–933) 691 (530–828) 0.206Ø)

CD8 at sampling, cells mL−1, Median (IQR) 740 (575–950) 835 (641–1270) 0.053#)

CD4/CD8 ratio, Median (IQR) 1.05 (0.68–1.33) 0.78 (0.55–1.06) 0.007#)

Viral load (<50 copies mL−1), N (%) 86 (99) 67 (96) 0.32**)

Duration of treatment in years, median (IQR) 15 (8-18) 15 (6–19) 0.81#)

Current Treatment, 1st drug, N (%)
ABC
TDF/TAF
Other

39 (44)
45 (51)

4 (5)

21 (30)
43 (61)

6 (9)

0.17**)

Current Treatment, 3rd drug, N (%)
NNRTI
PI/r
INSTI

45 (51)
24 (27)
19 (22)

29 (43)
19 (28)
20 (29)

0.46*)

Previous exposure to DDI/d4T/AZT, N (%) 62 (70) 46 (66) 0.64*)

BMI, kg/m2, Median (IQR) 24.45 (21.98-27.3) 25.25 (22.77–27.82) 0.40#)

VAT, Median (IQR) 79.8 (37.3-124.1) 123.55
(95.15–177.95)

< 0.001#)

SAT, Median (IQR) 125.6 (78-184.4) 113.05 (80.6–179.32) 0.61#)

Hypertension, N (%) 35 (40) 43 (61) 0.01*)

Central obesity, N (%) 50 (57) 51 (73) 0.055*)

Beef intake (times per week) 2 (1-2) 1 (1-2) 0.04#)

Fruit intake
< 1 per month
> 1 per week
>1 per day

12(13.95%)
36(41.86%)
38(44.19%)

1(1.43%)
29(41.43%)
40(57.14%)

0.014*)

Cold Fish intake (times per week) 2(1-5) 3(2–7) 0.014#)

Smoking status
Never smoked
Ex-Smoker
Current smoker

44(50%)
24(27.27%)
20(22.73%)

25(35.71%)
33(47.14%)
12(17.14%)

0.03*)

Waist circumference (cm) 94 (86-102.25) 99.5 (91.25–105) 0.02#)

Systolic blood pressure (right arm, mm mercury) 128 (121-139.25) 137.5 (127.75–145) 0.002#)

Alaninaminotransferas, IU L−1, Median (IQR) 22.5 (17-31.25) 30.5 (22–39.75) 0.0024Ø)

eGFR, reads mL min−1/1.73m2, Median (IQR) 88.86 (78.78-98.07) 86.8 (75.84–92.52) 0.054#)

Triglyceride, mmol L−1, Median (IQR) 1.71 (1.21-2.6) 2.14 (1.41–3.26) 0.034Ø)

High-density lipoprotein, mmol L−1, Median (IQR) 1.21 (0.92-1.51) 1.04 (0.78–1.35) 0.03Ø)

Coronary Artery Disease (CAD), n (%)
Normal
Non-obstructive CAD
Obstructive CAD

50 (57%)
25 (28%)
13 (15%)

29 (41%)
27 (39%)
14 (20%)

0.158*)

Ø)
Student’s T-test;

#)
Mann Withney U test; ∗)Chi-square test; ∗∗)Fisher exact test.
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Figure 1. Similarity network fusion-based PWH stratification. A) Eigengap and rotation cost per number of clusters in SNF network. The cluster number
is indicated by an arrow where maximal Eigen gap = 0.06 and minimum rotation cost = 117. B) Concordance matrix of NMIs between the fused network
and every single omic network. Values in NMI (data set) are 0.4 (proteomics), 0.07 (metabolomics), and 0.008 (transcriptomics). C) The PCA of the
fused network is segregated based on the cluster. Sample color is based on cluster. D) NetDx performance results in predicting SNF risk clusters based
on omics data and clinical parameters. Receiver operating characteristic (ROC) curve (left), precision-recall (PR) curve (middle), and an average of
confusion matrices (right) for 20 data splits train/test. E) PCA of the individual omics to identify the heterogeneity of the clusters based on the single
omic.

were part of the central community of the protein network in-
dicative the role of the driver proteins in the senescence process
in the at-risk PWH (Figure S2, Supporting Information). The key
metabolites of the central community were serotonin, taurine,
spermine (SPR), and spermidine (SPD), which are influenced
by the gut microbiota. To identify whether the SAP retain the
cluster property, we performed the hierarchical clustering anal-
ysis (HCA) restricting to significantly different SAP (n = 151,
FDR<0.05). We identified the retention of the cluster property

(Figure 2G). Among them, seven SASP proteins had a higher
abundance in at-risk compared to HC-like, indicating an accumu-
lation of senescent features within the at-risk group (Figure S3,
Supporting Information). The significant senescent markers
that differed between the HC-like and at-risk PWHs were mainly
expressed by the myeloid lineage cells (Figure 2H). Based on
our assertion regarding the altered amino acid metabolism
causing immunometabolic complications in at-risk PWH, our
data further reveal that the senescence-associated myeloid cell

Adv. Sci. 2025, 2416453 2416453 (5 of 18) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 2. Identification of key molecules and pathways based on proteomics analysis. A) Volcano plot based on proteomics data analysis representing
differential abundance between HC-like and at-risk clusters. Up-regulated proteins are shown in red, while down-regulated proteins are represented in
blue. Inset pie chart representing the number of proteins per cell type differentially expressed compared to the other cell types in single-cell transcrip-
tomics data. B) The Cytoscape network was based on identifying over-represented KEGG pathways associated with the metabolism based on proteins
differing from at-risk clusters. The node size is proportional to the number of proteins annotated with this pathway and color varies based on p-value.
C) Importance plot based on mean decrease accuracy from random forest model for the prediction of clusters based on proteomics data (Boruta,
iterations = 1000, features = 1000). A confusion matrix is also displayed. D) Directed acyclic graph based on 187 most important proteins differing
proteomics data at-risk and HC-like patients and top 5 proteins with the highest degree of influence (top of the graph) are labelled. E) Boxplots of driver
proteins separated by groups. Color is based on cluster and condition (HC-like = grey, at-risk = red). P values are displayed for each comparison (LIMMA,

Adv. Sci. 2025, 2416453 2416453 (6 of 18) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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lineage-driven plasma microenvironment contributes to the
rationale behind this immunometabolic dysregulation in at-risk
PWH.

2.3. Microenvironment Orchestrates the Monocyte and
Monocyte-Derived Macrophage Function Ex Vivo

Based on the above findings, we hypothesized that the plasma
microenvironment affects the function of monocytes when de-
pleted by prolonged activation or chronic inflammation.[7] To in-
vestigate this, we first measured the proportion of CD4+ and
CD8+ T-cells and classical (CM), intermediate (IM), and nonclas-
sical (NCM) monocytes in HC-like (n = 48) and at-risk (n = 37)
PBMCs as described by us recently.[8] The CD4+ T-cells were de-
creased (p = 0.022) while CD8+ T-cells (p = 0.015) were increased
in at-risk PWH compared to HC-like PWH supporting the clin-
ical observations (Figure 3A). Interestingly, there was a decrease
in CM (p = 0.019) and increase in NCM (p = 0.041) in at-risk
PWH potentially due to the inflammatory conditions (Figure 3A).
As the majority of the proteins dysregulated were part of the
metabolic process (Figure 2B), we further analyzed the metabo-
lite transporters, glucose transporter-1 (Glut1), pyruvate and lac-
tate transporter monocarboxylate transporter 1 (MCT-1), and cys-
teine/glutamate antiporter (xCT). The receptor expression analy-
sis showed that the percentage of Glut1+ CD4+ T-cells and CM
and xCT+ CD8+ T-cells were increased in at-risk PWH compared
to HC-like. The increase in metabolite receptor expression might
be linked to alterations in immunometabolism, impacting the
functional properties of these immune cells. To investigate this,
we treated donor PBMCs (n = 6) as a co-culture system with non-
homologous pooled plasma from HC-like (n = 10) and at-risk
(n= 10) PWH. We stimulated the PBMCs with either lipopolysac-
charide for monocyte polarization or pooled viral peptides (CEF,
cytomegalovirus, Epstein-Barr virus, and flu virus) for CD4+ and
CD8+ T cell activation and exhaustion. There was no signifi-
cant difference in the expression of phenotypic, inhibitory check-
points, transcriptional, or functional markers on memory CD4+

or CD8+ T-cells exposed to HC-like and at-risk plasma (Figure 3C;
Figure S4A, Supporting Information). Likewise, no differences
were observed in the polyfunctional profiles of the memory CD4+

or CD8+ T-cells (Figure 3D,E; Figure S4B, Supporting Informa-
tion). However, in the case of the monocyte functionality assay
(Figure S4C, Supporting Information), there was a significantly
increased expression of CD86 (p = 0.031) and a trend for the C-C
chemokine receptor type 2 (CCR2) (p = 0.063) and C-X3-C motif
chemokine receptor 1 (CX3CR1) (p = 0.156) in at-risk plasma-
treated monocytes compared to the HC-like plasma treatment
(Figure 3F). On the contrary, the expressions of CD38 (p = 0.063)
and PDL1 (p = 0.031) in the at-risk plasma-treated cells were
lower than in the HC-like plasma treatment. The polyfunctional-
ity of the monocytes recapitulated the same (Figure 3G). This data

suggests that the inflammatory microenvironment led dysfunc-
tional monocytes to at-risk phenotype. Further, we treated the iso-
lated monocytes from six donors with non-homologous plasma
from HC-like and at-risk PWH. The quantitative proteomics
identified upregulation of C-reactive protein (CRP) and defensin
1 (DEFA1) indicative of activation of inflammatory response.
On the contrary, proteins like neuropilin 2 (NRP2) that regulate
monocyte migration, activation, and differentiation were down-
regulated. The translocase of outer mitochondrial membrane 22
(TOMM22) was downregulated (Figure 3H and Table S7, Sup-
porting Information). We further differentiated the monocytes
from HIV-negative controls (n = 6), HC-like (n = 12), and at-
risk PWH (n = 12) and polarized them with GM-CSF to obtain
monocyte-derived macrophages (MDM). We measured IL-6 and
IL-10 secretion and observed that the IL-6 secretion was signif-
icantly low in at-risk compared to control (Figure 3I). Though
heterogeneous, there was a suppression of the IL-10 produc-
tion in at-risk plasma-treated monocytes compared to HC-like,
which could indicate a compromised immune response, lead-
ing to reduced anti-inflammatory and immunoregulatory effects
(Figure 3G). Further, we performed the phagocytosis assay on the
7-day polarized MDM and observed compromised phagocytosis
in the at-risk group (Figure 3J). Overall, this data indicated the
critical role of the secretory microenvironment in orchestrating
the function and behavior of monocytes and MDM ex vivo, with
impaired monocyte/macrophage in at-risk PWH.

2.4. Metabolic Modeling Highlights Dysregulation in At-Risk
PWH caused by Tryptophan Metabolism

The secretory microenvironment drives the major metabolic
complication in the at-risk PWH. Therefore, to identify the
metabolic perturbations, we developed context-specific genome-
scale metabolic (GSMM) models by integrating the transcrip-
tomics and metabolomics from people without HIV infection
(PWoH), HC-like, and at-risk PWH (Figure 4A).[9] We identified
64 unique metabolic fluxes in the at-risk group (Figure 4B) that
were either restricted to the at-risk PWH only or had different di-
rectional flux than the HC-like phenotype and PWoH (Table S8,
Supporting Information). These risk-specific metabolic reactions
included transport reactions (n = 22), pentose phosphate path-
way (n = 1), and fatty acid oxidation (n = 5), which are the com-
ponents of the central carbon metabolism (Figure 4C). Several
transport reactions were part of amino acid metabolism, carbo-
hydrates, and fatty acid derivatives (Figure 4D), further support-
ing our secretome (Figure 2B). The personalized GSMM reca-
pitulated the group-level GSMM with critical fluxes related to
central carbon metabolic pathways (FDR<0.1, Figure 4E) sup-
ported extracellular plasma metabolomics (FDR<0.1, Figure 4F
and Table S9, Supporting Information). We have observed a
significant increase in the host tryptophan pathway metabolites

FDR < 0.1 (*), FDR < 0.1 (**), FDR < 0.1 (***)). F) Co-expression network after communities’ detection based on transcriptomics, metabolomics, and
proteomics. Features differing between HC-like and at-risk patients are colored red if upregulated or blue if downregulated. Driver genes identified by
structural causal modeling are labeled. G) Heatmap based on senescence-associated protein markers differing between HC-like and at-risk clusters of
patients. The patient cluster is indicated above, and protein Fold Change and annotation to senescence databases are on the right. Data were Z-score
transformed. H) Pie chart representing the number of senescence-associated proteins per cell type differentially expressed compared to the other cell
types in single-cell transcriptomics data.
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Figure 3. Flow cytometry T-cells and monocytes A) Dot plot showing the CD4+ and CD8+ T-cells proportion of the CD3+ T-cells and classical (CM),
intermediate (IM), and non-classical monocytes (NCM). P values are presented. B) Percentage of Glut1 positive cells on CD4+ T-cells and CM and
cystine/glutamate antiporter xCT positive cells on CD8 cells that were significant (p < 0.05) None of the other receptors were statistically significant.
C) Dot plot showing the expression of phenotypic and functional markers on memory CD4+ T cells stimulated in the presence of either HC-like or
at-risk plasma. The stimulation index represents the fold change relative to the negative control. Only markers with modest expression across donors

Adv. Sci. 2025, 2416453 2416453 (8 of 18) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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(serotonin, kynurenate, quinolinate), immune regulators [sper-
mine (SPR) and spermidine (SPD)], and sphingolipids (sphinga-
nine and sphingosine) in the at-risk PWH, which indicates a state
of inflammation and metabolic dysregulation that can lead to im-
paired neuroimmunometabolism (Figure 4F; Figure S5A, Sup-
porting Information). Apart from the increase in the neurotrans-
mitter serotonin, both 𝛼-ketoglutarate and glutamate but not glu-
tamine were also increased in the at-risk population, indicative
of increased glutaminolysis, which plays a critical role in neu-
roimmunometabolism and neurotransmission (Figure 4G).[10]

The RF-based classification also identified the SPD, SPR, taurine,
kynurenate, and serotonin as the top 30 metabolites (Figure S5B,
Supporting Information). The microbial tryptophan pathway
metabolites indole acetic acid also increased but were statistically
not significant (LFC: 0.25, Adj p = 0.17). We also looked at our
earlier fecal microbiome data[1] in a subset of samples to iden-
tify the microbiome diversity and abundance in the two groups.
However, no differences were observed in the 16s microbiota al-
pha or beta diversity, and the microbiota abundance (Figure S6,
Supporting Information) suggests that the alterations in trypto-
phan metabolism likely originate from host-related factors in at-
risk PWH. We also observed an increase in taurine, hydroxybu-
tyrates, and acetoacetate (Figure S5A, Supporting Information),
indicating significant liver stress further supported by a signifi-
cant increase in alanine aminotransferase (ALAT) in at-risk (30.5
vs. 22.5 IU L−1, p = 0.00024) (Table 1). The significant elevation of
the immunoregulatory polyamines that regulate the balance be-
tween pro-inflammatory and anti-inflammatory responses in the
central nervous system (CNS), the Kynurenine pathway of tryp-
tophan metabolism metabolites (kynurenate and quinolinate),
excitatory (glutamate), and modulatory (serotonin) neurotrans-
mitters, along with increased glutaminolysis, may contribute to
the modulation of neuronal activity and synaptic plasticity, po-
tentially influencing neuroimmunometabolic functions in the at-
risk PWH.

2.5. Plasma Micro-Environment Impairs Neuronal Function in
Human Cortical Forebrain Organoids

We hypothesized that the plasma micro-environment with ele-
vated polyamines, host-tryptophan pathway metabolites, gluta-
mate, and serotonin impacts neuronal activity and synaptic plas-
ticity, leading to neuroimmunometabolic complications. As this
is difficult to test in humans, we created 3D models of the human
brain using pluripotent stem cells (iPSC) derived from cerebral
forebrain organoids (FBOs), providing a valuable platform for
studying the complex interactions between different cell types,
including astrocytes and their role in neuroimmunometabolism.

We used these FBOs because they constitute astrocytes upon
maturation that play a significant role in neurotransmitter syn-
thesis, metabolism, uptake recycling, neuronal metabolic sup-
port, neuroinflammatory response, and modulation of synaptic
activity and plasticity. The process of the FBOs involved three
stages: embryoid body formation, neuro induction, and matu-
ration (Figure 5A). To evaluate neuron differentiation and pro-
liferation, we quantified the expression of the PAX6 marker in
the organoids on days 10, 16, and 25 (Figure 5B). As expected,
there were no PAX6-positive cells at the early differentiation
stage (10d). However, more PAX6-positive cells were observed
in the organoids at the intermediate stage (16d). At the mature
stage (25d), PAX6-positive cells were primarily located at the
edges, indicating maturation of most organoids with continued
growth at the periphery (Figure 5C). We performed immunos-
taining for mature neuronal marker Microtubule-associated pro-
tein 2 (MAP2), astrocyte marker Glial fibrillary acidic protein
(GFAP), and presynaptic marker synaptophysin (SYN) in day 60
organoids to assess the maturation and distribution of cells in
the brain organoids (Figure 5D). We used these FBOs to de-
termine the effects of the microenvironment on brain home-
ostasis and activity ex vivo. The level of the pre-synaptic marker
SYN was significantly low in at-risk plasma-treated FBOs but
not in HC-like, indicating a loss of synaptic density and func-
tion (Figure 5E). The level of astrocyte marker GFAP had signifi-
cantly low expression (normalized to MAP2) in both HC-like and
at-risk plasma-treated organoids, further indicating defects in
astrocyte-mediated synapse transmission and neuroprotection.
However, these astrocytes exhibited strong fibrous branches, sug-
gesting reactive astrocytosis (Figure 5F). To identify the effect of
the alterations of neuronal network properties arising from ab-
normal expression of synaptic proteins and activity, we used MEA
recordings. Analysis of neuronal activity after plasma treatment
at MEA showed a significant decrease in spike rates (Figure 5G)
and bursting frequency (Figure S7A, Supporting Information)
compared to the control, further supporting the reduced synap-
tic transmission deficits and altered network behavior. The IL-
10 secretion and relative mRNA level were significantly low in
at-risk plasma-treated organoids (Figure 5H; Figure S7B, Sup-
porting Information). No difference in IL-6 secretion was ob-
served between the HC-like and at-risk plasma-treated mono-
cytes. Finally, we performed quantitative proteomics to identify
the FBOs’ deep phenotyping following the microenvironment al-
terations. We identified significantly different levels (FDR<0.05)
of several proteins while comparing to the control (Figure 5I
and Table S10, Supporting Information) with upregulation of
the process like apoptosis and regulation of autophagy in both
HC-like and at-risk plasma-treated FBOs (Figure S8 and

are shown. Gray lines connect paired samples. Friedman test. D) Pie charts depict activation markers’ co-expression on memory CD4+ and CD8+ T
cells after incubation with HC-like or at-risk plasma. Permutation test. E) Pie charts depict co-inhibitory and transcription factor marker co-expression
on memory CD4+ and CD8+ T cells after incubation with HC-like or at-risk plasma. Permutation test. F) Dot plot showing the expression of chemokine
receptors (CCR2, CCR5, and CX3CR1), activation markers (CD38 and CD86), and expression of PDL1+ on monocytes after incubation with HC-like
(n = 10) or at-risk (n = 10) plasma for 48 h with LPS stimulation (1 pg ml−1). The stimulation index represents the fold change relative to the negative
control. G) Pie charts depict activation and co-inhibitory markers’ co-expression of monocyte markers. H) Volcano plots show the differing proteins
between monocytes treated with the pool of non-homologous plasma from at-risk (n = 10) PWH versus those treated with a pool of HC-like (n = 10)
PWH plasma for 48 h with LPS stimulation (1 pg ml−1). I) Measurement of IL-6 and IL-10 in the supernatant following differentiation of the MDM for
seven days with GM-CSF from HIV-negative controls (n = 6), HC-like (n = 12), and at-risk (n = 12) PWH. J) Phagocytic functions were determined in
MDM from HC-like (n = 6) and at-risk (n = 5) PWH.
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Figure 4. Modelling metabolism at the system level. A) Workflow describing the generation of groups and individual Genome-scale metabolic models
(GSMM) and further applications. B) Heatmap representing fluxes identified by flux balance analysis in grouped GSMM (HC, HC-like, and at-risk).
Fluxes specific to at-risk are labeled yellow. C) Barplot showing at-risk-specific fluxes separated based on subsystems in HC-like (left) and at-risk (right)
GSMM. Fluxes with different directions have been included. Flux with values <250 were excluded. D) Barplot of at-risk specific transport reactions based
on flux values in at-risk GSMM. Equations are indicated on the right. E) Heatmap representing fluxes values for each patient differing between HC-like
at at-risk at the individual level based on Fisher test. The patient cluster is indicated above. Metabolon super pathways are indicated on the right. F)
Dotplot of metabolites differing HC-like and At-risk. Size is inversely proportional to FDR. Dots are ordered based on Metabolon super pathways and
sub-pathways. Color is dependent on super pathways. The horizontal line represents –log10(0.05). G) Boxplot showing the levels of metabolites in
glutamate-metabolism.
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Figure 5. Neurological profiling and ex vivo assays in iPSCs differentiated functional cortical forebrain organoids A) Workflow for generating cortical
forebrain organoids (FBOs) from human iPSC line with timeline. B) Representative confocal immunofluorescence images of human-induced pluripotent
stem cell-derived cerebral organoids (COs) showing the expression of Paired Box 6 (PAX6) at 10, 16, and 25 days. C) A bar graph illustrating the percentage
of PAX6-positive cells in the CO at various time points during differentiation. D) Representative confocal immunofluorescence images of COs at 60 days
demonstrating the presence of neurons (Microtubule Associated Protein 2, MAP2, green), astrocytes (Glial Fibrillary Acidic Protein, GFAP, red), and
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Table S11, Supporting Information). While comparing the HC-
like plasma-treated organoids with the at-risk, only one pro-
tein (CXCL4) was significantly upregulated with FDR = 0.003
(Figure 5I) with several dysregulated proteins with significant
nominal p < 0.05. Interestingly, the directionally based protein
set enrichment analysis (PSEA) identifies the downregulation
of OXPHOS (Table S11, Supporting Information), leading to an
energy deficit, which can lead to synaptic degeneration, loss of
synapses, and changes in synaptic structure.

2.6. SPD-Enriched Microenvironment Reprograms Early
Macrophage Polarization and Synaptic Function

As exogenous polyamines, SPD, and SPR were among the
top high-abundance metabolites in at-risk PWH that have
an immunomodulatory role, we hypothesized that a prolonged
polyamines-driven microenvironment impaired the macrophage
functions. We treated the monocytes with polyamines SPD and
SPR and activated them with lipopolysaccharides (LPS). Com-
pared to the untreated cells, in SPD-treated cells (Figure 6A and
Table S12, Supporting Information), several proteins involved in
the metabolic processes [reticulon 2 (RTN2) facilitates glucose
uptake, GLUT-3 mediates glucose uptake, etc.], chemokine
signaling pathway, [CCL5] and pro-inflammatory process,
[CXCL4, STAT3, IL1𝛽] were upregulated. In contrast, proteins
like Mannose Receptor C-Type 1 (MRC1/CD206), CD163, and
Cathepsin B (CSTB) were downregulated. As the level of CXCL4
in the plasma of the at-risk PWH was higher (Figure 2A), we,
therefore, posit an induction of M4 macrophage phenotype in
the at-risk PWH where CXCL4 modulates macrophage function
by suppressing CD163.[11] Interestingly, metabolic processes
like OXPHOS were also upregulated, mainly characteristic of
the anti-inflammatory phenotype (Figure 6B). Though statistical
significance was not reached due to high heterogeneity, a sim-
ilar pattern was observed in the SPR-treated cells (Figure S9,
Supporting Information). In the supernatant, the levels of
IL-6 and TNF-𝛼 were significantly higher in polyamine-treated
LPS-activated monocytes (48 h post-treatment) (Figure 6C). At
the same time, IL-10 was lower, further supporting the M4-
phenotype.[12] While comparing the upregulated proteins in the
SPD-treated monocytes with at-risk PWH’s plasma profile, 123
proteins were overlapping, which was part of critical pathways
for pro-inflammatory conditions, including the activation of the
IL-6/JAK/STAT3 signaling cascade (Figure 6D). We treated the
differentiated functional cortical neuronal organoids with SPD
for 72 hrs to identify defects in synaptic transmission. There
were no differences in the expression level of presynaptic protein
SYN or astrocytes GFAP (Figure 6E) compared to the control
(shown in Figure 5E). However, it changed the inflammatory bal-

ance as both TNF𝛼 and IL-10 were significantly low (Figure 6F).
It was also associated with changes in astrocytic morphology
with astrocytic displaying activated phenotypes. Interestingly,
the secretion of IL-6 was slightly higher while IL-10 was lower,
although statistically, it was not significant in SPD-treated
organoids (Figure 6G). Analyzing neuronal activity following
the SPD treatment by MEA showed decreased spike rates and
bursting frequency (Figure 6H) compared to the control, indi-
cating synaptic functional deficits in vitro. We also performed
quantitative proteomics of the organoids. Though the differential
protein expression did not find any significant proteins after
corrections, the nominal p-value identified the upregulation of
372 and the downregulation of 151 proteins (p < 0.05) (Table S13,
Supporting Information). Though statistically not significant,
both STAT3 and CXCL4 were higher in SPD-treated cells. The
directionality-based protein set enrichment analysis identified
upregulation of fatty acid, alanine, aspartate, and glutamate
metabolism (FDR<0.2) (Figure 6I and Table S14, Supporting In-
formation) that may influence neuronal energy metabolism.[13]

Combining all the data SPD and SPD-driven microenvironment
alters the macrophage polarization and synaptic transmission.

3. Discussion

In the present study, we have identified the significance of
the plasma microenvironment in developing complex immune-
metabolic conditions in PWH undergoing prolonged antiretro-
viral treatment. Our findings revealed that myeloid cell lineage-
driven secretory plasma microenvironment impaired monocyte
function in those immunometabolically dysregulated PWH. We
identified five biomarkers of immunometabolic dysregulation
linked to metabolic processes. Interestingly, within this microen-
vironment, distinct reprogramming occurs in various cell types
differently, with significant functional alterations observed pri-
marily in monocytes rather than T-cells (CD4 and CD8). More-
over, the plasma microenvironment in the at-risk group impaired
the differentiated functional FBOs ex vivo, which can lead to
synaptic dysfunction and alterations in neuronal signaling and
adult neurogenesis.[14]

The microenvironment exquisitely regulates mono-
cyte/macrophage function. The plasma secretome and pathway
analysis indicated stress-mediated metabolic reprogramming
in the at-risk PWH. It regulates cell survival and proliferation
due to the myeloid cell lineage secretory SAP. It created the
exhausted phenotype, leading to impaired macrophage function.
Among the top five biomarkers, GGCT is involved in glutathione
metabolism, which protects cells from oxidative stress and
other cellular damage.[15] TBCB, tubulin-binding cofactor (TBC),
plays a vital role in the assembly of the microtubules essential

synapse (SYN, red) markers. E) Representative images of SYP (red) /MAP2(green) and GFAP(red)/MAP2(green) staining after the treatment of plasma
from HC-like and At-risk. F) Quantitative analysis for SYP and GFAP expression normalized to MAP2 (n = 3). DAPI (blue) was used to visualize cell
nuclei. G) 16-electrode plates were used for Multi Electrode Array. MEA recordings, employing COs. Bar graph showing the average number of bursts
per electrode across two-month-old FBOs maintained on MEAs from control and those treated by plasma from either HC-like or At-risk groups. One-
way ANOVA analyzed data sets with post hoc comparisons using Dunnett’s multiple comparisons test compared to control samples. The stars above
points represent Dunnett-corrected post hoc tests. All data are presented as median (IQR) **p < 0.01; ***p < 0.001 ****p < 0.0001 versus control.
H) Measurement of IL-6 and IL-10 in the supernatant exhibited by control (n = 6), HC-like (n = 6), and At-risk (n = 6) plasma-treated FBOs. P-value
indicates Mann-Whitney U test I) Volcano plots showing upregulated and down-regulated proteins in iPSCs differentiated functional FBOs treated with
HC-like or at-risk plasma. Scale bar = 50μm.
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Figure 6. In vitro polyamines treatment in iPSCs differentiated functional cortical forebrain organoids. A) Volcano plots show the proteins differing
between untreated monocytes and monocytes treated with spermidine B) Protein set enrichment analysis: Dotplots of pathways enriched in proteins
differing untreated cells from cells treated with spermine and spermidine. The up-regulation of pathways is indicated in red, and the down-regulation in
yellow. C) IL-6, TNF-a, and IL-10 measurements in the supernatant. In the case of non-detection, the lowest values for the respective kits were used. D)
Venn diagram representing overlapping proteins between untreated cells and respective cells treated with spermidine and proteins differing cells treated
with plasma from at-risk patients. E) Representative images of SYP/MAP2 and GFAP/MAP2 staining after plasma treatment from HC-like and at-risk. In
a quantitative analysis of SYP and GFAP expression normalized to MAP2, five random areas were selected to measure the fluorescence intensity. Scale
bar =50μm. F) The expression of TNFa and IL10 mRNA from cortical organoids from the control and SPD-treated group (n = 3). G) Measurement of
IL6 and IL10 in the supernatant. H) The average number of bursts per minute and electrode across two-month-old cortical organoids were maintained
on MEAs treated with SPD or without any treatment. Data sets were analyzed by unpaired t-tests. All data are presented as median (IQR) *p < 0.05; **p
< 0.01; versus Control. I) Dot plot of KEGG pathways differing control organoids and organoids treated with spermidine. Val: Valine, Leu: Leucine, Ile:
Isoleucine, Ala: Alanine, Asp: Aspartate, Glu: Glutamate.

in regulating several metabolic processes and may affect cell
proliferation and migration.[16] LATS1 also attenuates mTORC1
kinase activation,[17] which regulates critical metabolic processes
and controls cell proliferation. Moreover, in our RF analysis,
several essential proteins were part of the metabolic processes
like glycolysis/gluconeogenesis (Enolase 1; ENO1), amino
acid metabolism (Kynurenine—oxoglutarate transaminase 1;
KYAT1), glucose and energy metabolism (Fatty Acid Binding
Protein 5, FABP5) and were linked to the mammalian target
of rapamycin (mTOR) pathway (Calcyclin Binding Protein;
CACYBP, General vesicular transport factor p115; USO1, Eu-
karyotic translation initiation factor 4 gamma 1; EIF4G1, and
ENO1) and cellular responses to stress, e.g., DnaJ Heat Shock
Protein Family (DNAJB6 and DNAJA2), FKBP Prolyl Isomerase
5 (FKBP5), Heat Shock Protein Family A (Hsp70) Member 1A

(HSPA1A). In the functional assay after treating the monocytes
of healthy donors with the at-risk plasma, the downregulation
of TOMM22 indicated impaired mitochondrial respiration
and energy production, including impaired protein import
and oxidative phosphorylation, leading to dysfunctional host
metabolism.[18] The functional stimulation assays of the mono-
cytes and T-cells further supported it. Exposure to the at-risk
plasma of the healthy showed a trend in higher expression for
the CCR2 and CX3CR1, indicating activation of the monocytes
due to the at-risk plasma treatment. The higher expression of
CD86 and the lower expression of CD38 and PDL1 in the at-risk
plasma-treated cells also indicate impaired interaction with the
T-cells and potential exhaustion of the monocytes that impact
the polarization and trafficking of the monocytes.[19] Further
downregulation of the NRP2 in at-risk treated monocytes can
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lead to impaired migration and homing of monocytes to sites
of inflammation, as NRP2 acts as a co-receptor for several
chemokines.[20] Interestingly, the plasma microenvironment
from the at-risk population does not impair the T-cell polyfunc-
tionality. The imbalance between T-cell and monocyte function
could lead to dysregulated inflammatory responses, potentially
increasing the risk of chronic inflammatory disorders within the
at-risk population.

The host tryptophan metabolism was severely impacted in the
at-risk PWH. The FBA analysis predicted an extracellular flux
of tryptophan from the cytoplasm to extracellular space through
the kynurenine pathway. An increased flux was also detected
for amino acids (AA), indicating a dysregulated AA pathway in
the at-risk PWH, leading to imbalances in the levels of AA and
dysregulated energy metabolism. The plasma metabolomics fur-
ther indicated the prominent dysregulation of the tryptophan
metabolism, as serotonin, kynurenate, and quinolinate levels
were high in the at-risk population because of the inflamma-
tory environment due to the tryptophan breakdown. An increase
in kynurenate and polyamines (e.g., SPR and SPD) might ex-
ert an immunoregulatory effect on the monocyte functions as
SPD has been shown to modulate indoleamine 2,3-dioxygenase
1 (IDO1) enzyme converts tryptophan to kynurenine pathway
metabolites.[21] Importantly, the tryptophan metabolism through
the kynurenine pathway in the liver can affect liver health, as
kynurenine and its downstream metabolites can affect immune
function and inflammation, which are involved in liver disease
through the gut-liver axis. Higher ALAT in the at-risk PWH fur-
ther supports it. The increased levels of hydroxybutyrate and
acetoacetate in the blood indicate a state of ketosis that occurs
when the body switches from using glucose as its primary energy
source to ketones, produced from fatty acids.[22] The tryptophan
metabolism through the serotonin pathway can also affect liver
function.[23]

Increased serotonin is a neurotransmitter that plays a role
in mood regulation and gastrointestinal function and can af-
fect lipid metabolism and inflammation. It could be regulated
by polyamine metabolism as it plays a crucial role in liver func-
tion. The gut-liver-brain axis, a multidirectional communication
network linking the enteric, hepatic, and central nervous sys-
tems, may shape the immune-metabolic status of the at-risk
PWH through systemic communication. Moreover, the periph-
eral plasma microenvironment can contain inflammatory medi-
ators that can cross the blood-brain barrier and directly impact
the function of central nervous system (CNS) cells.[24] This can
lead to neuroinflammation and activation of immune cells within
the CNS, contributing to neuronal dysfunction and damage. In
individuals with Alzheimer’s disease (AD), peripheral inflamma-
tion escalates amyloid beta levels in the brain,[25] potentially due
to increased blood-to-brain influx and decreased brain-to-blood
efflux across the blood-brain barrier.[26] Subsequently, it can fos-
ter neuroinflammation and disease advancement.[27] While treat-
ing the brain organoid with the at-risk and HC-like plasma, the
only protein significantly upregulated with FDR<0.05 in at-risk
plasma-treated organoid was CXCL4 when compared to the HC-
like plasma. The CXCL4 induces the M4 macrophages character-
ized by lower expression of the CD163 and higher expression of
CD86 but can secrete higher levels of IL-6 and TNF𝛼 and lower
levels of IL-10.[12] In our plasma secretome data, we observed

a higher level of CXCL4. While the PBMCs were treated with
pooled plasma from at-risk PWH, we observed a higher expres-
sion of CD86 in the macrophages.

Moreover, the level of presynaptic marker Synaptophysin
(SYN) was decreased in the at-risk plasma-treated organoids, in-
dicating that a defect in synapse development may lead to synap-
tic dysfunction and alterations in neuronal signaling and adult
neurogenesis.[14] This is further supported by alterations of the
several synaptic proteins identified in the proteomics data. Inter-
estingly, the directionally based PSEA identified the downregula-
tion of OXPHOS in at-risk plasma-treated organoids compared
to HC-like treated, which can lead to energy depletion, cell death,
neurotoxic effects, and reduced neuronal activity, potentially con-
tributing to age-related decline.[28]

The study has limitations that merit comments. First, though
this is the most extensive multi-omics study involving 158 PWH,
it may not fully represent the diversity within the population
of PWH. A larger and more diverse sample could provide a
more comprehensive understanding of immunometabolic im-
pairments. Second, the study population was over-represented
by Caucasian males. The study may not have fully accounted
for ethnic and genetic variations in the study population, which
can play a significant role in immunometabolic responses. Third,
while five plasma biomarkers were discovered, the study design
does not fulfill the classical biomarkers discovery study. Addi-
tional studies are needed to validate these biomarkers in larger
and more diverse populations to confirm their utility as predic-
tors of immunometabolic complications in PWH. Fourth, the 3D
organoids recapitulate complex 3D brain structures, which allows
for investigating the development and function of specific fore-
brain regions implicated in neuropsychiatric disorders. However,
it is essential to acknowledge that no model system is perfect, and
organoids are no exception. Existing brain organoids, for exam-
ple, have limitations such as the absence of vascular and immune
cells and other non-neural cells. While neuronal populations in
organoids exhibit diverse layer molecular signatures of the cor-
tical plate, they cannot reproduce the six-layered spatial organi-
zation in human brains. Finally, the study focuses on identifying
risk factors and mechanisms but may not directly address clini-
cal outcomes or interventions. Future research could explore the
translation of these findings into clinical practice.

4. Conclusions

In summary, we discovered the importance of the endogenous
plasma inflammatory microenvironment responsible for chronic
inflammation in the prolonged treated immunometabolically
complicated at-risk PWH. The immunometabolically compro-
mised at-risk PWH has a higher risk of cardiovascular and
neuropsychiatric disorders driven by the gut-liver and gut-brain
axis. Earlier identification of the at-risk PWH based on the
biomarker identified in our study potentiates early intervention
to improve the inflammatory condition. Our study further
emphasized the significant impact of dysregulated tryptophan
metabolism through the kynurenine pathway in the at-risk
population. It could lead to imbalances in amino acid lev-
els and energy metabolism, elevating serotonin, kynurenate,
and quinolinate levels due to the inflammatory environment
caused by tryptophan breakdown. Furthermore, this chronic
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inflammatory plasma microenvironment in the at-risk PWH
contributed to synaptic dysregulation ex vivo. This disruption
subsequently increases the likelihood of neurological and psy-
chiatric symptoms in these individuals through perturbations in
neuroimmunometabolism.

5. Experimental Section
Study Population: The study includes 158 PLWH from the Copenhagen

comorbidity in HIV infection (COCOMO) cohort[29] and 18 HIV-negative
controls (HC). It all originated from the Copenhagen area. Clinical and
demographic data were retrieved from the COCOMO database. Ethical
approval was obtained by the Regional Ethics Committee of Copenhagen
(COCOMO: H-15017350) and Etikprövningsmyndigheten, Sweden (Dnr:
2022-01353-01). Informed consent was obtained from all participants and
delinked before analysis.

RNA Sequencing (RNAseq): Total RNA was extracted from the periph-
eral blood mononuclear cells (PBMC) using the Quick-RNA™ Miniprep
Plus Kit (Zymo Research). The library was prepared using the Illu-
mina TruSeq Stranded mRNA (Illumina). Samples were sequenced
on NovaSeq6000 (NovaSeq Control Software 1.7.5/RTA v3.4.4) with a
151nt(Read1)-10nt(Index1)-10nt(Index2)-151nt(Read2) setup using “No-
vaSeqXp” Workflow in “S4” mode flowcell at National Genomics Infras-
tructure Sweden (NGI).

Plasma Secretome Analysis: It was used Olink® Explore, a multiplex
immunoassay protein biomarker platform that detects ≈3000 proteins in
plasma. The platform uses Proximity Extension Assay (PEA) technology
run on Illumina NovaSeq 6000 system (Illumina, US). The list of proteins
was given in Table S12 (Supporting Information). Detailed methodology
was presented in supplementary materials and methods.

Plasma Metabolomics: Plasma untargeted metabolomics was per-
formed at Metabolon, Inc. (North Carolina, USA), as previously
described.[5] Briefly, recovery standards were added to 100 μL of plasma
prior to sample preparation using the automated MicroLab STAR®
system (Hamilton Company, USA). The resulting extract was divided
into four fractions: two for analysis using separate reverse-phase (RP)
UPLC-MS/MS methods with positive ion mode electrospray ionization
(ESI), one for RP/UPLC-MS/MS analysis with negative ion mode ESI,
and one for HILIC/UPLC-MS/MS analysis with negative ion mode ESI.
The mass spectrometry (MS) analysis alternated between MS and data-
dependent MSn scans, with the m/z range slightly varying between
methods but generally covering 70–1000 m z−1. Data was normalized
to sample volume, log-normalized, and minimum-imputed as given by
MetabolonsTM’s proprietary pipeline. The metabolomics method was
ISO 9001:2015 certified, and the lab was accredited by the College of
American Pathologists (CAP), USA. The detailed method was published
elsewhere.[30]

Supernatant Protein Analysis: The individual proteins were measured
from the supernatant of the ex vivo assays either by ProQuantum Im-
munoassay Kit (IL6 and IL10) (Invitrogen, USA) where the sample volume
was low or by Human Quantikine® ELISAs (IL6, IL10, TNF-𝛼) (R&D Sys-
tems, USA) where the volume was high. The kit catalog numbers were
provided in Table S13 (Supporting Information).

Similarity Network Fusion (SNF): Genes, proteins, and metabolites
with variance<0.2 were removed from the data. Patient clustering was per-
formed using SNFtool as described[31] and the three data layers. Data were
standard normalized for each layer, pairwise sample distances were cal-
culated, and a similarity network was built (number of neighbors, K = 30,
hyperparameter, alpha = 0.7). Networks were fused into similarity network
fusion (K = 30, number of iterations, T = 20), and spectral clustering was
applied to identify the optimal number of clusters (Clusters, C= 2). Param-
eters were selected based on maximum eigengap and minimum rotation
cost. Concordance between fused networks and individual networks was
reported in normalized mutual information (NMI).

Clusters Validation with netDx: Multi-omics and clinical data were used
as input for netDx model.[32] The type of comparison was selected as pear-

sonCorr for omics and normDiff for clinical data. The proportion of sam-
ples to train the model was set to 0.8, the number of train/tests splits to
20, and the threshold for feature selection was seven or more out of a max
score of 10 in 70% of splits. Model performance was verified using receiver
operating characteristic (ROC) and precision-recall (PR) curves produced
by the getResults function and a merged confusion matrix made by the
confusionMatrix function.

Gene Set Enrichment Analysis: Pathway analysis was performed using
Cystoscape module The Biological Networks Gene Ontology tool (BiNGO)
and Gene Ontology terms, R package PIANO using KEGG metabolism
terms, and MSigDB terms for proteins and genes. For metabolites,
enriched pathways were described using python module gseapy and
metabolon terms. Terms with FDR<0.2 were considered significant.

Feature Selection using Random Forest: Using proteomics and
metabolomics data, Radom Forest was performed to predict biomarkers
that differentiate clusters. First, consensus feature selection was per-
formed using the R package Boruta by randomly sampling 1000 proteins
for 1000 iterations. Proteins were identified in 70% of iterations, where
they were selected and kept as the most relevant features. To validate
these features, the final random forest model was built using node size as
default, 700 trees, three repetitions of 10-fold cross-validation, and a test
for several predictors randomly sampled at each split (mtry) between 1
and 15. The model was evaluated using a confusion matrix and accuracy
measure based on the put-of-bag (OOB) estimate of the error rate.

Structural Causal Modelling: Bayesian belief networks (BBNs) were
computed based on the 187 top proteins differing conditions using the
bnlearn package with a score-based hill-climbing algorithm that searches
all possible directed acyclic graphs (DAGs).[33] The importance of each
DAG was measured with the maximization of the Bayesian information
criterion (BIC) score. A final consensus network was built based on 150
random networks and followed by the removal of undirected edges. Then,
edges were permutated to refine the network (iterations = 1000). Each
gene was removed, and the change of BIC between the new network and
the consensus network was used to identify driver genes, which induced
the highest decrease in BIC after being removed. Then to validate driver
genes, BIC change between the network without the driver genes and five
random genes was performed for 1000 iterations.

Consensus Association Analysis: 400 random features from each data
set were selected and combined per iteration (iterations, I = 1000). Pair-
wise Spearman correlations were performed, and significant correlations
(FDR<10−6) were kept. Significant associations between two features
found in 90% of the iterations, including this association, were kept build-
ing a co-expression network. The correlation between consensus associ-
ations was re-calculated, and associations with FDR<0.00005 were used
to build negative and positive networks using python igraph.[34] Networks
were compared to random networks of the same size. Highly intercon-
nected features were clustered using leiden algorithm from the leidendag
python module into communities.[35] The mean degree was calculated per
community. Only communities with more than 30 features were used.

Senescent Markers: Genes from CellAge senescence database
(n = 1259, https://genomics.senescence.info/cells/), Csgene senescence
database (n = 504, http://csgene.bioinfo-minzhao.org/) and Reactome
SASP (n = 81, https://reactome.org/content/detail/R-HSA-2559582)
were retrieved.

Cell Profiling and Single-Cell Data Analysis: CIBERSORTx was used
to identify immune cell proportions from bulk RNA-seq data for each
patient using a gene signature matrix (LM22) which contains 547 genes
differing from cell types.[36] The single-cell RNA sequencing (scRNAseq)
data were retrieved from 10xGenomics as a count file from one pa-
tient (https://www.10xgenomics.com/resources/datasets/20-k-human-
pbm-cs-3-ht-v-3-1-chromium-x-3-1-high-6-1-0) Seurat was used for
downstream analysis (https://satijalab.org/seurat/). The Seurat object
was created with features detected in a minimum of 3 cells, and cells
with 200 features were counted as minimum and 2500 as maximum.
Cells were removed if they contained >7% of the mitochondrial count.
Normalization using the global-scaling normalization method and iden-
tification of variable features was performed using default parameters.
Before visualization, linear transformation was applied to data. To reduce
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dimensionality, principal component analysis (PCA) was performed.
Principal component cut-offs were determined based on the JackStraw
plot and used for the rest of the analysis. Data visualization was per-
formed using t-distributed stochastic neighbor embedding (tSNE). The
Graph-based clustering approach was performed using the Louvain
algorithm and a resolution parameter of 0,5. Cell type identification was
performed using canonical markers extracted from Seurat. Differential
gene expression analysis was performed between clusters and cell types
identified using the FindAllMarkers function with the Wilcoxon Rank-Sum
Test. The p-values were adjusted for multiple hypotheses using Benjamini
and Hochberg correction. Significant genes were kept if FDR<0.05.

Genome-Scale Metabolic Models: The genome-scale metabolic mod-
els (GSMM) model analysis was performed using RAVEN v2.4 (https:
//github.com/SysBioChalmers/RAVEN). RAVEN needs MATLAB installa-
tion, libSBML libraries, and a Gurobi solver. Models were reconstructed
from the template Human-GEM (https://github.com/SysBioChalmers/
Human-GEM) by integrating RNA-seq data in TPM format using the func-
tion getINITModel2 and modifying boundaries of transport reactions of
metabolites using metabolomics data. Models were kept if able to perform
the 21 essential tasks using the checkTasks function. Flux balance analysis
for each model was performed, with the object being biomass production.
Fluxes were filtered out if inferior to 10−7 mmol gDCW−1h−1, and for visu-
alization purposes, fluxes with a value inferior to 250 were removed from
the figures. Transport flux was also log2 transformed for easier visualiza-
tion.

T-Cell Functionality Assay: The donor PBMCs (n = 6) were incubated
with 15% pooled plasma from HC-like (n = 10) and at-risk (n = 10) sepa-
rately and stimulated with Cytomegalo-, Epstein-Barr, and Flu-virus (CEF)
peptide pool (2ug/mL), or left unstimulated, in RPMI (10 mM HEPES,
2 mM L-glutamine, and 0.1% PenStrep) supplemented with DNase I re-
combinant, RNAse-Free (Roche, USA) for 48 h. The inhibitors Brefeldin
A (GolgiPlug, BD bioscience, USA) and Monensin (GolgiStop, BD bio-
science, USA), were added 12 h before collecting the samples. Samples
were collected and washed in FACS buffer (PBS+2%FBS+2mM EDTA)
before staining of anti-CCR7 for 10 min at 37 °C and 5% CO2 follow-
ing staining of additional surface receptors and aqua viability stain (Ther-
mofisher) for 30 min at room temperature (RT). Fixation and permeabiliza-
tion were performed using FoxP3/transcription factor staining buffer set
(Thermofisher, USA) for 30 min at room temperature (RT). Fixation and
permeabilization were performed using FoxP3/transcription factor stain-
ing buffer set (Thermofisher) following intracellular staining for 30 min
at RT. After additional washing, the samples were immediately run on
FACS symphony (BD Bioscience, USA). Analysis was performed in FlowJo
v.10.8.1 (FlowJo, LLC). The gating strategy was detailed in Figure S4A (Sup-
porting Information). The stimulation index represents the fold change rel-
ative to unstimulated PBMCs incubated with healthy control plasma (neg-
ative control). Phenotypic analysis was performed using Boolean com-
bination gates of the frequencies for functional markers (Granzyme B
and Perforin), activation markers (CD27, CD38, CD69, CD226, HLA-DR,
and Ki-67), and exhaustion markers (CTLA-4, Eomes, KLRG1, PD1, T-Bet,
TIGIT, Lag3, and TIM-3) separately in FlowJo and visualized using Sim-
plified Presentation of Incredibly complex evaluation (SPICE) version 6.1
(https://niaid.github.io/spice/). The reagent catalog numbers were pro-
vided in Table S13 (Supporting Information).

Monocyte Functionality Assay: The donor PBMCs (n = 6) were incu-
bated with 50% pooled plasma from HC-like (n = 10) and at-risk (n = 10)
separately and stimulated with LPS (1 pg mL−1) or unstimulated in RPMI
(10 mM HEPES, 2 mM L-glutamine, and 0.1% PenStrep) for 48 h. Samples
were collected and washed in FACS buffer (PBS+2%FBS+2mM EDTA) and
staining of surface receptors and near-IR viability stain (Invitrogen) for
30 min at 4 °C. After fixation (2% PFA), samples were run on FACS sym-
phony (BD Bioscience). Phenotypic analysis was performed using Boolean
combination gates of the frequencies for expression of chemokine recep-
tors (CCR2, CCR5, and CX3CR1), activation markers (CD38 and CD86),
and expression of PDL1+ on monocytes. The gating strategy was detailed
in Figure S4C (Supporting Information).

Spermidine and Spermin Stimulation: Monocytes were isolated from
donor PBMCs (n = 4) using EasySep™ Monocyte Isolation Kit (Stemcell,

#19 359) and seeded with 1×106 cells mL−1 density. Monocytes were in-
cubated in RPMI (10% FBS, 5% human AB serum, 10 mM HEPES, 2 mM
L-glutamine, and 0.1% PenStrep). 3 h before the cells were treated with
either SPD (35 μM, Sigma–Aldrich, USA) or SPR (10 μM, Sigma–Aldrich,
USA) or untreated. The dose was selected based on the cell viability where
at least 70% of the cells were viable. After an hour, macrophages were
stimulated with LPS(1 pg mL−1) and incubated for 48 h. For proteomics,
samples were collected and washed in FACS buffer (PBS+2%FBS+2mM
EDTA). Cell numbers were determined, and cells were washed with PBS.
The supernatant was removed completely, and samples were stored at
−80 °C until analysis.

Organoid Differentiation: Human iPSCs Sli021 were differentiated into
cortical organoids. The iPSCs cells were collected and filtered by 37 μm Re-
versible Strainer (STEMCELL) to get single-cell suspension. The suspen-
sion was transferred to AggreWellTM 400 plates (STEMCELL) to gener-
ate embryoid bodies (EBs) with EB Formation Medium (STEMCELL). Next
day, the harvesting Human EBs were transferred to 6-well low-attachment
plate and cultivated in Neuron Induction Media (Neurobasal media, 1%
100x GlutaMAX, 1% Penicillin/streptomycin, 1% 100x N2 supplement, 2%
50x B27 supplement, 1.25 uM dorsomorphin, 10 ng ml−1 human recom-
binant LIF, 3 uM CHIR99021 and 3 uM SB431542). After 10 days, the
organoids were maintained in the organoids medium (50% DMEM/F-
12, 50% Neurobasal media, 1% Penicillin/streptomycin, 0.5% 100x N2
supplement, 1% 50x B27 supplement, 1 ug ml−1 Humulin, 200 nM 2-
Mercaptoethanol, 1% 100x GlutaMAX, 0.5% 100x Minimum Essential Me-
dia (MEM), 20 ng ml−1 BDNF, 20 ng ml−1 GDNF and 20 ng ml−1 FGF2)
for 7 weeks.

Multiple Electrode Arrays (MEAs) Assays: MEA plates were pre-treated
with 10 ul drop of 0.1% PEI solution and incubator at 37 °C, 5% CO2 for
at least 60 min. 7-week-old organoids were plated in the MEA plate with
10 ul organoids medium containing 10 μg ml−1 laminin and make sure the
organoids covered all the electrode arrays. After 1 h at 37 °C, 5% CO2 in-
cubation, 500 ul medium was added into each MEA well and the medium
was half-changed every day for 7 days. SPD and Plasma from HC-like and
At-risk were added into the medium and treated for 3 days. The electro-
physiological activity was recorded after 3-day’s treatment using hardware
(Maestro Pro complete with Maestro 768-channel amplifier) and software
(AxIS 1.5.2) from Axion Biosystems (Axion Biosystems Inc., Atlanta, GA).
All other parameters were defaulted and the temperature and CO2 con-
centration were 37 degrees and 5% respectively. Raw data were analyzed
by MATLAB with custom scripts. The signal activities from all electrodes
were involved in this analysis. Three duplicate MEAs/organoids for each
group were performed for the analysis.

Gene Expression Analysis: RNA was isolated from cortical organoids
using a GeneElute™ mammalian total RNA miniprep kit (Sigma). After
normalizing the RNA concentration to ≈50 ng ul−1 using nuclease-free
water (Promega), a high-capacity cDNA reverse transcription kit (Applied
Biosystems) was used for creating cDNA. For quantitative real-time PCR
(qPCR), 70 ng of cDNA was used per reaction, and primer sequences are
in the Oligonucleotides parts of key resources. StepOnePlus™ real-time
PCR system (Applied Biosystems) with qPCRBIO SyGreen Blue Mix Hi-
ROX (PCR Biosystems) was used to produce PCR products detecting by
incorporation of SYBR-green and authenticated by the melt-curves. All the
results were normalized to GAPDH presenting in terms of the 2−ΔΔCT

method or relative mRNA abundance.
Organoids Cryosection and Immunohistochemistry (ICC): The

organoids were fixed in ice-cold 4% PFA, pH = 7.4 for 15–20 h and
washed 3 times in PBS. 30% sucrose solution was used to remove the
water in organoids until the COs no longer float. Embedding solution
(50% O.C.T Compound + 50% of 30% sucrose solution) was involved
to embed organoids on dry ice. After organoids were frozen at −80 °C
for 15 h, they were cryosectioned into 15 μm sections on a Small Lecia
cryosection. The sections were then blocked and permeabilized using 5%
goat serum in PBS with 0.1% triton-X-100 (PBST). Primary antibodies
(SYP, Sino bioscience; GFAP, Dako; and MAP2, NOVUS) were used in the
blocking solution and incubated at 4 °C overnight. Secondary antibodies
were diluted in PBST and applied for 2 h at room temperature. Cells were
counterstained with DAPI and mounted using ProLong™ Glass Antifade
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Mountant (Thermo Fisher). Relative fluorescence intensity was quantified
using Image J using five random fields per organoid. The images were
taken by a Leica DMI600B inverted time-lapse microscope or ZEISS Axio
Scan.Z1 with a 20x objective.

Single-Cell Type Quantitative Proteomics: Single-cell type quantitative
LC-MS/MS-based proteomics was performed as described previously.[4a]

Raw data were filtered for missing values and quantile normalized. Dif-
ferential abundance analysis was performed using LIMMA. Models were
corrected for replicates and the number of cells. P values were adjusted
using Benjamini-Hochberg (BH) correction.

Visualization: R package ggplot2[37] was used to design boxplots, bub-
ble plots, volcano plots, importance plots, PCA plots, scatter plots, bar
plots, and dot plots, while ggalluvial was used to make the Sankey plot. Cy-
toscape v.3.6.1[38] was used to represent large networks. Heatmaps were
made using the R package ComplexHeatmap. ROC curves were obtained
with the getResults function from the netDx package. The t-SNE plots were
produced by the Seurat function Dimplot. Biorender was used to make
Workflow (https://biorender.com/).

Statistical Analysis: Continuous clinical variables were compared us-
ing a t-test if normally distributed or a Mann-Whitney U test if not nor-
mally distributed. Discrete variable differences were tested using the Chi-
Square Test if the expected values of the contingency table were five or
more; otherwise, Fisher’s Exact Test was applied. Spearman correlations
between features were performed using the function rrcor from the R pack-
age Hmisc. Proteomics and metabolomics were analyzed with R package
limma for differential abundance analysis. The difference in gene expres-
sion was investigated using R package DESeq2.[39] Three models were de-
signed for each data set, including HC and HIV (model 1), between HIV
clusters (model 2) and comparing clusters and corrected for confound-
ing variables (model 3). All test P values were adjusted using Benjamini-
Hochberg (BH). The default p-value cut-off was set to 0.1. Other p-values
cut-offs are adapted for a specific analysis and indicated. For wet lab ex-
periments, statistical analysis was performed using Graphpad prism 9.0
(Graphpad Software Inc). Non-parametric tests were used for analyzing
the data where paired groups were compared using a two-tailed Wilcoxon
matched-pairs signed rank test or Friedman test for multiple comparisons.
The Permutation test was used to analyze cell populations visualized by
SPICE version 6.1.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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