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Summary

We study a particular class of ground states of the non-abelian Kitaev quan-
tum double model on an infinite plane. These states are associated to the
irreducible representations of the quantum double of a finite group G, and
are called anyonic excitations. Anyonic excitations are a particular feature
of topological phases of matter.

Recall that if G is a finite group, the irreducible representations of the
quantum double D(G) can be labelled by pairs (π, C), where C is a conjugacy
class of G and π is an irreducible representation of the centralizer subgroup
of a fixed element r ∈ C, the choice of which is irrelevant. Using the notion of
ribbon operators as in [Kit03], we consider for each irreducible representation

α := (π, C) ∈ D̂(G), each label I = 1, . . . , dimα and semi-infinite ribbon ξ,
the amplimorphisms χII,αξ defined as in [Naa15, Eq 5.3] and show that the

states ω0 ◦ χII,αξ define pure states, where ω0 is the vacuum state of the

model. Given two irreducible representations α, β ∈ D̂(G) and two semi-
infinite ribbons ξ1, ξ2, we show that the GNS representations of ωII,αξ1

and

ωJJ,βξ2
are unitarily equivalent if and only if α ∼= β.

Furthermore, if either π ̸= triv or |C| = 1 holds, then ωII,αξ is a ground

state for a semi-infinite ribbon ξ in the infinite plane. We interpret ωII,αξ

as a state creating a single localized excitation that cannot be removed by
local observables. We also prove that the states ωII,αξ are indeed non-ground
states in the other case and construct alternative non-pure ground states
corresponding to these anyon sectors.

We conclude this work with an exposition on a work in progress. The
amplimorphisms described in [Naa15] are transportable and localized, which
is why they give rise to representations satisfying a superselection criterion for
cones. These localized and transportable amplimorphisms form a category,
and we conjecture that they are equivalent to the category rep(D(G)) of
representations of D(G) as a monoidal tensor category. In this thesis, we
present some steps towards this conjecture.
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Chapter 1

Introduction

In this work, we will present a family of pure ground states for the non-
abelian quantum double model. The quantum double model is an example
of a quantum many-body system, in which the ground state degeneracy is
dependent on the topology of the surface on which the model is embed-
ded. Such systems are called topologically ordered and the quantum phases
of matter are named topological phases of matter, due to their topological
dependence. The particular quantum double model is based on a group G,
describing the symmetry and the interaction terms of the system, which in
turn describe the dynamics of the model. If G is abelian, we call this model
the abelian quantum double model.

The abelian quantum double model is already well studied [Kit03, Naa10,
Naa15, FN15] and the infinite volume ground states of the non-abelian quan-
tum double model on a plane are already well understood [CNN16]. The main
goal of this work is to gain a better understanding of ground states of the
non-abelian quantum double models.

In the infinite plane, there is a unique translational invariant ground state
ω0, called the vacuum state [Naa12]. It turns out that non-translational in-
variant ground states carry localized quasi particle excitations, called anyons,
and the study of these anyons is closely related to the study of quantum
phases of matter.

To understand what a quantum phase of matter is, let us first discuss
phases of matter in more generality. While most are familiar with the classical
4 phases of matter - solid, liquid, gaseous and plasma - there are many more
phases. Up until the late 1980s, physicists believed that all phases of matters
could be described by the Ginzburg-Landau theory of symmetry breaking
[ZCZW19]. Different phases were associated to different behaviour of the
ground state space under the action of symmetries, and phase transitions
were associated to symmetry breaking [LL80]. A symmetry breaking occurs,

1



2 CHAPTER 1. INTRODUCTION

when ground states - or any equilibrium state at some temperature - are
transformed to different ground states under the symmetry transformation,
instead of being left invariant. A well known example of this effect is given by
the Ising model, which has two distinct ground states that can be transformed
into each other via a global symmetry transformations [ZCZW19].

However, in the late 1980s physicists realized that the symmetry break-
ing theory was not enough to fully describe all phases of matter. The chiral
spin state, originally introduced to describe high-temperature superconduc-
tivity [KL87, WWZ89], could not be described by symmetry breaking alone
[Wen89] as many different chiral spin states exhibited the same symmetry
[Wen89]. It was suggested in [Wen90] to introduce a new order called topologi-
cal order. Although it was later realized that chiral spin states do not describe
high-temperature superconductors, similarities of chiral spin states with the
fractional Hall effect [Lau83, TSG82] revitalized the notion of topological
order as a means of describing different fractional quantum Hall states. We
note also that fractional quantum Hall states were not the first phenomenon
that realizes a topological order. Superconductors exhibit topological order
as well [HOS04, Wen91a, Wen91b].

Our work focusses mostly on quantum phases of matter. Before the dis-
covery of topological phases of matter, phase transitions were defined in terms
of discontinuities in measurable physical quantities, called order parameters.
When for example water enters the gaseous state from its liquid state, the
local density takes a sudden drop, i.e. there is a discontinuity in the local
density. The physical entity we are interested in here is the energy gap of our
Hamiltonian, that is, the difference ∆ between the lowest and second-lowest
energy state of the Hamiltonian. We call a Hamiltonian gapped, if ∆ > 0,
and two gapped ground states ω1 and ω2 are said to be in the same quantum
phase if they are ground states of gapped Hamiltonians H1 and H2 that can
be connected via a continuous path of gapped Hamiltonians, i.e., if there is
a continuous map t 7→ H(t) of gapped Hamiltonians such that H0 = H(0)
and H1 = H(1).

A new type of quantum phases are the topological quantum phases, which
cannot be described by local order parameter [WN90]. It turns out that
anyon states emerge in these topologically ordered systems only if the states
are long-range entangled due to the localized nature of anyons [NO22].

Anyons were studied extensively by [Wil90, DPR91, BvDdWP92, dWPB99].
It is widely believed that the algebraic properties of anyons are described by
a modular tensor category [Wan10, Kit06]. A good way of obtaining such
a category is by applying methods from the superselection sector theory to
anyons [Naa10, Naa15, Haa12]. We will explain this approach in more de-
tail in Section 4.1, but the idea is to obtain ground states by pulling the
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vacuum state ω0 back along some morphisms that satisfies suitable algebraic
properties.

An important application, that makes the study of anyons attractive, lies
in the possibility to construct quantum gates using braiding and fusion of
anyons. Although this thesis does not study quantum gates, we want to
briefly mention the idea. Until the discovery of the fractional quantum Hall
effect in the early 1980s [TSG82, Lau83], physicists believed that bosonic
and fermionic statistics were the only exchange statistics exhibited by parti-
cles, although purely theoretical observation of different statistics specific to
the two-dimensional case have already been made [LM77]. Indeed, it is the
exotic nature of the statistics of anyons that lend them their name [Wil82].
For abelian anyons, the exchange statistics, that is, the phase obtained by
exchanging two anyons, can be an arbitrary root of the identity on the unit
circle. For non-abelian anyons, the statistics are even more involved and the
braiding of anyons has a direct impact on their fusion rules. The process of
braiding anyons and performing a fusion could potentially be used to realize
a quantum gate [Wan10].

Another important feature of anyons is that anyon ground states can only
be transformed to other anyon ground states using global operators. The fact
that it is not possible to move from one ground state to another via local
operators only has potential use in implementing a quantum error correction
code. The robustness against local perturbation is related to a stability
assumption on the energy gap of the Hamiltonian against small perturbations
[MZ13, BHM10]. We note however, that it was shown in [BT09] that error
correction codes in 1 and 2 dimensions as in [CS96, Ste96] do not satisfy
some necessary conditions to actually implement a self-correcting quantum
memory. See also [AH06], which discusses the toric code as a particular
example.

There are different techniques for studying topological order, and while
this work will be focused on the operator algebraic approach, we want to
briefly mention other viewpoints. One such viewpoint is the string-net pic-
ture, developed by Levin and Wen [LW05]. The Levin-Wen string-net model
describes quantum spin systems, by describing the ground state as a super-
position of so called string-nets configurations. These strings correspond to
objects in a fusion category which encodes the fusion- and branching rules
of the model.

Another closely related way of studying topological order is through topo-
logical quantum field theory(TQFT): Consider the category whose objects are
n−1-dimensional smooth manifolds and whose morphisms are n-dimensional
smooth manifolds, carrying the objects as surfaces, see Figure 1.1. There is
a natural way of defining the composition of such morphisms by gluing the



4 CHAPTER 1. INTRODUCTION

E1 E2 E3

E1 E2 E3

M1 M2M3

Figure 1.1: A depiction of 3-dimensional manifolds M1,M2,M3 such that
Ei
∐
Ei is contained on the surface of Mi for i = 1, 2, 3. The cylinder M1

describes the identity map on E1 and M2 and M3 perform a double-braiding
on the surfaces E2 × E3. Under a functor F into VectK, this is identified by
a map HE1 ⊗HE2 ⊗HE3 → HE1 ⊗HE2 ⊗HE3 performing a double braiding
HE2 ⊗HE3 → HE3 ⊗HE2 → HE2 ⊗HE3 .

surfaces of two manifolds M1 : E1 → E2 and M2 : E2 → E3 and for every sur-
face E, the cylinder E × [0, 1] can be chosen to be the identity morphism on
E. Note that we always equate diffeomorphic structures in this setting. This
category is called bordism category, and it can be equipped with a monoidal
structure by defining E1 ⊗ E2 := E1

∐
E2 and M1 ⊗ M2 := M1

∐
M2 for

n − 1-dimensional manifolds E1, E2 and n- dimensional manifolds M1,M2.
The idea is to identify an n− 1-dimensional surface E with a Hilbert space
HE, describing the states of the system. A manifold from E1 to E2 is then
associated to a bounded linear map from HE1 to HE2 . Broadly speaking, a
topological field theory is then a functor from this bordism category to the
category VectK of K-vector fields that respects the tensor products and their
braidings in the respective symmetric monoidal category.

There is a huge area of research dedicated to the study of topological
quantum field theory that cannot be done justice in this humble exposition.
We refer to [CR18] for a nice introduction to the topic. Any spherical fu-
sion category gives rise to a 3-dimensional TQFT [TV92, BW96] and the
so constructed TQFT’s afford a description equivalent to the string-net ap-
proach by Levin and Wen [KMR10, KKR10]. See also [Kir11] for a more
mathematical approach.
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Finally, we mention the tensor network approach, which employs a graph-
ical calculus to describe states and transformations thereof using tensors.
Broadly speaking, a tensor network is a family of tensors having virtual
and physical indices, the latter describing the concrete physical subsystems.
A state of the system can be described by a contraction of the tensor net-
work along the virtual indices [AMN+23, SCPG10]. Projected entangled pair
states (PEPS) are particularly interesting in the context of 2-dimensional
quantum many-body system. Each tensor is associated to a site on the
lattice, and the virtual indices describe the entanglement between adja-
cent sites. PEPS can be used to describe topologically ordered systems
[FGSW+12, SPCPG13], as they naturally capture the notion of long-range
entanglement [RDS15].

1.1 The Toric Code: An Example of a Topo-

logically Ordered System

The most important example related to this work is the toric code [Kit03].
The toric code is a particular example of Shor’s stabilizer code. These stabi-
lizer codes are an example of a quantum error correcting code, as it was the
initial hope that these codes perform a self-error correction on a quantum
memory to some extend. This is a desirable feature in quantum information,
as classical error correction cannot be established in the setting of quan-
tum information. This is because classical methods for error corrections
always involve copying data to some extent, but the no cloning theorem
[Par70, WZ82, Die] forbids such a process entirely. We briefly discuss the
main idea behind Shor’s error correction code, but see also [CS96, Ste96]. Let
E = {Ek} be a set of observables describing all possible noises the system
can be exposed to. For example, for a spin system, this can mean a spin
flip on one of the qubits. One important idea to realize error correction, is
to store a single-qubit in a subspace of an N -qubit many-body system to
mitigate the effect of the noises. These subspaces are what one usually calls
the stabilizer code or in this case the stabilizer code. One then proceeds to
find commuting projections g1, . . . , gn in the algebra generated by E , chosen
such that the stabilizer code lies in the image of these projections. Choosing
the Hamiltonian

H = −
∑
i

gi,

the stabilizer code then re-emerges as the ground state space of H.
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The specific toric code model is a quantum spin system on a Z2 lattice
embedded on a torus, where each edge of Z2 is equipped with a qubit, i.e.
the Hilbert space C2. This model exhibits a 4-dimensional ground state
degeneracy. More generally, if g is the genus of the surface on which the
lattice is embedded, the ground state degeneracy is 4g [Kit03]. Let s and p
describe a star- respectively plaquette shaped region of the lattice, see Figure
1.2. Then we define the star operators

As =
∏
e∈s

σe
x

and plaquette operators

Bp =
∏
e∈p

σe
z,

where σe
z and σe

x are respectively defined to be the action by the Pauli matrix
σz and σx at edge e, and the identity action everywhere else. The Hamiltonian
of the system is described as a sum of the local stabilizer operators

H = −
∑
s

As −
∑
p

Bp,

where the sum is over all stars s and plaquettes p. The motivation behind
these local stabilizer operators is that they detect errors [Kit03]. A ground
states of the model can be characterized by the frustration freeness condition,
that is, a state ω0 is a ground state if and only if ω0(As) = ω0(Bp) = 1 for all
stars s and plaquettes p. The term frustration free just means here that the
state ω0 minimizes each summand in the Hamiltonian separately, and ω0 is
called a frustration free ground state. The relevant strings in this model are
given by paths and dual paths, that is, paths along the faces, of the lattice.
Given a non-self-intersecting path ξ = (e1, . . . , en), along the edges e1, . . . , en
we define the string operator Fξ via

Fξ =
n∏
i=1

σei
z .

Recall that a dual edge is a pair (f1, f2), where f1 and f2 are faces of the lat-
tice. If ξ∗ = (f1, . . . , fm) is a non-self-intersecting dual path along dual edges
f1, . . . , fm, i.e. edges connecting faces, and if e1, . . . , em denotes the edges of
the lattice crossing dual edges f1, . . . , fm, we define the string operator Fξ∗
via

Fξ∗ =
m∏
i=1

σei
x .
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Let Λ be the set of all edges of the lattice embedded on the torus. One can
then verify that the state

Ω0 =
∏
s

As ⊗e∈Λ |0⟩

defines a vector in ⊗e∈ΛC
2 that is invariant under the action of all star and

plaquette operators, |0⟩, |1⟩ ∈ C2 is the orthonormal basis in which the Pauli
matrices are represented, corresponding to spin up and spin down states. Ω0

can be identified with the vacuum vector. One can show, that for a path ξ
and a dual path ξ∗, both non-self-intersecting, the vectors FξΩ0, Fξ∗Ω0 and
FξFξ∗Ω0 violate the frustration freeness condition precisely at the endpoints
of ξ, respectively ξ∗, demonstrating how string operators create pairs of ex-
citations. We also note that the algebra of all local observables is generated
by the string operators, since the Pauli matrices σx and σz already generate
the algebra M2(C). Hence, observables can only create pairs of excitations.

One can also directly observe how the topological ground state degeneracy
is related to the genus of the surface in this model. One can show that the
vectors FξΩ0, Fξ∗Ω0 and FξFξ∗Ω0 are independent of the concrete shape of
ξ and ξ∗ and only depend on the endpoints of ξ and ξ∗, highlighting the
topological features of these models further. Note also that by assuming
the strings to be non-self-intersecting, we also excluded loops. If the strings
are closed loops around the torus, however (and don’t intersect anywhere
else), the corresponding string operators map the ground state Ω0 to different
ground states. Since the non-trivial genus of the torus allows for two non-
trivial homotopy classes and because we can choose between paths and dual
paths, one may directly verify that additional 3 ground states can be obtained
via the action of string operators on the ground state Ω0.

1.2 The Quantum Double Model

The toric code is a special case of the more general quantum double model for
groups. These models are surface code models on a lattice where each edge is
decorated with the group Hilbert space CG of a given finite group G, instead
of the Hilbert space C2 as in the case of spin systems. The group Hilbert
space CG is defined by considering the group algebra of G as a vector space,
and embedding it with a natural Hilbert space structure. The stabilizer
operators As and Bs then turn out to be coming from a representation of
the quantum double D(G) of G at site s. The different anyons can then be
associated to irreducible representation of the quantum double D(G). As
mentioned before, the infinite volume ground states of the abelian quantum
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s

p

Figure 1.2: The figure depicts the star (blue) and plaquette (red) shaped
regions on a Z2 lattice. On the edges of the star, the operator As acts with
the pauli matrix σz at each edge, whereas the operator Bp acts with the Pauli
matrix σx at each edge of the plaquette.

double model on a plane are already well understood. On the other hand,
the non-abelian quantum double model is less well studied as the abelian
model, but there still exists plenty of works [BMD08, CM22b, CM22a] and
even generalizations to quantum double models stemming from semisimple
Hopf algebras and their quantum doubles, as opposed to finite groups, were
considered in the literature [CCY21]. A categorical generalization of Kitaev’s
quantum double model can be found in [HM23, Meu17].

In this work, we will only concern ourselves with the non-abelian quantum
double model on a Z2-lattice embedded on an infinite plane. An important
remark that we want to make at this point is that ground states in the infinite
volume setting can also include single site excitations i.e. anyons, despite
having higher energy than the vacuum state. In fact, if we consider a particle-
antiparticle pair, created using operators similar to the string operators in
the toric code, and sending one particle to infinity by considering a sequence
of strings, then in many cases the resulting state will be a ground state, as
we shall prove in this work. The reason these states are ground states, is
that these single excitations turn out to be robust against local operators,
i.e. they cannot be erased via local operators, although they can be moved
around over finite distances. More formally, a ground state ω is defined as a
state that satisfies the condition

−iω(A∗δ(A)) ≥ 0

for all observables A in the domain of the derivation δ, describing the dy-
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v1 v2 v3

v4

v5v6v7

f1 f2 f3 f4

f5

f6

f7f8f9f10

Figure 1.3: Depiction of a ribbon in the Z2-lattice. The vertices (v1, . . . , v7)
form a path p (red) and the faces (f1, . . . , f10) form a dual path p∗ (blue).
Every vertex of p forms a site (dashed) with a face of p∗ and every face of p∗

forms a site with a vertex of p. Note that every two consecutive sites form,
together with either p or p∗, a triangle, and no two triangles overlap, which
can be used to give an alternative definition of a ribbon.

namics of the system.

Following the construction presented in [Kit03], we will define the so-
called ribbon operators F IJ,α

ξ , labelled by irreducible representations α ∈
D̂(G) of the quantum double D(G) and I, J = 1, . . . , dα, with dα = dim(α)
and ribbons ξ. Notice that one major difference to the abelian case becomes
already apparent here: In the abelian case, all irreducible representations
of D(G) are one-dimensional, whereas the dimension of the irreducible rep-
resentations of D(G) are in general less trivial in the non-abelian case. To
define a ribbon, recall that a site in a graph is a pair (v, s), where v is a vertex
and f is a face having v in one of its corners. A ribbon is defined as a pair
of a non-self-intersecting path p = (v1, . . . , vn), and a non-self-intersecting
dual path p∗ = (f1, . . . , fm) in the lattice model, such that each vertex in p
forms a site with a face in p∗, and each face in p∗ forms a site with a vertex
in p such that p and p∗ do not intersect, see Figure 1.3. This model admits
a unique frustration free ground state ω0 [Naa12], also called vacuum state,
and a particle-antiparticle state can be created by considering states of the
form

ωII,αξ : A 7→ 1

dα

dα∑
J=1

ω0

(
F IJ,α
ξ A(F IJ

ξ )∗
)
. (1.2.1)
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This construction is motivated by [SV93], in the context of 1-dimensional
quantum spin chains. The convergence of Equation (1.2.1) for infinite ribbons
was already established in [Naa12], see also [FN15]. Note that if (Fα

ξ )I,J=1,...,dα

is the matrix with entries 1√
dα
F IJ,α
ξ , then the above identity reads ωII,αξ =

ω0 ◦ χII,αξ , where χII,αξ is the entry in the I-th row and I-th column of the
matrix χαξ (A) defined via

χξ(A) = Fα
ξ (A⊗ idCdα )(Fα

ξ )∗, (1.2.2)

where idCdα is the identity matrix on Cdα . χαξ is a unital *-homomorphism

[Naa12] from A to A⊗End(Cdα), and such maps are called amplimorphisms.
It was already shown [Naa12] that the amplimorphisms χαξ converge for infi-
nite ribbons, even in the non-abelian case.

1.3 Main Results and Outline of the Thesis

Before we state our first main result, recall that the irreducible representa-
tions of the quantum double D(G) are labelled by pairs α = (πα, Cα), where
Cα is a conjugacy class of G and πα is an irreducible representation of the
centralizer subgroup of an element rα ∈ Cα, the specific choice of which does
not matter [Gou93]. We will give an overview of the quantum double and its
representations in Section 2.4.1 and Section 2.4.2. Our first main result then
reads:

Theorem A. Let α = (πα, Cα) ∈ D̂(G) be an irreducible representation of
the quantum double D(G), ξn a sequence of ribbon extending to an infinite
ribbon ξ with fixed starting site ∂0ξ = ∂0ξn = s for all n, and ωII,αξ the states
defined in Equation (1.2.1). Furthermore, we define

ωαξ : X 7→ lim
n→∞

∑
I,I′,J

ω0

(
F IJ,α
ξn

X(F I′J,α
ξn

)∗
)
,

which is well-defined, i.e. converges for each choice of α ∈ D̂(G) by [Naa12].
Then, if πα ̸= triv is not the trivial representation, or |Cα| = 1, then the
states ωII,αξ are infinite volume ground states of the non-abelian quantum
double model on the plane. In all other cases, the states ωαξ are ground
states.

The reason for the anomaly for the case πα = triv is that in that case
the states ωII,αξ are not orthogonal to the image of the stabilizing operators
As any more, but are so in all other cases. The star operators As however,
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project into the equal-weighted superposition of all states within a sector,
lowering the energy of the ωII,αξ . The ground state must therefore be created
using the equal-weighted superposition of all corresponding ribbon operators
in that case.

Our second main result reads:

Theorem B. The states ωII,αξ are pure states for any irreducible represen-
tation α and their GNS representations are therefore irreducible.

We remark that this result was obtained independently by [BV23] using
a different approach.

A natural question is whether different irreducible representations of the
quantum double give rise to inequivalent pure states. This is answered in the
following Theorem.

Theorem C. Let α, β ∈ D̂(G) be irreducible representation of the quantum
double D(G), I ∈ {1, . . . , dim(α)}, J ∈ {1, . . . , dim(β)} and ξ1 and ξ2 be two
semi-infinite ribbons. Then the GNS representations of ωII,αξ1

and ωJJ,βξ2
are

equivalent if and only if α ∼= β.

Theorems A, B and C can be found as Theorems 3.5.4, 3.6.8 and 3.6.9
respectively in the main work.

It was shown in [Naa12, Naa15] that the amplimorphisms defined in
Equation (1.2.2) are localized and transportable over finite regions in the
setting of general finite groups. Here, localized means that there exists a
region Λ such that for all observables supported outside of Λ, we have that
χξ(A) = A ⊗ idCdα , and being transportable translates to the existence of a
unitary VΛ′ for each region Λ′ such that the amplimorphism A 7→ VΛ′χ(A)V −1

Λ′

is localized in Λ′. This terminology is motivated by the DHR analysis, of
which we want to give a brief exposition here: Note first that for a general
C*-algebra, there are many states that are considered physically irrelevant.
One proposed criterion to sieve out those unphysical states in the framework
of quantum field theory, is given by the superselection criterion by Doplicher,
Haag and Roberts [DHR71]. If O 7→ A(O) is a local net of observables on
a space time and π0 the GNS representation of the vacuum state ω0, then a
state ω is said to satisfy the superselection criterion if

π0 |A(O′)
∼= π |A(O′), (1.3.1)

where O′ denotes the causal complement of O and π is the GNS represen-
tation of ω. If L0(O) is the set of transportable endomorphisms localized
in O, the notions of transportability and localizability defined analogously
to the amplimorphism setting, then by [DHR71, Proposition 1.2] a state π
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satisfies the superselection criterion 1.3.1 for O if and only if there exists an
endomorphism ρ ∈ L0(O) such that π is unitary equivalent to π0◦ρ. In other
words, the set

{π0 ◦ ρ}ρ∈L0(O)

consists of all representations satisfying the superselection criterion for the
region O, up to unitary equivalence.

In [SV93] it was shown that amplimorphisms on a quasilocal algebra
form a braided monoidal category, and the authors showed that the subcat-
egory of amplimorphisms constructed out of finite ribbons is equivalent to
the category of representations of the quantum double D(G) in the setting of
1-dimensional quantum spin chains. The analogue result was established in
[Naa10] for the abelian quantum double model, emphasizing once again the
role of the DHR-analysis in Kitaevs quantum double model. We conjecture
that an analogue result can also be obtained in the more general non-abelian
setting. We will present some steps towards this conjecture in Section 4.1,
but note this is currently a work in progress.

Finally, an important topological feature possessed by the ribbon opera-
tors is that when acting on the vacuum, the action of the ribbon operators
F IJ,α
ξ only depends on the initial and final sites of the ribbon ξ, i.e., if Ω0 is the

cyclic vector of the GNS representation corresponding to the vacuum state
ω0, and ξ′ any ribbon with the same endpoints as ξ, then F IJ,α

ξ Ω0 = F IJ,α
ξ′ Ω0.

To our knowledge, however, there is no complete or correct proof in the liter-
ature for the ribbon operators in the non-abelian quantum double model. In
[BMD08], the definition of ribbon operators is not entirely correct [CCY21]
and other authors [CM22b] often argue that because closed ribbon can be
deformed within the vacuum to the empty ribbon, two ribbons ξ1 and ξ2
with the same endpoints give an identical action because following first ξ1
and then the reverse of ξ2 gives a closed ribbon again. While the former ar-
gument is certainly correct - a closed ribbon indeed deforms into the empty
ribbon if no excitations are present, the latter fails because ξ1 and the in-
verse of ξ2 generally do not form a closed ribbon, even if they share the same
endpoints, see Figure 1.4. We prove this important topological property in
Corollary 3.3.11. This implies in particular that the states defined in Equa-
tion (1.2.1) for infinite ribbons, define charges localized at the beginning of
ξ, independent of the chosen shape of the ribbon ξ.

This thesis is structured as follows: Chapter 2 introduces the necessary
background for this work. We emphasize here that none of the statements
derived in Chapter 2 are new results, even if it is not always explicitly stated.
In Section 2.2, 2.3 and 2.4 we recall the basic notions from representation the-
ory, the theory of Hopf algebras and define the quantum double construction
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Figure 1.4: Depiction of two ribbons ξ1 (red path and blue dual path) and
ξ2 (dark red path and dark blue dual path) starting and ending at the same
site (indicated in green). However, they do not constitute a closed ribbon
since the path of ξ1 would intersect with the dual path of ξ2 and vice versa.

respectively. In Section 2.5, we give a brief introduction to operator algebras
and give a general definition of quantum spin systems and dynamics. We
also introduce the notion of ground states and pure states in our particular
setting. Chapter 3 contains the main work of this thesis. In Section 3.2,
we define Kitaev’s quantum double model and introduce necessary terminol-
ogy. We also discuss the uniqueness of the vacuum state ω0 and the notion
of charges. In Section 3.3, we rigorously define ribbon operators and study
their algebraic properties. We will demonstrate how these operators create
pairs of excitations, and that the action of a ribbon operator on the vacuum
state only depends on the endpoints of the ribbon. In Section 3.4, we draw
the connection between excitations and the irreducible representations of the
quantum double D(G) by showing that the dynamics of the quantum double
model is realized by a quantum double action, and that the excitation space
can be decomposed into a direct sum of irreducible representations of D(G).
In Section 3.5, we state the first main theorem, Theorem 3.5.4 (Theorem A),
providing a family of infinite volume ground states for the non-abelian quan-
tum double model. In Section 3.6 we show Theorem B and also Theorem C.
Finally, in Section 4.1 we discuss the possibility of generalizing the construc-
tion in [SV93] to our setting and the obstructions that one might encounter.
The rest of Chapter 4 is devoted to discussing other possible generalizations
and open questions.
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Chapter 2

Preliminaries

2.1 Introduction

The dynamics of a quantum spin system can be described by the interaction
terms between the individual spin systems. In the class of models that we
are considering, these are given by two families of actions As : h 7→ Ahs and
Bs : δg 7→ Bg

s of a group G and its dual G∗ = {φ : G→ C}, called electric
and magnetic charge action respectively, with s describing the site on which
the interaction is considered. As it turns out, in the quantum double model
on an infinite plane, the ground states can be characterized by the values
they take on these interaction terms, and so the actions As and Bs allow
us to distinguish the different anyon sectors. Furthermore, the electric and
magnetic charge action satisfy the commutation relation

Bg
sA

h
s = AhsB

h−1gh
s . (2.1.1)

In a more general framework, if H1 and H2 are Hopf algebras contained
in a Hopf algebra H such that H1 and H2 satisfy a specific commutation
relation within H, then H1 and H2 can be embedded in a universal algebra
H1 ▷◁ H2 whilst preserving said commutation relation. This construction
is called the bicrossed product, and for the particular commutation relation
given in Equation (2.1.1) it is called the quantum double of G.

We will discuss the quantum double and its representation theory in detail
in Section 2.4 and the operator algebraic framework of quantum spin systems
in Section 2.5. First, however, we start by giving a short overview on the
necessary concepts of representation theory and Hopf algebras in Section 2.2
and Section 2.3 respectively.

We will assume familiarity with basic terminology from category theory,
although we will not use any advanced results from that field. We refer

15
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to [Bor94, Ada09, Lan13] for a selection of literature on category theory
and [EGNO16] for an exposition on fusion categories, which captures the
behaviour of the representation category rep(G) on a categorical level.

2.2 Representations of Finite Groups

We cover some basic statements from the representation theory for finite
groups in this section. We will not provide any proofs here as most of the
following results are well known and refer to [Ser77, Hal13a, EGH+11] for a
detailed exposition.

Let G be a finite group. A representation of G is a pair (π, Vπ) con-
sisting of a group homomorphism π : G → Aut (Vπ) into the automorphism
group of some vector space Vπ. The space Vπ is called a G-module. We will
often just write either π or Vπ for a representation (π, Vπ), suppressing either
the concrete G-module Vπ or the concrete action π where no confusion arises.
Furthermore, we will use adjectives for the action π interchangeably with the
corresponding G-module Vπ. For instance, we call π finite dimensional if Vπ
is finite dimensional.

A representation of G is called a complex representation, if the un-
derlying vector space Vπ is a complex vector space. If Vπ is equipped with a
sesqui-linear inner product ⟨·, ·⟩ : Vπ×Vπ → C, then we call a representation
π unitary, if π(g)−1 = π(g)∗ for all g ∈ G, where ∗ denotes the adjoint. We
will restrict ourselves to unitary representations only. We will argue later
that the unitarity condition is not really a restriction.

For a fixed group G, we denote by rep(G) the set of finite dimensional
unitary representations of G.

There are several ways to construct new representations out of given ones.

(a) The dual representation: If (π, Vπ) is a representation of G, we may
define a representation of G on V ∗

π = Hom(Vπ,C) via

(g � φ)(v) = φ(π(g−1)(v)) (2.2.1)

for all g ∈ G, φ ∈ Hom(Vπ,C) and v ∈ Vπ. This is sometimes also
called the contragredient representation of π.

(b) The direct sum representation: Given two representations (π1, Vπ1)
and (π2, Vπ2), the action on the direct sum Vπ1 ⊕ Vπ2 is given by the
liner extension of the mapping

(π1 ⊕ π2) (g) : v1 ⊕ v2 7→ π1(g)(v1) ⊕ π2(g)(v2)

for all g ∈ G and v1 ∈ Vπ1 , v2 ∈ Vπ2 .
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(c) The tensor product representation: Given two representations
(π1, Vπ1) and (π2, Vπ2), the action on the tensor product Vπ1 ⊗ Vπ2 is
given by the linear extension of the mapping

(π1 ⊗ π2) (g) : (v1 ⊗ v2) 7→ π1(g)(v1) ⊗ π2(g)(v2) (2.2.2)

for all g ∈ G and v1 ∈ Vπ1 , v2 ∈ Vπ2 .

It is straightforward to verify that each of these examples yield indeed a
representation.

A morphism of representations f : (π1, Vπ1) → (π2, Vπ2) is a linear
map f : Vπ1 → Vπ2 such that the diagram

Vπ1 Vπ2

Vπ1 Vπ2

f

π1(g) π2(g)

f

commutes for all g ∈ G. We call such a map f an intertwiner or some-
times a G−equivariant linear map, and often write f : π1 → π2 instead
of f : (π1, Vπ1) → (π2, Vπ2). We call two representations π1 and π2 equiv-
alent if there exists a unitary intertwiner T : π1 → π2 and T is called an
isomorphism of representations.

The reason we define equivalence in terms of intertwining unitaries, in-
stead of (non-unitary) isomorphisms, is so that the intertwiner additionally
respects the sesqui-linear products of the respective vector spaces. In par-
ticular, it maps orthogonal subspaces to orthogonal subspaces, which will
become important once we study subrepresentations.

Let π1 be a non-unitary representation on an inner product space (Vπ, ⟨−,−⟩).
Then we may substitute Vπ with the inner product space (Vπ, ⟨−,−⟩0) with
inner product defined via

⟨v1, v2⟩0 =
∑
g∈G

⟨π(g)v1, π(g)v2⟩.

We claim that G acts on (Vπ, ⟨−,−⟩0) unitarily, and that (Vπ, ⟨−,−⟩0) and
(Vπ, ⟨−,−⟩) are equivalent. Indeed, we have

⟨π(h)v1, π(h)v2⟩0 =
∑
g∈G

⟨π(g)π(h)v1, π(g)π(h)v2⟩

=
∑
g∈G

⟨π(gh)v1, π(gh)v2⟩ =
∑
g∈G

⟨π(g)v1, π(g)v2⟩

=⟨v1, v2⟩0
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and the identity establishes an invertible intertwiner between these two spaces.
This demonstrates that restricting to unitary representations does not con-
cede any generality for all intents and purposes.

A subrepresentation of a representation (π, Vπ) is a representation
(ϑ,Wθ) with Wθ a subspace of Vπ such that Wθ is invariant under the action
of G under π. That is, for all v ∈ Wθ and g ∈ G we always have π(g)(v) ∈ Wθ.
Clearly {0} and Vπ are subrepresentations of Vπ. We call Vπ irreducible if

Vπ and {0} are the only subrepresentations of Vπ. We denote by Ĝ a choice
of representatives of inequivalent irreducible representations of G.

Example 2.2.1. Take G = S3 = {id, (12), (13), (23), (123), (132)} to be
the symmetric group of permutations of the set {1, 2, 3}. Then G has the
following inequivalent irreducible representations:

• The trivial representation (triv,C), sending each σ ∈ S3 to the identity
1.

• The sign representation (sign,C), sending each σ ∈ S3 to the signature
of σ.

• The standard representation (stand,W ), where W is the subspace of
R3 defined via

W =
{
z1 + z2 + z3 = 0 | z1e1 + z2e2 + z3e3 ∈ C3

}
and the action is defined via σ� ei = eσ(i), where e1, e2, e3 is a basis of
C3.

Clearly, the trivial and sign representation are irreducible; They are one-
dimensional and thus contain no non-trivial subspace. For the standard
representation, note first that the identity z1 + z2 + z3 = 0 is preserved under
every permutation of the z1, z2, z3, hence W is invariant under the standard
representation. To see that it is also irreducible, note that for any vector
v ∈ W we have

(id−(12))v ∈ spanC

{(
e1 − e2

)}
.

Similarly, the vector
(
e1 − e2

)
can be mapped to any vector v = z1e1 +

z2e2 − (z1 + z2)e3 ∈ W via (z1 − z2) id +z2(23) + z3(123). This implies that
no one-dimensional subspace can be invariant and W must be irreducible.

Let f : Vπ1 → Vπ2 be a morphism between two representations Vπ1 and
Vπ2 of a finite group G. Then ker(f) and im(f) are subrepresentations of
Vπ1 and Vπ2 respectively. The following consequence is known as Schur’s
Lemma.
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Theorem 2.2.2 (Schur’s Lemma). If Vπ1 and Vπ2 are irreducible represen-
tations of G and f : Vπ1 → Vπ2 a morphism of representations, then we have
either f = 0 or f is an isomorphism. In the latter case, if we further have
Vπ1 = Vπ2, then f is a scalar multiple of the identity.

Remark 2.2.3. Schur’s Lemma holds more generally for algebraically closed
fields. It fails however for general fields, see [EGH+11].

A representation V is called semisimple if it can be written as the direct
sum of irreducible representations. Every finite dimensional representation
of a finite group is semisimple [EGH+11, Ser77]. If V is semisimple and

V =
⊕
π∈Ĝ

nπVπ (2.2.3)

a decomposition of V into the direct summands nVπ =
n⊕
k=1

Vπ, and if W is

an irreducible subrepresentation of V , then W is isomorphic to one of the Vπ
appearing in Equation (2.2.3). More generally, if W is any subrepresentation
of V , then W is semisimple and is isomorphic to a subdecomposition of V ,
i.e., there exists 0 ≤ rπ ≤ nπ such that

W ∼=
⊕
π∈Ĝ

rπVπ,

see [EGH+11, Proposition 3.1.4]. It is well known [Ser77, Thm. 1 and
Thm. 2] that any given finite-dimensional representation decomposes into
a direct sum of irreducible representations. This is particularly true for
tensor products: If (π1, Vπ1) and (π2, Vπ2) are irreducible representations,
there exists coefficients Nπ3

π1,π2
such that

Vπ1 ⊗ Vπ2 ≃
⊕
π∈Ĝ

Nπ3
π1,π2

Vπ3 .

The coefficients Nπ3
π1,π2

are called fusion coefficients.

Remark 2.2.4. The representations of a finite group G form a category with
rep(G) as objects and with intertwiners as morphisms, and we will denote
this category by rep(G) again. This will create no confusion, as we will
always equate the notations π ∈ rep(G) and π ∈ obj(rep(G)), where obj(C)
denotes the class of objects of a category C. In the language of category
theory, a subrepresentation is simply a subobject and two representations
are equivalent if they are equivalent as objects in rep(G). The latter can be
seen as follows: If V is equipped with two Hermitian inner products ⟨·, ·⟩1 and
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⟨·, ·⟩2, then by the Riesz representation theorem there exists a unique positive
definite and self-adjoint linear map f : V → V such that ⟨fv, w⟩1 = ⟨v, w⟩2.
If π : G → Aut(V ) is a unitary representation, then for all v, w ∈ V and
g ∈ G we have.

⟨gfv, w⟩1 = ⟨fv, g−1w⟩1 = ⟨v, g−1w⟩2 = ⟨gv, w⟩2 = ⟨fgv, w⟩1,

hence gf = fg for all g ∈ G and f must be an intertwiner. If V is irreducible,
it follows that ⟨·, ·⟩1 is a positive and real scalar multiple of ⟨·, ·⟩2 by Schur’s
Lemma. It follows that if (π1, Vπ1) and (π2, Vπ2) are equivalent irreducible
representations with intertwiner f : Vπ1 → Vπ2 , that there exists a positive
λ ∈ R with

λ⟨v, w⟩π1 = ⟨f(v), f(w)⟩π2 .

and the map f̃ := 1√
λ
f affords a unitary intertwiner between Vπ1 and Vπ2 .

Since every representation decomposes into a direct sum of irreducible ones,
it follows that the categorical notion of equivalence coincides with the notion
of unitary equivalence.

An important consequence of Schur’s Lemma is the Peter-Weyl theorem.
Let (π, V ) be an irreducible representation of G and let dimπ = dim(Vπ) and
Γπ : dimπ× dimπ×G → C denote an explicit unitary matrix representation
for some appropriate basis b1, . . . , bn. Then the Peter-Weyl theorem reads as
follows.

Theorem 2.2.5 (Peter-Weyl). Let G be a finite group. Then the unitary
matrix coefficients {

Γijπ
}

π∈Ĝ
i,j=1,...,dim(π)

defined via

Γijπ : g 7→ ⟨bi, π(g)bj⟩

for an orthonormal basis {bi}i=1,...,dimπ
for each irreducible module Vπ, span

C(G), the set of complex valued functions on G. Furthermore, they are or-
thonormal with respect to the inner product

C(G) × C(G) → C

(f, h) 7→ ⟨f, h⟩ =
dimπ

|G|
∑
g∈G

f̄(g)h(g). (2.2.4)
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The orthogonality relation is shown in [Kna01, Corollary 1.10] and the
density of the matrix coefficient is shown in [Kna01, Theorem 1.12]. There,
Theorem 2.2.5 is derived for compact groups, with C(G) being the space of
continuous complex valued functions on G, and Equation (2.2.4) becomes
an integral with respect to the so-called Haar measure. We will only be
interested in the case where G is finite, and the special case described in
Theorem 2.2.5 can then be derived by choosing the discrete topology on G.

For future reference, we want to list some identities that can easily be
verified using Equation (2.2.4):∑

g∈G

Γ
ij

π (g)Γklπ′(g) =
dimπ

|G|
δi,kδj,lδπ,π′ (2.2.5)

∑
n,m∈G

Γ̄ijπ′(m)Γ̄klπ (n)f(mn) =
∑
m∈G

dimπ

|G|
δπ,π′δj,kΓ̄

il
π′(m)f(m), (2.2.6)

where f : G→ S is an arbitrary function from G to some set S and π, π′ are
irreducible representations of G.

Given an irreducible representation (π, V ), we define the trace

g 7→ trπ(g)

of an element g ∈ G understood as an automorphism acting on V . The
mapping trπ : G → C is called the character of π. More generally, a class
function is a map φ : G → C such that φ(h−1gh) = φ(g) for all g, h ∈ G,
hence, a character is a special case of a class function. It then follows from
the Peter-Weyl theorem that the set of characters of the irreducible repre-
sentations of G form an orthonormal set with respect to the inner product
⟨φ, ψ⟩ = 1

|G|
∑

g∈G φ(g)ψ(g), i.e. we have for all irreducible representations

π, π′

1

|G|
∑
g

trπ1(g) trπ2(g) = δπ1,π2 . (2.2.7)

Furthermore, the space of class function is spanned by the characters [Ser77,
Sec. 2.5, Thm. 6].

If (π1, Vπ1) and (π2, Vπ2) are two representations of G, the traces of Vπ1 ⊕
Vπ2 and Vπ1⊗Vπ2 are respectively χπ1⊕π2(g) = χπ1(g)+χπ2(g) and χπ1⊗π2(g) =
χπ1(g)χπ2(g) for all g ∈ G. As an important consequence of Equation (2.2.7)
allows us to calculate the explicit multiplicities in Equation (2.2.3): If χ is
the character of a representation V of G decomposed as in Equation (2.2.3),
then χ(g) =

∑
π∈Ĝ

nπχπ(g) and Equation (2.2.7) gives nπ = ⟨χ, χπ⟩.
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Given a finite group G, we may define the vector space

CG = span {h | h ∈ G} (2.2.8)

as the formal span of all group elements in G. This becomes a G-module
via left-multiplication g � h = gh ∈ CG on the basis vectors h ∈ CG. This
representation is called the regular representation, and it contains all
irreducible representations of G as subrepresentations:

Theorem 2.2.6. Let G be a finite group and let (ρ,CG) be the regular rep-
resentation of G, with ρ defining the regular left-action, ρ(g)(h) = gh. Then
every finite-dimensional irreducible representation V of G is contained in
CG as a subrepresentation with multiplicity being the dimension of V and
CG can be decomposed into

CG ∼=
⊕
π∈Ĝ

dim(Vπ)Vπ.

In particular, G is semisimple, that is, the number of non-isomorphic finite-
dimensional irreducible representations of G is finite.

A proof of this statement can be found in most standard books on repre-
sentation theory, see e.g. [Ser77, Sec 6.2 Prop. 10]. We want to provide an
explicit decomposition into the irreducible representations, since we will use
similar arguments later on in Chapter 3. Let (π, Vπ) be an irreducible repre-
sentation of G and let Γπ be a unitary matrix representation of π for some
basis {bs}s=1...n, where n is the dimension of Vπ. Fix a number s2 ∈ {1, . . . , n}
and define for every s1 ∈ {1, . . . , n} the vector cs1,s2 ∈ CG via

cs1,s2 =
∑
g∈G

Γ
s1s2
π (g)g (2.2.9)

Because Γπ(g) is unitary for each g ∈ G, the set {cs1,s2}s1 is linearly inde-
pendent, and we claim that the space

VG,π := spans1 {cs1,s2}

is isomorphic to Vπ as a G-module, and that the G-equivariant isomorphism
is given via the linear extension of the mapping

θs2 : cs1,s2 7→ bs1 ,
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for all s1 = 1, . . . , n. Indeed, we have

θs2(ρ(h)(cs1,s2)) = θs2

(
ρ(h)

(∑
g∈G

Γ
s1s2
π (g)g

))
=
∑
g∈G

Γ
s1s2
π (g)θs2 (hg)

g 7→h−1g
=

∑
g∈G

Γ
s1s2
π (h−1g)θs2 (g)

=
n∑
l=1

∑
g∈G

Γ
s1l

π (h−1)Γ
ls2
π (g)θs2(g).

Because Γπ(h) is unitary, we have Γ
s1,l

π (h) = Γl,s1π (h−1). Furthermore, we

have
∑
g∈G

Γ
ls2
π (g)θs2(g) =

∑
g∈G

θs2(cl,s2) = bl, and the above expression becomes

n∑
l=1

Γls1π (h)bl.

But his is just the action π(h)bs1 expressed in the basis {b1, . . . , bn}. Since this
holds for every s2, we find precisely dim(Vπ) many copies of the submodule
Vπ inside CG.

Remark 2.2.7. In the literature, as well as in this work, the expression CG
usually refers to the group algebra, whose definition is identical to the one
in Equation (2.2.8) when viewed as a vector space and whose algebra multi-
plication is given by the group multiplication.

2.3 Hopf Algebras

In this section, we will give an overview of some results for finite dimensional
Hopf algebras. We define bialgebras in Section 2.3.1 and Hopf algebras in
Section 2.3.2. We will mostly follow [Swe69, Kas12] and [Gou93].

2.3.1 An Introduction to Bialgebras

We can view an algebra A over a field F as a triple (A, µ, η), where A is a
vector space over F together with linear maps µ : A⊗A→ A and η : F → A,
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called multiplication and unit such that the associativity diagram

A⊗ A⊗ A A⊗ A

A⊗ A A

idA ⊗µ

µ⊗idA

µ

µ

and unitor diagram

F ⊗ A A⊗ A A⊗ F

A

η⊗idA idA ⊗η

µ
∼= ∼=

(2.3.1)

commute. We shall embrace this diagrammatic description, as it allows for
a convenient way to define dual constructions by reversing arrows.

Definition 2.3.1 (Coalgebra). A coalgebra over a field F is a triple (C,∆, ε),
where C is a vector space together with linear maps ∆ : C → C ⊗ C and
ε : C → K called comultiplication and counit such that the coassociativity
diagram

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆

∆⊗idC

idC ⊗∆ (2.3.2)

and counitor diagram

F ⊗ C C ⊗ C C ⊗ F

C

ε⊗idC idC ⊗ε

∼=
∆ ∼=

(2.3.3)

commute.

Every field F is both an algebra and a coalgebra, with coproduct and
counit given by ∆F = εF = idF , with the identity F ⊗ F ∼= F in mind.

We introduce the Sweedler notation: Given an element x ∈ C, where C
is a coalgebra, we write

∆(x) =
∑
(x)

x(1) ⊗ x(2) (2.3.4)
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for the coproduct of x in C. The associativity diagram, Diagram (2.3.2),
then reads in Sweedler notation∑

(x)

((
x(1)
)(1) ⊗ (x(1))(2))⊗ x(2) =

∑
(x)

x(1) ⊗
((
x(2)
)(1) ⊗ (x(2))(2)) .

If V is a vector space over some field F , we denote by V ∗ = HomF (V, F )
the set of linear functionals from V to F . Given a linear map V → W between
vector spaces V and W , we define the dual map f ∗ : W ∗ → V ∗ as usual via

f ∗ : W ∗ ∋ φ 7→ φ ◦ f ∈ V ∗.

If (C,∆, ε) is a coalgebra, then C∗ becomes an algebra with multiplication
∆∗ : C∗ × C∗ → C∗ and unit ε∗ : F → C∗ [Swe69, Proposition 1.1.1].
Furthermore, if (A, µ, η) is a finite dimensional algebra, (A∗, µ∗, η∗) becomes
a coalgebra [Swe69, Proposition 1.1.2].

Example 2.3.2. Let G be a finite group and CG the regular representation
introduced in Equation (2.2.8). CG becomes an algebra with the structure
maps defined via the linear extension of the maps

µ(g ⊗ h) = gh

η(1C) = e.

Let us denote the dual of CG by C(G) Then C(G) becomes a coalgebra by
setting

∆(φ) = φ ◦ µ : g ⊗ h 7→ φ(gh)

ε(φ) = φ ◦ η : C → C

for all φ ∈ C(G). Note that ε(φ) ∈ C since End(C) ∼= C. Furthermore, CG
can be made a coalgebra by setting

∆(g) = g ⊗ g

ε(g) = 1,

which induces on C(G) the algebra structure

µ(φ⊗ ψ) = (φ⊗ ψ) ◦ ∆ : g 7→ φ(g)ψ(g) (2.3.5)

η(1C) = 1C ◦ ε : g 7→ 1 ∈ C, (2.3.6)

where we identified C ⊗ C ∼= C in Equation (2.3.5) and 1C ∈ C ∼= (C)∗ is
viewed as the constant one function in Equation (2.3.6).
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Definition 2.3.3 (Algebra and Coalgebra morphisms). A linear map f :
A → B between algebras (A, µA, ηA) and (B, µB, ηB) is called an algebra
homomorphism or morphism of algebras if the diagrams

A⊗ A B ⊗B

A B

µA

f⊗f

f

µB (2.3.7)

and

A B

F

f

ηA ηB
(2.3.8)

commute. In other words, if f(ab) = f(a)f(b) and f (1A) = 1B for all
a ∈ A, b ∈ B. A linear map g : C → D between coalgebras (C,∆C , εC) and
(D,∆D, εD) is called a coalgebra morphism or morphism of coalgebras
if the diagrams

C ⊗ C D ⊗D

C D

g⊗g

∆C

g

∆D
(2.3.9)

and
C D

F

g

εC εD
(2.3.10)

commute. In other words, if
∑
(x)

g(x(1)) ⊗ g(x(2)) =
∑

(g(x))

(g(x))(1) ⊗ (g(x))(2)

and εC(x) = εD(g(x)) for all x ∈ C.

If g : (C1,∆C1 , εC1) → (C2,∆C2 , εC2) is a morphism of coalgebras, then
g∗ : C∗

2 → C∗
1 becomes a morphism of algebras between the algebras

(C∗
2 ,∆

∗
C2
, ε∗C2

) and (C∗
1 ,∆

∗
C1
, ε∗C1

) [Swe69, Proposition 1.4.1]. Similarly, if
(A1, µA1 , ηA1) and (A2, µA2 , ηA2) are two finite dimensional algebras with al-
gebra morphism f : A1 → A2, then f ∗ : A∗

2 → A∗
1 becomes a morphism of the

coalgebras from (A∗
2, µ

∗
A2
, η∗A2

) to (A∗
1, µ

∗
A1
, η∗A1

) [Swe69, Proposition 1.4.2].

2.3.2 An Introduction to Hopf Algebras

Given two algebras (A, µA, ηA) and (B, µB, ηB), we may equip A ⊗ B with
an algebra structure by setting µA⊗B = µA ⊗ µB ◦ (idA⊗τA⊗B ⊗ idB) and
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ηA⊗B = ηA ⊗ ηB as multiplication and unit on A ⊗ B respectively, where
τA⊗B is the twist sending a ⊗ b to b ⊗ a for all (a, b) ∈ A × B. Similarly,
given two coalgebras (C,∆C , εC) and (D,∆D, εD), we may equip the tensor
product C ⊗D with a coalgebra structure by setting ∆C⊗D = (idC ⊗τC⊗D ⊗
idD) ◦ (∆C ⊗ ∆D) and εC ⊗ εD.

Definition 2.3.4 (Bialgebra). A bialgebra is a quintuple (A, µ, η,∆, ε) such
that (A, µ, η) forms an algebra, (A,∆, ε) forms a coalgebra and the structure
maps µ : A ⊗ A → A and η : F → A are morphisms of coalgebras, i.e. the
diagrams

(A⊗ A) ⊗ (A⊗ A) A⊗ A

A⊗ A Aµ

∆∆A⊗A

µ⊗µ

(2.3.11)

A⊗ A F ⊗ F

A F

ε⊗ε

µ idF

ε

(2.3.12)

and
F A

F ⊗ F A⊗ A

η

idF

η⊗η

∆ (2.3.13)

F A

F

η

idF ε
(2.3.14)

commute. If τ : A ⊗ A → A ⊗ A, a ⊗ b 7→ b ⊗ a denotes the natural flip,
then we call A commutative, respectively cocommutative, if in addition the
diagram

A⊗ A A⊗ A

A

τ

µ µ
(2.3.15)

respectively the diagram

A⊗ A A⊗ A

A

τ

∆ ∆

(2.3.16)
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commute.

It turns out that Diagram (2.3.11) to Diagram (2.3.14) are equivalent to
saying that ∆ : A⊗ A→ A and ε : A→ F are morphisms of algebras.

Now, if (A, µ, η,∆, ε) is a bialgebra, we may define the convolution

⋆ : End(A) ⊗ End(A) → End(A) (2.3.17)

via

f ⋆ g = µ(f ⊗ g)∆

for algebra morphisms f, g ∈ End(A). This pairing admits an identity given
by εη. To see this, we first note that Diagrams (2.3.3) and Diagram (2.3.1)
can be written using Sweedler notation as∑

(x)

ε(x(1)) ⊗ x(2) =
∑
(x)

x(1) ⊗ ε(x(2)) = x

and

µ(η(z) ⊗ x) = η(z)x = µ(x⊗ η(z)).

Then we obtain

(f ⋆ (ηε)) (x) = µ(f ⊗ (ηε))∆(x)

=
∑
(x)

f
(
x(1)η(ε(x(2)))

)
=
∑
(x)

f
(
x(1)ε(x(2))

)
=f(x).

In fact, the triple (End(A), ⋆, ηε) even forms an algebra [Kas12, Proposition
III.3.1].

Definition 2.3.5 (Hopf Algebra). A Hopf algebra is a sixtuple
(H,µ, η,∆, ε, S) such that (H,µ, η,∆, ε) is a bialgebra and S : H → H a
linear map, called antipode, such that idH ⋆S = S ⋆ idH = ηε, i.e. S is the
inverse of idH with respect to ⋆.

Note that the very definition of an antipode gives the equation∑
(x)

x(1)S(x(2)) =
∑
(x)

S(x(1))x(2) = ε(x)1H ,
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where 1H is the unit on H.
If (H,µ, η,∆, ε, S) is a finite dimensional Hopf algebra with antipode S,

then (H∗,∆∗, ε∗, µ∗, η∗, S∗) becomes a Hopf algebra with antipode S∗ [Kas12,
Proposition III.3.3].

The example of interest for us is that of the group Hopf algebra CG. We
noted the algebraic and coalgebraic structures of CG in Example 2.3.2. It
is straightforward to verify that CG indeed becomes a bialgebra with these
structure maps. In fact, it is a Hopf algebra with antipode given by the linear
extension of the mapping

S : g 7→ g−1.

We call this Hopf algebra the group Hopf algebra of G. The structure
maps of the group Hopf algebra encode the structure of the representation
category of G in the following way: If (π1, Vπ1), (π2, Vπ2) are representations of
G, then the coproduct ∆ describes the action on the tensor product Vπ1⊗Vπ2
via

g � (v1 ⊗ v2) :=(π1 ⊗ π2)(∆(g))(v1 ⊗ v2)

=
∑
(g)

π1(g
(1)) ⊗ π2(g

(2))(v1 ⊗ v2)

=
∑
(g)

π1(g
(1))(v1) ⊗ π2(g

(2))(v2)

=(π1(g)(v1)) ⊗ (π2(g)(v2)),

which indeed coincides with our definition of the tensor product action given
in Equation (2.2.2). Furthermore, the counit encodes the trivial representa-
tion on triv ∼= C. Finally, the antipode encodes the dual action: If (π, Vπ) is
a G-module, we may define the dual action on V ∗

π = Hom(V,C) via

(g � φ)(v) = φ(π(S(g))(v)) = φ(π(g−1)(v)), (2.3.18)

which again coincides with Equation (2.2.1). Note also that Equation (2.3.18)
would not define a left action, were it not for

S(gh) = (gh)−1 = h−1g−1 = S(h)S(g).

and

S(e) = e−1 = e.

Indeed, we have the following
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Theorem 2.3.6. Let (H,µ, η,∆, ε, S) be a Hopf algebra. Then

S(ab) = S(b)S(a), S(1H) = 1H

and

(S ⊗ S)∆ = τH⊗H∆S, εS = ε

for all a, b ∈ H and if H is either commutative or cocommutative, then S is
invertible with S2 = idH .

See [Kas12, Theorem III.3.4] for a proof.

We want to conclude this section with an important property about Hopf
algebras. An element x of a Hopf algebra H is called a left integral if

xa = ε(x)a

holds for all a ∈ H. We denote the set of left integrals by
∫
H

. The next
theorem can be found in [Swe69, 5.1.8].

Theorem 2.3.7. A finite dimensional Hopf algebra H is semisimple if and
only if

ε |∫
H
̸= 0

i.e., if there exist an element x ∈
∫
H

such that ε(x) ̸= 0.

2.4 Crossed Products and the Quantum Dou-

ble Construction

In this section, we will define the quantum double of a group and discuss their
irreducible representations. In Section 2.4.1, we consider pairs of Hopf alge-
bras A,B that satisfy certain compatibility conditions and define a universal
object A ▷◁ B containing A and B as subalgebras. We then show that a par-
ticular case is given by a Hopf algebra H and its dual, and the constructed
universal object D(H) := H ▷◁ H∗ is called the Quantum Double of H. We
then apply this construction to the group Hopf algebra CG. All results can
be found in more detail in [Kas12, Swe69]. In Section 2.4.2 we inspect the
irreducible representations of the D(G) following mostly [Gou93, DPR91].
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2.4.1 The Quantum Double Construction

We now come to a very important construction, the bicrossed product of
algebras and Hopf algebras. Let A and B be two algebras and assume V
is both a left A-module and a right B module. Assume further that for all
a ∈ A, b ∈ B there exist elements denoted by Lb(a) ∈ A and Ra(b) ∈ B,
such that the commutation relation

ba = Lb(a)Ra(b) (2.4.1)

holds, where the composition in Equation (2.4.1) is viewed as composition
of elements in End(V ). Finally, assume that L : B → End(A), b 7→ Lb is a
left action of B on A and that R : A → End(B), a 7→ Ra a right action of
A on B. Then a bicrossed product with respect to L and R is an algebra
denoted by A ▷◁ B containing A and B as subalgebras such that Equation
(2.4.1) holds for all a ∈ A and b ∈ B, now viewed as elements of A ▷◁ B, and
such that A ▷◁ B ∼= A⊗B as vector spaces.

Example 2.4.1. Let H,K ⊂ G be subgroups of a group G such that H ·K =
G and each element g ∈ G factors uniquely into a product g = hk with h ∈ H
and k ∈ K. This would for instance be given once H ∩K = {e} since then
for all h, h′ ∈ H and k, k′ ∈ K with hk = h′k′, we have

hk = h′k′ ⇔ (h′)−1h = k−1k′ ∈ H ∩K,

implying h = h′ and k = k′. Then for each h ∈ H and k ∈ K there exist
elements Lk(h) ∈ H and Rh(k) ∈ K such that

kh = Lk(h)Rh(k)

It is straightforward to verify that L and R satisfy the following identities
for all h, h′ ∈ H and k, k′ ∈ K:

Lkk′ = LkLk′

Lk(hh
′) = Lk(h)LRh(k)(h

′)

Rhh′ = Rh′Rh

Rh(kk
′) = RLk′ (h)

(k)Rh(k
′)

Le(h) = h

Lk(e) = e

Re(k) = k

Rh(e) = e.

See the discussion at the beginning of Section IX.1 in [Kas12] for more details.



32 CHAPTER 2. PRELIMINARIES

Definition 2.4.2. Let A and B be two algebras over some field F and L :
B ⊗ A → A and R : B ⊗ A → B a left- respectively right action. Assume
further that L and R are morphisms of comodules and that the diagrams

B ⊗ A⊗ A A⊗B ⊗ A

B ⊗ A A

(L⊗R⊗idA)(∆B⊗A⊗idA)

idB ⊗µA

L

µA(idA ⊗L) (2.4.2)

B ⊗B ⊗ A B ⊗ A⊗B

B ⊗ A B

(idB ⊗L⊗R)(idB ⊗∆B⊗A)

µB⊗idA

R

µB(R⊗idB) (2.4.3)

B ⊗ F B ⊗ A

A

idB ⊗ηA

L
εBηA

(2.4.4)

F ⊗ A B ⊗ A

B

ηB⊗idA

R
ηBεA

(2.4.5)

and

B ⊗ A B ⊗ A⊗B ⊗ A B ⊗ A

A⊗B

∆B⊗A R⊗L

L⊗R
τB⊗A

(2.4.6)

commute. Then A and B are called a matched pair of algebras w.r.t L
and R.

We have purposely chosen the same notation for the left- resp. right
action in Definition 2.4.2 as in Example 2.4.1 to emphasize that Definition
2.4.2 offers a generalization of Example 2.4.1. Indeed, the group algebras of
H and K from Example 2.4.1 form a matched pair of algebras.
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Note that we use that F ⊗A ∼= A and B⊗ F ∼= B in Diagram (2.4.5) and
Diagram (2.4.4). In components, Diagrams (2.4.2) to Diagram (2.4.6) read

Lb(a1a2) =
∑

(b),(a1)

Lb(1)(a
(1)
1 )L

R
a
(2)
1

(b
(2)
1 )

(a2) (2.4.7)

Ra(b1b2) =
∑

(a),(b2)

RL
b
(1)
2

(a(1))(b1)Ra(2)(b
(2)
2 ) (2.4.8)

Ra(1B) = εA(a)1B (2.4.9)∑
(b),(a)

Ra(1)(b
(1)) ⊗ Lb(2)(a

(2)) =
∑
(b),(a)

Ra(2)(b
(2)) ⊗ Lb(1)(a

(1)). (2.4.10)

Note in particular that Equation (2.4.10) is a weaker form of cocommutativ-
ity.

By [Kas12, Theorem IX.2.3], if A and B are matched, then there exists
a unique bialgebra structure on C =: A⊗B with unit 1A ⊗ 1B and product,
coproduct and counit given via

(a1 ⊗ b1)(a2 ⊗ b2) =
∑
(a),(b)

a1Lb(1)1
(a

(1)
2 ) ⊗R

a
(2)
2

(b
(2)
1 )b2, (2.4.11)

coproduct

∆(a⊗ b) =
∑
(a),(b)

(a(1) ⊗ b(1)) ⊗ (a(2) ⊗ b(2))

and counit

ε(a⊗ b) = εA(a)εB(b),

and the embeddings A ↪→ C, a 7→ a ⊗ 1B and B ↪→ C, b 7→ 1A ⊗ b are
morphisms of bialgebras. This algebra is called the bicrossed product of
A and B with respect to L and R and is denoted by A ▷◁ B. If A and B
are in addition Hopf algebras with antipodes SA and SB, then C becomes a
Hopf algebra as well with antipode given by

S(a⊗ b) =
∑
(a),(b)

LSB(b(2))(SA(a(2))) ⊗RSA(a(1))

(
SB(b(1))

)
. (2.4.12)

Note also that Equation (2.4.11) describes the commutation relation in Equa-
tion (2.4.1) for the group like elements, that is, elements a ∈ A and b ∈ B
with ∆A(a) = a⊗ a and ∆B(b) = b⊗ b.
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Remark 2.4.3. For group like elements, Diagrams (2.4.2), (2.4.3), (2.4.3) and
(2.4.4) take the form of Equation (2.4.7), (2.4.8), (2.4.8) and (2.4.9) of Ex-
ample 2.4.1 respectively, barring the tensor symbol.

We already saw that if (H,µ, η,∆, ε, S) is a finite dimensional Hopf alge-
bra, the dual (H∗,∆∗, ε∗, µ∗, η∗) becomes a bialgebra again. Because

ηHεH = µH(S ⊗ idH)∆H

immediately gives

ηH∗εH∗ = ε∗Hη
∗
H = ∆∗

H(S ⊗ idH)∗µ∗
H = µH∗(S∗ ⊗ id∗

H)∆∗
H ,

we see that S∗ is an antipode of H∗, making (H∗,∆∗, ε∗, µ∗, η∗, S∗) a Hopf
algebra again.

We may also consider the opposite bialgebra (Hop, µopH , ηH ,∆H , εH) of H,
i.e. the Hopf algebra H with multiplication µopH = µHτH⊗H : a⊗ b 7→ µH(b⊗
a). Straightforward calculations then show that if S is invertible, S−1 is
an antipode of Hop and (Hop, µopH , ηH ,∆H , εH , S

−1) becomes a Hopf algebra
again, and so does its dual (Hop)∗ by our previous observations. It turns out
that (Hop)∗ and H can be made into a matched pair by defining the left- and
right actions

L :H ⊗ (Hop)∗ → (Hop)∗, (2.4.13)

a⊗ φ 7→

La(φ) : x 7→
∑
(a)

φ
(
S−1(a(2))xa(1)

) (2.4.14)

R :H ⊗ (Hop)∗ → H, (2.4.15)

a⊗ φ 7→ Rφ(a) =
∑
(a)

φ
(
S−1(a(3))a(1)

)
a(2). (2.4.16)

The proof is straightforward and can be found after [Kas12, Theorem IX.3.5].
The bicrossed product (Hop)∗ ▷◁ H is called the quantum double of H and
is denoted by D(H). The structure maps are explicitly given as

1D(H) = idH ⊗1H (2.4.17)

µD(H)((φ⊗ a) ⊗ (ψ ⊗ b)) =
∑
(a)

φψ
(
S−1(a(3))(−)a(1)

)
⊗ a(2)b

εD(H)(φ⊗ a) = εH(a)φ(1H) (2.4.18)

∆(φ⊗ a) =
∑
(a)(φ)

(φ(1) ⊗ a(1)) ⊗ (φ(2) ⊗ a(2)). (2.4.19)
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As it turns out [Kas12, Proposition IX.4.3] if H is cocommutative, then the
right action of (Hop)∗ on (H) becomes trivial, i.e.

Rφ(a) = ε(φ)(a).

In this case, the bicrossed product is called a semi-direct product. Finally, if
H = CG and (Hop)∗ = (H)∗ = (CG)∗ is the group Hopf algebra and its dual
with structure maps given as in Example 2.3.2, then the quantum double of
D(H) = CG ▷◁ C(G) is simply denoted by D(G) and called the quantum
double of G.

Proposition 2.4.4. Let D(G) be the quantum double of a finite group G.
Then the left action L : CG ⊗ C(G) → CG, right action R : CG ⊗ C(G) →
C(G) and the structure maps of D(G) take the explicit form

Lh(δg) = δhgh−1 (2.4.20)

Rδg(h) = δg,eh (2.4.21)

1D(G) =
∑
g∈G

δg ⊗ e (2.4.22)

(δg1 ⊗ h1)(δg2 ⊗ h2) = δg1,h1g2h−1
1
δg1 ⊗ h1h2 (2.4.23)

ε(δg ⊗ h) = δg,e1D(G) (2.4.24)

∆(δg ⊗ h) =
∑
g2g1=g

(δg1 ⊗ h) ⊗ (δg2 ⊗ h) (2.4.25)

S(δg ⊗ h) = δh−1g−1h ⊗ h−1 (2.4.26)

Where δg : G → C, h 7→ δg,h is the delta function and δg,h is the Kronecker
delta.

Proof. Equation (2.4.20), (2.4.21), (2.4.22) and Equation (2.4.24) follow di-
rectly from Equation (2.4.15), (2.4.16), (2.4.17) and (2.4.18) respectively. To
show Equation (2.4.25), note first that the coproduct ∆′ on C(G) is given by
the adjoint of the opposite multiplication µop. Then for δg ∈ C(G) we obtain

∆′(δg)(x⊗ y) = δg,yx =
∑
k2k1=g

δk1(x)δk2(y),

hence

∆′(δg) =
∑
k2k1

δk1 ⊗ δk2
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giving Equation (2.4.25) by using Equation (2.4.19). Furthermore, we have

(δg1 ⊗ h1)(δg2 ⊗ h2)
(2.4.11)
====

∑
k2k1=g2

δg1Lh1(δk1) ⊗Rδk2
(h1)h2

=
∑

k2k1=g2

δg1δh1k1h−1
1

⊗ δk2,eh1h2

=δg1,h1g2h−1
1
δg1 ⊗ h1h2

giving Equation (2.4.23). To see Equation (2.4.26) note that S−1
CG = SCG :

g 7→ g−1 which gives SC(G)(δg) = δgS
−1 = δg−1 . Then Equation (2.4.12) gives

S(δg ⊗ h) =
∑
k2k1=g

Lh−1(δk−1
2

) ⊗Rδ
k−1
1

(h−1)

=
∑
k2k1=g

δh−1k−1
2 h ⊗ δk−1

1 ,eh
−1

= δh−1g−1h ⊗ h−1

Remark 2.4.5. By viewing CG and C(G) as subalgebras of D(G) via the
inclusion δg 7→ δg⊗e and h 7→ id⊗h, (2.4.23) gives the commutation relation

hδg = (idG⊗h)(δg ⊗ e) = δhgh−1 ⊗ h = δhgh−1h.

Hence, within the quantum double D(G), the elements in CG and C(G) are
subject to the commutation relation

hδg = δhgh−1h

and any representation of D(G) will respect this identity. This observation
will become important in Chapter 3.

The quantum double D(G) admits the integral element

x =
∑
h∈G

δe ⊗ h.

Indeed, applying Equation (2.4.23) we get for any element δg0 ⊗ h0 ∈ D(G)

(δg0 ⊗ h0)x =
∑
h∈G

δg0,eδe ⊗ h0h = δg0,e
∑
h∈G

δe ⊗ h = δg0,ex = ε(δg0 ⊗ h0)x.

Therefore, D(G) is semisimple by Theorem 2.3.7.

Remark 2.4.6. The bicrossed product for finite groups can alternatively be
defined by a universal property on the embedding maps iA : A→ A⊗B, a 7→
a⊗ 1B and iB : B → A⊗B, b 7→ 1A ⊗ b. See [ACIM07] for more details.
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2.4.2 The irreducible representations of the quantum
double

Let G be a finite group. In this section, we want to study the representa-
tions of its quantum double D(G) following [Gou93] and [DPR91]. We start
by explicitly constructing the irreducible representations of D(G). To ease
readability, we will denote the inverse g−1 of a group element g ∈ G by ḡ
from now on. Let GC denote the set of all conjugacy classes of G. For each
C ∈ GC , we fix an element rC ∈ C and set NC = {n ∈ G | nrCn̄ = rC} to
be the centralizer subgroup of rC in G. We also fix a set of representatives
QC = {qc | c ∈ C} of G

/
NC labelled such that

c = qcrC q̄c.

Because G =
⋃̇
c∈C
qcNC, every element g ∈ G can be factorized uniquely as

g = qgrC ḡng

with qgrC ḡ ∈ QC and ng ∈ NC, giving rise to maps q : G→ QC and n : G→ NC
for each fixed choice of rC ∈ G. We will use this observation quite frequently.

To ease readability, we will denote the inverse of a group element g ∈ G
by ḡ instead of ḡ. Note that different choices of rC merely lead to isomorphic
centralizer subgroups.

Theorem 2.4.7. Let G be a finite group, C a conjugacy class of G and NC
the centralizer subgroup of a fixed element rC ∈ C. If (π, Vπ) is an irreducible
representation of NC, then the vector space

Vα = CC ⊗ Vπ = spanC {c⊗ v | c ∈ C, v ∈ Vπ}

with label α = (π, C) becomes an irreducible representation of D(G) with
action given by

(δg ⊗ h) � (c⊗ v) = δg,hch̄hch̄⊗ π(q̄hch̄hqc)(v).

Proof. We will show that D(G)u = Vα for any u ∈ Vα non-zero, i.e., there is
no non-trivial D(G)-invariant subspace of Vα. We will show this by demon-
strating that u can be mapped to c⊗ v for any choice of (c, v) ∈ C × Vπ. It
then follows that c⊗v can be mapped to any of the c′⊗v′ for (c′, v′) ∈ C×Vπ
as well, hence D(G)u spans Vα.

First, observe that if c1, c2, c3 ∈ C and n ∈ NC are such that
qc1n̄q̄c2c3qc2nq̄c1 = c1, it follows that c2 = c3. This is because the mapping
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c 7→ qcq̄ defines for each fixed q ∈ G an automorphism on G, and because we
already have qc1n̄q̄c2c2qc2nq̄c1 = qc1n̄rCnq̄c1 = qcrC q̄c1 = c1.

Now, let 0 ̸= u =
∑
k,l

λklck ⊗ vl ∈ Vα and c ∈ C, v ∈ Vπ be fixed and let k0

be such that not all λk0,l are zero. Because (π, Vπ) is irreducible, there exists
an element n ∈ NC such that

π(n)

(∑
l

λk0,lvl

)
= v

Then a = δc ⊗ qcnq̄ck0 maps u to c⊗ v:

(δc ⊗ qcnq̄ck0 ) � u =
∑
k,l

λk,lδc,qcnq̄ck0 ckqck0 n̄q̄c
c⊗ π(q̄qcnq̄ck0 ckqck0 n̄q̄c

qcnq̄ck0qck)(v)

=
∑
l

λk0,lc⊗ π(q̄cqcnq̄ck0qck0 )(v)

=
∑
l

λk0,lc⊗ π(n)(v)

=c⊗ v.

We will often denote by dα = dim(α) the dimension of an irreducible

representation α ∈ D̂(G).
D(G) can be made a *-algebra by defining the involution

(δg ⊗ h)∗ = δh̄gh ⊗ h̄. (2.4.27)

Definition 2.4.8 (Hopf *-algebra). A star involution on a Hopf algebra
H is an antilinear, involutive map ∗ : H → H such that

(∗ ⊗ ∗)(∆(a)) = ∆(a∗), (2.4.28)

(ab)∗ = b∗a∗, (2.4.29)

S(S(a)∗)∗ = a, (2.4.30)

for all a, b ∈ H. A Hopf algebra H together with a star involution is called
a Hopf *-algebra.

Equation (2.4.28) reads in Sweedler notation:∑
(a)

(
a(1)
)∗ ⊗ (a(2))∗ =

∑
(a∗)

(a∗)(1) ⊗ (a∗)(2) .
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Proposition 2.4.9. With the * involution defined in Equation (2.4.27),
D(G) becomes a Hopf *-algebra.

Proof. We have

(S (δg ⊗ h))∗ =
(
δh̄ḡh ⊗ h̄

)∗
= δhh̄ḡhh̄ ⊗ h = δḡ ⊗ h,

and Equation (2.4.30) follows by applying ∗S a second time. For the other
claims, we have

((δg1 ⊗ h1)(δg2 ⊗ h2))
∗ (2.4.23)

====δg1,h1g2h̄1 (δg1 ⊗ h1h2)
∗

=δg1,h1g2h̄1δh̄2h̄1g1h1h2 ⊗ h̄2h̄1

=δh̄2h̄1g1h1h2,h̄2g2h2δh̄2g2h2 ⊗ h̄2h̄1

=(δh̄2g2h2 ⊗ h̄2)(δh̄1g1h1 ⊗ h̄1)

= (δg2 ⊗ h2)
∗ (δg1 ⊗ h1)

∗

and

∆ ((δg ⊗ h)∗) =∆(δh̄gh ⊗ h̄)

=
∑

g1g2=h̄gh

(δg2 ⊗ h̄)(δg1 ⊗ h̄)

=
∑
g1g2=g

(δh̄g2h ⊗ h̄)(δh̄g1h ⊗ h̄)

=
∑
g1g2=g

(δg2 ⊗ h)∗(δg1 ⊗ h)∗

=
∑
g1g2=g

((δg2 ⊗ h)(δg1 ⊗ h))∗

= (∆(δg ⊗ h))∗ .

By linear extension, (2.4.28) and Equation (2.4.29) hold for all a, b ∈ D(G).

Similar to the dual representation introduced in Section 2.2, we can define
the dual representation of a Hopf-algebra representation.

Proposition 2.4.10 (Contragredient Representation). Let H be a Hopf al-
gebra and Vπ an H-module with representation given by π : H → End(Vπ).
Then the maps π∗ : (H ⊗ Vπ)∗ → (Vπ)∗ and π̄ : H ⊗ Vπ → Vπ defined via

π∗(a) : (Vπ)∗ ∋ φ 7→φπ(S(a)),

π̄(a) : Vπ ∋ v 7→(π(a)∗)t(v)
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where (−)t denotes the transpose, define representations of H on (Vπ)∗ and
Vπ, called the contragredient representation and conjugated repre-
sentation respectively.

It is straightforward to prove Proposition 2.4.10. Using similar arguments
as in Section 2.2, we may assume that every representation of a Hopf algebra
is unitary, that is, if ΓIJπ (a) are the matrix coefficients of a representation
π ∈ Ĥ with I, J = 1, . . . , dα, then

ΓIJπ (a∗) = Γ̄JIπ (a) ,

with the ∗-involution defined as in Equation (2.4.27). The matrix coefficients
of the conjugated and contragredient representation are respectively

ΓIJπ̄ (a) = Γ̄IJπ (a) (2.4.31)

and

ΓIJπ∗(a) = ΓJIπ (S(a)). (2.4.32)

Let α ∈ D̂(G) be an irreducible representation of D(G) of the form (πα, Cα),
with πα unitary and let {bi}i=1,...,dimπα

be an orthonormal basis of the irre-
ducible representation Vπα associated to πα. We write

Iα = {(i1, i2) | i1 = 1, . . . , |Cα| , i2 = 1, . . . , dimπα}

to denote the labels of the basis {ci1 ⊗ bi2 | (i1, i2) ∈ 1α} of Vα, where{
c1, . . . , c|Cα|

}
= Cα. With the ∗-involution given in Equation (2.4.27), Γα

becomes unitary with inner product given by

⟨ci1 ⊗ bi2 , cj1 ⊗ bj2⟩ = δi1,i2δi2,j2

on CCα ⊗ Vπα . Indeed, for I, J ∈ 1α with I = (i1, i2), J = (j1, j2), the matrix
coefficients of ΓIJα (δg ⊗ h) are given by

ΓIJα (δg ⊗ h) = ⟨ci1 ⊗ bi2 , (δg ⊗ h) � (cj1 ⊗ bj2)⟩

=δg,hcj1 h̄

〈
ci1 ⊗ bi2 , (hcj1h̄) ⊗ πα(q̄hcj1 h̄hqcj1 )bj2

〉
=δg,ci1

〈
ci1 , (hcj1h̄)

〉 〈
bi2 , πα(q̄hcj1 h̄hqcj1 )bj2

〉
=δg,hcj1 h̄δci1 ,hcj1 h̄Γ

i2j2
πα (q̄hcj1 h̄hqcj1 ). (2.4.33)
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Substituting (δg ⊗ h)∗ = δh̄gh ⊗ h̄ gives

ΓIJα (δh̄gh ⊗ h̄) =δh̄gh,h̄cj1hδci1 ,h̄cj1hΓ
i2j2
πα (q̄h̄cj1hh̄qcj1 )

=δh̄gh,h̄cj1hδci1 ,h̄cj1hΓ̄
j2i2
πα (q̄cj1hqh̄cj1h)

=δg,hci1 h̄δcj1 ,hci1 h̄Γ̄
j2i2
πα (q̄hci1 h̄hqci1 )

=Γ̄JIα (δg ⊗ h).

We want to calculate the trace explicitly in a fixed orthonormal basis

{ci ⊗ bj | ci ∈ Cα, bj ∈ Vπα} for an irreducible representation α ∈ D̂(G) with
dim(πα) = n. If I = J , then ci1 = hcj1h̄ gives h ∈ NG(ci1) and therefore
h = qi1mq̄i1 for some m ∈ NG(rα). The character trα is therefore given by

trα(δg ⊗ h) =
∑
I∈1α

ΓIIα (δg ⊗ h)

=

|Cα|∑
i1=1

n∑
i2=1

δg,ci1δhgh̄,gΓ
i2i2
πα (q̄ghqg)

= δg∈Cαδh∈NG(g) trπα(q̄ghqg) (2.4.34)

It follows from [Gou93] that the orthogonality relation for irreducible repre-
sentations take the form∑

g,h∈G

trα(δg ⊗ h) trβ(δg ⊗ h)∗ = δα,β |G| .

Proposition 2.4.11. The modules {Vα}α = CC⊗Vπ with α = (π, C) defined
as in Theorem 2.4.7 form a complete set of inequivalent irreducible represen-
tations of the quantum double D(G), and we have

D(G) ∼=
⊕

α∈D̂(G)

dimα Vα.

Proof. We first show that the irreducible representations given in Theorem
2.4.7 are inequivalent for different choices of C and irreducible representations
π of the centralizer NG(rC). Using Equation (2.4.34), we obtain∑
g,h∈G

trα(δg ⊗ h) trβ(δhgh̄ ⊗ h̄) =
∑
g,h∈G

δg∈Cαδh∈NG(g)δhgh̄∈Cβδh̄∈NG(h̄ḡh)

trπα(q̄ghqg) trπβ(q̄gh̄qg)

=
∑
g,h∈G

δg∈Cαδg∈Cβδh∈NG(g) trπα(q̄ghqg) trπβ(q̄gh̄qg).
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Note that Cα∩Cβ is either empty or Cα = Cβ. Using the orthogonality relation
for irreducible characters applied to the irreducible representations πα and
πβ, this simplifies the above expression to

=δCα,Cβδπα,πβ |Cα|
|Nα|

dimπα

=δα,β
|G|

dimπα

Next, we will show that D(G) and
⊕

α∈D̂(G)

dimα Vα are of the same dimen-

sion. By [EGH+11, Proposition 3.5.8], an algebra is semisimple if and only
if dim(A) =

∑
π∈Â

(dim(Vπ))2, where Â is a set of representatives of irreducible

representations (π, Vπ) of A. Note that this is also true for every group al-
gebra CNC of the centralizer subgroups, which is semisimple, as discussed in
Section 2.2. Note also that D(G) is semisimple by the discussion at the end
of Section 2.4.1. Using that |G| = |NC| |C| and

∑
C∈GC

|C| = |G| we see that

dim(D(G)) = |G|2 =
∑
C∈GC

|G| |C| =
∑
C∈GC

|NC| |C|2

=
∑
C∈GC

∑
π∈N̂C

|C|2 (dim(Vπ))2

=
∑
C∈GC

∑
π∈N̂C

∣∣V(π,C)∣∣2 .
Finally, we will explicitly state an isomorphism ϕ : D(G) →

⊕
α∈D̂(G)

dimα Vα

and show that ϕ is an isomorphism of modules. Let α = (πα, Cα) be an
irreducible representation of the quantum double D(G) and let nα := dimπα ,
b1, . . . , bnα be an orthonormal basis of πα, such that the matrix representation
n 7→ Γπα(n) is unitary for each n ∈ Nα. For a fixed pair J = (j1, j2) ∈ Iα, we
define a map ϕα,J by setting for each (i1, i2) ∈ Iα

ϕα,J(ci1 ⊗ bi2) =
∑
n∈Nα

Γ̄i2j2πα (n)δci1 ⊗ qi1nq̄j1 ,

and extend linearly to Vα. We first show that this mapping realizes an
intertwiner of representations. Given (i1, i2) ∈ Iα and δg ⊗ h ∈ D(G), we
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have

(δg ⊗ h) ·

(∑
n∈Nα

Γ̄i2j2πα (n)δci1 ⊗ qi1nq̄j1

)
= δg,hci1 h̄

∑
n∈Nα

Γ̄i2j2πα (n)δg ⊗ hqi1nq̄j1 .

(2.4.35)

From the coset decomposition G =
⋃̇
q∈QCα

qiNα, it follows that there exists

a unique pair (qk,m) ∈ QCα ×Nα such that hqi1 = qkm. We can then write

g = hci1h̄ = qkmq̄i1ci1qi1m̄q̄k = qkmrCαm̄q̄k = q̄krCαqk = ck

and the right hand side of Equation (2.4.35) becomes

δg,ck
∑
n∈Nα

Γ̄i2j2πα (n)δck ⊗ qkmnq̄j1

n7→m̄n
= δg,ck

∑
n∈Nα

Γ̄i2j2πα (m̄n)δck ⊗ qknq̄j1

=δg,ck
∑
n∈Nα

nα∑
l=1

Γ̄i2tπα(m̄)Γ̄tj2πα (n)δck ⊗ qknq̄j1

=δg,ck

nα∑
l=1

Γ̄i2tπα(m̄)ϕα,J(ck ⊗ bt)

=δg,ckϕ
α,J(ck ⊗ πα(m)bi2)

=δg,hci1 h̄ϕ
α,J(hci1h̄⊗ πα(q̄khqi1)bi2)

=ϕα,J((δg ⊗ h) � (ci1 ⊗ bi2)).

Hence, ϕα,J establishes an intertwiner. Next, we show that the images under
the ϕα,J yield orthogonal subspaces in D(G), i.e. ϕα,J(c⊗ b) is orthogonal to

ϕβ,K(c′ ⊗ b′) for all α, β ∈ D̂(G), c ∈ Cα, c′ ∈ Cβ, b ∈ Vα, b′ ∈ Vβ, J ∈ Iα and
K ∈ Iβ with α ̸= β or J ̸= K. Indeed, setting I = (i1, i2), L = (l1, l2), J =
(j1, j2), K = (k1, k2) with I, J ∈ Iα, K, L ∈ Iβ and c = ci1 , c

′ = cl1 , b =
bi2 , b

′ = bl2 we have

⟨ϕα,J(ci1 ⊗ bi2), ϕ
β,K(cl1 ⊗ bl2)⟩

=
∑
n1∈Nα
n2∈Nβ

Γi2j2πα (n1)Γ̄
l2k2
πβ

(n2)⟨δci1 ⊗ qi1n1q̄j1 , δcl1 ⊗ ql1n2q̄k1⟩

=
∑
n1∈Nα
ne∈Nβ

δci1 ,cl1δqi1n1q̄j1 ,ql1n2q̄k1
Γi2j2πα (n1)Γ̄

l2k2
πβ

(n2).
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Since ci1 = cl1 implies in particular Cα = Cβ and hence Nα = Nβ, the above
expression becomes

=δCα,Cβδi1,l1δqi1n1q̄j1 ,qi1n2q̄k1

∑
n1,n2∈Nα

Γi2j2πα (n1)Γ̄
l2k2
πβ

(n2).

Using the unique coset factorization again, we see that qi1n1q̄j1 = qi1n2q̄k1 ⇔
n1 = n2 and j1 = k1, and due to the orthogonality relation for irreducible
representations, the above expression becomes

= δCα,Cβδπα,πβδi1,l1δi2,l2δj1,k1δk2,l2 = δα,βδL,K .

Note in particular that the linear independent vectors δci1 ⊗ bi2 are mapped

to orthogonal, hence linear independent vectors again and ϕα,J must be in-
jective. It follows that the map

ϕ :=
⊕

α∈D̂(G)

⊕
J∈Iα

ϕJ,α

is an injective intertwiner into D(G). By our calculations at the beginning of
the proof, the codomain of ϕ has dimension equal to the dimension of D(G).
Hence, ϕα,J must be bijective and therefore an isomorphism of representa-
tions.

It is possible to construct projections into the irreducible submodules
inside D(G). By [Gou93, Equation (24)] these are given via

Pα =
dα
|G|

∑
g,h∈G

trα(δh̄gh ⊗ h̄)δg ⊗ h, (2.4.36)

where α ∈ D̂(G) and Pα is viewed as operators via left-multiplication on
D(G). Using Equation (2.4.34), Equation (2.4.36) can be simplified to

Pα =
dimπα

|Nα|
∑
g∈Cα

∑
n∈Nα

trπα(n̄)δg ⊗ qgnq̄g, (2.4.37)

where we used that dα = |Cα| dimπα and |G| = |Nα| |Cα|. These operators
are central projections, i.e. they lie in the centre of D(G). Furthermore,
the central projections Pα are mutually orthogonal, and we will use these
projections in Chapter 3 to construct operators measuring charge excitations.
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2.5 Operator Algebras

The theory of operator algebras was introduced by von Neumann and Mur-
ray in the early 1930s and serves to this date as a rigorous mathematical
framework for describing quantum mechanics. The rough idea is to view ob-
servables as a set of bounded operators A acting on a separable Hilbert space
H [Seg47a]. A physical state is defined to be a positive linear and continuous
functional ω : A → C, understood to measure the expectation value ω(A)
of an observable A ∈ A. Of particular interest are the pure states, which
are defined to be states that cannot be expressed as a non-trivial convex
combination of other states.

In an analogue to classical mechanics, the time evolution of a quantum
mechanical system can be described via a continuous one-parameter group
of automorphisms, describing either the time evolution of the observables, or
equivalently, the time evolution of the states. The notion of time evolution
allows us to define the notion of ground states as states whose total energy
can at most grow under the action of local observables.

After introducing some basic terminology in Section 2.5.1 and Section
2.5.2, we shift our focus to infinite quantum spin systems in Section 2.5.3,
which are obtained as a limit of finite tensor products of finite-dimensional
matrix algebras, and are the main interest of this thesis. We will study the
dynamics of these systems and the additional features of ground- and pure
states in these settings. No result in Section 2.5 is new, and all details can be
found in [Naa13, KR, KR86, BR12, BR03, Zhu93, Mur90, Hal13b, Rud91].

2.5.1 Basic Definitions

Let H be a Hilbert space, that is, a normed vector space equipped with inner
product ⟨·, ·⟩ such that ∥v∥2 = ⟨v, v⟩ and H is complete with respect to the
topology induced by ∥·∥. Much like in the previous sections, we will only
be concerned with complex vector spaces, and the inner product ⟨·, ·⟩ is a
sesquilinear form, where the complex conjugate is in the first argument, i.e.
⟨λv, w⟩ = λ̄ ⟨v, w⟩.

We caution the reader that the (̄·)-notation in this context stands for the
complex conjugate, i.e. λ̄ is the complex conjugate of the complex number
λ ∈ C, and that (̄·) is used to denote the inverse of a group element and a
group elements only.

Recall that a linear operator T : H → K is continuous if and only if
∥T∥ <∞, where

∥T∥ = sup
∥v∥=1

∥T (v)∥
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is the norm of T and T is called bounded in that case. The space B(H)
of bounded linear endomorphisms on H is a special case of a C*-algebra.

Definition 2.5.1 (C*-algebra). Let A be a complex algebra. We call A
a normed algebra if it is equipped with a norm ∥·∥ such that (A, ∥·∥)
becomes a normed vector space with ∥A ·B∥ ≤ ∥A∥ · ∥B∥, and call it a
Banach algebra if it is complete with respect to its norm.

A C*-algebra is a complex Banach algebra A together with a map ∗ :
A → A that is

• anti-linear: (λA)∗ = λ̄A∗ ,

• involutive: (A∗)∗ = A,

• and an anti ring homomorphism: (AB)∗ = B∗A∗

such that the *-property

∥A∗A∥ = ∥A∥2

is satisfied for all A,B ∈ A and λ ∈ C. A C*-algebra is called unital if it is
unital as a ring.

The map ∗ is called the star involution and, for an element A ∈ A, we
call A∗ the adjoint of A.

We will only concern ourselves with unital C*-algebras. We note however
that this is in many cases not a proper restriction, as one can always embed
any C*-algebra A into a unital C*-algebra Ã, see e.g. the discussion following
[Mur90, Thm 1.2.9].

Example 2.5.2. (i) Let H be a complex Hilbert space. Then the set of
bounded operators B(H) equipped with the usual adjoint operation
and norm given by the supremum norm

∥A∥ := sup
x∈H

∥Ax∥
∥x∥

= sup
∥x∥=1

∥Ax∥

forms a C*-algebra as hinted before. Furthermore, every closed self-
adjoint subalgebra A of B(H) is a C*-algebra, where a subset of a
C*-algebra is called self-adjoint if A ∈ S implies A∗ ∈ S.

(ii) Let X be a compact Hausdorff space and A the set of all complex-
valued continuous functions on X with compact support. Then A is
a ∗-algebra via pointwise operations and the involution is given by the
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pointwise complex conjugation. It becomes a commutative C*-algebra
when equipped with the supremum norm

∥f∥ = sup
x∈X

|f(x)| .

Many notions and properties of matrix algebras can be recovered in the
abstract setting of C*-algebras.

Definition 2.5.3. Let A be a C*-algebra and A ∈ A. We call A

(i) self-adjoint if A = A∗,

(ii) normal if [A,A∗] = 0, where [A,B] = AB − BA denotes the commu-
tator of A and B,

(iii) unitary if A−1 = A∗,

(iv) orthogonal projection if A2 = A = A∗.

We will see later that every C*-algebra is essentially of the form in Ex-
ample 2.5.2(i). In fact, Segal defines a C*-algebra as a closed, self-adjoint
subalgebra of B(H) for some Hilbert space H [Seg47b]. Furthermore, every
unital commutative C*-algebra is of the form in Example 2.5.2 (ii)[Mur90,
Thm 2.1.10].

Definition 2.5.4 (Spectrum). Let A be a C*-algebra and A ∈ A. The
spectrum σ(A) of A is defined as the set

σ(A) = {λ ∈ C | A− λI is not invertible} .

A is called positive if σ(A) ⊂ R+.

Definition 2.5.5 (State). A state on a unital C*-algebra A is a bounded
linear functional ω : A → C such that ω(1A) = 1 and ω(A) ≥ 0 for all positive
elements A ∈ A. We will denote the set of all states of a C*-algebras by SA.

We can define a norm on SA by setting

∥ω∥ = sup
∥A∥=1

|ω(A)|

for all ω ∈ SA. By [Mur90, 3.3.4 Corollary] a bounded linear functional ω is
positive if and only if ω(1A) = ∥ω∥.

The set of states forms a convex subset of the set of all linear functionals
on A. A state is called pure if it is an extreme point of this convex set, i.e.
if it cannot be expressed as a non-trivial convex combination of other states.
A useful characterization of pure states is given by the following lemma.
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Lemma 2.5.6. Let A be a C*-algebra and ω a state on A. Then ω is pure if
and only if for each positive linear functional ψ : A → C with ψ(A) ≤ ω(A)
for all positive operators A ∈ A, it follows that ψ must be a scalar multiple
of ψ.

See [KR, Lem 3.4.6] for a proof.
There are several equivalent definitions for the positivity of an element.

Theorem 2.5.7. For an element A ∈ A of a C*-algebra A, the following are
equivalent

(i) A is positive,

(ii) A = C2 for some positive C ∈ A,

(iii) A = B∗B for some B ∈ A,

(iv) ω(A) ≥ 0 for all states ω on A.

A proof can be found in [KR, 4.2.6 Thm and 4.3.4 Thm].
Given two C*-algebras A1 and A2, we call a linear map φ : A1 → A2 a

*-homomorphism if φ is an algebra-homomorphism that respects the star-
involution, i.e.

φ(A∗) = φ(A)∗

for all A ∈ A1. It follows from [Mur90, Thm 2.1.7] that every *-
homomorphism is a contraction, hence continuous.

Definition 2.5.8 (Representation of a C*-algebra). Let A be a C*-algebra.
By a representation of A we mean a pair (π,Hπ) where H is a Hilbert
space and π : A → B(H) is a *-homomorphism. We call the representation
irreducible if it contains no non-trivial subspace invariant under the action
of A, faithful if π is injective, and cyclic if there exists a vector Ω ∈ Hπ

such that the space

π(A)Ω = {π(A)Ω | A ∈ A}

lies dense in Hπ. Ω is called the cyclic vector of the cyclic representation
and we write a cyclic representation as triple (π,Hπ,Ωπ). A bounded linear
map T : H1 → H2 between two representations (π1,H1) and (π2,H2) is called
an intertwiner if it commutes with the action of A, i.e.

Tπ1(A) = π2(A)T

for all A ∈ A. If T is in addition unitary, we call π1 and π2 unitarily
equivalent and write π1 ≃ π2.
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Representations of a C*-algebra A form a category rep(A) with intertwin-
ers as morphisms. Similarly to group representations, we often just write π
instead of (π,H) for the representation.

Remark 2.5.9. If G is a finite group, we can form the group algebra A = CG
as before. Furthermore, by viewing CG as a vector space, we may equip it
with the inner product

⟨g, h⟩ = δg,h.

making CG a Hilbert space H. If L : A ⊗ H → H, g ⊗ h 7→ gh denotes
the natural action on that Hilbert space via left multiplication, then we can
equip A with the supremum norm

∥A∥ = sup
∥φ∥=1

∥LAφ∥

induced by the action L. Equipping A further with the ∗-involution g∗ =
g−1 for all g ∈ G, extended antilinearly to all of A, it is straightforward
to check that A becomes a C*-algebra with these conventions, called the
group C*-algebra of G, and every unitary G-module becomes a C*-algebra
representation. We remark that the construction of a group C*-algebra is
not limited to the setting of finite groups and can be extended to locally
compact groups, see [Fol16, Sec. 7] for instance.

We will now make precise how every C*-algebra can be seen as in Example
2.5.2(i).

Theorem 2.5.10 (GNS representation). Let ω be a state of a C*-algebra A.
Then there exists a cyclic representation (πω,Hω,Ωω), with ∥Ωω∥ = 1 such
that

ω(A) = ⟨Ωω, πω(A)Ωω⟩

for all A ∈ A, called GNS representation. Furthermore, if (π̃, H̃, Ω̃) is

another cyclic representation of A such that ω(A) =
〈

Ω̃, π̃(A)Ω̃
〉
, then there

exists a unitary intertwiner U : Hω → H̃ such that UΩω = Ω̃, i.e. (H̃, π̃, Ω̃)
is unitarily equivalent to (Hω, πω,Ωω) and Ω̃ is the image of Ωω under the
unitary equivalence. The triple (πω,Hω,Ωω) is called a GNS triple.

See [BR03, Thm 2.3.16] for a proof. The GNS representation (Hω, πω,Ωω)
of a state ω is viewed as the physical realisation of ω as a vector in the Hilbert
space Hω. The GNS representations of pure states are of particular interest.
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Theorem 2.5.11. Let ω be a state on a C*-algebra A. Then the GNS
representation of ω is irreducible if and only if ω is pure.

See [KR86, Thm. 10.2.3] for a proof.
Before we conclude this section, we want to present some results about

states that will come in handy later.

Proposition 2.5.12 (Cauchy-Schwartz inequality for states). Let A be a C*-
algebra and ω a positive linear functional. Then we have for all A,B ∈ A

|ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B). (2.5.1)

Proof. This follows from the fact that (A,B) 7→ ω(A∗B) defines a positive
semi-definite inner product on the vector space A [Zhu93, Prop 13.4].

Lemma 2.5.13. Let 0 ≤ X ≤ I be a positive operator such that ω(X) = 1
for some state ω on A. Then ω(XA) = ω(AX) = ω(A) for all A ∈ A.

Proof. We can take the positive square root
√

1A −X = (
√

1A −X)∗ and set
A′ :=

√
1A −XA∗. Then ω(A(I − X)) = ω((A′)∗

√
1A −X) and using the

Cauchy-Schwartz inequality (2.5.1) we obtain

|ω(A(1A −X))|2 ≤ ω(A′(A′)∗)ω(1A −X) = 0,

implying ω(AX) = ω(A). The other identity follows analogously.

2.5.2 C*-dynamical Systems

Let A be a C*-algebra. By a dynamics on A we mean a strongly continuous
one-parameter group of automorphisms τ , i.e. a map

τ : R × A → A, (t, A) 7→ τt(A)

that is continuous for each fixed A ∈ R such that τt+s = τt ◦ τs and τ0 = idA.
The pair (A, τ) is called a C*-dynamical system.

Definition 2.5.14 (Infinitesimal generator). Let (A, τ) be a C*-dynamical
system and define the set

D(δ) =

A ∈ A | lim
t→0
t∈R+

τt(A) − A

t
converges in norm

 .

Then the operator

δ : D(δ) → A, A 7→ lim
t→0

τt(A) − A

t
(2.5.2)

is called the infinitesimal generator of τ .
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Remark 2.5.15. While it is possible to define the notion of an infinitesimal
generator more generally for linear operators on Hilbert spaces (see [BR12,
Definition 3.1.15]), it suffices for our purposes to define the notion of an
infinitesimal generator for strongly continuous one-parameter groups of au-
tomorphisms τ only.

The map δ defined in Equation (2.5.2) is a symmetric derivation, i.e.
it satisfies

δ(AB) =δ(A)B + Aδ(B),

δ(A∗) =δ(A)∗,

for all elements A,B ∈ D(δ).
Suppose that A ⊂ B(H) and that H is a self-adjoint operator in B(H).

A time evolution can then be defined via

τt(A) = exp (itH)A exp (−itH)

and the operator H is called Hamiltonian. The infinitesimal generator can
then be shown to be

δ(A) = lim
t→0

τt(A) − A

t
= i [H,A] , (2.5.3)

which can be verified by considering the first order terms of the exponential
exp (itH). We note that H will often be unbounded. In many concrete
quantum spin systems however, the ones considered in this work included,
the right-hand side of Equation (2.5.3) will lie in A regardless and the domain
of δ is dense in A.

Next, we want to define the notion of a ground state. If H is a Hilbert
space, a time evolution is usually understood as a strongly continuous one-
parameter group of unitaries {Ut}t∈R. Time evolution of the physical sys-
tem can then be viewed from two different perspectives. In the so-called
Schrödinger picture, one views the observables as fixed, while the states, i.e.,
the vectors in H, evolve over time, that is, if Ω0 ∈ H is a state at time t = 0,
then UtΩ0 is the state at time t. In this picture, a ground state is understood
to be a vector Ω0 such that UtΩ0 = Ω0 for all times t and in physical appli-
cations, Ut is generated by a positive operator H, called Hamiltonian such
that Ut = eitH and H describes the energy of the system. This Hamiltonian
has eigenvalue 0, accounting for an energy minimum of the system.

The other perspective is called the Heisenberg picture. Here, time evolu-
tion is understood as the evolution of operators, as opposed to the evolution
of vectors. That is, if A ∈ B(H) is an observable at time t = 0, then UtAU−t
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is that observable at time t. We will always consider time evolution in the
Heisenberg picture. We want to relate our discussion so far with this physical
viewpoint:

Let ω be a state in a C*-dynamical system (A, τ) and (Hω, πω,Ωω) the
GNS representation of ω. Then it is easy to see that (H, πω◦τt,Ωω) is another
cyclic representation for each t and also that ωt = ω ◦ τt is a state as well.
If ω is invariant under the time evolution, that is, if ωt = ω for all times t,
then because of

ω(A) = ωt(A) = ⟨Ωωt , πωt(A)Ωωt⟩,

(H, πω ◦ τt,Ωω) is a GNS representation of ω as well.
By Theorem 2.5.10, there exists a unitary Ut : Hω → Hω such that

UtΩω = Ωω and πω(τt(A)) = Utπω(A)U−t for all t. This demonstrates in
particular that πω and πω ◦ τt are unitarily equivalent. It is straightforward
to check that U is a strongly continuous one-parameter group of unitaries if
τ is a strongly continuous one-parameter group of automorphisms. Finally,
we have the following Theorem by Stone([Hal13b, Thm 10.15]):

Theorem 2.5.16 (Stone’s Theorem). Let U : R → B(H), t 7→ Ut be a
strongly continuous one-parameter group of unitaries on a Hilbert space H.
Then there exists a densely defined, self-adjoint operator H such that

Ut(A) = exp (itH)A exp (−itH) (2.5.4)

holds for all A ∈ B(H) and t ∈ R.

Hence, the time evolution of a state ω can be understood via a mapping
ω 7→ ω◦τt and it would make sense to define a ground state via the condition
ω ◦ τt = ω for all t.

Proposition 2.5.17 (Ground State). Let (A, τ) be a C*-dynamical system
and let ω be a state on A . Then the following are equivalent.

(i) ω is invariant under the time evolution, i.e.

ω ◦ τt = ω

for all t ∈ R and if (Hω, πω,Ωω) is the GNS representation of ω and if
Hω is the self-adjoint operator realizing the time evolution on Hω via

πω(τt(A))Ωω = exp (itHω) πω(A)Ωω,

then Hω is a positive.
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(ii) If δ is the infinitesimal generator of τ , then

−iω(A∗δ(A)) ≥ 0.

If either, and hence both, of the above conditions are fulfilled, ω is called a
ground state.

See [BR03, Prop 5.3.19] for a proof.

2.5.3 Quantum Spin Systems

We will now discuss an important construction in the framework of quantum
spin systems: the quasi-local algebra.

Recall that a pre-ordered set is a set L together with a reflexive and
transitive relation ≤. It is called directed if for all Λ1,Λ2 ∈ L there exists
an element Λ3 ∈ L with Λ1 ≤ Λ3 and Λ2 ≤ Λ3, i.e., if every finite subset of
L has an upper bound. We call a symmetric relation ⊥ an orthogonality
relation if the following conditions hold

(i) for all Λ ∈ L there exists a Λ′ ∈ L such that Λ ⊥ Λ′,

(ii) if Λ1,Λ2,Λ3 ∈ L with Λ1 ≤ Λ2 and Λ2 ⊥ Λ3, then Λ1 ⊥ Λ3.

(iii) if Λ1,Λ2,Λ3 ∈ L with Λ1 ⊥ Λ2 and Λ1 ⊥ Λ3, then there exists a Λ4 ∈ L
with Λ1 ⊥ Λ4 such that Λ2,Λ3 ≤ Λ4.

A prime example of a directed set with an orthogonality relation, and the only
example we will be concerned with, is that of the set of subsets L = P (Z) for
a given set Z together with the subset relation as a pre-order and disjointness
as orthogonality. Above properties are then quickly verified. In view of this
example, we may also generalize the notion of a union. We assume that given
two elements Λ1,Λ2 ∈ L, there exists a least upper bound, which we denote
by Λ1 ∪ Λ2. The following definition is taken from [BR12, Definition 2.6.3].

Definition 2.5.18 (Quasilocal Algebra). Let (L,≤) be a directed set with
an orthogonality relation ⊥ and with least upper bounds Λ1 ∪ Λ2 for all
Λ1,Λ2 ∈ L and let {AΛ}Λ∈L be a family of C*-algebras such that the following
hold:

(i) For all Λ1 ≤ Λ2 we have AΛ1 ⊆ AΛ2 ,

(ii) The algebras AΛ share a common unit I,

(iii) If Λ1 ⊥ Λ2, then [A,B] = 0 for all A ∈ AΛ1 , B ∈ AΛ2 .
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Then we can form the C*-algebra

A =
⋃
Λ∈L

AΛ,

where (·) denotes the norm completion. We call the quadruple (L,≤
, {AΛ}Λ ,A) a quasilocal structure and A the quasilocal algebra gen-
erated by the {AΛ}Λ.

Let iΛ1,Λ2 and iΛ denote the inclusion maps iΛ1,Λ2 : AΛ1 → AΛ2 and
iΛ : AΛ → A for all Λ1,Λ2,Λ ∈ L. Then the quasilocal algebra A is universal
in the following sense: Let Ã be another C*-algebra together with a family of
*-homomorphisms jΛ : AΛ → Ã. Then there exists a unique map J : A → Ã
such that the following diagram

A Ã

AΛ

∃!J

jΛ
iΛ (2.5.5)

commutes. Indeed, J is already uniquely determined by the condition J◦iΛ =
jΛ. More generally, a directed family of C*-algebras is a family {AΛ}Λ∈Z
of C*-algebras together with *-homomorphisms iΛ1Λ2 : AΛ1 → AΛ2 for all
Λ1,Λ2 ∈ Z such that

iΛ2Λ3 ◦ iΛ1Λ2 = iΛ1Λ3

holds for all Λ1,Λ2,Λ3 ∈ Z. An algebra A satisfying the universal property
described in Diagram (2.5.5) is called a directed limit of the family {AΛ}Λ∈Z
and A is defined by Diagram 2.5.5 uniquely up to isomorphism. We may
define the algebra

Aloc =
⋃
Λ∈Z

AΛ,

and call Aloc the algebra of local observables/operators and its elements
local observables/operators. For a ∈ Aloc, we say that a is supported
in Λ if a ∈ AΛ and we denote the smallest subset with this property as the
support of a. Finally, we will often write {AΛ}Λ instead of the quadruple
(L,≤, {AΛ}Λ ,A) to denote a quasilocal structure if no confusion arises.

Example 2.5.19. Let L = P0(Z
ν) be the set of all finite subsets of Zν for

some ν ∈ N and let Hx be a fixed finite dimensional Hilbert space for each
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x ∈ Z. Then we define for {x} ∈ L the finite dimensional matrix algebra
A{x} = B(Hx) and set

AΛ =
⊗
x∈Λ

A{x} (2.5.6)

for each Λ ∈ L. If Λ1,Λ2 ∈ L with Λ1 ⊂ Λ2, we can define an embedding
ιΛ1,Λ2 : AΛ1 → AΛ2 by setting

ιΛ1,Λ2(A) = A⊗ idΛ2\Λ1 ,

where idΛ2\Λ1 is the identity map on the space⊗
x∈Λ2\Λ1

Hx.

This allows us to view AΛ1 as a subset of AΛ2 for Λ1 ⊂ Λ2. By setting
Λ1 ≤ Λ2 :⇔ Λ1 ⊂ Λ2, Λ1 ⊥ Λ2 :⇔ Λ1 ∩ Λ2 = ∅ and unions (least) as upper
bounds, the quadruple (L,≤, {AΛ}Λ ,A) becomes a quasilocal structure.

We define a quantum spin system to be a quasilocal structure {AΛ}Λ,
where all the AΛ are simple finite-dimensional algebras.

Proposition 2.5.20. Let {AΛ}Λ be a quantum spin system and let AΛ be
simple for each Λ ∈ L. It follows that A is simple as well.

See [BR12, Corollary 2.6.19] for a proof.
Before we proceed, we want to discuss the typical dynamics of quantum

spin systems. By an interaction we mean a self-adjoint map

Φ : L→ Aloc,

Φ(Λ)∗ = Φ(Λ)

such that Φ(Λ) ∈ AΛ for all regions Λ. Given a quasilocal algebra {AΛ}Λ ,A
together with an interaction Φ, we define the local Hamiltonian HΦ

Λ in
the region Λ as the self-adjoint operator

HΦ
Λ =

∑
Λ′⊂Λ

Φ(Λ′) (2.5.7)

Let L = P (Z2) and let L0 = P0(Z
2) denote the set of finite subsets of Z2.

Then Equation (2.5.7) is a finite sum for Λ ∈ L0 and HΦ
Λ is a bounded

operator. We then may define a local time evolution via the strongly
continuous one-parameter group

τΛ,Φt (A) = exp
(
itHΦ

Λ

)
A exp

(
−itHΦ

Λ

)
(2.5.8)
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for A ∈ AΛ and t ∈ R. We can explicitly calculate the infinitesimal generator
in this case: Setting

BA(t) =
∑

n1+n2≥2

(
itHΦ

Λ

)n1
A
(
−itHΦ

Λ

)n2

we obtain

δΦΛ(A) = lim
t→0

τΛ,Φt (A) − A

t

= lim
t→0

A+ itHΦ
ΛA− itAHΦ

Λ − A

t
+
BA(t)

t︸ ︷︷ ︸
→0

= iHΦ
ΛA− iAHΦ

Λ (2.5.9)

= i
[
HΦ

Λ , A
]
. (2.5.10)

In general, it is not clear whether τΛ,Φ converges (in norm or otherwise)
to a strongly continuous one-parameter group τΦ on A as Λ → ∞. In many
cases, the local Hamiltonians HΦ

Λ do not converge to a bounded operator.
Rather, the sum

∑
Λ∈L

Φ(Λ) is unbounded. We may still define a derivation

δ as in Formula (2.5.9) on a self-adjoint subset D(δ) ⊆ A called domain of
δ. We introduce a few notions and results on unbounded operators to shed
some more light on these nuances.

In general, given an unbounded operator T : D(T ) → H2 with self-adjoint
domain D(T ) ⊂ H1 between two Hilbert spaces H1 and H2, we say that
T0 : D(T0) → H2 is an extension of T if D(T ) ⊆ D(T0) and T = T0 |D(T ). T
is called closed if the graph of T is a closed subspace of H1⊕H2 and we say
that T is closable if there exists a closed extension. If it exists, we denote
by T̄ the smallest closed extension of T , and call it the closure of T . We
remark that if D(T ) = H1 then T is bounded if [Rud91, Thm 2.15] and only
if [Rud91, Prop 2.14] T is closed.

The following theorem follows from [BR03, Prop 6.2.3,Thm 6.2.4] and
gives a sufficient condition for the convergence of a time-evolution and the
existence of a closable infinitesimal generator.

Theorem 2.5.21. Let {AΛ}Λ ,A be a quantum spin system with interaction
Φ, L = P (Zν), ν ∈ N and assume there is a constant λ > 0 such that

∥Φ∥λ =
∑
n≥0

eλn

 sup
x∈Zν

∑
x∈Λ

|Λ|=n+1

∥Φ(Λ)∥

 <∞. (2.5.11)
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Let further δΛ,Φ be the derivation defined via

δΛ,Φ(A) = i
∑

Λ′∩Λ̸=∅

[Φ(Λ′), A]

for all A ∈ D(δΛ,Φ) and D(δ) = Aloc. Then δ
Λ,Φ is norm-closable, and its clo-

sure δ̄Λ,Φ is the infinitesimal generator of a strongly continuous one-parameter
group τ on A. Moreover, if τΛ,Φτ is the family of local time evolutions defined
via

τΛ,Φt (A) = exp
(
itHΦ

Λ

)
A exp

(
−itHΦ

Λ

)
,

then τΛ,Φt converges to τΦt for all A ∈ A uniformly on compact sets in R.

We call Φ uniformly bounded if

sup
Λ∈L

∥Φ(Λ)∥ ≤ ∞.

If L = P (Z2), we have a natural notion of a translation symmetry on
L, that is an action of the abelian group (R,+) on L together with an
action T : R × A → A, A 7→ Tx(A) such Tx(A) ∈ Ax+Λ for all A ∈ AΛ,
where x + Λ = {x+ y | y ∈ Λ}. We call an interaction Φ translationally
invariant if

Φ(x+ Λ) = Tx (Φ(Λ)) .

It is called a finite range interaction if there exists a d ∈ N such that
Φ(Λ) = 0 for all diam(Λ) ≥ d. For the lattice model, this implies in particular
that there exists an n0 ∈ N such that |Λ| ≥ n0 implies that Φ(Λ) = 0 for all
n ≥ n0. If Φ is in addition translationally invariant, (2.5.11) reads

∥Φ∥λ =
∑
n≥0

eλn

sup
x∈Z2

∑
x∈Λ

|Λ|=n+1

∥Φ(Λ)∥


=

n0−1∑
n=0

eλn
∑
0∈Λ

|Λ|=n0

∥Φ(Λ)∥

which is in particular a finite sum, hence bounded and Theorem 2.5.21 guar-
antees the convergence of the local time evolutions τΛ,Φ given in (2.5.7) by
passing to some appropriate Λ0 with

Λ0 ⊃
⋃
Λ′∩Λ

Λ′.
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This ascertains the existence of a global time evolution for quantum spin
systems with translationally invariant finite range interactions.

We want to give an alternative definition of ground states in the setting
of sufficiently well-behaved quantum spin systems. The statement can be
found in more detail in [BR03, Thm 6.2.52]

Theorem 2.5.22. Let {AΛ}Λ ,A be a quantum spin system with interaction
Φ and local time evolutions τΛ,Φ. Assume that

(i) τΛ,Φ converges strongly to an automorphism τΦ, i.e.,

lim
Λ→∞

∥∥∥τΛ,Φt (A) → τΦt (A)
∥∥∥ = 0

for all A ∈ A and t ∈ R.

(ii) The surface energies

WΦ
Λ =

∑
X∩Λ ̸=∅
X∩Λc ̸=∅

Φ(X)

are well-defined elements of A for all regions Λ ∈ L.

(iii) Aloc is a core for δ, i.e., the closure of the unbounded operator δ |Aloc

in the weak operator topology is equal to δ.

Then the following are equivalent for a state ω on A.

(i) For all Λ ⊂ L we have

ω(H̃Φ
Λ ) = inf

ω′∈Cω
Λ

ω′(H̃Φ
Λ )

where H̃Φ
Λ = HΦ

Λ +WΦ
Λ and Cω

Λ is the set of all states ω′ with ω′ |AΛc=
ω |Ac

Λ

(ii) ω is a τ -ground state.

Note that in the setting of Theorem 2.5.21, δ is norm-closable with domain
Aloc, and with the norm-closure of Aloc being A, Item (iii) of Theorem 2.5.21
is satisfied.

We want to study equivalence of states in the setting of quantum spin
systems. We say that two states are equivalent if their corresponding GNS
representations are unitarily equivalent. Two states ω1 and ω2 are called
quasi-equivalent if there exists a cardinal n such that

nπω1
∼= nπω2 ,
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i.e. πω1 and πω2 are unitarily equivalent up to a multiple. If πω1 and πω2

are irreducible, then quasi-equivalence implies unitary equivalence. One can
show that two representations are quasi-equivalence, if and only if every
irreducible subrepresentation appearing in π1 also appears - up to unitary
equivalence - in π2 and vice versa [BR12, Thm 2.4.26].

Quasi-equivalence between πω1 and πω2 can be characterized using a par-
ticular class of states on Hω1 and Hω2 . If H is a finite dimensional Hilbert
space and A ⊂ B(H) a finite dimensional C*-algebra, then we can define a
state via the mapping A ∋ X 7→ tr(ρX) ∈ C, where ρ ∈ B(H) is a density
matrix, i.e. a positive matrix with tr(ρ) = 1. We want to generalize this
concept. If H is a Hilbert space, then a closed self-adjoint subalgebra N of
B(H) is called von Neumann algebra if

N′′ = N,

where N′ = {A ∈ B(H) | [A,B] = 0 for all B ∈ N} is the commutant of
N in B(H). The well known bicommutant theorem [BR12, Thm 2.4.11]
states that N is a von Neumann algebra if and only if N is closed in the
weak topology, that is, in the topology induced by the family of seminorms{
∥·∥ψ,φ | ψ, φ ∈ H

}
defined via

X 7→ ∥X∥ψ,φ = ⟨φ,Xψ⟩. (2.5.12)

Note that if N = B(H), then N′ = {λ1A | λ ∈ C} and N is already a von
Neumann algebra. In general, we call a von Neumann algebra N a factor if
N′ = C1A consists of multiples of the identity only. Let A be a C*-algebra
and π : A → B(H) a representation of A on H. If T ∈ π(A)′ is in the centre
of A in B(H), then T : H → H is per definition an intertwiner from π to
itself. If π is irreducible, it follows that T must be a multiple of the identity
by Schur’s Lemma. It follows that if π is an irreducible representation of A
on H, then the von Neumann algebra π(A)′′ generated by π(A) must be a
factor.

If H is a separable Hilbert space and {ξn}n ⊂ H an orthonormal ba-
sis of H, then we call an operator X ∈ B(H) a trace-class operator if∑
n

⟨ξn, Xξn⟩ converges. We call this sum the trace of X and denote it by

tr(X). This definition is independent of the choice of the orthonormal basis
{ξn}n ⊂ H [KR, Prop 2.6.1]. Finally, we call a state ω on a von Neumann
algebra N ⊂ B(H) normal if there exists a positive trace-class operator
ρ ∈ B(H) with tr(ρ) = 1 such that ω(X) = tr(ρX). If ω is a state on a
C*-algebra A with GNS representation (H, π,Ω), we can define a set

N (ω) =
{
φ ◦ ω | φ : π(A) → C is a normal state

}
.
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By [KR86, Prop 10.3.13], two states ω1 and ω2 are quasi-equivalent if and
only if N (ω1) = N (ω2). Another useful characterization of quasi-equivalence
in the setting of quantum spin systems is given by the following Lemma.

Lemma 2.5.23. Let {AΛ}Λ ,A be a quantum spin system, and let ω1, ω2 be
normal factor states on A . Assume further that L = P (Z2). Then ω1 and
ω2 are quasi-equivalent if and only if for all ε > 0 there exists a region Λ0

such that

|ω1(X) − ω2(X)| < ε ∥X∥

for all X ∈ AΛ with Λ disjoint from Λ0.

We refer to [BR12, Cor 2.6.11] in conjunction with [BR12, Thm 2.6.10]
for a proof.



Chapter 3

Kitaev’s Quantum Double
Model

3.1 Introduction

Kitaev’s Quantum Double Model was first introduced as a surface code model
[Kit03]. The idea behind this model was to establish an error correction code
using local stabilizer operators that create a situation resembling ferromag-
netism, where perturbed spins are immediately corrected by their neighbours.
The model consists of a quantum spin system on a lattice, where each edge
is decorated with a finite dimensional Hilbert space, and the dynamics is
described by a frustration free Hamiltonian, that is, the Hamiltonian is a
sum of commuting projections, called stabilizer operators. In the infinite
plane, this model admits a unique frustration free ground state, minimizing
each stabilizer operator individually. We will define the model, the stabilizer
operators and the frustration free ground state in detail in Section 3.2.

Another important concept introduced in [Kit03] is that of ribbon op-
erators. A ribbon is a way of describing how excitations move within the
lattice. Ribbon operators are constructed for each ribbon such that they
create charges only on the endpoints of the ribbon. We will discuss this class
of operators in detail in Section 3.3. Furthermore, ribbon operators have the
following important topological property: Given two ribbons ξ and ξ′ with
the same endpoints, the action of the ribbon operators on the vacuum vector
is the same. To our knowledge, there exists no correct proof of this statement
for the non-abelian quantum double model, so we will provide a proof of this
statement in Corollary 3.3.11. Ribbons afford a convenient way of describing
charge creation in the quantum double model.

In Section 3.4, we draw the connection to the quantum double by demon-
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strating that the stabilizer operators are realized as an action of the quantum
double D(G) of an underlying group G. We identify excitations with irre-
ducible representations of D(G), and show how excitations can be created
and measured with the use of ribbon operators.

Our study of anyon excitation is motivated by the DHR analysis in
[DHR71], usually applied in the framework of quantum field theory. To
apply these techniques here, we will show that the model admits a unique
translational invariant ground state ω0 which minimizes each term of the
Hamiltonian in Equation (3.2.16) individually. Such a ground state is called
frustration free.

While a C*-algebra generally possesses many physically irrelevant states,
the superselection criterion discussed in the introduction, gives a relatively
good constraint on the set of states on A. However, the notion of a localized
and transportable endomorphism as in [DHR71, Prop 1.2] has to be slightly
tweaked for our purposes. Instead of considering endomorphisms χ : A → A,
we will construct a suitable *-homomorphism of the form

χ : A → A⊗ End(V ) (3.1.1)

for some finite dimensional vector space V . If ω0 is the vacuum state of the
model, we will then study states of the form

ωχ,II : A → C, X 7→ (ω0 ◦ χII)(X) (3.1.2)

where χII is the component in the I-th row and I-th column of χ for I =
1, . . . , dim(V ) in a chosen basis. The goal of the following sections is to
construct these maps χ from ribbon operators, which can intuitively can be
thought of as charge creating operators. We will then show in Section 3.5 that
the states constructed as in Equation (3.1.2) are - up to some exceptions -
ground states of the model (Theorem 3.5.4) and in Section 3.6 that their GNS
representations are irreducible (Theorem 3.6.8). The latter statement was
independently proven in [BV23] using different methods. We will also further
demonstrate in Section 3.4 how these excitations are related to irreducible
representations of the quantum double D(G).

An important tool needed to show the ground state property are the
Wilson loop operators defined in [BMD08, Eq. (B75)] for a ribbon σ enclosing
a region. These operators can be used to measure the existence of charges in
the region enclosed by the σ. Here too we are not aware of a rigorous proof
of that statement, so we will provide one in Proposition 3.4.4.

We first recall some basic definitions from graph theory in Section 3.2
and general terminology and conventions to express the notion of regions
and paths in our lattice model, and to discuss more formally the localized
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nature of anyonic excitations. This allows us already to show that the model
admits a unique translationally invariant ground state. Although Section
3.2 provides no new insight that cannot be found in the existing literature
[Kit03, Naa12, BMD08, CM22b], we provide careful proofs to some algebraic
relations that are not always done in detail in the literature. In particular,
Lemma 3.2.7 is a stronger version of [Naa12, Lem 12.1.2], which will be
needed in Section 3.6.

3.2 Model and notation

We consider an oriented graph, whose vertices can be identified with Z2 and
such that every two neighbouring vertices are connected by an edge. Let
V = Z2 be the set of vertices and E the set of edges of this graph. While
the concrete orientation of the graph does not matter, we will assume for
simplicity that all horizontal edges are oriented such that they point to the
right and that all vertical edges pointing upwards (see Figure 3.1). Now, let
G be a finite group and consider the group algebra CG. As a vector space,
CG can be made into a Hilbert space H by introducing the scalar product

⟨g, h⟩ = δg,h

for g, h ∈ G. At each edge e ∈ E, we define the Hilbert space He := H. Then
by setting L = P0(E), we obtain a quasilocal structure exactly as we did in
Example 2.5.19:

(i) Given e ∈ Z2, we have He := CG viewed as a Hilbert space, and if
Λ ∈ L, we set

HΛ =
⊗
e∈Λ

He

(ii) For Λ1,Λ2 ∈ L with Λ1 ⊂ Λ2, we have AΛ1 ⊂ AΛ2 , with the inclusion
maps given as in Equation (2.5.6).

(iii) For Λ1 ∩ Λ2 = ∅, we have

[A,B] = 0

for all A ∈ AΛ1 and B ∈ AΛ2 .

(iv) The quasilocal algebra generated by this quasilocal structure is given
by

A =
⋃
Λ∈L

AΛ.
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Since AΛ is a finite dimensional matrix algebra, and therefore simple, for
each Λ ∈ L, the family {AΛ}Λ forms a quantum spin system.

Remark 3.2.1. In Section 2.5, we were often times associating our Hilbert
spaces with the vertices of the lattice, rather than the edges, but this does
not create any significant changes.

He

Figure 3.1: The lattice model Z2 depicted as a 2-dimensional graph. The
orientations of the edges are indicated by the arrowheads and at each edge e
lives a Hilbert space He.

Before we go further, we want to recall some basic terminology from
graph theory which can be found in e.g. [BM07] and [GR01]. This is needed
in order to properly define the notion of a ribbon and to understand how
different charges can sit inside the lattice. Let G = (V,E) be an oriented
graph with V the set of vertices and

E ⊆ {(v1, v2) | v1, v2 ∈ V }

the set of oriented edges. We will write Ē for the set of edges with opposite
orientation, i.e.

Ē = {(v1, v2) | (v2, v1) ∈ E} .

We will only consider graphs that have at most one edge between two vertices.
We define a path p in such a graph as a sequence p = (v1, v2, . . . , vn), where
each pair (vi, vi+1), i = 1, . . . , n − 1 is connected by an edge. p is called
directed or oriented if in addition (vi, vi+1) ∈ E holds for all i. Unless
explicitly stated otherwise, we will always assume that a path does not self-
intersect. Given an edge e = (v1, v2) ∈ E, we denote by ∂0e = v1 the starting
vertex of e and by ∂1e = v2 the final vertex of e. We can extend the mappings
∂0, ∂1 for a path p = (v1, . . . , vn) by defining ∂0p = v1 and ∂1p = vn. We say a
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path p1 can be composed with a path p2 if ∂1p1 = ∂0p2 and p1 and p2 do not
intersect anywhere but possibly at their endpoints. In that case, we denote
by (p1, p2) the concatenation of these two paths, that is, if p1 = (v1, . . . , vn)
and p2 = (w1, . . . , wm), then (p1, p2) = (v1, . . . , vn, w1, . . . , wm). For a path
p = (v1, . . . , vn) we introduce the notations

(k : p) =(vk, . . . , vn)

(p : l) =(v1, . . . , vl)

and

(k : p : l) = (vk, . . . , vl). (3.2.1)

See also Figure 3.2. If p = (v1, . . . , vn), we may also write (vk : p), (p : vl)
and (vk : p : vl) instead of (k : p), (p : l) and (k : p : l). A subpath of a path

p1

p2

p3

v1 v2 v3

v4

v5v6v7

v8

v9

Figure 3.2: Depiction of a path p = (v1, . . . , v9) with three subpaths p1 =
(p : 3)(red), p3 = (7 : p)(green) and p2 = (3 : p : 7)(blue)

p is a path of the form as in Equation (3.2.1). A region of G is a subset
Λ ⊂ E of edges in G and a subgraph of G is a graph F = (VF , EF ) such that
VF ⊂ V and EF ⊂ E. If Λ is a region of G , we denote by GΛ = (VGΛ

, EGΛ
)

the smallest subgraph of G such that Λ = EGΛ
, i.e. the smallest subgraph

that has Λ as edges. A region is called bounded or finite if its intersection
with the plane R2 is bounded.

A planar graph is a graph that can be embedded in R2 in such a manner,
that no two edges intersect anywhere but at adjacent vertices and a plane
graph is a planar graph with a chosen embedding. In the special case of the
lattice graph, we call a region Λ a square-shaped region of size n if Λ is
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the intersection of a square of area n2 with G in the plane R2. We denote
the square-shaped regions of size n centred at the origin by Λn.

If G is a plane graph, we can define the dual graph G ∗ of G , whose vertices
consist of the faces of G and two faces are connected by an edge in G ∗ if they
are separated by an edge in G , see Figure 3.3. Recall that a face f of G is
a connected component of the complement of G in R2.

f1 f2

f3

f4

Figure 3.3: Depiction of a graph with 7 nodes. The complement of the graph
as a subset of R2 has the four connected components f1, f2, f3 and f4 with
f1, f2, f3 bounded and f4 unbounded. The graph G is drawn in grey to to
highlight the edges of the dual graph G ∗ between the faces in full black.

If G is an oriented graph, then G ∗ becomes an oriented graph as follows:
Let E∗ denotes the set of dual edges and Ē∗ the set of edges with opposite
orientation. Then e = (f1, f2) ∈ E∗ if and only if rotating e1 clockwise in the
plane around its centre becomes an edge in E. Similarly, e = (f1, f2) ∈ Ē∗ if
rotating e clockwise around its centre becomes an edge in Ē, see also Figure
3.4. We note that this definition is opposite to the classical definition of the
orientation of a dual graph, as found in standard literature like [BM07] or
[GR01], but is in line with the convention chosen by many authors studying
anyon excitations in lattice models, see [CCY21] or [Naa12] for instance.

A site s is a pair (v, f) where v is a vertex and f is a neighbouring face.
For any given site s = (v, f), we set v(s) := v and f(s) := f to be the face
respectively vertex associated to s. If Λ is a region of G , then we denote by
S(Λ) the set of all sites of the subgraph GΛ, and we denote the set of all sites
by S. Similarly, we will say that a vertex v (a face f , a direct path p, a dual
path p∗) lies in Λ if v, (f , p, p∗) lies in GΛ. Note that if s = (vs, fs) ∈ S is
a site in G , then s ∈ S(Λ) for a region Λ only if the four edges surrounding
fs are contained in Λ. In the particular case of the Z2 -lattice, we will call a
face often times a plaquette.
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f1 f2 f3 f4
90◦

90◦e1 e2

Figure 3.4: The figure depicts the two dual edges e1 = (f1, f2) and e2 =
(f4, f3). e1 is not aligned with the lattice, since rotating it by 90◦ clockwise
about its centre makes it point downwards, whereas e2 is aligned with the lat-
tice since rotation by 90◦ clockwise about its centre makes it point upwards.
With the specific orientation chosen in our setting for G , i.e. horizontal edges
pointing to the right and vertical edges pointing upwards, the edges of the
dual graph G ∗ are oriented such that horizontal dual edges point to the left
and vertical dual edges point upwards.

We will now introduce the notion of triangles in a graph. Triangles are
used as atomic geometric shapes to define the dual and direct paths of a
ribbon and we will define them using the notion of sites. The reader is
advised to compare the definition of triangles with Figure 3.5.

Let s1, s2 ∈ S with s1 = (vs1 , fs1) and s2 = (vs2 , fs2) and write τ = (s1, s2).
Then we call τ a direct triangle if fs1 = fs2 and (vs1 , vs2) ∈ E ∪ Ē is an
edge in G and we call τ a dual triangle if vs1 = vs2 and (fs1 , fs2) ∈ E∗ ∪ Ē∗

forms an edge in the dual graph G ∗. If τ = (s1, s2) is direct (dual), we write
eτ = (vs1 , vs2) (eτ = (fs1 , fs2)) for the associated direct (dual) edge, and we
call τ aligned (not aligned) if eτ is oriented (not oriented). If τ = (s1, s2)
is a direct triangle, we write f(τ) := f(s1) = f(s2). Similarly, if τ = (s1, s2)
is a dual triangle, we write v(τ) = v(s1) = v(s2).

A direct (dual) triangle (s1, s2) is said to be oriented locally counter-
clockwise if rotating the line segment of s1 = (vs1 , fs1) counter-clockwise
around fs1 in the plane swipes immediately through the interior of the trian-
gle. Otherwise, we call its orientation clockwise and shall call this property
local orientation. The local orientation of a triangle τ is independent of
the alignment of the underlying edge eτ .

Remark 3.2.2. The notion of local orientation was introduced by [CCY21]
and, to our knowledge, was not considered by previous authors, see e.g.
[BMD08]. The importance of local orientation will become evident once we
define ribbon operators, and we will discuss this issue in more detail then.
For now, we only note that the definition in [BMD08] and previous authors
lead in the setting of non-abelian Kitaev models occasionally to incorrect
results.
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s2s1

s′2s′1

⇒
⇒

f

⇒
⇒

t′1

t1

t′2

t2

Figure 3.5: The figure depicts dual and direct triangles with different local
orientations, even though all triangles have the same alignment with the
lattice. The pairs (s1, s2) as well as (s′1s

′
2) both constitute non-aligned dual

triangles (depicted in blue) which can be seen by rotating the blue ⇒ -
arrow clockwise by 90 degree. However, rotating the line segment given by
s1 around the face f must be performed counter-clockwise to swipe through
the interior of the triangle (s1, s2) first. Similarly, (s′1, s

′
2) can be seen to

be oriented locally clockwise, since s′1 must be rotated clockwise around f
to immediately swipe through the interior of (s′1, s

′
2) first. For the direct

triangles (t1, t2) and (t′1, t
′
2) in red, we see similarly that (t1, t2) is oriented

locally clockwise, while (t′1, t
′
2) is oriented locally counter-clockwise. Note

that in all four cases the rotation is performed around the face associated
to the initial site of the respective triangle. Finally, we remark that the line
segments identified with the sites together with the direct/dual edge that
connect the different vertices/faces of the sites indeed form the shape of a
triangle for each of the cases drawn.
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We write ∂0τ = s1 and ∂1τ1 = s2 for a triangle τ = (s1, s2). Given
two triangles τ1 and τ2, we say that τ1 is composable with τ2 if τ1 ̸= τ2,
∂1τ1 = ∂0τ2 and if τ1 and τ2 have the same local orientation. It follows
that τ1 is composable with τ2 only if τ1 and τ2 intersect at their sites, and
non-composable triangles τ1 and τ2 with ∂1τ1 = ∂0τ2 always intersect non
trivially. This can be seen as follows: If τ1 = (s1, s2) is locally clockwise
oriented, then rotating s1 clockwise around its face swipes first through the
interior of the triangle τ1. One may check in that case that rotating s2
counter-clockwise around its face then swipes first through the interior of τ1.
If s2 was the initial site of a triangle τ2 that was oriented locally counter-
clockwise, then by definition the counter-clockwise rotation of s2 around its
face swipes through the interior of τ2 as well, implying that τ1 and τ2 overlap.
See also Figure 3.6.

τ1

τ2

v0

v1

f0 f1

Figure 3.6: Depiction of two overlapping triangles τ1 = ((v0, f0), (v1, f0)) and
τ2 = ((v1, f0), (v1, f1)).

A similar argument demonstrates that if τ1 and τ2 had the same local
orientation, that then τ1 and τ2 shared no common area.

A ribbon is a concatenation of composable triangles, (τ1, . . . , τn) such
that eτi ̸= eτk for all i, k = 1, . . . , n with i ̸= k. We say that a ribbon ξ =
(τ1, . . . , τn) is contained in a region Λ if GΛ contains all edges eτi , i = 1, . . . , n.

A ribbon ξ1 = (τ
(1)
1 , . . . , τ

(1)
n ) is said to be composable with a ribbon ξ2 =

(τ
(2)
1 , . . . , τ

(2)
n ) if (τ

(1)
1 , . . . , τ

(1)
n , τ

(1)
2 , . . . , τ

(n)
2 ) forms a ribbon again.

We may occasionally write a ribbon as ξ = (s1, . . . , sn), by which we mean
ξ = (τ1, . . . , τn−1), where si are sites and τi = (si, si+1). The sites s1 and sn
of a ribbon ξ = (s1, . . . , sn) are called endpoints of ξ, and we write ∂0ξ = s1
and ∂1ξ = sn. We call a ribbon (τ1, . . . , τn) locally clockwise (locally
counter-clockwise) oriented if one (and hence all) of its triangles are locally
clockwise (locally counter-clockwise) oriented. If a ribbon ξ consists only of
direct (dual) triangles, we call ξ direct (dual).

A ribbon can be seen as a pair of a direct path and a dual path: Given
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a ribbon ξ = (τ1, . . . , τn), we call the path obtained from all edges of the
direct triangles as direct path of ξ and denote it by ξdi. Similarly, we call
the concatenation of the faces of the dual triangles of ξ the dual path of ξ
and denote it by ξdu, see Figure 3.7. As always, we say that a ribbon (direct

v0 v1 v2 v3eτ1 eτ2 eτ3

f0 f1 f2 f3

s0 s1 s2 s3 s4 s5 s6

Figure 3.7: Depiction of a ribbon ξ = (s0, s1, s2, s3, s4, s5, s6) with sites s0 =
(v0, f0), s1 = (v0, f1), s2 = (v1, f1), s3 = (v1, f2), s4 = (v2, f2), s5 = (v2, f3),
s6 = (v3, f3), dual path ξdu = (f0, f1, f2, f3) (blue and dashed) and direct
path ξdi = (v0, v1, v2, v3) (red).

triangle, dual triangle) lies in a region Λ if the ribbon (direct triangle, dual
triangle) lies in GΛ.

Finally, we will denote the inverse of a ribbon, triangle, path, edge or
group element of some finite group G by a bar ·̄, i.e.

(i) if τ = (s1, s2) is a triangle, then τ̄ = (s2, s1),

(ii) if ξ = (s1, . . . , sn) is a ribbon, then ξ̄ = (sn, . . . , s1) = (τ̄n−1, . . . , τ̄1)
with τi = (si, si+1),

(iii) if p = (v1, . . . , vn) is a path, then p̄ = (vn, . . . , v1),

(iv) if e = (v1, v2), then ē = (v2, v1),

(v) if G is a finite group and g ∈ G, then ḡ = g−1.

Having established this terminology, we return to the quantum spin sys-
tem introduced at the beginning of this section. We can define actions of
the group algebra CG and its dual C(G) = (CG)∗ on the lattice model for
each triangle. For h ∈ G, δk ∈ C(G) and τ a direct triangle, we define the
projections

T kτ (g) =

{
δk̄,gg if τ is aligned
δk,gg otherwise

(3.2.2)
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acting on the edge eτ and if τ̃ is a dual triangle, we define left actions on the
edge intersecting the dual edge eτ̃ via:

Lhτ̃ (g) =

{
Lh : g 7→ hg if τ̃ is aligned
Rh̄ : g 7→ gh̄ otherwise

(3.2.3)

if τ̃ is locally clockwise oriented, and right actions

Lhτ̃ (g) =

{
Rh : g 7→ gh if τ̃ is aligned

Lh̄ : g 7→ h̄g otherwise
(3.2.4)

If τ̃ is locally counter-clockwise oriented. See also Figure 3.8

Remark 3.2.3. We will see later that dual- and direct triangles create pairs
of excitations at the two sites defining the respective triangle. The reason for
defining the action of the triangles differently for different local orientations,
is to ensure that the type of excitation created is always the same, regardless
of the orientation of the triangle as long as the sites on which the charges are
considered are the same.

One might wonder if such a distinction is necessary for direct triangles as
well. This matter is discussed in [CCY21] in more detail, but it is essentially
related to the fact that the dual C(G) of the group algebra CG is commutative
(since CG is cocommutative) making a distinction between direct triangles
of different local orientation redundant for the quantum double model based
on groups.

As mentioned, the triangle operators are the atomic components for con-
structing charges in our quantum spin system. It is therefore worthwhile to
inspect their commutation relations more closely. Let τ1 and τ2 be triangles,
such that the corresponding triangle operators act on the same edge. Clearly,[
T k1τ1 , T

k
τ2

]
= 0 for all k1, k2 ∈ G, regardless of the alignments of τ1 and τ2.

Assume τ1 and τ2 are dual triangles that have the same local orientation and
opposite alignment. Then either Lτ1 acts via left-inverse multiplication and
Lτ2 acts via right-inverse multiplication or vice versa. In either case, we have[
Lh1τ1 , L

h2
τ2

]
= 0 for all h1, h2 ∈ G due to the associativity of G. Similarly, if τ1

and τ2 are either both aligned with the lattice or both not aligned with the
lattice, but have opposite local orientation, then

[
Lh1τ1 , L

h2
τ2

]
= 0, again due

to the associativity of G.
The only constellations not yet considered are the ones where τ1 and τ2

have the same alignment and the same local orientation, and where τ1 and
τ2 have opposite alignment and opposite local orientation. In the first case,
τ := τ1 = τ2 must already be identical, and we have Lh1τ1L

h2
τ2

= Lh1h2τ . If the
local orientation and the alignment are opposite, then Lτ1 and Lτ2 act from
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T kτ1 :

T kτ2 :

7→ δk,γ1τ1

γ1 γ1

⇒
v0 v1

f0

7→ δk̄,γ1τ2

γ1 γ1

⇐
v0 v1

f0

Lhτ̃4 : 7→γ2
⇐ τ̃4

v3

f1 f2
γ2 · h

Lhτ̃3 : 7→γ2
⇒ τ̃3

v3

f1 f2
γ2 · h̄

Lhτ̃2 : 7→γ2
⇐ τ̃2

v2

f1 f2

h · γ2

Lhτ̃1 : 7→γ2
⇒ τ̃1

v2

f1 f2

h̄ · γ2

Figure 3.8: Graphical depiction of the action of the triangle operators de-
fined in Equation (3.2.2), Equation (3.2.3) and Equation (3.2.4). The di-
rect triangle τ1 = ((v0, f0), (v1, f0)) is aligned, whereas the direct triangle
τ2 = ((v1, f0), (v0, f0)) is not. The dual triangles τ̃1 = ((v2, f1), (v2, f2)),
τ̃2 = ((v2, f2), (v2, f1)), τ̃3 = ((v3, f1), (v3, f2)) and τ̃4 = ((v3, f2), (v3, f1)) are
respectively locally counter-clockwise oriented and not aligned, locally clock-
wise oriented and aligned, locally clockwise oriented and not aligned and
locally counter-clockwise oriented and aligned.



3.2. MODEL AND NOTATION 73

the same side, but one acts via inverse multiplication and the other one does
not. In that case, one may verify that Lh1τ1L

h2
τ2

= Lh1h̄2τ1
for h1, h2 ∈ G if τ1

is locally clockwise oriented, and Lh1τ1L
h2
τ2

= Lh̄1h2τ2
if τ2 is locally clockwise

oriented. We summarize these identities in a Lemma.

Lemma 3.2.4. Let τ1, τ2 be dual triangles and h1, h2 ∈ G. If τ1, τ2 have
either the same local orientation and opposite alignment or opposite local
orientation and the same alignment, then[

Lh1τ1 , L
h2
τ2

]
= 0.

If τ1 and τ2 have the same local orientation and the same alignment, then
τ1 = τ2 and we have

Lh1τ1L
h2
τ2

= Lh1h2τ1
.

Finally, if τ1 and τ2 have opposite local orientation and opposite alignment,
we have τ1 = τ̄2 and

Lhτ1L
h
τ2

=

{
Lh1h̄2τ1

if τ1 is locally clockwise oriented

Lh̄1h2τ1
otherwise,

(3.2.5)

for all h1, h2 ∈ G.

This leaves the commutation relations between dual- and direct triangle
operators to inspect, of which there are still 8 possible combinations to con-
sider: Two scenarios for the direct triangles and four scenarios for the dual
triangles. However, some of these cases can be dealt with simultaneously by
considering the relative alignment of the triangles:

Let τ1 and τ2 be a direct and a dual triangle respectively, with either
eτ1 = eτ1 or eτ1 = ēτ1 . Then we have the following commutation relations:

Lhτ1T
g
τ2

=


T hgτ2 L

h
τ1

if eτ1 = eτ2 and τ1 is oriented clockwise,
T ghτ2 L

h
τ1

if eτ1 = eτ2 and τ1 is oriented counter-clockwise,

T gh̄τ2 L
h
τ1

if eτ1 = ēτ2 and τ1 is oriented clockwise,

T h̄gτ2 L
h
τ1

if eτ1 = ēτ2 and τ1 is oriented counter-clockwise.

Proof. Let p : G → G be a map and denote by p̃ : CG → CG its linear
extension to CG. If τ2 is aligned, then

(p̃ ◦ T gτ2)(k) = δg,kp(k) = δp(g),p(k)p(k) = (T p(g)τ2
◦ p̃)(k),

and if τ2 is not aligned and q : G → G, a map with extension q̃ : CG → CG
such that it satisfies p(k̄) = q(k), we have

(p̃ ◦ T gτ2)(k) = δḡ,kp(k) = δp(ḡ),p(k)p(k) = δq(g),p(k)p(k) = (T q(g)τ2
◦ p̃)(k).
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If τ2 is aligned, the result then follows by substituting p = Lhτ1 . If τ2 is not
aligned note that

Lhτ1(k̄) =


k̄h̄ = hk = Lh(k) if τ1 is not aligned and locally clockwise oriented,

h̄k̄ = kh = Rh(k) if τ1 is not aligned and locally counter-clockwise oriented,

hk̄ = kh̄ = Rh̄(k) if τ1 is aligned and locally clockwise oriented,

k̄h = h̄k = Lh̄(k) if τ1 is aligned and locally counter-clockwise oriented,

(3.2.6)

and we can choose q(k) to be the right-hand side of Equation (3.2.6) in each
case to obtain the result.

So far, we have been focusing on describing the geometric structure of
the lattice. To inspect how the operators just defined can be used to create
charges in the model, we need to shift our attention to the Hilbert spaces HΛ

of the regions Λ ⊂ E. A useful basis is given by the elementary tensors

CG(Λ) :=

{⊗
e∈Λ

γe | γe ∈ G

}
⊂ HΛ.

Elements in CG(Λ) are in one-to-one correspondence with maps Λ → G;
Clearly, an elementary tensor γ ∈ CG(Λ) defines a map γ : Λ → G by setting
γ(e) = γe for an edge e ∈ E. On the other hand, given a map γ : Λ → G, we
can identify γ as an element of CG(Λ) via the identification

γ 7→
⊗
e∈Λ

γ(e).

We will interchangeably view γ ∈ CG(Λ) either as an elementary tensor or a
map from Λ to G. We call the elements in CG(Λ) G-connections. If e∗ is a
dual edge and e the unique edge crossing e, we define

γ(e∗) := γ(e). (3.2.7)

This definition is useful when considering the value of an expression of the
form Lhτγ at the edge crossing the dual edge eτ , since we can then simply
write (Lhτγ)(eτ ) without passing to the corresponding edge crossing eτ first.

We now want to define a map that measures the charge of a G-connection.

Definition 3.2.5. Let p = (v1, . . . , vn) be a path. Then we define the charge
measure β(p) as follows: If p = {v1, v2} consists of a single edge e := (v1, v2),
we set

β(p)(γ) =

{
γ(e) if e ∈ E,

(γ(ē)) if e ∈ Ē.
(3.2.8)
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If p = (p1, p2) is a concatenation of two composable paths p1 and p2, we set

β(p)(γ) = β(p1)(γ)β(p2)(γ), (3.2.9)

and extend β(p) linearly to HΛ. If p is a closed path and ψ ∈ HΛ, then we
call β(p)(ψ) the monodromy or magnetic flux/charge of ψ in the area
enclosed by p. Otherwise, we call β(p)(ψ) the β-value of ψ along p. If p is
closed, we call the monodromy of a G-connection γ trivial if β(p)(ψ) is the
identity element e ∈ G.

Note that β is independent of the choice of Λ, that is, if Λ ⊂ Λ′ for some
larger bounded region Λ′, we can extend γ arbitrarily to a G-connection on
Λ′ without changing the value of β(p)(γ) for any path p contained in Λ.

We are now in a position to define the interaction terms of the quantum
spin system. The electric and magnetic charge operators of the system are
defined as follows: Let Λ be a finite region of the lattice and AΛ = B(HΛ)
as before and let v be a vertex such that all edges connecting to v in G
are contained in Λ, i.e. for all edges e ∈ E with v ∈ ∂e we have e ∈ Λ. If
s1 = (v, f) ∈ S is a site with vertex v, we let ξs1 = (τ1, . . . , τ4) be the smallest
clockwise oriented ribbon around v starting and ending at the site s1 (See
Figure 3.10) and we define the operator

Aks1 =
4⊗
i=1

Lkτi . (3.2.10)

We call the operator Aks1 vertex operator, star operator or electric
charge operator at site s1. The term star is related to the star-shaped
domain of Aks1 , see also Figure 3.9. We will also define the operator

As =
1

|G|
∑
k∈G

Aks . (3.2.11)

for any site s ∈ S and call it the projection into the trivial electric
charge at the site s.

Next, let f be a face in Λ, i.e. f ∈ GΛ, and s2 a site with f as a face.
Set ξs2 = (τ1, . . . , τ4) to be the smallest locally counter-clockwise oriented
direct ribbon around f starting and ending at s2, and let φ ∈ C(G) be an
element in the dual of CG. The plaquette operator or magnetic charge
operator Bφ

s at site s = (v, f) is defined as

Bφ
s =

∑
(φ)

Tφ
(1)

τ1
⊗ Tφ

(2)

τ2
⊗ Tφ

(3)

τ3
⊗ Tφ

(4)

τ4
, (3.2.12)
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v1 v2

v3v4

Figure 3.9: Depiction of the star(blue) and plaquette(red) shaped domain of
the star and plaquette operator. If γ is a G-connection on this region and
γ1, . . . , γ4 ∈ G such that γi := γ(ei) and edges e1 = (v1, v2), e2 = (v2, v3), e3 =
(v3, v3) and e4 = (v4, v1), then the action of the plaquette operator can alter-
natively be described via γ 7→ δe(β

p(γ)) = δe(γ1γ2γ̄3γ̄4) = δe,γ1,γ2,γ̄3γ̄4 .

where we used the Sweedler notation introduced in Equation (2.3.4).
We want to add an alternative way of defining the plaquette operator

Bφ
s : Let γ ∈ GC(Λ) be a G-connection on some bounded region Λ containing

the site s = (v, f) and ps the smallest path starting and ending at v and
moving counter-clockwise around f (compare with Figure 3.10 again). Then
Bφ
s coincides with the linear extension of the mapping

Bφ
s : γ 7→ φ(β(ps)(γ))γ. (3.2.13)

If φ = δc for some c ∈ G and k ∈ G, we can depict the plaquette operator as

Bδc
s :

s
g1

g2

g3

g4 7→ δc,g1g2ḡ3ḡ4 s
g1

g2

g3

g4 ,

and the star operator as

Aks :
h1 h2

h3
h4

7→
h1k̄ h2k̄

kh3
kh4

,

where hi, gi ∈ G are the group elements sitting at the depicted edges. Let
C ⊂ G be a conjugacy class of G and c ∈ C. We say that an element ψ ∈ HΛ

has a magnetic flux of type C at site s if Bδc
s (ψ) ̸= 0. It is easy to verify

that the star operators Aks leave the type of magnetic charge at the site s
invariant. Indeed, we have the following commutation relation

Bδg
s A

k
s = AksB

δk̄gk
s . (3.2.14)
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⇒
⇐⇑⇓ ⇒

⇐⇑⇓
s2

s1

v1v2

v3v4

Figure 3.10: Picture of a locally clockwise oriented dual ribbon around a
vertex starting and ending at site s1 (blue) and a locally counter-clockwise
oriented direct ribbon around a face starting and ending at site s2(red). The
⇒ symbol is used to indicate the direction of the edges associated to the
triangles, as explained at the beginning of this Section, see also Figure 3.8.
The ribbon operator associated to the blue ribbon depicts the star operator
at site s1, whereas the ribbon operator associated to the red ribbon depicts
the plaquette operator at site s2. The plaquette operator can alternatively
be described by γ 7→ δe(β

p(γ))γ for the path p = (v1, v2, v3, v4, v1).

Hence, if C is a conjugacy class in G and χC : G → C the characteristic
function on C, then [

Aks , B
χC
s

]
= 0

for all k ∈ G.

Since we will rarely use any functions on G other than delta functions in
the argument of the plaquette operators, we will ease our notation by writing
Bg
s instead of B

δg
s from now on.

Given a site s = (v, f), we will write star(s) to denote the unique star
shaped region with the vertex v at its centre. Similarly, plaq(s) denotes the
unique plaquette shaped region with f at its centre.

Note that the star operator, unlike the plaquette operator, really only
depends on the vertex v and not on the full data of the site s = (v, f), and
we may identify Aks = Akv at times. For the plaquette operator, however, we
indeed need to know the site and not just the face to determine its action. If
v and v′ are different vertices such that s = (v, f) and s′ = (v′, f) share the
same face, one can verify that Bc

s = Bc′

s′ for some c′ in the conjugacy class
of c. The reason for labelling both the star- and plaquette operator with the
site s will become clear in Section 3.4. See in particular Proposition 3.4.1
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We want to pay special attention to the trivial conjugacy class C = {e}
and call the operator

Bs := Be
s (3.2.15)

the projection into the trivial magnetic charge at site s. If γ ∈ CG(Λ) is
a G-connection, then we call it flat if the monodromy around each plaquette
in Λ is trivial, and we denote the set of flat G-connections on Λ by Cf

G(Λ).
Note also that the definition of the star operator still makes sense when
not all four edges of the star are inside the region Λ, whereas the plaquette
operator only acts on sites where the full plaquette is contained in Λ. Since
we will only really be concerned with square-shaped regions, this will pose
no restriction.

The dynamics of the quantum double model are given by the interaction

ϕ(Λ) =


1 − As if Λ = star(s) for some site s ∈ S,
1 −Bs if Λ = plaq(s) for some site s ∈ S,

0 otherwise.

For a finite region Λ ⊂ E, we define the local Hamiltonian HΛ as in Equation
(2.5.7) to be:

HΛ =
∑

star(s)⊂Λ

(1 − As) +
∑

plaq(s)⊂Λ

(1 −Bs). (3.2.16)

The local time evolution is given by Equation (2.5.8) as

τ tΛ : A ∋ A 7→ exp(itHΛ)A exp(−itHΛ).

Clearly, the interaction Φ is translationally invariant and uniformly bounded.
By Theorem 2.5.21 and subsequent discussion, it follows that τΛ,ϕt converges
for all A ∈ A uniformly on compact sets in R to a time evolution τϕt , which
we will just denote by τ , with infinitesimal generator δ. This model is called
Kitaev’s Quantum double model of G.

The rest of this section is dedicated to showing the existence of a unique
frustration free ground state ω0. We remind the reader that frustration free-
ness means here that ω0(As) = ω0(Bs) = 1.

Proposition 3.2.6 ([Naa12], see also [FN15, CNN16]). Kitaev’s Quantum
double model admits a translational invariant ground state ω0 : A → C

uniquely defined by the equations

ω0(As) = 1 (3.2.17)

ω0(Bs) = 1 (3.2.18)
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on all sites s and the corresponding GNS representation (πω0 ,Hω0 ,Ωω0) is
faithful. Furthermore, if Λn is a square-shaped region of size n ∈ N, then

ω0(T
γ) =

{
1

|Cf
G(Λn)| if γ ∈ Cf

G(Λn),

0 otherwise,

where T γ is the projection defined in Equation (3.2.22).

Note that being translationally invariant means in particular that
ω0(As1) = ω0(As2) and ω0(Bs1) = ω0(Bs2) for all sites s1, s2 ∈ S since As1
and Bs1 can be transformed into As2 and Bs2 by translation. Hence, Equa-
tion (3.2.17) and (3.2.18) are equivalent to saying that ω0 is translationally
invariant and that ω0(HΛ) = 0 for every bounded region Λ.

Equations (3.2.17) and (3.2.17) imply together with Lemma 2.5.13

ω0(X) =ω0(AsX) = ω0(XAs) (3.2.19)

ω0(X) =ω0(BsX) = ω0(XBs) (3.2.20)

for all sites s and X ∈ A. Furthermore, because of AksAs = As, we also have

ω0(X) = ω0(A
k
sX) = ω0(XA

k
s). (3.2.21)

We will use these identities frequently throughout this work.

Although a proof of Proposition 3.2.6 can already be found in [Naa12],
we will include a sketch of the proof here, as we will use similar arguments
later in the proof of Theorem 3.6.7.

Before we attempt to prove Proposition 3.2.6, we want to develop some
more physical intuition. In view of Equation (3.2.20), we should think of a
ground state as a state that has trivial magnetic charge around each plaque-
tte. In view of Equation (3.2.19), which is equivalent to Equation (3.2.21),
and knowing that star operators Aks for k ∈ G permute G-connections with-
out changing the type of the magnetic charge at each plaquette, we would
like to think of the vacuum state as the equal weighted superposition of all
states with trivial magnetic charges. To really understand what this means,
we need to lift our notions of magnetic charges to that of operators on A
first.

Given a G-connection γ : Λ → G, we define an operator T γ ∈ AΛ via

T γΛ =
∏
e∈Λ

T γ(e)τe , (3.2.22)
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where τe is the direct triangle aligned with e. If p = (v1, . . . , vn) is a path in
Λ and ei = (vi, vi+1), i = 1, . . . , n− 1, we set similarly

T γp =
∏
ei

T γ(ei)τei
. (3.2.23)

Note that in the latter case, ei might be an edge with reversed direction if p
is not aligned. Finally, if g ∈ G, and p, ei as before, we define

T gp =
∑

γ∈CG(Λ)

β(p)(γ)=g

T γp . (3.2.24)

Note that T gp γ = γ only if γ has β-value g along p and T gp γ = 0 otherwise.
We want to distinguish G-connections by the magnetic charges they repre-

sent at each site. To that end, let Λ be a bounded region and κ : S(Λ) → G be
a map that associates to each site some element in G. Given a G-connection
γ ∈ CG(Λ), we can construct a map κγ : S(Λ) → G via

κγ(s) = β(ps)(γ) ∈ G,

where ps is the path defined as in Equation (3.2.13). We say that two G-
connections γ1, γ2 ∈ CG(Λ) exhibit the same magnetic charges at site s,
written γ1 ∼s γ2, if κγ1(s) = κγ2(s). This is an equivalence relation, and the
next lemma states that we can transform equivalent G-connections to one
another using star operators only.

Lemma 3.2.7. Let Λn be a square-shaped region of size n ≥ 1, s0 = (v0, f0) ∈
Λ a site and γ1, γ2 ∈ CG(Λn+1) G-connections with γ1 ∼s0 γ2. If the magnetic
flux of γ1 and γ2 is trivial on all sites s = (v, f) with f ̸= f0, then there exists
a finite sequence of star operators

{
Akisi
}
i
with ki ∈ G and si ∈ Λn+1 such

that ∏
i

Akisiγ1(e) = γ2(e).

for all e ∈ Λn. Furthermore, the sequence
{
Akisi
}
i
can be chosen such that

si ̸= s0.

This lemma and its proof is motivated by [Naa12, Lem 12.1.2], and the
intuition behind the lemma in [Naa12] is that G-connections that have trivial
magnetic charge at each plaquette can be permuted into one another using
star operators only. What is new here, and perhaps somewhat surprising at
first glance, is that we claim such a permutation can be achieved even when
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refraining from using vertex operators at a fixed vertex v0. The implication
is that if a G-connection has a single non-trivial magnetic charge at some
site s0, then this G-connection can be permuted to any other G-connection
with the same charges at each plaquette, since such a permutation can be
achieved while using star operators Aks with s ̸= s0. This will be used in the
proof of Theorem 3.6.7 later as well.

Proof of Lemma 3.2.7. We will provide an algorithmic construction to trans-
form all edges in Λn using star operators at sites s ̸= s0. Let s0 = (v0, f0)
and v w.l.o.g. in the lower-right corner of f0 see Figure 3.11.

Let {vi}i be a finite sequence of vertices constructed as follows: Set p1 to
be a path starting at v0 and moving horizontally to the right until we reach
the right boundary of Λn and write p1 = (v0, v1, . . . , vi1) with some i1 ∈ N.
Set vi1+1 to be the vertex right above vi1 and let p2 = (vi1+1vi1+2, . . . , vi2) be
the path going horizontally to left until the left boundary of Λn is reached
again. If vi2 is right above v0, we stop. Otherwise, let vi2+1 be the vertex
below vi2 and let p3 = (vi2+1, . . . , v0) be the path moving horizontally to
the right until we reach v0 again. This forms a closed direct path p =
(p1, p2, p3) = (v0, v1, . . . , vj, v0) starting and ending at v0. We will first show
that using vertex operators at v1, . . . , vj we can transform the values of the
G-connection γ1 along the path p to the values of γ2. Let ei = (vi−1, vi)
for i = 1, . . . , j and define ki ∈ G recursively as follows: If we set k1 =
γ2(e1)γ1(e1), then

(Ak1v1γ1)(e1) = γ1(e1)k̄1 = γ2(e1)γ1(e1)γ2(e1) = γ2(e1).

Giving γ
(1)
1 (e1) = γ2(e1) for γ

(1)
1 := Ak1v1γ1. We then proceed inductively by

setting ki = γ2(ei)γ
(i−1)
1 (ei), ei ∈ E and ki = γ2(ei)γ

(i−1)
1 if e ∈ Ē. Then

γ
(j)
1 coincides with γ2 on all edges ei for i = 1, . . . , j. Note also, that star

operators leave the flux of γ1 at each site trivial, and if γ
(j)
1 coincides with

γ2 on three out of four edges f1, f2, f3, f4 forming a plaquette, then conditions
like

γ
(j)
1 (f1) · γ(j)1 (f2) · γ(j)1 (f3) · γ(j)1 (f4) = γ2(f1) · γ2(f2) · γ2(f3) · γ2(f4) (3.2.25)

implies that they must coincide on the last edge as well. Figure 3.11 demon-
strates that then γ

(j)
1 and γ2 coincide on all edges enclosed by p as well.

For the other edges, note that we can use similar techniques walking down
from the vertices v1, . . . , vi1 , vi2+1, . . . , vj, v0 and walking up from the vertices
vi1+1, . . . , vi2 and deducing the value from the remaining edges from condi-
tions as in Equation (3.2.25). This process is independent of the concrete
position of s0 in the lattice, and the proof is concluded.
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e1e2e3e4 e5
e6

e7 e8 e9 e10 e11 e12

e13 e14 e15 e16 e17 e18

e19 e20 e21 e22 e23 e24

e25 e26 e27 e28 e29 e30

v0

f0

v1 v2 v3

v4v5v6v7v8v9v10

v11 v12 v13

v14 v15 v16 v17 v18 v19 v20

v21 v22 v23 v24 v25 v26 v27

v28 v29 v30 v31 v32 v33 v34

v35 v36 v37 v38 v39 v40 v41

Figure 3.11: Depiction of the algorithm on a square lattice of size 6 with
s0 = (v0, f0) , f0 in the centre. The red arrow symbolizes that we act
with a star operator at the tail of the arrow with the intention of transforming
the edge under the diamond-shaped arrowhead. In the notation of the proof
of Lemma 3.2.7, we have p1 = (v0, v1, v2, v3), p2 = (v4, v5, . . . , v10) and p3 =
(v11, v12, v13, v0). Acting with star operators in the order indicated by the
vertices, i.e. acting first with Ak1v1 , then with Ak2v2 etc., we can transform
the G-values at the edges under the diamond-shaped arrowhead to arbitrary
values. The dashed edges indicate that the value on the respective edge
is already uniquely determined by the values of the surrounding edges. The
reader may verify, by considering the edges in the order they are labelled, that
each G-value is uniquely determined and that no consecutive star operator
influences the intended transformation of a preceding star operator.
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Proof of Proposition 3.2.6. Note first that if ω0 is a state satisfying Equation
(3.2.17) and (3.2.18), Equation (3.2.19) and (3.2.20) imply that ω0 is left
invariant by the time evolution, and it follows that ω0 is indeed a ground
state by Proposition 2.5.17. It then follows from [BR03, Prop. 6.2.17] that
the GNS representation of ω0 is faithful.

Next, let Λn be a square-shaped region of size n ≥ 1 and γ ∈ CG(Λn+1)
be a G-connection on a square-shaped region of size n+ 1. Then because of

ω0(T
γ
Λn

)
(3.2.20)
==== ω0(BsT

γ
Λn

)

for each site s ∈ Λn, it follows that ω0(T
γ
Λn

) = 0 unless γ is flat. By Lemma

3.2.7, we have ω0(T
γ1
Λn

) = ω0(T
γ2
Λn

) for all γ1, γ2 ∈ Cf
G(Λn), since we can

commute with arbitrary star operators according to Equation (3.2.21) and
Lemma 3.2.7. Since ω0 is a state, we have

1 = ω0(1A) =
∑

γ∈CG(Λn)

ω0(T
γ
Λn

) =
∑

γ∈Cf
G(Λn)

ω0(T
γ
Λn

) = |CG(Λn)|ω0(T
γ0
Λn

),

where γ0 is an arbitrary but fixed flat G-connection γ0 ∈ C0
G(Λn). This shows

that ω0 takes the fixed value ω0(T
γ
Λn

) = 1

|Cf
G(Λn)| for all γ ∈ CG(Λn).

To show that ω0 is uniquely determined, we show that for observables X ∈
Aloc supported in Λn, the value of ω0(X) is already determined. Similarly to
how we defined T γΛn

in Equation (3.2.22), we may define the operators

Lγ =
∏
e∈Λn

Lγ(e)e . (3.2.26)

Then it is enough to consider operators of the form

Lγ1Λn
T γ2Λn

since these operators span all local operators supported in Λn. Using plaque-
tte operators, one can show that either ω0(L

γ
Λn
T γΛn

) = 0 or BsL
γ1
Λn
T γ2Λn

Bs =
Lγ1Λn

T γ2Λn
, implying that T γ2Λn

must have a flat G-connection everywhere and if

γ′2 is such that Lγ1Λn
T γ2Λn

= T
γ′2
Λn
Lγ1Λn

, then γ′2 ∈ CG(Λn) as well. Since such a
transformation can already be performed by star operators and because the
action of Lγ1Λn

on operators of the form T γ2Λn
is faithful, it follows that Lγ1Λn

is
given by a sequence of star operators, giving

ω0(L
γ1
Λn
T γ2Λn

)
(3.2.21)

= ω0(T
γ2
Λn

) =
1∣∣∣Cf

G(Λn)
∣∣∣ .
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We will pay special attention to the representation (Hω0 , πω0 ,Ωω0) and
simply write H instead of Hω0 , Ω0 instead of Ωω0 and identify πω0(A) with
A, suppressing the representation map under exploitation of the faithfulness.
It follows from (3.2.17) and (3.2.18) that Ω0 lies in the image of As and Bs

for all sites s, i.e.

AsΩ0 = BsΩ0 = Ω0. (3.2.27)

3.3 Ribbon Operators and Excitations

In this section, we will explicitly construct operators in A that can be used to
describe charges of the quantum double model, and study their properties.
These operators are called ribbon operators, and are defined for each ribbon
ξ. We will construct them using the triangle operators introduced in the
previous section in such a way that they create charges at the endpoints of
the ribbon ξ. In view of Equation (3.2.27), such an operator Fξ should be
such that the condition in Equation (3.2.27) is violated at ∂0ξ and ∂1ξ. We
say an operator X creates an electric excitation at s if AsXΩ0 ̸= XΩ0 and
a magnetic excitation at s if BsXΩ0 ̸= XΩ0.

We will demonstrate how Lhτ0 changes the magnetic flux of a flat G-
connection for a dual triangle τ0 and h ∈ G, thus creating a magnetic charge.
Let τ0 = (s0, s1) be a dual triangle. Let γ be a flat G-connection on some
region Λ and e1, . . . , e4 ∈ Λ a plaquette enclosing the face f1 = f(s1) such
that ∂0e1 = v(s1), i.e. s1 = (∂0e1, f1). If h ∈ G, γi := γ(ei) for i = 1, . . . , 4
and τ0 a locally counter-clockwise oriented, then we have

∂0e1

f1

∂0e1

f1

s1s0

γ1

γ3

γ2γ4Bc
s1
Lhτ0 :

γ1

γ2

γ3

h̄γ4= δγ1γ2γ̄3γ̄4h,c .

If γ is flat, then γ1γ2γ̄3γ̄4 = e, and the above expression is non-zero if
and only if h = c. Hence, the operator Lhτ0 creates a magnetic charge of type
Ch = {ghḡ | g ∈ G} at site s1 when acting on a flat G-connection. Similar cal-
culations demonstrate that Lhτ0 creates a charge of type Ch̄ =

{
gh̄ḡ | g ∈ G

}
at site s0 and one may repeat the calculation for locally clockwise oriented
triangles to arrive at the same result, i.e. all dual triangle operators create
the same charge-type regardless of their choice of local orientation and this is
precisely the reason for having different definitions for Lhτ0 for different local
orientations of τ0.
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A systematic way to create such pairs of excitations can now be found as
follows: Let τ1 = (s1, s2) be a locally counter-clockwise direct triangle and let
τ2 = (s2, s3) be a locally counter-clockwise oriented dual triangle such that
(τ0, τ1, τ2) forms a ribbon. Then

γ1

γ2

γ3

γ4

γ5

γ6

γ7

s0 s1 s2 s3

Lhτ0L
γ̄1hγ1
τ2

=
γ1

γ̄1h̄γ1γ2

γ3

h̄γ4

γ5

γ6

γ7

,

and if γ is flat, the magnetic flux of Lhτ0L
γ̄1hγ1
τ2

γ around the site s2 is given by

γ̄1h̄γ1γ2γ̄3γ̄4hγ1 = γ̄1h̄hγ1 = e.

As we have discussed before, switching sites within the same plaquette only
conjugates the flux of a G-connection, and it follows that the flux at s1 is
trivial as well. Furthermore, the calculation from before shows that the flux
at s3 is γ̄1hγ1 ∈ Ch and the flux at s0 is still h̄ ∈ Ch̄. Thus, Lhτ1L

γ̄1hγ1
τ2

creates
a magnetic flux of type Ch̄ at site s0, of type Ch at site s3 and leaves the
magnetic charge trivial at all other sites when acting on γ. For an arbitrary
flat G-connection γ, the same can be achieved with the operator∑

g∈G

Lhτ0T
g
τ1
Lḡhgτ2

,

since T gτ1γ ̸= 0 only if γ1 = g. This construction can be repeated recursively
to obtain operators that create charges at the endpoints of any ribbon ξ =
(s1, . . . , sn) without creating charges at the sites in between. The idea behind
this construction is due to [Kit03].

Definition 3.3.1. For each ribbon ξ, we define a family of operators{
F h,g
ξ

}
h,g∈G

as follows: If ξ = ∅ is the empty ribbon, we set

F h,g
∅ = δe,g1A, (3.3.1)

where 1A is the unit in A. If ξ = τ consists of a single triangle, we set

F h,g
τ =

{
δe,gL

h
τ if τ is dual,

T gτ if τ is direct.

Finally, let ξ = (ξ1, ξ2) be the composition of two ribbons ξ1 and ξ2. Then

F h,g
ξ =

∑
k∈G

F h,k
ξ1
F k̄hk,k̄g
ξ2

. (3.3.2)

F h,g
ξ is called a ribbon operator with ribbon ξ.
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The well-definedness of Equation (3.3.2) can be shown by decomposing
F h,g
ξ inductively into a composition of all triangles which make out ξ =

(τ1, . . . , τn). Let {τ1, . . . , τn} be all direct- and {τ̃1, . . . , τ̃l} be all dual triangles
of which ξ consists, ordered such that the edges (eτ1 , . . . , eτn) and (eτ̃1 , . . . , eτ̃l)
form the direct path ξdi = (∂0eτ1 , ∂0eτ2 , . . . , ∂0eτl , ∂1eτl+1

), respectively dual
path ξdu = (∂0eτ̃1 , ∂0eτ̃2 , . . . , ∂0eτ̃l , ∂1eτ̃l) of ξ. Let furthermore ξd,j be the
direct path of ξ up until we reach the vertex of the dual triangle τ̃j (see
Figure 3.12). Then for a G-connection γ ∈ CG(Λ) defined for a finite region

v1 v2 v3

v4

v5

τ̃1 τ̃2

τ̃3

τ̃4

Figure 3.12: The figure demonstrates the action of a dual triangle operator of
a ribbon operator at the end of a subpath of the direct path of that ribbon.
The depicted ribbon ξ contains the dual triangles τ̃1, τ̃2, τ̃3, τ̃4. The direct
path up to the third dual triangle τ̃3 is given as ξd,3 = (v1, v2, v3, v4) (red). If

γ is a G-connection with β(ξd,3)(γ) = k, then the ribbon operator F h,g
ξ acts

on the edge eτ̃3 with Lk̄hkτ̃3
.

Λ containing ξ, we obtain

F h,g
ξ γ =

l∏
j=1

∑
k∈G

T kξd,jL
k̄hk
τ̃j
γ, (3.3.3)

where T kξd,j is defined as in Equation (3.2.24).
We will omit the details of verifying the above formula, as it is a straight-

forward application of Equation (3.3.2). We refer to Figure 3.13 for a de-
piction of the action of the ribbon operator F h,g

ξ on a G-connection γ. We
note that ribbon operators span the space of all local operators Aloc. This
trivially follows by considering single triangle ribbons ξ = {τ}, since these
already provide all left multiplications and delta projections at each edge.
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= δγ1γ2γ3,e

γ1 γ2 γ3

γ4 γ5 · γ̄1h̄γ1 γ6 · γ̄2γ̄1h̄γ1γ2
F h,g
ξ

γ1 γ2 γ3

γ4 γ5 γ6

Figure 3.13: Depiction of the action of the ribbon operator F h,g
ξ on a G-

connection γ with values γ(ei) := γi ∈ G.

Remark 3.3.2. In a more general setting, formula (3.3.2) can be expressed
in terms of the quantum double D(H) of a general Hopf algebra H and the
well-definedness can then be reduced to the coassociativity of H, see [CCY21]
for more details.

Given a ribbon ξ, we define the operator Lhξ to be

Lhξ =
∑
k∈G

F h,k
ξ . (3.3.4)

Lhξ is essentially the sum of the dual operators appearing in Equation (3.3.3).
A more compact way of writing down a ribbon operator that reflects the
formula (3.3.3) can then be given by

F h,g
ξ = T g

ξdi
Lhξ . (3.3.5)

As mentioned before, the most important property of ribbon operators is
that they create charges only at the endpoints of the ribbon. Let si = ∂iξ,
i = 0, 1. Then F h,g

ξ Ω0 is a vector with magnetic flux h̄ at site s0 and magnetic

flux ḡhg at s1, whilst projecting into G-connections with βξ
(di)

(γ) = g, ξdi

being the direct path of ξ and β defined in Definition 3.2. This is obvious
in the case where ξ = ∅. To see that this is also true for a general ribbon ξ,
we may decompose ξ = (ξ1, ξ2) into an arbitrary concatenation of ribbons ξ1
and ξ2. Using formula (3.3.2) then allows for an inductive argument using
similar calculations as the ones preceding Definition 3.3.1. See also [Kit06].

The property that ribbon operators create charges only at their endpoints
can be characterized by the commutation relations between ribbon operators
and star- and plaquette operators.

Lemma 3.3.3. Let ξ be a ribbon with s1 = ∂0ξ and s2 = ∂1ξ. Then the
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following commutation relations hold for all h, g, k, c ∈ G and s ̸∈ {s1, s2}:

Aks0F
h,g
ξ = F khk̄,kg

ξ Aks0 , (3.3.6)

Aks1F
h,g
ξ = F h,gk̄

ξ Aks1 ,[
F h,g
ξ Aks

]
=
[
F h,g
ξ , Bc

s

]
= 0. (3.3.7)

If ξ is locally clockwise oriented, then we have

Bc
s0
F h,g
ξ = F h,g

ξ Bch
s0
, (3.3.8)

Bc
s1
F h,g
ξ = F h,g

ξ Bḡh̄gc
s1

. (3.3.9)

If ξ is locally counter-clockwise oriented, we have

Bc
s0
F h,g
ξ = F h,g

ξ Bhc
s0
, (3.3.10)

Bc
s1
F h,g
ξ = F h,g

ξ Bcḡh̄g
s1

. (3.3.11)

See [CCY21] for a proof.

Remark 3.3.4. We emphasize that the commutation relations in Equation
(3.3.10) and (3.3.11) differ from the old literature, see e.g. [BMD08, (B42)].
This is because different local orientations were not taken into account in
these sources, choosing the same action for ribbon operators regardless of
their local orientation. In that case, however, it is neither guaranteed that a
ribbon operator of the form F h,g

ξ always creates the magnetic flux h̄ at ∂0ξ,
nor are the commutation relations given in [BMD08] entirely correct. See
[CCY21, Sec 3.3] for a more detailed exposition on this subject.

It is important to note, that we always have

Bs0F
h,g
ξ =F h,g

ξ Bh
s0

(3.3.12)

Bs1F
h,g
ξ =F h,g

ξ Bḡh̄g
s1

(3.3.13)

for s0 = ∂0ξ and s1 = ∂1ξ regardless of the local orientation of ξ. This
will be useful when dealing with the interaction terms (1A −Bs) of the local
Hamiltonian.

Star and plaquette operators are ribbon operators as well. Note that the
sites of a direct (dual) ribbon share a common face (vertex), see also Figure
3.10 again. Let s be a site, and ξdus the unique locally clockwise oriented
dual ribbon starting and ending at s. Then F h,g

ξdus
is the product of four dual

triangle operators acting precisely as the star operator Ahs for g = e, i.e.

F h,g
ξdus

= δg,eA
h
s . (3.3.14)
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Similarly, if ξdis is the smallest closed locally counter-clockwise oriented direct
ribbon starting and ending at s, then F h,g

ξdis
is a sum of the product over all

direct triangles operators measuring a magnetic flux g around s, i.e.

F h,g
ξdis

= Bg
s . (3.3.15)

It is straightforward to verify that if ξ̄dis and ξ̄dus are the unique direct, re-
spectively dual locally counter-clockwise oriented ribbon surrounding s, then

F h,g

ξ̄dus
=δg,eA

h̄
s , (3.3.16)

F h,g

ξ̄dis
=Bḡ

s . (3.3.17)

We caution the reader not to confuse the local orientation of a ribbon with
the way it encircles an area. Indeed, a locally clockwise oriented dual rib-
bon moves counter-clockwise around its vertex, whereas a locally counter-
clockwise oriented dual ribbon moves clockwise around its vertex, which can
also be seen in Figure 3.10.

We derive some useful algebraic relations for ribbon operators.

Lemma 3.3.5. We have the following identities for any ribbon ξ:

(1)

F h1,g1
ξ F h2,g2

ξ = δg1,g2F
h1h2,g1
ξ (3.3.18)

for all h1, h2, g1, g2 ∈ G.

(2) (
F h,g
ξ

)∗
= F h̄,g

ξ

for all h, g ∈ G.

(3) If ξ̄ is the obtained by inverting the direction of ξ, we have

F h,g
ξ = F ḡh̄g,ḡ

ξ̄
. (3.3.19)

(4) Finally, we have ∑
k∈G

F h,k
ξ F k̄h̄k,k̄g

ξ̄
= F h,g

∅ = δe,g1A (3.3.20)

for all h, g ∈ G.
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Proof. Part (1) is a simple application of Equation (3.3.3), using that
T k1τ T

k2
τ = δk1,k2T

k1
τ and Lk1τ ′L

k2
τ ′ = Lk1k2τ ′ for all k1, k2 ∈ G. Note that no

two triangles overlap in ξ, hence all triangle operators appearing in Equation
(3.3.3) commute. Similarly, Part (2) follows from (Lhτ )

∗ = Lh̄τ . To see part
(3), we first make a few observations: If ξdi = (∂0e1, . . . , ∂0en, ∂1en) is the
direct path of ξ = (s1, . . . , sn) and ξd,j the direct path of ξ up to the dual
triangle τ̃j (see discussion after Definition 3.3.1), and ξ̄ = (sn, . . . , s1) the

ribbon with direction inverted, then if γ is a G-connection with β(ξdi)(γ) = g,
we have

β(ξ̄d,j)(γ)β(ξd,l−j+1)(γ) = ḡ

where β is the map defined in Definition 3.2. Using (3.3.5) and (3.3.3) we
obtain

F ḡh̄g,ḡ

ξ̄
=

l∏
j=1

∑
k∈G

T kξ̄d,jL
k̄ḡh̄gk
¯̃τj

γ

=
l∏

j=1

∑
k∈G

T kξ̄d,jL
β
ξ̄d,j (γ)ḡh̄gβ

ξ̄d,j (γ)
¯̃τj

γ

=
l∏

j=1

∑
k∈G

T kξ̄d,jL
β
(ξd,l−j+1)(γ)h̄β

(ξd,l−j+1)(γ)
¯̃τj

γ

j 7→l−j+1
=

l∏
j=1

∑
k∈G

T kξd,jL
β(ξd,j)(γ)hβ(ξd,j)(γ)

τ̃j
γ = F h,g

ξ ,

where we used that Lkτ̃ = Lk̄τ for all k ∈ G at the end. Part (4) now follows
from part (3):∑

k

F h,k
ξ F k̄hk,k̄g

ξ̄
=
∑
k

F h,k
ξ F ḡh̄g,ḡk

ξ = δg,e
∑
k

F e,k
ξ = δg,e1A.

We say that two ribbons ξ1 and ξ2 have the same endpoints if ∂0ξ1 =
∂0ξ2 and ∂1ξ1 = ∂1ξ2. If in addition ξ1 ̸= ξ2, we call ξ2 a deformation of ξ1.
We want to show that if ξ2 is a deformation of ξ1 and ψ ∈ H a state that has
no excitations in the region between ξ1 and ξ2, i.e. if Asψ = Bsψ = ψ for all
sites enclosed by the ribbons ξ, then F h,g

ξ1
ψ = F h,g

ξ2
ψ. In other words, we can

deform ribbons in the absence of excitations. This statement is Corollary
3.3.11 and the following discussion leading up to that corollary serves to give
the necessary insight to prove this result.



3.3. RIBBON OPERATORS AND EXCITATIONS 91

Lemma 3.3.6. Let p1, p2 be two paths, with ∂0p1 = ∂0p2 and ∂1p1 = ∂1p2
contained in a region Λ and define

BΛ =
∏

s∈S(Λ)

Bs. (3.3.21)

Then we have for all g ∈ G

T gp1BΛ = T gp2BΛ. (3.3.22)

It follows that

T gpBΛ = δg,eBΛ

for any closed path p and g ∈ G.

Proof. Equation (3.3.22) can be verified by acting on an arbitrary flat G-
connection. If γ is a flat G-connection depicted as

v1 v2

v3v4

γ11

γ12 γ13

γ14

on some plaquette in Λ, then γ1γ2 = γ3γ4. In other words, we have

T e1
p1
γ = T e2

p2
γ,

for all γ ∈ im(BΛ), where p1 = (v1, v2, v3) and p2 = (v1, v4, v3). Using
these atomic deformations, we can transform any path p1 to any path p2 by
changing the way p1 traverses each plaquette step by step, while keeping the
starting and endpoint of p1 and p2 fixed. This shows Equation (3.3.22). If
p is a closed path, then p can be decomposed into two subpaths p1 and p2
with p = (p1, p2). Since ∂1p1 = ∂0p2 and ∂0p1 = ∂1p2, we can deform p2 into
p̄1 and we have

T gp γ =
∑
k∈G

T gp1T
k̄g
p2
γ =

∑
k∈G

T gp1T
k̄g
p̄1 γ = T gp1T

ḡk
p1
γ =

∑
k∈G

δg,ḡkγ.

But δg,ḡk = 0 unless g = e.

Before we continue, we want to introduce some terminology that allows
us to separate the action of a ribbon operator F h,g

ξ into an action on the

direct path ξdi and an action on the dual ξdu.
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Definition 3.3.7 (Dual Action). Let ξ be a ribbon with dual triangles
(τ1, . . . , τ̃l) and h, g ∈ G. If γ is a G-connection with F h,g

ξ γ ̸= 0, we say

an operator X ∈ A has the same dual action as Fh,g
ξ on γ at edge e if

Xγ is a G-connection as well, e intersects eτt for some t = 1, . . . , n and

(Xγ)(eτt) = (F h,g
ξ γ)(eτt),

where we identified γ(eτt) = γ(e), see Equation (3.2.7). We say X has the
same dual action as Fh,g

ξ on γ if X has the same dual action as F h,g
ξ on γ

for each edge intersecting eτt for t = 1, . . . , n. If X has the same dual action
as F h,g

ξ for each G-connection, we simply say X has the same dual action

as F h,g
ξ . Finally, we call the transformations performed on the values γ(eτt)

the dual action of Fh,g
ξ .

Write

F h,g
ξ γ =

l∏
j=1

∑
k∈G

T kξd,jL
k̄hk
τ̃j
γ,

using the same notation as in Equation (3.3.3). Then an operator X has the
same dual action as F h,g

ξ on γ ̸∈ ker(F h,g
ξ ) at eτj if and only if

(Xγ)(eτj) = (L
β
ξd,j (γ)hβ

ξd,j (γ)
τ̃j

γ)(eτj), (3.3.23)

and it has the same dual action as F h,g
ξ on γ if Equation (3.3.23) holds for

all j = 1, . . . , l. Trivially, each of the operators L
β
ξd,j (γ)hβ

ξd,j (γ)
τ̃j

appearing in

Equation (3.3.3) has the same dual action as F h,g
ξ at eτj on each G-connection

γ ̸∈ ker(F h,g
ξ ), and the operator Lhξ defined in Equation (3.3.4) has the same

dual action as F h,g
ξ .

We have shown in Lemma 3.3.6 that for ribbons ξ1 and ξ2 with the same
endpoints, the operators Tξdi1 and Tξdi2 coincide when acting on a flat G-
connection, giving us some freedom of choice for the direct path of a ribbon
when acting on the vacuum. What may be less obvious is that the dual
action of a ribbon operator is independent of the choice of the direct path
when acting on a flat G-connection as well. First, note that if p∗ is a dual
path in Λ, then we can find a ribbon ξ in Λ such that ξdu = p∗. This is always
possible, because for a face f to be contained in Λ, we must always have that
the surrounding edges are contained in Λ as well. We would like to have
a definition of the form Lhp∗ = Lhξ , where the right-hand side is defined in
Equation (3.3.4). Although this definition is dependent on the choice of ξ, it
becomes well-defined when restricted to the image of BΛ defined in Equation
(3.3.21).
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Proposition 3.3.8. Let p∗ = (f1, . . . , fn) be a dual path in Λ and let

(τ1, . . . , τn−1) such that τi = (s
(i)
1 , s

(i)
2 ) with s

(i)
1 = (vi, fi) and s

(i)
2 = (vi, fi+1)

for i = 1, . . . , n − 1. Furthermore, let ei be the edge that intersects with the
dual edge (fi, fi+1) for each i = 1, . . . , n − 1 and (u1, . . . , un−1) a collection
of vertices such that ui ∈ ∂ei for i = 1, . . . , n − 1. If p = (w1, . . . , wk) is
any path that contains {u1, . . . , un−1} in any order, i.e. there exists a map
t : {1, . . . , n− 1} → {1, . . . , k} such that ui = wti (see Figure 3.14), then for
any ribbon ξ with dual triangles (τ1, . . . , τn−1) the operator∑

k∈G

∏
i

T kpiL
k̄hk
τi

(3.3.24)

with pi = (w1, . . . , wti) has the same dual action as F h,g
ξ on each flat G-

connection γ ̸∈ ker(F h,g
ξ ). It follows that∑

k∈G

∏
i

T kpiL
k̄hk
τi
T gp0γ = F h,g

ξ γ (3.3.25)

for all flat G-connections γ ∈ CG(Λ) and any path p0 in Λ with ∂0p0 = ∂0ξ
di

and ∂1p1 = ∂1ξ
di, where ξdi is the direct path of ξ.

Proof. Note that for each i, both vi and ui are vertices at the boundary of
the same edge ei and we either have ui = vi or ui and vi are at different
ends of the same edge ei. The action of a dual triangle operator appearing
in Equation (3.3.3) for some ribbon operator F h,g

ξ on a G-connection γ is
determined by the group element h and the β-value of γ along the subpath
of ξdi that starts at ∂0ξ

di and ends at the vertex v(τi) = vi of the dual triangle
τi. By Lemma 3.3.6, this is independent of the path chosen between ∂0ξ

di and
v(τi), covering the case vi = ui. So we assume vi ̸= ui and let τi = (si, si+1)
be the unique dual triangle in ξ with v(τi) = vi. We define p1 := (ξdi : vi)
and p2 := (p : ui) to be the path ξdi, respectively p cut off at vi respectively
ui, and let τ̃i = (s̃i, s̃i+1) where s̃i = (ui, f(si)) and s̃i+1 = (ui, f(si+1)). τ̃i is
just a mirrored version of τi, see also figure 3.15. In view of Equation (3.3.3),
we must show that

(Lβ
(p1)(γ)hβ(p1)(γ)
τi

γ)(ei) = (L
β(p2)(γ)hβ(p2)(γ)
τ̃i

γ)(ei) (3.3.26)

holds. Setting pei := (vi, ui), kei := β(pei )(γ), k1 := β(p1)(γ) and k2 := β(p2)(γ),
we have by Lemma 3.3.6

k1kei = k2. (3.3.27)
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v1 v2

v3

v4

v5 v6

v1

w2 w3

v2 w5

v3 w6 w7

v4 w8w9

v5 v6

Figure 3.14: Depiction of the scenario described in Proposition 3.3.8. On
the left, a ribbon ξ is drawn with direct path ξdi = (v1, . . . , v6) and dual
path ξdu = (f1, . . . , f7). In the right figure, no direct triangles are drawn,
but the dual path is still covered by the depicted dual triangles. The red
path p = (w1, . . . , w9) covers the vertices w1 = v1 and w4 = v2. The vertices
w5, w6 and w9 lie at the opposite endpoint of the edge shared with v2, v3 and
v6 respectively. In either case, the path p covers at least one vertex at the
boundary of every edge that intersects with the dual path. Note also that p
starts at v1 = v(∂0ξ), but does not necessarily have to end at v(∂1ξ) for the
dual action to be the same.
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We distinguish four cases.
Case 1: τi is aligned and locally clockwise oriented
In this case, we have kei = γ(ei) giving k1γ(ei) = k2 and γ(ei)k̄2 = k̄1. Then
we have

Lk̄1hk1τi
(γ)(ei) = k̄1hk1 · γ(ei) = γ(ei) · k̄2hk2 = Lk̄2hk2τi

(γ)(ei),

since τ̃i is aligned and locally counter-clockwise oriented.
Case 2: τi is not aligned and locally clockwise oriented
In this case, we have kei = γ(ei) giving γ(ei)k̄1 = k̄2 and k1 = k2γ(ei). Then
we have

Lk̄1hk1τi
(γ)(ei) = γ(ei) · k̄1h̄k1 = k̄2h̄k2 · γ(ei) = Lk̄2hk2τi

(γ)(ei),

since τ̃i is not aligned and locally counter-clockwise oriented.
Case 3: τi is aligned and locally counter-clockwise oriented
In this case we have kei = γ(ei) giving γ(ei)k̄1 = k̄2 and k1 = k2γ(ei) as
before. Then we have

Lk̄1hk1τi
(γ)(ei) = γ(ei) · k̄1hk1 = k̄2hk2 · γ(ei) = Lk̄2hk2τi

(γ)(ei),

since τ̃i is aligned and locally clockwise oriented.
Case 4: τi is not aligned and locally counter-clockwise oriented
In this case we have kei = γ(ei) giving k1γ(ei) = k2 and γ(ei)k̄2 = k̄1 as in
the first case. Then we have

Lk̄1hk1τi
(γ)(ei) = k̄1h̄k1 · γ(ei) = γ(ei) · k̄2h̄k2 = Lk̄2hk2τi

(γ)(ei),

since τ̃i is not aligned and locally counter-clockwise oriented.

This shows that the dual action of a ribbon operator F h,g
ξ is determined by

the dual path ξdu in the following sense: Let ξ be a ribbon in some bounded
region Λ with dual path ξdu = (f1, . . . , fn) and let {s1, . . . , sn} be any choice
of sites, not necessarily of ξ such that f(si) = fi. Let further {e1, . . . , en}
be such that ei intersects the dual edge (fi, fi+1) for i = 1, . . . , n − 1 and pi
any path contained in Λ starting at v0 = v(∂0ξ) and ending at vi := v(fi) =
v(fi+1). By Lemma 3.3.6, the value ki,γ := β(pi)(γ) is independent of the
choice of pi for any flat G-connection γ, as long as the endpoints of the path
stay fixed. Then for any flat G-connection γ ̸∈ ker(F h,g

ξ ) and i = 1, . . . , n− 1
we have

(F h,g
ξ γ)(ei) = (Lk̄i,γhki,γτi

γ)(ei).
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vi ui

τi τ̃i

p1 p2

Figure 3.15: Depiction of two vertices vi and ui at opposite sides of the same
edge ei = (vi, ui). The dual triangles τi and τ̃i cover the same faces, but
v(τi) = vi and v(τ̃i) = ui. The dotted paths depict different arbitrary paths
p1 and p2 having the same starting point v(∂0(ξ)) but with ∂1p1 = vi and
∂1p2 = ui

It follows that the operator

n−1∏
i=1

Lk̄i,γhki,γτi
(3.3.28)

has the same dual action as F h,g
ξ on γ. In the following, we want to demon-

strate that by commuting with star operators, dual paths can be transformed
in the sense that the expression in Equation (3.3.28) transforms to expres-
sions corresponding to different dual paths.

Recall that a dual ribbon is a ribbon that consists only of dual triangles.

Lemma 3.3.9. Let ξ1, ξ2 be dual ribbons sharing the same endpoints s0 :=
∂0ξ1 = ∂0ξ2 and s1 := ∂1ξ1 = ∂1ξ2 and let ξ1 be locally clockwise oriented and
ξ2 locally counter-clockwise oriented. Then

Ahs0F
h,g
ξ1
BΛ = F h,g

ξ2
BΛ. (3.3.29)

Proof. Let ξdu1 = (f1, . . . , fn) and ξdu2 = (e1, . . . , en) be the dual paths of
ξ1 and ξ2. By assumption, we have f1 = e1 and fn = en, and because
consecutive dual ribbons share the same vertex, all dual triangles appearing
in the dual ribbons ξ1 and ξ2 must share the same vertex v1. Also note that
there generally exists only two dual ribbons from s0 to s1, which differ in local
orientation. If ξ̄1 and ξ̄2 are the ribbons ξ1 and ξ2 with directions reversed,
then the ribbon (ξ1ξ̄2) is the unique locally clockwise oriented dual ribbon
starting and ending at s0 and (ξ2, ξ̄1) is the unique locally counter-clockwise



3.3. RIBBON OPERATORS AND EXCITATIONS 97

oriented dual ribbon starting and ending at s1, i.e.

ξdus0 =(ξ1, ξ̄2)

ξ̄dus0 =(ξ2, ξ̄1),

where ξdus0 is the ribbon associated with the star operator As0 cf. Equation
(3.3.14) and accompanied discussion. Write ξdus0 = (τ1, . . . , τ4) and let 0 ≤
t ≤ 4 such that

F h,g
ξ1

=δg,e

t∏
i=1

Lhτi ,

F h,g
ξ2

=δg,e

4∏
i=t+1

Lhτ̄i .

Note that the cases t = 0 and t = 4 are indeed covered, because of Equation
(3.3.1). Then we have

Ah̄s0F
h,g
ξ1

=

(
4∏
i=1

Lhτ̄i

)
δg,e

(
t∏
i=1

Lhτi

)
(3.2.5)
==== δg,e

4∏
i=t+1

Lhτ̄i = F h,g
ξ2

Proposition 3.3.10. Let ξ1 and ξ2 be two ribbons contained in some bounded
region Λ such that s0 := ∂0ξ1 = ∂0ξ2 and s1 := ∂1ξ1 = ∂1ξ2. Then there exists
a finite set of star operators{

Aks,γs | s ∈ S(Λ) \ {s0, s1} , γ ∈ CG(Λ), ks,γ ∈ G
}

(3.3.30)

such that

F h,g
ξ1
BΛ =

∑
γ∈CG(Λ)

 ∏
s∈S(Λ)\{s0,s1}

Aks,γs

F h,g
ξ2
BΛT

γ. (3.3.31)

Proof. Let p∗ be a dual path that differs from ξdu only at one dual plaquette p
and let s be a site with v(s) centred at that dual plaquette. Let furthermore
(τ1, . . . , τn) be the dual ribbon that is aligned with the intersection of ξdu

with p and (τ̃1, . . . , τ̃n−4) the complement of (τ1, . . . , τn), that is, (τ1, . . . , τn)
is the unique dual ribbon such that ξs := (τ̄n, . . . , τ̄1τ̃1, . . . , τ̃n) is a closed
dual ribbon, see also Figure 3.16.
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v(s)

τ̃1

τ̃2τ1

τ2

Figure 3.16: Depiction of a dual ribbon (τ1, τ2) together with a complemen-
tary dual ribbon (τ̃1, τ̃2) such that (τ̄2, τ̄1, τ̃1, τ̃2) form a closed dual ribbon
around the common vertex v(s).

By Proposition 3.3.8, the dual action of F h,g
ξ along p is for each γ ̸∈

ker(F h,g
ξ ) is given by

n∏
i=1

Lk̄hkτi
,

where k ∈ G is the β-value of γ along any path starting at ∂0ξ
di and ending

at v(s). By Lemma 3.3.9, there is a closed dual ribbon ξs such that(
F k̄hk,e
ξs

n∏
i=1

Lk̄hkτi
γ

)
(e) =

(
n−4∏
i=1

Lτ̃iγ

)
(e).

for all edges e intersecting p. It follows for any ribbon ξ′ with dual path p∗

the identity

(F k̄hk,e
ξs

F h,g
ξ γ)(e) = (F h,g

ξ′ γ)(e)

for all e intersecting p and G-connection γ with γ ̸∈ ker(F h,g
ξ ) ∪ ker(F h,g

ξ′ ).

Recall also that the operators F k̄hk
ξs

are just star operators. Repeating this

process, we see that for any dual path p∗ and flat G-connection γ ̸∈ ker(F h,g
ξ )

we can find appropriate star operators
{
A
ks,γ
s

}
s∈S(Λ)\{s0,s1},k∈G

such that the

operator ∏
s∈S(Λ)\{s0,s1}

Aks,γs F h,g
ξ
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has the same dual action as any ribbon operator F h,g
ξ2

with ξdu2 = p∗ by
Proposition 3.3.8.

v1 v2

v3

v1 v2

v3

Figure 3.17: Depiction of the deformation process performed on the dual
path alone. On the left picture, we see a dual path (blue) and three vertex
operators at v1, v2 and v3, depicted by drawing only the dual path (red and
dashed). The dual path of the vertex operators is such that it is aligned
opposite to the original dual path. On the right, the deformed dual path is
shown in blue, where the dashed segments highlight the performed deforma-
tion. Note that the endpoints of the dual paths stay fixed, as we do not act
with star operators at the endpoints of the ribbon.

This completes the following picture: Just like we were able to choose
between different direct paths when measuring the β-value of a flat G-
connection by changing the way we traverse each plaquette individually, we
can choose up to multiplication with star operators between different dual
paths by changing the way we traverse each dual plaquette individually. We
refer to Figure 3.17 for a visualization of the deformation process for dual
paths using star operators.

As a final result, we have the following corollary.

Corollary 3.3.11. Let ξ1 and ξ2 be two ribbons sharing the same endpoints
and contained in a bounded region Λ, and let H be the GNS representation of
the vacuum state ω0. If ψ ∈ H is such that Asψ = Bsψ = ψ for all s ∈ S(Λ),
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then

F h,g
ξ1
ψ = F h,g

ξ2
ψ (3.3.32)

for all h, g ∈ G. Furthermore, if σ is a closed ribbon, then we have

F h,g
σ ψ = δg,eψ (3.3.33)

Proof. Note first that AksAs = As, implies Aksψ = ψ for all k ∈ G. We set
s0 = ∂0ξ1 and s1 = ∂1ξ1. By Proposition 3.3.10, we have

F h,g
ξ1
ψ =F h,g

ξ1
BΛψ =

∑
γ∈CG(Λ)

 ∏
s∈S\{s0,s1}

Aks,γs

F h,g
ξ2
BΛT

γψ

For a family of star operators A
ks,γ
s as in Equation (3.3.30). By Equation

3.3.7, we can commute F h,g
ξ2

with each A
ks,γ
s , since s ̸∈ {∂0ξ2, ∂1ξ2}. Also note

that commuting star operators with products of triangle operators of the form
T γ simply affords a bijection on the set of G-connections. We denote by γks,γ
the G-connection that satisfies (

∏
sA

ks,γ
s )T γ = T γks,γ (

∏
sA

ks,γ
s ). Then the

above expression becomes

∑
γ∈CG(Λ)

F h,g
ξ2
T γks,γ

 ∏
s∈S\{∂0ξ1,∂1ξ1}

Aks,γs

ψ

=
∑

γ∈CG(Λ)

F h,g
ξ2
T γks,γψ

=
∑

γ∈CG(Λ)

F h,g
ξ2
T γψ

=F h,g
ξ2
ψ.

To see (3.3.33), we deploy an analogue argument as in the proof of Lemma
3.3.6. Let σ = (ξ1, ξ2). Since σ is closed, ξ2 is a deformation of ξ̄1 and we
have

Fσψ
(3.3.2)

=
∑
k∈G

F h,k
ξ1
F k̄hk,k̄g
ξ2

ψ =
∑
k∈G

F h,k
ξ1
F k̄hk,k̄g

ξ̄1
ψ

(3.3.20)
= ψ

The next proposition describes the energy of the local observables F h,g
ξ

in states that have no excitations at the endpoints of the ribbon ξ.
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Proposition 3.3.12. Let ξ be a ribbon and let ω be a linear functional with
ω(F h,g

ξ ) = ω(AksF
h,g
ξ Aks) = ω(BsF

h,g
ξ Bs) for all k, h, g ∈ G and s ∈ ∂ξ. Then

ω
(
F h,g
ξ

)
= δh,e

1

|G|
(3.3.34)

For all h, g ∈ G. In particular, the above holds for the translational invariant
ground state ω0 of the quantum double model.

Proof. Let s = ∂0ξ be the initial site of the ribbon ξ. Then

ω(F h,g
ξ ) = ω(BsF

h,g
ξ Bs)

(3.3.12)
= ω

(
F h,g
ξ Bh

sBs

)
= δh,eω

(
F h,g
ξ

)
If h ̸= e, (3.3.34) is trivially true. Otherwise, we have

ω
(
F e,g
ξ

)
= ω

(
Aks1F

e,g
ξ Aks1

) (3.3.6)
= ω

(
Aks1A

k̄
s1
F e,gk
ξ

)
= ω

(
F e,gk
ξ

)
for all g, k ∈ G, giving ω

(
F e,g1
ξ

)
= ω

(
F e,g2
ξ

)
for all g1, g2 ∈ G. The result

then follows from
∑
g∈G

F e,g
ξ = 1A.

We conclude this section by showing how ribbon operators can be used
to generate orthogonal subspaces in the GNS representation of the vacuum
state ω0.

Proposition 3.3.13. Let ξ be a ribbon, h, g ∈ G and ω0 the vacuum state and

(H, π,Ω) the corresponding GNS representation. Then the set
{
F h,g
ξ

}
h,g∈G

is

linearly independent and the vectors
{
F h,g
ξ Ω0

}
h,g∈G

are mutually orthogonal.

Furthermore, the vacuum state Ω0 is separating for the algebra generated by

the ribbon operators
{
F h,g
ξ

}
h,g∈G

.

Proof. From ∥∥∥F h,g
ξ Ω0

∥∥∥2 =ω
(
F h̄,g
ξ F h,g

ξ

)
= ω(F e,g

ξ ) =
1

|G|

it follows that FξΩ0 ̸= 0, where we used Proposition 3.3.12 for ω0. The

orthogonality of the vectors F h,g
ξ Ω0 follows by direct calculation:〈

F h1,g1
ξ Ω0, F

h2,g2
ξ Ω0

〉
=ω0

((
F h1,g1
ξ

)∗
F h2,g2
ξ

)
(3.3.18)

= δg1,g2ω0

(
F h̄1h2,g1

)
(3.3.34)

= δg1,g2δh1,h2ω0(F
e,g1).
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This also shows that the operators F h,g
ξ are orthogonal with respect to the

sesquilinear map (A,B) 7→ ω0(A
∗B) and hence linearly independent. Finally,

let g1, g2, h1, h2 ∈ G such that F h1,g1
ξ Ω0 = F h2,g2

ξ Ω0. Then

0 =
∥∥∥(F h1,g1

ξ − F h2,g2
ξ

)
Ω0

∥∥∥2 = ⟨(F h1,g1
ξ − F h2,g2

ξ )Ω0,
(
F h1,g1
ξ − F h2,g2

ξ

)
Ω0⟩

=ω
((
F h1,g1
ξ

)∗
F h1,g1
ξ

)
+ ω

((
F h2,g2
ξ

)∗
F h2,g2
ξ

)
−
[
ω
((
F h1,g1
ξ

)∗
F h2,g2
ξ +

(
F h2,g2
ξ

)∗
F h1,g1
ξ

)]
=
∥∥∥F h1,g1

ξ Ω
∥∥∥2 +

∥∥∥F h2,g2
ξ Ω0

∥∥∥2 − δg1,g2

[
ω
(
F h̄1h2,g1
ξ

)
+ ω

(
F h̄2h1,g2
ξ

)]
⇔2

∥∥∥F h1,g1
ξ Ω0

∥∥∥2 = δg1,g2

[
ω
(
F h̄1h2,g1
ξ

)
+ ω

(
F h̄2h1,g2
ξ

)]
If g1 ̸= g2 then

∥∥F h1,g1Ω0

∥∥ = 0 follows, contradicting F h,g
ξ Ω0 ̸= 0, hence

g1 = g2. Similarly, the right-hand side becomes zero, unless h1 = h2 by
Proposition 3.3.12. That Ω0 is separable for linear combinations of ribbon
operators as well follows from the linear independence of the F h,g

ξ Ω0. Finally,
note that by Equation (3.3.18), the algebra generated by the ribbon operators

along a fixed ribbon ξ is already spanned by the set
{
F h,g
ξ

}
h,g∈G

A ribbon operator F h,g
ξ is understood to create anyonic excitations at the

endpoints of the ribbon ξ, and extending the ribbon ξ corresponds to mov-
ing the anyons at the endpoints around. As explained in the introduction of
this work, an anyonic excitation is characterized by a non-trivial exchange
statistics, that is, an exchange statistic that does not simply correspond to a
sign but rather to a complex phase for abelian anyons and unitary transfor-
mations in the more general case of non-abelian anyons. To see that ribbon
operators indeed create anyonic excitations at the endpoints of a ribbon, one
can calculate the commutation relation of two ribbon operators, F h1,g1

ξ1
and

F h2,g2
ξ2

, whose ribbons ξ1 and ξ2 split, i.e. there exists ribbons ξ′, ξ′1, ξ
′
2 such

that ξ1 = (ξ′, ξ′1) and ξ2 = (ξ′, ξ′2), see Figure 3.18. The study of these braid
relations lies outside the scope of this work, but the interested reader may
consult [Kit03], particularly [Kit03, Section 5.3]. We will, however, examine
these braid relations in greater detail in [BHNVBA].

In the next section, we will concretely study these anyonic states created
by ribbon operators and unfold their relation to the representation theory of
the quantum double D(G) of the group G.
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ξ′

ξ′1 ξ′2

Figure 3.18: Depiction of two initially overlapping ribbons ξ1 = (ξ′, ξ′1) and
ξ2 = (ξ′, ξ′2) that split. For simplicity, the ribbons are depicted as curves,
rather than concatenation of sites. The dashed line ξ′ indicates that the
ribbons ξ1 and ξ2 start at some arbitrary site in the distance.

3.4 Anyon excitations

We have seen in the previous section that we can construct vectors in the GNS
representation (H, π,Ω) of the vacuum state ω0 that violate the ground state
conditions in Equation (3.2.27) by means of ribbon operators. In this section,
we will see that the different charges are closely related to the irreducible
representations of the quantum double D(G).

We mentioned that the star operators Aks for k ∈ G at site s = (v, f) was
independent of the concrete choice of the face f as long as the vertex v stays
the same. The next proposition says that star- and plaquette operators real-
ize an action of the quantum double for each site s, justifying the symmetric
notation for both plaquette- and star operators.

Proposition 3.4.1. Let Λ be a finite region containing the site s, and let
D(G) be the quantum double of G. Then the map

Us : D(G) → AΛ, δg ⊗ k 7→ Bg
sA

k
s (3.4.1)

establishes a faithful representation of D(G) on HΛ for each site s ∈ S.
Furthermore, if D(G) is equipped with the star involution (δg⊗h)∗ = δhgh̄⊗ h̄
as defined in Equation (2.4.27), Us becomes a *-homomorphism from D(G)
to AΛ.

Proof. Clearly, the set
{
Bg
sA

h
s | h, g ∈ G

}
is linearly independent. The rest
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follows from

Us [(δg1 ⊗ h1) · (δg2 ⊗ h2)] = δg1,h1g2h̄1Us [δg1 ⊗ h1h2] = Bg1
s B

h1g2h̄1
s Ah1h2s

=Bg1
s B

h1g2h̄1
s Ah1s A

h2
s = Bg1

s A
h1
s B

g2
s A

h2
s ,

and

(Us(δg ⊗ h))∗ =
(
Bg
sA

h
s

)∗
= Ah̄sB

g
s = Bh̄gh

s Ah̄s = Us(δh̄gh ⊗ h̄)

=Us ((δg ⊗ h)∗) .

Thus, H becomes a D(G)-module under the action. We want to identify
the irreducible submodules at each site with the aid of ribbon operators.

Before we continue, we review the notation given in Section 2.4.2. Denote

by D̂(G) a fixed set of inequivalent representatives of the set of irreducible

representations of D(G). Recall that elements α ∈ D̂(G) can be labelled
by pairs α = (πα, Cα), where Cα ∈ GC is a conjugacy class of G and πα an
irreducible representation of the centralizer subgroup Nα of a fixed element

rα ∈ Cα. Writing Cα =
{
c1, . . . , c|Cα|

}
, we fix for each α ∈ D̂(G) elements

qi ∈ G
/
Nα such that ci = qirαq̄i for all ci ∈ Cα. The irreducible modules of

the quantum double are concretely given by

Vα := CCα ⊗ Vπα , (3.4.2)

where Vπα is the irreducible module associated to πα, and the concrete action
on Vα by elements in D(G) is given via

(δg ⊗ h) � (c⊗ v) = δg,hch̄hch̄⊗ π (q̄hch̄hqc) (v). (3.4.3)

Finally, we set

• ICα = {1, . . . , |Cα|}

• Iπα = {1, . . . , dimπα}

• Iα = ICα × Iπα

so that Cα = {ck}k∈ICα . Motivated by the arguments in the proof of Theorem

2.2.6, see in particular Equation (2.2.9), we choose the following new basis for
the ribbon operators constructed in Section 3.3: Given index pairs I, J ∈ Iα
with I = (i1, i2) and J = (j1, j2) and a ribbon ξ, we define the operator

F IJ,α
ξ =

√
dα
∑
g,h∈G

Γ̄IJα (δg ⊗ h)F ḡ,h
ξ , (3.4.4)
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where ΓIJα are the unitary matrix coefficients of α as in Equation (2.4.33)
and dα = |Cα| dimπα is the dimension of α.

It follows from Equation (2.4.33) that the summation over g ∈ G is non-
zero only if g = ci1 = hcj1h̄. Since for each h ∈ Nα there exists a unique
n ∈ Nα such that h = qi1nq̄j1 , the above formula reads

F IJ,α
ξ =

√
dα
∑
n∈NC

Γ̄i2j2πα (n)F
c̄i1 ,qi1nq̄j1
ξ , (3.4.5)

where Γπα is a unitary matrix representation of πα. The reason for choosing
ḡ instead of g in Equation (3.4.4) is so that the type of the magnetic charge
at site ∂0ξ inserted by F IJ,α

ξ would be Cα, since F g,h
ξ inserts the flux ḡ at site

∂0ξ. The constant
√
dα serves as a normalization factor, as we will see later.

These operators indeed give a decomposition of the GNS representation
H into irreducible components.

Proposition 3.4.2. Let ξ be an open ribbon, i.e. ∂0ξ ̸= ∂1ξ. Then the
vectors {

F IJ,α
ξ Ω0 | α ∈ D̂(G), I, J ∈ Iα

}
form an orthonormal set of vectors in H. Furthermore, for each fixed α ∈
D̂(G) and fixed J ∈ Iα, the subspaces

Wα,J = spanI∈Iα

{
F IJ,α
ξ Ω0

}
(3.4.6)

are mutually orthogonal and irreducible D(G)-submodules of H with action
given as in Proposition 3.4.1 at site s = ∂0ξ and are isomorphic to the
irreducible modules Vα given in Equation (3.4.2) as D(G) representations
for each fixed choice of J ∈ Iα. It follows that the space{

F h,g
ξ | g, h ∈ G

}
is isomorphic to the regular representation of D(G).

Proof. We show the orthonormality by direct calculation: Let α, β ∈ D̂(G)
and write I, J ∈ Iα with I = (i1, i2), J = (j1, j2) and K,L ∈ Iβ with
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K = (k1, k2), L = (l1, l2). Then〈
F IJ,α
ξ Ω0, F

KJ,β
ξ Ω0

〉
=
√
dαdβ

∑
n∈Nα
m∈Nβ

Γi2,j2πα (n)Γ̄k2,l2πβ
(m)ω0

(
F
ci1 ,qi1nq̄j1
ξ F

c̄k1 ,qk1mq̄l1
ξ

)
(3.3.18)

=
√
dαdβ

∑
n∈Nα
m∈Nβ

Γi2,j2πα (n)Γ̄k2,l2πβ
(m)δqi1nq̄j1 ,qk1mq̄l1ω0

(
F
ci1 c̄k1 ,qi1nq̄j1
ξ

)
(3.3.34)

= δi1,k1

√
dαdβ

|G|
∑
n∈Nα
m∈Nβ

δqi1nq̄j1 ,qk1mq̄l1Γi2,j2πα (n)Γ̄k2,l2πβ
(m)

The identity i1 = k1 gives nq̄j1 = mq̄l1 for the above expression to not be
zero, and because each element g ∈ G can be uniquely factorized as g = n0q̄s
for some n0 ∈ Nα and qs ∈ Cα, it follows that m = n and l1 = j1. Above
expression becomes

δi1,k1δj1,l1

√
dαdβ

|G|
∑
n∈dα
m∈nβ

δn,mΓi2,j2πα (n)Γ̄k2,l2πβ
(n)

(2.2.5)
====δi1,k1δj1,l1δi2,k2δj2,l2δα,β

√
dαdβ

|G|
|Nα|

dimπα

=δI,KδJ,Lδα,β
|Cα| |Nα| dimπα

|G| dimπα

=δI,KδJ,Lδα,β,

where we used that |G| = |Cα| |Nα|. Let {bj}j=1,...,dimπα
be an orthonor-

mal basis of the irreducible representation Vπα of Nα such that Γi2j2πα (n) =
⟨bi2 , πα(n)bj2⟩ is a unitary matrix representation of πα. Then it follows that
a linear map ϕ : Vα → Wα,J can be defined as the linear extension of

ci1 ⊗ bi2 7→
∑
n∈Nα

Γ̄i2j2πα (n)F
c̄i1 ,qi1nq̄j1
ξ Ω0 (3.4.7)

and that dim(Wα,J) = |Nα| · |Cα| = dim(Vα). Hence, ϕ is an isomorphism of
vector spaces. Moreover, if ξ is locally clockwise oriented, we have

Us(δg ⊗ h)F IJ,α
ξ Ω0 =

√
dα
∑
n∈Nα

Bg
sA

h
s Γ̄

i2,j2
πα (n)F

c̄i1 ,qi1nq̄j1
ξ Ω0

(3.3.6)
====

√
dα
∑
n∈Nα

Γ̄i2,j2πα (n)Bg
sF

hc̄i1 h̄,hqi1nq̄j1
ξ Ω0

(3.3.8)
====

√
dα
∑
n∈Nα

Γ̄i2,j2πα (n)F
hc̄i1 h̄,hqi1nq̄j1
ξ B

ghc̄i1 h̄
s Ω0.
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and if ξ was locally counter-clockwise oriented, (3.3.10) gives√
dα
∑
n∈Nα

Γ̄i2,j2πα (n)F
hc̄i1 h̄,hqi1nq̄j1
ξ B

hc̄i1 h̄g
s Ω0.

In either case, we have B
ghc̄i1 h̄
s Ω0 = B

hc̄i1 h̄g
s Ω0 = δg,hc̄i1 h̄Ω0, and the above

expression becomes

δg,hc̄i1 h̄
√
dα
∑
n∈Nα

Γ̄i2,j2πα (n)F
hc̄i1 h̄,hqi1nq̄j1
ξ Ω0.

From the coset decomposition G =
⋃̇
i∈ICα

qiNα, it follows that there exists

a unique pair (k,m) ∈ ICα ×Nα such that hqi1 = qkm. This implies that

hc̄i1h̄ = qkmq̄i1(qi1 r̄q̄i1)qi1m̄q̄k = qkmr̄m̄q̄k = qkr̄q̄k = c̄k. (3.4.8)

Hence, we obtain

δg,hci1 h̄
√
dα
∑
n∈Nα

Γ̄i2,j2πα (n)F
c̄k,qkmnq̄j1
ξ Ω0

n7→m̄nδg,hci1 h̄
√
dα
∑
n∈Nα

Γ̄i2j2πα (m̄n)F
c̄k,qknq̄j1
ξ Ω0

=δg,hci1 h̄dα
∑
n∈Nα

dimπα∑
t=1

Γ̄i2tπα(m̄)Γ̄tj2πα (n)F
c̄k,qknq̄j1
ξ Ω0

Writing It = (k, t), the above expression simplifies to

δg,hci1 h̄

dimπα∑
t=1

Γ̄i2tπα(m̄)F ItJ,α
ξ Ω0 =δg,hci1 h̄

dimπα∑
t=1

Γti2πα(m)ϕ(ck ⊗ bt).

=ϕ
(
δg,hci1 h̄hci1h̄⊗ πα(m)(bi2)

)
.

(3.4.8)
===ϕ

(
δg,hci1 h̄hci1h̄⊗ πα(q̄khqi1)(bi2)

)
.

(3.4.3)
===ϕ((δg ⊗ h) � (ci1 ⊗ bi2)).

where we used that hci1h̄ = ck ⇔ qk = qhci1 h̄. Hence, ϕ is an isomorphism of

D(G)-modules.
Finally, since the isomorphism Wα,J ∼= Vα holds for each fixed J ∈ Iα,

we have at each site dimα = |Cα| · |Nα| many copies of the irreducible repre-
sentation Vα. Using Proposition 2.4.11, we obtain{

F h,g
ξ | g, h ∈ G

}
∼=

⊕
α∈D̂(G)

dαWα,J ∼=
⊕

α∈D̂(G)

dαVα ≃ D(G). (3.4.9)
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The fact that the Wα,J can be identified with subrepresentations of the
regular representation of D(G) was already shown in [CM22b, Proposition
3.10] using the same techniques, i.e. the commutation relations for ribbon
operators and star- and plaquette operators. However, there the local orien-
tation of the ribbons were not taken into account.

Since ribbon operators generate dual and direct triangle operators, they
generate the algebra Aloc of local observables. Thus, H contains a copy of
D(G) as a submodule for each site s of the lattice. The projections into the
corresponding irreducible submodules given in Equation (3.4.6) are given by
the central projections in Equation (2.4.37). Under the action Us given in
Equation (3.4.1), these projections take the form

Pα
s =

dimπα

|Nα|
∑
n∈Nα

∑
i∈ICα

trπα(n)A
qcinq̄ci
s Bci

s . (3.4.10)

We can interpret these operators as charge detectors at site s, but there is a
different way of detecting charges. Another class of projections is given by

Pα
σ =

dimπα

|Nα|
∑
n∈Nα

∑
i∈ICα

trπα(n)F
qcinq̄ci ,ci
σ . (3.4.11)

In either case, the projections given in Equation (3.4.11) respectively Equa-
tion (3.4.10) are mutually orthogonal, i.e. Pα1

σ Pα2
σ = Pα2

σ Pα1
σ = δα1,α2P

α1
σ

and Pα1
s Pα2

s = Pα2
s Pα1

s = δα1,α2P
α1
s . We claim that these two types of pro-

jections operators coincide on states that have a single excitation at some site
and we will show this using the deformation property for ribbon operators.
This is particularly surprising, since the domain of Pα

σ would be disjoint of
the site s. In fact, the closed ribbon can be arbitrarily large and far away
from the site s. This property will make these operators particularly useful
later on.

Before we attempt to prove our claim, we want to show that the operators
defined in Equation (3.4.11) are rotationally invariant.

Proposition 3.4.3. Let σ = (s1, . . . , sn) be a closed ribbon, that is, sn = s0,
and let σ′ = (sk, . . . , sn−1, s0, . . . , sk−1) be a rotation of σ. Then

Pα
σ = Pα

σ′

for all irreducible representations α ∈ D̂(G).

Proof. Let σ1 = (s0, . . . , sk−1) and σ2 = (sk, . . . , sn−1) such that σ = (σ1σ2)
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and σ′ = (σ2σ1). We calculate

|Nα|
dimπα

Pα
σ =

∑
n∈Nα

∑
i∈ICα

tr(n)F qinq̄i,ci
σ

(3.3.2)
=

∑
n∈Nα

∑
i∈ICα

∑
k∈G

tr(n)F qinq̄i,k
σ1

F k̄qinq̄ik,k̄ci
σ2

.

For every fixed i ∈ ICα we can find some j ∈ ICα and m ∈ Nα such that
k = qimq̄j. Writing further ci = qirαq̄i, the sum can alternatively be written
as ∑

n∈Nα

∑
i∈ICα

∑
j∈ICα ,m∈Nα

tr(n)F qinq̄i,qimq̄j
σ1

F qjm̄nmq̄j ,qjm̄q̄iqirαq̄i
σ2

n7→mnm̄
====

∑
n∈Nα

∑
i∈ICα

∑
j∈ICα ,m∈Nα

tr(n)F qjnq̄j ,qjm̄rαq̄i
σ2

F qimnm̄q̄i,qimq̄j
σ1

m7→rαm====
∑
n∈Nα

∑
i∈ICα

∑
j∈ICα ,m∈Nα

tr(n)F qjnq̄j ,qjm̄q̄i
σ2

F qirαmnm̄r̄αq̄i,qirαmq̄j
σ1

.

Note that m,n ∈ ZG(rα), giving rαmnm̄r̄α = mnm̄. Note also that we can
substitute qim with qimqj since by summing over all i ∈ Iα and m ∈ Nα the
expression qim runs through all group elements in G. The expression then
simplifies to ∑

n∈Nα

∑
i∈ICα

∑
j∈ICα ,m∈Nα

tr(n)F qjnq̄j ,m̄q̄i
σ2

F qimqjnq̄jm̄q̄i,qimqjrαq̄j
σ1

qjrαq̄j=cj
====

∑
n∈Nα

∑
i∈ICα

∑
j∈ICα ,m∈Nα

tr(n)F qjnq̄j ,(qim)
σ2

F (qim)qjnq̄j(qim),qimcj
σ1

Finally, by writing k = (qim) the sum becomes∑
j∈ICα ,m∈Nα

∑
n∈Nα

∑
k∈G

tr(n)F qjnq̄j ,k
σ2

F k̄qjnq̄jk,k̄cj
σ1

(3.3.2)
====

∑
j∈ICα ,m∈Nα

∑
n∈Nα

tr(n)F
qjnq̄j ,cj
σ′

=
|Nα|

dimπα

Pα
σ′ .

Note that rotationally invariant ribbon operators automatically commute
with all star and plaquette operators. This is because star and plaquette
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operators Ahs and Bg
s commute with Pα

σ at all sites s ̸∈ {∂0σ, ∂1σ} by Equation
(3.3.7) but by Proposition 3.4.3, the endpoints of σ can be changed without
changing the operator Pα

σ . If σ is a closed ribbon, we define the interior of
σ to be the connected component bounded by the direct and dual path of σ
in R2, see also Figure 3.19. It turns out that in the absence of excitations
in the interior of σ, the projection operators given in Equation (3.4.11) and
Equation (3.4.10) coincide.

σdi

σdus2

s1

s3

s4

Figure 3.19: Depiction of a closed ribbon σ inside a square-shaped region
of size 7. In the scenario depicted here, the interior is bounded by the dual
ribbon σdu (blue, dashed line). The sites s1 and s2 (green) are in the interior
of σ, but the sites s3 and s4 (red) are not.

Proposition 3.4.4. Let σ be a closed ribbon and Λ a square-shaped region
containing σ, that is, the graph GΛ contains all sites of σ. Let furthermore
s0 be a site in the interior of σ and ψ ∈ HΛ be such that Asψ = Bsψ = ψ
for all s ̸= s0. If the direct and dual path are oriented such that they point
counter-clockwise around the interior of σ, we have

Pα
σ ψ = Pα

s0
ψ,

otherwise we have

Pα
σ ψ = Pα∗

s0
ψ
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for all α ∈ D̂(G), where α∗ denotes the dual representation of α defined in
Proposition 2.4.10.

Proof. We will only sketch the proof, but the arguments are exactly the same
as the ones in Lemma 3.3.6 and Corollary 3.3.11. Because Pα

σ is rotationally
invariant, it commutes with all star operators everywhere, the endpoints of
σ included. We can then use star operators, to change the dual path around
each dual plaquette in the lattice, including those at the endpoints of σ, until
the dual path encloses the unique dual plaquette enclosing s0 = (v0, f0),
described by some dual ribbon ξv0 = (τ1, . . . , τ4). We refer to Figure 3.17
for a visualization of the general deformation procedure for the dual path,
with emphasize on the fact that we are here allowed to commute with star
operators at the endpoints of σ as well. Similarly, Pα

σ commutes with all
plaquette operators everywhere, which allows deformations that include the
endpoints as well, until the direct path encloses the unique smallest plaquette
containing f0, described by some direct path p = (v1, v2, v3, v0, v1). See also
Figure 3.20. Note, that if σ moves clockwise, respectively counter-clockwise
around the site s0, then so do p and ξv0 . We set p∆ = (v1, v0) and set
k = β(p∆)(γ) for some fixed G-connection γ ̸∈ ker(Pα

σ ) with flat monodromy
around each face f ̸= f0. Using Equation (3.3.25), we have

Pα
σ γ =

∑
n∈Nα

trπα(n)
4∏
i=1

Lk̄qinq̄ikτi
T cip γ

=
∑
n∈Nα

trπα(n)
4∏
i=1

Lk̄qinq̄ikτi
T k̄cikp′ γ,

where p′ = (p̄∆, p, p∆). We can apply the exact same substitutions as in the
proof of Proposition 3.4.3 to see that the above expression becomes

Pα
σ γ =

∑
n∈Nα

trπα(n)
4∏
i=1

Lqinq̄iτi
T cip′ γ,

regardless of the choice of γ. If σ moves clockwise around s0, then so do ξv0
and p′ and ξv0 is locally counter-clockwise oriented while T cip′ = B c̄i

s0
for all

i ∈ ICα . See also the discussion after Equation (3.3.17). It follows that

Pα
σ =

∑
n∈Nα

trπα(n)Aqin̄q̄is0
B c̄i
s0

=
∑
n∈Nα

trπα(n̄)Aqinq̄is0
B c̄i
s0

=Pα∗

s0
.
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Similarly, if σ moves counter-clockwise around s0, then so do ξv0 and p′, and
we have

Pα
σ =

∑
n∈Nα

trπα(n)Aqinq̄is0
Bci
s0

=Pα
s0
.

v0 v1

v2v3

s0

.

Figure 3.20: Depiction of the site s0 = (v0, f0) (green). The face v0 is en-
circled by a dual plaquette aligned with a dual ribbon ξv0 (dashed) and the
face f0 is encircled by a direct path p = (v0, v1, v2, v3, v0) (red).

This shows that the projection operators Pα
σ measure the existence of an

anyonic excitation in the interior of σ.

Remark 3.4.5. If s1, . . . , sn is a collection of sites enclosed by a closed ribbon σ
moving counter-clockwise around its interior, and ψ ∈ H such that Asψ = ψ
and Bsψ = ψ for all s ̸∈ {s1, . . . , sn}, then we have more generally

Pα
σ ψ =

∑
i∈ICα

∑
n∈Nα

∑
k1,...,kn−1∈G
c1·c2·····cn−1=ci

Aqinq̄is1
Bc1
s1

(
n−1∏
l=1

Ak̄lqinq̄iklsl
Bk̄lclkl
sl

T klpl

)
ψ,

where pl are paths starting at v(s1) and ending at v(sl) such that pl is con-
tained in pl+1 for all l = 1, . . . , n − 1 and pn−1 is a closed path that moves
clockwise around all sites. This can be shown using the same arguments as
in the proof of Proposition 3.4.4 by choosing convenient deformations of the
direct- and dual path of σ. A similar result is true for the case where σ
encircles its interior clockwise.

We will verify directly that the projection operators Pα
σ can indeed mea-

sure the irreducible components Wj1j2,α in Proposition 3.4.2.
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Proposition 3.4.6. Let σ be a closed ribbon that is moving counter-clockwise
around its interior, and ξ a ribbon with s0 := ∂0ξ in the interior of σ and
∂1ξ outside σ, see Figure 3.21. Then we have

Pα
σ F

IJ,β
ξ Ω0 = δα,βF

IJ,β
ξ Ω0 (3.4.12)

for all index pairs I and J and irreducible representations α = (πα, Cα) and
β = (πβ, Cβ) of the quantum double D(G).

Proof. Let Us0 be the action of the quantum double D(G) on H as in Equa-
tion (3.4.1). By Proposition 3.4.2, the space{

F h,g
ξ Ω0 | h, g ∈ G

}
viewed as a D(G)-module under the action of Us0 is isomorphic to the left-
regular representation of D(G). By Proposition 3.4.4, we have

Pα
σ F

h,g
ξ Ω0 = Pα

s0
F h,g
ξ Ω0

for all h, g ∈ G. But the operators Pα
s0

are the central projections onto the
irreducible submodules in D(G) isomorphic to Vα under the action of Us0 .
By Proposition 3.4.2, we have Vα ∼= Wα,J for each J ∈ Iα, where Wα,J is
defined as in Equation (3.4.6) as the linear span of the operators F IJ,α

ξ . This
implies the claim.

Note that Proposition 3.4.6 implies in particular

Pα
σ Ω0 = δα,trivΩ0, (3.4.13)

since Ω0 =
∑
g∈G

Γ1,1
triv(g)F e,g

ξ Ω0 = F
(1,1)(1,1),triv
ξ Ω0. This result will become

useful later.
We will now use the operators

{
F IJ,α
ξ

}
to define *-homomorphisms, as

in Equation (3.1.1). For α ∈ D̂(G) and ξ a ribbon, let Fα
ξ ∈ A⊗MIα(C) be

an Iα × Iα matrix with coefficients in the quasilocal algebra A, and entries
given via

(Fα
ξ )IJ =

1√
dα
F IJ,α
ξ =

∑
n∈Nα

Γ̄i2j2πα (n)F
c̄i1 ,qi1nq̄j1
ξ .

Then we define a map χαξ : A → A⊗MIα(C) via

χαξ : X 7→ Fα
ξ (X ⊗ id)(Fα

ξ )∗, (3.4.14)

where id denotes the identity on the vector space CIα . These maps satisfy
the properties in the following definition.
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Definition 3.4.7 (Amplimorphism). An amplifying morphism or am-
plimorphism of a C*-algebra A is a *-homomorphism χ : A → A⊗End(V )
where V is a finite dimensional vector space. If A is a quasilocal algebra
generated by a net {AΛ}Λ∈I , then χ is called localized in Λ if

χ(A) = χ(1A)(A⊗ id)

for all observables A ∈ AΛc supported outside Λ. An amplimorphism is
called localized if it is localized in some Λ ∈ I. χ is called unital if χ(1A) =
1A ⊗ idV .

The idea to consider amplimorphisms instead of endomorphisms is due
to [SV93] and the construction of these amplimorphisms in the setting of Ki-
taev’s quantum double model has already been performed in [Naa12, Naa15].

Proposition 3.4.8. The matrices Fα
ξ are unitary for each ribbon ξ and ir-

reducible representation α ∈ D̂(G) and satisfy(
Fα
ξ

)∗
= Fα

ξ̄ , (3.4.15)

where ξ̄ is the ribbon ξ with inverted orientation. If ξ1, ξ2 are two ribbons
such that ξ1 is composable with ξ2, then

Fα
ξ1
Fα
ξ2

= Fα
(ξ1,ξ2)

. (3.4.16)

It follows that the maps χαξ : A → A ⊗MIα(C) given in Equation (3.4.14)
are unital and localized amplimorphisms.

Proof. We will start by verifying Equation (3.4.15) and Equation (3.4.16)
component wise:(

(Fα
ξ )∗
)IJ

=
(
(Fα

ξ )JI
)∗

=
∑
n∈Nα

Γj2i2πα (n)F
cj1 ,qj1nq̄i1
ξ

(3.3.19)
====

∑
n∈Nα

Γ̄i2j2πα (n̄)F
qi1 n̄q̄j1 c̄j1qj1nq̄i1 ,q̄i1 n̄qj1
ξ̄

=
∑
n∈Nα

Γ̄i2j2πα (n̄)F
c̄i1 ,q̄i1 n̄qj1
ξ̄

n7→n̄
= (Fα

ξ̄ )IJ ,

giving Equation (3.4.15). To see Equation (3.4.16), let ξ1, ξ2 be ribbons such
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that ξ1 is composable with ξ2. Then∑
K∈Iα

F IK,α
ξ1

FKJ,α
ξ2

=
∑
K∈Iα

∑
n1,n2∈Nα

Γ̄i2k2πα (n1)Γ̄
k2j2
πα (n2)F

c̄i1 ,qi1n1q̄k1
ξ1

F
c̄k1 ,qk1n2q̄j1
ξ2

=
∑
k1∈Iα

∑
n1,n2∈Nα

Γ̄i2j2πα (n1n2)F
c̄i1 ,qi1n1q̄k1
ξ1

F
c̄k1 ,qk1n2q̄j1
ξ2

n2 7→n̄1n2=====
∑
k1∈Iα

∑
n1,n2∈Nα

Γ̄i2j2πα (n2)F
c̄i1 ,qi1n1q̄k1
ξ1

F
c̄k1 ,qk1 n̄1n2q̄j1
ξ2

.

Noting that every element h ∈ G can uniquely be expressed in the form
h = n1qk1 , we realize that the summation over k1 and n1 can alternatively
be performed over all h = qi1n1q̄k1 ∈ G. In that case, we have ck1 = h̄ci1h
and qk1n̄1n2q̄j1 = h̄qi1n2q̄j1 . The above expression becomes∑

h∈G

∑
n2∈Nα

Γ̄i2j2πα (n2)F
c̄i1 ,h

ξ1
F
h̄c̄i1h,h̄qi1n2q̄j1
ξ2

= F IJ,α
(ξ1,ξ2)

.

We verify that the matrix Fα
ξ is unital:

(Fα
ξ (Fα

ξ )∗)IJ
(3.4.15)
====

∑
K∈Iα

(Fα
ξ )IK(Fα

ξ̄ )KJ
(3.4.16)
==== (Fα

ξξ̄)
IJ (3.3.20)

==== (Fα
∅ )IJ .

In view of Equation (3.3.1), (Fα
∅ )IJ becomes

(Fα
∅ )IJ =

∑
n∈Nα

Γ̄i2j2πα (n)F
c̄i1 ,qi1nq̄j1
∅ =

∑
n∈Nα

δqi1nq̄j1 ,eΓ̄
i2j2
πα (n)1A.

Now, qi1nq̄j1 = e implies qj1 = qi1n. Since the right-hand side of this decom-
position is unique, it follows that i1 = j1 and n = e. Because Γ̄i2j2πα (e) = δi2,j2 ,
it follows that (Fα

∅ )IJ = δI,J1A, and we have

Fα
ξ (Fα

ξ )∗ = 1A ⊗ id . (3.4.17)

Using similar arguments, we can show that

(Fα
ξ )∗Fα

ξ = 1A ⊗ id (3.4.18)

holds as well. For the other claims, notice that the map χαξ is unital if and
only if

Fα
ξ (Fα

ξ )∗ = 1A ⊗ id .
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Furthermore, if X, Y ∈ A, then

χαξ (XY ) =Fα
ξ (XY ⊗ id)(Fα

ξ )∗ = Fα
ξ (X ⊗ id)(Fα

ξ )∗Fα
ξ (Y ⊗ id)(Fα

ξ )∗

=χαξ (X)χαξ (Y )

and

(χαξ (X))∗ = Fα
ξ (X ⊗ id)∗(Fα

ξ )∗ = χαξ (X∗).

Clearly, χαξ is a linear map, and it follows that χαξ is a *-homomorphism.
Finally, χαξ is localized in any region Λ containing the ribbon ξ: For any

operator X supported outside Λ we have
[
X,F IJ,α

ξ

]
= 0 for all I, J ∈ Iα and

therefore

χαξ (X) = Fα
ξ (X ⊗ id)(Fα

ξ )∗ = (X ⊗ id)Fα
ξ (Fα

ξ )∗ = (X ⊗ id).

The matrices FIJ,α
ξ are not yet suitable enough to describe ground states

of the quantum double model. The physical interpretation is that ribbon
operators create pairs of excitations, while a ground state should intuitively
describe a single charge only. Otherwise, we would be able to move one
charge back to the other using local observables, and the fusion would lower
the energy. The idea is to take the limits of ribbons ξn and sending the
endpoint ∂1ξ to infinity. Let {ξn} be a sequence of ribbons with fixed initial
site s0 = ∂0ξn such that ξn ⊂ ξn+1 for all n ∈ N and such that the number
of sites S(n) of ξn = (s0, . . . , sS(n)) strictly grows with n. We call such a
sequence a ribbon extending to infinity from s0 and call the infinite
ribbon ξ := (s0, . . . ) the limit of {ξn}, denoted by lim

n→∞
ξn := ξ.

Proposition 3.4.9. Let {ξn} be a sequence of ribbons extending to infinity
from some site s0, and let ξ be the limit of ξn. Denote by χ

IJ,α
ξn

the component
in the I-th row and J-th column of the map χαξn defined in Equation (3.4.14)
for I, J ∈ Iα, that is

χIJ,αξn
(X) =

∑
K∈Iα

(Fα
ξn)IK(X ⊗ id)((Fα

ξn)∗)KJ

=
1

dα

∑
K

F IK,α
ξn

(X ⊗ id)
(
F JK,α
ξn

)∗
.

Then for each α ∈ D̂(G), I, J ∈ Iα and X ∈ Aloc the limit

χIJ,αξ (X) := lim
n→∞

χIJ,αξn
(X)
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exists and extends to a bounded linear map χIJξ : A → A. Furthermore, the
amplimorphism χαξ exhibits the following properties:

(i) χαξ (1A) = 1A ⊗ id

(ii) χαξ (A∗) = χαξ (A)∗

(iii) χαξ (ABC) = (A⊗ id)χαξ (B⊗ id)(C⊗ id) for all A,B,C ∈ A with A and
C supported outside ξ.

(iv) For all X ∈ Aloc there exists an n0 ∈ N such that χαn(X) = χαξn0
(X) for

all n ≥ n0.

Proof. We start by showing (iv). Let X ∈ Aloc and n0 such that supp(A) ∩
(ξn \ ξn0) = ∅ for all n ≥ n0. Writing ξ̃n = ξn \ ξn0 to denote the ribbon
starting at the endpoint of ξn0 such that ξn = (ξn0 , ξ̃n) , we obtain for n ≥ n0

χαξn(X) =Fα
ξn(X ⊗ id)(Fα

ξn)∗

(3.4.16)
====Fα

ξn0
Fα
ξ̃n

(X ⊗ id)(Fα
ξ̃n

)∗(Fα
ξn0

)∗

=Fα
ξn0

(X ⊗ id)(Fα
ξn0

)∗Fα
ξ̃n

(Fα
ξ̃n

)∗

=χII,αξn0
(X).

Note that this already implies convergence, since χξn(X) becomes eventually
constant for each X ∈ Aloc. Item (i) and (ii) follow from Proposition 3.4.8
and (iii) is clear.

Remark 3.4.10. The map χCα,πα
ξ defined in [Naa12, Lem 12.2.3] is related to

the map χII,αξ via χCα,πα
ξ =

∑
I

χII,αξ .

Define

ωIJ,αξ := ω0 ◦ χIJ,αξ .

It is easy to see that for I = J the composition ω0 ◦χII,αξ becomes a state for

all α ∈ D̂(G) and I ∈ Iα.

Remark 3.4.11. By Corollary 3.3.11, the map ωIJ,αξ for some semi-infinite
ribbon ξ only depends on the initial site s = ∂0ξ. Indeed, we have for all
X ∈ Aloc and n ∈ N large enough

ωII,αξ (X) =
1

dα

∑
J

⟨F IJ,α
ξn

Ω0, XF
IJ,α
ξn

Ω0⟩ =
1

dα

∑
J

⟨F IJ,α
ζ Ω0, XF

IJ,α
ζ Ω0⟩,
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for all ribbons ζ with the same endpoints as ξn. Furthermore, if ξ1, ξ2 are
two semi-infinite ribbons with starting sites s1 := ∂0ξ1 and s2 := ∂0ξ2, then
ωII,αξ1

(X) = ωII,αξ2
(X) for all X supported outside a region containing a ribbon

ζ with ∂0ζ = s1 and ∂1ζ = s2. This follows because (Fα
ζ )∗ is a unitary matrix

commuting with X⊗ id, and (Fα
ζF

α
ξ′2

)IJΩ0 = (Fα
(ζξ′2)

)IJΩ0 = (Fα
ξ′1

)IJΩ0, where

ξ′1 ⊂ ξ1 and ξ′2 ⊂ ξ2 are arbitrary finite ribbons. Hence, ωII,αξ1
and ωII,αξ2

look
the same from afar. This observation will become important in Theorem
3.6.9.

Lemma 3.4.12. The states ωII,αξ coincide with the states

ραξ : X 7→ 1

dα

∑
J,I∈Iα

ω0(F
IJ,α
ξ X(F IJ,α

ξ )∗) (3.4.19)

for all X ∈ Aloc supported on a region disjoint from ∂0ξ and each α ∈ D̂(G),
I ∈ Iα and semi-infinite ribbon ξ.

Proof. It was already shown in [Naa12] that the map defined in Equation
(3.4.19) defines a state for each semi-infinite ribbon ξ and irreducible repre-

sentation α ∈ D̂(G). Let X be such that s0 := ∂0ξ ̸∈ supp(X) and write

As0 = 1
|G|

∑
m∈Nα

∑
l∈ICα

A
qlmq̄i1
s0 for the star operator at site s0. Then

ωII,αξ (X) =
∑
J

∑
n1,n2∈Nα

Γ̄i2j2πα (n1)Γ
j2i2
πα (n2)ω0(F

c̄i1 ,qi1n1q̄j1
ξ XF

ci1 ,qi1n2q̄j1
ξ )

=
1

|G|
∑
J

∑
l∈ICα

∑
n1,n2,m∈Nα

Γ̄i2j2πα (n1)Γ
i2j2
πα (n2)ω0(A

qlmq̄i1
s0 F

c̄i1 ,qi1n1q̄j1
ξ XF

ci1 ,qi1n2q̄j1
ξ )

=
1

|G|
∑
J

∑
l∈ICα

∑
n1,n2,m∈Nα

Γ̄i2j2πα (n1)Γ
i2j2
πα (n2)ω0(F

c̄l1 ,ql1mn1q̄j1
ξ XF

cl1 ,ql1mn2q̄j1
ξ A

qlmq̄i1
s0 )

Substituting n1 7→ m̄n1 and n2 7→ m̄n2 :

=
1

|G|
∑
J

∑
l∈ICα

∑
n1,n2,m∈Nα

Γ̄i2j2πα (m̄n1)Γ
i2j2
πα (m̄n1)ω0(F

c̄l,qln1q̄j1
ξ XF

cl,qln2q̄j1
ξ )
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For the matrix coefficients, we obtain:

=
∑
j2∈Iπα

∑
m∈Nα

Γ̄i2j2πα (m̄n1)Γ
i2j2
πα (m̄n2)

=
∑
j2∈Iπα

∑
m∈Nα

Γj2i2πα (n̄1m)Γi2j2πα (m̄n2)

=
∑

j2,t1,t2∈Iπα

∑
m∈Nα

Γj2t1πα (n̄1)Γ
t1i2
πα (m)Γi2t2πα (m̄)Γt2j2πα (n2)

=
∑

j2,t1,t2∈Iπα

∑
m∈Nα

Γt2j2πα (n2)Γ
j2t1
πα (n̄1)Γ

t1i2
πα (m)Γ̄t2i2πα (m)

=
|Nα|

dimπα

∑
j2,t∈Iπα

Γtj2πα (n2)Γ
j2t
πα (n̄1)

=
|Nα|

dimπα

tr(n̄1n2)

and the above expression becomes

=
|Nα|

|G| dimπα

∑
j1

∑
l∈ICα

∑
n1,n2∈Nα

tr(n̄1n2)ω0(F
c̄l,qln1q̄j1
ξ XF

cl,qln2q̄j1
ξ )

|G|=|Nα||Cα|
=

1

dα

∑
j1

∑
l∈ICα

∑
n1,n2∈Nα

tr(n̄1n2)ω0(F
c̄l,qln1q̄j1
ξ XF

cl,qln2q̄j1
ξ )

=
1

dα

∑
j1

∑
l∈ICα

∑
i2,j2∈Iπα

∑
n1,n2∈Nα

Γ̄i2j2πα (n1)Γ
i2j2
πα (n2)ω0(F

c̄l,qln1q̄j1
ξ XF

cl,qln2q̄j1
ξ )

=ραξ (X).

This shows that ωII,αξ |Λc= ραξ |Λc for each region Λ containing s0.

Remark 3.4.13. We emphasize that the ribbon operators F IJ,α
ξn

themselves
don’t converge in the operator norm as n tends to ∞. This can be seen
as follows: If F h,g

ξn
was converging to some operator in the norm topology

for a sequence of ribbons ξn extending to a semi-infinite ribbon ξ, then F h,g
ξn

would form a Cauchy-sequence. Then the sequence F h,g
ξn

Ω0 would form a
Cauchy-sequence as well, but we claim that for some n,m ∈ N with m > n
the expression ∥∥∥F h,g

ξn
Ω0 − F h,g

ξm
Ω0

∥∥∥
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is constant and non-zero. Indeed, we have∥∥∥F h,g
ξn

Ω0 − F h,g
ξm

Ω0

∥∥∥2 =ω0

([
F h̄,g
ξn

− F h̄,g
ξm

] [
F h,g
ξn

− F h,g
ξm

])
=ω0(F

e,g
ξn

+ F e,g
ξm

) − ω0(F
h̄,g
ξm
F h,g
ξn

) − ω0(F
h̄,g
ξn
F h,g
ξm

).

Using Equation (3.3.2), we write F h,g
ξm

=
∑
k∈G

F h,k
ξn
F k̄hk,k̄g
ξ′ , where ξ′ is such that

(ξn, ξ
′) = ξm. Furthermore, Lemma 3.3.12 gives ω0(F

e,g
ξn

) = ω0(F
e,g
ξm

) = 1
|G| .

We obtain

2

|G|
−
∑
k∈G

ω0(F
h̄,k
ξn
F k̄h̄k,k̄g
ξ′ F h,g

ξn
) −

∑
k∈G

ω0(F
h̄,g
ξn
F h,k
ξn
F k̄hk,k̄g
ξ′ )

(3.3.18)
=

2

|G|
− ω0(F

e,g
ξn
F ḡh̄g,e
ξ′ ) − ω0(F

e,g
ξn
F ḡhg,e
ξ′ ).

Applying Proposition 3.3.12 to the linear functionals X 7→ ω0(X(−)F ḡhḡg,e
ξ′ )

and X 7→ ω0(X(−)F ḡhg,e
ξ′ ) we see that

ω0(F
e,g
ξn
F ḡhg,e
ξ′ ) =

1

|G|
ω0(F

ḡhg,e
ξ′ ) =

δḡhg,e

|G|2
=

δh,e

|G|2

and similarly, ω0(F
e,g
ξn
F ḡh̄g,e
ξ′ ) =

δh,e

|G|2 holds as well. It follows that∥∥∥F h,g
ξn

Ω0 − F h,g
ξm

Ω0

∥∥∥ =
2

|G|
− δh,e

2

|G|2
,

which is in particular constant for all h, g ∈ G and n,m ∈ N with m > n.

Given a ribbon ξ extending to infinity, we define the state ωII,αξn
via

ωII,αξn
= ω0 ◦ χII,αξn

(3.4.20)

and set

ωII,αξ = lim
n→∞

ωII,αξn
. (3.4.21)

In the next lemma, we calculate the energy of these diagonal states ωII,αξ .

Lemma 3.4.14. Let s0 = ∂0ξ. Then we have

ωII,αξ (1A − As0) =1 − δπα,triv
1

|Cα|
, (3.4.22)

ωII,αξ (1A −Bs0) =1 − δCα,{e}, (3.4.23)

ωII,αξ (P ρ
σ ) =δρ,α, (3.4.24)
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for all closed ribbons σ enclosing s0, and

ωII,αξ (1A − As′) = ωII,αξ (1A −Bs′) = 0 (3.4.25)

for all s′ ̸= s.

Proof. Let I ∈ Iα with I = (i1, i2). To verify Equation (3.4.22), we may
write the trivial electric charge operator as

As0 =
1

|G|
∑
n∈Nα

∑
i∈ICα

A
qimq̄i1
s0 ,

using again that for every element k ∈ G there exists a unique pair (i,m) ∈
ICα × Nα such that gqi1 = qim. We then have for all K = (k1, k2) ∈ Iα and
n1, n2 ∈ Nα:

ω0

(
F
c̄i1 ,qi1n1q̄k1
ξ As0

(
F
ci1 ,qi1n2q̄k1
ξ

)∗)
=

1

|G|
∑
m∈Nα

|Cα|∑
i=1

ω0(F
c̄i1 ,qi1n1q̄k1
ξ A

qimq̄i1
s0 F

ci1 ,qi1n2q̄k1
ξ )

=
1

|G|
∑
m∈Nα

|Cα|∑
i=1

ω0(F
c̄i1 ,qi1n1q̄k1
ξ F

ci,qimn2q̄k1
ξ )

=
1

|G|
∑
m∈Nα

|Cα|∑
i=1

δqi1n1q̄k1 ,qimn2q̄k1
ω0(F

c̄i1ci,qi1n1q̄k1
ξ )

=
∑
m∈Nα

|Cα|∑
i=1

δn1,mn2δi1,i
1

|G|2
=

1

|G|2

Then we have

ω0

(
(Fα

ξ )IKAs0((F
α
ξ )∗)KI

)
=

1

dα
ω0

(
F IK,α
ξ As0(F

IK,α
ξ )∗

)
=

∑
n1,n2∈Nα

Γ̄i2k2πα (n1)Γ
i2k2
πα (n2)ω0(F

c̄i1 ,qi1n1q̄k1
ξ As0F

ci1 ,qi1n2q̄

ξ )

=
1

|G|2
∑

n1,n2∈Nα

Γ̄i2k2πα (n1)Γ
i2k2
πα (n2)
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By the Peter-Weyl Theorem, we have∑
n∈Nα

Γi2j2πα (n) =
∑
n∈Nα

Γi2j2πα (n)Γ̄1,1
triv(n) = |Nα| δπα,triv,

and using again that |Nα| |Cα| = |G|, the above expression becomes

1

|G|2
|Nα|2 δπα,triv =

δπα,triv

|Cα|2
.

Thus, we have

ωII,αξ (1A − As0) =1A −
∑
K∈Iα

ω0

(
(Fα

ξ )IKAs0((F
α
ξ )∗)KI

)
=1A −

|Cα|∑
k1=1

δπα,triv
1

|Cα|2

=1A − 1

|Cα|

showing Equation (3.4.22) For Equation (3.4.23), note that we have

ω0(F
c̄i1 ,qi1n1q̄k1
ξ Bs0F

ci1 ,qi1n2q̄k1
ξ )

(3.3.8)
====ω0(F

c̄i1 ,qi1n1q̄k1
ξ F

ci1 ,qi1n2q̄k1
ξ B

ci1
s0 )

(2.5.13)
====ω0(F

c̄i1 ,qi1n1q̄k1
ξ F

ci1 ,qi1n2q̄k1
ξ B

ci1
s0 Bs0)

=δci1 ,eω0(F
c̄i1 ,qi1n1q̄k1
ξ F

ci1 ,qi1n2q̄k1
ξ )

=δCα,{e}ω0(F
c̄i1 ,qi1n1q̄k1
ξ F

ci1 ,qi1n2q̄k1
ξ ).

Hence ∑
K∈Iα

ω0((F
α
ξ )IKBs0((F

α
ξ )∗)KI) =

∑
K∈Iα

δCα,{e}ω0((F
α
ξ )IK((Fα

ξ )∗)KI)

=δCα,{e}ω
II,α
ξ (1A)

=δCα,{e}.

Finally, (3.4.24) follows from Proposition 3.4.6 and Equation (3.4.25) follows
from Equation (3.3.7).

Remark 3.4.15. Lemma 3.4.14 implies that for πα = triv, F IJ,α
ξ Ω0 is in gen-

eral not an eigenvector of As for s = ∂0ξ. Indeed, as a projection, As has
eigenvalues 0 or 1. But for |Cα| ̸= 1, the expectation value of As in that
state would not be an integer. This problem can be resolved by choosing a
different linear combination in this case, which we will present in the next
section.
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3.5 Ground States

Recall that ω0 is the unique translation invariant ground state of the non-
abelian quantum double model. This ground state is a pure state, and is
completely determined by the condition that ω0(As) = ω0(Bs) = 1 for all s
by Proposition 3.2.6. It is furthermore distinguished from the other ground
states in that it is the only frustration free ground state. The aim of this
section is to find other non-frustration free ground states. We will show,
that for semi-infinite ribbons σ, the states ωII,αξ are ground states for the
case πα ̸= triv and non-ground states in the case πα = triv. We can still find
ground states corresponding to the case πα = triv by taking appropriate lin-
ear combinations of the ribbon operators F IJ,α

ξ . These states are constructed
in Lemma 3.5.3, and the main theorem of this section is stated as Theorem
3.5.4. Recall that if ω is a ground state on A, then for any local observable
X ∈ Aloc we have

−iδ(X∗δ(X)) = ω(X∗ [HΛn , X]),

where Λn is a square-shaped region containing supp(X) as well as the sup-
port of all interaction terms (1 −As), (1 −Bs) whose support intersect with
supp(X), HΛn is the local Hamiltonian defined in Equation (3.2.16), and δ is
the infinitesimal generator of the time evolution τ . See also Section 2.5.2 for
a reminder on C*-dynamical systems and the discussion following Equation
(3.2.16).

One physical intuition that we want to utilize is that a state that mini-
mizes the Hamiltonian locally for each fixed region, must be a ground state,
i.e., minimizes the Hamiltonian globally. This intuition is captured by the
following lemma.

Lemma 3.5.1. Let (A, τ) be a C*-dynamical system and Hn a sequence of
positive elements in A such that the sequence of maps

δn : Aloc → A, X 7→ i [Hn, X] (3.5.1)

converges pointwise in the strong topology to the infinitesimal generator δ of
the time evolution τ . If ω : A → C is a state such that ω(Hn) = 0 for all n,
then ω is a ground state.

Proof. We want to show that −iδ(X∗δ(X)) ≥ 0 for all X ∈ Aloc. Because
Hn is positive, there exists some element B ∈ A such that Hn = B∗

nBn by
Theorem 2.5.7. Using Proposition 2.5.12, we see that

|ω (XHn)|2 = |ω(XB∗
nBn)|2 ≤ ω (XB∗

nBnX
∗)ω (B∗

nBn)

=ω (XHnX
∗)ω (Hn) = 0
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for all operators X. In particular, if X = A∗A for some local operator A, we
see that ω(A∗AHn) = 0. Therefore

−iω (A∗δn(A)) =ω (A∗ [Hn, A])

=ω (A∗HnA) − ω (A∗AHn) = ω (A∗HnA) ≥ 0,

since A∗HnA is positive. Since this holds for all n, it holds in particular in the
limit n→ ∞, and because δn converges to δ pointwise, the result follows.

We have seen in Lemma 3.4.14 that for α ∈ D̂(G) and index pair I ∈ Iα,
the states ωII,αξ seem to describe a single excitation at ∂0ξ, measured by the
projection operators Pα

σ given in Equation (3.4.11) for any closed ribbon σ
enclosing the site ∂0ξ. The idea is to consider Hamiltonians with boundary
terms of the form

Hα
n = HΛn − εαPα

σn ,

where σn is a closed ribbon encircling the square-shaped region Λn counter-
clockwise and εα is a constant chosen such that it suitably accounts for the
energy of the states ωII,αξ at site ∂0ξ, see Figure 3.21. More precisely, we

will choose εα in the hopes that ωII,αξ (Hα
n ) becomes zero for each n ∈ N.

The expression
[
(HΛn − εαPα

σn), X
]

will converge to [H,X] for each fixed

X ∈ Aloc, and Lemma 3.5.1 then implies that ωII,αξ is a ground state if Hα
n

is positive.

Lemma 3.5.2. Let Λn be a square-shaped region of size n ∈ N and σn a closed
ribbon whose direct path forms the boundary of Λn such that σn bounds its
interior by its dual path and such that the direct and dual path encircle Λ
counter-clockwise, see also Figure 3.21. For every irreducible α = (πα, Cα) ∈
D̂(G) write

εα := 2 − δπα,triv − δCα,{e}.

Then the operator

Hα
n = HΛn − εαPα

σn (3.5.2)

is positive, and we have

ωII,αξ (Hα
n ) =

{
0 if πα ̸= triv,

1 − 1
|Cα| otherwise

(3.5.3)

for all n > 1.
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s0

ξ

σ

Figure 3.21: Depiction of the scenario described in Lemma 3.5.2 for n = 5.
The initial site s0 of ξ lies in the interior of σ and the direct path of σ marks
the boundary of Λ5 in this example.

Proof. By Proposition 3.4.3 and subsequent discussion, Pα
σn commutes with

all star and plaquette operators. Therefore, the operatorHΛn−εαP C
σn is a sum

of the commuting projections As, Bs and Pα
σn , s ∈ S(Λn), and there exists a

common family of orthonormal eigenvectors
{
ψk
}
k

in the finite dimensional
Hilbert space HΛn for these operators. We will show that all eigenvalues of
Hα
n are non-negative. Write〈

ψk,
(
HΛn − εαPα

σn

)
ψk
〉

= λk − εαρk

where λk ≥ 0 is the eigenvalue of ψk as the eigenvector of the non-negative
operator HΛn , and ρk ∈ {0, 1} is the eigenvalue of ψk as an eigenvector of P k

σn .
If ψk ∈ ker(Pα

σn), then
〈
ψk,
(
HΛn − εαPα

σn

)
ψk
〉

= λk is already non-negative.
We will therefore show that either λk ≥ εα or ψk ∈ ker(Pα

σn).

Notice first that we have either Ahsψ
k = Asψ

k = ψk or Asψ
k = 0 and

similarly, we have either Bsψ
k = ψk or Bsψ

k = 0 at any site s, since ψk is
an eigenvector of each of the operators (1 − As) and (1 − Bs) and because
AhsAs = As for all h ∈ G. If λk ≥ 2 there is nothing to show. If λk = 0,
then Asψ

k = Bsψ
k = ψk for all sites s and ψk must be the vacuum state Ω0.

But then Equation (3.4.13) implies either Pα
σ Ω0 = 0 or α = triv, i.e. εα = 0.

As all other cases are now exhausted, we finally assume that λk = 1. This
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implies that at most one of the conditions

Asψ
k =ψk

Bsψ
k =ψk

is violated at some sites. Assume that there exists a site s0 such that Bsψ
k =

ψk for all sites s but Asψ
k = ψk for all s ̸= s0. Then we have by Proposition

3.4.4

Pα
σ ψ

k =Pα
s0
ψk

=
dimπα

|Nα|
∑
n∈Nα

tr(n)Aqinq̄is0
Bci
s0
ψk.

Because Bs0ψ
k = ψk, we have Bci

s0
ψk = δci,eB

ci
s0
Bs0ψ

k and ψk ∈ ker(Pα
σ ) or

Cα = {e}. In the latter case εα = 1−δπα,triv ≤ 1 = λk. Similarly, if Asψ
k = ψk

for all sites s but Bsψ
k = ψk for all s ̸= s0, then the orthogonality relations

for irreducible characters give

Pα
σ ψ

k =
dimπα

|Nα|
∑
n∈Nα

trπα(n)Bci
s0
ψk

=
dimπα

|Nα|
∑
n∈Nα

trπα(n) trtriv(n)Bci
s0
ψk = δπα,trivB

ci
s0
ψk,

where we used that Aqinq̄is0
Bci
s0

= Bci
s0
Aqinq̄is0

for all i, n since qinq̄i commutes
with ci. This implies again that either ψk ∈ ker(Pα

σ ) or εα = 1 − δCε,{e} ≤
1 = λk.

We proceed to show Equation (3.5.3). Let s0 = ∂0ξ. Using Lemma 3.4.14,
we get

ωII,αξ (Hα
n ) =

∑
s∈S(Λ)

ωII,αξ (1 − As) +
∑
s∈S(Λ)

ωII,αξ (1 −Bs) − εαωII,αξ (Pα
σn)

=ωII,αξ (1 − As0) + ωII,αξ (1 −Bs0) − εα

=2 − δπα,triv
|Cα|

− δCα,{e} − (2 − δπα,triv − δCα,{e})

=δπα,triv

(
1 − 1

|Cα|

)
=

{
0 if πα ̸= triv,

1 − 1
|Cα| otherwise.
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We note that the concrete choice of the ribbons σn is irrelevant as long as
they move counter-clockwise, enclose the site ∂0ξ and grow to infinity with
n→ ∞.

The anomaly in Equation (3.5.3) for the case πα = triv is due to Equation
(3.4.22). This can be solved by redefining the state ωαξ for the case πα = triv
for finite ribbons ξ to be

ωαξ (X) =
1

|Cα|
∑
i1,i2,j

∑
n1,n2

ω0(F
ci1 ,qi1n1qj
ξ XF

ci2 ,qi2n2qj
ξ )

=
1

|Cα|
∑
j

ω0((F
j
ξ )∗XF j

ξ ) (3.5.4)

for all X ∈ Aloc, with F j
ξ defined as

F j
ξ =

∑
n,i

F
ci,qinqj
ξ .

Notice that F j
ξ commutes with the star operator As at s = ∂0ξ. To see this,

let us write the star operator again in the form

As =
1

|G|
∑
m∈Nα

∑
l∈ICα

Aqlmq̄is .

Then

AsF
j
ξ =

1

|G|
∑

n,m∈NCα

∑
i,l

Aqlmqis F
ci,qinqj
ξ

=
1

|G|
∑

n,m∈NCα

∑
i,l

F
cl,qlmnqj
ξ Aqlmqis

n7→mn
=

1

|G|
∑

n,m∈NCα

∑
i,l

F
cl,qlnqj
ξ Aqlmqis

=
∑
n∈Nα

∑
i∈ICα

F
c̄l,qlnq̄j
ξ As

=F j
ξAs.

It follows for s0 = ∂0ξ that ωαξ (Hα
n ) = 0 with Hα

n defined as in Lemma
3.5.2. However, we need to verify that ωαξ is a well-defined state even for
semi-infinite ribbons.
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Lemma 3.5.3. Let {ξl} be a sequence of ribbons extending to infinity from
s0 = ∂0ξl and ξ be the semi-infinite ribbon arising as limit from {ξl}. Set

ωαξl(X) :=
1

dα

∑
I,I′,J∈Iα

ω0(F
IJα
ξl

X(F I′J,α
ξl

)∗)

for each X ∈ Aloc and l ∈ N. Then the limit

ωαξ := lim
l→∞

ωαξl(X) = lim
l→∞

1

dα

∑
I,I′,J∈Iα

ω0(F
IJα
ξl

X(F I′J,α
ξl

)∗) (3.5.5)

exists for each X ∈ Aloc and extends to a state on A.

Proof. We will show convergence by showing that the expression in Equation
(3.5.5) eventually becomes constant. If X ∈ Aloc, then there exists an n0 ∈ N

such that supp(X) ∩ ξl \ ξl0 = ∅ for all l ≥ l0. Using Equation (3.3.2), we
obtain for l ≥ l0 and ξ′ := ξl \ ξl0

1

dα

∑
I,I′,J∈Iα

ω0(F
IJ,α
ξl

X(F I′J,α
ξl

)∗)

=
1

dα

∑
I,I′,J∈Iα

∑
K,K′

ω0(F
IK,α
ξl0

FKJ,α
ξ′ X(F I′K′,α

ξl0
FK′J,α
ξ′ )∗)

=
1

dα

∑
I,I′,J∈Iα

∑
K,K′

ω0(F
KJ,α
ξ′ (FK′J,α

ξ′ )∗F IK,α
ξl0

X(F I′K′,α
ξl0

)∗)

=
1

dα

∑
I,I′,J∈Iα

∑
K,K′

∑
n,n′∈Nα

Γ̄k2j2πα (n)Γk
′
2j2
πα (n′)

ω0(F
c̄k1 ,qk1nq̄j1
ξ′ F

ck′1
,qk′1

n′q̄j1
ξ′ F IK,α

ξl0
X(F I′K′,α

ξl0
)∗)

=
1

dα

∑
I,I′,J∈Iα

∑
K,K′

∑
n,n′∈Nα

Γ̄k2j2πα (n)Γk
′
2j2
πα (n′)

δqk1nq̄j1 ,qk′1n
′q̄j1
ω0(F

c̄k1ck′1
,qk1nq̄j1

ξ′ F IK,α
ξl0

X(F I′K′,α
ξl0

)∗).

Like before, qk1nq̄j1 = qk′1n
′q̄j1 implies k1 = k′1 and n = n′. Furthermore,

by commuting with star operators at the endpoint of ξ′, we can see that the
expression

ω0(F
c̄k1ck′1

,qk1nq̄j1

ξ′ F IK,α
ξl0

X(F I′K′,α
ξl0

)∗) =
1

|G|
ω0(F

IK,α
ξl0

X(F I′K′,α
ξl0

)∗)
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is independent of qk1nq̄j1 and in particular independent of n. This allows us
to use the orthogonality relation for irreducible representations to obtain

1

dα |G|
∑

I,I′,J∈Iα

∑
k1,k′1∈ICα
k2,k′2∈Iπα

∑
n∈Nα

Γ̄k2j2πα (n)Γk
′
2j2
πα (n)δk1,k′1ω0(F

IK,α
ξl0

X(F I′K′,α
ξl0

)∗)

=
1

dα |G|
|Nα|

dimπα

∑
I,I′,J∈Iα

∑
k1∈ICα
k2∈Iπα

ω0(F
IK,α
ξl0

X(F I′K,α
ξl0

)∗)

=
1

|G|
|Nα|

dimπα

∑
I,I′,K∈Iα

ω0(F
IK,α
ξl0

X(F I′K,α
ξl0

)∗)

=ωαξl0
(X),

where we used |G| = |Cα| |Nα| and dα = |Cα| dimπα in the last step. This
shows that ωαξ (X) exists for each X ∈ Aloc and extends to a linear functional
on A. Clearly, ωαξ is positive. It is left to show that ωαξ (1A) = 1:

ωαξ (1A) =
1

dα

∑
I,I′,J∈Iα

∑
n,n′∈Nα

Γ̄i2j2πα (n)Γi
′
2j2
πα (n′)ω0(F

c̄i1 ,qi1nq̄j1
ξ F

ci′1
,qi′1

n′q̄j1
ξ )

=
1

dα

∑
I,I′,J∈Iα

∑
n,n′∈Nα

Γ̄i2j2πα (n)Γi
′
2j2
πα (n′)δqi1nq̄j1 ,qi′1n

′q̄j1
ω0(F

c̄i1ci′1
,qi1nq̄j1

ξ )

(∗)
=

1

dα

∑
I,I′,J∈Iα

∑
n,n′∈Nα

Γ̄i2j2πα (n)Γi
′
2j2
πα (n′)δi1,i′1δn,n′

1

|G|

=
1

dα

∑
I,J∈Iα

|Nα|
dimπα

1

|G|

=1,

where we used Proposition 3.3.12 again in (∗).

Note that the states ωαξ defined in Equation (3.5.5) indeed coincide with
the states defined in Equation (3.5.4) for the special case πα = triv.

Theorem 3.5.4. Let ξ = lim
n→∞

ξn be a semi-infinite ribbon with {ξn} a se-

quence of ribbons extending to infinity from some site s0 = ∂0ξ. Then

the states ωII,αξ as defined in Equation (3.4.21) for α ∈ D̂(G) with either
πα ̸= triv or |Cα| > 1 and any index pair I ∈ Iα as well as the states ωαξ de-
fined in Equation (3.5.4) for πα = triv and |Cα| > 1 form a family of ground
states of the non-abelian quantum double model.
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Proof. Let Λn be a sequence of growing square-shaped regions, Hα
n =

Hα
Λn

− εαPα
σn as in Lemma 3.5.2 and ξ a ribbon with s = ∂0ξ extending

to infinity. Given a local operator A ∈ Aloc, there always exists an n0 such
that supp(A) ⊂ Λn and supp(A) ∩ σn = ∅ for all n ≥ n0. But then, setting
δn(A) := i [Hα

n , A], we have δn(A) = δ(A), implying that δn converges point-
wise to δ on Aloc in the strong operator topology, and by extension on A. If
either πα ̸= triv or |Cα| = 1 or both, ωII,αξ (Hα

n ) = 0 for all n > 1 by Lemma
3.5.2 If πα = triv and |Cα| > 1, then ωαξ (Hα

n ) = 0 by the discussion preceding
Lemma 3.5.3. In either case, Lemma 3.5.1 then implies the claim.

Remark 3.5.5. The states ωII,αξ are indeed non-ground states in case πα = triv

and |Cα| > 1. Fix an irreducible representation α ∈ D̂(G) with πα = triv.
We claim that

ωII,αξ |AΛc= ωαξ |AΛc

for any region Λ containing s = ∂0ξ and any α ∈ D̂(G). Indeed, let X be
a local operator with ∂0ξ ̸∈ supp(X). By Lemma 3.4.12, ωII,αξ (X) coincides
with

ραξ (X) =
1

dα

∑
J,I∈Iα

ω0(F
IJ,α
ξ X(F IJ,α

ξ )∗).

Furthermore, because of
[
X,Bc

s0

]
=
[
X,Ahs0

]
= 0 for all c, h ∈ G, we can

decompose ξ = ξ1ξ2 such that ξ1 ∩ supp(X) = ∅ and because F IJ,α
ξ =∑

K∈Iα
F IK,α
ξ1

FKJ,α
ξ2

and the
{
F IK,α
ξ1

Ω0

}
I∈Iα

form an orthogonal set, we have

ω0(F
IJ,α
ξ , XF I′J,α

ξ ) = δI,I′ω0(F
IJ,α
ξ , XF IJ,α

ξ ).

It follows that

ωII,αξ (X) =
1

dα

∑
I,I′,J

ω0(F
IJ,α
ξ XF I′J,α

ξ ) = ραξ (X)

for all X with s0 ̸∈ supp(X). Now, if ωII,αξ was a ground state, it would

follow from Theorem 2.5.22 that ω(Hα
n ) ≥ ωII,αξ (Hα

n ) for all states ω with

ω |(Λn)c= ωαξ |(Λn)c . But if |Cα| > 1, we have ωII,αξ (Hα
Λn

) = 1 − 1
|Cα| > 0 =

ωαξ (Hα
Λn

) for all n.
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3.6 Irreducibility of the GNS representations

of the states ωII,αξ

In this section, we will show that the states ωII,αξ are pure states, implying
that their GNS representations are irreducible by Theorem 2.5.11. The idea
is to find analogues to the condition ω0(As) = ω0(Bs) = 1 for all sites s, as
in Equation (3.2.17) and Equation (3.2.18) for the ground states ωII,αξ . By

Lemma 2.5.6, ωII,αξ is pure if and only if any positive linear functional ma-

jorized by ωII,αξ is a scalar multiple of ωII,αξ . If we find a family of projections

{Pk}k∈I , with I being some index set such that ωII,αξ is uniquely defined by

the condition ωII,αξ (Pk) = 1 for all k ∈ I, then for any non-zero positive linear

functional ψ with ψ ≤ ωII,αξ , it follows that

0 ≤ ψ(1A − Pk) ≤ ωII,αξ (1A − Pk) = 0.

Hence, ψ(Pk) = ψ(1A) and ψ̃ := 1
ψ(1A)

ψ is a state with ψ̃(Pk) = 1 for all k. If

these conditions fix ψ̃ uniquely, it follows that ψ̃ is equal to ωII,αξ , implying

that ψ = ψ(1A)ωII,αξ . It then follows that ωII,αξ is pure by Lemma 2.5.6.

We first have to construct such projection operators. Given an irreducible

representation α ∈ D̂(G), we may define at each site s the operators AIJ,αs

via

AIJ,αs =
dimπα

|Nα|
∑
n∈Nα

Γ̄i2j2πα (n)A
qi1nq̄j1
s (3.6.1)

for each I, J ∈ Iα.

These operators exhibit the following properties.

Lemma 3.6.1. Let α, β ∈ D̂(G) and I, J ∈ Iα. Then(
AIJ,αs

)∗
= AJI,αs .

If furthermore J = (j1, j2) and K = (k1, k2) ∈ Iβ with j1 = k1 and C := Cα =
Cβ, then

AIJ,αs AKL,βs = δα,βδJ,KA
IL,α
s . (3.6.2)

In particular, the operators AII,αs are projections.
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Proof. We have (Aks)
∗ = Ak̄s for all k ∈ G, giving

|Nα|
dimπα

(
AIJ,αs

)∗
=
∑
n∈Nα

Γi2j2πα (n)A
qj1 n̄q̄i1
s

n 7→n̄
===

∑
n∈Nα

Γi2j2πα (n̄)A
qj1nq̄i1
s . =

∑
n∈Nα

Γ̄j2i2πα (n)A
qj1nq̄i1
s

=
|Nα|

dimπα

AJI,αs ,

showing the first claim. For the second claim, note first that Cα = Cβ implies
Nα = Nβ. It follows that

|Nα|
dimπα

|Nβ|
dimπβ

AIJ,αs AKL,βs

j1=k1
=

∑
m,n∈N

Γ̄i2j2πα (m)Γ̄k2l2πβ
(n)A

qi1mq̄j1
s A

qj1nq̄l1
s

=
∑
m,n∈N

Γ̄i2j2πα (m)Γ̄k2l2πβ
(n)A

qi1mnq̄l1
s

(2.2.6)
===δα,βδj2,k2

dimπα

|Nα|
∑
m∈N

Γ̄i2j2πα (m)A
qi1mq̄l1
s

=
|Nα|

dimπα

δα,βδj2,k2A
IL,α
s

=
|Nα|

dimπα

δα,βδJ,KA
IL,α
s ,

since j1 = k1 already holds by assumption.

Remark 3.6.2. If α is the trivial representation of D(G), i.e. Cα = {e} and
πα = triv, then

A(1,1)(1,1),α
s =

dimtriv

|ZG(e)|
∑

n∈ZG(e)

Γ̄11
triv(n)Ans =

1

|G|
∑
k∈G

Aks = As

becomes the projection into the trivial electric charge.

We have seen in Proposition 3.4.2 that the operators F IJ,α
ξ can be used

to decompose the GNS representation H into irreducible representations at
site s = ∂0ξ. The operators in Equation (3.6.1) can be used to permute the
vectors F IJ,α

ξ Ω0 to one another. In [BV23], these operators were therefore
called label changers.

Lemma 3.6.3. Let α, β ∈ D̂(G) with C = Cα = Cβ and N = Nα = Nβ and
let ξ be an open ribbon with s = ∂0ξ. Then we have

AIJ,αs B
cj1
s FKL,β

ξ Ω0 = δα,βδJ,KF
IL,β
ξ Ω0 (3.6.3)

for all labels I, J ∈ Iα and K,L ∈ Iβ.
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Proof. First note that because of Equation (3.3.12), we always have

Bc
sF

h,g
ξ Ω = Bc

sF
h,g
ξ BsΩ = Bc

sB
h̄
sF

h,g
ξ Ω0 = δc,h̄B

c
sF

h,g
ξ Ω0

regardless of the local orientation of ξ. This gives

AIJ,αs B
cj1
s FKL,β

ξ Ω0 =
∑
n,m∈N

Γ̄i2j2πα (m)Γ̄k2l2πβ
(n)A

qi1mq̄j1
s B

cj1
s F

c̄k1 ,qk1nq̄l1
ξ Ω0

= δk1,j1
∑
n,m∈N

Γ̄i2j2πα (m)Γ̄k2l2πβ
(n)A

qi1mq̄j1
s F

c̄j1 ,qj1nq̄l1
ξ Ω0

= δk1,j1
∑
n,m∈N

Γ̄i2j2πα (m)Γ̄k2l2πβ
(n)F

c̄i1 ,qi1mnq̄l1
ξ A

qi1mq̄j1
s Ω0

= δk1,j1
∑
n,m∈N

Γ̄i2j2πα (m)Γ̄k2l2πβ
(n)F

c̄i1 ,qi1mnq̄l1
ξ Ω0

(2.2.6)
=== δα,βδk1,j1δk2,j2

∑
n∈NCβ

Γ̄i2l2πβ
(n)F

c̄i1 ,qi1nq̄l1
ξ Ω0

= δα,βδK,JF
IL,β
ξ Ω0.

Corollary 3.6.4. The operators AII,αs form a family of mutually orthogonal
projections. Furthermore, if ξ is a ribbon extending to infinity, s = ∂0ξ and
ωII,αξ the states defined in Equation (3.4.21), then we have

ωII,αξ (As′) =1, (3.6.4)

ωII,αξ (Bs′) =1, (3.6.5)

for all s ̸= s′ and

ωII,αξ (Bc
s) =δc,ci1 , (3.6.6)

ωII,αξ (ALL,αs ) =δI,L. (3.6.7)

Proof. Let α ∈ D̂(G). That the AII,αs are mutually orthogonal projections
follows from Equation (3.6.2). Let ξ be a ribbon with ∂0ξ = s. Equation
(3.6.7) follows from Equation (3.6.3):

ωII,αξ (ALL,αs ) =
∑
J∈Iα

ω0

((
F IJ,α
ξ

)∗
ALL,αs F IJ,α

ξ

)
=δI,L

∑
J∈Iα

ω0

((
F IJ,α
ξ

)∗
F IJ,α
ξ

)
=δI,Lω

II,α
ξ (1A)

=1.
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To see Equation (3.6.6) note first that

ωII,αξ (B
ci1
s ) =

∑
J∈Iα

∑
n1,n2

Γi2j2πα (n1)Γ̄
i2j2
πα (n2)⟨F

ci1 ,qi1n2q̄j1
ξ Ω0, B

ci1
s F

c̄i1 ,qi1n2q̄j1
ξ Ω0⟩

=
∑
J∈Iα

∑
n1,n2

Γi2j2πα (n1)Γ̄
i2j2
πα (n2)⟨F

ci1 ,qi1n2q̄j1
ξ Ω0, F

c̄i1 ,qi1n2q̄j1
ξ Ω0⟩

=1.

Using Lemma 2.5.13, we obtain

ωII,αξ (Bc
s) = ωII,αξ (Bc

sB
ci1
s ) = δc,ci1 .

For the other equations, note that
[
As′ , F

h,g
ξ

]
=
[
Bs′ , F

h,g
ξ

]
= 0 for all s′ ̸=

s and with As′Ω0 = Bs′Ω0 = Ω0, Equation (3.6.4) and Equation (3.6.5)
follow.

Thus, the operators AII,αs allow us to indeed define a generalized version
of the stabilizer conditions Equation (3.2.17) and Equation (3.2.18). We
claim that Equation (3.6.4) to Equation (3.6.7) already determine ωII,αξ .

Before we show this, it is worthwhile to decompose the star operators into
a different basis.

Proposition 3.6.5. Let α ∈ D̂(G) be an irreducible representation and fix
an index i1 ∈ ICα. Then the family{

AK,(i1,l2),βs | β ∈ D̂(G), Cα = Cβ, K ∈ Iβ, l2 ∈ Iπβ

}
, (3.6.8)

where

AK,(i1,l2),βs :=
dimπβ

|Nβ|
∑
n∈Nβ

Γ̄k2l2πβ
(n)A

qk1nq̄i1
s

constitutes a new basis for the star operators
{
Aks
}
k∈G at site s. Furthermore,

we have the identities

B
ci1
s AK(i1l2),β

s B
ci1
s = δi1,k1A

(k1,k2)(i1l2),α
s B

ci1
s = δi1,k1B

ci1
s A(k1,k2)(i1l2),α

s (3.6.9)

AII,αs A(i1,k2)(i1l2),β
s = δα,βδi2,k2A

(i1,k2)(i1l2),β
s (3.6.10)

and

A(i1,k2)(i1l2),β
s AII,αs = δi2,l2δα,βA

(i1,k2)(i1l2),β
s . (3.6.11)

for any β ∈ D̂(G) with Cβ = Cα.
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Proof. Note that Equation (3.6.10) and Equation (3.6.11) are special cases of
Equation (3.6.2) and are just listed here for later reference. For any element
n ∈ Nα, we have by Equation (3.2.14)

A
qk1nq̄i1
s B

ci1
s = B

qk1nq̄i1ci1qi1 n̄q̄k1
s A

qk1nq̄i1
s = B

ck1
s A

qk1nq̄i1
s

for all k1 ∈ ICα . This implies

B
ci1
s AK(i1l2),β

s B
ci1
s =B

ci1
s B

ck1
s AK(i1l2),α

s

=δi1,k1B
ci1
s AK(i1l2),α

s

=δi1,k1A
K(i1l2),α
s B

ci1
s .

To see that the operators given in Equation (3.6.8) form a new basis for
the star operators Aks acting at site s, consider the matrix Γ with entries
Γk2l2πα (n) whose rows are labelled by n ∈ Nα and columns are labelled by

triples (i2, j2, πα) ∈ Iα × Iα × N̂α. Note that due to the identity∑
πα∈N̂α

dim2
πα = |Nα| ,

Γ is a square matrix. For β1, β2 ∈ D̂(G) with Cβ1 = Cβ2 = Cα and triples
(i2, j2, πβ1), (k2, l2, πβ2), the Peter-Weyl Theorem gives

(ΓΓ∗)(i2,j2,πβ1 )(k2,l2,πβ2 ) =
∑
n∈Nα

Γ̄i2j2β1
(n)Γk2l2β2

(n) =
|Nβ1 |

dimπβ1

δβ1,β2δi2,k2δl2,j2 .

This implies in particular that the matrix Γ is regular and represents therefore

a base change on Ak1
s := span

{
A
qk1nq̄i1
s | n ∈ NC

}
and since G factorizes into

its cosets G =
∐

ck1∈C
qk1NC, every Aks lies in Ak1

s for a unique k1.

This proposition allows us to show that Equation (3.6.4) to Equation
(3.6.7) uniquely determine a state on all star and plaquette operators.

Lemma 3.6.6. Let ψ be a state on A such that

ψ
(
AII,αs0

)
= ψ

(
B
ci1
s0

)
= 1 (3.6.12)

for some α ∈ D̂(G), I = (i1, i2) ∈ Iα and site s0. Then

ψ
(
Bc
s0

)
= δc,ci1 (3.6.13)

and

ψ
(
AK(i1l2),ρ
s0

)
= δα,ρδK,Iδl2,i2 (3.6.14)

holds. In particular, the above holds for the state ωII,αξ at s0 = ∂0ξ.
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Proof. Using Lemma 2.5.13 we, obtain

ψ(AK(i1l2),ρ
s0

) =ψ
(
AII,αB

ci1
s0 A

K(i1l2),ρ
s0

B
ci1
s0 A

II,α
)

Lem 3.6.3
= δπα,πρδi1,k1δi2,k2δi2,l2ψ

(
AII,α

)
=δπα,πρδi1,k1δi2,k2δi2,l2 .

For the plaquette operator, we obtain similarly

ψ
(
Bc
s0

)
= ψ

(
B
ci1
s0 B

c
s0

)
= δci1 ,c (3.6.15)

Theorem 3.6.7. Let ξ be a ribbon extending to infinity and α an irreducible
representation of D(G). Then the state ωII,αξ is uniquely determined by Equa-
tion (3.6.7) and Equation (3.6.6) at site s0 = ∂0ξ and

ωII,αξ (As) = ωII,αξ (Bs) = 1

for all sites s ̸= s0.

Proof. We will use similar arguments as in the proof of [Naa12, Thm 12.1.3].
Let ψ be a state on A such that

ψ(Aks) = ωII,αξ (Aks), (3.6.16)

ψ(Bk
s ) = ωII,αξ (Bk

s ) (3.6.17)

holds for all sites s and k ∈ G. Let Λn be a square-shaped region of size n
centred at s0. We know that the space of local observables supported on Λn

is spanned by operators of the form

LλΛn
T γΛn

for G-connections λ, γ ∈ CG(Λ), where T γΛn
and LλΛn

are defined as in Equa-
tion (3.2.22) and Equation (3.2.26) respectively and Λ is any region contain-
ing Λn. Note that we have the commutation relation LλΛn

T γΛn
= T λγΛn

LλΛn
,

where λγ : e 7→ λ(e)γ(e) is the pointwise product of λ and γ, which we will
denote by γ′ := λγ from now on. Because of

ψ(LλΛn
T γΛn

) = ψ(BsL
λ
Λn
T γΛn

Bs) = ψ(BsT
γ′

Λn
LλΛn

Bs)

for all s ̸= s0 and

ψ(LλΛn
T γΛn

) = ψ(B
ci1
s0 L

λ
Λn
T γΛn

B
ci1
s0 ) = ψ(B

ci1
s0 T

γ′

Λn
LλΛn

B
ci1
s0 ),
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f0

f1

f2

s0

e1

e2 e3

e4

e9

e10 e11

e14

v0

e12

e13 e5

e8 e6

e7

Figure 3.22: Depiction of the square-shaped regions Λ3 and Λ4, with Λ3 in
black and Λ4 \Λ3 in gray. The magnetic charge is sitting at site s0 = (v0, f0)
(red) surrounded by the edges e11, e12, e13 and e14. The magnetic flux of
the G-connection γ at s0 is βs0(γ) = γ11γ12γ̄13γ̄14 = ci1 and the flux at all
other sites is trivial. The local operators LλT γ act only on Λ3. The only
dual triangle operators that can not be eliminated by star operators Av with
v ̸= v0 are the ones acting on e9, e10, e11 and e14.

it follows that γ and γ′ must both have a trivial magnetic flux at each site
s = (v, f) with f ̸= f0, where f0 is the face associated to s0 and that γ and γ′

have the same flux at s0 for the above expressions to be non-zero. We want
to show that we can transform LλΛn

to some Lλ
′

Λn
, where λ′(ei) = e ∈ G for all

edges ei with v0 ̸∈ ∂ei by commuting with star operators at sites other than
s0. In other words, Lλ

′
Λn

acts non trivially only on the star at site s0. We
will apply our arguments to the square-shaped region Λ3 of size n = 3 with
s0 being at the plaquette in the centre and Λ = Λn+1 = Λ4, i.e. γ is defined
on a slightly bigger square shaped region, with labellings chosen as in Figure
3.22. Note however that this is only done to ease readability of this proof,
and all our arguments can straightforwardly be applied to the case where n
is arbitrary and s0 is positioned anywhere.

Before we continue, note that we always have

Lke γ = Rγ(e)kγ(e)
e γ
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for any G-connection γ ∈ CG(Λ), k ∈ G and edge e ∈ E, where Rk
e denotes

the right-multiplication with k at edge e. In other words, left-multiplication
of some g ∈ G with k is the same as right multiplication of g with of ḡkg.

Let ei be labelled as in Figure 3.22, γ ∈ CG(Λn+1) and write γi := γ(ei),
γ′i = γ′(ei) and λi = λ(ei) and let further βs(γ) denote the magnetic flux of
γ at site s. We argue first that λi = e if ei is on the boundary of Λ3. Indeed,
this follows because γ as well as γ′ have trivial magnetic charge for all faces
in Λn+1 that are not in Λn and LλΛn

can only act on exactly one of the edges
surrounding those faces. For instance, for the site s1 = (∂0e4, f1) we have

e = βs1(γ
′) = γ̄2γ1γ3γ̄4λ̄4 = βs1(γ)λ̄4 = λ̄4,

since βs1(γ) = e as well.
Next, consider f2 and its surrounding edges. The magnetic charge at site

s2 = (∂0e5, f2) is

λ5γ5γ6γ̄7γ̄8λ̄8 = λ5λ̄8 (3.6.18)

which is equal to e if and only if λ5 = λ8. Write v2 = ∂0e5. Then the star
operator Aλ̄5v2 = Lλ̄5e5 L

λ̄5
e8
Rλ5

e13
Rλ5

e12
will cancel the effect of Lλ5e5 L

λ5
e8

. Furthermore,
we have

Rλ5
e13
Lλ13e13

T γ13e13
=Rλ5

e13
T λ13γ13e13

Lλ13e13

=Lλ13γ13λ5γ̄13λ̄13e13
T λ13γ13e13

Lλ13e13

=Lλ13γ13λ5γ̄13λ̄13e13
Lλ13e13

T γ13e13

=Lλ13γ13λ5γ̄13e13
T γ13e13

.

Similar arguments hold for the edge e12 and it follows that Aλ̄8v1L
λ
Λn
T γΛn

can

be written as Lλ1Λn
T γΛn

for some suitable λ1, and Lλ1Λn
acts trivially on e5 and

e8, i.e. λ1(e5) = λ1(e8) = e. Because v1 ̸= v0, we further have

ψ(LλΛn
T γΛn

) = ψ(Aλ̄5v1L
λ
Λn
T γΛn

) = ψ(Lλ1Λn
T γΛn

).

We can repeat this argument until we transformed LλΛn
T γΛn

to some Lλ
′

Λn
T γΛn

with all λ′(ei) = e unless ei is an edge of the star-shaped region centred at
v0. We assume that λ = λ′ already holds for the rest of the proof.

We want to show that LλΛn
γ = Akv0γ and that k commutes with ci1 . To see

this, let f3, f4 and f5 be as in Figure 3.23, and let si = (v0, fi) for i = 3, 4, 5.
Then because of βsi(γ) = βsi(γ

′) = e for all i = 3, 4, 5, we have

βs3(γ
′) = e =γ̄9λ̄9γ16γ19γ̄11λ̄11 = γ̄9λ̄9γ9γ̄9γ16γ19γ̄11λ̄11 = γ̄9λ̄9γ9λ̄11,
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which implies λ11 = γ̄9λ̄9γ9. Similarly calculations show that the identities
βs4(γ

′) = βs5(γ
′) = e imply γ̄10λ10γ10 = γ̄9λ9γ9 and λ14 = γ̄10λ̄10γ10. This

implies in particular that λ11 = λ14 and because λ9γ9 = γ9γ̄9λ9γ9 = γ9λ̄11
and λ10γ10 = γ10γ̄10λ10γ10 = γ10λ̄14 = γ10λ̄11, we see that the action of LλΛn

is given by the star operator Aλ11v0
on γ, i.e.

LλΛn
γ = Lλ11e11

Lλ9e9 L
λ10
e10
Lλ14e14

γ = Lλ11e11
Rλ̄11

e9
Rλ̄11

e10
Lλ11e14

γ = Aγ11v0
γ.

v0

γ4

γ9

γ10 γ11

γ12

γ13

γ14
γ15

γ16

γ17

γ18

γ19

f0

f3f4

f5

Figure 3.23: Depiction of the γ-values for the four plaquettes bordering the
star at v0. The edges ei are labelled with the values of the G-connection γ.
Although the labelling may seem arbitrary, it is still consistent with Figure
3.22

It follows that by commuting with star operators at vertices other than
v0, the operator LλΛn

T γΛn
can be transformed into an operator of the form

Aks0T
γ
Λn

for some k ∈ G. Furthermore, because of

ci1 = βs0(γ
′) = kγ11γ12γ̄13γ̄14k̄ = kβs0(γ)k̄ = kci1 k̄

we must have that k lies in the centralizer subgroup of ci1 , hence k = qi1nqi1
for some n ∈ Nα and Akv0 must lie in Ai1

s = span
{
A
qi1nq̄i1
v0 | n ∈ Nα

}
. By

Proposition 3.6.5 it is therefore enough to evaluate ψ on operators of the
form

AK,(i1,l2),βs0
T γΛn

for β ∈ D̂(G), K = (k1, k2) ∈ Iβ, k1 = i1 and l2 ∈ Iπβ . Because of

ψ(AK,(i1,l2),βs0
T γΛn

) =ψ(AII,αs AK,(i1,l2),βs0
T γΛn

)

(3.6.2)
====δα,βδK,Iψ(AI,(i1,l2),αs0

T γΛn
)
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We therefore may assume that K = I and α = β.
We want to show that also l2 = i2 holds by inserting the operator AII,αs0

on
the right of the argument of ψ. At first, this does not seem to lead anywhere
due to the fact that the different summands A

qi1mq̄i1
s0 for m ∈ Nα commute

differently with T γΛn
, i.e.

AII,αs0
T γΛn

=
∑
m∈Nα

dimπα

|Nα|
Γ̄i2i2πα (m)T γmΛn

A
qi1mq̄i1
s0

with suitable G-connections γm. However, by Lemma 3.2.7, we can transform
each T γmΛn

individually to some constant T γΛn
using star operators at vertices

other than v0, commuting with each star operator at s0. This gives indeed

δK,Iδα,βψ(AI,(i1,l2),αs0
T γΛn

) =ψ(AI,(i1,l2),αs0
T γΛn

AII,αs )

=δK,Iδα,βψ(AI,(i1,l2),αs0
AII,αs0

T γΛn
)

=δK,Iδα,βδl2,i2ψ(AII,αs0
T γΛn

)

=δK,Iδα,βδl2,i2ψ(T γΛn
)

Let C
s0,ci1
G (Λn) denote the space of G-connections that are flat for all s =

(v, f) with f ̸= f0 and have magnetic flux ci1 at site s0. As mentioned before,
Lemma 3.2.7 allows us to commute with star operators at sites other than
s0 to commute T γΛn

to any T γ
′

Λn
with γ′ ∈ C

s0,ci1
G (Λn), hence ψ(T γΛn

) = ψ(T γ
′

Λn
)

for all γ′ ∈ C
s0,ci1
G (Λn), and because of ψ(1A) = 1 we have

ψ
(
AK,(i1,l2)s0

, βT γΛn

)
=
δK,Iδα,βδl2,i2∣∣Cs0,ci1

G (Λn)
∣∣ .

We conclude that ψ is uniquely determined on all operators of the form
LλΛn

T γΛn
, hence on all of Aloc and by continuity on A.

Theorem 3.6.8. ωII,αξ is pure for each irreducible representation α ∈ D̂(G)
and index pair I = (i1, i2) ∈ Iα, and the corresponding GNS representations
is therefore irreducible.

Proof. We will repeat the arguments from the beginning of this section in
more detail. Write s0 = (v0, f0) = ∂0ξ. By Lemma 2.5.6, ωII,αξ is pure if

and only if for every positive linear functional ψ : A → C with ψ ≤ ωII,αξ , it

follows that ψ is a multiple of ωII,αξ . If ψ is non-zero and ψ(X) ≤ ωII,αξ (X)
for all positive X ∈ A, then

0 ≤ ψ(1A − AII,αs0
) ≤ ωII,αξ (1A − AII,αs0

) = 0
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and

0 ≤ ψ(1A − As) ≤ ωII,αξ (1A − As) = 0

for all s = (v, f) with f ̸= f0, implying ψ(As) = ψ(AII,αs0
) = 1A. Similarly,

ψ(Bs) = ψ(B
ci1
s0 ) = ψ(1A). Then the map ψ̃ = 1

ψ(1A)
ψ defines a state with

ψ̃(AII,αs0
) = ψ̃(As) = 1 and ψ̃(Bs) = ψ̃(Bci1 ) = 1 It follows from Theorem

3.6.7 that ψ̃ = ωII,αξ , implying ψ = ψ(1A)ωII,αξ , hence ωII,αξ is pure.
Finally, by [KR86, Thm 10.2.3] a state is pure if and only if its corre-

sponding GNS representation is irreducible.

Theorem 3.6.9. Let α, β ∈ D̂(G), I ∈ Iα, J ∈ Iβ and ξ1, ξ2 be semi-infinite

ribbons. Then the GNS representations of ωII,αξ1
and ωJJ,βξ2

are equivalent if
and only if α ∼= β.

Proof. By construction, ωII,αξ1
and ωJJ,βξ2

are normal states. By Theorem 3.6.8,

the GNS representations πII,αξ1
respectively πJJ,βξ2

of ωII,αξ1
respectively ωJJ,βξ2

are irreducible. It follows that the commutants πII,αξ1
(A)′ and πJJ,βξ2

(A)′ must

be multiples of the identity, implying that ωII,αξ1
and ωJJ,βξ2

are factor states,

and by Lemma 2.5.23, ωII,αξ1
and ωJJ,βξ2

are quasi-equivalent if and only if for
each ε > 0 there exists a region Λ such that∣∣∣ωII,αξ1

(X) − ωJJ,βξ2
(X)

∣∣∣ < ε ∥X∥ (3.6.19)

for all X ∈ Aloc supported on Λc. In Lemma 3.4.12, we saw that if α = β, we
even have ωII,αξ1

(X) = ωαξ1(X) for any region disjoint from ∂0ξ, where ωαξ1 are

the states defined in Lemma 3.5.3, giving in particular ωII,αξ1
(X) = ωJJ,αξ1

(X)

in that case and Equation (3.6.19) is trivially satisfied for all ε and ωII,αξ1

and ωJJ,αξ1
must be quasi-equivalent. Since pure states are quasi-equivalent

if and only if they are equivalent, ωII,αξ1
and ωJJ,αξ1

must be equivalent. By

our discussion in Remark 3.4.11, we also have ωII,αξ1
(X) = ωII,αξ2

(X) for all
X ∈ Aloc supported outside of a region containing any ribbon ζ connecting
∂0ξ1 and ∂0ξ2. This implies that ωII,αξ1

and ωJJ,αξ2
must be quasi-equivalent,

and hence equivalent, as well.
For the other direction, let α ̸∼= β. Then we can choose for any finite

region Λ a closed ribbon σ supported outside Λ with s1 and s2 in the interior
of σ to obtain

ωII,αξ1
(Pα

σ ) = 1,

ωJJ,βξ2
(Pα

σ ) = 0,
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by Equation (3.4.24). But then Equation (3.6.19) is violated for any ε < 1
and X = Pα

σ and ωII,αξ1
and ωJJ,βξ2

must be inequivalent.

Remark 3.6.10. The proof of Theorem 3.6.7 is a generalization of the proof
of uniqueness of the frustration free ground state for the quantum double
model [FN15]. Indeed, as indicated before, choosing α = (triv, {e}) in Equa-
tion (3.4.20), we get the frustration free ground state.



Chapter 4

Outlook and Discussion

In this chapter, we want to discuss some open question that this work can
branch out to. In Section 3.4 we introduced the notion amplimorphisms
as a means to defining the states ωII,αξ . In Section 4.1, we inspect these
amplimorphisms in further detail. It turns out that the matrices Fα

ξ carry

natural transformation rules under the irreducible representation α ∈ D̂(G).
Furthermore, the amplimorphisms obtained from these matrices form objects
of a category that can be related to the representation category rep(D(G)).
What makes these amplimorphisms interesting to study is that they give rise
to states satisfying the superselection criterion for cones: If C is a cone in
the plane, then the GNS representation π0 of the vacuum state ω0 is quasi-
equivalent to the representation χαξ ◦ π0 when restricted to the complement
of C in Z2. In other words, we have

π0 |Cc∼=q.e. (χαξ ◦ π0) |Cc ,

where the composition on the right-hand side is understood component wise.
We remind the reader that the classical superselection criterion is defined
in the setting of quantum field theory for light-cones, and the complement
considered is the space-like complement. Furthermore, we eased the criterion
to demand only quasi-equivalence, whereas in [DHR71] one demands unitary
equivalence.

A similar class of amplimorphism was analysed in [SV93] and a categorical
equivalence was established between this category of amplimorphisms and
the category rep(D(G)). We investigate this relation in the context of the
non-abelian quantum double1. The biggest difference in our work is that we
are dealing with infinite ribbons, while in [SV93], all operators were localized

1This is a work in progress in collaboration with Alex Bols, Pieter Naaijkens
and Siddharth Vadnerkar
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in a finite region of the spin chain model. Recall also that the operators Fα
ξ

defined in Chapter 3 are not well-defined for infinite ribbons, even though
the amplimorphisms χII,αξ are.

There is another important difference between our setting and the sce-
nario in [SV93]: Morphisms in the category of amplimorphism are defined
as unitaries in A ⊗ Hom(V,W ) for amplimorphisms χ1 ∈ A ⊗ End(V ) and
χ2 ∈ A ⊗ End(W ). In our case, however, the entries of such a unitary will
not live in A, but rather in the von Neumann algebra generated by the GNS
representation of ω0.

In Section 4.2, we discuss open questions and possible generalizations
from our work. In Section 4.2.1, we mention briefly mention the possibility
of other ground state in the non-abelian quantum double model. In Section
4.2.2 we consider quantum double models stemming from general Hopf alge-
bras. Finally, we discuss ideas to extend the quantum double construction
to compact groups in Section 4.2.3.

4.1 The category of Amplimorphisms

First, we return to the analysis of superselection sectors. We have mentioned
at the beginning of this thesis that it is widely believed that anyons are
described by a modular tensor category, and that we would like to describe
the algebraic properties of anyons using the theory of superselection sectors.
We explained in the beginning of Chapter 3 that the construction of the
amplimorphisms χαξ : A → A ⊗ End(Vα) is motivated by the DHR theory,
which associates the superselection sectors of physical states with localized
and transportable endomorphisms. A representation π is said to satisfy the
superselection criterion for cones, if for every cone C we have

π0 |A(Cc)
∼=q.e. π |A(Cc), (4.1.1)

where ∼=q.e. denotes quasi-equivalence. If χ is an amplimorphism local-
ized in some cone C, then for all A supported outside of C we have
π0 ◦ χ(A) = π0(A) ⊗ id =

⊕
I∈Iα π0(A). As we have seen, the amplimor-

phisms χαξ are localized as well (Proposition 3.4.8). Furthermore, it was

shown in [BV23] that the representations χII,αξ ◦ π0 are unitarily equivalent

to the GNS representations πII,αξ of the pure states ωII,αξ for each I ∈ Iα and
regardless of the choice of the initial site of ξ, and with Theorem 3.6.9 it
follows that χII,αξ ◦ π0 is unitarily equivalent to χJJ,αξ′ ◦ π0 for any ribbon ξ′

and index J ∈ Iα, which is why we may write πα instead of πII,αξ . It follows
that the states χαξ ◦ π0 satisfy the superselection criterion for cones.

We summarize our observation in the following theorem.
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Theorem 4.1.1. Let ξ be a semi-infinite ribbon extending to infinity from
some initial site s0. Then the mapping

D̂(G) → rep(A), α 7→ χαξ ◦ π0, (4.1.2)

maps each irreducible representation of the quantum double D(G) to a state
satisfying the superselection criterion Equation (4.1.1).

Whether transportability for cones holds was left as an open question in
[Naa15], but is now answered in Theorem 4.1.1

Transportable and localized amplimorphisms form a category, and we
anticipate that this category has the same structure as the representation
category of D(G) as a modular tensor category. In [SV93], a 1-dimensional
quantum spin chain is explored within the setting just described. There, it
was shown that all anyon sectors can be obtained via localized and trans-
portable amplimorphism χ : A → A ⊗Mn(C) on the quasilocal algebra A,
and a fixed vacuum representation π0. As mentioned before, there are certain
additional subtleties in the setting of the infinite plane. One such subtlety is
that the unitary transporters V are not defined in πα(A), but rather in the
von Neumann algebra generated by π(A) [Naa15]. Another difference is that
the transformation rule satisfied by the matrices Fα

ξ are slightly different from
the ribbon operators defined in [SV93]. In the following, we will explore the
difficulties and possibilities to generalize their result to the two-dimensional
non-abelian quantum double model on an infinite lattice.

Let H be a Hopf ∗-algebra with unitary action on a module V via some
map U : H ⊗ V → V . Then we can define the coadjoint action of H on
End(V ) via

γUa (A) =
∑
(a)

U(a(1))AU(S(a(2))). (4.1.3)

Lemma 4.1.2. The map γU defined in Equation (4.1.3) defines indeed an
action of H on End(V ) and satisfies the identities

γUa (AB) =
∑
(a)

γUa(1)(A)γUa(2)(B) (4.1.4)

and

γUa (A∗) = γUS(a)∗(A)∗. (4.1.5)
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Proof. That γ defines an action follows from

γUab(A) =
∑
(ab)

U((ab)(1))AU(S(ab)(2))

=
∑
(a)

∑
(b)

U(a(1))U(b(1))AU(S(b(2)))U(S(a(2)))

=γUa ◦ γUb (A).

We proceed to show the other identities:

γUa (AB) =
∑
(a)

U(a(1))ABU(S(a(2)))

=
∑
(a)

U(a(1))AU(S(a(2)))U(a(3))BU(S(a(4)))

=
∑
(a)

γUa(1)(A)γUa(2)(B)

γUS(a)∗(A) =
∑
(a)

[
U((S(a)∗)(1))AU(S((S(a)∗)(2)))

]∗
=
∑
(a)

[
U((S(a(2))∗))AU(S(S(a(1))∗))

]∗
=
∑
(a)

[
U((S(a(2))∗))AU((a(1))∗)

]∗
=
∑
(a)

[
U(a(1))A∗U(S(a(2)))

]
=γUa (A∗).

Let Us be the action of the quantum double D(G) at site s defined in
Proposition 3.4.1 via Us(δg ⊗ h) = Bg

sA
h
s and let γs := γUs be the corre-

sponding coadjoint action on A. Given a ribbon ξ and an irreducible rep-

resentation α ∈ D̂(G), the elements (Fα
ξ )IJ in Equation (3.4.14) form the

entries of an element F ∈ A ⊗ End(V ), with V ∼= C|Iα|. For an arbitrary
element F ∈ A⊗Hom(V,W ) we say that F satisfies the F-algebra relation
[SV93] if

F∗F = 1A ⊗ idV , (4.1.6)
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i.e. if ∑
K

(FKI)∗FKJ = δIJ1A

for all I = 1, . . . , dimW and J = 1, . . . , dimV . We call F non-degenerate if
F satisfies the F -algebra relation, Equation (4.1.6), and

FF∗ = 1A ⊗ idW , (4.1.7)

i.e. if ∑
K

FIK(FJK)∗ = δI,J1A.

For any element F ∈ A⊗ Hom(V,W ) we define a map χF via

χF : A → A⊗ End(V ), X 7→ FXF∗. (4.1.8)

If F satisfies the F -algebra relation, then

χF(AB) = (F)∗ (AB ⊗ idV )F = (F)∗ (A⊗ idV )FF∗(B ⊗ idV )F

=χF(A)χF(B)

and χF becomes an amplimorphism that is unital if and only if F is in addition
non-degenerate.

We can extend the coadjoint action of D(G) to A⊗ Hom(V,W ) via

γsa(F) =
∑
(a)

(Us[a
(1)] ⊗ id)F(Us[S(a(2))] ⊗ id). (4.1.9)

Before we continue, we introduce a few notations to ease readability. If
X ∈ A, we set

XF := (X ⊗ idW )F,

i.e., we view X as acting component wise. Similarly, if T ∈ End(W ), we
may identify T = 1A ⊗ T and write TF instead of (1A ⊗ T )F. Note that we
have [T,X] = 0 for all X ∈ A and T ∈ End(V ) with this notation. Equation
(4.1.9) reads in this notation

γsa(F) =
∑
(a)

Us[a
(1)]FUs[S(a(2))]. (4.1.10)
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If α ∈ D̂(G) is an irreducible representation of the quantum double G, then
we call F an α-multiplet at site s if F satisfies the F -algebra relation and
if

γsa(F) = Γα∗(S(a))F, (4.1.11)

where α∗ is the contragredient representation of α, (cf. Proposition 2.4.10)
and Γα∗ is the unitary matrix representation of α∗ as given in Equation
(2.4.33). Note that we identified Γα(a) with 1A ⊗ Γα(a). The motivation
behind these definitions can be found in the following Proposition.

Proposition 4.1.3. Let α ∈ D̂(G) be an irreducible representation of the
quantum double D(G) and ξ a ribbon with initial site s = ∂0ξ. Then the
matrix Fα

ξ ∈ A⊗Mdα(C) defined in Equation (3.4.14) is non-degenerate and
satisfies the F -algebra relations. If ξ is locally clockwise oriented, then Fα

ξ is
a non-degenerate α-multiplet at site s.

Proof. The F -algebra relation and non-degeneracy has been shown in the
proof of Proposition 3.4.8, see in particular Equation (3.4.18) and Equation
(3.4.17). We verify the multiplet property for elements of the form δg ⊗ h ∈
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D(G) with g, h ∈ G and consider the I-th row and J-th column of γs(a)(Fα
ξ ):(

γsa(F
α
ξ )
)IJ

=
∑
n∈Nα

∑
(a)

Γ̄i2j2πα (n)Us(a
(1))F

c̄i1 ,qi1nq̄j1
ξ Us(S(a(2)))

(2.4.25),(2.4.26)
=========

∑
n∈Nα

∑
(a)

Γ̄i2j2πα (n)Us(δg2 ⊗ h)F
c̄i1 ,qi1nq̄j1
ξ Us(δh̄ḡ1h ⊗ h̄)

(3.4.1)
====

∑
n∈Nα

∑
g1g2=g

Γ̄i2j2πα (n)Bg2
s A

h
sF

c̄i1 ,qi1nq̄j1
ξ Bh̄ḡ1h

s Ah̄s

(3.3.6),(3.3.8)
========

∑
n∈Nα

∑
g1g2=g

Γ̄i2j2πα (n)F
hc̄i1 h̄,hqi1nq̄j1
ξ B

g2hc̄i1 h̄
s AhsB

h̄ḡ1h
s Ah̄s

(3.2.14)
====

∑
n∈Nα

∑
g1g2=g

Γ̄i2j2πα (n)F
hc̄i1 h̄,hqi1nq̄j1
ξ B

g2hc̄i1 h̄
s Bḡ1

s A
h
sA

h̄
s

=
∑
n∈Nα

∑
g1g2=g

δḡ1,g2hc̄i1 h̄Γ̄
i2j2
πα (n)F

hc̄i1 h̄,hqi1nq̄j1
ξ Bḡ1

s

g1g2=g
=====

∑
n∈Nα

∑
g1g2=g

δḡ,hc̄i1 h̄Γ̄
i2j2
πα (n)F

hc̄i1 h̄,qhci1 h̄q̄hci1 h̄hqi1nq̄j1

ξ Bḡ1
s

n 7→q̄i1 h̄qhci1 h̄n

==========
∑
n∈Nα

δḡ,hc̄i1 h̄Γ̄
i2j2
πα (q̄i1h̄qhci1 h̄n)F

hc̄i1 h̄,qhci1 h̄nq̄j1

ξ

=
∑
n∈Nα

dimπα∑
k2=1

|Cα|∑
k1=1

δg,hci1 h̄δck1 ,hci1 h̄Γ
k2i2
πα (q̄hci1 h̄hqi1)

Γ̄k2j2πα (n)F
c̄k1 ,qhc̄i1 h̄nq̄j1

ξ

(2.4.33)
====

∑
K∈Iα

ΓKIα (δg ⊗ h)(Fα
ξ )KJ

(2.4.32)
====

∑
K

ΓIKα∗ (S(δ ⊗ h))(Fα
ξ )KJ

=Γα∗(S(δg ⊗ h))(F αξ )

In components, Equation (4.1.11) takes the form∑
K∈Iα

ΓKIα (δg ⊗ h)(Fα
ξ )KJ , (4.1.12)

as seen in the third from last step of the proof of Proposition 4.1.3. We will
denote the space of α-multiplets by Multα and write RMultα for the set of
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multiplets of the form Fα
ξ . We also write

Mult =
⋃

α∈Reps(D(G))

Multα (4.1.13)

RMult =
⋃

α∈Reps(D(G))

RMultα (4.1.14)

to denote the set of all multiplets, respectively ribbon multiplets.

Lemma 4.1.4. If F ∈ A ⊗ Hom(V,W ) is an α-multiplet for α ∈ D̂(G) at
site s, then we have

γsa(F
∗) = F∗Γα∗(a) (4.1.15)

and

γsa(F
t) = FtΓα(a) (4.1.16)

for the adjoint F∗ and the transpose Ft of F.

Proof. Note that (F∗)IJ = (FJI)∗. Using that F is an α-multiplet, we obtain

(γa(F
∗))IJ

(4.1.5)
===γS(a)∗(FJI)∗

(4.1.12)
====

∑
K∈Iα

(
Γα∗(S2(a)∗)JKFKI

)∗
=(Γα∗(a∗)F)∗

(2.4.31)
==== F∗Γα∗(a)

and

γsa(F
t)IJ =γsa(F

JI) = ΓJKα∗ (S(a))FKI

=ΓKJα (a)(Ft)IK =
(
FtΓα(a)

)IJ

Remark 4.1.5. Equation (4.1.16) is the original version of the α-multiplet
property given in [SV93, Eq. (4.1)] in the setting of one-dimensional quantum
spin chains.

Given an irreducible representation α ∈ D̂(G), we can always construct
a ribbon multiplet Fα

ξ at site s for some finite ribbon ξ with s = ∂0ξ. As we
have seen in Proposition 3.4.9, if ξ is an infinite ribbon, the amplimorphism

χξ : A → A⊗Mnα(C), X 7→ Fα
ξX(Fα

ξ )∗
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understood as limits of finite ribbons ξn ∈ ξ converges for each X ∈ A
even though Fα

ξ does not. This allows us to choose for each irreducible

representation α ∈ D̂(G) an amplimorphism χξα by choosing a sequence of
ribbons ξαn converging to some infinite ξα. Note that each of the individual χξαn
are already amplimorphisms and each of the Fα

ξαn
is already a non-degenerate

α-multiplet at site s = ∂0ξ
α
n . There is a connection between the category

rep(D(G)) and amplimorphisms, and we will see that the ribbon multiplets
play a special role. But first, we need a few more definitions.

Definition 4.1.6 (Morphisms of amplimorphism). Let χ1 : A →
Hom(V1,W1) and χ2 : A → Hom(V2,W2) be two amplimorphisms. A
morphism of amplimorphism from χ1 to χ2 is an element U ∈ A ⊗
Hom(W1,W2) such that

Uχ1(A) =χ2(A)U (4.1.17)

Uχ1(1A) =U = χ2(1A)U (4.1.18)

for all A ∈ A and we denote the space of morphisms by Hom(χ1, χ2). We
call U ∈ Hom(χ1, χ2) a unitary equivalence if U is a partial isometry with
UU∗ = χ2(1A) and U∗U = χ1(1A) and write χ1 ∼ χ2 if a unitary equivalence
exists.

Amplimorphisms form together with their morphisms a category, which
we shall denote by Amp. Given two morphisms U ∈ Hom(χ1, χ2) and
V ∈ Hom(χ2, χ3), their composition is given via V U ∈ Hom(χ1, χ2) and the
identity morphism on Hom(χ, χ) is given by χ(1A) for any amplimorphism
χ.

The following proposition draws an important connection between mor-
phisms of amplimorphisms and the underlying linear spaces.

Proposition 4.1.7. Let Fi ∈ A⊗Hom(Vi,Wi), i = 1, 2 satisfy the F -algebra
relation, i.e.

F∗
iFi = 1A ⊗ id

and let χF1 , χF2 be the corresponding amplimorphisms. If T ∈ Hom(V1, V2)
is viewed as an element in 1A ⊗ Hom(V1, V2), then the matrix

UT = F2TF
∗
1 ∈ A⊗ Hom(W1,W2) (4.1.19)

is a morphism from χF1 to χF2. On the other hand, given any matrix U ∈
A⊗ Hom(W1,W2), we set

TU = F∗
2UF1 ∈ A⊗ Hom(V1, V2). (4.1.20)

Then the following hold:
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(1) U ∈ Hom(χF1 , χF2) if and only if TU ∈ 1A⊗Hom(V1, V2) and UF1F
∗
1 =

U = F2F
∗
2U .

(2) U ∈ Hom(χF1 , χF2) is an equivalence if and only if TU ∈ 1A ⊗
Hom(V1, V2) is unitary and UF1F

∗
1 = U = F2F

∗
2U .

Proof. If T ∈ Hom(V1, V2) ∼= 1A ⊗ Hom(V1, V2), then T commutes with A⊗
idV1 for each A ∈ A. This gives

UTχF1(A) =F2TF
∗
1F1(A⊗ idV1)F

∗
1 = F2T (A⊗ idV1)F

∗
1 = F2(A⊗ idV1)TF

∗
1

=F2(A⊗ idV1)F
∗
2F2TF

∗
1 = χF2(A)UT ,

and we also have

UTF1F
∗
1 = F2TF

∗
1F1F

∗
1 = F2TF

∗
1 = UT

F2F
∗
2UT = F2F

∗
2F2TF

∗
1 = F2TF

∗
1 = UT .

Next, let U ∈ Hom(χF1 , χF2) be given and TU = F∗
2UF1. Then

TU(A⊗ id) =F∗
2UF1(A⊗ id) = F∗

2UF1(A⊗ id)F∗
1F1 = F∗

2F2(A⊗ id)F∗
2UF1

=(A⊗ id)TU

giving T IJU ∈ A′ for each matrix entry of TU for some chosen basis. By
Proposition 2.5.20, we must have T IJU ∈ 1A ·C, hence TU ∈ 1A⊗Hom(V1, V2).
If U is in addition an equivalence, then U∗U = F1F

∗
1 and UU∗ = F2F

∗
2 are

projections, hence

TUT
∗
U =(F∗

2UF1)(F
∗
2UF1)

∗ = F∗
2UF1F

∗
1U

∗F2 = F∗
2UU

∗F2 = F∗
2F2F

∗
2F2

=1A ⊗ id,

and T ∗
UTU = 1A ⊗ id follows similarly. On the other hand, if F∗

2UF1 ∈
1A ⊗ Hom(V1, V2) and F2F

∗
2U = U = UF1F

∗
1, then

UF1(A⊗ id)F∗
1 = F2F

∗
2UF1(A⊗ id)F∗

1 = F2(A⊗ id)F∗
2UF1F

∗
1 = F2(A⊗ id)F∗

2U

hence, U ∈ (χF2 , χF1). If F∗
2UF1 is in addition unitary, then

1A ⊗ id = F∗
2UF1F

∗
1U

∗F2 = F∗
2UU

∗F2

multiplying both sides from the left with F2 and from the right with F∗
2 and

using that F2F
∗
2U = U , respectively U∗F2F

∗
2 = U∗ gives

F2F
∗
2 = UU∗.

Similarly, the identity

1A ⊗ id = F∗
1U

∗F2F
∗
2UF1

gives U∗U = F1F
∗
1. This concludes the proof.
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In [SV93], 1-dimensional spin models are considered, and the field algebra
operators Fα considered there satisfy the relation

γsa(Fα) = FαΓα(a), (4.1.21)

which is different from the transformation rule that applies in our case. While
conceptually, this should not pose a problem, the convenient placement of
the Γ matrix on the right of Fα allows the following nice additional charac-
terization of intertwiners:

Proposition 4.1.8. Let Fi ∈ A⊗Hom(Vi,Wi) satisfy Equation (4.1.21) for

irreducible representations αi ∈ D̂(G). If T ∈ (α2, α1) is an intertwiner from
α2 to α1, then the operator

UT := F2TF
∗
1 ∈ (χ1, χ2) (4.1.22)

is an ε-multiplet. Conversely, if U ∈ (χ1, χ2) is an ε multiplet, then the
operator

TU = F∗
2UF1 (4.1.23)

is an intertwiner from α1 to α2.

Proof. Much like in Lemma 4.1.4, one can show that

γsa(F
∗
i ) = FiΓα(S(a)).

Let U ∈ Hom(χF1 , χF2) be such that γsa(U) = ε(a)U . Since U is in partic-
ular a morphism of amplimorphisms, we still have TU ∈ 1A ⊗ Hom(V1, V2),
implying γa(TU) = ε(a)TU . This gives

ε(a)TU =γa(F
∗
2UF1)

=
∑
(a)

γsa(1)(F
∗
2)γ

s
(a(2))(U)γsa(3)(F1)

=
∑
(a)

ε(a(2))γa(1)(F
∗
2)Uγa(3)(F1)

=
∑
(a)

ε(a(2))Γα1(S(a(1)))F∗
2UF1Γα2(a

(3))

=
∑
(a)

Γα1(S(a(1)))TUΓα2(a
(2)) (4.1.24)
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for all a ∈ D(G). But then

TUΓα2(a) =
∑
(a)

Γα1(a
(1))Γα1(S(a(2)))TUγα2(a

(3))

(4.1.24)
=

∑
(a)

Γα1(a
(1))ε(a(2))TU = Γα1(a)TU ,

hence, TU is an intertwiner from α2 to α1. For the other direction, we evaluate

γa(UT ) =γa(F2F
∗
2UTF1F

∗
1)

=
∑
(a)

γa(1)(F2)ε(a
(2))F∗

2UTF1γa(3)(F
∗
1)

=
∑
(a)

F2Γα1(a
(1))TΓα2(S(a(2)))F∗

1

=
∑
(a)

F2Γα1(a
(1))Γα1(S(a(2)))TF∗

1

=ε(a)F2TF
∗
1 = ε(a)UT .

In view of Lemma 4.1.4 one approach could be to substitute the matrices
Fi in Proposition 4.1.8 with the transposes of α-multiplets. Intertwiners
of representation T would then give rise to ε-multiplets Ft

2T (Ft
1)

∗ for α-
multiplets F1,F2 understood as in Equation (4.1.11). Note also that UTF1 =
F2TF

∗
1F1 = F2T already gives

γsa(UTF1) = γsa(F2T ) = Γα∗(S(a))F2T, (4.1.25)

showing that UTF1 is an α-multiplet regardless of whether F2 had any multi-
plet structure and regardless of the choice of the linear map T . This suggests
that an intertwiner of amplimorphisms given by multiplets should do more
than just satisfying Equation (4.1.25). We propose the following definition:

Definition 4.1.9 (Intertwiners). Let F1,F2 be an α1-, respectively α2-
multiplet and χF1 , χF2 the corresponding amplimorphism. Then we call a
morphism U ∈ Hom(χF1 , χF2) an intertwiner from χF1 to χF2 if

(F2)
tF∗

2UF1(F
t
1)

∗ (4.1.26)

is an ε-multiplet.
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If furthermore T is a linear map between the modules Vα1 ,Vα2 associated
to representations α1, α2 ∈ rep(D(G)), then UT defined in Equation (4.1.22)
becomes a morphism of amplimorphisms in the sense of Definition 4.1.6 and
is unitary if and only if T is unitary. If T is in addition an intertwiner, then
UT becomes an intertwiner in the sense of Definition 4.1.9:

γsa(F
t
2F

∗
2UTF1(F

t
1)

∗)(Ft
1)

∗ =
∑
(a)

Ft
2Γα2(a

(1))γsa(2)(T )Γα1(S(a(3)))

=
∑
(a)

Ft
2Γα2(a

(1))ε(a(2))TΓα1(S(a(3)))(Ft
1)

∗

=ε(a)Ft
2T (Ft

1)
∗.

On the other hand, TU = F∗
2UF1 is always a c-number matrix if U is a

morphism of amplimorphisms, and hence an ε-multiplet. If F1 and F2 are in
addition non-degenerate α1- respectively α2-multiplets, then

ε(a)Ft
2F

∗
2UF1(F

t
1)

∗ =
∑
(a)

γsa(1)(F
t
2)γ

s
a(2)(TU)γsa(3)((F

t
1)

∗)

=
∑
(a)

Ft
2Γα(a(1))ε(a(2))TUΓα(S(a(3)))(Ft

1)
∗.

Multiplying both sides from the left with (F t
2)∗ and from the right with F t

1

gives

ε(a)TU =
∑
(a)

Γα(a(1))TUΓα(S(a(2)))

and similar calculations as in the proof of Proposition 4.1.7 show that TU is
an intertwiner from α1 to α2. This establishes a functor between the category
R-Amp and rep(D(G)) as follows: For each site s, we choose a sequence of
ribbons ξn with fixed initial site s = ∂0ξn and extending to a semi-infinite
ribbon ξ as explained in Proposition 3.4.9. Then for every representation

α ∈ D̂(G), we obtain a non-degenerate α-multiplet Fα
ξ , giving rise to an

amplimorphism χFα
ξ
. By taking direct sums, this extends to arbitrary repre-

sentations α ∈ rep(D(G)).

It is straightforward to see that this mapping is indeed functorial. In
[SV93], an equivalence of fusion categories between the category rep(D(G))
and RMult was established, and we are fairly certain that the functor just
introduced for the non-abelian quantum double will exhibit a similar be-
haviour.
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4.2 Possible Generalizations and Open Ques-

tions

4.2.1 The Complete Set of Infinite Volume Ground
States

In Theorem 3.5.4 we have provided a set of infinite volume ground states
for the non-abelian quantum double, similar to the ones in [CNN16]. It is
however still an open question whether there are other ground stats of the
model. In [CNN16] it was shown that any arbitrary ground state minimizes
some Hamiltonian with a boundary condition similar to the operator Hα

n we
inspected. One could then analyse infinite volume ground states with the use
of finite volume ground states. Translating the arguments to the non-abelian
setting may be possible, but the calculations become much more involved
in our setting. It would be interesting to see if the family of ground states
obtained in Theorem 3.5.4 give indeed a complete set, or whether there are
other non-equivalent ground states admitted in our setting.

4.2.2 Generalization to Hopf algebras

Many concepts in this work are independent of the particular structure of
the quantum double D(G). The question naturally arises if the discussion of
anyons can be based on the quantum double D(H) of a general semisimple
Hopf* algebra H. A detailed description can be found in [BMCA13] but we
will give a brief overview here.

We discussed in Section 2.4 how the quantum double D(H) can be con-
structed from a finite-dimensional Hopf algebra H and that D(G) is a special
case for the Hopf algebra CG. To generalize the quantum double model to
finite dimensional Hopf algebras, we would like to decorate the edges of our
lattice with the Hopf algebra H as a vector space at each edge and give the
Hamiltonian in terms of quantum double action. First, we would have to
establish how the Hilbert space H could be turned into a vector space. If ϕ
is the Haar integral of H∗ and H a Hopf *-algebra, an inner product can be
defined via

⟨a, b⟩ = ϕ(a∗b) (4.2.1)

for a, b ∈ H.
The triangle operators can mostly be straightforwardly generalized: The

operators Lhτ act either via left- respectively right multiplication with the
element h ∈ H if eτ is aligned, or with the antipode of h if eτ is not aligned
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[CCY21]. For the direct triangle operator Tφτ act on an element k ∈ H at
the edge crossing eτ via

k 7→



∑
(k)

φ(k(1))k(2) If τ is aligned and locally clockwise oriented∑
(k)

φ(S(k(2)))k(1) If τ is not aligned and locally clockwise oriented∑
(k)

φ(k(2))k(1) If τ is aligned and locally counter-clockwise oriented∑
(k)

φ(S(k(1)))k(2) If τ is not aligned and locally counter-clockwise oriented

(4.2.2)

Most notably, the direct triangle operator now depend on the local orienta-
tion, unless H is cocommutative. From the construction of triangle operators,
we can construct star and plaquette operators as before. For the Hamilto-
nian, the projection into the trivial electric- and magnetic charge operators
are given via the action of the Haar integrals h0 and ϕ of H and H∗ respec-
tively. The trivial electric charge operator then becomes Ah0s , and the trivial
magnetic charge operator becomes Bϕ

s . A local Hamiltonian can then be
defined analogously to the local Hamiltonian for the non-abelian quantum
double model:

HΛ =
∑
s∈S

(
1 − Ah0s

)
+
∑
s∈S

(
1 −Bh0

s

)
. (4.2.3)

Finally, the recursive formula for ribbon operators take the form [CCY21]

F h⊗f :=
∑
(h⊗f)

F
(h⊗f)(1)
ξ1

F
(h⊗f)(2)
ξ2

. (4.2.4)

Equation (3.4.4) would allow a straightforward generalization to ribbon-
multiplets and it would be interesting to study anyon excitations in this
setting. We believe that our results and methods in Chapter 3 should gen-
eralize to the setting of Hopf algebras.

4.2.3 Generalizations to continuous Groups

In [KM96] a construction of the quantum double for locally compact groups
is presented. If G is a Hausdorff locally compact group, we may identify
the quantum double D(G) with C(G×G), the space of continuous, complex
valued maps on G×G. Given elements φ, φ1, φ2 ∈ D(G), the structure maps
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of D(G) are presented in [KM96] as

φ1 · φ2(g, h) =

∫
G

φ1(g, k)φ2(k̄gk, k̄h)dk (4.2.5)

1D(G)(g, h) = δe,h (4.2.6)

∆(φ)(g1, h1, g2, h2) = φ(g1g2, h1)δh1,h2 (4.2.7)

ε(φ)(g, h) =

∫
G

φ(e, h)dh (4.2.8)

S(φ)(g, h) = φ(h̄ḡh, h̄) (4.2.9)

φ∗(g, h) = φ(h̄gh, h̄) (4.2.10)

Note, that the unit is not an element of D(G) nor is ∆(φ) an element of
D(G) ⊗ D(G). However, expressions of the form 1D(G) · φ and ε(φ1)φ2 are
still well-defined. The irreducible representations of the quantum double are
given as follows: Let r ∈ G be a fixed element and Cr the conjugacy class of r
and let further Nr be the centralizer subgroup of r and π ∈ N̂r an irreducible
representation of Nr. We define the set L2(G,Vπ) to be the space of all
square integrable maps ϕ : G→ Vπ, such that

ϕ(gn) = π(n̄)g (4.2.11)

for all n ∈ Nr and almost all g ∈ G. If ∼ denotes the equivalence relation

ϕ1 ∼ ϕ2 :⇔ ϕ1 = ϕ2 almost everywhere, (4.2.12)

then the space L2
π(G,Vπ) := L2(G,Vπ)

/
∼ becomes an irreducible represen-

tation of the quantum double under the action

(φ� ϕ)(g) =

∫
G

φ(grḡ, k)ϕ(k̄g)dk (4.2.13)

For the lattice model, we may choose the following approach:2

• At each edge e, we attach the Hilbert space L2(G) of continuous and
square integrable complex valued functions on G with inner product
defined via

⟨f1, f2⟩ =

∫
G

f ∗
1 (g)f2(g)dg (4.2.14)

2I thank Dr. Christiaan van de Ven for his work and the many discussions.
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• Given a path p in the lattice, we redefine the map β(p) in Equation
(3.2.9) by setting

βp(f) =

{
f if e ∈ E

f ◦ S if e ∈ Ē
(4.2.15)

If p = {e} is a singleton path and

β(p)(f) = β(p1)(f) ⋆ β(p2)(f) (4.2.16)

if p = (p1, p2), where

(f1 ⋆ f2)(g) =

∫
G

f1(hk̄)f2(k)dk (4.2.17)

is the convolution of f1 with f2.

One can check that Equation (4.2.15) and Equation (4.2.16) coincides with
(3.2.8) and Equation (3.2.9) respectively for finite G by identifying g = δg as
a continuous map on G under the discrete topology.

Attempts to obtain a quantum double model that generalizes the familiar
model has not been successful so far, and remains a work in progress. The
biggest challenge in this endeavour has proven to be the construction of the
plaquette operator. Morally, one could try to find an analogue by identifying
δg = G = C(G) like previously noted, and realizing that the plaquette oper-
ator measures the domain of δg. However, the desired projective nature of a
magnetic flux operator seems to be incompatible with a continuous action.
It is not even clear, how an action of the quantum double C(G×G) could be
defined on this lattice model, which would already simplify the task signifi-
cantly. Alternatively, one could explore other notions of the quantum double
in the continuous group case. For instance, in [LZ13] a quantum double con-
struction is established for compact groups. In this approach, the resulting
quantum double D(G) becomes a unital Hopf*-algebra.
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