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Summary

We study a particular class of ground states of the non-abelian Kitaev quan-
tum double model on an infinite plane. These states are associated to the
irreducible representations of the quantum double of a finite group G, and
are called anyonic excitations. Anyonic excitations are a particular feature
of topological phases of matter.

Recall that if G is a finite group, the irreducible representations of the
quantum double D(G) can be labelled by pairs (7, C), where C is a conjugacy
class of G and 7 is an irreducible representation of the centralizer subgroup
of a fixed element r € C, the choice of which is irrelevant. Using the notion of
ribbon operators as in [Kit03], we consider for each irreducible representation
a = (mC) € 5(5), each label I = 1,...,dim, and semi-infinite ribbon &,
the amplimorphisms Xél’a defined as in [Naald, Eq 5.3] and show that the
states wg o Xg’a define pure states, where wq is the vacuum state of the

model. Given two irreducible representations a, f € D(G) and two semi-

infinite ribbons &, &, we show that the GNS representations of wg’a and

Wl

Furthermore, if either m # triv or |C| = 1 holds, then wél’o‘ is
state for a semi-infinite ribbon £ in the infinite plane. We interpret wé
as a state creating a single localized excitation that cannot be removed by
local observables. We also prove that the states wél’a are indeed non-ground
states in the other case and construct alternative non-pure ground states
corresponding to these anyon sectors.

We conclude this work with an exposition on a work in progress. The
amplimorphisms described in [Naal5| are transportable and localized, which
is why they give rise to representations satisfying a superselection criterion for
cones. These localized and transportable amplimorphisms form a category,
and we conjecture that they are equivalent to the category rep(D(G)) of
representations of D(G) as a monoidal tensor category. In this thesis, we
present some steps towards this conjecture.

are unitarily equivalent if and only if a@ = .

a ground
I,«a

X
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Chapter 1

Introduction

In this work, we will present a family of pure ground states for the non-
abelian quantum double model. The quantum double model is an example
of a quantum many-body system, in which the ground state degeneracy is
dependent on the topology of the surface on which the model is embed-
ded. Such systems are called topologically ordered and the quantum phases
of matter are named topological phases of matter, due to their topological
dependence. The particular quantum double model is based on a group G,
describing the symmetry and the interaction terms of the system, which in
turn describe the dynamics of the model. If G is abelian, we call this model
the abelian quantum double model.

The abelian quantum double model is already well studied [Kit03], Naal0),
Naalbl [FNT5] and the infinite volume ground states of the non-abelian quan-
tum double model on a plane are already well understood [CNN16]. The main
goal of this work is to gain a better understanding of ground states of the
non-abelian quantum double models.

In the infinite plane, there is a unique translational invariant ground state
wo, called the vacuum state [Naal2]. It turns out that non-translational in-
variant ground states carry localized quasi particle excitations, called anyons,
and the study of these anyons is closely related to the study of quantum
phases of matter.

To understand what a quantum phase of matter is, let us first discuss
phases of matter in more generality. While most are familiar with the classical
4 phases of matter - solid, liquid, gaseous and plasma - there are many more
phases. Up until the late 1980s, physicists believed that all phases of matters
could be described by the Ginzburg-Landau theory of symmetry breaking
[ZCZW19]. Different phases were associated to different behaviour of the
ground state space under the action of symmetries, and phase transitions
were associated to symmetry breaking [LL80]. A symmetry breaking occurs,

1



2 CHAPTER 1. INTRODUCTION

when ground states - or any equilibrium state at some temperature - are
transformed to different ground states under the symmetry transformation,
instead of being left invariant. A well known example of this effect is given by
the Ising model, which has two distinct ground states that can be transformed
into each other via a global symmetry transformations [ZCZW19].

However, in the late 1980s physicists realized that the symmetry break-
ing theory was not enough to fully describe all phases of matter. The chiral
spin state, originally introduced to describe high-temperature superconduc-
tivity [KL87, WWZ89], could not be described by symmetry breaking alone
[Wen89|] as many different chiral spin states exhibited the same symmetry
[Wen89|. Tt was suggested in [Wen90] to introduce a new order called topologi-
cal order. Although it was later realized that chiral spin states do not describe
high-temperature superconductors, similarities of chiral spin states with the
fractional Hall effect [Lau83, [TSG82] revitalized the notion of topological
order as a means of describing different fractional quantum Hall states. We
note also that fractional quantum Hall states were not the first phenomenon
that realizes a topological order. Superconductors exhibit topological order
as well [HOS04, Wen91al, Wen91h)].

Our work focusses mostly on quantum phases of matter. Before the dis-
covery of topological phases of matter, phase transitions were defined in terms
of discontinuities in measurable physical quantities, called order parameters.
When for example water enters the gaseous state from its liquid state, the
local density takes a sudden drop, i.e. there is a discontinuity in the local
density. The physical entity we are interested in here is the energy gap of our
Hamiltonian, that is, the difference A between the lowest and second-lowest
energy state of the Hamiltonian. We call a Hamiltonian gapped, if A > 0,
and two gapped ground states w; and w, are said to be in the same quantum
phase if they are ground states of gapped Hamiltonians H; and H, that can
be connected via a continuous path of gapped Hamiltonians, i.e., if there is
a continuous map t — H(t) of gapped Hamiltonians such that Hy, = H(0)
and H, = H(1).

A new type of quantum phases are the topological quantum phases, which
cannot be described by local order parameter [WN9(]. It turns out that
anyon states emerge in these topologically ordered systems only if the states
are long-range entangled due to the localized nature of anyons [NO22J.

Anyons were studied extensively by [Wil90, [DPRII, BvDdWP92, [dWPB99).
It is widely believed that the algebraic properties of anyons are described by
a modular tensor category [Wanl0, [Kit06]. A good way of obtaining such
a category is by applying methods from the superselection sector theory to
anyons [Naal0O, Naalbdl Haal2]. We will explain this approach in more de-
tail in Section but the idea is to obtain ground states by pulling the



vacuum state wy back along some morphisms that satisfies suitable algebraic
properties.

An important application, that makes the study of anyons attractive, lies
in the possibility to construct quantum gates using braiding and fusion of
anyons. Although this thesis does not study quantum gates, we want to
briefly mention the idea. Until the discovery of the fractional quantum Hall
effect in the early 1980s [TSG82 Lau83], physicists believed that bosonic
and fermionic statistics were the only exchange statistics exhibited by parti-
cles, although purely theoretical observation of different statistics specific to
the two-dimensional case have already been made [LM77]. Indeed, it is the
exotic nature of the statistics of anyons that lend them their name [Wil82].
For abelian anyons, the exchange statistics, that is, the phase obtained by
exchanging two anyons, can be an arbitrary root of the identity on the unit
circle. For non-abelian anyons, the statistics are even more involved and the
braiding of anyons has a direct impact on their fusion rules. The process of
braiding anyons and performing a fusion could potentially be used to realize
a quantum gate [Wan10].

Another important feature of anyons is that anyon ground states can only
be transformed to other anyon ground states using global operators. The fact
that it is not possible to move from one ground state to another via local
operators only has potential use in implementing a quantum error correction
code. The robustness against local perturbation is related to a stability
assumption on the energy gap of the Hamiltonian against small perturbations
[MZ13 BHM10]. We note however, that it was shown in [BT09] that error
correction codes in 1 and 2 dimensions as in [CS96, [Ste96] do not satisfy
some necessary conditions to actually implement a self-correcting quantum
memory. See also [AHO06], which discusses the toric code as a particular
example.

There are different techniques for studying topological order, and while
this work will be focused on the operator algebraic approach, we want to
briefly mention other viewpoints. One such viewpoint is the string-net pic-
ture, developed by Levin and Wen [LW05]. The Levin-Wen string-net model
describes quantum spin systems, by describing the ground state as a super-
position of so called string-nets configurations. These strings correspond to
objects in a fusion category which encodes the fusion- and branching rules
of the model.

Another closely related way of studying topological order is through topo-
logical quantum field theory(TQFT): Consider the category whose objects are
n— 1-dimensional smooth manifolds and whose morphisms are n-dimensional
smooth manifolds, carrying the objects as surfaces, see Figure [[.1] There is
a natural way of defining the composition of such morphisms by gluing the
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E, E, Es
) ) I’

M, M; M,
) Oy

E, E, E3

Figure 1.1: A depiction of 3-dimensional manifolds M;, My, M3 such that
E;[] E; is contained on the surface of M; for i = 1,2,3. The cylinder M;
describes the identity map on F; and My and M3 perform a double-braiding
on the surfaces Fy x E3. Under a functor F' into Vecty, this is identified by
amap Hr, ® Hg, ® Hp, = Hp, @ HEe, ® Hg, performing a double braiding
He, ® Heg, = He, @ He, = HEe, @ Hp,.

surfaces of two manifolds M; : £y — E5 and M, : E; — FE3 and for every sur-
face E, the cylinder E x [0, 1] can be chosen to be the identity morphism on
E. Note that we always equate diffeomorphic structures in this setting. This
category is called bordism category, and it can be equipped with a monoidal
structure by defining Ey ® Ey := Ey[[ E; and My ® My := M [[ M, for
n — l-dimensional manifolds E;, F> and n- dimensional manifolds M, M.
The idea is to identify an n — 1-dimensional surface ' with a Hilbert space
‘H g, describing the states of the system. A manifold from F; to E5 is then
associated to a bounded linear map from Hpg, to Hg,. Broadly speaking, a
topological field theory is then a functor from this bordism category to the
category Vecty of K-vector fields that respects the tensor products and their
braidings in the respective symmetric monoidal category.

There is a huge area of research dedicated to the study of topological
quantum field theory that cannot be done justice in this humble exposition.
We refer to [CR18|] for a nice introduction to the topic. Any spherical fu-
sion category gives rise to a 3-dimensional TQFT [TV92, BW96] and the
so constructed TQFT’s afford a description equivalent to the string-net ap-
proach by Levin and Wen [KMR10, [KKR10]. See also [Kirll] for a more
mathematical approach.



1.1. THE TORIC CODE i)

Finally, we mention the tensor network approach, which employs a graph-
ical calculus to describe states and transformations thereof using tensors.
Broadly speaking, a tensor network is a family of tensors having virtual
and physical indices, the latter describing the concrete physical subsystems.
A state of the system can be described by a contraction of the tensor net-
work along the virtual indices [AMNT23, [SCPGI(]. Projected entangled pair
states (PEPS) are particularly interesting in the context of 2-dimensional
quantum many-body system. Each tensor is associated to a site on the
lattice, and the virtual indices describe the entanglement between adja-
cent sites. PEPS can be used to describe topologically ordered systems
[FGSWT12, [SPCPG13], as they naturally capture the notion of long-range
entanglement [RDS15].

1.1 The Toric Code: An Example of a Topo-
logically Ordered System

The most important example related to this work is the toric code [Kit03].
The toric code is a particular example of Shor’s stabilizer code. These stabi-
lizer codes are an example of a quantum error correcting code, as it was the
initial hope that these codes perform a self-error correction on a quantum
memory to some extend. This is a desirable feature in quantum information,
as classical error correction cannot be established in the setting of quan-
tum information. This is because classical methods for error corrections
always involve copying data to some extent, but the no cloning theorem
[Par70, WZ82, Die] forbids such a process entirely. We briefly discuss the
main idea behind Shor’s error correction code, but see also [CS96, [Ste96]. Let
E = {E\} be a set of observables describing all possible noises the system
can be exposed to. For example, for a spin system, this can mean a spin
flip on one of the qubits. One important idea to realize error correction, is
to store a single-qubit in a subspace of an N-qubit many-body system to
mitigate the effect of the noises. These subspaces are what one usually calls
the stabilizer code or in this case the stabilizer code. One then proceeds to
find commuting projections g1, ..., g, in the algebra generated by £, chosen
such that the stabilizer code lies in the image of these projections. Choosing
the Hamiltonian

H:—Zgz‘,

the stabilizer code then re-emerges as the ground state space of H.
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The specific toric code model is a quantum spin system on a Z2 lattice
embedded on a torus, where each edge of Z? is equipped with a qubit, i.e.
the Hilbert space C2. This model exhibits a 4-dimensional ground state
degeneracy. More generally, if ¢ is the genus of the surface on which the
lattice is embedded, the ground state degeneracy is 49 [Kit03]. Let s and p
describe a star- respectively plaquette shaped region of the lattice, see Figure
[1.2] Then we define the star operators

A =1]e

ecs

and plaquette operators

B, = H g
eEp
where ¢} and o}, are respectively defined to be the action by the Pauli matrix

0. and o, at edge e, and the identity action everywhere else. The Hamiltonian
of the system is described as a sum of the local stabilizer operators

H=-) A,-> B,
s p

where the sum is over all stars s and plaquettes p. The motivation behind
these local stabilizer operators is that they detect errors [Kit03]. A ground
states of the model can be characterized by the frustration freeness condition,
that is, a state wy is a ground state if and only if wy(As) = wo(B,) = 1 for all
stars s and plaquettes p. The term frustration free just means here that the
state wy minimizes each summand in the Hamiltonian separately, and wy is
called a frustration free ground state. The relevant strings in this model are
given by paths and dual paths, that is, paths along the faces, of the lattice.
Given a non-self-intersecting path £ = (eq,...,¢,), along the edges ey, ..., ¢,
we define the string operator F¢ via

n
Fg = H 0'?.
i=1

Recall that a dual edge is a pair (fi, f2), where §f; and f, are faces of the lat-
tice. If £* = (f1, ..., fm) is a non-self-intersecting dual path along dual edges

f1,. -+, fm, .. edges connecting faces, and if ey, ...,¢,, denotes the edges of
the lattice crossing dual edges fi,...,fmn, we define the string operator Fg-
via

m
Fg* = HU?.
i=1
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Let A be the set of all edges of the lattice embedded on the torus. One can
then verify that the state

Qo = [ [ As ®cen [0)

defines a vector in ®.cAC? that is invariant under the action of all star and
plaquette operators, |0), 1) € C? is the orthonormal basis in which the Pauli
matrices are represented, corresponding to spin up and spin down states. €2
can be identified with the vacuum vector. One can show, that for a path ¢
and a dual path £*, both non-self-intersecting, the vectors F¢{)y, Fe-{)y and
F¢ Fe. () violate the frustration freeness condition precisely at the endpoints
of &, respectively £*, demonstrating how string operators create pairs of ex-
citations. We also note that the algebra of all local observables is generated
by the string operators, since the Pauli matrices o, and o, already generate
the algebra M,(C). Hence, observables can only create pairs of excitations.

One can also directly observe how the topological ground state degeneracy
is related to the genus of the surface in this model. One can show that the
vectors Fedy, Fe«§)y and FeFe-Qy are independent of the concrete shape of
¢ and &* and only depend on the endpoints of £ and &*, highlighting the
topological features of these models further. Note also that by assuming
the strings to be non-self-intersecting, we also excluded loops. If the strings
are closed loops around the torus, however (and don’t intersect anywhere
else), the corresponding string operators map the ground state {2 to different
ground states. Since the non-trivial genus of the torus allows for two non-
trivial homotopy classes and because we can choose between paths and dual
paths, one may directly verify that additional 3 ground states can be obtained
via the action of string operators on the ground state €2g.

1.2 The Quantum Double Model

The toric code is a special case of the more general quantum double model for
groups. These models are surface code models on a lattice where each edge is
decorated with the group Hilbert space CG of a given finite group G, instead
of the Hilbert space C? as in the case of spin systems. The group Hilbert
space CG is defined by considering the group algebra of G as a vector space,
and embedding it with a natural Hilbert space structure. The stabilizer
operators A, and B, then turn out to be coming from a representation of
the quantum double D(G) of G at site s. The different anyons can then be
associated to irreducible representation of the quantum double D(G). As
mentioned before, the infinite volume ground states of the abelian quantum
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Figure 1.2: The figure depicts the star (blue) and plaquette (red) shaped
regions on a Z? lattice. On the edges of the star, the operator A, acts with
the pauli matrix o, at each edge, whereas the operator B, acts with the Pauli
matrix o, at each edge of the plaquette.

double model on a plane are already well understood. On the other hand,
the non-abelian quantum double model is less well studied as the abelian
model, but there still exists plenty of works [BMDO0S, [CM22bl, [CM22a] and
even generalizations to quantum double models stemming from semisimple
Hopf algebras and their quantum doubles, as opposed to finite groups, were
considered in the literature [CCY21]. A categorical generalization of Kitaev’s
quantum double model can be found in [HM23| [MeulT7].

In this work, we will only concern ourselves with the non-abelian quantum
double model on a Z?-lattice embedded on an infinite plane. An important
remark that we want to make at this point is that ground states in the infinite
volume setting can also include single site excitations i.e. anyons, despite
having higher energy than the vacuum state. In fact, if we consider a particle-
antiparticle pair, created using operators similar to the string operators in
the toric code, and sending one particle to infinity by considering a sequence
of strings, then in many cases the resulting state will be a ground state, as
we shall prove in this work. The reason these states are ground states, is
that these single excitations turn out to be robust against local operators,
i.e. they cannot be erased via local operators, although they can be moved
around over finite distances. More formally, a ground state w is defined as a
state that satisfies the condition

—iw(A*6(A)) >0

for all observables A in the domain of the derivation ¢, describing the dy-
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fio0 fo fs fz

fe

fs

Figure 1.3: Depiction of a ribbon in the Z?-lattice. The vertices (vy, ..., v7)
form a path p (red) and the faces (f1,..., fio) form a dual path p* (blue).
Every vertex of p forms a site (dashed) with a face of p* and every face of p*
forms a site with a vertex of p. Note that every two consecutive sites form,
together with either p or p*, a triangle, and no two triangles overlap, which
can be used to give an alternative definition of a ribbon.

namics of the system.
Following the construction presented in [Kit03], we will define the so-
called ribbon operators F; 1o abelled by irreducible representations a €

—

D(G) of the quantum double D(G) and I,J = 1,...,d,, with d, = dim(«)
and ribbons . Notice that one major difference to the abelian case becomes
already apparent here: In the abelian case, all irreducible representations
of D(G) are one-dimensional, whereas the dimension of the irreducible rep-
resentations of D(G) are in general less trivial in the non-abelian case. To
define a ribbon, recall that a site in a graph is a pair (v, s), where v is a vertex
and f is a face having v in one of its corners. A ribbon is defined as a pair
of a non-self-intersecting path p = (vy,...,v,), and a non-self-intersecting
dual path p* = (f1,..., fm) in the lattice model, such that each vertex in p
forms a site with a face in p*, and each face in p* forms a site with a vertex
in p such that p and p* do not intersect, see Figure |1.3, This model admits
a unique frustration free ground state wy [Naal2|, also called vacuum state,
and a particle-antiparticle state can be created by considering states of the
form

] Ga

W A s T 3w (Fg‘]’C‘A(Fg‘])*> . (1.2.1)

J=1
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This construction is motivated by [SV93], in the context of 1-dimensional
quantum spin chains. The convergence of Equation (|1.2.1]) for infinite ribbons

was already established in [Naal2], see also [FN15]. Note that if (Fg); =1, 4.

is the matrix with entries \/%F; 7@ then the above identity reads wél e =

Wp © X?’a, where Xél’o‘ is the entry in the I-th row and I-th column of the
matrix xg(A) defined via

Xe(A) = Fg (A ®idean ) (Fg)7, (1.2.2)

where idea, is the identity matrix on C%. ¢

is a unital *~homomorphism
[Naal2] from 2l to 2 ® End(C% ), and such maps are called amplimorphisms.
It was already shown [Naal2] that the amplimorphisms xg converge for infi-

nite ribbons, even in the non-abelian case.

1.3 Main Results and Outline of the Thesis

Before we state our first main result, recall that the irreducible representa-
tions of the quantum double D(G) are labelled by pairs a = (7, C,), where
C, is a conjugacy class of G and 7, is an irreducible representation of the
centralizer subgroup of an element r,, € C,, the specific choice of which does
not matter [Gou93|]. We will give an overview of the quantum double and its
representations in Section and Section [2.4.2] Our first main result then
reads:

—

Theorem A. Let a = (7,,Co) € D(G) be an irreducible representation of
the quantum double D(G), &, a sequence of ribbon extending to an infinite
ribbon & with fixed starting site 0o = 0o, = s for all n, and wél’o‘ the states
defined in Equation . Furthermore, we define

W X lim S w (F”’aX pl'a )
3 nHOOI]Z/J 0 &n ( &n ) )

which is well-defined, i.e. converges for each choice of a € E(E) by [Naal2].
Then, if T, # triv is not the trivial representation, or |Co| = 1, then the
states wél’a are infinite volume ground states of the non-abelian quantum
double model on the plane. In all other cases, the states wg are ground
states.

The reason for the anomaly for the case m, = triv is that in that case
the states wél’a are not orthogonal to the image of the stabilizing operators

A any more, but are so in all other cases. The star operators As however,
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project into the equal-weighted superposition of all states within a sector,
lowering the energy of the wél’a. The ground state must therefore be created
using the equal-weighted superposition of all corresponding ribbon operators
in that case.

Our second main result reads:

Theorem B. The states wél’o‘ are pure states for any irreducible represen-
tation o and their GNS representations are therefore irreducible.

We remark that this result was obtained independently by [BV23] using
a different approach.

A natural question is whether different irreducible representations of the
quantum double give rise to inequivalent pure states. This is answered in the
following Theorem.

—

Theorem C. Let o, € D(G) be irreducible representation of the quantum
double D(G), I € {1,...,dim(a)}, J € {1,...,dim(5)} and & and & be two
semi-infinite ribbons. Then the GNS representations of wg’a and w‘é 15 are
equivalent if and only if o = .

Theorems [A] [B] and [C] can be found as Theorems [3.5.4] [3.6.8] and [3.6.9]
respectively in the main work.

It was shown in [Naal2l Naal5] that the amplimorphisms defined in
Equation are localized and transportable over finite regions in the
setting of general finite groups. Here, localized means that there exists a
region A such that for all observables supported outside of A, we have that
Xe(A) = A ® ideda, and being transportable translates to the existence of a
unitary Vj for each region A’ such that the amplimorphism A — Vi x(A)Vy"
is localized in A’. This terminology is motivated by the DHR analysis, of
which we want to give a brief exposition here: Note first that for a general
C*-algebra, there are many states that are considered physically irrelevant.
One proposed criterion to sieve out those unphysical states in the framework
of quantum field theory, is given by the superselection criterion by Doplicher,
Haag and Roberts [DHRT1]. If O — A(O) is a local net of observables on
a space time and my the GNS representation of the vacuum state wy, then a
state w is said to satisfy the superselection criterion if

o laon= T laon, (1.3.1)

where O denotes the causal complement of @ and 7 is the GNS represen-
tation of w. If Ly(O) is the set of transportable endomorphisms localized
in O, the notions of transportability and localizability defined analogously
to the amplimorphism setting, then by [DHRT7I, Proposition 1.2] a state m
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satisfies the superselection criterion for O if and only if there exists an
endomorphism p € Ly(O) such that 7 is unitary equivalent to myop. In other
words, the set

{mo o p}pELo(O)

consists of all representations satisfying the superselection criterion for the
region O, up to unitary equivalence.

In [SV93] it was shown that amplimorphisms on a quasilocal algebra
form a braided monoidal category, and the authors showed that the subcat-
egory of amplimorphisms constructed out of finite ribbons is equivalent to
the category of representations of the quantum double D(G) in the setting of
1-dimensional quantum spin chains. The analogue result was established in
[Naal0] for the abelian quantum double model, emphasizing once again the
role of the DHR-analysis in Kitaevs quantum double model. We conjecture
that an analogue result can also be obtained in the more general non-abelian
setting. We will present some steps towards this conjecture in Section 4.1},
but note this is currently a work in progress.

Finally, an important topological feature possessed by the ribbon opera-
tors is that when acting on the vacuum, the action of the ribbon operators
F, 51 o only depends on the initial and final sites of the ribbon &, i.e., if ) is the
cyclic vector of the GNS representation corresponding to the vacuum state
wo, and & any ribbon with the same endpoints as £, then Fg‘]’aQO = Fé‘]’o‘Qo.
To our knowledge, however, there is no complete or correct proof in the liter-
ature for the ribbon operators in the non-abelian quantum double model. In
[BMDOS], the definition of ribbon operators is not entirely correct [CCY21]
and other authors [CM22b| often argue that because closed ribbon can be
deformed within the vacuum to the empty ribbon, two ribbons & and &,
with the same endpoints give an identical action because following first &;
and then the reverse of & gives a closed ribbon again. While the former ar-
gument is certainly correct - a closed ribbon indeed deforms into the empty
ribbon if no excitations are present, the latter fails because & and the in-
verse of & generally do not form a closed ribbon, even if they share the same
endpoints, see Figure [I.4. We prove this important topological property in
Corollary [3.3.11} This implies in particular that the states defined in Equa-
tion for infinite ribbons, define charges localized at the beginning of
¢, independent of the chosen shape of the ribbon &.

This thesis is structured as follows: Chapter [2] introduces the necessary
background for this work. We emphasize here that none of the statements
derived in Chapter [2| are new results, even if it is not always explicitly stated.
In Section[2.2] [2.3]and [2.4) we recall the basic notions from representation the-
ory, the theory of Hopf algebras and define the quantum double construction
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Figure 1.4: Depiction of two ribbons & (red path and blue dual path) and
&, (dark red path and dark blue dual path) starting and ending at the same
site (indicated in green). However, they do not constitute a closed ribbon
since the path of & would intersect with the dual path of & and vice versa.

respectively. In Section [2.5] we give a brief introduction to operator algebras
and give a general definition of quantum spin systems and dynamics. We
also introduce the notion of ground states and pure states in our particular
setting. Chapter [3] contains the main work of this thesis. In Section [3.2]
we define Kitaev’s quantum double model and introduce necessary terminol-
ogy. We also discuss the uniqueness of the vacuum state wy and the notion
of charges. In Section [3.3] we rigorously define ribbon operators and study
their algebraic properties. We will demonstrate how these operators create
pairs of excitations, and that the action of a ribbon operator on the vacuum
state only depends on the endpoints of the ribbon. In Section (3.4} we draw
the connection between excitations and the irreducible representations of the
quantum double D(G) by showing that the dynamics of the quantum double
model is realized by a quantum double action, and that the excitation space
can be decomposed into a direct sum of irreducible representations of D(G).
In Section 3.5 we state the first main theorem, Theorem (Theorem [A)),
providing a family of infinite volume ground states for the non-abelian quan-
tum double model. In Section [3.6] we show Theorem [B] and also Theorem [Cl
Finally, in Section we discuss the possibility of generalizing the construc-
tion in [SV93] to our setting and the obstructions that one might encounter.
The rest of Chapter [4]is devoted to discussing other possible generalizations
and open questions.
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Chapter 2

Preliminaries

2.1 Introduction

The dynamics of a quantum spin system can be described by the interaction
terms between the individual spin systems. In the class of models that we
are considering, these are given by two families of actions A, : h — A" and
By : 64 — BY of a group G and its dual G* = {¢ : G — C}, called electric
and magnetic charge action respectively, with s describing the site on which
the interaction is considered. As it turns out, in the quantum double model
on an infinite plane, the ground states can be characterized by the values
they take on these interaction terms, and so the actions A, and B, allow
us to distinguish the different anyon sectors. Furthermore, the electric and
magnetic charge action satisfy the commutation relation

BIAl = AhBl o, (2.1.1)

In a more general framework, if H; and H, are Hopf algebras contained
in a Hopf algebra H such that H; and H, satisfy a specific commutation
relation within H, then H; and Hy can be embedded in a universal algebra
H, > Hy whilst preserving said commutation relation. This construction
is called the bicrossed product, and for the particular commutation relation
given in Equation (2.1.1)) it is called the quantum double of G.

We will discuss the quantum double and its representation theory in detail
in Section and the operator algebraic framework of quantum spin systems
in Section First, however, we start by giving a short overview on the
necessary concepts of representation theory and Hopf algebras in Section
and Section [2.3| respectively.

We will assume familiarity with basic terminology from category theory,
although we will not use any advanced results from that field. We refer

15
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to [Bor94, [Ada09, Lan13] for a selection of literature on category theory
and [EGNOIT6|] for an exposition on fusion categories, which captures the
behaviour of the representation category rep(G) on a categorical level.

2.2 Representations of Finite Groups

We cover some basic statements from the representation theory for finite
groups in this section. We will not provide any proofs here as most of the
following results are well known and refer to [Ser77, Hall3a, [EGH™11] for a
detailed exposition.

Let G be a finite group. A representation of G is a pair (m, V) con-
sisting of a group homomorphism = : G — Aut (V;) into the automorphism
group of some vector space V. The space V is called a G-module. We will
often just write either 7 or V. for a representation (m, V;), suppressing either
the concrete G-module V. or the concrete action m where no confusion arises.
Furthermore, we will use adjectives for the action 7 interchangeably with the
corresponding G-module V.. For instance, we call 7 finite dimensional if V.
is finite dimensional.

A representation of G is called a complex representation, if the un-
derlying vector space V; is a complex vector space. If V is equipped with a
sesqui-linear inner product (-, -) : V; x V; — C, then we call a representation
7 unitary, if 7(g)~! = 7(g)* for all ¢ € G, where * denotes the adjoint. We
will restrict ourselves to unitary representations only. We will argue later
that the unitarity condition is not really a restriction.

For a fixed group G, we denote by rep(G) the set of finite dimensional
unitary representations of G.

There are several ways to construct new representations out of given ones.

(a) The dual representation: If (7, V}) is a representation of G, we may
define a representation of G on V. = Hom(V,,C) via

(95> @) (v) = p(m(g7")(v)) (2.2.1)

for all g € G, ¢ € Hom(V,,C) and v € V,. This is sometimes also
called the contragredient representation of 7.

(b) The direct sum representation: Given two representations (7, V)
and (my, Vi), the action on the direct sum V,, & V,, is given by the
liner extension of the mapping

(m1 @ m2) (9) : v1 ® v = m1(g)(v1) B T2(g)(v2)

for all g € G and vy € V., v € V,.
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(¢c) The tensor product representation: Given two representations
(71, V) and (o, Vi, ), the action on the tensor product Vi, ® Vi, is
given by the linear extension of the mapping

(m ®@m2) (g) : (1 @ v2) = mi(g)(v1) ® T2(g)(v2) (2.2.2)
for all g € G and vy € V., 09 € V.

It is straightforward to verify that each of these examples yield indeed a
representation.

A morphism of representations f : (m,V;,) — (m2, V) is a linear
map f : V;, — V., such that the diagram

f
Vi, — Vi,

m (g)l lrrz (9)

Vﬂ—l T) Vﬂ—2
commutes for all g € GG. We call such a map f an intertwiner or some-
times a G—equivariant linear map, and often write f : m — my instead
of f:(m,Vy) — (ma,Vy,). We call two representations m; and 7y equiv-
alent if there exists a unitary intertwiner 7' : m; — w5 and T is called an
isomorphism of representations.

The reason we define equivalence in terms of intertwining unitaries, in-
stead of (non-unitary) isomorphisms, is so that the intertwiner additionally
respects the sesqui-linear products of the respective vector spaces. In par-
ticular, it maps orthogonal subspaces to orthogonal subspaces, which will
become important once we study subrepresentations.

Let m; be a non-unitary representation on an inner product space (Vy, (—, —)).
Then we may substitute V, with the inner product space (V, (—, —)¢) with
inner product defined via

<U1, U2>0 = Z(W(Q)Uh W(Q)U2>'

geG
We claim that G acts on (V;, (—, —)o) unitarily, and that (V, (—, —)o) and
(Vr, (=, —)) are equivalent. Indeed, we have
(m(h)vr, m(h)va)o = Z<7T(9>7T(h)vl, m(g)m(h)va)
geG
= Z (gh)vr, m(gh)ve) = Z<7T(9)U177T(9)U2>
geG geqG

:<Ul,02>0
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and the identity establishes an invertible intertwiner between these two spaces.
This demonstrates that restricting to unitary representations does not con-
cede any generality for all intents and purposes.

A subrepresentation of a representation (m,V)) is a representation
(9, Wy) with Wy a subspace of V. such that Wj is invariant under the action
of G under 7. That is, for all v € Wy and g € G we always have 7(g)(v) € Wh.
Clearly {0} and V; are subrepresentations of V. We call V irreducible if
V. and {0} are the only subrepresentations of V. We denote by G a choice
of representatives of inequivalent irreducible representations of G.

Example 2.2.1. Take G = S; = {id, (12),(13),(23), (123), (132)} to be
the symmetric group of permutations of the set {1,2,3}. Then G has the
following inequivalent irreducible representations:

e The trivial representation (triv, C), sending each o € S; to the identity
1.

e The sign representation (sign, C), sending each o € S3 to the signature
of 0.

e The standard representation (stand, W), where W is the subspace of
R3 defined via

W ={z+2+23=0]|z1€1 + 2262 + 23¢5 € C*}

and the action is defined via o > e; = e,(;), where ey, ez, €3 is a basis of
C3.

Clearly, the trivial and sign representation are irreducible; They are one-
dimensional and thus contain no non-trivial subspace. For the standard
representation, note first that the identity z; 4+ 2o + 23 = 0 is preserved under
every permutation of the zq, 29, 23, hence W is invariant under the standard
representation. To see that it is also irreducible, note that for any vector
v € W we have

(id —(12))v € spanc { (e1 —e2) } -

Similarly, the vector (61 — 62) can be mapped to any vector v = ze; +
299 — (21 + 29)es € W via (21 — 22) id +22(23) + 23(123). This implies that
no one-dimensional subspace can be invariant and W must be irreducible.

Let f : V. — V., be a morphism between two representations V,, and
Ve, of a finite group G. Then ker(f) and im(f) are subrepresentations of
Vz, and Vi, respectively. The following consequence is known as Schur’s
Lemma.
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Theorem 2.2.2 (Schur’s Lemma). If V;, and V,, are irreducible represen-
tations of G and [ : V;, — Vi, a morphism of representations, then we have
either f = 0 or f is an tsomorphism. In the latter case, if we further have
Vi, = Vi, then f is a scalar multiple of the identity.

Remark 2.2.3. Schur’s Lemma holds more generally for algebraically closed
fields. It fails however for general fields, see [EGHT11].

A representation V is called semisimple if it can be written as the direct
sum of irreducible representations. Every finite dimensional representation
of a finite group is semisimple [EGHT11], [Ser77]. If V' is semisimple and

V=PnVx (2.2.3)

n

a decomposition of V' into the direct summands nV, = V., and if W is
k=1

an irreducible subrepresentation of V', then W is isomorphic to one of the V,

appearing in Equation ({2.2.3). More generally, if W is any subrepresentation
of V', then W is semisimple and is isomorphic to a subdecomposition of V,
i.e., there exists 0 < r, < n, such that

W= Pr.Vy,

TrGG'

see [EGHT11, Proposition 3.1.4]. It is well known [Ser77, Thm. 1 and
Thm. 2| that any given finite-dimensional representation decomposes into
a direct sum of irreducible representations. This is particularly true for
tensor products: If (m,Vy,) and (ma, Vi,) are irreducible representations,
there exists coefficients N3 such that

Ve, @ Ve, @ N, Vi,

WEG

The coefficients N? are called fusion coefficients.

372
Remark 2.2.4. The representations of a finite group G form a category with
rep(G) as objects and with intertwiners as morphisms, and we will denote
this category by rep(G) again. This will create no confusion, as we will
always equate the notations 7 € rep(G) and 7 € obj(rep(G)), where obj(€)
denotes the class of objects of a category €. In the language of category
theory, a subrepresentation is simply a subobject and two representations
are equivalent if they are equivalent as objects in rep(G). The latter can be
seen as follows: If V' is equipped with two Hermitian inner products (-, -); and
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(-, )2, then by the Riesz representation theorem there exists a unique positive
definite and self-adjoint linear map f : V' — V such that (fv,w); = (v, w)s.
If 7: G — Aut(V) is a unitary representation, then for all v,w € V and
g € GG we have.

(gfv,w)r = (fv,g ' wh = (v, 97 'w)2 = (gv,w)s = (fgv,w)1,

hence gf = fg for all g € G and f must be an intertwiner. If V' is irreducible,
it follows that (-,-); is a positive and real scalar multiple of (-, ) by Schur’s
Lemma. It follows that if (7, Vy,) and (me, V;,) are equivalent irreducible
representations with intertwiner f : V; — V,,, that there exists a positive
A € R with

)‘<U’ w>7r1 = <f(v)v f(w)>7r2'

and the map f := % f affords a unitary intertwiner between V,, and V,,.
Since every representation decomposes into a direct sum of irreducible ones,
it follows that the categorical notion of equivalence coincides with the notion
of unitary equivalence.

An important consequence of Schur’s Lemma is the Peter-Weyl theorem.
Let (m, V') be an irreducible representation of G and let dim, = dim(V;) and
['; : dim,; X dim,; xG — C denote an explicit unitary matrix representation
for some appropriate basis by, ..., b,. Then the Peter-Weyl theorem reads as
follows.

Theorem 2.2.5 (Peter-Weyl). Let G be a finite group. Then the unitary
matriz coefficients

{7} rea
INES
defined via
Fjrj g+ (b, m(g9)b;)

for an orthonormal basis {bi}izl,...,dimw for each irreducible module V., span
C(Q), the set of complex valued functions on G. Furthermore, they are or-
thonormal with respect to the inner product

C(@Q) x C(G) — C
(1) (1) = SEE S fa (2.2.4)

geCG
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The orthogonality relation is shown in [Kna0Ol, Corollary 1.10] and the
density of the matrix coefficient is shown in [KnaOll, Theorem 1.12]. There,
Theorem is derived for compact groups, with C(G) being the space of
continuous complex valued functions on G, and Equation becomes
an integral with respect to the so-called Haar measure. We will only be
interested in the case where G is finite, and the special case described in
Theorem [2.2.5| can then be derived by choosing the discrete topology on G.

For future reference, we want to list some identities that can easily be
verified using Equation ([2.2.4)):

—ij dim,
Z F; (9)TE(g) :W5i7k5j7l57r,7r’ (2.2.5)
geG
=i =kl dim, =il
> )T o) f(mn) = 32 SEF O m) ). (220
n,meqG meG

where f: G — S is an arbitrary function from G to some set S and 7, 7’ are
irreducible representations of G.
Given an irreducible representation (7, V'), we define the trace

g +— trz(g)

of an element ¢ € G understood as an automorphism acting on V. The
mapping tr, : G — C is called the character of 7. More generally, a class
function is a map ¢ : G — C such that p(h~'gh) = p(g) for all g,h € G,
hence, a character is a special case of a class function. It then follows from
the Peter-Weyl theorem that the set of characters of the irreducible repre-
sentations of G form an orthonormal set with respect to the inner product

(p, ) = ‘—é;' > gec P(9)¥(g), i.e. we have for all irreducible representations

w,
1 -
@;trm<g) tl“m(g) = 67r1,7r2- (227)

Furthermore, the space of class function is spanned by the characters [Ser77,
Sec. 2.5, Thm. 6].

If (my, V4,) and (m, Vi,) are two representations of G, the traces of V,, &
Vi, and Vi, @Vr, are respectively X om (9) = X (9)+Xr,(9) and Xryem, (9) =
X (9) X (g) for all g € G. As an important consequence of Equation (2.2.7)
allows us to calculate the explicit multiplicities in Equation : If y is
the character of a representation V' of G decomposed as in Equation ,

then y(g) = 3 nrxx(g) and Equation @2.7) gives nx = (X, Xx)-
weé
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Given a finite group G, we may define the vector space
CG =span{h | h € G} (2.2.8)

as the formal span of all group elements in G. This becomes a G-module
via left-multiplication g > h = gh € CG on the basis vectors h € CG. This
representation is called the regular representation, and it contains all
irreducible representations of G' as subrepresentations:

Theorem 2.2.6. Let G be a finite group and let (p, CG) be the regular rep-
resentation of G, with p defining the regular left-action, p(g)(h) = gh. Then
every finite-dimensional irreducible representation V' of G s contained in
CG as a subrepresentation with multiplicity being the dimension of V' and
CG can be decomposed into

CG = B dim(V;)V;.

reC

In particular, G is semisimple, that is, the number of non-isomorphic finite-
dimensional irreducible representations of G is finite.

A proof of this statement can be found in most standard books on repre-
sentation theory, see e.g. [Ser77, Sec 6.2 Prop. 10]. We want to provide an
explicit decomposition into the irreducible representations, since we will use
similar arguments later on in Chapter |3| Let (7, V}) be an irreducible repre-
sentation of G and let I'; be a unitary matrix representation of 7 for some
basis {bs},_, ,, where n is the dimension of V;. Fix a number s, € {1,...,n}
and define for every s; € {1,...,n} the vector ¢y, 5, € CG via

Copsy = foj” (9)g (2.2.9)

geG

Because I';(g) is unitary for each g € G, the set {cs,s,}, is linearly inde-
pendent, and we claim that the space

VG,ﬂ' ‘= Spallg, {081752}

is isomorphic to V; as a G-module, and that the G-equivariant isomorphism
is given via the linear extension of the mapping

sy * Csy 50 F by,
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for all sy =1,...,n. Indeed, we have

Os,(p(h)(Cs1,55)) = O, (p(h) (Z r (g)g>)
geG

— Z ()0, (hg)

geG
h~1lg —s s
gH Z 152 h g o (g)
geG
—s l ls
= ZZ 1 *(9)0,(9)-
=1 geG

Because I';(h) is unitary, we have ffrl’l(h) = Tbsi(h~1). Furthermore, we

have > fi:? (9)0s,(9) = >_ 0s,(c1s,) = by, and the above expression becomes
geG geqG

n

> TE (R

=1

But his is just the action 7(h)bs, expressed in the basis {by, ..., b,}. Since this
holds for every s, we find precisely dim(V}) many copies of the submodule
V. inside CG.

Remark 2.2.7. In the literature, as well as in this work, the expression CG
usually refers to the group algebra, whose definition is identical to the one
in Equation ([2.2.8) when viewed as a vector space and whose algebra multi-
plication is given by the group multiplication.

2.3 Hopf Algebras

In this section, we will give an overview of some results for finite dimensional
Hopf algebras. We define bialgebras in Section and Hopf algebras in
Section [2.3.2, We will mostly follow [Swe69, Kas12] and [Gou93].

2.3.1 An Introduction to Bialgebras

We can view an algebra A over a field F as a triple (A, u,n), where A is a
vector space over F together with linear maps pt: A A — Aandn:F — A,
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called multiplication and unit such that the associativity diagram

AQAR A MUK Ao 4

H®idAl lﬂ

A A —1 5 A

and unitor diagram

FoA ™9 AoA 848 4oF

p (2.3.1)

commute. We shall embrace this diagrammatic description, as it allows for
a convenient way to define dual constructions by reversing arrows.

Definition 2.3.1 (Coalgebra). A coalgebra over a field F is a triple (C, A, ¢),
where C' is a vector space together with linear maps A : C' — C' ® C and
¢ : ' — K called comultiplication and counit such that the coassociativity
diagram

cC—2 s 0xC
Al lidc A (2.3.2)

and counitor diagram

6®1dc C ® C ide ®e

\\\\T///ﬂ (2.3.3)

commute.

Every field F is both an algebra and a coalgebra, with coproduct and
counit given by Ar = ef = idf, with the identity F ® F = F in mind.

We introduce the Sweedler notation: Given an element x € C', where C
is a coalgebra, we write

=> 2 gzl (2.3.4)
(2)
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for the coproduct of z in C'. The associativity diagram, Diagram ([2.3.2)),
then reads in Sweedler notation

Z ((x(l))(l) ® (x(l))@)) ® 2@ = Zx(l) 2 <(x(2))(1) ® (;1:(2))(2)) .

If V' is a vector space over some field F, we denote by V* = Homg(V, F)
the set of linear functionals from V' to F. Given a linear map V' — W between
vector spaces V and W, we define the dual map f*: W* — V* as usual via

ffW s pofeVrh

If (C,A,¢) is a coalgebra, then C* becomes an algebra with multiplication
A* : C* x C* — C* and unit ¢ : F — C* [Swe69, Proposition 1.1.1].
Furthermore, if (A, u,n) is a finite dimensional algebra, (A*, u*, n*) becomes
a coalgebra [Swe69, Proposition 1.1.2].

Example 2.3.2. Let G be a finite group and CG the regular representation
introduced in Equation (2.2.8). CG becomes an algebra with the structure
maps defined via the linear extension of the maps

(g @ h) = gh
n(le) =e.
Let us denote the dual of CG by C(G) Then C(G) becomes a coalgebra by
setting
Ap) =pop:g®@h—p(gh)
e(p) =pon:C—C
for all ¢ € C(G). Note that ¢(¢) € C since End(C) = C. Furthermore, CG
can be made a coalgebra by setting
Alg) =g®yg
e(g) =1,

which induces on C(G) the algebra structure

e @Y) =(p@1)oA: g o(g)(g) (2.3.5)
n(lg) =1lcoe:g—1€C, (2.3.6)

where we identified C ® C = C in Equation (2.3.5) and 1¢ € C = (C)* is
viewed as the constant one function in Equation (2.3.6)).
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Definition 2.3.3 (Algebra and Coalgebra morphisms). A linear map f :
A — B between algebras (A, pua,n4) and (B, up,np) is called an algebra
homomorphism or morphism of algebras if the diagrams

Ao AL BB

uAl l"B (2.3.7)

and

A ! > B
\ / (2.3.8)
nA B
F

commute. In other words, if f(ab) = f(a)f(b) and f(14) = 1p for all
a € Abe B. Alinear map g : C — D between coalgebras (C, Ag,e¢) and
(D, Ap,ep) is called a coalgebra morphism or morphism of coalgebras

if the diagrams

CoC 2% Do D

ACT TAD (2.3.9)

C——F—D

C g s D
\ / (2.3.10)
(Yol ED
F

commute. In other words, if > g(z™) ® g(z?) = 3 (g9(z))Y @ (g(z))@
(z) (9(=))
and ec(z) = ep(g(z)) for all x € C.

and

If g : (C1,Aq, e0,) = (Cay Ag,,ec,) is a morphism of coalgebras, then
g+ C5 — (7 becomes a morphism of algebras between the algebras
(C5,AF,,€¢,) and (CF, A ,e5,) [Swe69, Proposition 1.4.1]. Similarly, if
(A1, pta,,na,) and (A, pa,, na,) are two finite dimensional algebras with al-
gebra morphism f : A; — Ay, then f*: A5 — A} becomes a morphism of the

coalgebras from (A3, 1%, , m},) to (A7, wh, . mh,) [Swe69, Proposition 1.4.2].

2.3.2 An Introduction to Hopf Algebras

Given two algebras (A, pa,n4) and (B, ug,ng), we may equip A ® B with
an algebra structure by setting piagp = pa ® pup o (idy ®Tagp ® idg) and
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Nags = Na @ np as multiplication and unit on A ® B respectively, where
Tagp 18 the twist sending a ® b to b ® a for all (a,b) € A x B. Similarly,
given two coalgebras (C, A¢,e¢) and (D, Ap,ep), we may equip the tensor
product C'® D with a coalgebra structure by setting Acgp = (ide @Tegp ®
ldD) @) (AC (24 AD> and Ec X Ep.

Definition 2.3.4 (Bialgebra). A bialgebra is a quintuple (A, u,n, A, €) such
that (A, u,n) forms an algebra, (A, A, €) forms a coalgebra and the structure
maps it : A® A — A and n: F — A are morphisms of coalgebras, i.e. the
diagrams

(AR A)®@ARA) 5 A9 A
AA@“‘T TA (2.3.11)

AR A 25 FRF

“l lidF (2.3.12)
A——F

and

id;pl lA (2.3.13)

/ (2.3.14)
idg €
F

commute. If 7: A®A > A® A,a ®b +— b® a denotes the natural flip,
then we call A commutative, respectively cocommutative, if in addition the
diagram

A A T y AR A
\ / (2.3.15)
H W
A

respectively the diagram

AR A T y AR A

(2.3.16)
N A
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commute.

It turns out that Diagram ([2.3.11)) to Diagram ([2.3.14]) are equivalent to
saying that A: A® A — A and € : A — F are morphisms of algebras.
Now, if (A, u,n, A, €) is a bialgebra, we may define the convolution

+: End(A4) ® End(A) — End(A) (2.3.17)
frxg=pf®g9)A

for algebra morphisms f, g € End(A). This pairing admits an identity given
by en. To see this, we first note that Diagrams ([2.3.3)) and Diagram ([2.3.1)
can be written using Sweedler notation as

3 (@) Zm ® e(2®)
()

and

Then we obtain

(f % (ne)) (x) = u(f @ (ne)) A(x)
=Y F(@n(e=®)))
(2)

= Z f (=Y
(=)

=[ ().

In fact, the triple (End(A), x,ne) even forms an algebra [Kas12, Proposition
I11.3.1].

Definition 2.3.5 (Hopf Algebra). A Hopf algebra is a sixtuple
(H,u,m, A, e, S) such that (H,pu,n, A, ) is a bialgebra and S : H — H a
linear map, called antipode, such that idg xS = S xidyg = ne, i.e. S is the
inverse of idy with respect to *.

Note that the very definition of an antipode gives the equation

> a8 (z® Z S(zW)z® = e(x)1p,
()
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where 1 is the unit on H.

If (H,p,n,Ae,5) is a finite dimensional Hopf algebra with antipode S,
then (H*, A* &*, u*,n*, S*) becomes a Hopf algebra with antipode S* [Kas12,
Proposition I11.3.3].

The example of interest for us is that of the group Hopf algebra CG. We
noted the algebraic and coalgebraic structures of CG in Example It
is straightforward to verify that CG indeed becomes a bialgebra with these
structure maps. In fact, it is a Hopf algebra with antipode given by the linear
extension of the mapping

S:grgt

We call this Hopf algebra the group Hopf algebra of G. The structure
maps of the group Hopf algebra encode the structure of the representation
category of G in the following way: If (7, V), (72, V., ) are representations of
G, then the coproduct A describes the action on the tensor product V,, ® V.,
via
9> (01 @ v2) :=(m ® m2)(A(g))(v1 ® v2)
—Z?ﬁ (M) @ m2(g®) (01 @ v2)

—Zm v1) @ ma(g'?) (v2)
=(7T1(9)(01)) ® (ma(g)(v2)),

which indeed coincides with our definition of the tensor product action given
in Equation ([2.2.2). Furthermore, the counit encodes the trivial representa-
tion on triv = C. Finally, the antipode encodes the dual action: If (m, V;) is

a G-module, we may define the dual action on V* = Hom(V, C) via

(95 9)(v) = @(7(S(9))(v) = @(m(g7")(v)), (2.3.18)

which again coincides with Equation (2.2.1]). Note also that Equation ({2.3.18))
would not define a left action, were it not for

S(gh) = (gh)™" = h™'g~" = S(h)S(g).
and
Sle)=e'=e.

Indeed, we have the following
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Theorem 2.3.6. Let (H,pu,n,A,¢e,S) be a Hopf algebra. Then
S(ab) = S(b)S(a), S(ly) =1y
and
(S ®S)A = e AS, eS=¢

for all a,b € H and if H 1is either commutative or cocommutative, then S is
invertible with S? = idy.

See [Kas12, Theorem II1.3.4] for a proof.
We want to conclude this section with an important property about Hopf
algebras. An element x of a Hopf algebra H is called a left integral if

ra =¢e(x)a

holds for all a« € H. We denote the set of left integrals by [ 5+ The next
theorem can be found in [Swe69, 5.1.8].

Theorem 2.3.7. A finite dimensional Hopf algebra H is semisimple if and
only if

€|fH7é0

i.e., if there exist an element x € [, such that e(x) # 0.

2.4 Crossed Products and the Quantum Dou-
ble Construction

In this section, we will define the quantum double of a group and discuss their
irreducible representations. In Section [2.4.1 we consider pairs of Hopf alge-
bras A, B that satisfy certain compatibility conditions and define a universal
object A > B containing A and B as subalgebras. We then show that a par-
ticular case is given by a Hopf algebra H and its dual, and the constructed
universal object D(H) := H < H* is called the Quantum Double of H. We
then apply this construction to the group Hopf algebra CG. All results can
be found in more detail in [Kas12l, [Swe69]. In Section we inspect the
irreducible representations of the D(G) following mostly [Gou93, [DPRI1].
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2.4.1 The Quantum Double Construction

We now come to a very important construction, the bicrossed product of
algebras and Hopf algebras. Let A and B be two algebras and assume V
is both a left A-module and a right B module. Assume further that for all

a € A, b € B there exist elements denoted by Ly(a) € A and R,(b) € B,
such that the commutation relation

ba = Ly(a)R, (D) (2.4.1)

holds, where the composition in Equation is viewed as composition
of elements in End(V). Finally, assume that L : B — End(A),b — L is a
left action of B on A and that R : A — End(B),a — R, a right action of
A on B. Then a bicrossed product with respect to L and R is an algebra
denoted by A 1 B containing A and B as subalgebras such that Equation
holds for all @ € A and b € B, now viewed as elements of A > B, and
such that A B = A ® B as vector spaces.

Example 2.4.1. Let H, K C G be subgroups of a group G such that H-K =
G and each element g € G factors uniquely into a product g = hk with h € H
and k € K. This would for instance be given once H N K = {e} since then
for all h,h' € H and k, k' € K with hk = h'k’, we have

hk =h'k < (W) '"h=k"'% € HNK,

implying h = A’ and k = k. Then for each h € H and k € K there exist
elements Li(h) € H and Rj,(k) € K such that

kh = Li(h) Ry (k)

It is straightforward to verify that L and R satisfy the following identities
for all h,h' € H and k, k' € K:

ka/ = LkLk/
Ly(hh') = Li(h)Lg, ) (R')
Ruw = Ry Ry,

Ry(kk') = RLk,(h)(k)Rh(k’)
Le(h

) =
Li(e)
R (k)
Ry(e)

I
o o™ o

e

See the discussion at the beginning of Section IX.1 in [Kas12] for more details.
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Definition 2.4.2. Let A and B be two algebras over some field F and L :
B®A— Aand R: B® A — B a left- respectively right action. Assume
further that L and R are morphisms of comodules and that the diagrams

(L®R®idA)(ABga®ida)

BRA® A y A B A
idp ®ua pa(ida ®L) (2‘4‘2>
B® A 7 s A
B@B ®A (idp ® L®R)(idp ® ABgAa) N B®A®B
pB®ida s (Reidg) (2.4.3)
B® A s B

R

B®F —92914 . Bpo A

\;E\\NiL (2.4.4)

FoA %4 poa

j;>\\$f (2.4.5)

BoAZPA BoAeBo A 25 B A

lL@R% (2.4.6)

A®B

and

commute. Then A and B are called a matched pair of algebras w.r.t L
and R.

We have purposely chosen the same notation for the left- resp. right
action in Definition as in Example to emphasize that Definition
offers a generalization of Example [2.4.1] Indeed, the group algebras of
H and K from Example form a matched pair of algebras.
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Note that we use that F® A = A and B®F = B in Diagram ([2.4.5)) and
Diagram ([2.4.4). In components, Diagrams ([2.4.2)) to Diagram (2.4.6) read

plaraz) = Y Lyw/(al” PN CEY (2.4.7)
(b),(a1) g

Ra(biby) = Z R, o @) (b)) Ry (0F))  (2.4.8)

R (13) = EA( )13 (249)
Z Ra(l)(b( )) X Lb(2) Z Ra(z) ® Lb(l)( (1 )) (2.4.10)
(b),(a) (b),(a)

Note in particular that Equation ([2.4.10) is a weaker form of cocommutativ-
ity.

By [Kas12, Theorem 1X.2.3], if A and B are matched, then there exists
a unique bialgebra structure on C' =: A ® B with unit 14 ® 15 and product,
coproduct and counit given via

(a1 @b)(as®@by) = > alngl)(agl)) ® Ragz)(b?))bg, (2.4.11)
(a),(b)

coproduct

a®b) = Z ® (a? @ b))

and counit
g(a®b) =ca(a)ep(b),

and the embeddings A — C,a — a® lg and B — C,b +— 14 ® b are
morphisms of bialgebras. This algebra is called the bicrossed product of
A and B with respect to L and R and is denoted by A 1 B. If A and B
are in addition Hopf algebras with antipodes S4 and Sp, then C becomes a
Hopf algebra as well with antipode given by

Z Ligy( b(2) (Sala )) ® Rg, @) (SB(b(l))) . (2.4.12)
(a),(b)

Note also that Equation ([2.4.11)) describes the commutation relation in Equa-
tion (2.4.1) for the group like elements, that is, elements a € A and b € B
with Ag(a) = a® a and Ap(b) =b®b.
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Remark 2.4.3. For group like elements, Diagrams (2.4.2)), (2.4.3)), (2.4.3) and
(2.4.4) take the form of Equation (2.4.7)), (2.4.8), (2.4.8) and (2.4.9)) of Ex-
ample respectively, barring the tensor symbol.

We already saw that if (H, u,n, A, e, 5) is a finite dimensional Hopf alge-
bra, the dual (H*, A* &*, u*,n*) becomes a bialgebra again. Because

immediately gives
Na+ene = ety = Ay (S @ idy) "y = pg- (5" @ idy ) A,

we see that S* is an antipode of H*, making (H*, A* &*, u*,n*, S*) a Hopf
algebra again.

We may also consider the opposite bialgebra (HP, u%% ng, Ag,eg) of H,
i.e. the Hopf algebra H with multiplication u%f = ppTren : a @b — pup(b®
a). Straightforward calculations then show that if S is invertible, S™! i
an antipode of H? and (H, u% , nm, A, e, S™") becomes a Hopf algebra
again, and so does its dual (H°P)* by our previous observations. It turns out
that (H°P)* and H can be made into a matched pair by defining the left- and
right actions

L:H® (H?)" — (H?)", (2.4.13)
a®@ @ | Lo(p) x> Z © (a®)zal )) (2.4.14)
R:H®(H?”?)" - H, (2.4.15)
a®p— R,(a) = Z ® (S_l(a(g))a(l)) a?, (2.4.16)

(a)

The proof is straightforward and can be found after [Kas12, Theorem IX.3.5].
The bicrossed product (H)* > H is called the quantum double of H and
is denoted by D(H). The structure maps are explicitly given as

lpa = idg @1y (2.4.17)
o (¢ ® a) @ ¢®b =" wu (57Ha®)(—)alV) @ a®b
(a)
epin (¢ ®a) = en(a)e(ln) (2.4.18)

Apa)= Y (Vo) e (P ed?). (24.19)
(a)(¢)
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As it turns out [Kasl2, Proposition 1X.4.3] if H is cocommutative, then the
right action of (H°?)* on (H) becomes trivial, i.e.

Ry(a) = e(p)(a).

In this case, the bicrossed product is called a semi-direct product. Finally, if
H =CG and (HP)* = (H)* = (CG)* is the group Hopf algebra and its dual
with structure maps given as in Example 2.3.2] then the quantum double of
D(H) = CG = C(G) is simply denoted by D(G) and called the quantum
double of G.

Proposition 2.4.4. Let D(G) be the quantum double of a finite group G.
Then the left action L : CG ® C(G) — CG, right action R : CG ® C(G) —
C(G) and the structure maps of D(G) take the explicit form

Lh(§g) - 5hgh_1 (2420)
Rs,(h) = b4ch (2.4.21)
Ip@) = Z 5, @ e (2.4.22)
geG

((591 ® h1>(592 ® hQ) - 591,h1g2h1_1591 ® hth (2423)
6((5g X h) = 5g,elD(G) (2424)
AGg@h) = Y (6, ®h) @ (3, @ h) (2.4.25)

9291=4g
S0, @ h) = Sp-14-1, @ 7! (2.4.26)

Where 6, : G — C,h +— 64, 15 the delta function and 64, is the Kronecker
delta.

Proof. Equation (2.4.20]), (2.4.21)), (2.4.22) and Equation follow di-
rectly from Equation (2.4.15)), (2.4.16)), (2.4.17) and respectively. To
show Equation ([2.4.25)), note first that the coproduct A’ on C(G) is given by
the adjoint of the opposite multiplication p°?. Then for §, € C(G) we obtain

NG ®Y) =0pye = > O, ()0, (y

kak1=g

hence

= Z5k1 ® O,

kok1
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giving Equation ([2.4.25) by using Equation ([2.4.19). Furthermore, we have

(591 ® h1>(692 ® hZ) e Z 591Lh1 (51471) ® R5k2 (hl)hQ
ka2k1=g2

- Z 010, kynt @ Ok ehihe

kok1=g2

=0

g1,h1g2

giving Equation (2.4.23). To see Equation (2.4.26) note that Scs = Scg :
g — g~ " which gives Sc(g)(dy) = 0,5 = d,-1. Then Equation (2.4.12) gives

S@eh) = S Lya(S1)© Ry, (b

hflégl ® hihs

koki=g
o 1
= E 5h—1k*1h ®5k 1 eh
kok1=g
—1
— (5h71g71h ® h

]

Remark 2.4.5. By viewing CG and C(G) as subalgebras of D(G) via the
inclusion 6, — d,®e and h — id ®h, (2.4.23)) gives the commutation relation
h(;g - <1dG ®h)(6g (24 6) = (Shghfl (24 h = 5hghf1 h.

Hence, within the quantum double D(G), the elements in CG and C(G) are

subject to the commutation relation
hég - 5hgh*1h
and any representation of D(G) will respect this identity. This observation
will become important in Chapter
The quantum double D(G) admits the integral element
T = Z 0 R h.
heG
Indeed, applying Equation (2.4.23) we get for any element d,, ® hg € D(G)
(690 ® ho)x = bgp.e0e @ hoh = Ggpc B 0 @ h = 6y = £(5y, @ ho).
heG heG

Therefore, D(G) is semisimple by Theorem .

Remark 2.4.6. The bicrossed product for finite groups can alternatively be
defined by a universal property on the embedding maps iy : A > AR B,a +—
a®lpandig: B— A® B,b+— 14 ®b. See [ACIMOT7] for more details.
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2.4.2 The irreducible representations of the quantum
double

Let GG be a finite group. In this section, we want to study the representa-
tions of its quantum double D(G) following [Gou93| and [DPRI1]. We start
by explicitly constructing the irreducible representations of D(G). To ease
readability, we will denote the inverse ¢g=! of a group element g € G by g
from now on. Let G¢ denote the set of all conjugacy classes of GG. For each
C € G¢, we fix an element 7¢ € C and set Ne = {n € G| nren =rc} to
be the centralizer subgroup of r¢ in G. We also fix a set of representatives
Qc = {qc | c € C} of G/ N labelled such that

C= QCTCQC'

Because G = U qcNe¢, every element g € G can be factorized uniquely as
ceC

9 = dgreglly

with ggr.5 € Qc and n, € Ne, giving risetomaps ¢ : G — Q¢ andn : G — Ne¢
for each fixed choice of re € G. We will use this observation quite frequently.

To ease readability, we will denote the inverse of a group element g € GG
by g instead of g. Note that different choices of r¢ merely lead to isomorphic
centralizer subgroups.

Theorem 2.4.7. Let G be a finite group, C a conjugacy class of G and N¢
the centralizer subgroup of a fized element re € C. If (w,Vy) is an irreducible
representation of N¢, then the vector space

VY=CC®V,=spanc{c®@v |ceC,veV,}

with label o = (m,C) becomes an irreducible representation of D(G) with
action given by

(6, @ h) > (c ® v) = b, penhch @ T(Gperhge) (V).

Proof. We will show that D(G)u = V* for any v € YV non-zero, i.e., there is
no non-trivial D(G)-invariant subspace of V*. We will show this by demon-
strating that « can be mapped to ¢ ® v for any choice of (¢,v) € C x V. It
then follows that c®v can be mapped to any of the ¢ ® v’ for (¢, v') € C x V;
as well, hence D(G)u spans V°.

First, observe that if c¢i,co,c3 € C and n € Ng are such that
Qe;NGey C3Ge,NGe, = c1, it follows that co = c3. This is because the mapping
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¢ +— qcq defines for each fixed ¢ € G an automorphism on G, and because we
already have Qe NGcy C2qey ey = Gy NTeNGey = GcTcGey, = C1-
Now, let 0 #u =Y Aycr @ v € V,, and ¢ € C, v € V;; be fixed and let kg
k]

be such that not all Ay, ; are zero. Because (m, V) is irreducible, there exists
an element n € N¢ such that

m(n) (Z )\ko,lvl) =0

Then a = 6, ® qenge,, maps u to ¢ ® v:

(50 ® QCTLQCkO) >u = E )\k,léc,qcntjcko Chley, ﬁqcc ® Tr(@qcn@-ko Chey, ﬁticqchYcko qu)(U)
k,l

— Z )\kOJC ® W(chchCkO quO ) (U)

l

= e @w(n)(v)
l

=c Q.

]

We will often denote by d, = dim(«) the dimension of an irreducible

—

representation o € D(G).
D(G) can be made a *-algebra by defining the involution

(6 @ h)* = by ® h. (2.4.27)

Definition 2.4.8 (Hopf *-algebra). A star involution on a Hopf algebra
H is an antilinear, involutive map * : H — H such that

(" ®@7)(Ala)) = Afa), (2.4.28)
(ab)* = b*a”, (2.4.29)
5(5(a)")" = a, (2.4.30)

for all a,b € H. A Hopf algebra H together with a star involution is called
a Hopf *-algebra.

Equation ([2.4.28) reads in Sweedler notation:

(a) (a*)
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Proposition 2.4.9. With the * involution defined in Equation (2.4.27)),
D(G) becomes a Hopf *-algebra.

Proof. We have
(S 3y @h)) = (Ohgn ®h)" = Spagni ® h = 03 @ h,

and Equation ([2.4.30)) follows by applying *S a second time. For the other
claims, we have

((591 & hl)(592 ® h2))* 5917’119251 <591 ® hth)*
=01 hgahin Ohafngrhans @ haha
= Ohaagrhha,hogahsOhagahs & h2hi
=(Ohagohs @ h2)(Oh,gyn, ® ha)
= (592 ® h2)* ((591 ® hl)*

and
A (0 ® h)") =A(0gn ® D)
= Z (592 ® B)(dgl ® B)

g192=hgh

- Z (0rigsh @ B)(5ﬁglh ® h)

9192=4g

= Z (592 ® h)*(591 ® h)*

9192=39

= Z ((dg, ® ) (04, ® h))*

9192=4g

= (A(dg @ h))"

By linear extension, (12.4.28) and Equation (2.4.29)) hold for all a,b € D(G).
O]

Similar to the dual representation introduced in Section [2.2] we can define
the dual representation of a Hopf-algebra representation.

Proposition 2.4.10 (Contragredient Representation). Let H be a Hopf al-
gebra and V. an H-module with representation given by m : H — End(V;).
Then the maps 7 : (H @ V3)* — (Vo)* and 7 : H ® V; — V. defined via

m(a) : (V2)" 3 ¢ =em(S(a)),
7(a) : Ve 2 v —(m(a)*)"(v)
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where (=)' denotes the transpose, define representations of H on (V;)* and
V., called the contragredient representation and conjugated repre-
sentation respectively.

It is straightforward to prove Proposition [2.4.10, Using similar arguments
as in Section [2.2] we may assume that every representation of a Hopf algebra
is unitary, that is, if I'L/(a) are the matrix coefficients of a representation
7 € H with I,J=1,...,d,, then

I (a%) =T (a),

with the *-involution defined as in Equation (2.4.27)). The matrix coefficients
of the conjugated and contragredient representation are respectively

' (a) =T (a) (2.4.31)

and
I'(a) =T (S(a)). (2.4.32)
Let a € /(E) be an irreducible representation of D(G) of the form (m,,C,),

with 7, unitary and let {b;},_; 4. be an orthonormal basis of the irre-
ducible representation V. associated to m,. We write

[a:{(il,ig)’il :1,...,|Ca|7i2:1,...,dimﬂa}

to denote the labels of the basis {¢; ® b, | (i1,72) € 1o} of V*, where
{cl, e ,C|ca\} = C,. With the *-involution given in Equation (2.4.27)), I',
becomes unitary with inner product given by

<Ci1 ® bi27 Cja ® bj2> = 5i1,i26i27j2

on CC, ® V. Indeed, for I,J € 1, with I = (i1,142), J = (j1, j2), the matrix
coefficients of I'2/(6, ® h) are given by

L3 (0 @ h) = (ciy, @ biy, (65 @ h) B> (¢, @ b,))
:5g,hcjll_v, <Ci1 ® biz: (hcjd B) ® Wa(Cthhthle )bj >

:597‘31'1 <Cil’ (hcjl FL)> <bi27 Wa(q_hchﬁthjl )bj2>
:5g:hcjlﬁéc¢1,h0jlﬁrjr232 (Qthlﬁthjl)' (2433)
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Substituting (0, ® h)* = 654, @ h gives

U1 (Spgn, @ h) =0y, hej, h0c;, hchhr (thhhhq%>
_5hgh,hc‘jlh5ci1,hcjlhrwa (Qc“h%c“ )
:5g,hcilﬁécjl,hcilﬁr7ra (thilthCil)
=716, ® h).

We want to calculate the trace explicitly in a fixed orthonogi basis
{ci®bj | ¢; € Cy,bj € V™ } for an irreducible representation o € D(G) with
dim(m,) = n. If I = J, then ¢; = hej,h gives h € Ng(c;,) and therefore
h = q;;mg;, for some m € Ng(r,). The character tr, is therefore given by

tra(dy ® h) = Z L (0, ® h)
Iely

ICal n

= Z Z Og.ci, Ongh, grzgai2 (Gghqy)

i1=110=1

= 6960& 5heNG (9) trﬂ'a (q_gth) (2.4.34)

It follows from [Gou93] that the orthogonality relation for irreducible repre-
sentations take the form

D tra(0y ® h) tra(6, @ h)* = 648 |G.

Proposition 2.4.11. The modules {V,}, = CC® V, with a« = (7,C) defined
as in Theorem form a complete set of inequivalent irreducible represen-
tations of the quantum double D(G), and we have

P dim, Ve
a€D(G)
Proof. We first show that the irreducible representations given in Theorem

are inequivalent for different choices of C and irreducible representations
7 of the centralizer Ng(re). Using Equation (2.4.34)), we obtain

Z tra(dg @ h) tra(dpen © h) Z OgeCaOneNG(g)Onghecs Ohe N (hgh)
g,heG g,heG

trr, (Gghay) trr, (‘jgﬁq9>

= Z OgecaOgecs OneNg(g) trma (Tghty) trr, (@yhay).
g,heG
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Note that C,NCp is either empty or C, = Cs. Using the orthogonality relation
for irreducible characters applied to the irreducible representations 7, and
7, this simplifies the above expression to

[ Na|
=00 ,C5Omams [Cal =
Lo 77r/3| 0¢| dlmﬂ—a
e
a’ﬁdimm

Next, we will show that D(G) and € dim, V* are of the same dimen-
aeD(Q)

sion. By [EGHT11, Proposition 3.5.8], an algebra is semisimple if and only

if dim(A) = 3 (dim(V;))?, where A is a set of representatives of irreducible

WGA
representations (m, V) of A. Note that this is also true for every group al-

gebra CNe of the centralizer subgroups, which is semisimple, as discussed in
Section [2.2] Note also that D(G) is semisimple by the discussion at the end
of Section [2.4.1] Using that |G| = |Ne| |C| and Z IC| = |G| we see that

ce

Go

dim(D(@)) =|GI* = Y [Gllc|= ) INellcf”

CeGo CceGe
=Y ) e (dim(Vy))?
CEGe reN,
-3 > e
CEGe reN,

Finally, we will explicitly state an isomorphism ¢ : D(G) - & dim, V*
aGIT(E)

and show that ¢ is an isomorphism of modules. Let a = (7,,C,) be an

irreducible representation of the quantum double D(G) and let n,, := dim,_,

by, ...,b,, be an orthonormal basis of 7, such that the matrix representation

n +— [y (n) is unitary for each n € N,. For a fixed pair J = (j1,J2) € I, we

define a map ¢’ by setting for each (iy,is) € I,

¢ (ciy @ biy) = Y T22(n)d,, ® giyngj,,

nE Ny

and extend linearly to V*. We first show that this mapping realizes an
intertwiner of representations. Given (i1,42) € I, and §, ® h € D(G), we
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have

(0g @ h) - ( Z f‘?f (n)de,, ® C]ilnqh) Og.hes, Z sz 0g @ hqi,nq;, -

’I’LeNa TLEN&

(2.4.35)

From the coset decomposition G = U 1cqe. 4ilNa, 1t follows that there exists
a unique pair (qx, m) € Q¢, X N, such that hq;, = qzm. We can then write

g = heih = qumai, ci, gi, M@y = qemre, My = qrre,qs = Ck

and the right hand side of Equation ([2.4.35)) becomes

69701@ Z F?32 (n)éck ® grmng;,

nENy
" e Y TR (mn)d., @ gind;,
nENy
g Ck Z Z 1”275 Fth 5Ck & qxnqj,
n€ENqy =1
=0g,c1 Z F?ﬁm)@ba"](ck ® by)
=1

=04.0x ™ (e ® ma(m)by,)
:5g,hci1l_l¢a’J(hci1B ® Wa((jkhQiniQ)
=67 (8, ® h) > (i, ® byy)).

Hence, ¢ establishes an intertwiner. Next, we show that the images under
the ¢ yield orthogonal subspaces in D(G), i.e. ¢$*7(c®b) is orthogonal to
P (¢ @ V) for all a, B € D(G), ¢ € Ca, ' € Cs,b € VI € VP, J € I, and
K € Iz with o # B or J # K. Indeed, setting I = (i1,42), L = (l1,l2),J =
(J1,J2), K = (k1,k) with I,J € I,,K,L € Ig and ¢ = ¢;,,d = ¢,,b =
b;,, b’ = b, we have

(9™ (ciy, @ biy), ¢ (cr, @ b))
= Z 2292 (1) )T22 (19) (8., @ Gy 115 Ocr, @ Gty M2y )

n1€Nq
nQGNB

_ B 1272 Plaks

- E 501176115q¢1n1qg'1,l111712%1r7ra ( 1)F7r5 <n2>
n1ENy
ne€Ng
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Since ¢;, = ¢, implies in particular C, = C3 and hence N, = Npg, the above
expression becomes

_ 12]2 loks
_5Coucﬂdilyll5(Ii1n1‘jj17%1n2‘jk1 § : Frra (nl)rwg (nQ)

nla”QGNa

Using the unique coset factorization again, we see that ¢;, n1q;, = ¢;,n2qr, <
ny = ng and j; = kp, and due to the orthogonality relation for irreducible
representations, the above expression becomes

= 5CQ,C557TQJF361'1J151'2,1253'1,’?16162712 = 504,,35L,K'

Note in particular that the linear independent vectors d., ® b;, are mapped
to orthogonal, hence linear independent vectors again and ¢®”/ must be in-
jective. It follows that the map

- O Bor

0eD (@) J€la

is an injective intertwiner into D(G). By our calculations at the beginning of
the proof, the codomain of ¢ has dimension equal to the dimension of D(G).
Hence, ¢®’ must be bijective and therefore an isomorphism of representa-
tions. [

It is possible to construct projections into the irreducible submodules
inside D(G). By [Gou93|, Equation (24)] these are given via

Y

Pa
|Gl

D tra(0rgn @ h)dy @ h, (2.4.36)

g,heG

—

where a € D(G) and P, is viewed as operators via left-multiplication on

D(G). Using Equation (2.4.34), Equation (2.4.36]) can be simplified to

dim,,
[N

Fo= D> e ()5, © qyndy, (2.4.37)

g€Cq NnEN,

where we used that d, = |C,|dim,, and |G| = |N,||Cs|. These operators
are central projections, i.e. they lie in the centre of D(G). Furthermore,
the central projections P, are mutually orthogonal, and we will use these
projections in Chapter [3|to construct operators measuring charge excitations.
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2.5 Operator Algebras

The theory of operator algebras was introduced by von Neumann and Mur-
ray in the early 1930s and serves to this date as a rigorous mathematical
framework for describing quantum mechanics. The rough idea is to view ob-
servables as a set of bounded operators 2 acting on a separable Hilbert space
H [Segd7al. A physical state is defined to be a positive linear and continuous
functional w : A — C, understood to measure the expectation value w(A)
of an observable A € 2. Of particular interest are the pure states, which
are defined to be states that cannot be expressed as a non-trivial convex
combination of other states.

In an analogue to classical mechanics, the time evolution of a quantum
mechanical system can be described via a continuous one-parameter group
of automorphisms, describing either the time evolution of the observables, or
equivalently, the time evolution of the states. The notion of time evolution
allows us to define the notion of ground states as states whose total energy
can at most grow under the action of local observables.

After introducing some basic terminology in Section [2.5.1] and Section
[2.5.2] we shift our focus to infinite quantum spin systems in Section [2.5.3]
which are obtained as a limit of finite tensor products of finite-dimensional
matrix algebras, and are the main interest of this thesis. We will study the
dynamics of these systems and the additional features of ground- and pure
states in these settings. No result in Section [2.5]is new, and all details can be
found in [Naal3l [KR) [KR86, BRI12, BR03| [Zhu93| Mur90|, Hall3b, Rud9i].

2.5.1 Basic Definitions

Let H be a Hilbert space, that is, a normed vector space equipped with inner
product (-,-) such that ||v]|* = (v,v) and H is complete with respect to the
topology induced by ||-||. Much like in the previous sections, we will only
be concerned with complex vector spaces, and the inner product (-,-) is a
sesquilinear form, where the complex conjugate is in the first argument, i.e.
(v, w) = X {v,w). B

We caution the reader that the (-)-notation in this context stands for the
complex conjugate, i.e. A is the complex conjugate of the complex number
A € C, and that (+) is used to denote the inverse of a group element and a
group elements only.

Recall that a linear operator 7' : H — K is continuous if and only if
IT|| < oo, where

1T = sup |T(v)]|

l[oll=1
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is the norm of 7" and T is called bounded in that case. The space B(H)
of bounded linear endomorphisms on # is a special case of a C*-algebra.

Definition 2.5.1 (C*-algebra). Let 2 be a complex algebra. We call 2
a normed algebra if it is equipped with a norm ||-|| such that (2, |-||)
becomes a normed vector space with ||A- B|| < [|A| - || B||, and call it a
Banach algebra if it is complete with respect to its norm.

A C*-algebra is a complex Banach algebra 2 together with a map * :
20 — A that is

e anti-linear: (AA)* = \A* |
e involutive: (A*)* = A,
e and an anti ring homomorphism: (AB)* = B*A*
such that the *-property
|A=A] = A

is satisfied for all A, B € 2 and A € C. A C*-algebra is called unital if it is
unital as a ring.

The map * is called the star involution and, for an element A € 2, we
call A* the adjoint of A.

We will only concern ourselves with unital C*-algebras. We note however
that this is in many cases not a proper restriction, as one can always embed
any C*-algebra 2 into a unital C*-algebra 2, see e.g. the discussion following
[Mur90, Thm 1.2.9].

Example 2.5.2. (i) Let H be a complex Hilbert space. Then the set of
bounded operators B(H) equipped with the usual adjoint operation
and norm given by the supremum norm

A
14] = sup 1420 G 4z
zen ||| zf|=1

forms a C*-algebra as hinted before. Furthermore, every closed self-
adjoint subalgebra 2 of B(H) is a C*-algebra, where a subset of a
C*-algebra is called self-adjoint if A € S implies A* € S.

(ii) Let X be a compact Hausdorff space and 2 the set of all complex-
valued continuous functions on X with compact support. Then 2 is
a "-algebra via pointwise operations and the involution is given by the
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pointwise complex conjugation. It becomes a commutative C*-algebra
when equipped with the supremum norm

If[l = sup | f(x)|.
reX

Many notions and properties of matrix algebras can be recovered in the
abstract setting of C*-algebras.

Definition 2.5.3. Let 2 be a C*-algebra and A € 2. We call A
(i) self-adjoint if A = A*,

(ii) normal if [A, A*] = 0, where [A, B] = AB — BA denotes the commu-
tator of A and B,

(iii) unitary if A~! = A*,
(iv) orthogonal projection if A2 = A = A*.

We will see later that every C*-algebra is essentially of the form in Ex-
ample [2.5.(1)l In fact, Segal defines a C*-algebra as a closed, self-adjoint
subalgebra of B(#H) for some Hilbert space H [Segd7b]. Furthermore, every
unital commutative C*-algebra is of the form in Example [2.5.2][(iD)[Mur90,
Thm 2.1.10).

Definition 2.5.4 (Spectrum). Let 2 be a C*-algebra and A € 2. The
spectrum o(A) of A is defined as the set

o(A) ={X € C| A— A is not invertible} .
A is called positive if o(4) C R™.

Definition 2.5.5 (State). A state on a unital C*-algebra 2 is a bounded
linear functional w : A — C such that w(1ly) = 1 and w(A) > 0 for all positive
elements A € 2. We will denote the set of all states of a C*-algebras by Sy.

We can define a norm on Sy by setting

leoll = sup w(A)
[All=1
for all w € Sy. By [Mur90, 3.3.4 Corollary] a bounded linear functional w is
positive if and only if w(ly) = ||w]|.
The set of states forms a convex subset of the set of all linear functionals
on 2. A state is called pure if it is an extreme point of this convex set, i.e.
if it cannot be expressed as a non-trivial convex combination of other states.
A useful characterization of pure states is given by the following lemma.
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Lemma 2.5.6. Let 2 be a C*-algebra and w a state on A. Then w is pure if
and only if for each positive linear functional 1) : A — C with (A) < w(A)
for all positive operators A € A, it follows that v must be a scalar multiple

of V.
See [KR), Lem 3.4.6] for a proof.

There are several equivalent definitions for the positivity of an element.

Theorem 2.5.7. For an element A € 2 of a C *-algebra A, the following are
equivalent

(i) A is positive,

(1) A= C? for some positive C' € U,
(i1i) A = B*B for some B € ,
(iv) w(A) >0 for all states w on 2.

A proof can be found in [KR] 4.2.6 Thm and 4.3.4 Thm)].

Given two C*-algebras 2(; and 2y, we call a linear map ¢ : ; — 2y a
*~homomorphism if ¢ is an algebra-homomorphism that respects the star-
involution, i.e.

p(AT) = (A)"

for all A € ;. It follows from [Mur90, Thm 2.1.7] that every *-
homomorphism is a contraction, hence continuous.

Definition 2.5.8 (Representation of a C*-algebra). Let 2 be a C*-algebra.
By a representation of 2 we mean a pair (7, H,) where H is a Hilbert
space and 7 : A — B(H) is a *-homomorphism. We call the representation
irreducible if it contains no non-trivial subspace invariant under the action
of A, faithful if 7 is injective, and cyclic if there exists a vector 2 € H,
such that the space

T()Q ={r(A)Q| A e}

lies dense in H,. €2 is called the cyclic vector of the cyclic representation
and we write a cyclic representation as triple (7, H, ;). A bounded linear
map T : ‘H; — Ho between two representations (71, H1) and (g, Hs) is called
an intertwiner if it commutes with the action of 2, i.e.

T7T1 (A) = WQ(A)T

for all A € A. If T is in addition unitary, we call m; and m, unitarily
equivalent and write m ~ .
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Representations of a C*-algebra 2l form a category rep(2() with intertwin-
ers as morphisms. Similarly to group representations, we often just write 7
instead of (7, H) for the representation.

Remark 2.5.9. If G is a finite group, we can form the group algebra 2 = CG
as before. Furthermore, by viewing CG as a vector space, we may equip it
with the inner product

<g7 h’> = Og,h-

making CG a Hilbert space H. If L : A ® H — H,9 ® h — gh denotes
the natural action on that Hilbert space via left multiplication, then we can
equip 2 with the supremum norm

[All = sup [|Lag]]
ll=1

induced by the action L. Equipping 2 further with the *-involution ¢* =
g ! for all g € G, extended antilinearly to all of 2, it is straightforward
to check that A becomes a C*-algebra with these conventions, called the
group C*-algebra of GG, and every unitary G-module becomes a C*-algebra
representation. We remark that the construction of a group C*-algebra is
not limited to the setting of finite groups and can be extended to locally
compact groups, see [Foll6l Sec. 7] for instance.

We will now make precise how every C*-algebra can be seen as in Example

5540

Theorem 2.5.10 (GNS representation). Let w be a state of a C'*-algebra 2.
Then there ezists a cyclic representation (T, Hy, ), with |Qyu] = 1 such
that

W(A) = (D, T (A))

for all A € A, called GNS representation. Furthermore, if (7?,7:[,(2) is
another cyclic representation of A such that w(A) = <§~2, 7~r(A)§~2>, then there
exists a unitary intertwiner U : H, — H such that US), = Q, i.e. (7:[, T, Q)
is unitarily equivalent to (Hy, 7., ) and Q is the image of €, under the
unitary equivalence. The triple (m,, Hy, Q) is called a GNS triple.

See [BR0O3 Thm 2.3.16] for a proof. The GNS representation (H,,, 7y, 2,,)
of a state w is viewed as the physical realisation of w as a vector in the Hilbert
space H,. The GNS representations of pure states are of particular interest.
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Theorem 2.5.11. Let w be a state on a C*-algebra A. Then the GNS
representation of w 1s iwrreducible if and only if w is pure.

See [KR86, Thm. 10.2.3] for a proof.
Before we conclude this section, we want to present some results about
states that will come in handy later.

Proposition 2.5.12 (Cauchy-Schwartz inequality for states). Let 2 be a C *-
algebra and w a positive linear functional. Then we have for all A, B € 2

W(A*B)|* < w(A*A)w(B*B). (2.5.1)
Proof. This follows from the fact that (A, B) — w(A*B) defines a positive
semi-definite inner product on the vector space 2 [Zhu93), Prop 13.4]. O

Lemma 2.5.13. Let 0 < X < [ be a positive operator such that w(X) =1
for some state w on A. Then w(XA) = w(AX) =w(A) for all A € A.

Proof. We can take the positive square root /19 — X = (v/19 — X)* and set
A= /1g — XA*. Then w(A(l — X)) = w((A")*/1y — X) and using the
Cauchy-Schwartz inequality (2.5.1)) we obtain

[w(A(la — X))[* < w(A'(A))w(ly — X) =0,

implying w(AX) = w(A). The other identity follows analogously. O

2.5.2 (C*-dynamical Systems

Let 2 be a C*-algebra. By a dynamics on 20 we mean a strongly continuous
one-parameter group of automorphisms 7, i.e. a map

TR XA —2A(tA) — 7(A)
that is continuous for each fixed A € R such that 7., = 7, 0o 75 and 7y = idy.
The pair (2, 7) is called a C*-dynamical system.

Definition 2.5.14 (Infinitesimal generator). Let (2, 7) be a C*-dynamical
system and define the set

A) —
D)= Ae] lirré 7i(A) converges in norm
tte_[Ri*
Then the operator
A)—A
5: D(8) = A, A Tim A =4 (2.5.2)
t—0 t

is called the infinitesimal generator of 7.
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Remark 2.5.15. While it is possible to define the notion of an infinitesimal
generator more generally for linear operators on Hilbert spaces (see [BR12,
Definition 3.1.15]), it suffices for our purposes to define the notion of an
infinitesimal generator for strongly continuous one-parameter groups of au-
tomorphisms 7 only.

The map ¢ defined in Equation (2.5.2) is a symmetric derivation, i.e.
it satisfies
d(AB) =0(A)B + Ad(B),
d(A*) =0(A)",

for all elements A, B € D(9).
Suppose that A C B(H) and that H is a self-adjoint operator in B(H).
A time evolution can then be defined via

T(A) = exp (itH) Aexp (—itH)

and the operator H is called Hamiltonian. The infinitesimal generator can
then be shown to be

A)—A

5(A) = lim n(4) -4

t—0

—i[H, A], (2.5.3)

which can be verified by considering the first order terms of the exponential
exp (itH). We note that H will often be unbounded. In many concrete
quantum spin systems however, the ones considered in this work included,
the right-hand side of Equation will lie in %A regardless and the domain
of ¢ is dense in 2.

Next, we want to define the notion of a ground state. If H is a Hilbert
space, a time evolution is usually understood as a strongly continuous one-
parameter group of unitaries {U;},.g. Time evolution of the physical sys-
tem can then be viewed from two different perspectives. In the so-called
Schradinger picture, one views the observables as fixed, while the states, i.e.,
the vectors in H, evolve over time, that is, if )y € H is a state at time ¢t = 0,
then U,()y is the state at time ¢. In this picture, a ground state is understood
to be a vector () such that U, )y = €}y for all times ¢ and in physical appli-
cations, U; is generated by a positive operator H, called Hamiltonian such
that U, = e and H describes the energy of the system. This Hamiltonian
has eigenvalue 0, accounting for an energy minimum of the system.

The other perspective is called the Heisenberg picture. Here, time evolu-
tion is understood as the evolution of operators, as opposed to the evolution
of vectors. That is, if A € B(H) is an observable at time ¢ = 0, then U, AU_,
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is that observable at time t. We will always consider time evolution in the
Heisenberg picture. We want to relate our discussion so far with this physical
viewpoint:

Let w be a state in a C*-dynamical system (2(,7) and (H,,, 7, (2,) the
GNS representation of w. Then it is easy to see that (H, m, 07, €2,) is another
cyclic representation for each ¢ and also that w, = w o 7; is a state as well.
If w is invariant under the time evolution, that is, if w; = w for all times ¢,
then because of

W(A) = wt(A) = <th7 Ty, (A)th>7

(H, 7, o7, Q) is a GNS representation of w as well.

By Theorem there exists a unitary U; : H, — H, such that
U, = Q, and 7,(1(A)) = Um,(A)U_; for all t. This demonstrates in
particular that 7, and 7, o 7; are unitarily equivalent. It is straightforward
to check that U is a strongly continuous one-parameter group of unitaries if
T is a strongly continuous one-parameter group of automorphisms. Finally,
we have the following Theorem by Stone([Hall3bl, Thm 10.15]):

Theorem 2.5.16 (Stone’s Theorem). Let U : R — B(H),t — U; be a
strongly continuous one-parameter group of unitaries on a Hilbert space H.
Then there exists a densely defined, self-adjoint operator H such that

Ui(A) = exp (itH) Aexp (—itH) (2.5.4)
holds for all A € B(H) and t € R.

Hence, the time evolution of a state w can be understood via a mapping
w — woT; and it would make sense to define a ground state via the condition
wo T =w for all ¢.

Proposition 2.5.17 (Ground State). Let (A, 7) be a C*-dynamical system
and let w be a state on A . Then the following are equivalent.

(i) w is invariant under the time evolution, i.e.
woT =w

forallt € R and if (H,, 7, Q) is the GNS representation of w and if
H,, is the self-adjoint operator realizing the time evolution on H,, via

Tw(1(A))Q, = exp (itH,) m,(A)Qy,

then H,, 1is a positive.
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(11) If § is the infinitesimal generator of T, then

—iw(A*5(A)) > 0.

If either, and hence both, of the above conditions are fulfilled, w is called a
ground state.

See [BR03, Prop 5.3.19] for a proof.

2.5.3 Quantum Spin Systems

We will now discuss an important construction in the framework of quantum
spin systems: the quasi-local algebra.

Recall that a pre-ordered set is a set L together with a reflexive and
transitive relation <. It is called directed if for all A;, Ay € L there exists
an element A3 € L with A; < Az and Ay < Ag, i.e., if every finite subset of
L has an upper bound. We call a symmetric relation L an orthogonality
relation if the following conditions hold

(i) for all A € L there exists a A’ € L such that A L A/,
(11) if Al,A27A3 €L with A1 S AQ and A2 1 Ag, then A1 1 Ag.

(iil) if Ay, Ao, Ag € L with Ay L Ay and Ay L Ag, then there exists a Ay € L
with Ay L Ay such that Ay, Az < Ay.

A prime example of a directed set with an orthogonality relation, and the only
example we will be concerned with, is that of the set of subsets L = P(Z) for
a given set Z together with the subset relation as a pre-order and disjointness
as orthogonality. Above properties are then quickly verified. In view of this
example, we may also generalize the notion of a union. We assume that given
two elements Ay, Ay € L, there exists a least upper bound, which we denote
by A; U Ay. The following definition is taken from [BR12, Definition 2.6.3].

Definition 2.5.18 (Quasilocal Algebra). Let (L, <) be a directed set with
an orthogonality relation 1 and with least upper bounds A; U Ay for all
Ay, Ay € Landlet {Ay}, ., be afamily of C*-algebras such that the following
hold:

(i) For all A} < Ay we have 2y, C 2y,
(ii) The algebras 2, share a common unit /,

(iii) If Ay L Ay, then [A, B] =0 for all A € ™Ay, B € 2Ay,.
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Then we can form the C*-algebra

A= | A,

AeL

where U denotes the norm completion. We call the quadruple (L, <
A{Ar}, ,A) a quasilocal structure and 2 the quasilocal algebra gen-
erated by the {25 },.

Let ix, a, and ip denote the inclusion maps ia, a, @ 2Ax, — Aa, and
ip ™Ay — A for all A, Ay, A € L. Then the quasilocal algebra 2l is universal
in the following sense: Let 2 be another C*-algebra together with a family of
*_homomorphisms jj : Ap — 2. Then there exists a unique map J : A — A
such that the following diagram

2A

A 2L
T / (2.5.5)
A

commutes. Indeed, J is already uniquely determined by the condition Joi, =
ja- More generally, a directed family of C*-algebras is a family {2 },_,
of C*-algebras together with *-homomorphisms iy, a, : Aa, — ™Ap, for all
A1, Ay € Z such that

iAgAg o iA1A2 = ?:AlAS

holds for all Ay, Ay, Ag 6 Z An algebra 2 satisfying the universal property
described in Diagram (2 is called a directed limit of the family {4},
and 2 is defined by Dlagram [2.5.5 uniquely up to isomorphism. We may
define the algebra

Q’lloc = U Q[Aa

AeZ

and call 2, the algebra of local observables/operators and its elements
local observables/operators. For a € 2,., we say that a is supported
in A if a € 2, and we denote the smallest subset with this property as the
support of a. Finally, we will often write {5}, instead of the quadruple
(L, <,{Ap}, ,2A) to denote a quasilocal structure if no confusion arises.

Example 2.5.19. Let L = FPy(Z") be the set of all finite subsets of Z" for
some v € N and let H, be a fixed finite dimensional Hilbert space for each
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x € Z. Then we define for {z} € L the finite dimensional matrix algebra
Ay = B(H,) and set

Ay = ®Ql{x} (2.5.6)

TEA

for each A € L. If A;,Ay € L with A; C Ay, we can define an embedding
LAyAs ¢ An, — Ap, by setting

LA1,Ao (A) =A® id/\2\/\17

where idy,\4, is the identity map on the space

Q) He

.Z‘EAQ\Al

This allows us to view %Ay, as a subset of A, for A; C Ay. By setting
A <Ay Ay C Ay Ay L Ay i AN Ay = ) and unions (least) as upper
bounds, the quadruple (L, <, {2}, ,2) becomes a quasilocal structure.

We define a quantum spin system to be a quasilocal structure {2 },,
where all the 2, are simple finite-dimensional algebras.

Proposition 2.5.20. Let {Ap}, be a quantum spin system and let Ay be
simple for each A € L. It follows that A is simple as well.

See [BR12, Corollary 2.6.19] for a proof.
Before we proceed, we want to discuss the typical dynamics of quantum
spin systems. By an interaction we mean a self-adjoint map

o:L— Qlloc,
B(A)* = B(A)

such that ®(A) € A, for all regions A. Given a quasilocal algebra {2}, , A
together with an interaction ®, we define the local Hamiltonian HY in
the region A as the self-adjoint operator

HY =) oA (2.5.7)

Let L = P(Z?%) and let Ly = Py(Z?) denote the set of finite subsets of Z2.
Then Equation is a finite sum for A € Ly and Hy is a bounded
operator. We then may define a local time evolution via the strongly
continuous one-parameter group

th\’q)(A) = exp (itHﬁ’) Aexp (—itHX)) (2.5.8)
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for A € 2, and t € R. We can explicitly calculate the infinitesimal generator
in this case: Setting

Ba(t) = Z (itH3)"™ A (—itHY)"™

ni+ng>2
we obtain
A, D
o T (A)—A
On(4) = lim t
_ jim A+itHYA —itAHY — A N Ba(t)
t—0 t t
N——
—0
—iHYA —iAHY (2.5.9)
=i [Hy, Al. (2.5.10)

In general, it is not clear whether 74% converges (in norm or otherwise)
to a strongly continuous one-parameter group 7% on 2 as A — co. In many
cases, the local Hamiltonians Hf do not converge to a bounded operator.

Rather, the sum > ®(A) is unbounded. We may still define a derivation
AEL
d as in Formula (2.5.9) on a self-adjoint subset D(0) C 2 called domain of

0. We introduce a few notions and results on unbounded operators to shed
some more light on these nuances.

In general, given an unbounded operator T : D(T') — H, with self-adjoint
domain D(T) C H; between two Hilbert spaces H; and Hs, we say that
Ty : D(Ty) — Ho is an extension of T'if D(T') € D(Ty) and T' =Ty |pery. T
is called closed if the graph of 7' is a closed subspace of H; ® Hs and we say
that T is closable if there exists a closed extension. If it exists, we denote
by T the smallest closed extension of T', and call it the closure of 7. We
remark that if D(T) = H; then T is bounded if [Rud91, Thm 2.15] and only
if [Rud91l, Prop 2.14] T is closed.

The following theorem follows from [BRO3, Prop 6.2.3,Thm 6.2.4] and
gives a sufficient condition for the convergence of a time-evolution and the
existence of a closable infinitesimal generator.

Theorem 2.5.21. Let {Ap}, ,A be a quantum spin system with interaction
¢, L = P(Z"), v € N and assume there is a constant A > 0 such that

@], => e sup S e | < o (2.5.11)
TELY el

n>0 T
[Al=n+1
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Let further 6™® be the derivation defined via

A =i > [B(N), A

ANA£D

for all A € D(6%*) and D(6) = Wipe. Then 6™ is norm-closable, and its clo-
sure 0™ is the infinitesimal generator of a strongly continuous one-parameter
group T on 2. Moreover, if TA® is the family of local time evolutions defined
(]

M (A) = exp (itHy) Aexp (—itHy),
then TtA’q) converges to T for all A € 2 uniformly on compact sets in R.

We call ® uniformly bounded if

sup [|@(A)]| < oo.

AeL
If L = P(Z?), we have a natural notion of a translation symmetry on
L, that is an action of the abelian group (R,4) on L together with an
action T : R x A — A, A — T,(A) such T,(A) € A,4p for all A € Ay,
where z + A = {z+y |y € A}. We call an interaction ® translationally
invariant if

Oz +A) =T, (B(A)).

It is called a finite range interaction if there exists a d € N such that
®(A) = 0 for all diam(A) > d. For the lattice model, this implies in particular
that there exists an ng € N such that |A| > ng implies that ®(A) = 0 for all
n > ng. If ® is in addition translationally invariant, reads

@], =Y e | sup > [[@(A)]
€N

n>0 v€Z?
h |A|l=n+1
no—1
=>_ " > e
n=0 0€A
|Al=no

which is in particular a finite sum, hence bounded and Theorem [2.5.21| guar-
antees the convergence of the local time evolutions 7% given in (2.5.7) by
passing to some appropriate Ay with

Ag D U A

ANA
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This ascertains the existence of a global time evolution for quantum spin
systems with translationally invariant finite range interactions.

We want to give an alternative definition of ground states in the setting
of sufficiently well-behaved quantum spin systems. The statement can be
found in more detail in [BRO3, Thm 6.2.52]

Theorem 2.5.22. Let {Ap}, ,A be a quantum spin system with interaction
® and local time evolutions 7% . Assume that

(i) A% converges strongly to an automorphism T2, i.e.,

lim
A—oo

forall AeA andt € R.

M P(4) = 7 (A) = 0

(i) The surface energies

XNA#D
XNASH#D

are well-defined elements of A for all regions A € L.

(111) Wype is a core for 0, i.e., the closure of the unbounded operator o |y,
in the weak operator topology is equal to 9.

Then the following are equivalent for a state w on 2.

(i) For all A C L we have
HY) = inf W'(HY
w(HY) M}QCKW (HY)
where HY = HY + W2 and C¥ is the set of all states W' with ' |o,.=

w |Q[?\
(i1) w is a T-ground state.

Note that in the setting of Theorem [2.5.21], § is norm-closable with domain
joc, and with the norm-closure of ;. being 2, I[tem of Theorem
is satisfied.

We want to study equivalence of states in the setting of quantum spin
systems. We say that two states are equivalent if their corresponding GNS
representations are unitarily equivalent. Two states w; and ws are called
quasi-equivalent if there exists a cardinal n such that

NT = NTy,,
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ie. m, and m,, are unitarily equivalent up to a multiple. If 7, and 7,
are irreducible, then quasi-equivalence implies unitary equivalence. One can
show that two representations are quasi-equivalence, if and only if every
irreducible subrepresentation appearing in m; also appears - up to unitary
equivalence - in my and vice versa [BR12, Thm 2.4.26].

Quasi-equivalence between m,, and m,, can be characterized using a par-
ticular class of states on H,, and H,,. If H is a finite dimensional Hilbert
space and 20 C *B(H) a finite dimensional C*-algebra, then we can define a
state via the mapping A 5 X — tr(pX) € C, where p € *B(H) is a density
matrix, i.e. a positive matrix with tr(p) = 1. We want to generalize this
concept. If H is a Hilbert space, then a closed self-adjoint subalgebra 91 of
B(H) is called von Neumann algebra if

N =N,

where M = {Ae€B(H)|[A,B]=0forall Be€MN} is the commutant of
N in B(H). The well known bicommutant theorem [BRI12, Thm 2.4.11]
states that 91 is a von Neumann algebra if and only if 91 is closed in the
weak topology, that is, in the topology induced by the family of seminorms

[ lly | s 0 € ’H} defined via

X = [ Xy, = (0, X0). (2.5.12)

Note that if 91 = B(H), then N = {Alg | A € C} and N is already a von
Neumann algebra. In general, we call a von Neumann algebra 91 a factor if
M = Cly consists of multiples of the identity only. Let 2 be a C*-algebra
and 7 : A — B(H) a representation of A on H. If T € w(A)’ is in the centre
of 2 in B(H), then T : H — H is per definition an intertwiner from 7 to
itself. If 7 is irreducible, it follows that 7" must be a multiple of the identity
by Schur’s Lemma. It follows that if 7 is an irreducible representation of 2
on H, then the von Neumann algebra 7(2)” generated by 7(2() must be a
factor.

If H is a separable Hilbert space and {&,},, C #H an orthonormal ba-
sis of #H, then we call an operator X € B(#) a trace-class operator if
> (&, X&) converges. We call this sum the trace of X and denote it by

tr(X). This definition is independent of the choice of the orthonormal basis
{&.},, € H [KRl Prop 2.6.1]. Finally, we call a state w on a von Neumann
algebra M C B(H) normal if there exists a positive trace-class operator
p € B(H) with tr(p) = 1 such that w(X) = tr(pX). If w is a state on a
C*-algebra 2 with GNS representation (H,,2), we can define a set

N(w) = {gp ow|p:m(A) — C is a normal state} .
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By [KRS86L Prop 10.3.13], two states w; and wy are quasi-equivalent if and
only if M(w;1) = NM(wz). Another useful characterization of quasi-equivalence
in the setting of quantum spin systems is given by the following Lemma.

Lemma 2.5.23. Let {Ap}, ,A be a quantum spin system, and let wy,wy be
normal factor states on 2 . Assume further that L = P(Z*). Then w; and
wy are quasi-equivalent if and only if for all € > 0 there exists a region Ag
such that

w1 (X) — w2 (X)| < e[ X]]
for all X € Ap with A disjoint from Ag.

We refer to [BR12, Cor 2.6.11] in conjunction with [BR12, Thm 2.6.10]
for a proof.



Chapter 3

Kitaev’s Quantum Double
Model

3.1 Introduction

Kitaev’s Quantum Double Model was first introduced as a surface code model
[Kit03]. The idea behind this model was to establish an error correction code
using local stabilizer operators that create a situation resembling ferromag-
netism, where perturbed spins are immediately corrected by their neighbours.
The model consists of a quantum spin system on a lattice, where each edge
is decorated with a finite dimensional Hilbert space, and the dynamics is
described by a frustration free Hamiltonian, that is, the Hamiltonian is a
sum of commuting projections, called stabilizer operators. In the infinite
plane, this model admits a unique frustration free ground state, minimizing
each stabilizer operator individually. We will define the model, the stabilizer
operators and the frustration free ground state in detail in Section [3.2]

Another important concept introduced in [Kit03] is that of ribbon op-
erators. A ribbon is a way of describing how excitations move within the
lattice. Ribbon operators are constructed for each ribbon such that they
create charges only on the endpoints of the ribbon. We will discuss this class
of operators in detail in Section [3.3] Furthermore, ribbon operators have the
following important topological property: Given two ribbons £ and & with
the same endpoints, the action of the ribbon operators on the vacuum vector
is the same. To our knowledge, there exists no correct proof of this statement
for the non-abelian quantum double model, so we will provide a proof of this
statement in Corollary Ribbons afford a convenient way of describing
charge creation in the quantum double model.

In Section [3.4] we draw the connection to the quantum double by demon-
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strating that the stabilizer operators are realized as an action of the quantum
double D(G) of an underlying group G. We identify excitations with irre-
ducible representations of D(G), and show how excitations can be created
and measured with the use of ribbon operators.

Our study of anyon excitation is motivated by the DHR analysis in
[DHRT71], usually applied in the framework of quantum field theory. To
apply these techniques here, we will show that the model admits a unique
translational invariant ground state wg which minimizes each term of the
Hamiltonian in Equation individually. Such a ground state is called
frustration free.

While a C*-algebra generally possesses many physically irrelevant states,
the superselection criterion discussed in the introduction, gives a relatively
good constraint on the set of states on 2. However, the notion of a localized
and transportable endomorphism as in [DHR71, Prop 1.2] has to be slightly
tweaked for our purposes. Instead of considering endomorphisms y : A — 2,
we will construct a suitable *-homomorphism of the form

X:A—=>A®End(V) (3.1.1)

for some finite dimensional vector space V. If wq is the vacuum state of the
model, we will then study states of the form

WA — €, X = (wo o X)(X) (3.1.2)

where x!! is the component in the I-th row and I-th column of y for I =
1,...,dim(V) in a chosen basis. The goal of the following sections is to
construct these maps x from ribbon operators, which can intuitively can be
thought of as charge creating operators. We will then show in Section [3.5]that
the states constructed as in Equation are - up to some exceptions -
ground states of the model (Theorem [3.5.4)) and in Section [3.6]that their GNS
representations are irreducible (Theorem [3.6.8). The latter statement was
independently proven in [BV23] using different methods. We will also further
demonstrate in Section B.4] how these excitations are related to irreducible
representations of the quantum double D(G).

An important tool needed to show the ground state property are the
Wilson loop operators defined in [BMDOS, Eq. (B75)] for a ribbon ¢ enclosing
a region. These operators can be used to measure the existence of charges in
the region enclosed by the o. Here too we are not aware of a rigorous proof
of that statement, so we will provide one in Proposition [3.4.4]

We first recall some basic definitions from graph theory in Section |3.2
and general terminology and conventions to express the notion of regions
and paths in our lattice model, and to discuss more formally the localized
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nature of anyonic excitations. This allows us already to show that the model
admits a unique translationally invariant ground state. Although Section
3.2 provides no new insight that cannot be found in the existing literature
[Kit03], Naal2, BMDOS, [CM22b], we provide careful proofs to some algebraic
relations that are not always done in detail in the literature. In particular,
Lemma is a stronger version of [Naal2, Lem 12.1.2], which will be
needed in Section 3.6

3.2 Model and notation

We consider an oriented graph, whose vertices can be identified with Z? and
such that every two neighbouring vertices are connected by an edge. Let
V = Z? be the set of vertices and E the set of edges of this graph. While
the concrete orientation of the graph does not matter, we will assume for
simplicity that all horizontal edges are oriented such that they point to the
right and that all vertical edges pointing upwards (see Figure . Now, let
G be a finite group and consider the group algebra CG. As a vector space,
CG can be made into a Hilbert space H by introducing the scalar product

<g7 h> = g,h

for g,h € G. At each edge ¢ € E, we define the Hilbert space H, := H. Then
by setting L = Py(E), we obtain a quasilocal structure exactly as we did in

Example [2.5.19;
(i) Given ¢ € Z% we have H, := CG viewed as a Hilbert space, and if

A € L, we set
Ha = Q) He

eeA

(ii) For Ay, Ay € L with Ay C Ay, we have 2, C 2,,, with the inclusion
maps given as in Equation (2.5.6)).

(i) For Ay N Ay = 0, we have
[A,B] =0
for all A € Ay, and B € Ay,.

(iv) The quasilocal algebra generated by this quasilocal structure is given

by
A=A

AeL
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Since A, is a finite dimensional matrix algebra, and therefore simple, for
each A € L, the family {2}, forms a quantum spin system.

Remark 3.2.1. In Section [2.5], we were often times associating our Hilbert
spaces with the vertices of the lattice, rather than the edges, but this does
not create any significant changes.

Figure 3.1: The lattice model Z? depicted as a 2-dimensional graph. The
orientations of the edges are indicated by the arrowheads and at each edge e
lives a Hilbert space H..

Before we go further, we want to recall some basic terminology from
graph theory which can be found in e.g. [BM07] and [GRO1]. This is needed
in order to properly define the notion of a ribbon and to understand how
different charges can sit inside the lattice. Let ¥ = (V| E) be an oriented
graph with V' the set of vertices and

E g {(U17U2) | U1, V2 S V}

the set of oriented edges. We will write E for the set of edges with opposite
orientation, i.e.

E ={(v1,v2) | (v2,v1) € E}.

We will only consider graphs that have at most one edge between two vertices.
We define a path p in such a graph as a sequence p = (vy, v, ..., v,), where
each pair (v;,vi41), ¢ = 1,...,n — 1 is connected by an edge. p is called
directed or oriented if in addition (v;,v;41) € E holds for all 7. Unless
explicitly stated otherwise, we will always assume that a path does not self-
intersect. Given an edge ¢ = (vy,v3) € E, we denote by dpe = v; the starting
vertex of ¢ and by 0;e = vy the final vertex of e. We can extend the mappings
Oy, 01 for a path p = (vy, ..., v,) by defining dyp = v; and 91p = v,,. We say a
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path p; can be composed with a path py if 9;p; = dype and p; and p, do not
intersect anywhere but possibly at their endpoints. In that case, we denote
by (p1,p2) the concatenation of these two paths, that is, if p; = (vy,...,v,)
and ps = (wy,...,wy), then (p1,p2) = (v1,..., vy, w1, ..., wy). For a path
p = (v1,...,v,) we introduce the notations

(k:p) =V, ..., vn)
(p:1)=(v1,...,0)

and
(k:p:l)=(vk,...,v). (3.2.1)

See also Figure 3.2l If p = (v1,...,v,), we may also write (v : p), (p : v;)
and (vg, : p: v) instead of (k: p), (p: 1) and (k:p:1). A subpath of a path

v9

v8

vr ve U5

D2

vq

1

Figure 3.2: Depiction of a path p = (vy,...,v9) with three subpaths p; =
(p:3)(red), ps = (7 : p)(green) and py = (3 : p: 7)(blue)

p is a path of the form as in Equation (3.2.I). A region of ¢ is a subset
A C FE of edges in 4 and a subgraph of ¢ is a graph F' = (V, EF) such that
Ve C V and Ep C E. If A is a region of ¢4, we denote by ¥\ = (V,, Ey, )
the smallest subgraph of ¢ such that A = Eg,, i.e. the smallest subgraph
that has A as edges. A region is called bounded or finite if its intersection
with the plane R? is bounded.

A planar graph is a graph that can be embedded in R? in such a manner,
that no two edges intersect anywhere but at adjacent vertices and a plane
graph is a planar graph with a chosen embedding. In the special case of the
lattice graph, we call a region A a square-shaped region of size n if A is
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the intersection of a square of area n? with ¢ in the plane R?. We denote
the square-shaped regions of size n centred at the origin by A,,.

If ¢4 is a plane graph, we can define the dual graph ¢* of ¢, whose vertices
consist of the faces of ¢ and two faces are connected by an edge in ¢* if they
are separated by an edge in ¢, see Figure [3.3] Recall that a face f of ¥ is
a connected component of the complement of ¢ in R2,

)

Jr f2 fa

Figure 3.3: Depiction of a graph with 7 nodes. The complement of the graph
as a subset of R? has the four connected components fi, fo, f3 and f4 with
f1, f2, f3 bounded and f; unbounded. The graph ¢ is drawn in grey to to
highlight the edges of the dual graph ¢* between the faces in full black.

If ¢4 is an oriented graph, then ¢* becomes an oriented graph as follows:
Let E* denotes the set of dual edges and E* the set of edges with opposite
orientation. Then ¢ = (f1, fo) € E* if and only if rotating ¢; clockwise in the
plane around its centre becomes an edge in E. Similarly, ¢ = (f1, f2) € E* if
rotating ¢ clockwise around its centre becomes an edge in £, see also Figure
3.4 We note that this definition is opposite to the classical definition of the
orientation of a dual graph, as found in standard literature like [BMO07] or
[GRO1], but is in line with the convention chosen by many authors studying
anyon excitations in lattice models, see [CCY21] or [Naal2] for instance.

A site s is a pair (v, f) where v is a vertex and f is a neighbouring face.
For any given site s = (v, f), we set v(s) := v and f(s) := f to be the face
respectively vertex associated to s. If A is a region of 4, then we denote by
S(A) the set of all sites of the subgraph ¢, and we denote the set of all sites
by S. Similarly, we will say that a vertex v (a face f, a direct path p, a dual
path p*) lies in A if v, (f, p, p*) lies in ¥,. Note that if s = (v, fs) € S is
a site in ¢, then s € S(A) for a region A only if the four edges surrounding
fs are contained in A. In the particular case of the Z2 -lattice, we will call a
face often times a plaquette.
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(50
frroeetorgafs | frbee ooy
¢ g(y €2

Figure 3.4: The figure depicts the two dual edges ¢; = (f1, f2) and ¢es =
(f1, f3). e1 is not aligned with the lattice, since rotating it by 90° clockwise
about its centre makes it point downwards, whereas ¢, is aligned with the lat-
tice since rotation by 90° clockwise about its centre makes it point upwards.
With the specific orientation chosen in our setting for ¢, i.e. horizontal edges
pointing to the right and vertical edges pointing upwards, the edges of the
dual graph ¢* are oriented such that horizontal dual edges point to the left
and vertical dual edges point upwards.

We will now introduce the notion of triangles in a graph. Triangles are
used as atomic geometric shapes to define the dual and direct paths of a
ribbon and we will define them using the notion of sites. The reader is
advised to compare the definition of triangles with Figure [3.5

Let s1, 59 € S with s1 = (vs,, fs,) and sy = (vs,, fs,) and write 7 = (s1, 52).
Then we call 7 a direct triangle if f,, = f,, and (v,,,vs,) € EUE is an
edge in 4 and we call 7 a dual triangle if v,, = v,, and (f,,, fs,) € E* U E*
forms an edge in the dual graph @*. If 7 = (s, s9) is direct (dual), we write
¢, = (Usy,Vs,) (€ = (fs,, [s,)) for the associated direct (dual) edge, and we
call 7 aligned (not aligned) if ¢, is oriented (not oriented). If 7 = (s, 52)
is a direct triangle, we write f(7) := f(s1) = f(s2). Similarly, if 7 = (s, s2)
is a dual triangle, we write v(7) = v(s1) = v(s2).

A direct (dual) triangle (s, s2) is said to be oriented locally counter-
clockwise if rotating the line segment of s; = (v, fs,) counter-clockwise
around f, in the plane swipes immediately through the interior of the trian-
gle. Otherwise, we call its orientation clockwise and shall call this property
local orientation. The local orientation of a triangle 7 is independent of
the alignment of the underlying edge e..

Remark 3.2.2. The notion of local orientation was introduced by |[CCY21]
and, to our knowledge, was not considered by previous authors, see e.g.
[BMDOS]. The importance of local orientation will become evident once we
define ribbon operators, and we will discuss this issue in more detail then.
For now, we only note that the definition in [BMDO0S§| and previous authors
lead in the setting of non-abelian Kitaev models occasionally to incorrect
results.
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s —> Sh 3] l2

_> S2

Figure 3.5: The figure depicts dual and direct triangles with different local
orientations, even though all triangles have the same alignment with the
lattice. The pairs (s1, s2) as well as (s]s5) both constitute non-aligned dual
triangles (depicted in blue) which can be seen by rotating the blue = -
arrow clockwise by 90 degree. However, rotating the line segment given by
s1 around the face f must be performed counter-clockwise to swipe through
the interior of the triangle (s1,sq) first. Similarly, (s}, s5) can be seen to
be oriented locally clockwise, since s] must be rotated clockwise around f
to immediately swipe through the interior of (s}, s}) first. For the direct
triangles (t1,t2) and (t},t,) in red, we see similarly that (¢;,%;) is oriented
locally clockwise, while (#},t,) is oriented locally counter-clockwise. Note
that in all four cases the rotation is performed around the face associated
to the initial site of the respective triangle. Finally, we remark that the line
segments identified with the sites together with the direct/dual edge that
connect the different vertices/faces of the sites indeed form the shape of a
triangle for each of the cases drawn.
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We write o7 = s1 and 0111 = s for a triangle 7 = (s1,52). Given
two triangles 7, and 7o, we say that 7; is composable with 7, if 7 # 7,
0111 = Opme and if 74 and 7 have the same local orientation. It follows
that 71 is composable with 75 only if 71 and 7 intersect at their sites, and
non-composable triangles 7 and 7 with 0,77 = Oym» always intersect non
trivially. This can be seen as follows: If 7 = (s1,s5) is locally clockwise
oriented, then rotating s; clockwise around its face swipes first through the
interior of the triangle 7. One may check in that case that rotating s,
counter-clockwise around its face then swipes first through the interior of 7.
If so was the initial site of a triangle 7 that was oriented locally counter-
clockwise, then by definition the counter-clockwise rotation of s, around its
face swipes through the interior of 7 as well, implying that 7, and 7, overlap.
See also Figure |3.6

U1

T2

fo bil

1

Vo

Figure 3.6: Depiction of two overlapping triangles 7 = ((vo, fo), (v1, fo)) and
72 = ((v1, fo), (v1, f1))-

A similar argument demonstrates that if 7; and 7 had the same local
orientation, that then 7 and 7, shared no common area.

A ribbon is a concatenation of composable triangles, (,...,7,) such
that e, # e, for all 7,k = 1,...,n with ¢ # k. We say that a ribbon § =
(T1,...,7,) is contained in a region A if 4, contains all edges ¢,,, i =1,...,n.

A ribbon & = (7'1(1), e ,7'79)) is said to be composable with a ribbon & =

()i (A Y 7)Y forms a ribbon again.

We may occasionally write a ribbon as £ = (s, ..., s,), by which we mean
€= (m,...,Tn-1), where s; are sites and 7; = (s;, s;4+1). The sites s; and s,
of aribbon £ = (sy, ..., s,) are called endpoints of £, and we write 9o = s;
and 0;§ = s,. We call a ribbon (71,...,7,) locally clockwise (locally
counter-clockwise) oriented if one (and hence all) of its triangles are locally
clockwise (locally counter-clockwise) oriented. If a ribbon & consists only of
direct (dual) triangles, we call £ direct (dual).

A ribbon can be seen as a pair of a direct path and a dual path: Given
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a ribbon & = (7,...,7,), we call the path obtained from all edges of the
direct triangles as direct path of ¢ and denote it by £%. Similarly, we call
the concatenation of the faces of the dual triangles of ¢ the dual path of ¢
and denote it by £%, see Figure . As always, we say that a ribbon (direct

Figure 3.7: Depiction of a ribbon & = (s, $1, S2, S3, S4, S5, S¢) With sites sg =

(UO7f0)a31 = (U();fl)?SQ = (v17f1)7 S3 = (Ulan)a S4 = <U2af2)7 S5 = (UQaf3)7
s¢ = (vs, f3), dual path &% = (fy, f1, fo, f3) (blue and dashed) and direct
path €4 = (vg, v1, v, v3) (red).

triangle, dual triangle) lies in a region A if the ribbon (direct triangle, dual
triangle) lies in ¥,.

Finally, we will denote the inverse of a ribbon, triangle, path, edge or
group element of some finite group G by a bar -, i.e.

(i) if 7 = (s1, 52) is a triangle, then 7 = (s2, $1),

(ii) if & = (s1,...,8,) is a ribbon, then & = (s,,...,81) = (Fa_1,...,71)
with T = (8i7 8i+1)7

(iii) if p= (v1,...,v,) is a path, then p = (v,,...,v1),

(iv) if e = (vy, v2), then ¢ = (v, vy),

(v) if G is a finite group and g € G, then g = g%

Having established this terminology, we return to the quantum spin sys-
tem introduced at the beginning of this section. We can define actions of
the group algebra CG and its dual C(G) = (CG)* on the lattice model for
each triangle. For h € G, 6y € C(G) and 7 a direct triangle, we define the
projections

07,9 if 7 is aligned
k _ k,g
Trlg) = {(5k7gg otherwise (3:2:2)
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acting on the edge e, and if 7 is a dual triangle, we define left actions on the
edge intersecting the dual edge ¢; via:

Ly : g— hg if 7 is aligned
R\ _ h*9 g g
Lz(g) = {Rh : g+ gh  otherwise (3.2.3)
if 7 is locally clockwise oriented, and right actions
RM: g+ gh if 7 is aligned
h = - -
Lilg) = {Lh : g+ hg  otherwise (3.2.4)

If 7 is locally counter-clockwise oriented. See also Figure |3.8

Remark 3.2.3. We will see later that dual- and direct triangles create pairs
of excitations at the two sites defining the respective triangle. The reason for
defining the action of the triangles differently for different local orientations,
is to ensure that the type of excitation created is always the same, regardless
of the orientation of the triangle as long as the sites on which the charges are
considered are the same.

One might wonder if such a distinction is necessary for direct triangles as
well. This matter is discussed in [CCY21] in more detail, but it is essentially
related to the fact that the dual C(G) of the group algebra CG is commutative
(since CG is cocommutative) making a distinction between direct triangles
of different local orientation redundant for the quantum double model based
on groups.

As mentioned, the triangle operators are the atomic components for con-
structing charges in our quantum spin system. It is therefore worthwhile to
inspect their commutation relations more closely. Let 71 and 75 be triangles,
such that the corresponding triangle operators act on the same edge. Clearly,
[TF,TF] = 0 for all ki, ks € G, regardless of the alignments of 71 and 7.
Assume 77 and 75 are dual triangles that have the same local orientation and
opposite alignment. Then either L. acts via left-inverse multiplication and
L., acts via right-inverse multiplication or vice versa. In either case, we have
(L1, L] = 0 for all hy, hy € G due to the associativity of G. Similarly, if 7y
and 1, are either both aligned with the lattice or both not aligned with the
lattice, but have opposite local orientation, then [Lﬁf,Lﬁ;] = 0, again due
to the associativity of G.

The only constellations not yet considered are the ones where 7, and 7
have the same alignment and the same local orientation, and where 7 and
79 have opposite alignment and opposite local orientation. In the first case,
T := 7 = T must already be identical, and we have L L2 = L7 If the
local orientation and the alignment are opposite, then L, and L., act from
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Figure 3.8: Graphical depiction of the action of the triangle operators de-
fined in Equation (3.2.2), Equation and Equation (3.2.4)). The di-
rect triangle 7 = ((vo, fo), (v1, fo)) is aligned, whereas the direct triangle
7o = ((v1, fo), (vo, fo)) is not. The dual triangles 71 = ((ve, f1), (ve, f2)),
72 = ((v2, f2), (v2, /1)), T3 = ((v3, 1), (3, f2)) and Ty = ((vs, f2), (v3, f1)) are
respectively locally counter-clockwise oriented and not aligned, locally clock-
wise oriented and aligned, locally clockwise oriented and not aligned and
locally counter-clockwise oriented and aligned.
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the same side, but one acts via inverse multiplication and the other one does
not. In that case, one may verify that LML = LM for hy,hy € G if 7y
is locally clockwise oriented, and L' L' = LMh if 75 is locally clockwise

oriented. We summarize these identities in a Lemma.

Lemma 3.2.4. Let 171,75 be dual triangles and hi,hy € G. If 71,72 have
either the same local orientation and opposite alignment or opposite local
oritentation and the same alignment, then
hi Tha] _
(L2, L] =o0.

T

If 71 and 7 have the same local orientation and the same alignment, then
T = To and we have

hiTha _ 7hiho
Lhphe = phie

Finally, if 7 and 1 have opposite local orientation and opposite alignment,
we have 71 = T and

hlBZ > ; ; >
L};lLﬁQ _ {Ln iof 71 1s locally clockwise oriented (3.2.5)

Lt otherwise,
for all hy, hy € G.

This leaves the commutation relations between dual- and direct triangle
operators to inspect, of which there are still 8 possible combinations to con-
sider: Two scenarios for the direct triangles and four scenarios for the dual
triangles. However, some of these cases can be dealt with simultaneously by
considering the relative alignment of the triangles:

Let 71 and 75 be a direct and a dual triangle respectively, with either
¢;, = €, O ¢;, = €. Then we have the following commutation relations:

Thaph if e;, = ¢,, and 7y is oriented clockwise,
b 7o TI"L! if e;, = ¢, and 7y is oriented counter-clockwise,
R VL0 v if e;, = ¢,, and 7y is oriented clockwise,

Thap! if e, =¢,, and 7y is oriented counter-clockwise.

Proof. Let p : G — G be a map and denote by p : CG — CG its linear
extension to CG. If 7 is aligned, then

(BoT9)(k) = 8y4p(k) = Opgy peyp(k) = (T2 0 p)(k),

and if 7 1s not aligned and ¢ : G — G, a map with extension ¢ : CG — CG
such that it satisfies p(k) = q(k), we have

(B0 T5) (k) = 0qup(k) = 8p(q) pyP (k) = 85555 090 (k) = (T 0 ) (k).
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If 7 is aligned, the result then follows by substituting p = Lﬁl. If 7 is not
aligned note that

kh = hk = L"(k) if 71 is not aligned and locally clockwise oriented,
T (k) = @ = ka = RfL(k) if 7y is not aligned and locally counter-clockwise oriented,
o hk = kh = R"(k) if 7 is aligned and locally clockwise oriented,
kh =hk = L"(k)  if 7y is aligned and locally counter-clockwise oriented,

(3.2.6)

and we can choose ¢(k) to be the right-hand side of Equation (3.2.6) in each
case to obtain the result.
[

So far, we have been focusing on describing the geometric structure of
the lattice. To inspect how the operators just defined can be used to create
charges in the model, we need to shift our attention to the Hilbert spaces H
of the regions A C E. A useful basis is given by the elementary tensors

Ca(A) = {(X)% | . € G} C Ha.

eeA

Elements in Cg(A) are in one-to-one correspondence with maps A — G;
Clearly, an elementary tensor v € Cg(A) defines a map v : A — G by setting
v(e) =, for an edge ¢ € E. On the other hand, given a map v : A — G, we
can identify 7 as an element of Cg(A) via the identification

v Q) (e).
e€A
We will interchangeably view v € C(A) either as an elementary tensor or a

map from A to G. We call the elements in Cs(A) G-connections. If ¢* is a
dual edge and ¢ the unique edge crossing ¢, we define

() = 7(e). (3.2.7)

This definition is useful when considering the value of an expression of the
form Ly at the edge crossing the dual edge e,, since we can then simply
write (L"v)(e,) without passing to the corresponding edge crossing e, first.

We now want to define a map that measures the charge of a G-connection.

Definition 3.2.5. Let p = (vy, ..., v,) be a path. Then we define the charge
measure 3P as follows: If p = {v;, v} consists of a single edge ¢ := (vy, vy),
we set

» ) ifeel,
BY0) = {(’y(e)) ifec E. (3.2.8)
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If p = (p1,p2) is a concatenation of two composable paths p; and py, we set

BP(y) = g# (1) %) (v), (3.2.9)

and extend B® linearly to H. If p is a closed path and 1) € H,, then we
call 3% (1)) the monodromy or magnetic flux/charge of ¢ in the area
enclosed by p. Otherwise, we call 3?)(¢) the S-value of ¢ along p. If p is
closed, we call the monodromy of a G-connection v trivial if %) (1) is the
identity element e € G.

Note that 3 is independent of the choice of A, that is, if A C A’ for some
larger bounded region A’, we can extend ~ arbitrarily to a GG-connection on
A’ without changing the value of 3®)(v) for any path p contained in A.

We are now in a position to define the interaction terms of the quantum
spin system. The electric and magnetic charge operators of the system are
defined as follows: Let A be a finite region of the lattice and Ay = B(H,)
as before and let v be a vertex such that all edges connecting to v in 4
are contained in A, i.e. for all edges ¢ € F with v € J¢ we have ¢ € A. If
s1 = (v, f) € S is asite with vertex v, we let &, = (71, ..., 74) be the smallest
clockwise oriented ribbon around v starting and ending at the site s; (See

Figure [3.10) and we define the operator

4
Af = LE. (3.2.10)
i=1

We call the operator A’;l vertex operator, star operator or electric
charge operator at site s;. The term star is related to the star-shaped
domain of A’;l, see also Figure . We will also define the operator

A, = ﬁZA’;. (3.2.11)

keG

for any site s € S and call it the projection into the trivial electric
charge at the site s.

Next, let f be a face in A, i.e. f € ¥,, and s, a site with f as a face.
Set &, = (71,...,74) to be the smallest locally counter-clockwise oriented
direct ribbon around f starting and ending at s, and let ¢ € C(G) be an
element in the dual of CG. The plaquette operator or magnetic charge
operator BY at site s = (v, f) is defined as

T4

B =>"1" 01" 01" 015", (3.2.12)
()
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Vg A Vs

U1 V2

Figure 3.9: Depiction of the star(blue) and plaquette(red) shaped domain of
the star and plaquette operator. If v is a G-connection on this region and
Y, ---,74 € G such that v; := ~(e;) and edges e; = (v1,v2), ¢ = (v, v3), 3 =
(v3,v3) and ey = (v4,v1), then the action of the plaquette operator can alter-
natively be described via v — 3. (5P(7)) = 6e(V1727374) = Oy y9.7574 -

where we used the Sweedler notation introduced in Equation (2.3.4)).

We want to add an alternative way of defining the plaquette operator
B?: Let v € G¢(A) be a G-connection on some bounded region A containing
the site s = (v, f) and ps the smallest path starting and ending at v and
moving counter-clockwise around f (compare with Figure again). Then
B¢? coincides with the linear extension of the mapping

B? iy = o(8%)(7))7. (3.2.13)

If ¢ = 6. for some ¢ € G and k € G, we can depict the plaquette operator as

93 93
Bgc © Ya £ 92 > Oc.gigagsgs 94 % 92,
91 a1

and the star operator as

TS R L

— )

hy hs hik hok

where h;,g; € G are the group elements sitting at the depicted edges. Let
C C G be a conjugacy class of G and ¢ € C. We say that an element ¢ € Hp
has a magnetic flux of type C at site s if B%(v)) # 0. It is easy to verify
that the star operators A* leave the type of magnetic charge at the site s
invariant. Indeed, we have the following commutation relation

Bl AR = AFB, (3.2.14)
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Uy U3

Vo U1

4
YN

Figure 3.10: Picture of a locally clockwise oriented dual ribbon around a
vertex starting and ending at site s; (blue) and a locally counter-clockwise
oriented direct ribbon around a face starting and ending at site sy(red). The
= symbol is used to indicate the direction of the edges associated to the
triangles, as explained at the beginning of this Section, see also Figure |3.8
The ribbon operator associated to the blue ribbon depicts the star operator
at site s, whereas the ribbon operator associated to the red ribbon depicts
the plaquette operator at site s;. The plaquette operator can alternatively
be described by v +— (6P (7)) for the path p = (vy, v, vs, vy, v1).

Hence, if C is a conjugacy class in G and y¢ : G — C the characteristic
function on C, then

[AE, BX] =0

for all k € G.

Since we will rarely use any functions on G other than delta functions in
the argument of the plaquette operators, we will ease our notation by writing
BY instead of BY from now on.

Given a site s = (v, f), we will write star(s) to denote the unique star
shaped region with the vertex v at its centre. Similarly, plaq(s) denotes the
unique plaquette shaped region with f at its centre.

Note that the star operator, unlike the plaquette operator, really only
depends on the vertex v and not on the full data of the site s = (v, f), and
we may identify A¥ = A¥ at times. For the plaquette operator, however, we
indeed need to know the site and not just the face to determine its action. If
v and v are different vertices such that s = (v, f) and s = (¢/, f) share the
same face, one can verify that B¢ = B;?I for some ¢ in the conjugacy class
of c. The reason for labelling both the star- and plaquette operator with the
site s will become clear in Section [3.4 See in particular Proposition [3.4.1
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We want to pay special attention to the trivial conjugacy class C = {e}
and call the operator

B, := B¢ (3.2.15)

the projection into the trivial magnetic charge at site s. If v € Cg(A) is
a G-connection, then we call it flat if the monodromy around each plaquette
in A is trivial, and we denote the set of flat G-connections on A by C’é(A).
Note also that the definition of the star operator still makes sense when
not all four edges of the star are inside the region A, whereas the plaquette
operator only acts on sites where the full plaquette is contained in A. Since
we will only really be concerned with square-shaped regions, this will pose
no restriction.

The dynamics of the quantum double model are given by the interaction

1 —As if A = star(s) for some site s € S,
o(A) = 1— B, if A =plaq(s) for some site s € S,
0 otherwise.

For a finite region A C F, we define the local Hamiltonian H, as in Equation

to be:
Hy= Y (1-A)+ Y (1-By). (3.2.16)

star(s)CA plag(s)CA
The local time evolution is given by Equation (2.5.8) as
Th A D A exp(itHy)Aexp(—itHy).

(Clearly, the interaction ® is translationally invariant and uniformly bounded.
By Theorem and subsequent discussion, it follows that TtA % converges
for all A € 2 uniformly on compact sets in R to a time evolution Tf, which
we will just denote by 7, with infinitesimal generator §. This model is called
Kitaev’s Quantum double model of G.

The rest of this section is dedicated to showing the existence of a unique
frustration free ground state wy. We remind the reader that frustration free-
ness means here that wy(As) = wo(Bs) = 1.

Proposition 3.2.6 ([Naal2|, see also [EN15, [CNNI6]). Kitaev’s Quantum
double model admits a translational invariant ground state wy : A — C
uniquely defined by the equations

WO<AS)
wo(Bs)

1 (3.2.17)
1 (3.2.18)
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on all sites s and the corresponding GNS representation (T, Huwys wy) S
faithful. Furthermore, if A,, is a square-shaped region of size n € N, then

1 f
wo(T7) = {|Cé(An)y if v € Cg(An),

0 otherwise,
where T 1is the projection defined in Equation (3.2.22)).

Note that being translationally invariant means in particular that
wo(As,) = wo(As,) and wy(Bs,) = wo(Bs,) for all sites sq,s2 € S since Ay,
and Bs, can be transformed into A,, and Bs, by translation. Hence, Equa-
tion and (3.2.18)) are equivalent to saying that wy is translationally
invariant and that wo(Hy) = 0 for every bounded region A.

Equations (3.2.17)) and (3.2.17)) imply together with Lemma [2.5.13

wo(X) =wo(AX) = wo( X Ay) (3.2.19)
wo(X) =wo(B,X) = wo(X By) (3.2.20)

for all sites s and X € 2(. Furthermore, because of A¥A, = A,, we also have
wo(X) = wo(AFX) = wy(X A¥). (3.2.21)

We will use these identities frequently throughout this work.

Although a proof of Proposition can already be found in [Naal2],
we will include a sketch of the proof here, as we will use similar arguments
later in the proof of Theorem [3.6.7,

Before we attempt to prove Proposition |3.2.6] we want to develop some
more physical intuition. In view of Equation , we should think of a
ground state as a state that has trivial magnetic charge around each plaque-
tte. In view of Equation (3.2.19)), which is equivalent to Equation (|3.2.21)),
and knowing that star operators A* for k € G permute G-connections with-
out changing the type of the magnetic charge at each plaquette, we would
like to think of the vacuum state as the equal weighted superposition of all
states with trivial magnetic charges. To really understand what this means,
we need to lift our notions of magnetic charges to that of operators on 2
first.

Given a G-connection v : A — G, we define an operator T7 € 2, via

7 =172, (3.2.22)

eeA
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where 7, is the direct triangle aligned with e. If p = (vq,...,v,) is a path in
A and ¢; = (v, v41), i =1,...,n — 1, we set similarly
T =1]7. (3.2.23)
e

Note that in the latter case, ¢; might be an edge with reversed direction if p
is not aligned. Finally, if ¢ € G, and p, ¢; as before, we define

9= ) T (3.2.24)

Note that Ty = v only if 7 has fS-value g along p and T}y = 0 otherwise.

We want to distinguish G-connections by the magnetic charges they repre-
sent at each site. To that end, let A be a bounded region and x : S(A) — G be
a map that associates to each site some element in G. Given a (G-connection
v € Ce(A), we can construct a map k- : S(A) = G via

ry(s) = B (y) € G,

where p, is the path defined as in Equation . We say that two G-
connections 7,72 € Cg(A) exhibit the same magnetic charges at site s,
written y; ~ 72, if K4, (s) = K4,(s). This is an equivalence relation, and the
next lemma states that we can transform equivalent G-connections to one
another using star operators only.

Lemma 3.2.7. Let A,, be a square-shaped region of sizen > 1, sg = (v, fo) €
A a site and 1,72 € Ca(Any1) G-connections with v, ~g, 2. If the magnetic
flux of v1 and 7y, is trivial on all sites s = (v, f) with f # fo, then there exists
a finite sequence of star operators {A’;}Z with k; € G and s; € A,y such
that

[T 450 = (o).

for all e € A,. Furthermore, the sequence {A’;}Z can be chosen such that

S; 7 S0-

This lemma and its proof is motivated by [Naal2, Lem 12.1.2], and the
intuition behind the lemma in [Naal2] is that G-connections that have trivial
magnetic charge at each plaquette can be permuted into one another using
star operators only. What is new here, and perhaps somewhat surprising at
first glance, is that we claim such a permutation can be achieved even when
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refraining from using vertex operators at a fixed vertex vy. The implication
is that if a G-connection has a single non-trivial magnetic charge at some
site sp, then this G-connection can be permuted to any other G-connection
with the same charges at each plaquette, since such a permutation can be
achieved while using star operators A* with s # so. This will be used in the
proof of Theorem later as well.

Proof of Lemma[3.2.7. We will provide an algorithmic construction to trans-
form all edges in A,, using star operators at sites s # so. Let so = (vo, fo)
and v w.l.o.g. in the lower-right corner of f see Figure [3.11]

Let {v;}; be a finite sequence of vertices constructed as follows: Set p; to
be a path starting at vy and moving horizontally to the right until we reach
the right boundary of A,, and write p; = (vg, v1,...,v;) with some i; € N.
Set v;, 41 to be the vertex right above v;, and let py = (v;, 415,42, - . -, Vi,) be
the path going horizontally to left until the left boundary of A, is reached
again. If v;, is right above vy, we stop. Otherwise, let v;, 1 be the vertex
below v;, and let ps = (vi,41,...,v9) be the path moving horizontally to
the right until we reach vy again. This forms a closed direct path p =
(p1, 2, p3) = (o, V1, - ..,0;,v) starting and ending at vy. We will first show
that using vertex operators at vy,...,v; we can transform the values of the
G-connection v; along the path p to the values of vo. Let ¢; = (v;_1,v;)
for 2 = 1,...,7 and define k; € G recursively as follows: If we set k; =

Y2(e1)v1(e1), then

(Alv?%)(el) = 71(31)72‘1 = 72(91)71(?1)72(31) = 72(91)-

Giving ’ygl)(el) = (eq) for 7{1) ;= A~ We then proceed inductively by

setting k; = 72(e)7 (e;), & € E and k; = (e if ¢ € E. Then
%J ) coincides with vo on all edges ¢; for ¢ = 1,...,j. Note also, that star
operators leave the flux of +; at each site trivial, and if fyfj ) coincides with

~9 on three out of four edges fi, fo, f3, f4 forming a plaquette, then conditions
like

W) () Gs) () = 1 (F) - wa() - a(fs) () (3:2:25)

implies that they must coincide on the last edge as well. Figure demon-
strates that then ’yfj) and 7, coincide on all edges enclosed by p as well.
For the other edges, note that we can use similar techniques walking down
from the vertices vy, ..., v, Vig41, . .., V5, V9 and walking up from the vertices
Vij+1,- - -, Vi, and deducing the value from the remaining edges from condi-
tions as in Equation (3.2.25). This process is independent of the concrete
position of sy in the lattice, and the proof is concluded. O
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o 025_ o C26_ Cor_ _ C28 _ €29 _ €30__
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Figure 3.11: Depiction of the algorithm on a square lattice of size 6 with
so = (vo, fo) , fo in the centre. The red arrow —= symbolizes that we act
with a star operator at the tail of the arrow with the intention of transforming
the edge under the diamond-shaped arrowhead. In the notation of the proof
of Lemma , we have p; = (vg, v1,v2,v3), p2 = (V4,0s5,...,010) and ps =
(v11, V12, V13, V). Acting with star operators in the order indicated by the
vertices, i.e. acting first with A’;}, then with Aﬁ‘;’ etc., we can transform
the G-values at the edges under the diamond-shaped arrowhead to arbitrary
values. The dashed edges indicate that the value on the respective edge
is already uniquely determined by the values of the surrounding edges. The
reader may verify, by considering the edges in the order they are labelled, that
each G-value is uniquely determined and that no consecutive star operator
influences the intended transformation of a preceding star operator.
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Proof of Proposition[3.2.6. Note first that if wy is a state satisfying Equation

(3.2.17) and (3.2.18)), Equation (3.2.19) and (3.2.20) imply that wq is left

invariant by the time evolution, and it follows that wy is indeed a ground
state by Proposition 2.5.17 It then follows from [BR03, Prop. 6.2.17] that
the GNS representation of wy is faithful.

Next, let A,, be a square-shaped region of size n > 1 and v € Cg(A,41)
be a G-connection on a square-shaped region of size n + 1. Then because of

[B.2.20)

wo(Ty ) wo(B,TY,)

for each site s € A, it follows that wy(7) ) = 0 unless 7 is flat. By Lemma

n

, we have wy(T!) = wo(Ty?) for all 71,7, € CL(A,), since we can
commute with arbitrary star operators according to Equation (3.2.21)) and

Lemma [3.2.7 Since wy is a state, we have

L=w(la) = Y wo(T)= >, wo(T},) =ICa(An)|wo(T30),

Y€CG(An) ~ECL(An)

where 7 is an arbitrary but fixed flat G-connection vy € C&(A,,). This shows
that wy takes the fixed value wy(Ty ) = m for all v € Ca(Ay).
G n
To show that wy is uniquely determined, we show that for observables X €

20 supported in A,,, the value of wy(X) is already determined. Similarly to
how we defined T} in Equation (3.2.22)), we may define the operators

=] . (3.2.26)

QEAn

Then it is enough to consider operators of the form
LY TX

since these operators span all local operators supported in A,,. Using plaque-
tte operators, one can show that either wo(Ly T} ) = 0 or BsL} T,? B, =
LY T2, implying that 7} must have a flat G-connection everywhere and if

75 is such that LY T\* =T XiLXln, then 5 € Cg(A,) as well. Since such a
transformation can already be performed by star operators and because the
action of L}' on operators of the form T* is faithful, it follows that L}’ is
given by a sequence of star operators, giving

L B223) 1
wo(L TY2) == wo(T}?) = T
cLin)

n
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We will pay special attention to the representation (Hy,, Ty, ) and
simply write H instead of H,,, Qo instead of €, and identify m,, () with
2, suppressing the representation map under exploitation of the faithfulness.

It follows from (3.2.17)) and (3.2.18)) that ) lies in the image of A, and B,

for all sites s, i.e.

AQo = B,Qy = Q. (3.2.27)

3.3 Ribbon Operators and Excitations

In this section, we will explicitly construct operators in 2 that can be used to
describe charges of the quantum double model, and study their properties.
These operators are called ribbon operators, and are defined for each ribbon
¢. We will construct them using the triangle operators introduced in the
previous section in such a way that they create charges at the endpoints of
the ribbon &. In view of Equation (3.2.27), such an operator F¢ should be
such that the condition in Equation @D is violated at 9p¢ and 0,§. We
say an operator X creates an electric excitation at s if A, Xy # Xy and
a magnetic excitation at s if B,X )y # X €.

We will demonstrate how Lﬁo changes the magnetic flux of a flat G-
connection for a dual triangle 7y and h € G, thus creating a magnetic charge.
Let 79 = (so,51) be a dual triangle. Let y be a flat G-connection on some
region A and e,...,e4 € A a plaquette enclosing the face f; = f(s1) such
that dpe; = v(s1), i.e. s; = (Oper, f1). fh € G, v :=(e;) fori =1,...,4
and 7y a locally counter-clockwise oriented, then we have

s 3

cTh . _2al___N Y2 o hv4 f1 2
leLm N e 571727374h70
Y d
N7z
doe1 71 doe1 Y1

If ~ is flat, then ;799374 = e, and the above expression is non-zero if
and only if h = ¢. Hence, the operator Lﬁo creates a magnetic charge of type
Cr = {ghg | g € G} at site s; when acting on a flat G-connection. Similar cal-
culations demonstrate that Lfo creates a charge of type C; = { ghg|ged }
at site sgp and one may repeat the calculation for locally clockwise oriented
triangles to arrive at the same result, i.e. all dual triangle operators create
the same charge-type regardless of their choice of local orientation and this is
precisely the reason for having different definitions for Lﬁo for different local
orientations of 7.
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A systematic way to create such pairs of excitations can now be found as
follows: Let 71 = (s1, s2) be a locally counter-clockwise direct triangle and let
Ty = (82, 83) be a locally counter-clockwise oriented dual triangle such that
(70, 71, T2) forms a ribbon. Then

3 7. V3 k4
b [aihye el o 22 6| = Ry | Tihmve 76
TO T2 N N ., 3
SO\\ /’5] 52\\ /’53 Y1 V5
1 V5

h

TOL?;’WW around the site s, is given by

and if ~ is flat, the magnetic flux of L

Nhyv2¥s7ahy = J1hhy = e.
As we have discussed before, switching sites within the same plaquette only
conjugates the flux of a G-connection, and it follows that the flux at s is
trivial as well. Furthermore, the calculation from before shows that the flux
at s3 is y1hy; € Cp, and the flux at sq is still h € C;,. Thus, L’;l Lj;}”l creates
a magnetic flux of type C; at site sg, of type C; at site s3 and leaves the
magnetic charge trivial at all other sites when acting on ~. For an arbitrary
flat G-connection v, the same can be achieved with the operator
> LhT Lo

TOTT1T T2 ?
geG

since T2 v # 0 only if 7y = g. This construction can be repeated recursively
to obtain operators that create charges at the endpoints of any ribbon £ =
(s1,...,8,) without creating charges at the sites in between. The idea behind
this construction is due to [Kit03].

Definition 3.3.1. For each ribbon &, we define a family of operators
{Fh’g } as follows: If £ = () is the empty ribbon, we set
£ h,geG

Fi9 = e gla, (3.3.1)
where 1g is the unit in 2. If £ = 7 consists of a single triangle, we set

pho _ Oe gLt if 7 is dual,
T | T¢ if 7 is direct.

Finally, let £ = (&;,&) be the composition of two ribbons & and &. Then
h,g h.k khk.k
F9 =Y " FMFRSM, (3.3.2)
keG

th’g is called a ribbon operator with ribbon &.
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The well-definedness of Equation can be shown by decomposing
F: Y inductively into a composition of all triangles which make out £ =
(T1y. .., Tn). Let {m,..., 7} beall direct- and {71, ..., 7;} be all dual triangles
of which ¢ consists, ordered such that the edges (e, ..., ¢, ) and (ez,...,¢z)
form the direct path {% = (dper,, oery, - - -, Dotr,, O1er,,, ), respectively dual
path €% = (Jpez, Doesy, ..., 000z, 0105) of & Let furthermore &;; be the
direct path of £ up until we reach the vertex of the dual triangle 7; (see
Figure . Then for a G-connection v € C(A) defined for a finite region

° ? » ?
7

o s 2 4 v
P

o D D 3 v4

71 2
° W \/
vy v v3

Figure 3.12: The figure demonstrates the action of a dual triangle operator of
a ribbon operator at the end of a subpath of the direct path of that ribbon.
The depicted ribbon £ contains the dual triangles 71, 79, 73, 74. The direct
path up to the third dual triangle 75 is given as ;3 = (v1, va, v3,v4) (red). If
7 is a G-connection with 3¢¢3)(y) = k, then the ribbon operator th 9 acts
on the edge ez, with LE"*.

A containing &, we obtain

Fg‘% HZ L Efk ~, (3.3.3)

7j=1keqG

where Tk , s defined as in Equation (3.2.24)).

We Wlll omit the details of verifying the above formula, as 1t is a straight-
forward application of Equation - We refer to Figure for a de-
piction of the action of the ribbon operator F Y on a G- connectlon v. We
note that ribbon operators span the space of all local operators 2;,.. This
trivially follows by considering single triangle ribbons £ = {7}, since these
already provide all left multiplications and delta projections at each edge.



3.3. RIBBON OPERATORS AND EXCITATIONS 87

Y1 Y2 V3

T1V2735€ s ¥s5 - Y1hv | v6 - 2 V1hv172

Figure 3.13: Depiction of the action of the ribbon operator th Y on a G-
connection v with values v(¢;) :=v; € G.

Remark 3.3.2. In a more general setting, formula can be expressed
in terms of the quantum double D(H) of a general Hopf algebra H and the
well-definedness can then be reduced to the coassociativity of H, see [CCY21]
for more details.

Given a ribbon &, we define the operator L’g to be

Ly =) FM (3.3.4)
keG

Lg is essentially the sum of the dual operators appearing in Equation (3.3.3)).
A more compact way of writing down a ribbon operator that reflects the

formula ([3.3.3]) can then be given by
F{9 =T, LY. (3.3.5)

As mentioned before, the most important property of ribbon operators is
that they create charges only at the endpoints of the ribbon. Let s; = 0;&,
t=20,1. Then F, éh 9Q) is a vector with magnetic flux h at site s, and magnetic
flux ghg at s;, whilst projecting into G-connections with 3¢ (y) = g, €4
being the direct path of £ and 8 defined in Definition |3.2] This is obvious
in the case where £ = (). To see that this is also true for a general ribbon &,
we may decompose & = (£, &) into an arbitrary concatenation of ribbons &;
and &. Using formula then allows for an inductive argument using
similar calculations as the ones preceding Definition [3.3.1 See also [Kit06].

The property that ribbon operators create charges only at their endpoints
can be characterized by the commutation relations between ribbon operators
and star- and plaquette operators.

Lemma 3.3.3. Let & be a ribbon with s1 = 0o and sy = 01&. Then the
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following commutation relations hold for all h,g,k,c € G and s & {s1, $2}:

h,g _ pkhkk
AL F0 = F AL (3.3.6)
k hg _ hgk gk
A Fy v = Fe AL,
Froal| = [RMo Be] = 0. (3.3.7)
If € is locally clockwise oriented, then we have
¢ h,g _ 1h, ch
BS Fe ¥ = F; ngo_, (3.3.8)
B¢ F9 = F9 B3, (3.3.9)
If € is locally counter-clockwise oriented, we have
c h,g _ 1h, he
BS Fe ¥ = F; gBSO_, (3.3.10)
BS F{9 = F9 B9, (3.3.11)

See [CCY21] for a proof.

Remark 3.3.4. We emphasize that the commutation relations in Equation
and differ from the old literature, see e.g. [BMDO0S| (B42)].
This is because different local orientations were not taken into account in
these sources, choosing the same action for ribbon operators regardless of
their local orientation. In that case, however, it is neither guaranteed that a
ribbon operator of the form th Y always creates the magnetic flux h at 9y,
nor are the commutation relations given in [BMDOS| entirely correct. See
[CCY21l, Sec 3.3] for a more detailed exposition on this subject.

It is important to note, that we always have

By, F{ =FB! (3.3.12)
By, F{9 =F[ B (3.3.13)

for s = 0p€ and s; = 01€ regardless of the local orientation of £&. This
will be useful when dealing with the interaction terms (1g — By) of the local
Hamiltonian.

Star and plaquette operators are ribbon operators as well. Note that the
sites of a direct (dual) ribbon share a common face (vertex), see also Figure
again. Let s be a site, and £ the unique locally clockwise oriented
dual ribbon starting and ending at s. Then Fgfzf is the product of four dual
triangle operators acting precisely as the star operator A" for g = e, i.e.

Fl9 =5, Al (3.3.14)

£gv
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Similarly, if €% is the smallest closed locally counter-clockwise oriented direct
ribbon starting and ending at s, then F, "9 is a sum of the product over all
direct triangles operators measuring a magnetic flux g around s, i.e.

Flv9 — B9, (3.3.15)

e

It is straightforward to verify that if £# and £ are the unique direct, re-
spectively dual locally counter-clockwise oriented ribbon surrounding s, then

Fll =0, AL (3.3.16)
Feif =B, (3.3.17)

We caution the reader not to confuse the local orientation of a ribbon with
the way it encircles an area. Indeed, a locally clockwise oriented dual rib-
bon moves counter-clockwise around its vertex, whereas a locally counter-
clockwise oriented dual ribbon moves clockwise around its vertex, which can
also be seen in Figure [3.10

We derive some useful algebraic relations for ribbon operators.

Lemma 3.3.5. We have the following identities for any ribbon &:
(1)
F{eFE2e = 6, 0 0 (3.3.18)
for all hy, ha,g1,92 € G.
(2)
() =5
forallh,g € G.
(3) If € is the obtained by inverting the direction of &, we have

Fl9 = FP"9, (3.3.19)

(4) Finally, we have

Z ng,kFchk,Eg _ Féz,g _ 5@,9191 (3.3.20)
keG

forall h,g € G.
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Proof. Part |(1)| is a simple application of Equation (3.3.3)), using that
ThTk = 5k1 kQT’“ and LM L% = "% for all ki, ky € G. Note that no
two trlangles overlap in &, hence all trlangle operators appearing in Equation

commute. Similarly, Part . (2) follows from (L")* = L. To see part

[.] we first make a few observations: If €% = (Opey, .. Goen,alen) is the
direct path of & = (s1,...,s,) and &, ; the direct path _of & up to the dual
triangle 7; (see discussion after Definition [3.3.1)), and & = (s,,...,s;) the

ribbon with direction inverted, then if v is a G-connection with B(gdi)(y) =g,
we have

B(gd,j) (f}/)B(éd,lin) (7) =g

where [ is the map defined in Definition Using (3.3.5) and - we
obtain

thg g _ H Z gdeL’TCJghgk

j=1keqG

. kB w)ghgﬁgdf( )
H Z Tﬁd d LTJ v

j=1keqG

l -
[ ),
dj Tj

j—lkEG

jrl—j+1 5@4 BleanMhBey H g
- HZ &d,j 7:1 ! ' ")/—Fg ’

j=1keqG

where we used that Lt = L for all k € G at the end. Part [(4) now follows

from part

R,k khk 2 .k 12ghg,gk &
S VAT N
k k

]

We say that two ribbons & and & have the same endpoints if 0y&; =
o€ and 01§ = 01&. If in addition & # &, we call & a deformation of &;.
We want to show that if & is a deformation of £&; and ¢ € ‘H a state that has
no excitations in the region between &; and &, i.e. if Ay = B = 4 for all
sites enclosed by the ribbons £, then Fg’g W =F, 5}; Y4). In other words, we can
deform ribbons in the absence of excitations. This statement is Corollary
and the following discussion leading up to that corollary serves to give
the necessary insight to prove this result.
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Lemma 3.3.6. Let py,pa be two paths, with Ogp1 = Ogpa and Ovp1 = O
contained in a region A and define

By= ][] B. (3.3.21)
sES(A)
Then we have for all g € G
T4 By =T} Ba. (3.3.22)

It follows that
TYB) = 04..Ba
for any closed path p and g € G.

Proof. Equation (3.3.22)) can be verified by acting on an arbitrary flat G-
connection. If v is a flat G-connection depicted as

vq v3

Y12 Y13

v1 v2

on some plaquette in A, then 7175 = v374. In other words, we have
Ty =Ty,

for all v € im(B,), where p; = (v1,v2,v3) and ps = (vy,v4,v3). Using
these atomic deformations, we can transform any path p; to any path ps by
changing the way p; traverses each plaquette step by step, while keeping the
starting and endpoint of p; and p, fixed. This shows Equation (3.3.22). If
p is a closed path, then p can be decomposed into two subpaths p; and ps
with p = (p1, p2). Since 01p; = Oyp2 and Jyp; = O1pa, we can deform ps into
p1 and we have

k k gk
Tpgfy = Z Tﬁlszg’y - Z Tpngﬁlg’Y - Tpgl Tﬁl = Z 59@147'
keG keG keG

But 4y g, = 0 unless g = e. ]

Before we continue, we want to introduce some terminology that allows
us to separate the action of a ribbon operator th’g into an action on the

direct path £% and an action on the dual £%*.



92 CHAPTER 3. KITAEV’S QUANTUM DOUBLE MODEL

Definition 3.3.7 (Dual Action). Let £ be a ribbon with dual triangles
(11,...,7) and h,g € G. If v is a G-connection with Féh’gv # 0, we say

an operator X € 2 has the same dual action as F?’g on 7 at edge ¢ if

X7 is a G-connection as well, ¢ intersects e, for some t =1,...,n and

(X7)(er) = (F97)(en),

where we identified v(e,,) = (¢), see Equation (3.2.7). We say X has the
same dual action as Fh on 7 if X has the same dual action as F Y on vy
for each edge intersecting e, fort=1,... ,n. If X has the same dual action
as F, gh Y for each G-connection, we simply say X has the same dual action

as th’g . Finally, we call the transformations performed on the values v(e.,)
the dual action of F?’g

Write
h,g k: khk
iy = HZ TE LY
ji=1keqG

using the same notatlon as in Equatlon . Then an operator X has the
same dual action as F ony ¢ ker( ) at ¢, if and only if
€ €aj
(X)(er,) = (LL MO e, (3.3.23)
and it has the same dual action as F; "9 on v if Equation (3.3.23]) holds for

3 ¢
all j =1,...,1. Trivially, each of the operators Lﬂ BRI () appearing in

Equation - 3.3.3) has the same dual action as Fe g at ¢, on each G-connection
v & ker(th 7), and the operator L defined in Equation (3.3.4) has the same

dual action as th,g .

We have shown in Lemma that for ribbons &; and & with the same
endpoints, the operators Tiai and Tg coincide when acting on a flat G-
connection, giving us some freedom of choice for the direct path of a ribbon
when acting on the vacuum. What may be less obvious is that the dual
action of a ribbon operator is independent of the choice of the direct path
when acting on a flat G-connection as well. First, note that if p* is a dual
path in A, then we can find a ribbon ¢ in A such that &, = p*. This is always
possible, because for a face f to be contained in A, we must always have that
the surrounding edges are contained in A as well. We would like to have
a definition of the form L}, = L, where the right-hand side is defined in
Equation (3.3.4 - Although this deﬁmtlon is dependent on the choice of &, it
becomes well-defined when restricted to the image of By defined in Equation
(13.3.21)).
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Proposition 3.3.8. Let p* = (f1,...,fa) be a dual path in A and let
(T1, ..+, Ta_1) such that 7; = (sgz),sg)) with sﬁ” = (v;, fi) and sg) = (vi, fir1)
fori=1,...,n— 1. Furthermore, let ¢; be the edge that intersects with the

dual edge (f;, fix1) for each i =1,...,n—1 and (uy,...,u,_1) a collection
of vertices such that u; € Oe¢; fori =1,....n—1. If p = (wy,...,wg) is
any path that contains {uy,...,u,—1} in any order, i.e. there exists a map
t:A{1,....,n—1} = {1,...,k} such that u; = wy, (see Figure , then for
any ribbon & with dual triangles (71,...,T,_1) the operator
S T zick (3.3.24)
keG i
with p; = (wn,...,wy,) has the same dual action as th’g on each flat G-

connection vy & ker(th’g). It follows that

S T 7k L*rs y = Floy (3.3.25)
keG i

for all flat G-connections v € Cg(A) and any path py in A with Oopy = oL
and 01p; = 0,6%, where €% is the direct path of €.

Proof. Note that for each 7, both v; and u; are vertices at the boundary of
the same edge ¢; and we either have u; = v; or u; and v; are at different
ends of the same edge ¢;. The action of a dual triangle operator appearing
in Equation for some ribbon operator F: Y on a G-connection 7y is
determined by the group element h and the g-value of v along the subpath
of €4 that starts at 9pé% and ends at the vertex v(7;) = v; of the dual triangle
7;. By Lemma , this is independent of the path chosen between 9y¢% and
v(T;), covering the case v; = u;. So we assume v; # u; and let 7; = (s, 8;11)
be the unique dual triangle in & with v(7;) = v;. We define p; := (£% : v;)
and py := (p : u;) to be the path £% respectively p cut off at v; respectively
u;, and let 7; = (§;, 8;11) where §; = (u;, f(s;)) and 841 = (ug, f(Si41)). Ti is
just a mirrored version of 7;, see also figure . In view of Equation ,
we must show that

(Lfi(ﬁﬁ(»y)hﬁ(m)(’y)fy)(ei) = ( §;p2>(v)hﬁ("2)('¥)7)<ei) (3.3.26)

holds. Setting p., 1= (vi,u;), ke, := BP) (), ky 1= BP(v) and ky := BP2)(v),
we have by Lemma |3.3.6

klkei - kz. (3327)
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Figure 3.14: Depiction of the scenario described in Proposition On
the left, a ribbon ¢ is drawn with direct path % = (vy,...,vs) and dual
path &% = (fi,..., fz). In the right figure, no direct triangles are drawn,
but the dual path is still covered by the depicted dual triangles. The red
path p = (wy,...,wg) covers the vertices w; = vy and wy = ve. The vertices
ws, we and wy lie at the opposite endpoint of the edge shared with vy, v3 and
vg respectively. In either case, the path p covers at least one vertex at the
boundary of every edge that intersects with the dual path. Note also that p
starts at v; = v(9p€), but does not necessarily have to end at v(0;¢) for the
dual action to be the same.
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We distinguish four cases.

Case 1: 7; is aligned and locally clockwise oriented

In this case, we have k.; = v(¢;) giving k17y(e;) = ko and y(e;)ky = k1. Then
we have

LI () () = Fabhy - (es) = (e0) - Fahks = L (3) (),

since 7; is aligned and locally counter-clockwise oriented.

Case 2: 7; is not aligned and locally clockwise oriented

In this case, we have ke; = v(¢;) giving v(e¢;)k1 = ko and ky = kyy(e;). Then
we have

LEMR () (e)) = 7(e) - kihky = kohks - y(er) = LF2M2(7) (ey),

since 7; is not aligned and locally counter-clockwise oriented.
Case 3: 7; is aligned and locally counter-clockwise oriented

In this case we have ky; = 7(e;) giving v(e;)k1 = ko and ki = kpy(e;) as
before. Then we have

LM (7) (e;) = (&) - kuhky = kohks - 7(er) = LEM2(3) (ey),

since 7; is aligned and locally clockwise oriented.

Case 4: 7; is not aligned and locally counter-clockwise oriented

In this case we have k,; = v(e;) giving ki1y(e;) = ko and v(¢;)ke = k1 as in
the first case. Then we have

Lilhkl (7)(ei) = kihky - y(e;) = 7(e;) - kohksy = Léfhkz’ (7)(ei),

since 7; is not aligned and locally counter-clockwise oriented.
O

This shows that the dual action of a ribbon operator F; gh Y is determined by
the dual path £ in the following sense: Let & be a ribbon in some bounded
region A with dual path €% = (fy,..., f,) and let {sy,...,s,} be any choice
of sites, not necessarily of ¢ such that f(s;) = fi. Let further {ey,...,e,}
be such that e; intersects the dual edge (f;, fir1) fori =1,...,n— 1 and p;
any path contained in A starting at vy = v(9p€) and ending at v; := v(f;) =
v(fir1). By Lemma m, the value k;., := B®)(v) is independent of the
choice of p; for any flat G-connection ~, as long as the endpoints of the path
stay fixed. Then for any flat G-connection v ¢ ker(th’g) andi=1,...,n—1
we have

(FE99)(60) = (LE509) ).
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Figure 3.15: Depiction of two vertices v; and u; at opposite sides of the same
edge ¢; = (v;,u;). The dual triangles 7; and 7; cover the same faces, but
v(7;) = v; and v(7;) = w;. The dotted paths depict different arbitrary paths
p1 and pe having the same starting point v(Jy(§)) but with 0;p; = v; and
Oip2 = u;

It follows that the operator

n—1
[ Lhotn (3.3.28)

i=1

has the same dual action as F, gh 9 on 7. In the following, we want to demon-
strate that by commuting with star operators, dual paths can be transformed
in the sense that the expression in Equation transforms to expres-
sions corresponding to different dual paths.

Recall that a dual ribbon is a ribbon that consists only of dual triangles.

Lemma 3.3.9. Let &,& be dual ribbons sharing the same endpoints sy =
001 = 0p&o and s, = 01& = 01& and let & be locally clockwise oriented and
& locally counter-clockwise oriented. Then

Al F9By = F9By. (3.3.29)

Proof. Let &M = (f1,...,f,) and & = (ey,...,e,) be the dual paths of
&1 and &. By assumption, we have f; = e; and f, = e,, and because
consecutive dual ribbons share the same vertex, all dual triangles appearing
in the dual ribbons & and & must share the same vertex v;. Also note that
there generally exists only two dual ribbons from s to s;, which differ in local
orientation. If & and & are the ribbons & and & with directions reversed,
then the ribbon (£,&) is the unique locally clockwise oriented dual ribbon
starting and ending at sy and (&, &;) is the unique locally counter-clockwise
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oriented dual ribbon starting and ending at s, i.e.
g: :(517 52)
g;lgt :<€27€1)7

where 5;1;‘ is the ribbon associated with the star operator Ay, cf. Equation
(3.3.14) and accompanied discussion. Write £ = (71,...,74) and let 0 <
t < 4 such that

t
h,g __ h
FEl _5976 H LTi’
=1

4
hg _ h
Fpd =6, ] L.

i=t+41

Note that the cases t = 0 and ¢t = 4 are indeed covered, because of Equation
(3.3.1). Then we have

4 t 4
A (3-2.5)
e (T122 ) e (TT22 ) €2 TT - 2
i=1 i=1

i=t+1

]

Proposition 3.3.10. Let & and & be two ribbons contained in some bounded
region A such that s :== 0p&1 = 0o&a and s, := 01&; = 01&. Then there exists
a finite set of star operators

{Abr | s € S(A)\ {s0.81},7 € Ca(A), ks y € G} (3.3.30)

such that

FMBy= Y I[I A | FLoByT. (3.3.31)
v€CG(A) \s€S(A)\{s0,51}

Proof. Let p* be a dual path that differs from £% only at one dual plaquette p
and let s be a site with v(s) centred at that dual plaquette. Let furthermore
(T1,...,7a) be the dual ribbon that is aligned with the intersection of £
with p and (74, ..., 7,_4) the complement of (1y,...,7,), that is, (71,...,7)
is the unique dual ribbon such that & = (7,,..., 7171, ..., T,) is a closed
dual ribbon, see also Figure |3.16}
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1 1
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1 N , 1
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T1—& ’U(S,),s\ A T2
1 1
1 1
1 1

Figure 3.16: Depiction of a dual ribbon (71, 72) together with a complemen-
tary dual ribbon (71,72) such that (7,71, 71, 72) form a closed dual ribbon
around the common vertex v(s).

By Proposition [3.3.8 the dual action of th 9 along p is for each v &

ker(FEh 9) is given by

n
khk
H Lﬂ' ’
i=1

where k € G is the B-value of v along any path starting at 9,¢é% and ending
at v(s). By Lemma [3.3.9) there is a closed dual ribbon &, such that

(Féih’“HLif’w) (¢) = (H Lm) (¢).

i=1

for all edges ¢ intersecting p. It follows for any ribbon & with dual path p*
the identity

(EFM™FPIy) () = (Floy)(e)

for all e intersecting p and G-connection v with v & ker(Féh U ker(Fg’g ).
Recall also that the operators F¢"* are just star operators. Repeating this

process, we see that for any dual path p* and flat G-connection v & ker(F; éh )

we can find appropriate star operators {A?S’”} such that the
s€S(A)\{so0,s1},k€G
operator

H A];'s,'y thvg
s€S(A)\{so,s1}
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has the same dual action as any ribbon operator Fg;’g with &8 = p* by
Proposition [3.3.8
[

T r

1 1

1 1

V3 Y U3 Y

S R — [ R —

rTTTT A rTCTT A
A ! A A ! A
1 1 1 1 1 1
LUy v Vg ! LUy Y V2 :
L ! ——d 1 | I S -

Figure 3.17: Depiction of the deformation process performed on the dual
path alone. On the left picture, we see a dual path (blue) and three vertex
operators at vy, vo and vs, depicted by drawing only the dual path (red and
dashed). The dual path of the vertex operators is such that it is aligned
opposite to the original dual path. On the right, the deformed dual path is
shown in blue, where the dashed segments highlight the performed deforma-
tion. Note that the endpoints of the dual paths stay fixed, as we do not act
with star operators at the endpoints of the ribbon.

This completes the following picture: Just like we were able to choose
between different direct paths when measuring the [-value of a flat G-
connection by changing the way we traverse each plaquette individually, we
can choose up to multiplication with star operators between different dual
paths by changing the way we traverse each dual plaquette individually. We
refer to Figure for a visualization of the deformation process for dual
paths using star operators.

As a final result, we have the following corollary.

Corollary 3.3.11. Let & and & be two ribbons sharing the same endpoints
and contained in a bounded region A, and let H be the GNS representation of
the vacuum state wy. If 1 € H is such that Asp = Bsip =1 for all s € S(A),
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then

F{9) = F%) (3.3.32)
for all h,g € G. Furthermore, if o is a closed ribbon, then we have

F9% = 8g.1) (3.3.33)

Proof. Note first that A¥A, = A,, implies A¥) = 1) for all k € G. We set
so = 0p&1 and s; = 01&;. By Proposition [3.3.10, we have

Fatw =By = > | ]I A ) RGBT

'yECg(A) 868\{80,51}

For a family of star operators A7 as in Equation (3.3.30). By Equation
3.3.7, we can commute Fg;’g with each A%, since s & {00&2, D1&2}. Also note
that commuting star operators with products of triangle operators of the form
T simply affords a bijection on the set of G-connections. We denote by 7,

the G-connection that satisfies (]], AT = T (1, A7) Then the
above expression becomes

Z thkaM H Alses,W v

v€Ca(A) s€8\{8o€1,0161}

- 3 R
v€CG(A)
h.g
Z FEQ T'yw
~v€Cq(A)

=F9.

To see (3.3.33), we deploy an analogue argument as in the proof of Lemma
3.3.60 Let 0 = (&,&). Since o is closed, & is a deformation of & and we

have

w-zphkahkkgw ZFhkalhkjc%w

keG keG

]

The next proposition describes the energy of the local observables th 9
in states that have no excitations at the endpoints of the ribbon &.
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Proposition 3.3.12. Let £ be a ribbon and let w be a linear functional with
w(th’g) = w(A’;th’gA’;) = w(BSFéh’gBS) forall k,h,g € G and s € 0. Then

1
|Gl

For allh,g € G. In particular, the above holds for the translational invariant
ground state wy of the quantum double model.

Proof. Let s = 0p€ be the initial site of the ribbon £. Then

w <F§’9> = e (3.3.34)

W(F) = w(B,FB,) w (FMBIB,) = b0 (FL)

If h # e, (3.3.34) is trivially true. Otherwise, we have

w (Fe?) = w (Al Feoal ) B9 o (b A Feo) = (F07)

for all g,k € G, giving w (Fg’gl) =w (Fge’gz) for all g1,92 € G. The result

then follows from ) F{9 = 1g. O
geG

We conclude this section by showing how ribbon operators can be used
to generate orthogonal subspaces in the GNS representation of the vacuum
state wy.

Proposition 3.3.13. Let £ be a ribbon, h, g € G and wy the vacuum state and

(H, 7, Q) the corresponding GNS representation. Then the set {th’g} 18
h,geG

linearly independent and the vectors {th’ng} are mutually orthogonal.

h,geG
Furthermore, the vacuum state €y is separating for the algebra generated by

the ribbon operators {Féh’g} .
h,geG

Proof. From
1
|G|

it follows that F¢€)y # 0, where we used Proposition [3.3.12] for wy. The
orthogonality of the vectors th’g Q) follows by direct calculation:

2 _
| FEooe||” =w (FEoREe) = w(Fee) =

<F§h1,g1907 F£h2’9290> =W <<F§h1’91> F€h2’92>
3.3.18 7
591,92("]0 <Fh1h27gl>

331 oo
- 591792 5h1,h2w0(F )
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This also shows that the operators th Y are orthogonal with respect to the

sesquilinear map (A, B) — wy(A*B) and hence linearly independent. Finally,
let g1, g2, hi, ho € G such that Fg”’ngO = Féhz’gz(lo. Then

0=|[(Ere — B | = (2 — B, (B - E) o)
o ((F0)" B o () o)
(e s () o)
_ HFng’ngHQ n Hpghz,gQQOHZ . [W (Fgrzm,gl) . (Fg'@h“g?)]

2 _ _
o9 HthhngOH _ 591,92 |:w <F£h1h27gl) +w (F;2h1,92>:|

If g¢ # ¢» then HF’”’ngOH = 0 follows, contradicting Fsh’gQO # 0, hence
g1 = g2. Similarly, the right-hand side becomes zero, unless hy = hy by
Proposition |3.3.12] That €}y is separable for linear combinations of ribbon
operators as well follows from the linear independence of the F gh 9. Finally,

note that by Equation (3.3.18]), the algebra generated by the ribbon operators

along a fixed ribbon £ is already spanned by the set {th’g } . O
h,g€

A ribbon operator F, 2 Y is understood to create anyonic excitations at the
endpoints of the ribbon &, and extending the ribbon & corresponds to mov-
ing the anyons at the endpoints around. As explained in the introduction of
this work, an anyonic excitation is characterized by a non-trivial exchange
statistics, that is, an exchange statistic that does not simply correspond to a
sign but rather to a complex phase for abelian anyons and unitary transfor-
mations in the more general case of non-abelian anyons. To see that ribbon
operators indeed create anyonic excitations at the endpoints of a ribbon, one
can calculate the commutation relation of two ribbon operators, Fgl’gl and

Fgf’gz, whose ribbons &; and & split, i.e. there exists ribbons &', &1, &, such
that & = (£/,&)) and & = (£, &), see Figure [3.18] The study of these braid
relations lies outside the scope of this work, but the interested reader may
consult [Kit03], particularly [Kit03, Section 5.3]. We will, however, examine
these braid relations in greater detail in [BHNVBA].

In the next section, we will concretely study these anyonic states created

by ribbon operators and unfold their relation to the representation theory of
the quantum double D(G) of the group G.
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&1 &

i

Figure 3.18: Depiction of two initially overlapping ribbons & = (¢, ¢)]) and
& = (€,&) that split. For simplicity, the ribbons are depicted as curves,
rather than concatenation of sites. The dashed line £ indicates that the
ribbons &; and & start at some arbitrary site in the distance.

3.4 Anyon excitations

We have seen in the previous section that we can construct vectors in the GNS
representation (H, 7, 2) of the vacuum state wy that violate the ground state
conditions in Equation by means of ribbon operators. In this section,
we will see that the different charges are closely related to the irreducible
representations of the quantum double D(G).

We mentioned that the star operators A* for k € G at site s = (v, f) was
independent of the concrete choice of the face f as long as the vertex v stays
the same. The next proposition says that star- and plaquette operators real-
ize an action of the quantum double for each site s, justifying the symmetric
notation for both plaquette- and star operators.

Proposition 3.4.1. Let A be a finite region containing the site s, and let
D(G) be the quantum double of G. Then the map

Us: D(G) — Ay, 8, @ k — BIA® 3.4.1
g st s

establishes a faithful representation of D(G) on Ha for each site s € S.
Furthermore, if D(G) is equipped with the star involution (dq®@h)* = 6., @ h
as defined in Equation (2.4.27), Uy becomes a *-homomorphism from D(Q)
to Q[A.

Proof. Clearly, the set {BgAZ | h,g e G } is linearly independent. The rest
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follows from

US [(691 ® hl) ’ (592 ® h2)] - 591,h192l{1U8 [591 ® hlh?] - BngglgﬂL_lAglhz
— B9 Bhngh_l Al Ahe — B9 AP B92 Al2

and

Thus, ‘H becomes a D(G)-module under the action. We want to identify
the irreducible submodules at each site with the aid of ribbon operators.
Before we continue, we review the notation given in Section|2.4.2, Denote

—

by D(G) a fixed set of inequivalent representatives of the set of irreducible

—

representations of D(G). Recall that elements @ € D(G) can be labelled
by pairs a = (m,,C,), where C, € G¢ is a conjugacy class of G and 7, an
irreducible representation of the centralizer subgroup N, of a fixed element

ro € Co. Writing C, = {cl, e ,C\ca|}, we fix for each a € 5(5) elements
e G / N,, such that ¢; = ¢;r,q; for all ¢; € C,. The irreducible modules of
the quantum double are concretely given by

V= CCo ® Vi, (3.4.2)

where V. is the irreducible module associated to m,, and the concrete action
on V* by elements in D(G) is given via

(6, @ h) > (¢ ®v) = b, peihch @ T (Ghenhge) (v). (3.4.3)
Finally, we set
o Io. ={1,...,|Cul}
o .. ={1,...,dim, }
o [,=1Ic, X1,

so that Co = {¢x} e, - Motivated by the arguments in the proof of Theorem
see in particular Equation (2.2.9), we choose the following new basis for
the ribbon operators constructed in Section [3.3} Given index pairs I,.J € I,
with I = (i1,42) and J = (j1,j2) and a ribbon £, we define the operator

F/7 = \/d Y T (8, @ h)FE", (3.4.4)

g,heG
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where T'// are the unitary matrix coefficients of o as in Equation
and d, = |C,| dim,, is the dimension of a.

It follows from Equation that the summation over g € G is non-
zero only if g = ¢;; = hej h. Since for each h € N, there exists a unique
n € N, such that h = g; ng;,, the above formula reads

B = L Y T Efe i, (34

neN¢

where ', is a unitary matrix representation of m,. The reason for choosing
g instead of g in Equation ([3.4.4) is so that the type of the magnetic charge
at site Jp inserted by FEI 72 would be C,, since Fgg’h inserts the flux g at site

0o€. The constant v/d, serves as a normalization factor, as we will see later.

These operators indeed give a decomposition of the GNS representation
‘H into irreducible components.

Proposition 3.4.2. Let & be an open ribbon, i.e. 0§ # 01&. Then the
vectors

{F;J’O‘QO laeD(G),1,J e Ia}

form an orthonormal set of vectors in H. Furthermore, for each fixed o €
D(G) and fixed J € 1, the subspaces

W7 = span;¢;. {FEU’O‘QO} (3.4.6)

are mutually orthogonal and irreducible D(G)-submodules of H with action
gwen as in Proposition [3.4.1] at site s = 0o& and are isomorphic to the
irreducible modules V* given in Equation (3.4.2) as D(G) representations
for each fized choice of J € 1. It follows that the space

{F;’g|g,h€G}

is isomorphic to the reqular representation of D(G).

—

Proof. We show the orthonormality by direct calculation: Let a, 5 € D(G)
and write [,J € Ia with I = (il,ig), J = (jl,jg) and K,L < I[g with
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K= (kl,kg), L= (ll,lQ). Then
(B0, FE200 ) =/dudy 3 T2 (m)Dt (m)ag (Fg 40

TLEN&
mGNB

" 19,52 Tka,l2 Ciq Chy »%iq Ny
- \/dadﬁ E :Fwa (n)Fm (m)(sqz'lnqh,qhm%wo Fg

nENy
mGNB
B-3.39) \/d d i .
o . E \J2 2,02
- (511:k1 Qzlnqh leleIFT(a ( )Fﬂ'/@’ (m)
nENq
mENg

The identity i; = k; gives ng;, = mg, for the above expression to not be
zero, and because each element g € GG can be uniquely factorized as g = ngq;s
for some ny € N, and ¢, € C,, it follows that m = n and [ = j;. Above
expression becomes

iy k1 Oy s —— |G| Z 5an22Jz )k, l2< )

nEda
meng

BZD 5 5 60 6, s Y la 1N
i1,k1Y51,01 Yi2,k2 V52,02, ’G‘ dimﬂ-a
|Col | No| dim
=07,07.10q : o
LKL 0p |G| dim,,,
=01,K0.,.00,8,
where we used that |G| = [Ca|[Na|. Let {b;},_, 4,  Dbe an orthonor-

mal basis of the irreducible representation V; of N such that I'272(n) =
(biy, Ta(n)bj,) is a unitary matrix representation of m,. Then it follows that
a linear map ¢ : V* — W*7 can be defined as the linear extension of
ciy @by, =y T2 (n) Fyv ™™ (3.4.7)
TLGN&
and that dim(W®7) = |N,| - |C,| = dim(V*). Hence, ¢ is an isomorphism of
vector spaces. Moreover, if ¢ is locally clockwise oriented, we have
U (5 ® h IJocQO \/_ Z BgAthg ]2 )nglv%lnqjl QO
nENqy
B39 /d Z I”Q ]2 Bth%h iy njy Q
neENg

nENa

)

)
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and if £ was locally counter-clockwise oriented, (3.3.10]) gives
\/d Z FZQ jQ hczlh hgi, ng;, BhéilﬁgQO
S .
nENq

. ghéi h hé;. hg
In either case, we have By " (g = Bs * "y = 5g,h5i15§20, and the above
expression becomes

- /_ FZQ 32 hcllh hqiynq;, QQ
g Ciy § : '

TLGN&

From the coset decomposition G = Uie I, 4iNa, it follows that there exists
a unique pair (k,m) € I¢, x N, such that hg;, = ggm. This implies that

héi h = qemi, (46,70 ) @i MGe = Qemirmae = qriGy = . (3.4.8)
Hence, we obtain

L h / E 1—17,2 ]2 Clc qrmng;, Q
g C;

’I’LGNa
22]2 Clc qknqjl
n—mn ghes, 7 /d E F Q

TLGN&

dimy,,

m t]g Cl»qk NG5,
Oyl > > TE(m)TE (n) Fy Q
neN, t=1

Writing I; = (k,t), the above expression simplifies to

dimg,, dimy,,
Og,hes, T Z I (m FItJaQO =0g,he;, Z [22(m)o(c, @ by).
=1
= <(5g,hci1,;hcz-ﬁ ® Wa(m)(b2-2)> :
(3.4.8) - _
B2 (8, hcish @ Ta(@iha,) (b))
B13)
E226((0, @ 1) & (e b)),

where we used that hei, h = ¢, < @ = he; 7 Hence, ¢ is an isomorphism of

D(G)-modules.

Finally, since the isomorphism W7 2 V2 holds for each fixed J € I,,
we have at each site dim, = |C,| - |N,| many copies of the irreducible repre-
sentation V*. Using Proposition [2.4.11] we obtain

{F;’g|g,heG} D dwv = @ dV ~D@E).  (349)

2eD(G) aeD(G)
O
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The fact that the W*7 can be identified with subrepresentations of the
regular representation of D(G) was already shown in [CM22bl Proposition
3.10] using the same techniques, i.e. the commutation relations for ribbon
operators and star- and plaquette operators. However, there the local orien-
tation of the ribbons were not taken into account.

Since ribbon operators generate dual and direct triangle operators, they
generate the algebra 2;,. of local observables. Thus, H contains a copy of
D(G) as a submodule for each site s of the lattice. The projections into the
corresponding irreducible submodules given in Equation (3.4.6)) are given by
the central projections in Equation (2.4.37)). Under the action U given in
Equation , these projections take the form

pe dlmﬂa Z Z Ty, (n) AL "% ger. (3.4.10)

n€Nq i€lc,,

We can interpret these operators as charge detectors at site s, but there is a
different way of detecting charges. Another class of projections is given by

d|llifnﬂ|a DN, () EF (3.4.11)

nENqy ZEICQ

In either case, the projections given in Equation (3.4.11]) respectively Equa-
tion (3.4.10) are mutually orthogonal, i.e. PPy = PPN = §,, 4, P
and PM P8 = PMPM = 04, 0, P8, We claim that these two types of pro-
jections operators coincide on states that have a single excitation at some site
and we will show this using the deformation property for ribbon operators.
This is particularly surprising, since the domain of P would be disjoint of
the site s. In fact, the closed ribbon can be arbitrarily large and far away
from the site s. This property will make these operators particularly useful
later on.

Before we attempt to prove our claim, we want to show that the operators

defined in Equation (|3.4.11]) are rotationally invariant.

Proposition 3.4.3. Let 0 = (s1,...,,) be a closed ribbon, that is, s, = s,
and let o' = (Sgy. .., Sn—1, 80, ---,Sk—1) be a rotation of o. Then
P = Pg

for all irreducible representations o € D(G).

Proof. Let o1 = (so,...,Sk-1) and 09 = (S, ..., S,—1) such that o = (010)
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and o’ = (0201). We calculate

dlmﬂa - Z Z br(n ququcz

nENqy 'LGICa

§ § § tr quqz,kaqqukkcz

nEN, i€lc, k€G

For every fixed ¢ € Io, we can find some j € Io, and m € N, such that
k = ¢;mg;. Writing further ¢; = ¢;7,¢;, the sum can alternatively be written

as
ey qing;,qimq; g3 mnmyq;,q;maq;q;iTads
E E E tr(n)Fl F

nEN i€lc,, j€lc, mEN,

n—mnm — GO T a: . LT T
SAALLILL q3Mq;,9;MTaqs [GiMNIMG4,q;1Mq;
E E E tr(n)F2m%: Fli :

nEN i€lc,, j€lc, mEN,

m=ram ey q;nqj,q5Mq; [GTaMNMT 0.Gi,qiTaMq;
E E E tr(n)Flm%: Fr ’ :

nEN i€lc,, j€lc, mEN,

Note that m,n € Zg(ry), giving romnmi, = mnm. Note also that we can
substitute ¢;m with g;mg; since by summing over all < € I, and m € N, the
expression ¢;m runs through all group elements in G. The expression then
simplifies to

H(R)Fqg'mfj,mfii qu'mqg'mfjmtii,qimqjmf?j
2 : 2 : § : o2 o1

nEN i€lc,, j€lc, mENG

4jTadi=Cj Z Z Z H(n)Fggn(ijv(Qim)Fo(_‘llim)anCij(W)v‘Jimcj

n€Ny i€lc,, j€lc, ,mEN

Finally, by writing k& = (¢;m) the sum becomes

2 2 2 tf Fq] nqj,k:quj ng;k, kcj

j€lc, ,mEN, NENy k€G

Z Z E(n)quRQj’cj
O./

j€lc, ,mENy NENy
| Nal
dlm,ra

POL

]

Note that rotationally invariant ribbon operators automatically commute
with all star and plaquette operators. This is because star and plaquette
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operators A" and B commute with P at all sites s € {90, 910} by Equation
but by Proposition , the endpoints of o can be changed without
changing the operator P¢. If o is a closed ribbon, we define the interior of
o to be the connected component bounded by the direct and dual path of o
in R?, see also Figure It turns out that in the absence of excitations
in the interior of o, the projection operators given in Equation and

Equation (|3.4.10)) coincide.

N N ’ 3RS 3RS ’

Y =)
X__-_y__.
‘0
1

1
%3 Tdu ’
_‘g bl S Bare S S e _X

N
7’ N7 N7 N7 N7 N

Odi

Figure 3.19: Depiction of a closed ribbon ¢ inside a square-shaped region
of size 7. In the scenario depicted here, the interior is bounded by the dual
ribbon o4, (blue, dashed line). The sites s; and s, (green) are in the interior
of o, but the sites s3 and s4 (red) are not.

Proposition 3.4.4. Let o be a closed ribbon and A a square-shaped region
containing o, that is, the graph 95 contains all sites of o. Let furthermore
so be a site in the interior of o and ¥ € Hy be such that Agp = B = 9
for all s # so. If the direct and dual path are oriented such that they point
counter-clockwise around the interior of o, we have

Pl = Pga,
otherwise we have

P = P;;jw
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for all o € 5(5), where o denotes the dual representation of o defined in
Proposition [2.4.10,

Proof. We will only sketch the proof, but the arguments are exactly the same
as the ones in Lemma [3.3.6] and Corollary [3.3.11] Because P¢' is rotationally
invariant, it commutes with all star operators everywhere, the endpoints of
o included. We can then use star operators, to change the dual path around
each dual plaquette in the lattice, including those at the endpoints of o, until
the dual path encloses the unique dual plaquette enclosing so = (vo, fo),
described by some dual ribbon &,, = (71,...,71). We refer to Figure
for a visualization of the general deformation procedure for the dual path,
with emphasize on the fact that we are here allowed to commute with star
operators at the endpoints of o as well. Similarly, PS¢ commutes with all
plaquette operators everywhere, which allows deformations that include the
endpoints as well, until the direct path encloses the unique smallest plaquette
containing fy, described by some direct path p = (v, va, v3,v9,v1). See also
Figure [3.20] Note, that if ¢ moves clockwise, respectively counter-clockwise
around the site sg, then so do p and &,. We set pa = (v1,v9) and set
k = BP2)(~) for some fixed G-connection v ¢ ker(P%) with flat monodromy
around each face f # fy. Using Equation (3.3.25)), we have

4

Pey =Y tre (n) [ [ LhmotTsiy

nENqy i=1
4
_ kqingskrpkek
= E trﬂa(n)HLnl Y B
nENqy i=1

where p’ = (pa, p,pa). We can apply the exact same substitutions as in the
proof of Proposition to see that the above expression becomes

P&y = Z tr ( H LqmqlTCf%

nGNa

regardless of the choice of 7. If 0 moves clockwise around sg, then so do &,,
and p’ and &, is locally counter-clockwise oriented while qu = BS for all
1 € Ic,. See also the discussion after Equation (3.3.17)). It follows that

Z trﬂ_a A‘hn‘h Bcv

nENqy

= try, (n) A% 4 BS
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Similarly, if o moves counter-clockwise around sy, then so do &,, and p’, and
we have

o E T () AGNG RC
PO' - trTra (n>ASO BSO
nENy

_ p«a
=P .

v3 v

Figure 3.20: Depiction of the site sy = (vg, fo) (green). The face vy is en-
circled by a dual plaquette aligned with a dual ribbon &,, (dashed) and the
face fy is encircled by a direct path p = (v, v1, ve, v3,v9) (red).

This shows that the projection operators P¢ measure the existence of an
anyonic excitation in the interior of o.

Remark 3.4.5. If s1, ..., s, is a collection of sites enclosed by a closed ribbon o
moving counter-clockwise around its interior, and v € ‘H such that A, =
and Bgp =1 for all s € {s1,...,s,}, then we have more generally

n—1
Pf@b _ Z Z Z AgilmjiBg (H A];llq/in‘IilejllClle;l) W,
=1

iEIca n€ENqy ki,...,kn_1€G
C1-C2-- Cn—1=C;

where p; are paths starting at v(s;) and ending at v(s;) such that p; is con-
tained in p;yq foralll =1,...,n — 1 and p,_1 is a closed path that moves
clockwise around all sites. This can be shown using the same arguments as
in the proof of Proposition by choosing convenient deformations of the
direct- and dual path of o. A similar result is true for the case where o
encircles its interior clockwise.

We will verify directly that the projection operators P> can indeed mea-
sure the irreducible components W7172:% in Proposition |3.4.2}
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Proposition 3.4.6. Let o be a closed ribbon that is moving counter-clockwise

around its interior, and & a ribbon with sy := 0u& in the interior of o and
0:€ outside o, see Figure|3.21. Then we have
PEF Qg = 6,5 F "0 (3.4.12)

for all index pairs I and J and irreducible representations o = (7,,Cq) and

B = (m3,Cgs) of the quantum double D(G).
Proof. Let Uy, be the action of the quantum double D(G) on H as in Equa-

tion (3.4.1). By Proposition [3.4.2] the space
{ﬂwﬂﬂngG}

viewed as a D(G)-module under the action of Us, is isomorphic to the left-
regular representation of D(G). By Proposition [3.4.4] we have

P2F{Qy = PEFM 0

for all h,g € G. But the operators Pg are the central projections onto the

irreducible submodules in D(G) isomorphic to V* under the action of Us,.

By Proposition we have ye =~ W/ for each J € I,, where W* is
defined as in Equatlon as the linear span of the operators F T2 This
implies the claim. O

Note that Proposition implies in particular
P(?QO = 5a,trinoa (3413)

since Qo = 3 Ty (g VI = Fél’l)(l’l)’trino. This result will become
geG
useful later.

We will now use the operators {Fg ‘]’a} to define *-homomorphisms, as

in Equation (3 . For a € D/(\) and ¢ a ribbon, let Fg¢ € 21 ® M;, (C) be
an I, x I, matrlx Wlth coefficients in the quasilocal algebra 2, and entries
given via

Lo a7 T
= —Flo = N Dl (p)Ffrtin,

/ 3 To 13

do‘ neNqy

Then we define a map xg : 2 — A ® M, (C) via

(Fe)

X& X e FE(X @id)(F8)*, (3.4.14)

where id denotes the identity on the vector space C/e. These maps satisfy
the properties in the following definition.
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Definition 3.4.7 (Amplimorphism). An amplifying morphism or am-
plimorphism of a C*-algebra 2l is a *~homomorphism x : 2 — A ® End(V)
where V is a finite dimensional vector space. If 2 is a quasilocal algebra
generated by a net {2y}, then x is called localized in A if

X(A) = x(1x)(A ®1id)

for all observables A € 2,. supported outside A. An amplimorphism is
called localized if it is localized in some A € I.  is called unital if y(1y) =
lg ®1idy.

The idea to consider amplimorphisms instead of endomorphisms is due
to [SV93] and the construction of these amplimorphisms in the setting of Ki-
taev’s quantum double model has already been performed in [Naal2, Naal5].

Proposition 3.4.8. The matrices Fg are unitary for each ribbon § and ur-

—

reducible representation o € D(G) and satisfy
(Fg)" =Fg, (3.4.15)

where & is the ribbon & with inverted orientation. If &,& are two ribbons
such that & is composable with &, then

FoFe =F3 ). (3.4.16)

It follows that the maps xg : A — A M, (C) given in Equation (3.4.14])
are unital and localized amplimorphisms.

Proof. We will start by verifying Equation (3.4.15) and Equation (3.4.16))

component wise:

((F?)*) Fa JI Z Fhm c]1 aj, iy

nGNa

m E : F’LQ]Q 7 F‘lu”qncﬂlqhnqn 18iq Mgy

TLENoc

— E FZ2J2 011 iy 795,

nGNa

"2 (F),

giving Equation (3.4.15). To see Equation (3.4.16), let &1, &> be ribbons such
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that & is composable with &. Then

2 : IK, K } : 2 : Ciq»qiy 1G] Ckq »dkq, 2G5
F aF Ja Fzzkg Fkg]g( Q)F&ll i1 k1F€2k1 k1 1

Kel, Kely ni,n2€ENg

— E § 1‘17,2_72 nln Fcll )qllnlqkl Fckl,%ln2q]1

k1€l m1,n2EN,

n2—ning 2 : 2 : FZQD Czlyq”nlqklFcklv(ﬂclnan(bl

k1€lo n1,m2ENy

Noting that every element A € G can uniquely be expressed in the form
h = niqx,, we realize that the summation over k; and n; can alternatively
be performed over all h = ¢;;n1qx, € G. In that case, we have ¢, = Bcz-lh
and g, n1neq;, = f_qu-an(jjl. The above expression becomes

h ~h&;, h,hgi,n
22]2 0117 i1 iy QQ71 o IJ,o
Z Z F 1 F§2 _F(El,&)'

heG na €Ny,

We verify that the matrix F¢' is unital:

o oarsy Iy (3-415) o o BAI6) e B320) 1o
(Fe(Fe)) == ) (FO)"™(F)™ (Fgo)"” (F5)".

Kel,

In view of Equation (3.3.1)), (F§)"/ becomes

§ { 12]2 Cllvqllnqh _ 1232
F - 5QZ17LQJ176 To ( )]'Q[

TLENa 7L€Na
Now, g¢;,ng;, = e implies g;, = g;;n. Since the right-hand side of this decom-

position is unique, it follows that i, = j; and n = e. Because ['272(e) = 4, ;,.
it follows that (Fg)” = 07,1y, and we have

Fg(Fg)" = la®@id. (3.4.17)
Using similar arguments, we can show that
(Fg)'Fg =1y ®id (3.4.18)

holds as well. For the other claims, notice that the map x¢ is unital if and
only if

FE(FE) = 1y ®id.
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Furthermore, if X,Y € 2, then
Xe (XY) =F¢g (XY ®@id)(Fg)* = Fg (X ®id)(Fg) " F¢ (Y @ id)(Fg)*
=x¢ (X)xe(Y)
and
(X (X)) = F{ (X @1d)"(F¢)" = x¢ (X7).

Clearly, x¢ is a linear map, and it follows that xg is a *_homomorphism.
Finally, x¢ is localized in any region A containing the ribbon ¢: For any

operator X supported outside A we have [X , Fg J’O‘} =0forall I,J € I, and

therefore
X?(X) = F?(X ® 1d)(F?)* =(X® 1d)F?(F?)* = (X ®id).
O

The matrices Fé‘m are not yet suitable enough to describe ground states
of the quantum double model. The physical interpretation is that ribbon
operators create pairs of excitations, while a ground state should intuitively
describe a single charge only. Otherwise, we would be able to move one
charge back to the other using local observables, and the fusion would lower
the energy. The idea is to take the limits of ribbons &, and sending the
endpoint ;¢ to infinity. Let {£,} be a sequence of ribbons with fixed initial
site sg = 0p&, such that &, C &,y1 for all n € N and such that the number
of sites S(n) of &, = (so,...,Ss(m)) strictly grows with n. We call such a
sequence a ribbon extending to infinity from sy, and call the infinite
ribbon & := (sq, ...) the limit of {{,}, denoted by ILm & =&

Proposition 3.4.9. Let {,} be a sequence of ribbons extending to infinity
from some site sy, and let & be the limit of &,. Denote by Xé{’a the component
in the I-th row and J-th column of the map xg, defined in Equation
for I,J € 1,, that is

X (X)) =) (Fe)™M(X @id)((Fe,))"

Kel,
1 IK,a - JK,a\*
= R eia) (P2
K

—

Then for each o € D(G), I,J € I, and X € Uy the limit
X" (X) = lim x " (X)
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exists and extends to a bounded linear map XéJ : A — A Furthermore, the
amplimorphism xg exhibits the following properties:

(i) x¢(ly) = Ly ®id
(1) x¢(A") = x¢(A)

(iii) xg(ABC) = (A®id)x¢(B®id)(C®id) for all A, B,C € 2 with A and
C' supported outside &.

(iv) For all X € Ao there exists an ng € N such that x&(X) = Xen, (X) for
all n > ng.

Proof. We start by showing [(iv)] Let X € 2. and ng such that supp(A) N
(&n \ &np) = 0 for all n > ng. Writing &, = &, \ &, to denote the ribbon
starting at the endpoint of &,, such that &, = (&,,,&,) , we obtain for n > ny

Xe, (X) =F¢ (X ®@id)(Fg) )"
(3.4.16) 1o « : a \* a O\
-Féno F¢ (X ©id)(F¢)*(Fg, )
=F¢ (X @id)(Fg, ) F2 (F¢ )"
ZXQ;Q(X )-

Note that this already implies convergence, since yg, (X ) becomes eventually
constant for each X € Uj,.. Item [(i)| and follow from Proposition [3.4.§

and is clear. O
Remark 3.4.10. The map Xg‘“r" defined in [Naal2 Lem 12.2.3] is related to

the map Xg’a via X?”“ =3 Xél’a.
7

Define

1Joa I1J,«
wg = Wp © X£ .

It is easy to see that for I = J the composition wyo Xg’a becomes a state for

alloze/(a)andlela.

Remark 3.4.11. By Corollary [3.3.11] the map wé‘]’a for some semi-infinite
ribbon ¢ only depends on the initial site s = 0yé. Indeed, we have for all
X e 2,. and n € N large enough

1
dao

« (63 1 [0} o
> (F00, XFI ) = d_Z<F<”7 Qo, X /"),

J J

wé[,a(X) —
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for all ribbons ¢ with the same endpoints as &,. Furthermore, if &, & are
two semi-infinite ribbons with starting sites s; := 0p&; and sy := g, then
wih*(X) = wih*(X) for all X supported outside a region containing a ribbon
61 . 52 . . . .
¢ with 0y¢ = s1 and 0;( = s9. This follows because (F?)* is a unitary matrix

commuting with X ®id, and (FgFg )" Qy = (F{))"" Qo = (Fg )"/ Qo, where
I«

§1 C & and & C & are arbitrary finite ribbons. Hence, w,, ™ and wg’a look
the same from afar. This observation will become important in Theorem
5.0.9

Lemma 3.4.12. The states wél’o‘ coincide with the states

1
P X o > wo(F X () (3.4.19)
@ JIel,

—

for all X € Ajoe supported on a region disjoint from 0y€ and each o € D(G),
I € 1, and semi-infinite ribbon .

Proof. 1t was already shown in [Naal2] that the map defined in Equation
(3.4.19) defines a state for each semi-infinite ribbon ¢ and irreducible repre-

sentation o« € D(G). Let X be such that sy := 0p& & supp(X) and write

Ay, = ‘—1| S AZ@’”@“ for the star operator at site so. Then
meNy I€lc,

W N(X) =D D0 TR )T (e (B X FE )

J ni1,n2€EN,

1 . . G G i TG g Mods
—G ol 2 D RTI4TN X

J le€le,, ni,n2,meN,

1 _ iy z 7 7
= Gn 2 D TR (e (F XS AL

J lelg, n1,n2,mEN,

Substituting n; — mn; and ny — Mmns :

1 — . . .. ¢ n1G: c NG
:@Z Z Z F;?a]?(mnl)F?(fz(mnl)wo(Fél,Qz 1%1XF£Z7¢11 2q]1)

J leleg, n1,n2,mENy



3.4. ANYON EXCITATIONS 119

For the matrix coefficients, we obtain:

= 5 S TR (an, )T ()

J2€lr, MEN,

= D0 D TEE(mm)TEE (mny)
j2€17ra meENq
= D0 D DEa)TEE(m)IEE ()RR (n)
J2,t1,t2€lr,, MENG
= Z Z Ft2]2 FJ2t1( )Ftlzg( )F?z2(m)
j2,t1,t2€r, MENG
N, | .
:—dlim‘ S T (na) T ()
T j27t617ra
_ NG

~ dim,,

tr(ning)

and the above expression becomes

N CL,qini1q; Ccr,qin2q;
L 9D DID DI

J1 IEIC(X n1,m2ENy

allba 1 C 7. =
|G|= |N [[Cal Z Z Z n1n2 wo(Fgl’qmlq“XFgl’qmq“)

Ji l€le, n1,n2€Na

d Z Z Z Z 1”2]2 FZ2J2 (ng)wo(ﬁfl’qmﬁjl XFf%quqjl )

Jj1 lele, i2,j2€1r, n1,n2EN,,
_ o«
=pe (X).

I«

This shows that w; |Ae= e |ac for each region A containing sg. O

Remark 3.4.13. We emphasize that the ribbon operators Fg 7 themselves

don’t converge in the operator norm as n tends to oo. This can be seen
as follows: If Fg:g was converging to some operator in the norm topology
for a sequence of ribbons &, extending to a semi-infinite ribbon &, then F, ghn’g
would form a Cauchy-sequence. Then the sequence Fg:gQg would form a
Cauchy-sequence as well, but we claim that for some n,m € N with m > n
the expression

o~z
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is constant and non-zero. Indeed, we have
2 _ _
h.g h.g _ h.g h.,g h.g h.g
Han QO_FmeOH —‘*’0<[an _Fsm} [Fén _Fme
=g (FE1+ F2) — wo(FETEL) = o FRTRL?),
Using Equation (3.3.2)), we write thf => ngl’k Ff,hk’]}g, where £’ is such that
keG

(&ny &) = {m- Furthermore, Lemma [3.3.12 gives wo(F;?) = wo(FY) = o
We obtain

2 hok Rk kg h.g hog hik kg
@ Zwo(an FiM o) — Zwo(an DA D))
keG keG
2 9 Ghg, 9 173hg,
D o (PO FES) — (P FE)

Applying Proposition [3.3.12| to the linear functionals X — wO(X(—)Fg,hgg’e)
and X — wo(X(—)Fg, 9¢) we see that

- 1 - 0z 1)
n( F&9 thgve _ , thg,e ghg.e h,e

and similarly, wo(Fg? Fgﬁ”) = \(Z_]; holds as well. It follows that

2 2
FM9Q, — F9Q) H = — —0pe—s>,
H En 0 gm 0 |G| h? |G|2
which is in particular constant for all A, g € G and n,m € N with m > n.

Given a ribbon ¢ extending to infinity, we define the state wg’o‘ via

wg’a =wp o Xg,a (3.4.20)
and set
I1,a : 11,
we' = nlg{)lo we, " (3.4.21)

In the next lemma, we calculate the energy of these diagonal states wél’o‘.

Lemma 3.4.14. Let sg = 0p&. Then we have

1
we 1y — Ayy) =1 — 6””"”@’ (3.4.22)
wél’a(lm — By,) =1 — dc. 1o}, (3.4.23)

we " (PY) =6y (3.4.24)
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for all closed ribbons o enclosing sg, and
we(ly — Ay) = w;" (Lo — By) =0 (3.4.25)
for all 8" # s.

Proof. Let I € I, with I = (i1,43). To verify Equation (3.4.22)), we may
write the trivial electric charge operator as

hom g XX

nGNa icle,

using again that for every element k € G there exists a unique pair (i,m) €
Ie, x N, such that gg;, = ¢sm. We then have for all K = (k, k) € I, and
ny, Mg € Ng:

= = — *
Ciq:9i1 19k Ciq9i1 29k
w() (Fgll 1 1A30 (Ff’l 1 1> )
|Cal

Z Zwo Czl 1iq M1 Gk ququl Fczl QZanle)
mGN =1
1 Sl o
= Z ZWO i1>Qi1 M1k FCz qzmn2%1)
| meN =1
1 Gl Ciy Cirgiy M1k
_|_ Z Z Giy ™1k, qlmnzkuWO(Fg L)
meEN, 1=1
Cal

1
Zzénlmng zlz |2:W

mEN, =1

Then we have
wo ((F&)™ A, (FE))™)
1 a ays
:d—(,uO (Fé-IK’ 1450(}75]](7 ) >
_ Z f‘?akg (N1)Ffff2(n2)wo(Fg” QZlnlqklAsongl qllnzq)

ni, anNa

Z F’Lgkg F’sz‘g ( 2)

n1,m2€Nq
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By the Peter-Weyl Theorem, we have

isz
>

’fLENa

and using again that |N,| |Ca| =

Thus, we have

OJIIa
13

(,d()( ¢

Hence

Z I‘12]2 Fgrllv ) |Na| (sﬂ’a,triva

TLGNQ

!G|

|G|, the above expression becomes

) .
— |N ‘ 57ra - T, triv )

Cal”

(la = Asy) =la = Y wo ((F) A ((FE))™)

_1Ql - Z 571'(1 trlv

Kela
|Cal

k1=1
1

=g — ——
Cal
showing Equation (3.4.22)) For Equation (3.4.23), note that we have

Ciy»qiq M1k Cip qi "2qk
Frivda 1BOF§” i1 1)

Z WO((Fg)IKBso((Fg)

Kel,

(3.3.8) Ciy+Qiy M1Aky 1+Ciy i P20k 5Ciq

Ciy 1931 M1Gky 1Ciq 91 20k, Ciy
wo(F, F; B B,)

13
. Ciy Qi1 M1Gky 7+Ciqqiq M2qky
_501'1 eWo (Ff F )

(2.5.13)

Ciq Qi1 M1qk Ciq Qi1 20k
—6C (e} W (F 109y 1F 1°9i1 1)
«,{e}*0

Z dc, {e}wo((Fg)IK((Fg) )KI)

Kel,
_5Ca {e}w§ L (19[)
—560“{6}.

Finally, (3.4.24)) follows from Proposition and Equation (3.4.25)) follows
from Equation (3.3.7)).

Remark 3.4.15.

Lemma

3.4.14

]

implies that for m, = triv, FEI 720 is in gen-

eral not an eigenvector of Ag for s = 9p€. Indeed, as a projection, A, has
eigenvalues 0 or 1. But for |C,| # 1, the expectation value of Ay in that
state would not be an integer. This problem can be resolved by choosing a
different linear combination in this case, which we will present in the next

section.
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3.5 Ground States

Recall that wqg is the unique translation invariant ground state of the non-
abelian quantum double model. This ground state is a pure state, and is
completely determined by the condition that wy(As) = wo(Bs) = 1 for all s
by Proposition [3.2.6] It is furthermore distinguished from the other ground
states in that it is the only frustration free ground state. The aim of this
section is to find other non-frustration free ground states. We will show,
that for semi-infinite ribbons o, the states wéf’a are ground states for the
case T, # triv and non-ground states in the case 7, = triv. We can still find
ground states corresponding to the case m, = triv by taking appropriate lin-
ear combinations of the ribbon operators F, gI 7@ These states are constructed
in Lemma [3.5.3] and the main theorem of this section is stated as Theorem
3.5.4 Recall that if w is a ground state on 2, then for any local observable
X € Ao we have

—i0(X*0(X)) = w(X™ [Hy,, X]),

n?

where A, is a square-shaped region containing supp(X) as well as the sup-
port of all interaction terms (1 — Ay), (1 — B,) whose support intersect with
supp(X), Hy, is the local Hamiltonian defined in Equation (3.2.16)), and ¢ is
the infinitesimal generator of the time evolution 7. See also Section for
a reminder on C*-dynamical systems and the discussion following Equation
(13.2.16)).

One physical intuition that we want to utilize is that a state that mini-
mizes the Hamiltonian locally for each fixed region, must be a ground state,
i.e., minimizes the Hamiltonian globally. This intuition is captured by the
following lemma.

Lemma 3.5.1. Let (A, 7) be a C*-dynamical system and H, a sequence of
positive elements in A such that the sequence of maps

O Apoe = A, X — i [H,, X] (3.5.1)

converges pointwise in the strong topology to the infinitesimal generator 6 of
the time evolution 7. If w: A — C is a state such that w(H,) = 0 for all n,
then w is a ground state.

Proof. We want to show that —id(X*§(X)) > 0 for all X € ... Because
H, is positive, there exists some element B € 2( such that H, = B} B, by
Theorem [2.5.7, Using Proposition [2.5.12, we see that

lw (XH,)[* =|w(XB;B,)" < w (XB,B,X")w(B,B,)
=w (XH,X")w(H,) =0
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for all operators X. In particular, if X = A*A for some local operator A, we
see that w(A*AH,) = 0. Therefore

—iw (A*0,(A)) =w (A* [H,, A))
=w (A"H,A) —w (A*AH,) =w (A"H,A) > 0,

since A*H,, A is positive. Since this holds for all n, it holds in particular in the
limit n — oo, and because d,, converges to ¢ pointwise, the result follows. [

—

We have seen in Lemma [3.4.14] that for a« € D(G) and index pair I € 1,
the states wél’a seem to describe a single excitation at dy¢, measured by the
projection operators P& given in Equation for any closed ribbon o
enclosing the site Jp&. The idea is to consider Hamiltonians with boundary
terms of the form

a a pa
HY = Hy, —€"P;

where o, is a closed ribbon encircling the square-shaped region A,, counter-
clockwise and & is a constant chosen such that it suitably accounts for the

energy of the states wél’o‘ at site 0h¢, see Figure [3.21, More precisely, we

will choose €* in the hopes that wél’a(Hﬁ‘) becomes zero for each n € N.
The expression [(Hy, —e*P2), X] will converge to [H, X] for each fixed
X € e, and Lemma [3.5.1| then implies that wgl’a is a ground state if H

is positive.

Lemma 3.5.2. Let A, be a square-shaped region of sizen € N and o,, a closed
ribbon whose direct path forms the boundary of A, such that o, bounds its
interior by its dual path and such that the direct and dual path encircle A
counter-clockwise, see also Figure m For every irreducible o = (74,Cq) €

—

D(G) write
¥ =2 57ra7triv - 50@7{6}'

Then the operator

HY = Hy, —e“P} (3.5.2)
18 positive, and we have
0 if mo # triv
II,O[ a\ « )
we (M) = {1 - ﬁ otherwise (3.5.3)

for all n > 1.
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Figure 3.21: Depiction of the scenario described in Lemma for n = 5.
The initial site sg of £ lies in the interior of o and the direct path of ¢ marks
the boundary of Aj in this example.

Proof. By Proposition and subsequent discussion, P commutes with
all star and plaquette operators. Therefore, the operator Hy,, —50‘an is a sum
of the commuting projections Ay, By and Py , s € S(A,), and there exists a
common family of orthonormal eigenvectors {wk} ., in the finite dimensional
Hilbert space H,, for these operators. We will show that all eigenvalues of
H? are non-negative. Write

(W, (Hy, — €*P2) ") = Ay — %04

where \; > 0 is the eigenvalue of ¥ as the eigenvector of the non-negative
operator Hy,, and py € {0, 1} is the eigenvalue of ¥* as an eigenvector of an.
If Y% € ker(PS"), then (", (Hy, —e*P2 ) ") = ) is already non-negative.
We will therefore show that either A, > &® or ¢* € ker(P2").

Notice first that we have either AM* = A% = % or AF = 0 and
similarly, we have either By* = ¥ or Bsy* = 0 at any site s, since ¥ is
an eigenvector of each of the operators (1 — A) and (1 — By) and because
ArA, = A, for all h € G. If A\, > 2 there is nothing to show. If A\, = 0,
then A,yF = Bk = ¥ for all sites s and ¥* must be the vacuum state €.
But then Equation implies either P8y = 0 or o = triv, i.e. € = 0.
As all other cases are now exhausted, we finally assume that A\, = 1. This
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implies that at most one of the conditions

Aswk =¢k
Bswk :Y/Jk
is violated at some sites. Assume that there exists a site sy such that By =

Y* for all sites s but A% = ¥ for all s # so. Then we have by Proposition
[3.4.4]

Pg@bk _Pa k

dlmﬂa Z

0‘ €N,

A‘Izn‘h BCZ wk

Because By, ¢F = ¢*, we have B&y* = 4, B B, " and ¢* € ker(P2) or
C. = {e}. In the latter case e* = 1—0,, triv < 1 = A. Similarly, if A = ¢F
for all sites s but By = ¢* for all s # s¢, then the orthogonality relations
for irreducible characters give

dim,
Prot =T 3 e, (0Bt

’ nENqy

dimﬂ'a c; _ ci )k
= ’Na| neZN trﬂ'a(n) trtrlv( )B ¢ 67ra,tr1vB w

where we used that AZ"% B¢ = By A%"% for all 4,n since ¢;ng; commutes
with ¢;. This implies again that either ¢* € ker(P2) or e* = 1 — d¢_ o3 <
1=\

We proceed to show Equation (3.5.3). Let sg = 0pé. Using Lemma (3.4.14]
we get

Wl (H) = 3 w1 - A+ 3wl - By) — el (P2

s€S(A) s€S(A)
—w§1“(1 —A,) + gla(1 — B,,) — &~

67ra Jtriv

- 6Ca, el — (2 - 57ra,triv - 5Ca, e )
Cal {e} {e}

s ] 1 - 0 if T 7é tl"iV,
=0y, triv - m — V1 - ‘C—la| otherwise.

-2
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We note that the concrete choice of the ribbons o, is irrelevant as long as
they move counter-clockwise, enclose the site 9y¢ and grow to infinity with
n — oo.

The anomaly in Equation for the case 7, = triv is due to Equation
(3-4.22). This can be solved by redefining the state wg' for the case 7, = triv
for finite ribbons & to be

1 C; c N17q. Ci - MoT.s
W?(X) :W Z Z wO(nglﬁzl 1q]XFEZ27qZ2 2(13)

11,82,J n1,n2

:ﬁ S wnl(F)'XF) (3.5.4)

for all X € o, with FY defined as
j Ci,qing
F{ = Z Ft™,

Notice that Fg commutes with the star operator Ay at s = 9p€. To see this,
let us write the star operator again in the form

1 _
AS - Aamai
a2 2

mENy lGIca

Then

ASFg :é Z ZAgzmmF?’qmaj

n,meNc, 1,

:é SN ppe g

n,meNc, 1,

=T 1 CL,qing ; 7.
g X SR

n,meNc, 1,
CL,qing;
=2 > A,
neENqy iEIca

—F/A,.

It follows for sg = 0o that wg'(Hy) = 0 with H defined as in Lemma
3.5.2 However, we need to verify that wg' is a well-defined state even for
semi-infinite ribbons.



128 CHAPTER 3. KITAEV’S QUANTUM DOUBLE MODEL

Lemma 3.5.3. Let {&} be a sequence of ribbons extending to infinity from
So = 00§ and & be the semi-infinite ribbon arising as limit from {&}. Set

a 1 Iy ',y
W (X)i= o D wo(F X (R ™))

* LI Jel,
for each X € A, and | € N. Then the limit

. 1 a o
wg 1= lim wg (X) = lim — > wo(FH X (FL)) (3.5.5)
* LI Jel,

exists for each X € Uy, and extends to a state on 2.

Proof. We will show convergence by showing that the expression in Equation
(13.5.5]) eventually becomes constant. If X € 2., then there exists an ng € N
such that supp(X) N &\ &, = 0 for all | > ly. Using Equation (3.3.2)), we
obtain for [ > [y and £ :=§ \ &,

1 /
@ LI ,Jel,

1

d_ Z Z Ilj(aFKJozX(FéIloK aFKJa) )
1,I' Jel, K,K’

1 / i /
*I,Jels KK’

1

d

Z Z Z szm Fk2]2( )

II' Jel, K,K' n,n' €Nq

Chy Qe NGjy 12O qk/nq“ IK, I'K’,
(Félkl k1 JlF Fél OLX(FEZO a)*)

LTSS s

1,1, Jel, K,K' n,n’€Ngy

Chy Cf 20k1 "1 T, I'K'
F, F. VX (Fp & )"

0 ¢ g, Xy, )

Ty "1 n'g;, Wo (

Like before, gr,ng;, = qun'q;, implies k; = kj and n = »n/. Furthermore,
by commuting with star operators at the endpoint of £, we can see that the
expression

Gy Ot Uy M1 T, 'K, 1 IK, 'K,
B X (EL)) = P X (R
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is independent of gx,ng;, and in particular independent of n. This allows us
to use the orthogonality relation for irreducible representations to obtain

Z Y D TR (n)dk, wywol Fyr "X (Fg "))

I 1", Jel, kl,k €lc, NENa
k2, k’ L€,

|N | Z Z IKa I'K,a\ %
= WO F£ ’ ) )
da G| dimg, LI, JEly k1€lg,, 0
kQEIﬂ'a

1 |N | IK,« I' Ko %
\G| dim, Z Cdo(Fflo X(Fﬁlo )’)
“II

I Kelg,
:Wgo (X)7

where we used |G| = |C,||No| and d, = |Cy|dim,, in the last step. This
shows that wg‘(X ) exists for each X € 20, and extends to a linear functional
on 2. Clearly, w is positive. It is left to show that wg(1y) = 1:

Q

(

—_

2

~—
|

S ST T e (E O EC

1,I',J€la nyn'ENg

Eil Cit 7qi1nq_j1
12J2 i5J2 1
E E F F o ( )5%1 515951 ™' 3y w()(Fg )

I,I',J€I, nyn'E€Ng,

(S
ax}

&|,_. §|>—~

Q

() 1 ; ; 1
PSR SOl ST
I,I',Jels nyn'€Ng
1 Z |No| 1
dy, et dim,, |G|
=1,
where we used Proposition [3.3.12] again in (x). O

Note that the states w¢ defined in Equation (3.5.5) indeed coincide with
the states defined in Equation (3.5.4) for the special case 7, = triv.

Theorem 3.5.4. Let & = lim &, be a semi-infinite ribbon with {&,} a se-
n—oo

quence of ribbons extending to infinity from some site so = 0y&. Then
the states wél’a as defined in Equation (3.4.21) for a € D(G) with either

To 7# triv or |Cy| > 1 and any index pair I € 1, as well as the states wg' de-
fined in Equation (3.5.4) for m, = triv and |C,| > 1 form a family of ground
states of the non-abelian quantum double model.
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Proof. Let A, be a sequence of growing square-shaped regions, HY =
Hf — ¢*Pg as in Lemma and £ a ribbon with s = 9y¢ extending
to infinity. Given a local operator A € 2., there always exists an ng such
that supp(A) C A, and supp(A) No, = 0 for all n > ny. But then, setting
On(A) :=1i[H?, A], we have 6,(A) = §(A), implying that §,, converges point-
wise to 6 on 2. in the strong operator topology, and by extension on 2. If
either 7, # triv or |C,| = 1 or both, wél’a(Hﬁ) =0 for all n > 1 by Lemma
If 7, = triv and |C,| > 1, then wg(Hy) = 0 by the discussion preceding
Lemma [3.5.3] In either case, Lemma then implies the claim. ]

Remark 3.5.5. The states wél’a are indeed non-ground states in case m, = triv

—

and |C,| > 1. Fix an irreducible representation « € D(G) with 7, = triv.
We claim that

wél,a ’%\c: w? ’Ql/\c

for any region A containing s = 0p¢ and any a € 5(5 Indeed, let X be

a local operator with dy¢ ¢ supp(X). By Lemma [3.4.12] wél’a(X) coincides

with

1 o o
pEX) = = D wo B X(F)).

JI€ls

Furthermore, because of [X, Bgo] = [X, Ai}o] = 0 for all ¢,h € G, we can
decompose £ = & & such that & N supp(X) = 0 and because FSIJ’O‘ =

> FIIK’O‘F;;J’CY and the {FéK’aQO} form an orthogonal set, we have
Kel, Iel,

wo(F", XF/*) = 61 pwo(FL7, X FL).
It follows that

W (X) = = D wo(FUXE) = pe(X)
1,1',J

for all X with so ¢ supp(X). Now, if wél’a was a ground state, it would

follow from Theorem [2.5.22| that w(H?) > wél’a(H;ﬁ) for all states w with
o : II,a (e

W (A= W§ [(an)e. But if |Co| > 1, we have w, “(Hf ) = 1 — \c_la| >0 =

wg(Hy ) for all n.
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3.6 Irreducibility of the GNS representations

of the states wé”’o‘

In this section, we will show that the states w!’*® are pure states, implying

that their GNS representations are irreducible by Theorem [2.5.11] The idea
is to find analogues to the condition wy(As) = wo(Bs) = 1 for all sites s, as

in Equation (3.2.17) and Equation (3.2.18) for the ground states wél’o‘. By

Lemma 2.5.6, wéla is pure if and only if any positive linear functional ma-

jorized by wg Lo i a scalar multiple of wgn’a If we find a family of projections

I«

{Pr} ey, with I bemg some index set such that w,"" is uniquely defined by

the condition w€ . “(Px) = 1forall k € I, then for any non-zero positive linear
functional ¢ with ¢ < wél’a, it follows that

0< 77[)(191 — Pk) < wgl’a(lm — Pk) =0.

Hence, ¢(P,) = ¥(1y) and ¢ := ¢(1 oy ¥ is a state with (P, =1 for all k. If
these conditions fix w uniquely, it follows that ¢ is equal to wg ’a, implying

that ¢ = w(lm)wéla It then follows that w H “ is pure by Lemma .
We first have to construct such pro Jectlon operators. Given an irreducible

—

representation a € D(G), we may define at each site s the operators Al%
via

Agf»a: ! > Tizi(p) AT (3.6.1)

a nENq

for each I,J € I,.
These operators exhibit the following properties.

Lemma 3.6.1. Let o, 5 € E(E) and I,J € I,. Then
(AIJ,a)* _ AJI,a.

If furthermore J = (j1,j2) and K = (ky, ka) € Iz with j1 = k1 and C :=C, =
Cg, then

Al ARLS = 5 565 ¢ AL, (3.6.2)

In particular, the operators AL are projections.
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Proof. We have (A¥)* = AF for all k € G, giving

|N06| ]Ja Z Fzzjg Aqnnqll

dlmﬂ—a TLEN&
ne—n ioja (=) AL _ Tj2i2 951Gy
E [7292(n) As L= [722(n) As
nENqy nENq
o |Na| AJI,oz
=A%
dim,,,

showing the first claim. For the second claim, note first that C, = Cg implies
N, = Ng. It follows that

‘N| |N,3‘ A]JQAKLﬂ J1= k1 Z me Fkglg( )Agilm‘TnAzhn@l

dim,,, dim,,

m,neEN
Z F12J2 Fk2l2( )Agilm”qll
m,neEN
dim, ;
-5a ,8(5_72 ko ’ ‘a Z FZQ]Q Aq 1Mary
A menN
| Vo I
:dima 5a’56j2:k2145 “
N,
= d‘ima’ 0,301 AL,
T
since j; = k; already holds by assumption. O]

Remark 3.6.2. If « is the trivial representation of D(G), i.e. C, = {e} and
T, = triv, then

dimy
AL triv FH A" — Ak
’ [ Za(e)] 2 Til el Z

neZg(e) keG

becomes the projection into the trivial electric charge.

We have seen in Proposition [3.4.2| that the operators Fg 12 can be used
to decompose the GNS representation H into irreducible representations at
site s = 0p€. The operators in Equation (3.6.1)) can be used to permute the
vectors Fgl 72Qy to one another. In [BV23], these operators were therefore
called label changers.

Lemma 3.6.3. Let o, € D/(CT) with C = C, = Cg and N = N, = N3 and
let & be an open ribbon with s = 0y&. Then we have

A BIV Q0 = 60,56 FF Qo (3.6.3)
for all labels I,J € 1, and K, L € Ig.
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Proof. First note that because of Equation (3.3.12)), we always have
BEFPQ = BEFPBQ = BEBIF Qg = 6,3 BEF;Q
regardless of the local orientation of £&. This gives

AgJ,ath Fg(L,BQO _ Z Fz2j2 Fkglg( )Agnm‘jjl B;jl F;h N QO

n,meN
qi; MQj Cj1 95, a1
:5k1 i § : Fzzjz szlz( )Asq J1F§J1 J1 1QO
n,meN
_ . § Ti2j2 Tkala Ciy»Qiy MGl 4 Giy M5y
- 51917]1 F7ra (m)rwlg (n)F£ AS QO
n,meN
12‘72 k2l2 Eil aqil mnqll
= Oy E F F (n )F5 Qo
n,meN

(2.2.6) Siol Ciy »qiq M)
5a,ﬂék1,j15k2,j2 § , F?; (n)Fg o llQO
TLENCB
L,
= Ga,30k,0 ¢ Q.
O]

Corollary 3.6.4. The operators A form a family of mutually orthogonal
projections. Furthermore, if £ is a ribbon e:vtending to infinity, s = & and
HO‘ the states defined in Equation (3.4.21)), then we have

wgfa(As,) =1, (3.6.4)
we*(By) =1, (3.6.5)

for all s # s and
we(BE) =0ce,, (3.6.6)

é[ a(Aﬁ/L a) :(5[7[/.

Proof. Let a € E(E) That the Al are mutually orthogonal projections
follows from Equation (3.6.2). Let £ be a ribbon with 9y¢ = s. Equation
(3.6.7) follows from Equation (3.6.3)):

wé[,a<A§L,a) _ Z Wo <<F£IJ,O¢> ASLL’ang’a>
Jeln
. Z o (( 1Ja> Fg]],a)

Jely
_(S[ng ’ (1@)
=1.
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To see Equation (3.6.6) note first that

I c Z Z Ciq »qiq M2q; Ciy 1Ciq »qiq 2G5
w£ a 11 — I‘Z2.72 ]_—‘7/232( )<F£’1 11 JlQO’lengll 21 JlQQ)
Jely ni,ne

_ Z Z Flzm Flzjz( )<F§i1:qn”2‘7h Qo, ngpqﬁ”ﬂjl QO>

Jely n1,n2

=1.
Using Lemma [2.5.13] we obtain

we (BE) = wi M (BEB) = e, -
For the other equations, note that [As/, th’g} = | By, th’g] =0 for all &' #
s and with AyQy = ByQy = Qp, Equation (3.6.4) and Equation (3.6.5)
follow. O]

Thus, the operators A allow us to indeed define a generalized version
of the stabilizer conditions Equation 1) and Equation (3.2.18). We

claim that Equation (3.6.4 - to Equation (3.6.7) already determine w; ’O‘.‘
Before we show this, it is worthwhile to decompose the star operators into

a different basis.

Proposition 3.6.5. Let o € E(E) be an irreducible representation and fix
an index i1 € Ic,. Then the family

{AKG2| 5 € D(G),Cu=Cs K €I lh € 1} (3.6.8)
where

AR ey > Tl () AT

constitutes a new basis for the star operators {A’;’}keG at site s. Furthermore,
we have the identities

Byt AR gln — 5, Avk)(al)apln — 5 Bt ARnk2)(alz)a (3 6 9)

Z11

A OATRI T = 6, 55, p, ALH (0125 (3.6.10)

and

Alik)b) B pTLe — 5, 5 g Alk2)(i12).5 (3.6.11)

i2,l2

for any B € D/(G\) with Cg = C,.
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Proof. Note that Equation (3.6.10)) and Equation (3.6.11)) are special cases of
Equation (3.6.2)) and are just listed here for later reference. For any element
n € N,, we have by Equation (3.2.14])

Agkln(iil ng _ Bgm”%ﬁq%ﬁ%A;chlmiil _ BSklAgklmiz‘l
for all ky € Ic,. This implies
Bt ARRE pit — gt gt AR(ntz).e
=0iy B A1)
=iy, AK () gt
To see that the operators given in Equation form a new basis for

the star operators A* acting at site s, consider the matrix I' with entries
I'%222(n) whose rows are labelled by n € N, and columns are labelled by

triples (i2, j2, Ta) € Lo X 14 X ]/V; Note that due to the identity

> dim? = |N,],

770461@

—

I' is a square matrix. For 1,8y € D(G) with Cs, = Cp, = C, and triples
(i2, jo, g, ), (K2, la, g, ), the Peter-Weyl Theorem gives

N . N
(TT )(zz,yz,ml)(kg,lz,mz) = Z Fgln (n)szb(n) — (J-Hn—ﬂl‘5ﬁ1ﬂ25i2vk25l27j2'
neENg By
This implies in particular that the matrix I' is regular and represents therefore
a base change on A" := span {AZ’“”"” |ne NC} and since G factorizes into
its cosets G = Hcklec Qi Ne, every AF lies in A% for a unique k.
O

This proposition allows us to show that Equation (3.6.4) to Equation
(3.6.7) uniquely determine a state on all star and plaquette operators.

Lemma 3.6.6. Let 1) be a state on A such that

¥ (AL) =4 (By') =1 (3.6.12)
for some o € 5(6), I = (iy,i9) € I, and site sg. Then
¥ (B,) = dcer, (3.6.13)
and
W (AERIPY) = 60,0k 101, 4, (3.6.14)

holds. In particular, the above holds for the state wél’o‘ at sg = Op€.
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Proof. Using Lemma [2.5.13| we, obtain
w(Ag(illz),p) :1/1 (AII,aBgél Ag(ilb)’pB;l All,a)
Lem B.6.3 «
- 57ra,7rp5i1,k16i2,k25i2,l2¢ (AII’ )
:67Ta,ﬂp5i1,k1 5i2,k25i2,l2'
For the plaquette operator, we obtain similarly
¥ (BS) = (BW!'BS,) = 0c, (3.6.15)
O

Theorem 3.6.7. Let £ be a ribbon extending to infinity and o an irreducible

representation of D(G). Then the state wél’o‘ 1s uniquely determined by Equa-

tion (3.6.7)) and Equation (3.6.6)) at site sg = 0o and
we N (Ay) = wg(By) =1
for all sites s # sg.

Proof. We will use similar arguments as in the proof of [Naal2, Thm 12.1.3].
Let 1 be a state on 2 such that

Y(AE) = weh e (AE), (3.6.16)
(BY) = w"(BE) (3.6.17)
holds for all sites s and k € G. Let A, be a square-shaped region of size n

centred at so. We know that the space of local observables supported on A,
is spanned by operators of the form

L3, TA

n

for G-connections X,y € Cg(A), where T} and L} are defined as in Equa-
tion and Equation (3.2.26)) respectively and A is any region contain-
ing A,. Note that we have the commutation relation L3 T, = Ty'L} |
where Ay : ¢ — A(e)v(e) is the pointwise product of A and 7, which we will
denote by 7 := Ay from now on. Because of

WL, TR = ¥(B,Ly, T, B.) = (BT}, L), By)
for all s # sy and

W(L) Ty ) = w(Bal L) Ty Ba') = w(Bal Ty Ly Ba),
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es fa¢e
€13 €5
€14 €12
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elo Y0} eqp
€9
(2}
€2 fies
€1

Figure 3.22: Depiction of the square-shaped regions As and A4, with A3z in
black and A4\ Az in gray. The magnetic charge is sitting at site sg = (vo, fo)
(red) surrounded by the edges ej1,e19,¢13 and e;4. The magnetic flux of
the G-connection v at sg is (s, (7) = 711712713714 = ¢, and the flux at all
other sites is trivial. The local operators L’ act only on As. The only
dual triangle operators that can not be eliminated by star operators A, with
v # vy are the ones acting on eg, e19, ¢11 and eq4.

it follows that v and +' must both have a trivial magnetic flux at each site
s = (v, f) with f # fo, where fj is the face associated to sy and that v and ~/
have the same flux at sy for the above expressions to be non-zero. We want
to show that we can transform L) to some Ly , where X(¢;) = e € G for all
edges ¢; with vy € Je; by commuting with star operators at sites other than
Sg- In other words, Lj\\'n acts non trivially only on the star at site so. We
will apply our arguments to the square-shaped region As of size n = 3 with
so being at the plaquette in the centre and A = A,, .1 = Ay, i.e. 7y is defined
on a slightly bigger square shaped region, with labellings chosen as in Figure
3.22] Note however that this is only done to ease readability of this proof,
and all our arguments can straightforwardly be applied to the case where n
is arbitrary and sq is positioned anywhere.
Before we continue, note that we always have

Liy = RYOy
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for any G-connection v € Cg(A), k € G and edge ¢ € E, where RF denotes
the right-multiplication with k at edge e. In other words, left-multiplication
of some g € GG with k is the same as right multiplication of g with of gkg.
Let ¢; be labelled as in Figure , v € Ca(Apy1) and write v; := v(e;),
vi = ~'(¢;) and A\; = A(e;) and let further §,(7) denote the magnetic flux of
v at site s. We argue first that \; = e if ¢; is on the boundary of A3. Indeed,
this follows because v as well as 7/ have trivial magnetic charge for all faces
in A, ,; that are not in A,, and L;\\n can only act on exactly one of the edges
surrounding those faces. For instance, for the site s; = (Jpe4, f1) we have

e=fs(7)= 727173745\4 = 551(7)5\4 = 5\4,

since s, () = e as well.
Next, consider f, and its surrounding edges. The magnetic charge at site

sz = (Ooes, [2) is
A5Y5767778As = AsAs (3.6.18)

which is equal to e if and only if A5 = Ag. Write vy = dyes. Then the star
operator A}> = L5 LY RY, Ry will cancel the effect of L}? L2, Furthermore,
we have

R [Msms — RAs pAsms [ Ais

€137 €13 T €13 €137 €13 €13

T A13713A5913A13 TA13713 T A13
_L213 Tels L213

_ T A13713X5913A13 T AM1377713
_L213 L213 Tels

— T A13713A57
_Le1133 V1375713 Tg;ﬁi .
Similar arguments hold for the edge ¢;2 and it follows that Ai\fL?\nTXn can

be written as LIACHTX” for some suitable \;, and Lj\\ln acts trivially on e5 and
es, i.e. A\j(e5) = Ai(eg) = e. Because vy # vy, we further have

(LA, TR ) = (AP LY T] ) = w(LY T7).

We can repeat this argument until we transformed L} T, to some Ly Ty
with all X (e;) = e unless ¢; is an edge of the star-shaped region centred at
vg. We assume that A = ) already holds for the rest of the proof.

We want to show that L} v = Afjofy and that k£ commutes with ¢;,. To see
this, let fs, f1 and f5 be as in Figure 3.23] and let s; = (vo, f;) for i = 3,4, 5.
Then because of 5, (7) = f5s,(7') = e for all i = 3,4,5, we have

Bss () =€ :’795\9’716719’7115\11 = 795\979’79716’7197115\11 = 795\9795\11,
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which implies A1 = F9Agye. Similarly calculations show that the identities
Be,(V') = Bs (') = e imply F10A10710 = FoAoYo and Aig = F10A10710- This
implies in particular that A\;; = A4 and because Agv9 = YoYoAgVo = YoA11
and )\10"}/10 = ’}/10:}/10)\10")/10 = ’}/105\14 = ")/105\11, we see that the action of L?\\n
is given by the star operator Aﬁoﬂ on v, i.e.

L?\n/y — [ L?QQL)\lOL)\lAL,y — [ RE\QUR;\HLAU,Y _ AZéW‘

€11 €10 €14 €11 €10 €14

V18 Y13
Y15
J5 M4 fo M2
Y10 Y11
Vo
Y17 fa 79 f3 719
V4 Y16

Figure 3.23: Depiction of the v-values for the four plaquettes bordering the
star at vg. The edges ¢; are labelled with the values of the G-connection 7.
Although the labelling may seem arbitrary, it is still consistent with Figure

0. 22)

It follows that by commuting with star operators at vertices other than
Vg, the operator LﬁnTXn can be transformed into an operator of the form
Ak TY for some k € G. Furthermore, because of

ciy = Bso (V) = kyumeTisTak = kBs, (V)k = kei k
we must have that k lies in the centralizer subgroup of ¢;,, hence k = ¢;, ng;,
for some n € N, and A% must lic in AY = span {AZQ""“ |n e Na}. By

Proposition it is therefore enough to evaluate 1 on operators of the
form

Ag7(i1112)76T/’\yn

—

for 8 € D(G), K = (k1, k) € I3, k1 = i1 and [y € I,. Because of

w(Aga(ihb)ﬁTXn) :¢<A£17GA£§7(¢1,Z2)15T;\/”)
(3-6.2) i o
E52 5&,,35K,1¢(A£[)( Liz), 73.)
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We therefore may assume that K = I and a = .

We want to show that also [, = 75 holds by inserting the operator Ag “ on
the right of the argument of ). At first, this does not seem to lead anywhere
due to the fact that the different summands AZ"™%* for m € N, commute
differently with T | i.e.

dim I
I, Yo M Y A 2i1™Mi
AT = 3 TR

mENq
with suitable G-connections 7,,. However, by Lemma(3.2.7], we can transform
each T individually to some constant T using star operators at vertices

other than vy, commuting with each star operator at sg. This gives indeed

Seabo (AT ) < (ALIOTY A1)
=0k, 100,59 (Ag W ALT] )
=05,100,8015,is Y (Aéé’aTXn)
=0K,100,801,i, 0 (T} )

Let C"“"(A,) denote the space of G-connections that are flat for all s =
(v, f) with f # f, and have magnetic flux ¢;, at site so. As mentioned before,
Lemma allows us to commute with star operators at sites other than
Sp to commute Ty to any T” with v/ € C"“* (A,,), hence (T} ) = w(TX;)
for all v/ € C’SO’C” (A ), and because of ¥ (1lg) = 1 we have

; 0k 100801,
AK7(Z1»12) T’Y — Kvl avﬁ l2712 .
w ( S0 ’ﬁ An) ‘0207011 (An)|

We conclude that v is uniquely determined on all operators of the form
Lj\\nTXn, hence on all of 2,;,. and by continuity on 2. O

—

Theorem 3.6.8. wél’a is pure for each irreducible representation o € D(Q)
and index pair I = (i1,i2) € I,, and the corresponding GNS representations
1s therefore irreducible.

Proof. We will repeat the arguments from the beginning of this section in

more detail. Write sg = (v, fo) = €. By Lemma [2.5.6] wéla is pure if

and only if for every positive linear functional ¢ : A — C with ¢ < wél’o‘, it

follows that ¢ is a multiple of wH’O‘ If 9 is non-zero and ¥(X) < wél’a(X )
for all positive X € 2, then

0 < ¢p(ly — AJY) < wp (g — AL =0
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and

0 < o(la— A) Sw (g — A) =0

for all s = (’U,f) with f # fy, implying w(f}s) = w(Aﬁga) = ly. Similarly,
Y(B,) = ¥(Bs') = 1(ly). Then the map ¢ = mdj defines a state with
@(Aégo‘) — (A;) = 1 and ¢(B,) = ¢(B%) = 1 It follows from Theorem
3.6.7| that ¢ = wgl’a, implying ¢ = ¢(1m)wél’a, hence wél’a is pure.

Finally, by [KR86, Thm 10.2.3] a state is pure if and only if its corre-

sponding GNS representation is irreducible. ]
Theorem 3.6.9. Let o, 5 € 5(6), I'el,, Jelsand&, & be semi-infinite

ribbons. Then the GNS representations of wg’a and wé‘]’ﬁ

and only if a« = .

are equivalent if

I

Proof. By construction, wél J 58

“and wg, " are normal states. By Theorem|3.6.8}

the GNS representations Wg,a respectively Wé TB of wg’o‘ respectively wg J

2

are irreducible. It follows that the commutants 7rg’a () and 7”?(2)" must

&2
be multiples of the identity, implying that wg’a and wé 78 are factor states,

and by Lemma [2.5.23] wg’a and wé 18 are quasi-equivalent if and only if for

each £ > 0 there exists a region A such that

I« JJ,
‘w& (X) - ﬁ(X)‘ <c|IX]| (3.6.19)
for all X € ;. supported on A¢. In Lemma |3.4.12] we saw that if a = 3, we
even have wg’a(X ) = wg (X) for any region disjoint from 9§, where wg are

the states defined in Lemma [3.5.3| giving in particular o.zg’a(X )= wgl 7 (X)

in that case and Equation (3.6.19) is trivially satisfied for all £ and wg’a

and ngl 7 must be quasi-equivalent. Since pure states are quasi-equivalent
if and only if they are equivalent, wg’o‘ and Wé]l 7 must be equivalent. By

our discussion in Remark [3.4.11) we also have wg’a(X ) = wg’a(X ) for all

X € ;. supported outside of a region containing any ribbon ( connecting
0o&1 and 0yp&y. This implies that wg’a and wé 7 must be quasi-equivalent,
and hence equivalent, as well.

For the other direction, let @ 2 5. Then we can choose for any finite
region A a closed ribbon ¢ supported outside A with s; and s, in the interior
of o to obtain
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by Equation (3.4.24). But then Equation (3.6.19) is violated for any ¢ < 1

and X = P& and wgf’a and w‘é "% must be inequivalent. ]

Remark 3.6.10. The proof of Theorem [3.6.7] is a generalization of the proof
of uniqueness of the frustration free ground state for the quantum double
model [FNT5]. Indeed, as indicated before, choosing « = (triv, {e}) in Equa-
tion (3.4.20)), we get the frustration free ground state.



Chapter 4

Outlook and Discussion

In this chapter, we want to discuss some open question that this work can
branch out to. In Section we introduced the notion amplimorphisms
Ihe - In Section , we inspect these

as a means to defining the states w,
amplimorphisms in further detail. It turns out that the matrices Fg carry

o —

natural transformation rules under the irreducible representation o € D(G).
Furthermore, the amplimorphisms obtained from these matrices form objects
of a category that can be related to the representation category rep(D(G)).
What makes these amplimorphisms interesting to study is that they give rise
to states satisfying the superselection criterion for cones: If C' is a cone in
the plane, then the GNS representation 7y of the vacuum state wy is quasi-
equivalent to the representation xg o mp when restricted to the complement
of C'in Z2. In other words, we have

U C'ng.e. (X? e} 7T0) ce,

where the composition on the right-hand side is understood component wise.
We remind the reader that the classical superselection criterion is defined
in the setting of quantum field theory for light-cones, and the complement
considered is the space-like complement. Furthermore, we eased the criterion
to demand only quasi-equivalence, whereas in [DHRT71] one demands unitary
equivalence.

A similar class of amplimorphism was analysed in [SV93] and a categorical
equivalence was established between this category of amplimorphisms and
the category rep(D(G)). We investigate this relation in the context of the
non-abelian quantum doubleE]. The biggest difference in our work is that we
are dealing with infinite ribbons, while in [SV93], all operators were localized

IThis is a work in progress in collaboration with Alex Bols, Pieter Naaijkens
and Siddharth Vadnerkar
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in a finite region of the spin chain model. Recall also that the operators Fg
defined in Chapter (3| are not well-defined for infinite ribbons, even though
the amplimorphisms Xél’o‘ are.

There is another important difference between our setting and the sce-
nario in [SV93]: Morphisms in the category of amplimorphism are defined
as unitaries in A ® Hom(V, W) for amplimorphisms x; € A ® End(V) and
X2 € A® End(W). In our case, however, the entries of such a unitary will
not live in 2, but rather in the von Neumann algebra generated by the GNS
representation of wy.

In Section [4.2] we discuss open questions and possible generalizations
from our work. In Section [4.2.1] we mention briefly mention the possibility
of other ground state in the non-abelian quantum double model. In Section
we consider quantum double models stemming from general Hopf alge-
bras. Finally, we discuss ideas to extend the quantum double construction

to compact groups in Section [4.2.3]

4.1 The category of Amplimorphisms

First, we return to the analysis of superselection sectors. We have mentioned
at the beginning of this thesis that it is widely believed that anyons are
described by a modular tensor category, and that we would like to describe
the algebraic properties of anyons using the theory of superselection sectors.
We explained in the beginning of Chapter [3| that the construction of the
amplimorphisms xg : 2 — 2 ® End(V*) is motivated by the DHR theory,
which associates the superselection sectors of physical states with localized
and transportable endomorphisms. A representation 7 is said to satisfy the
superselection criterion for cones, if for every cone C' we have

o |ace)yZqe. T |a(ce), (4.1.1)

[

where =, . denotes quasi-equivalence. If y is an amplimorphism local-
ized in some cone C, then for all A supported outside of C' we have
m o X(A) = m(A) ®id = @¢;, m0(A). As we have seen, the amplimor-
phisms xg are localized as well (Proposition . Furthermore, it was
shown in [BV23] that the representations X? "* o g are unitarily equivalent
to the GNS representations 7T§H’°‘ of the pure states wél’a for each I € I, and
regardless of the choice of the initial site of £, and with Theorem it
follows that Xg’a o Ty is unitarily equivalent to Xg‘],‘]’a o 7y for any ribbon &’
and index J € [, which is why we may write 7 instead of Wél’a. It follows
that the states xg o mo satisfy the superselection criterion for cones.
We summarize our observation in the following theorem.
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Theorem 4.1.1. Let £ be a semi-infinite ribbon extending to infinity from
some initial site sq. Then the mapping

—

D(G) — rep(), a = x¢ o m, (4.1.2)

maps each irreducible representation of the quantum double D(G) to a state
satisfying the superselection criterion FEquation (4.1.1]).

Whether transportability for cones holds was left as an open question in
[Naalf], but is now answered in Theorem [4.1.1]

Transportable and localized amplimorphisms form a category, and we
anticipate that this category has the same structure as the representation
category of D(G) as a modular tensor category. In [SV93], a 1-dimensional
quantum spin chain is explored within the setting just described. There, it
was shown that all anyon sectors can be obtained via localized and trans-
portable amplimorphism x : A — 2A ® M, (C) on the quasilocal algebra 2,
and a fixed vacuum representation 7. As mentioned before, there are certain
additional subtleties in the setting of the infinite plane. One such subtlety is
that the unitary transporters V are not defined in 7#*(2(), but rather in the
von Neumann algebra generated by 7(21) [Naal5]. Another difference is that
the transformation rule satisfied by the matrices Fg are slightly different from
the ribbon operators defined in [SV93]. In the following, we will explore the
difficulties and possibilities to generalize their result to the two-dimensional
non-abelian quantum double model on an infinite lattice.

Let H be a Hopf *-algebra with unitary action on a module V' via some
map U : H®V — V. Then we can define the coadjoint action of H on
End(V) via

V(A =D UD)AU(S(a®)). (4.1.3)
(a)

Lemma 4.1.2. The map vV defined in Equation ([4.1.3) defines indeed an
action of H on End(V') and satisfies the identities

e (AB) = Y A (A (B) (4.1.4)
(@)

and

Ve (A") = Y5y (A)". (4.1.5)
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Proof. That ~ defines an action follows from

16(4) = 37 U((ah) V) AU (S (ab) )

(ab)

—ZZU YU D) AU (SGP))U(S(a?))

=Ya ©% (A)-

We proceed to show the other identities:

WW(AB) => " U(aM)ABU(S(a®))
(a)

=3 U@) AU(S(a®))U(a®) BU(S(a'?))

(a)

= Z Yoo (A a<2) B)

(a)

ES

Vstay(A) :Z [U((S(a)) M) AU(S((S(a))™))]
= Z (a®)))AU(S(S(aM)))]"
- Z (@) ) AU((aM))]”

(a)
fz (1) VA*U(S(a (2)))}
(a)
=7 (A7).
[]

Let Ug be the action of the quantum double D(G) at site s defined in
Proposition via Us(6, ® h) = BIA" and let v* := 7Y be the corre-
sponding coadjoiria\ction on 2. Given a ribbon £ and an irreducible rep-
resentation o € D(G), the elements (Fg)"” in Equation form the
entries of an element F € 2 ® End(V), with V' = Clel. For an arbitrary
element F € A ® Hom(V, W) we say that F satisfies the F-algebra relation
[SV93] if

F'F = 1y ®idy, (4.1.6)
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ie. if
Z(FKI>*FKJ — 5[]121
K
forall I =1,...,dimy and J =1,...,dimy. We call F non-degenerate if

F satisfies the F'-algebra relation, Equation (4.1.6)), and
FF* = 1y ® idy, (4.1.7)
ie. if

Z FIK(FJK)* — 5[,J1Ql'
K

For any element F € 2 ® Hom(V, W) we define a map xr via
xr 2 = AR End(V), X FXF. (4.1.8)
If F satisfies the F-algebra relation, then
xr(AB) = (F)" (AB®idy)F = (F)" (A®idy)FF*(B ® idy)F
=xr(A)xr(B)

and xg becomes an amplimorphism that is unital if and only if F is in addition
non-degenerate.
We can extend the coadjoint action of D(G) to A ® Hom(V, W) via

Yo(F) = (U[aV] @id)F(U,[S(a®)] @ id). (4.1.9)
(a)
Before we continue, we introduce a few notations to ease readability. If
X €U, we set
XF = (X ®idy)F,

i.e., we view X as acting component wise. Similarly, if 7" € End(W), we
may identify 7' = 1y ® T and write TF instead of (1y ® T)F. Note that we
have [T, X] =0 for all X € A and 7" € End(V') with this notation. Equation
(4.1.9) reads in this notation

V() =Y UJaMFU[S(a®)]. (4.1.10)
(a)
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—

If o € D(G) is an irreducible representation of the quantum double G, then
we call F an a-multiplet at site s if F satisfies the F-algebra relation and
if

Yi(F) =T (S(a))F, (4.1.11)

where o* is the contragredient representation of «, (cf. Proposition
and Iy« is the unitary matrix representation of a* as given in Equation
(2.4.33). Note that we identified I'y(a) with 1y ® I's(a). The motivation
behind these definitions can be found in the following Proposition.

—

Proposition 4.1.3. Let a € D(G) be an irreducible representation of the
quantum double D(G) and & a ribbon with initial site s = 0o&. Then the
matriz Fg € A® M, (C) defined in Equation 1s non-degenerate and
satisfies the F'-algebra relations. If § is locally clockwise oriented, then Fg is
a non-degenerate cc-multiplet at site s.

Proof. The F-algebra relation and non-degeneracy has been shown in the

proof of Proposition [3.4.8] see in particular Equation (3.4.18)) and Equation
(3.4.17). We verify the multiplet property for elements of the form ¢, ® h €
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D(G) with g, h € G and consider the I-th row and J-th column of v*(a)(Fg):

()™ =D ZF’“ (@) FE I U(S (a)

n€ENa (a)
-42 -42 Ciq »qi; NG5
E E sz Us(0g, @ h)F" 71U (5hglh®h)
n€Na (a)
(8-4.1) Fio o g2 Ah G181 "3 phgih AR
£ N N D) BRANE, Blah A
n€Na g192=9
(3-3.6),(3-3.8) }: 2: =i o h&iy hihaiy ndjy p92hEih b phgih AR
_——————— — Fﬂ'a (’)’L)}W5 BS ASBS AS
n€Na g192=9

G219 2 : 2: hc hihaiy ndjy p92heish gy b Ak
Z2]2 1 1 J1 11 g1
F Bs BS ASAS

n€ENuy g192=9g

hé&;. h,hqi, ng; G
E E 1272 1 1991 pag1
- 5g1 gghcllhr ( )F Bs

n€Nq g192=9

ghcllh

n€ENu g192=9g

hczlh he; hnq]1
E dg, hc” qzthhcz hn)F
nENy

dimr, |Cal

- Z Z Z 5gvhcilﬁ(sck17hcililrfr2ai2(q_hcilﬁhqil)

nENy ko=1 k1=1

m—>qllhth h”

Ck129he; WML

[ (n)Fy
E133) o
> L6, ® h)(Fg)™

Kel,

ELB N I (S(5 @ ) (F)

=La+ (5(dg ® h))(F¢)
O
In components, Equation (4.1.11)) takes the form
> TE(6, @ h)(F)~, (4.1.12)

Kela

as seen in the third from last step of the proof of Proposition f.1.3, We will
denote the space of a-multiplets by Mult, and write RMult,, for the set of
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multiplets of the form Fg. We also write

Mult= ()  Mult, (4.1.13)
a€Reps(D(G))

RMult= | )  RMult, (4.1.14)
a€Reps(D(G))

to denote the set of all multiplets, respectively ribbon multiplets.

—

Lemma 4.1.4. IfF € 2A® Hom(V, W) is an a-multiplet for o € D(G) at
site s, then we have

Yo(F*) = F*Ty+(a) (4.1.15)
and

15(F') = F'Ty(a) (4.1.16)
for the adjoint F* and the transpose F' of F.

Proof. Note that (F*)!/ = (F’//)*. Using that F is an a-multiplet, we obtain

Z (Tar (52(a>*)JKFKI)*

Kela

F*Fa* (CL)

w7y D) ,
(Va(F) =750y (F7)

a)*

=T (a™)F)*
and

V(BT =43 (B = T2 (S(a) ) FX!
=T () (F")X = (F'To(a))"’

]

Remark 4.1.5. Equation (4.1.16)) is the original version of the a-multiplet
property given in [SV93] Eq. (4.1)] in the setting of one-dimensional quantum
spin chains.

—

Given an irreducible representation o« € D(G), we can always construct
a ribbon multiplet F¢ at site s for some finite ribbon § with s = Jp§. As we
have seen in Proposition [3.4.9] if £ is an infinite ribbon, the amplimorphism

Xe : A =A@ M,,(C), X — FEX(Fg)'
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understood as limits of finite ribbons &, € ¢ converges for each X € A
even though Fg does not. This allows us to choose for each irreducible

—

representation av € D(G) an amplimorphism xg« by choosing a sequence of
ribbons & converging to some infinite §,. Note that each of the individual y¢a
are already amplimorphisms and each of the F¢, is already a non-degenerate
a-multiplet at site s = 0p€,. There is a connection between the category
rep(D(G)) and amplimorphisms, and we will see that the ribbon multiplets
play a special role. But first, we need a few more definitions.

Definition 4.1.6 (Morphisms of amplimorphism). Let x; : 2A —
Hom(V;, W;) and x2 : A — Hom(V;, Ws) be two amplimorphisms. A
morphism of amplimorphism from y; to yy is an element U € A ®
Hom(W;, Ws) such that

Uxi(A4) =x2(A)U (4.1.17)
for all A € 20 and we denote the space of morphisms by Hom(y, x2). We
call U € Hom(x1, x2) a unitary equivalence if U is a partial isometry with

UU* = x2(1ly) and U*U = x1(1y) and write x; ~ xo if a unitary equivalence
exists.

Amplimorphisms form together with their morphisms a category, which
we shall denote by Amp. Given two morphisms U € Hom(yi,x2) and
V' € Hom(xs, x3), their composition is given via VU € Hom(x1, x2) and the
identity morphism on Hom(x, x) is given by x(lgy) for any amplimorphism

X-
The following proposition draws an important connection between mor-
phisms of amplimorphisms and the underlying linear spaces.

Proposition 4.1.7. Let F; € A®@Hom(V;, W,), i = 1,2 satisfy the F-algebra
relation, i.e.

F'F, = 1y ®id

and let xr,, XF, be the corresponding amplimorphisms. If T € Hom(Vi, V)
is viewed as an element in 1y @ Hom(V7, V3), then the matriz

UT == FQTFT < Q( (24 HOHI(Wl, WQ) (4119)

is a morphism from xg, to xg,. On the other hand, given any matriz U &

2A @ Hom(Wy, Wy), we set
Ty = F5UF; € A @ Hom(Vy, V3). (4.1.20)
Then the following hold:
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(1) U € Hom(x¥,, xF,) if and only if Ty € 19y @ Hom(Vy, V2) and UF,F} =
U =F,F3U.

(2) U € Hom(xr,,Xr,) 1S an equivalence if and only if Ty € lyg ®
Hom(V1, V3) is unitary and UF Ff = U = FoF3U.

Proof. If T € Hom(V3, V3) = 19 ® Hom(V4, V3), then T' commutes with A ®
idy, for each A € . This gives

Urxr,(A) =F.TFF{(A ® idy, )F] = FoT(A ®idy, )F] = Fo(A ®idy, ) TF]
:F2<A X 1dV1)F;F2TF* = XF, (A)UT,
and we also have
UrF F] = F.TFF F] = F,TF] = Ur
FoF,Upr = FoF F,TF] = FoTF] = Uy,
Next, let U € Hom(xr,, x¥,) be given and Ty = F;UF;. Then
Tr(A®id) =F5UF(A®id) = F;UF (A ® id)F{F; = FiFy (A ® id)F5UF,
=(A®id)Ty

giving T}/ € 2 for each matrix entry of Ty for some chosen basis. By
Proposition , we must have T/ € 1y - C, hence Ty € 1g @ Hom(V, Va).
If U is in addition an equivalence, then U*U = F,F} and UU* = F,F} are
projections, hence

TyTy; =(F3UF,)(FUF,)* = FLUF FU'F, = FyUU'F, = FiF,FiF,
=1y ®id,

and 15Ty = 1y ® id follows similarly. On the other hand, if F5UF;, €
lg ® Hom(V4, V3) and FoF5U = U = UF,Fj, then

UF,(A®id)F] = FoF;UF (A ® id)F] = Fo(A ® id)F5UF F] = Fo(A ® id)F3U
hence, U € (xr,, x¥,). If F5UF; is in addition unitary, then
ly ®id = F5UFFIUFy = FoUUF,

multiplying both sides from the left with Fy and from the right with F3 and
using that FoF5U = U, respectively U*FoF5 = U™ gives

F.F, =UU".
Similarly, the identity
ly ®id = FIU'F,F;UF,
gives U*U = F;F7}. This concludes the proof. ]
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In [SV93], 1-dimensional spin models are considered, and the field algebra
operators F, considered there satisfy the relation

Ya(Fa) = Fol'a(a), (4.1.21)

which is different from the transformation rule that applies in our case. While
conceptually, this should not pose a problem, the convenient placement of
the I' matrix on the right of F, allows the following nice additional charac-
terization of intertwiners:

Proposition 4.1.8. Let F; € A ® Hom(V;, W;) satisfy Equation (4.1.21) for

irreducible representations o € D(G). If T € (g, ) is an intertwiner from
ay to aq, then the operator

UT = FQTFT € (Xl,XQ) (4122)

is an e-multiplet. Conversely, if U € (x1,x2) 18 an € multiplet, then the
operator

Ty = FiUF, (4.1.23)
1s an intertwiner from aq to «s.
Proof. Much like in Lemma [4.1.4, one can show that
Y2 (F7) = Fil'o(S(a)).
Let U € Hom(xr,, xr,) be such that v3(U) = e(a)U. Since U is in partic-
ular a morphism of amplimorphisms, we still have Ty € 1y ® Hom(V3, V5),
implying v,(Ty) = e(a)Ty. This gives
e(a)Ty Z%(FEUFl)
= Z Yo (F a<2> (U)7v5e (F1)
—Z Da (F5) Uy (F1)

=) e(a®)la, (S(a™))F3UF To, (a?)

=2 _Ta (S(@®)TyTa, (a) (4.1.24)
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for all @ € D(G). But then
TyLa,(a) = Z Lo, (a(l))rm (S(Q(Q)))TUVOQ (a(s))
(a)
S Ty (@M)e(@®) Ty = Ty (a) T,

(a)

hence, Ty is an intertwiner from as to a;. For the other direction, we evaluate

Ya(Ur) =7a(FoF5UrF,FT)
= Y (F2)e(a®)F5UrF 17,0 (F))
(a)

=Y Fol's, (a)TT4, (S(a®))F;
(a)

= Z Fol'a, (a(l))Fal (S(a@)))TFT
(a)
=e(a)FTF] = e(a)Ur.
[

In view of Lemma [4.1.4 one approach could be to substitute the matrices
F; in Proposition [4.1.8] with the transposes of a-multiplets. Intertwiners
of representation 7" would then give rise to e-multiplets FYT'(F%)* for a-
multiplets F¢, Fy understood as in Equation . Note also that UrF| =
F.TF{F, = FoT already gives

YaUrF1) = 75 (FoT) = T'a+ (S(a))FaT, (4.1.25)

showing that UrF is an a-multiplet regardless of whether Fy had any multi-
plet structure and regardless of the choice of the linear map 7. This suggests
that an intertwiner of amplimorphisms given by multiplets should do more
than just satisfying Equation . We propose the following definition:

Definition 4.1.9 (Intertwiners). Let F;,Fy be an ay-, respectively as-
multiplet and xr,, xr, the corresponding amplimorphism. Then we call a
morphism U € Hom(xr,, xr,) an intertwiner from xp, to xr, if

(Fo)'F5UF, (FL)* (4.1.26)

is an e-multiplet.
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If furthermore 7' is a linear map between the modules V*', V2 associated
to representations oy, ap € rep(D(G)), then Ur defined in Equation
becomes a morphism of amplimorphisms in the sense of Definition and
is unitary if and only if T" is unitary. If 7" is in addition an intertwiner, then
U7 becomes an intertwiner in the sense of Definition [4.1.9}

Y (FLFSULF, (FY)* ZFt s (@) (T (5(a))

ZZFE ar (aV)e(@®)TTq, (S(a™)) (F1)*
(a)
=c(a)F5yT(FY)".

On the other hand, Ty = F3UF; is always a c-number matrix if U is a
morphism of amplimorphisms, and hence an e-multiplet. If F; and F5 are in
addition non-degenerate a;- respectively as-multiplets, then

( )FtF*UFl Z'Y (1) a(2) TU)’YG(S)((FtV)

—ZFt (@) TyTa(S(a®))(FY)*.

Multiplying both sides from the left with (F%)* and from the right with F}
gives

)Ty =Y Ta(a)TyTa(S(a®?))
(a)

and similar calculations as in the proof of Proposition show that Ty is
an intertwiner from «; to . This establishes a functor between the category
R-Amp and rep(D(G)) as follows: For each site s, we choose a sequence of
ribbons §, with fixed initial site s = 0y, and extending to a semi-infinite
ribbon/g\as explained in Proposition [3.4.9, Then for every representation
a € D(G), we obtain a non-degenerate a-multiplet F¢ giving rise to an
amplimorphism XF- By taking direct sums, this extends to arbitrary repre-
sentations a € rep(D(G)).

It is straightforward to see that this mapping is indeed functorial. In
[SV93], an equivalence of fusion categories between the category rep(D(G))
and RMult was established, and we are fairly certain that the functor just
introduced for the non-abelian quantum double will exhibit a similar be-
haviour.
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4.2 Possible Generalizations and Open Ques-
tions

4.2.1 The Complete Set of Infinite Volume Ground
States

In Theorem we have provided a set of infinite volume ground states
for the non-abelian quantum double, similar to the ones in [CNNI6]. It is
however still an open question whether there are other ground stats of the
model. In [CNNT6] it was shown that any arbitrary ground state minimizes
some Hamiltonian with a boundary condition similar to the operator HS we
inspected. One could then analyse infinite volume ground states with the use
of finite volume ground states. Translating the arguments to the non-abelian
setting may be possible, but the calculations become much more involved
in our setting. It would be interesting to see if the family of ground states
obtained in Theorem give indeed a complete set, or whether there are
other non-equivalent ground states admitted in our setting.

4.2.2 Generalization to Hopf algebras

Many concepts in this work are independent of the particular structure of
the quantum double D(G). The question naturally arises if the discussion of
anyons can be based on the quantum double D(H) of a general semisimple
Hopf* algebra H. A detailed description can be found in [BMCATI3] but we
will give a brief overview here.

We discussed in Section how the quantum double D(H) can be con-
structed from a finite-dimensional Hopf algebra H and that D(G) is a special
case for the Hopf algebra CG. To generalize the quantum double model to
finite dimensional Hopf algebras, we would like to decorate the edges of our
lattice with the Hopf algebra H as a vector space at each edge and give the
Hamiltonian in terms of quantum double action. First, we would have to
establish how the Hilbert space H could be turned into a vector space. If ¢
is the Haar integral of H* and H a Hopf *-algebra, an inner product can be
defined via

(a,b) = ¢(a*D) (4.2.1)

for a,b € H.

The triangle operators can mostly be straightforwardly generalized: The
operators L" act either via left- respectively right multiplication with the
element h € H if ¢, is aligned, or with the antipode of h if ¢, is not aligned
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[CCY21]. For the direct triangle operator T¢ act on an element k € H at
the edge crossing e, via

> @(k(l))k@) If 7 is aligned and locally clockwise oriented
Z(kg)o( (k;(Q))) If 7 is not aligned and locally clockwise oriented
o Z o(k®)k( If 7 is aligned and locally counter-clockwise oriented
Z go( (KW@ If 7 is not aligned and locally counter-clockwise oriented

(4.2.2)

Most notably, the direct triangle operator now depend on the local orienta-
tion, unless H is cocommutative. From the construction of triangle operators,
we can construct star and plaquette operators as before. For the Hamilto-
nian, the projection into the trivial electric- and magnetic charge operators
are given via the action of the Haar integrals hy and ¢ of H and H* respec-
tively. The trivial electric charge operator then becomes A" and the trivial
magnetic charge operator becomes B?. A local Hamiltonian can then be

defined analogously to the local Hamiltonian for the non-abelian quantum
double model:

Hy=> (1-Al)+> (1-Br). (4.2.3)

seS seS

Finally, the recursive formula for ribbon operators take the form [CCY21]

Frel = N pient phen®, (4.2.4)
(h®f)

Equation would allow a straightforward generalization to ribbon-
multiplets and it would be interesting to study anyon excitations in this
setting. We believe that our results and methods in Chapter |3| should gen-
eralize to the setting of Hopf algebras.

4.2.3 Generalizations to continuous Groups

In [KM96] a construction of the quantum double for locally compact groups
is presented. If G is a Hausdorff locally compact group, we may identify
the quantum double D(G) with C(G x G), the space of continuous, complex
valued maps on G x G. Given elements ¢, 1, p2 € D(G), the structure maps
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of D(G) are presented in [KM96| as

1 p2(g,h) = /901(9, k) o (kgk, kh)dk (4.2.5)
e
Lp)(g,h) = Oepn
A(p)(g1, b1, g2, ha) = ©(9192, h1)Ony s

(e)a ) = [ ele. dn (428)

S(¢)(g: h) = @(hgh, h) (4.2.9)
" (9. h) = @(hgh, h) (4.2.10)

Note, that the unit is not an element of D(G) nor is A(p) an element of
D(G) ® D(G). However, expressions of the form 1pq) - ¢ and (p1)ps are
still well-defined. The irreducible representations of the quantum double are
given as follows: Let r € GG be a fixed element and C, the conjugacy class of r
and let further N, be the centralizer subgroup of r and 7 € N, an irreducible
representation of N,. We define the set L*(G,V™) to be the space of all
square integrable maps ¢ : G — V™, such that

¢(gn) = m(n)g (4.2.11)
for all n € N, and almost all g € G. If ~ denotes the equivalence relation

b1 ~ Oy & P1 = P almost everywhere, (4.2.12)

then the space L2(G, V") := LX(G, V) / ~ becomes an irreducible represen-

tation of the quantum double under the action

(o5 d)(g) = / o(grg. k) (Rg)dk (4.2.13)

G
For the lattice model, we may choose the following approach:ﬂ

e At each edge ¢, we attach the Hilbert space L?(G) of continuous and
square integrable complex valued functions on G with inner product
defined via

i fo) = / 11(9) f2(9)dg (4.2.14)
G

2I thank Dr. Christiaan van de Ven for his work and the many discussions.
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e Given a path p in the lattice, we redefine the map S® in Equation

(3-2.9) by setting
B f ifee
PN={0s wech (1219

If p = {e} is a singleton path and

BY(f) = BPI(f) x BP)(f) (4.2.16)
if p = (p1,p2), where
(e 2)(0) = [ FiuB) ol (4.2.17)
G

is the convolution of f; with f.

One can check that Equation (4.2.15) and Equation (4.2.16)) coincides with

(3-2.8) and Equation (3.2.9)) respectively for finite G by identifying g = ¢, as
a continuous map on GG under the discrete topology.

Attempts to obtain a quantum double model that generalizes the familiar
model has not been successful so far, and remains a work in progress. The
biggest challenge in this endeavour has proven to be the construction of the
plaquette operator. Morally, one could try to find an analogue by identifying
9, = G = C(G) like previously noted, and realizing that the plaquette oper-
ator measures the domain of d,. However, the desired projective nature of a
magnetic flux operator seems to be incompatible with a continuous action.
It is not even clear, how an action of the quantum double C(G x G) could be
defined on this lattice model, which would already simplify the task signifi-
cantly. Alternatively, one could explore other notions of the quantum double
in the continuous group case. For instance, in [LZ13] a quantum double con-
struction is established for compact groups. In this approach, the resulting
quantum double D(G) becomes a unital Hopf*-algebra.
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