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Abstract

This study introduces a structural model of economic growth and inequality, grounded

in the optimizing behaviour of entrepreneurs. The model integrates heterogeneous

agents and examines how entrepreneurial incentives, influenced by individual wealth

and credit conditions, endogenously impact wealth distribution and economic growth.

Unlike traditional methods, this research employs indirect inference to test the model,

focusing on its ability to simulate behaviour consistent with observed data rather

than predicting specific outcomes. Using comprehensive UK data spanning from

1870 to 2016, the empirical findings reveal a trade-off between growth and inequality.

The study’s welfare analysis implies that the historical trend towards redistribution

is driven by its popularity and potential to balance growth and inequality, providing

crucial insights for policy formulation.
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Chapter 1

Introduction

This thesis proposes a model of economic growth and inequality, grounded in the

optimizing behavior of entrepreneurs. This model uniquely connects growth to en-

trepreneurial incentives and inequality, differing from existing models (see 2.3 for

details). Additionally, the thesis employs an innovative empirical method—indirect

inference—to test the model. Unlike traditional methods that rely on the model’s

predictive ability, indirect inference checks whether the simulated behaviour of the

model aligns with the actual data behaviour, providing a robust test of the model’s

validity.

1.1 Introduction

Embarking on a journey through the annals of economic history, one is inevitably

drawn to the intricate interplay between economic inequality and growth, an endur-

ing theme that has captivated scholars and policymakers alike. From the opulent

peaks of prosperity to the stark valleys of disparity, the tapestry of human economic

endeavour is woven with the threads of inequality. As societies traverse the epochs,

transitions in economic growth often herald shifts in the distribution of wealth and

opportunity, casting a spotlight on the complex dynamics shaping human welfare.

To dissect the nexus between economic inequality and growth, our exploration

ventures into the empirical realm, where data serves as our guiding compass. Three

primary series stand as pillars in our quest: real GDP growth, income share, and

wealth share. Real GDP growth, a stalwart indicator of economic vitality, traces the

fluctuations in a nation’s aggregate output over time, offering a lens into the overar-

1



2 Introduction

ching trajectory of prosperity. Complementing this macroeconomic perspective, the

income share unveils the distributional nuances within societies, shedding light on

how the spoils of growth are apportioned among different segments of the popula-

tion. Meanwhile, the wealth share delves even deeper, illuminating the concentration

of assets and resources among the most affluent echelons, underscoring the intricate

interplay between economic growth and the accumulation of wealth. We’ve chosen

to analyze UK data due to its rich economic history, and long-term data availability.

The UK’s journey offers insights into how economic inequality and growth intersect.

With comprehensive data covering GDP growth, income distribution, and wealth

concentration, we aim to inspire broader insights beyond national borders.

As shown in Figure 1.1, the UK’s real GDP growth from 1870 to 2016 reflects

a dynamic economic trajectory characterized by periods of expansion, contraction,

and transformation. Over this span of more than a century, the UK experienced sig-

nificant economic milestones, including the Industrial Revolution, two World Wars,

and various shifts in economic policy and global market dynamics. During the late

19th and early 20th centuries, the UK witnessed robust economic growth driven by

industrialization, urbanization, and imperial expansion and this period marked the

zenith of the British Empire, with the UK serving as a global economic powerhouse.

However, the UK’s economy faced challenges and setbacks, including the Great De-

pression of the 1930s and the devastation of World War II. These events led to eco-

nomic contractions and restructuring efforts as the nation rebuilt its infrastructure

and industries. In the post-war period, the UK experienced a period of sustained

growth, often referred to as the "post-war economic boom." This era was character-

ized by government intervention, welfare state expansion, and the rise of industries

such as manufacturing and services. However, by the late 20th century, the UK’s eco-

nomic landscape underwent significant transformations. Thatcherite economic poli-

cies in the 1980s aimed to deregulate markets, privatize state-owned enterprises and

promote free-market principles. While these reforms sparked periods of economic

growth and innovation, they also led to socio-economic challenges such as rising

inequality and deindustrialization in certain regions. In the 21st century, the UK’s

economy continued to evolve amidst globalization, technological advancements, and
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shifting geopolitical landscapes. Economic growth fluctuated in response to global

financial crises, and Brexit uncertainties.

Regarding economic inequality, during the late 19th and early 20th centuries, the

UK experienced widening income inequality as industrialization accelerated, concen-

trating wealth among the upper echelons of society. The rise of large-scale industries

and a wealthy capitalist class significantly increased income disparity.
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Figure 1.1. Economic inequality and growth in the UK: 1870-2016

However, the interwar period, marked by economic turbulence and the Great

Depression, saw some levelling of inequality as the downturn disproportionately

affected wealthier individuals and industries. Government interventions through

social welfare programs and progressive taxation aimed to mitigate disparities and

provide relief to those most impacted. In the post-WWII era, the UK shifted towards

greater social equality, driven by welfare state policies, progressive taxation, and

labour market reforms that expanded education, healthcare, and social services, im-

proving living standards and redistributing wealth more equitably. From the 1980s

onwards, under Margaret Thatcher’s government, neoliberal policies such as dereg-
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Figure 1.2. Economic inequality and growth change in the UK: 1980-2016

ulation, privatization, and tax cuts favoured the wealthy, leading to a resurgence of

income inequality. Globalization, technological advancements, and structural eco-

nomic changes further contributed to this polarization. In the 21st century, income

inequality remained a prominent issue, influenced by financial crises, policy changes,

and global economic shifts. Efforts to address inequality through measures such as

minimum wage laws, progressive taxation, and social welfare programs continue,

reflecting ongoing societal concerns about fairness and social cohesion. From Fig-

ure 1.1, the trajectories of both income and wealth shares for the top 10% exhibit a

consistent decline from 1870 to 1980, followed by an upward trend in the subsequent

four decades, driven by returns on investments. A notable pattern is the decline in

the wealth share of the top 10% post-1950, during the ’Golden Age’ of capitalism,

with wealth becoming more equitably dispersed. Post-1980, the wealth share shows

greater volatility than the income share, though both have trended upwards.

While Figure 1.1 depicts the individual dynamics of growth and inequality, dis-

cerning their relationship or interplay is challenging. However, by examining the dif-

ferences or changes in these series, a compelling narrative emerges. We separate the

full sample into three subsamples,1873 - 1914, 1946 - 1979, and 1980 - 20161. Britain’s

economic history reveals intriguing episodes where shifts in economic growth align

1We used the HP filtered data here just to show where the motivation comes from, we didn’t use
the filtered data in the empirical analysis because by filtering one lose useful information. If one were
to use HP-filtered data in modelling, the model would only have stationary shocks, and one wouldn’t
be able to get long-run divergence in inequality.
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Figure 1.3. Economic inequality and growth change in the UK: 1873-1914

with corresponding changes in economic inequality, suggesting a nuanced and in-

tertwined relationship between the two phenomena. Particularly captivating is the

recent period between 1980 and the mid-1990s as shown in Figure 1.2, when the

nation experienced a robust economic acceleration driven by a slew of supply-side

reforms. Under Margaret Thatcher’s leadership, her economic doctrine, known as

Thatcherism, unfurled a tapestry of deregulation and supply-side transformations.

Deregulation endeavoured to prune state intervention, fostering competition and ef-

ficiency in sectors like telecommunications, transportation, and finance. The pri-

vatization of state behemoths like British Telecom and British Airways symbolized

pivotal milestones, while financial deregulation, epitomized by the Big Bang reforms,

globalized the financial realm. Supply-side measures, including tax cuts to spur in-

vestment and entrepreneurship, accompanied efforts to temper trade union influence

and overhaul welfare. These initiatives catalyzed economic dynamism, moulding a

more market-centred economy, and leaving an indelible imprint on both the UK’s

economic landscape and global economic discourse.

Delving deeper into the annals of pre-WWI history, the period from 1905 to 1914,

as shown in Figure 1.3, unveils a striking correlation between economic prosperity

and disparity, exemplified by the governance of three influential Liberal Prime Min-

isters: Henry Campbell-Bannerman, H.H. Asquith, and David Lloyd George (Chan-
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cellor in office: 1908-1915, PM in office: 1916-1922). Each of these leaders wielded

considerable influence in shaping regulatory policies, particularly in pivotal indus-

tries and social spheres. Campbell-Bannerman’s administration, inaugurating this

era, exhibited a keen focus on social welfare. Initiatives like the Education (Provision

of Meals) Act of 1906, providing free meals for underprivileged schoolchildren, un-

derscored a commitment to alleviating social inequalities. Asquith’s tenure, charac-

terized by significant regulatory interventions, responded adeptly to the burgeoning

social and economic challenges stemming from rapid industrialization. Noteworthy

legislations such as the Trade Boards Act of 1909 exemplified this commitment, lay-

ing the groundwork for fair labour practices and addressing healthcare and social

insurance concerns. The crowning achievement of this era’s regulatory landscape

was perhaps the National Insurance Act of 1911, a landmark piece of legislation un-

der Asquith’s leadership. This act provided workers with comprehensive insurance

coverage against sickness and unemployment, heralding a transformative stride to-

wards the establishment of a welfare state. These regulatory endeavours were not

only responsive to the pressing needs of the time but also laid the cornerstone for

a more equitable and socially inclusive society. In essence, the regulatory policies

implemented during the tenure of these Liberal Prime Ministers not only bolstered

economic stability but also fostered a more just and compassionate society.
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Figure 1.4. Economic inequality and growth change in the UK: 1946-1979
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A similar trend was also found in the post-WWII, as shown in the Figure 1.4.

Between 1945 and 1979, the UK pursued an economic policy marked by extensive

regulation and limited deregulation. Influenced by Keynesian economics and the

post-war consensus, the government implemented robust regulatory measures aimed

at stabilizing the economy and promoting social welfare. This period witnessed the

nationalization of key industries like coal and railways, alongside the establishment

of the welfare state, exemplified by the creation of the National Health Service (NHS).

Labour market regulations, including minimum wage laws and collective bargaining

rights, aimed to safeguard workers’ rights and ensure fair employment practices.

Although some minor deregulatory efforts were made, particularly under the Con-

servative government of Harold Macmillan, they were modest in scope compared to

the prevailing regulatory framework. Overall, the regulatory approach of this era

reflected a commitment to state intervention and collective welfare, prioritizing eco-

nomic stability and social equity over market-oriented reforms, which was in line

with the prevailing economic ideologies of the time.

Table 1.1. Correlations of Inequality-change and Growth-change

Correlations 1873-1914 1946-1979 1980-1999 2000-2016

∆Wealth corr. ∆Growth 0.1332 0.3315 0.1164 -0.4057

∆Income corr. ∆Growth 0.1210 -0.2771 -0.5083 -0.0112

∆Income corr. ∆Wealth 0.7744 -0.2760 -0.5940 -0.4301

To refine our understanding further, we compute correlation coefficients between

shifts in economic growth and alterations in inequality. Table 1.1 presents the cor-

relation coefficients among the change of wealth share, income share and economic

growth. The results show that, before World War I, all three variables—wealth share,

income share, and economic growth—were positively correlated. This indicates that

increases in wealth and income shares were associated with higher economic growth

during this period. However, the dynamics shift significantly after World War II.
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While the income share’s correlation with economic growth turns negative, indicat-

ing that higher income inequality is associated with lower growth, the wealth share of

the top 10% maintains a positive relationship with economic growth until 2000. This

suggests that wealth concentration among the top 10% continued to drive economic

growth in the post-war period, even as income inequality posed a hindrance.

These findings bolster our objective to model the relationship between capital

inequality and economic growth in the UK, extending our data back to 1870. By

understanding these historical correlations2, we aim to develop a more nuanced and

comprehensive model that captures the intricate dynamics between wealth concen-

tration and economic performance over an extended period. The same behaviour in

different regulation periods also triggered the curiosity to explore the welfare impli-

cations beyond the growth and inequality nexus.

1.2 Thesis Outline

This thesis investigates the long-term interplay between economic growth and

inequality in the United Kingdom by employing an endogenous growth model that

incorporates heterogeneous agents. The empirical scope is broadened to encompass

a more extensive timeline of UK history, utilizing the Millennium of Macroeconomic

Dataset from the Bank of England and inequality data from the World Inequality

Database, spanning 1870 to 2016. Through Indirect inference estimation, the struc-

tural model adeptly fits the intricate dynamics of the inequality-growth relationship

and captures key characteristics of the UK’s long-term data. The nuanced trade-off

between inequality and growth is meticulously dissected, accompanied by a compre-

hensive welfare analysis conducted via Monte Carlo simulations.

As for the structure of this thesis: following this introduction, Chapter 2 delves

into a literature review. Chapter 3 offers a concise overview of the model. Chapter 4

focuses on data sources and their statistical interpretations. Chapter 5 outlines the

2It must be emphasised that our estimation and testing of the causal relationship does not rely on the
direct correlation of the time series- such a correlation lacks identification- but rather on the replication
by the (identified) causal model indirectly of the relationships found in the data, whatever they may
be. This method of Indirect Inference(see Chapter 5.2) is a powerful test of causal models such as we
propose here.
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primary methodologies employed for empirical exploration. Chapter 6 sheds light on

empirical findings, encapsulating estimation, simulation, and testing results. Finally,

Chapter 7 provides a conclusion.
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Chapter 2

Literature Review

The substantial rise in income inequality in recent decades has reignited debates

about its relationship with economic growth (known as the inequality-growth nexus),

especially following the popularity of Thomas Piketty’s book Capital in the Twenty-

First Century (Piketty, 2014). Policymakers are particularly interested in understand-

ing whether reducing inequality can lead to faster and more sustainable economic

growth. This literature review aims to examine the theoretical and empirical evidence

on the relationship between inequality and growth, providing insights to inform pol-

icy decisions in this crucial area. Broadly, the extant literature on this subject can

be categorized into four distinct streams based on the inferred correlation between

inequality and growth: positive, negative, synthetic(e.g. hump-shaped), and ambigu-

ous(or inclusive). Methodologically, these studies predominantly adopt one of two

approaches from the perspective of modelling: the structural form, which investigates

different theoretical channels, and the reduced form, which relies on varied empirical

estimation techniques and datasets.1

This literature review2 is structured in three sections: Section 2.1 provided a

brief overview of reduced form empirical research findings related to the inequality-

growth nexus. Section 2.2 explores the structural models with different theoretical

channels. Section 2.3 gives critical remarks on current structural models and the gaps

that this thesis fills.

1There is literature combining two methods, e.g. Townsend and Ueda (2006), Basu and Guariglia
(2007), Noh and Yoo (2008).

2More survey literature, see Aghion et al. (1999), Ehrhart et al. (2009), Mdingi and Ho (2021), Foellmi
and Baselgia (2022)

11
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2.1 Reduced form empirical research

The reduced form empirical literature presents varied results, depending on the em-

pirical estimation techniques and datasets used. Cross-country studies reveal differ-

ing perspectives: while Perotti (1996), Forbes (2000), and Berg et al. (2018) argue for a

positive relationship between inequality and growth, Alesina and Rodrik (1994) sug-

gest that inequality hampers growth, and Bagchi and Svejnar (2015) also find a neg-

ative relationship. Barro (2000, 2008) further complicates the picture by identifying a

nonlinear relationship, where the impact of inequality on growth varies with income

levels. These conflicting findings underscore the complexity of the inequality-growth

nexus and suggest that the relationship may be context-dependent. Panel data stud-

ies, such as Castelló and Doménech (2002) and Castelló-Climent (2010), emphasize

the importance of controlling for country-specific effects and initial conditions, often

finding a negative impact of inequality on growth. Similarly, Persson and Tabellini

(1994) find a negative relationship between inequality and growth in their study of

56 countries over the period 1960–1985. Chambers and Krause (2010) observe that

as returns to human capital rise relative to physical capital, inequality becomes more

harmful to growth, though this pattern does not hold in well-educated nations. For

a comprehensive meta-analysis of reduced-form empirical studies during 1994–2014,

see Neves et al. (2016). Reduced-form empirical research on the inequality-growth

nexus faces significant challenges, particularly regarding endogeneity and causality.

For example, high growth could lead to increased or decreased inequality, making it

difficult to determine the direction of causality. Simultaneous equations models, as

discussed by Lundberg and Squire (2003) and Lin et al. (2009), attempt to address

this issue, but these approaches also have limitations. Additionally, measurement

and data inconsistencies across countries and time periods further complicate com-

parisons. Inequality and growth data can be inconsistent across countries and time

periods, making comparisons difficult. Different measures of inequality (e.g., Gini

coefficient, income shares, wealth shares) may yield different results. Especially, in

many developing countries, data on inequality is sparse or unreliable, leading to

potential measurement errors. Countries also differ significantly in terms of institu-
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tions, culture, policies, and stages of development(Scholl and Klasen, 2019). These

differences can influence the inequality-growth relationship, making it hard to gen-

eralize findings. The relationship between inequality and growth may change over

time within the same country, depending on economic, social, and political changes.

The divergent findings on the inequality-growth nexus underscore the need for more

nuanced theoretical models that account for varying institutional contexts and policy

environments. Integrating insights from endogenous growth theory with political

economy models could provide a more comprehensive understanding of how in-

equality influences growth through multiple channels.

2.2 Structural modelling research

In contrast to the extensive reduced-form estimations concerning the relationship

between economic inequality and growth, the literature on the structural modelling

of this relationship is comparatively limited. They predominantly follow a typical

causal chain reasoning structure, exploring how inequality impacts economic growth

through specific mechanisms or mediating variables.3 Additionally, some studies

use moderator variables to examine how the strength of the relationship between

inequality and economic growth is influenced by specific factors, such as political

institutions and redistribution policies.

Early literature (Kaldor, 1955; Bourguignon, 1981) argue that the marginal propen-

sity of saving is an increasing function of wealth, which means the rich save rela-

tively more than the poor, therefore inequality positively affects capital accumula-

tion and hence economic growth accordingly.4 Later, a big stream of literature ex-
3There is also literature that focuses on reverse causality, which is not directly related to this thesis

and therefore is not extensively analyzed in this literature review. These studies collectively highlight
the complex dynamics between entrepreneurship, wealth distribution, and economic growth, offering
additional insights that can inspire readers. Notably, much of the research following Piketty’s work
concentrates on explaining the determinants of wealth and income disparities. For instance, Aoki
and Nirei (2017) developed a neoclassical growth model that replicates historical income and firm
size distribution patterns, providing insights into how productivity fluctuations at the firm level affect
wealth and income distribution. Aghion et al. (2019) shows innovation and entrepreneurial shares
can explain the inequality and growth dynamics in the US over the last decades. Atkeson and Irie
(2020) focus on the evolution of family-owned businesses in the U.S., illustrating how shocks to family
business values contribute to wealth mobility and disparity, they outline a wealth distribution path that
aligns closely with earlier research, such as Saez and Zucman (2016) and Gomez (2023).

4It also can be argued that the higher marginal propensity to save among wealthier individuals could
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pands capital accumulation from physical investment to human capital investment.

The fundamental premise is that human capital is the primary driver of economic

growth.5 These models aim to explore the factors influencing human capital invest-

ment or accumulation, e.g., family size (Galor and Zang, 1997; De La Croix and

Doepke, 2003) and foreign direct investment (Basu and Guariglia, 2007), providing

insights into variations in economic growth. They typically focus on how income

or wealth inequality impacts individuals’ access to education (Benabou, 1993, 1994,

by occupational segregation) and incentives to invest in education and skills. When

people face borrowing constraints or fixed costs in investment, these investments are

influenced by parental income and intergenerational transfers (Loury, 1981), there-

fore the initial distribution of human capital plays a crucial role in shaping the long-

run correlation between the growth rate and income inequality (Bandyopadhyay and

Basu, 2005).

By assuming those credit market imperfections, the poor are unable to sufficiently

invest in their human capital, while the rich, who do not need to borrow, can afford

to make such investments. Since it is improbable that there is a perfect correlation be-

tween ability and wealth, wealth inequality results in poor under-investing in human

capital, this under-investment negatively impacts the overall level of human capital

and consequently hampers economic growth in both the short and long-term (Galor

and Zeira, 1993). When access to borrowing is limited, promising business ideas

might not be realized (Foellmi and Oechslin, 2010), or firms may not adopt more

productive technologies, thereby reducing long-term growth (Foellmi and Oechslin,

2020).

However, increasing inequality necessitates redistribution6 policies to mitigate in-

come disparity and enhance social welfare to avoid social unrest and revolution (Ace-

moglu and Robinson, 2000, 2002). Typically, these policies transfer resources from

lead to over-saving and under-consumption, thereby stifling aggregate demand and growth (Carroll,
1998).

5Human capital can also have a dual role in shaping the relationship of the relationship between
growth and inequality, see Eicher and Garcıa-Penalosa (2001).

6Apart from redistribution, other factors such as financial constraints (Cagetti and De Nardi, 2006)
and establishment costs (Restuccia and Rogerson, 2008) faced by the firms and entrepreneurs, can
also be regulatory barriers to impede entrepreneurial motivations, technology adoption (Parente and
Prescott, 1994, 2002) and therefore economic growth.
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wealthier segments to poorer ones through taxes (e.g., estate taxation in De Nardi

and Yang, 2016), social security, and public services. Such measures are crucial

for fostering social equity and alleviating poverty, though they also spark debates

about economic efficiency—the optimal use of resources to maximize output and

welfare. Redistribution can enhance economic efficiency and spur economic growth

by boosting aggregate demand. The lower-income households may have a higher

marginal propensity to consume than wealthier ones. Thus, redistributing income to

these households increases their consumption, which can elevate overall economic

demand and potentially drive growth. This perspective underscores the stimulative

impact of increased consumption on the broader economy. Moreover, redistribution

can promote growth by reducing the poor’s need to borrow for investment, thus

minimizing distortions in profit-maximizing incentives, promoting equality of op-

portunity, and accelerating the trickle-down process (Aghion and Bolton, 1997). It

is also suggested that raising taxes to subsidize new investments can enhance the

growth rate, labour supply, and before-tax income inequality (García-Peñalosa and

Turnovsky, 2007; García-Peñalosa and Wen, 2008) while reducing overall inequality

and improving human capital accumulation by investing in public infrastructure ser-

vices7 (Getachew, 2010). Moreover, public R&D financed by income tax can boost

growth and welfare by positively affecting individual savings and effort (Basu and

Getachew, 2020; Minford and Meenagh, 2019). However, critics argue that the high

taxes and transfers required for significant redistribution can reduce both working

and entrepreneurial motivation8 and create disincentives for productivity and in-

vestment, potentially reducing economic growth(Alesina and Rodrik, 1994; Persson

and Tabellini, 1994; Alesina and Perotti, 1996). For example, higher taxes lower the

rate of return on working (Mirrlees, 1971) and investment (Rebelo, 1991), which dis-

courages individuals9 from exerting effort or savings incentives, ultimately reduc-

7Government investment on infrastructure can also increase wealth inequality over time, regardless
of its financing, see Chatterjee and Turnovsky (2012) for the details.

8Most literature in this stream assumes inelastic labour supply and risky entrepreneurship and thus
households have to make an occupational choice to be a regular worker or an entrepreneur(Boadway
et al., 1991; Banerjee and Newman, 1993), elastic labour supply is explored by García-Peñalosa and
Turnovsky (2007) and García-Peñalosa and Wen (2008)

9Such effect is also applied to some large firms, see Cagetti and De Nardi (2009).
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ing capital accumulation and economic growth. While such policies might promote

greater equality, they come at an efficiency cost. Neoclassical theorists often argue

that the efficiency losses from redistribution might surpass the benefits derived from

heightened consumption among lower-income individuals and even increase waste-

ful competitive consumption which is used to differentiate oneself on their social sta-

tus (Hopkins and Kornienko, 2006). From the perspective of human capital, income

redistribution may also hinder economic growth if parental nurturing significantly

influences human capital formation, as it reallocates resources to less educationally

productive families, reducing the overall investment in human capital due to credit

market imperfections and increasing returns in intergenerational human capital pro-

duction (Bandyopadhyay and Tang, 2011). The redistributive effect of taxation on

economic growth can be exacerbated by heterogeneous endowments in human and

physical capital (Yang and Zhou, 2022). Redistribution might not be fully effective

because, as noted by Okun (1975), “some of the transfer will simply disappear in redis-

tribution, so the poor will not receive all the money taken from the rich”. In addition, the

impact of redistribution could vary under different political and institutional condi-

tions. For instance, high initial inequality reduces growth in democracies but has

less clear effects in non-democracies (Deininger and Squire, 1998) and in more inclu-

sive and democratic societies, redistribution can be growth-enhancing by preventing

social unrest and creating a more cohesive society (Acemoglu and Robinson, 2002).

Regarding these two effects of redistribution, researchers are exploring optimal

income taxation (Saez, 2001) and optimal capital taxation (Chamley, 1986; Judd, 1985;

Aiyagari, 1995). Recent studies suggest that effective redistribution policies must

navigate these trade-offs, with some research recommending optimal designs—such

as productive government spending (Getachew and Turnovsky, 2015) and a combi-

nation of flat taxes and lump-sum transfers—that minimize efficiency losses while

maximizing equity gains (Boar and Midrigan, 2022).

In addition to the fundamental mechanisms of human capital and redistribution

discussed above, other often overlooked factors have been proposed to explain the re-

lationship between inequality and growth. One deep-seated factor, cycles of techno-

logical progress, may significantly influence the evolution of earnings inequality and
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intergenerational earnings mobility, as technological progress increases the relative

return to ability, while greater accessibility to technologies decreases it. Earnings mo-

bility may govern the pace of technological progress and output growth (Galor and

Tsiddon, 1997). Another innovation-related factor is that innovative products exhibit

both a positive price effect—where increased inequality allows innovators to charge

higher prices—and a negative market-size effect—where higher inequality implies

smaller markets for new goods and/or a slower transition of new goods into mass

markets. It turns out that price effects dominate market-size effects (Foellmi and

Zweimüller, 2006). Another often overlooked factor is the time dimension: higher

inequality may boost economic performance in the short term but reduce the growth

rate of GDP per capita in the long run because the poor prefer direct transfers over

public investment (Halter et al., 2014). Income inequality can also lead to disparities

in health outcomes, the quality of social arrangements, stress levels, and mortal-

ity rates, thereby affecting labour productivity and economic performance (Deaton,

2003).

2.3 Conclusion remarks

The literature on the inequality-growth nexus reveals a complex and multifaceted

relationship. Empirical studies offer mixed results, with some indicating a positive

impact of inequality on growth, while others highlight the negative effects. Theo-

retical models provide various mechanisms through which inequality can influence

growth and therefore significantly advance our understanding of how economic dis-

parities impact overall economic performance. However, the conclusions drawn from

these structural models can be sensitive to slight changes in these assumptions, rais-

ing questions about their robustness and applicability in diverse real-world scenarios.

Additionally, to maintain analytical tractability, models often simplify complex real-

world phenomena. For instance, factors such as political power dynamics, cultural

influences, and historical contexts are often pared down or entirely omitted. This

simplification can lead to models that fail to capture critical aspects that influence

the relationship between inequality and growth. Many models do not adequately
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address the dynamic feedback mechanisms between inequality and growth. While

some endogenous growth theories incorporate these dynamics to an extent, the in-

tertemporal aspects of inequality—such as the cumulative effects of wealth accumu-

lation and distribution—are often inadequately explored. Theoretical models often

propose mechanisms that are difficult to validate empirically, data limitations of-

ten hinder the ability to test these models thoroughly. Theoretical models suggest

various policy measures to mitigate inequality and promote growth. For example,

policies that improve access to education and healthcare can enhance human capital,

as highlighted by Galor and Zeira (1993). Additionally, reforms that reduce credit

market imperfections, as discussed by Banerjee and Duflo (2003), can facilitate en-

trepreneurial activities and investment among less affluent individuals. However,

implementing these policies effectively requires careful consideration of political fea-

sibility and potential unintended consequences.

Despite extensive studies on the role of entrepreneurial incentives in driving eco-

nomic growth which could be impacted by redistribution policies, there remains a

significant gap in the empirical examination of the relationship between inequal-

ity and growth via direct entrepreneurship channel, this channel includes factors

such as entrepreneurship incentives—financial and policy-driven motivations that

encourage individuals to start and grow businesses—and regulatory barriers—legal

and bureaucratic obstacles that hinder entrepreneurial activities. More specifically,

while existing literature such as Parente and Prescott (1994, 2002) and Cagetti and

De Nardi (2006, 2009) has extensively modelled the impact of technology adoption

barriers and borrowing constraints, our model differs in that inequality in our model

directly impacts the incentives to undertake innovative activities rather than focus-

ing on the accumulation of skills. While the human capital literature emphasizes

how disparities in income influence investment in education and skill development,

our model highlights how wealth inequality affects the motivation and capacity for

entrepreneurial and innovative endeavours by using the entrepreneurship penalty

rate which further impacts productivity growth. The role of entrepreneurship in our

model is an extension of Minford and Meenagh (2019, 2020), Yang et al. (2021).

Empirically, there is a paucity of empirical analyses, especially using a long-term
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dataset to test the role of entrepreneurial incentives on wealth distribution and eco-

nomic growth within a specific developed country context. This thesis addresses this

gap by investigating the long-term interplay between economic growth and inequal-

ity in the United Kingdom from 1870 to 2016. Using an endogenous growth model

with heterogeneous agents, incorporating entrepreneurial incentives tied to individ-

ual wealth and credit conditions, provides a nuanced understanding of how wealth

distribution influences growth. Our theory here is chosen for its potential relevance

to a developed economy like the UK experiencing reforms designed specifically to

benefit entrepreneurs; it focuses on an asymmetry between entrepreneurs according

to wealth, an asymmetry that both causes inequality to boost growth and growth to

boost inequality. However, as noted in the introduction, this asymmetry could also

spring from some of the wealth-related advantages proposed in these earlier theo-

ries. This thesis instead considers the deterministic cost of entrepreneurship such

as market regulatory barriers and government barriers like taxes, and the dynamic

interactions of entrepreneurship, wealth, and growth.

In addition, this thesis offers critical insights into the welfare implications for

policy formulation, emphasizing the trade-offs between growth and inequality. The

welfare calculations further explain the tendency of governments to engage in redis-

tribution. Due to political competition, governments are incentivized to please the

average voter, who often benefits from redistribution policies. This political moti-

vation helps to explain the historical trend in the UK towards increasing redistribu-

tion. As political parties vie for votes, they adopt policies that promise to reduce

inequality and enhance social welfare, thereby appealing to the median voter who

typically favours such measures. Our model implies this trade-off between growth

and inequality due to redistribution. This will allow it to shed light on the political

economy of the UK over history- which showed a long trend towards redistribution.
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Chapter 3

Model

Diverse income brackets exhibit varied preferences in allocating their time be-

tween traditional employment and innovative endeavours, more precisely termed

"entrepreneurship". The economic burden associated with entrepreneurship tends

to be less for individuals with superior income or capital standings. Notably, the

amplification of capital disparity often parallels economic growth in industrialized

nations. The subsequent structural model draws upon these established observations

to delineate the interrelationship between inequality and growth. This is achieved

by postulating a mechanism: as capital inequality intensifies, with an increasingly

narrow segment of the population amassing wealth, these individuals encounter di-

minished costs and augmented incentives to drive productivity growth. Subsequent

sections will provide an in-depth elucidation of this mechanism.

3.1 Individual behavior

Let us consider an economy that consists of two distinct groups of individuals,

each with fixed proportions represented by µi(i = 1, 2). It is assumed that both the

capital market and the respective segmented labour markets operate under condi-

tions of perfection. Each group, in this setting, selects their consumption Ci,t, labour

input Ni,t, and time dedicated to innovation Zi,t in a manner that optimizes their util-

ity over an infinite horizon. By assuming an infinite time horizon, the model focuses

on the behaviour of individuals over their entire lives and even across generations.

This allows for the examination of long-term decision-making, where individuals

care not only about their current well-being but also about the future, giving a sta-

21
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tionary decision-making process.

U = max E0

[
∞

∑
t=0

βtU (Ci,t, Ni,t, Zi,t)

]
(3.1)

where

U (Ci,t, Ni,t, Zi,t) = Φ
(vi,tCi,t)

1−Ψ1

1 − Ψ1
+ (1 − Φ)

(1 − ui,tNi,t − Zi,t)
1−Ψ2

1 − Ψ2
(3.2)

where Ψ1 and Ψ2 are coefficients of relative risk aversion, Φ is the consumption pref-

erence; vi,t and ui,t are idiosyncratic shocks to consumption and labor respectively.

The utility function takes the form of constant relative risk aversion (CRRA), which

is a widely used representation of preferences in economics, particularly in models

of intertemporal choice, consumption-savings decisions, and portfolio choice. It has

been slightly changed to the additive form of consumption and leisure with the pref-

erence parameters Φ over these two choices. Relative risk aversion is a measure of

how risk-averse a person is and how willing they are to accept a gamble that might

increase or decrease their wealth. In the CRRA utility function, relative risk aversion

is constant, meaning it does not depend on the level of wealth or consumption. The

elasticity of intertemporal substitution (EIS), which measures how willing individ-

uals are to substitute consumption and leisure across different periods, is given by

1/Ψ1 and 1/Ψ2 respectively. The CRRA utility function has the property of diminish-

ing the marginal utility of consumption/leisure, meaning that additional consump-

tion/leisure becomes less valuable as consumption increases. Also, the CRRA util-

ity function remains unchanged under positive scaling of consumption and leisure,

meaning that proportional changes in consumption/leisure levels have no effect on

preferences.

The individual divides the time among three activities: leisure Li,t, labour supply

Ni,t for real wage wi,t, and innovation time Zi,t that is unpaid at period t but expected

to have future returns. The time endowment of individuals is normalized as

Li,t + Ni,t + Zi,t = 1 (3.3)
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Normalizing the time endowment of individuals to 1 simplifies the calculations, of-

fers flexibility in interpretations, and maintains generality by focusing on propor-

tional allocations rather than absolute hours, allowing the model to be applied across

various scenarios and time periods. The individual chooses {Li,t, Ni,t, Zi,t} subject to

the real terms budget constraint as

(1 − τ)Yi,t + (1 + rt−1)bi,t − πtZi,t + Tt = Ci,t + bi,t+1 + Ki,t − (1 − δ)Ki,t−1 (3.4)

The unit cost of entrepreneurship is πt, πtZi,t is the individual’s total cost of en-

trepreneurship, this cost measures the indirect effects of government taxes or reg-

ulations such as licensing and permits, access to financing, labour laws and trade

policies on entrepreneurial activities.

Compared to the literature on human capital, productivity growth is driven by

innovation in production processes or products in this model. This implies that the

key determinant of wealth accumulation is the ability of agents to innovate, rather

than their initial endowment of capital. The credit market in the model allows in-

dividuals to borrow for capital investments, physical or human. However, it does

not extend to financing productivity growth, which in this context is driven by in-

novation time (Zi,t) rather than changes in capital. The idiosyncratic risk associated

with the payoffs from innovation is uninsurable; furthermore borrowing to offset it

would require the posting of collateral in the absence of insurance, which is unavail-

able to poor entrepreneurs. Undertaking this risk personally is the only possibility

for entrepreneurs; for poor entrepreneurs this is relatively unattractive in that the

marginal utility of the expected returns may not exceed that of the costs involved, re-

membering that the poor have a higher marginal utility of current consumption from

regular salary. This effect of wealth inequality lies at the heart of the relationship be-

tween growth and inequality in this model. Furthermore, the persistence of wealth

disparities in the model arises endogenously due to the differential ability of agents

to innovate and generate productivity growth. While there is an initial allocation of

wealth, subsequent dynamics within the model, driven by innovation and productiv-

ity growth, lead to the emergence of persistent differences in wealth over time. Given
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that productivity growth is primarily driven by innovation rather than investments

in human capital, it is plausible to assume that a segment of the population may lack

the resources or capabilities to engage in productive innovation, leading to persis-

tent poverty. The government levies a general income tax at a uniform rate, T. This

could be the tax on wages, profits, interests, rents, etc. Instead of having different tax

brackets or variable rates based on sources or amounts, the rate is a fixed percentage

for all. Assume that these revenues are offset by lump sum transfer payments Tt to

households. These are payments made by the government to households, which are

not contingent on any action taken by the recipient. This means that it doesn’t mat-

ter if the individual is working, unemployed, rich, or poor; everyone gets the same

amount. The assumption here is that the total amount collected through income tax

is equal to the total amount given back to households as lump sum transfers. This

implies that the government isn’t saving any money, investing it, or using it to finance

its expenditure. The only fiscal activity they’re engaging in is redistribution: collect-

ing money through taxes and then returning it as transfers. Both the entrepreneurial

cost and the lump sum transfers are indexed to general income, i.e. overall GDP. For

households, the net effect of the tax and transfer could be neutral for the average

person (they pay a tax but then get a transfer back). However, it would be redistribu-

tive: higher-income individuals or households would pay more in taxes than they

receive in transfers, while the opposite would be true for lower-income individuals

or households. This effect will be discussed in the empirical policy implications.

Furthermore, the entrepreneurial cost indexed to GDP ensures that as the economy

grows, the absolute cost or burden faced by entrepreneurs grows, but its relative cost

(as a percentage of potential profits or revenue) remains the same. This fiscal policy

acts as an automatic stabilizer. In times of economic downturns, when GDP shrinks,

the government would automatically collect less in taxes and pays out less in trans-

fers, providing some automatic fiscal stimulus. The individual has a Cobb-Douglas

production function, it relates the output Yi,t to the inputs: physical capital Ki,t−1,

labour Ni,t, and a productivity term Ai,t. The exponents α and 1 − α represent the

output elasticity of capital and labour, respectively. The term Ai,t is the "Total Factor

Productivity" (TFP) and captures the efficiency with which inputs are transformed
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into outputs.

Yi,t = Ai,t (Ki,t−1)
α (Ni,t)

1−α (3.5)

where individual productivity growth is set to depend on the entrepreneurship time,

which origins from Meenagh et al. (2007), Zi,t,

Ai,t+1

Ai,t
= θ1 + θ2Zi,t + vA,t (3.6)

This suggests that the more time an individual spends on entrepreneurial activities,

the higher their productivity growth. An error term vA,t captures other unobserved

factors affecting productivity growth at time t. See Appendix A.3 for more explana-

tions on the characterization of endogenous balanced growth path. Then, to solve

the problem, setting up the Lagrangian function,

L = E0

∞

∑
t=0

βt {U (Ci,t, Ni,t, Zi,t) − λt [Ci,t + πtZi,t − (1 − τ)Yi,t + bi,t+1 − (1 + rt−1) bi,t

+Ki,t −(1 − δ)Ki,t−1 − Tt]}

Take the first order conditions,

Ci,t : Φ (vi,tCi,t)
−Ψ1 = λt (1a)

Ni,t : (1 − Φ) (1 − ui,tNi,t − Zi,t)
−Ψ2 = λt(1 − α)(1 − τ)Ai,t (Ki,t−1)

α (Ni,t)
−α (2b)

Zi,t : (1 − Φ) (1 − ui,tNi,t − Zi,t)
−Ψ2 = −λtπt + (1 − τ)Et

∞

∑
s=1

βsλs
∂Yi,t+s

∂Zi,t
(3c)

Ki,t : βEtλt+1

[
(1 − τ)

∂Yi,t+1

∂Ki,t
+ 1 − δ

]
= λt (4d)

bi,t+1 : β (1 + rt) Etλt+1 = λt (5e)

Equation (1a) and (5e) gives,

Ci,t : (vi,tCi,t)
−Ψ1 = (1 + rt) βEt

[
(vi,t+1Ci,t+1)

−Ψ1
]

(3.7)

Substituting out (1 + rt) gives the individual capital, see Appendix A.1 for the proof
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of the substitution.

Ki,t : (vi,tCi,t)
−Ψ1 = β

{
Et

[
(vi,t+1Ci,t+1)

−Ψ1
] [

α(1 − τ)
EtYi,t+1

Ki,t
+ 1 − δ

]}
(3.8)

Equation (2b) and (1a) gives,

Ni,t : (1 − Φ) (1 − ui,tNi,t − Zi,t)
−Ψ2 = Φ (vi,tCi,t)

−Ψ1 (1 − τ)(1 − α)
Yi,t

Ni,t
(3.9)

Equation (3c) and (1a) gives,

(1 − Φ)

(1 − ui,tNi,t − Zi,t)
Ψ2

+ Φ
πt

(vi,tCi,t)
Ψ1

= (1 − τ)Et

∞

∑
s=1

βsλs
∂Yi,t+s

∂Zi,t
(3.10)

Assuming vi,t = 1 for simplicity, given individual production equation 3.5 and indi-

vidual productivity equation 3.6, the differential of Yi,t+s in terms of Zi,t is

∂Yi,t+s

∂Zi,t
=

∂Yi,t+s

∂Ai,t+s

∂Ai,t+s

∂Ai,t+s−1
· · · ∂Ai,t+1

∂Zi,t
=

Yi,t+s

Ai,t+s

Ai,t+s

Ai,t+s−1
· · · Ai,t+2

Ai,t+1

∂Ai,t+1

∂Zi,t

where the partial derivative of Yi,t+s with respect to Ai,t+s:

∂Yi,t+s

∂Ai,t+s
= (Ki,t+s−1)

α (Ni,t+s)
1−α =

Yi,t+s

Ai,t+s

and the partial derivative of Ai,t+1 with respect to Zi,t:

∂Ai,t+1

∂Zi,t
= θ2Ai,t

Therefore,
∂Yi,t+s

∂Zi,t
= Yi,t+s

Ai,t

Ai,t+1
θ2 (3.11)

This expression shows how Zi,t affects future output through the productivity chan-

nel. To find the first-order condition for Zi,t, we relate the marginal utility from Zi,t

to the expected future utility.

Now, we need to incorporate the dynamic response of Yi,t+s to Zi,t. Substituting
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equation 3.11 into equation 3.10, Rewriting the first-order condition to include the

marginal effect of Zi,t:

(1 − Φ)

(1 − ui,tNi,t − Zi,t)
Ψ2

+ Φ
πt

(vi,tCi,t)
Ψ1

= (1 − τ)
Ai,t

Ai,t+1
θ2Et

∞

∑
s=1

βsλsYi,t+s

Subtituting λs out by using equation (1a),

(1 − Φ)

(1 − ui,tNi,t − Zi,t)
Ψ2

+ Φ
πt

(vi,tCi,t)
Ψ1

= Φ(1 − τ)
Ai,t

Ai,t+1
θ2Et

∞

∑
s=1

βs Yi,t+s

(Ci,t+s)
Ψ1

Substitute equation 3.9 multiply both sides with (Ci,t)
Ψ1 /Φ yields

(1 − α)(1 − τ)
Yi,t

Ni,t
+ πt = (1 − τ)θ2

Ai,t

Ai,t+1
(Ci,t)

Ψ1 Et

[
∞

∑
s=1

βs Yi,t+s

(Ci,t+s)
Ψ1

]

Set Ψ1 to unity for simplification and Et

[
Yi,t+s
Ci,t+s

]
≈ Yi,t

Ci,t
, then Approximating Yi,t/Ci,t

as a random walk around steady state. See Appendix A.2 for proof. Then the final

first order condition of Zi,t can be rewritten as:

(1 − τ)(1 − α)
Yi,t

Ni,t
+ πt = (1 − τ)

Ai,t

Ai,t+1
Yi,t

βθ2

1 − β
(3.12)

Rearrange it as

Ai,t+1

Ai,t
=

(1 − τ)Yi,t
βθ2

1−β

(1 − τ)(1 − α)
Yi,t
Ni,t

+ πt
(3.13)

Divided by wi,t = (1 − α)Yi,t/Ni,t on the right-hand side,

Ai,t+1

Ai,t
=

βθ2(1 − τ)Yi,t/wi,t

(1 − β)(1 − τ + π′
i,t)

(3.14)

where π′
i,t = πt/wi,t is denoted as the individual entrepreneurship penalty rate,

whose determination will be discussed in the next section. See Appedix A.4 for the

details of the log-linearization.
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3.2 Entrepreneurship penalty rate

To link the barriers to entrepreneurship with the long-term growth rate, we adopted

the mechanism of entrepreneurship penalty rate, which is explored by Minford

and Meenagh (2019, 2020) and Yang et al. (2021). The individual entrepreneurship

penalty rate, π′
i,t, and the wage-relative entrepreneurship penalty rate π′

i,t =
πt
wi,t

, mea-

sure the wage-relative costs of individuals on entrepreneurial activities. It falls with

the rising of income or capital. The entrepreneur cost is deflated by wi,t, which is

used to introduce heterogeneity in entrepreneurship cost. While it is true that higher

wages may lead individuals to seek more leisure, it doesn’t necessarily imply causal-

ity between wage levels and the entrepreneurship penalty rate. The model focuses

on the cost-benefit analysis of entrepreneurship, independent of leisure preferences

induced by wage levels. The entrepreneurship penalty rate reflects the cost asso-

ciated with entrepreneurship relative to potential earnings. Entrepreneurs evaluate

this cost against the expected benefits of entrepreneurship.

We assume individuals can observe penalty rates but do not know exactly how

it is set, thus, π′
i,t is predetermined for optimizing individuals. Rather than coming

from the first-order conditions directly, π′
i,t is modelled as an exogenous process.

Overall, the individual’s entrepreneurship penalty rate, π′
i,t, evolves over time based

on various factors including lagged capital ratio.1, credit conditions, and its own

lagged value.

ln π′
i,t = ρπ

0 + ρπ
1 ln π′

i,t−1 − ρπ
2 · Q

Ki,t−2

Kt−2
+ ρπ

3 Cret +ϵπ
t (3.15)

The empirical findings of Banerjee and Duflo (2003) and Kolev and Niehues (2016)

indicate that inequality has significant nonlinear effects on growth particularly when

considering the squared term of inequality. Hence, we set Q Ki,t
Kt

≡ µi
wY,i

(
Ki,t
Kt

)2
. The

coefficient µi
wY,i

aims to avoid the penalty policy being too beneficial to the rich as

the poor generally have a greater population weight relative to their average income

share, for example, this relative ratio for poor is 0.9/0.7 while 0.1/0.3 for the poor.

1Note that capital level at the beginning of period t is denoted by Ki,t−1, so lag one-period capital
inequality will take the form of Ki,t−2/Kt−2.
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The credit conditions, Cret, show that easy access to credit can encourage individ-

uals to start businesses. When individuals can borrow easily, they might undertake

projects with potentially high returns, even if they have high upfront costs. These

credit conditions could be indexed by the credit availability or the cost of credit.

3.3 Aggregate economy

To complete the model formulation, aggregate variables {Yt, Kt, Ct} are defined as

the weighted sum of individual ones since the individual variable measures the rep-

resentative value in each group, plus aggregate uncertainties ϵY
t , ϵK

t , ϵC
t ,

Yt = µ1Y1,t + µ2Y2,t + ϵY
t (3.16)

Kt = µ1K1,t + µ2K2,t + ϵK
t (3.17)

Ct = µ1C1,t + µ2C2,t + ϵC
t (3.18)

where the weights of the two groups {µ1, µ2} are set as {0.1, 0.9}. We didn’t assume

a time-varying µi, the aggregate uncertainties are therefore set to account for the

potential changes in the weights.2

Market clearing in goods,

(1 − τ)Yt = Kt + Ct − (1 − δ)Kt−1 + ϵM
t (3.19)

where the left-hand side is the total production of goods after accounting for a tax (τ).

It’s the net output available for consumption and investment after the government

takes its share, τYt, with residual term ϵM
t representing the credit shocks. When this

condition holds, the goods market is in equilibrium.

An aggregate production function here is a weighted average of individual output

determined by the Cobb Douglas production function 3.5. This weighted average ag-

gregate output was also used to back out aggregate productivity by At = Yt/(KtNt)

2It would be possible to let the weights evolve, e.g. as the lagged weights, but it would make little
difference to the model simulations. The shocks include any resulting measurement errors.
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which follows an I(1) process. The model introduces 10 shocks in total, the produc-

tivity shocks (ϵA
t ) are backout from the productivity growth ∆ ln At which is set to

be an AR(1) process,

∆ ln At = AA
0 + ρA

1 ∆ ln AA
t−1 + ϵA

t (3.20)

The credit shocks (ϵM
t ) are also backout from an AR(1) process of Cret:

Cret = AM
0 + ρM

1 Cret−1 +ϵM
t (3.21)

The aggregate penalty shock (ϵπ
t ) is also back-out from the AR(1) process.

ln π′
t = Aπ

0 + ρπ
1 ln π′

t−1 + ϵπ
t (3.22)

All the other 7 residuals in the model, {ϵY
t , ϵK

t , ϵC
t , ϵC1

t , ϵC2
t , ϵN1

t , ϵN2
t }, are assumed

to follow independent AR(1) processes with a deterministic trend, which gives the

other 7 innovations, ηt.

ϵt = A0 + ρ2t + ρ1ϵt−1 + ηt (3.23)

See Appendix A.4 for the details of derivations of the full log linearized model.
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Data

4.1 Actual data

Most of the actual data comes from the A Millennium of Macroeconomic Data Ver-

sion 3.1, blended by the team in Bank of England which has now been updated to

2016. The selected 147-year annual data starts from 1870 to 2016, totally covering 15

series. The inequality data mainly comes from the World Inequality Database main-

tained by the team led by Thomas Piketty. See Table 4.2 for more details on the raw

data.

Figure 4.1 presents the real interest rate alongside its 10-year moving average,

highlighting three notable periods of rising real interest rates in modern British his-

tory: 1918-1922 (post-WWI), 1945-1963 (post-WWII), and 1979-1984 (during Thatcher’s

first term). Each of these periods followed significant global events that influenced

economic policies. The importance of the real interest rate in the growth-inequality

nexus lies in its influence on investment and consumption decisions, which are crit-

ical drivers of economic growth. For example, higher real interest rates typically re-

duce borrowing and investment, slowing down economic growth. Conversely, lower

real interest rates can stimulate borrowing, investment, and consumption, thereby

fostering growth. This relationship can be easily derived from the Euler equation 3.7,

which links consumption growth to the real interest rate. Additionally, the real in-

terest rate clears the goods market by equating demand with production supply as

equation 3.19. However, while it influences current investment and consumption lev-

els, it does not drive steady-state growth, as it does not impact productivity growth

directly. Consequently, the real interest rate has a temporary effect on capital, con-

31

https://www.bankofengland.co.uk/statistics/research-datasets
https://www.bankofengland.co.uk/statistics/research-datasets
https://wid.world/
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Real interest rate over time:1870-2016
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Figure 4.1. UK’s real interest rate

sumption, and labour supply, leading to only a temporary impact on growth.

In the post-WWI period, inflation spikes necessitated higher interest rates to man-

age inflation and finance national rebuilding and debt. The UK’s return to the pre-

war gold parity in 1925 required deflationary policies, including elevated interest

rates, to support the pound’s value. Similarly, post-WWII, the British pound faced

multiple crises, prompting interest rate hikes to stabilize the currency. During Mar-

garet Thatcher’s tenure, monetarist policies aimed at curbing inflation led to sig-

nificant interest rate increases to control the money supply. Fiscal deficit reduction

efforts and external factors like oil price shocks further influenced these rates. Each of

these periods of increased real interest rates is associated with substantial economic

shifts. As illustrated in Figures 4.2 and Figure 1.1, periods of post-war and post-crisis

reconstruction coincide with rises in real GDP growth, capital stock, and economic

inequality. This suggests that while high real interest rates might initially dampen

growth, the subsequent economic adjustments and policies aimed at stabilization

and rebuilding can lead to significant growth and changes in economic inequality.

Understanding these dynamics helps to uncover the intricate relationship between

real interest rates, growth, and inequality within the broader economic context.

By shading the periods with consecutive increases in three years, the UK economy

experienced 10 episodes of expansion over the last two centuries and the capital stock
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Real GDP
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Figure 4.2. UK’s real GDP and Capital Stock

almost follows the same trend. Both capital stock(approximated by non-dwellings

capital of the whole economy) and real GDP are indicators of economic growth. As

an economy grows and real GDP increases, businesses often invest more in capital

goods to increase production, leading to an increase in capital stock, which is an

essential part of the production function. However, the UK’s capital stock obviously

fluctuated with higher volatility than its real GDP growth, (S.D. 0.067 vs. 0.024).

This can be impacted by the investment climate, where the real investment data has

a maximum of 92% increase but 37% decrease over the two centuries from Table 1,

technological progress, economic crises, etc. In a favourable investment environment,

firms are more likely to invest in new capital goods, increasing capital stock for ex-

ample the 1980s. Simultaneously, this investment contributes to economic growth

and, thus, real GDP. During an economic downturn, businesses may reduce invest-

ment in capital goods, leading to a decline in capital stock, while real GDP may also

fall but not necessarily at the same rate, e.g., during the world wars and financial
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Figure 4.3. UK’s labour statistics

crises. See Chadha et al. (2000) for more details of the UK business cycle properties.

Figure 4.3 provides a comprehensive view of the UK’s labour market from 1870

to 2016, illustrating three key variables: population growth, unemployment rate,

and working hours. The top panel shows population growth rates, which exhibit

significant fluctuations over the period. Early years are marked by relatively high and

volatile growth rates, with notable peaks and troughs. During the World Wars, there

is a pronounced decline in population growth, reflecting the demographic impacts

of the wars. Post-World War II, the growth rate stabilizes somewhat but continues to

show variability, especially around the late 20th and early 21st centuries.

The middle panel displays the unemployment rate, revealing important historical

shifts in the UK’s economic landscape. Prior to the mid-1910s, unemployment rates

predominantly hovered around the 5% mark. During the World Wars, the rates saw

a significant rise, averaging around 10% and peaking at 15% at times. However,

there was a swift decline post-war. After World War II, the unemployment rate

experienced a gradual incline, moving from 2% to 5%. The onset of the Thatcher era

marked a pronounced surge in unemployment, reaching highs of 13%. While there
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was a dip to 5% during Thatcher’s second term, it rebounded to 9% in the early

1990s. Subsequent years witnessed a steady decline, only to be disrupted by the 2008

financial crisis.

The bottom panel illustrates the trend in working hours, showing a notable de-

cline from the late 1800s to the mid-1900s, likely reflecting improvements in labour

regulations and productivity. Several potential reasons contribute to this decline in

working hours. Firstly, the introduction of labour laws such as the Factory Acts

reduced maximum working hours and improved working conditions, promoting

shorter workweeks. Secondly, increased productivity due to technological advance-

ments meant that workers could produce more in less time, reducing the need for

long working hours. Additionally, the rise of the service sector, which often requires

fewer hours compared to manufacturing, and the growing emphasis on work-life

balance, supported by both societal changes and government policies, contributed to

the reduction in working hours. Following this decline, the mid-1900s to the early

2000s witnessed a period of relative stability in working hours, suggesting an equi-

librium in the labour market or the absence of impactful societal shifts. However,

the early 2000s onward marked a resurgence in working hours, with several years

exhibiting increased working hours. These trends highlight the dynamic nature of

the UK labour market over the past century and a half, showcasing the interplay

between economic conditions, policy changes, and labour market dynamics.

To clarify, the labour supply functions in our model, as in equations A49 and A55,

do not account for all potential drivers of labour supply. These omitted factors are

captured in the error term. Our model focuses on elucidating the fundamental causes

of growth and inequality and their effects on labour supply, rather than comprehen-

sively addressing all determinants of labour supply trends. In the model, when

entrepreneurs allocate more time to innovation, labour supply decreases. However,

this mechanism alone does not explain the broader, ongoing decline in labour hours.

Figure 4.4 illustrates the tax revenue as a percentage of GDP and the trade union

membership ratio from 1870 to 2016. The tax revenue as a percentage of GDP shows a

significant increase starting around the early 20th century, peaking during the World
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Figure 4.4. UK’s regulation costs

Wars, and then stabilizing at higher levels post-World War II. Trade union member-

ship saw a sharp rise in the early 20th century, peaking around the mid-20th century,

followed by a steady decline from the late 20th century onwards.

Collectively Figure 1.1, provides insights into the economic inequality and regu-

latory landscape of the UK over a century and a half. Prior to the 1970s, both the

income and wealth shares of the top 10% were on a declining trend, which correlates

with the increasing tax revenue as a percentage of GDP shown in Figure 4.4. This

period was characterized by progressive taxation and a stronger role of government

in wealth redistribution, as evidenced by rising tax revenues. Post-1970s, there is a

notable divergence where the income share of the top 10% starts to increase while

the wealth share stabilizes. This period coincides with a significant reduction in

trade union membership, indicating weaker collective bargaining power and poten-

tially less equitable income distribution. See similar results and more details in Allen

(2009) and (Lindert, 2000).

The impact of wars and economic policies is evident in both figures. During the

World Wars, significant shifts are observed. Tax revenue peaks during these periods

due to increased government spending and economic mobilization, while the income

and wealth shares of the top 10% continue to decline, reflecting the broader economic

impacts of the wars and post-war policies aimed at rebuilding and redistribution.
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The stabilization of tax revenues at higher levels post-World War II reflects the estab-

lishment of the welfare state and ongoing redistributive policies. Concurrently, the

continued decline in the wealth share of the top 10% suggests the effectiveness of

these policies in reducing wealth concentration.

From the 1980s onward, the Thatcher era marked significant policy shifts, in-

cluding deregulation and tax reforms aimed at stimulating economic growth. Fig-

ure 1.1 shows a corresponding increase in the income share of the top 10%, while Fig-

ure 4.4 highlights the decline in trade union membership, suggesting a weakening of

labour’s bargaining power. The simultaneous trends of increasing income inequal-

ity and decreasing regulatory costs indicate a shift towards more market-oriented

policies.

These figures illustrate the intricate relationship between economic inequality and

regulatory policies in the UK over time. The data suggest that periods of higher taxa-

tion and stronger labour unions correlate with reduced income and wealth concentra-

tion, while deregulation and reduced union influence are associated with increased

income inequality. Understanding these historical trends is crucial for informing

current and future economic policies aimed at addressing inequality and promoting

sustainable growth.

The descriptive statistics of the raw data series are provided in Table 4.1.

Table 4.1. Descriptive statistics of the main raw data series

Series Mean Median S.D. Min. Max.

Real interest rate 0.02021 0.02912 0.04958 -0.20048 0.17693
Real GDP 0.02000 0.02476 0.02900 -0.10215 0.09461
Capital stock 0.05160 0.04594 0.06710 -0.19926 0.25821
Consumption 0.04979 0.04724 0.05458 -0.17710 0.23089
Investment 0.02876 0.03341 0.11831 -0.37469 0.92676
Population 0.00603 0.00564 0.00379 -0.00535 0.01233
Inc10 0.39785 0.39505 0.07784 0.27780 0.54990
Wea10 0.75659 0.82978 0.17384 0.45589 0.94580
Tau 0.23097 0.28340 0.11820 0.06640 0.38514
TUMR 0.27168 0.27700 0.13430 0.06832 0.52400
Unemployment 0.05460 0.05188 0.03139 0.00283 0.15387
Working hours 44.829 45.624 9.9676 31.507 61.22
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4.2 Calculated data

Given the unobservability of individual series such as consumption and labour sup-

ply, we rely on income/wealth distribution data from the World Inequality Database

and aggregate data from the Millennium of Macroeconomic Data. Specifically, we uti-

lize the top 10% income group (Group 1) and the bottom 90% income group (Group

2) to demarcate heterogeneous-agent groups. While some may advocate for treat-

ing the top 1% income group as representative of the wealthy, several considerations

guided our choice. Firstly, the top 10% income group offers a more representative

sample of the entrepreneurial class, encompassing a broader range of professions

and sectors than the top 1%. Secondly, the availability and reliability of data play

a pivotal role; the World Inequality Database, a commonly used dataset, provides

income shares for both top 1% and top 10%. As the top 10% data is derived from

fiscal data, it is often considered more dependable than the top 1%. Additionally,

the accessibility and comprehensiveness of the top 10% data facilitate robust anal-

yses and informed conclusions. Lastly, from a policy standpoint, focusing on the

top 10% allows for the exploration of interventions that can address inequality and

promote entrepreneurship with broader societal implications. By prioritizing the

top 10%, we can devise policies that are not only more feasible but also resonate

with a wider segment of the population. History provides numerous examples of

successful entrepreneurs who were born into wealthy or middle-class families, such

as John Pierpont Morgan, Rupert Murdoch, Warren Edward Buffett, William Henry

Gates III, and Steven Paul Jobs. Supporting this notion, Levine and Rubinstein (2017)

presents evidence from NLSY79 data in the US, showing that a higher proportion of

entrepreneurs come from well-educated and high-income families.

The subsequent section delineates the methodological intricacies involved in com-

puting the derived data. Initially, individual income and capital are estimated through

the utilization of corresponding income and capital shares derived from the aggre-

gate. Subsequently, individual consumption is derived via the application of the
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budget constraint. The equation governing individual consumption is expressed as:

ci,t = Ct × ICRi,t (4.1)

where ICRi,t denotes the individual consumption ratio, defined as the ratio between

individual consumption from the budget cb
i,t and total individual consumption cA

i,t.

ICRi,t = cb
i,t/cA

i,t (4.2)

Individual consumption from the budget (cb
i,t) is further back-out from the individual

budget constraint:

cb
i,t = yi,t − ki,t+1 + (1 − δ)ki,t (4.3)

The total individual consumption (cA
i,t) is calculated as the summation across both

income groups:

cA
i,t =

2

∑
i=1

(yi,t − ki,t+1 + (1 − δt)ki,t) (4.4)

The depreciation rate (δt) is determined by the ratio of the difference between future

capital Kt+1 and investment It to current capital Kt.

δt = 1 − (Kt+1 − It)/Kt (4.5)

Individual labour supply is estimated by using composite weekly working hours (H),

unemployed workforce(U), and total workforce (W). Composite series of Average

Weekly Hours worked adjusted for part-time work, sickness, holidays, and stoppages

and assume unemployment only occurs in Group 2,

N1,t = H/(24 × 5) (4.6)

N2,t =
0.9W − U

0.9W
H

24 × 5
(4.7)

where (24 × 5) gives the total theoretical working hours in a week except for the

weekend, 0.9W−U
0.9W adjusted the labor supply by considering the unemployment in

Group 2.
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The aggregate penalty rate, π, is proxied by the trade union membership ratio, a

higher ratio means the employee has more power to bargain with the entrepreneur,

which induces a higher penalty rate. Trade union membership ratio also provides

insights into the broader institutional and regulatory environment, which could be

relevant to the barriers to entrepreneurship in this model. Especially in the UK, trade

unions have played a particularly significant role in influencing economic policies,

labour laws, and regulations that could affect entrepreneurial activities in history.

The trade union membership data were originally archived by the Department for

Business, Innovation and Skills of the UK, which dates from 1892 to 2016. To com-

plete the data from 1870-1891, the exponential approximation was used based on

the number of employees. Individual penalty rates are also approximated by the

aggregate penalty rate based on the share of income.

Some may argue that taxes, as a typical regulatory cost, should be incorpo-

rated into the penalty rate. However, several considerations address this perspective.

Firstly, the tax data utilized in this study represents tax revenue as a percentage of

GDP, as illustrated in Figure 4.4. This data closely mirrors the trend of the Total

Unobserved Mark-up (TUM) until the 1990s, which encompasses the majority of our

sample period. Secondly, tax data has been relatively stable compared to TUM data,

especially after 1960, making it an unsuitable approximation for real regulation costs

during that period. Furthermore, it is important to clarify that tax data has not been

integrated into the penalty rate computation in our analysis. Consequently, tax rates

do not directly influence productivity growth within our model. Instead, the impact

of taxes on growth is considered solely through their redistribution effects. This dis-

tinction ensures that our analysis accurately reflects the role of regulatory costs and

their influence on economic dynamics without conflating them with the effects of

taxation.

The credit ratio, an essential metric for gauging financial conditions, is calculated

based on a common approximation:

Cret = ln
M4 stock

Nominal GDP
(4.8)
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The original data for the M4 stock to Nominal GDP ratio, sourced from the Bank of

England (BoE), spans the period from 1880 to 2016. To extend this series back to 1870,

a linear approximation method was employed for the years 1870 to 1879, ensuring

a continuous and comprehensive dataset. This extended dataset provides a robust

foundation for analyzing historical trends in credit conditions.

The forecast of expected individual consumption was derived using a Vector Au-

toregression (VAR) model of order 1, estimated from the individual consumption

data discussed earlier. This methodological approach allows for capturing the dy-

namic relationships between consumption and other economic variables, providing

more accurate predictions. All nominal series were deflated using the 2013 market

price index to maintain consistency and comparability across time periods.

Aggregate productivity (A) was approximated by the Solow residuals, which

reflect the portion of output growth not explained by the accumulation of capital and

labour, thus serving as a measure of technological progress. Individual productivity

was calculated using the same methodology to ensure consistency in our analysis.

The final dataset comprises data for 16 endogenous variables within the model.

All endogenous variables, except for the real interest rate, were found to be integrated

of order one, indicating that they contain a unit root and are non-stationary in levels

but stationary in first differences. This stationarity analysis is detailed in Table 4.3.

We use the unfiltered data in the following evaluation and estimation as we want to

utilize the unobservable information that is contained in the long-run dataset. See

Appendix C.3 for a detailed justification of the use of unfiltered and non-stationary

data for empirical analysis of the structural model..
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Table 4.2. Data Description
Series Description Definition / Calculation Source

R Real interest rate Annual average of 3-month rates minus 1-year head expectation at the start of the year BOE
Y GDP Real GDP per capita deflator at market price 2013, log-demean BOE
K Capital Stock Approximated by Non-dwellings whole economy, at market price 2013, log-demean of output BOE
C Consumption Household consumption, at market price 2013, log-demean of output BOE
A Productivity Approximated by Solow Residuals (= Y/(Kα ∗ N1−α)) Calculated
P’ Aggregate Penalty Approximated by Trade union members ratio (= Tradeunionmembers/AllEmployers) BOE
Tau Tax rate Tax Revenue of GDP WID
CRE Credit condition Ratio of broad money over GDP (= ln(M4 stock/GDP)) BOE
Y1, Y2 Individual Income Estimated by WID income distribution with interpolation (= GDP × Income share) WID
K1, K2 Individual Capital Estimated by WID wealth distribution with interpolation (= Capitalstock × Wealth share) WID
C1, C2 Individual Consumption Backed out by Individual budget constraint Calculated
N1, N2 Individual Labour Estimated by using Composite weekly working-hours, Total workforce/unemployed BOE
P1’, P2’ Individual Penalty Calculated by = P′ × (Y/Yi) Calculated
A1’, A2’ Individual Productivity Approximated by Solow Residuals (= Yi/(Kα

i ∗ N1−α
i )) Calculated

EC1, EC2 Expected individual consumption Calculated from a VAR model Calculated
TUM Trade union members Department for Employment (1892-1973); and the Certification Office (1974-2015) BOE
EE Total Employment in Heads Survey data, e.g., Labour Force Survey BOE
TUMR TUM Ratio TUMR = TUM/EE Calculated
P Market prices GDP deflator at market prices, 2013=100 BOE
Pop Population Census data BOE
Inc10 Top 10 income share Post-tax income of top 10% population aged over 20 WID
Wea10 Top 10 wealth share Net personal wealth of top 10% population aged over 20 WID
I Real investments Chained Volume measure, 2013 prices BOE
W Total workforce Total number of people who are physically able to do a job and are available for work BOE
U Total unemployed Total number of people of working age who are without work BOE
H Composite weekly working hours Average Weekly Hours worked adjusted for part-time work, sickness, holidays, and stoppages BOE
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Table 4.3. Stationarity the endogenous variables
Augmented Dickey-Fuller t-stats Phillips-Perron t-stats KPSS LM-stats

Level(c) Level(c,t) Diff.(c) Concl. Level(c) Level(c,t) Diff.(c) Concl. Level(c) Level(c,t) Diff.(c) Concl.

R Real interest rate -4.89*** -4.88*** -12.91*** S(1%) -4.98*** -4.98*** -18.17*** S(1%) 0.0976 0.0976 0.0946 S(1%)
Y Real GDP 1.013 -2.129 -8.33*** I(1)(1%) 1.177 -1.737 -8.00*** I(1)(1%) 1.377+++ 0.343+++ 0.396 I(1)(5%)
K Capital Stock 0.369 -1.565 -7.90*** I(1)(1%) 0.647 -1.264 -7.74*** I(1)(1%) 1.340+++ 0.276+++ 0.285 I(1)(1%)
C Consumption 1.751 -1.075 -8.94*** I(1)(1%) 1.851 1.034 -9.19*** I(1)(1%) 1.324+++ 0.349+++ 0.576++ I(1)(10%)
A Productivity 1.239 -2.382 -9.25*** I(1)(1%) 1.307 -0.487 -9.22*** I(1)(1%) 1.324+++ 0.339+++ 0.679++ I(1)(10%)
P’ Aggregate Penalty -1.951 -0.552 -4.18*** I(1)(1%) -2.038 -0.140 -8.68*** I(1)(1%) 1.021+++ 0.318+++ 0.587++ I(1)(10%)
Tau Tax rate -1.120 -2.486 -8.39*** I(1)(1%) -1.065 -1.903 -9.77*** I(1)(1%) 1.235+++ 0.329+++ 0.092 TS(10%)
Cre Credit condition -0.484 -1.474 -6.77*** I(1)(1%) -0.056 -1.084 -6.49*** I(1)(1%) -0.753+++ 0.303+++ 0.258 I(1)(1%)
Y1 G1’s Income 1.629 -1.204 -8.39*** I(1)(1%) 1.761 -0.486 -9.01*** I(1)(1%) 1.167+++ 0.346+++ 0.744+++ I(1)(1%)
Y2 G2’s Income 0.164 -2.745 -8.39*** I(1)(1%) 0.206 -2.153 -7.87*** I(1)(1%) 1.420+++ 0.280+++ 0.122 I(1)(1%)
K1 G1’s Capital 0.682 -1.112 -9.97*** I(1)(1%) 0.682 -1.265 -9.96*** I(1)(1%) 1.331+++ 0.243+++ 0.198 I(1)(1%)
K2 G2’s Capital -0.291 -1.117 -10.34*** I(1)(1%) -0.314 -1.273 -10.02*** I(1)(1%) 1.497+++ 0.382+++ 0.192 I(1)(1%)
C1 G1’s consumption 0.839 -0.700 -11.03*** I(1)(1%) -1.337 -2.167 -25.87*** I(1)(1%) 0.936+++ 0.322+++ 0.435+ I(1)(5%)
C2 G2’s consumption -0.225 -2.871 -18.62*** I(1)(1%) -0.337 -3.768 -23.49*** I(1)(1%) 1.397+++ 0.412+++ 0.231 I(1)(1%)
N1 G1’s labour -0.652 -2.138 -9.24*** I(1)(1%) -0.634 -2.035 -9.22*** I(1)(1%) -0.753+++ 0.303+++ 0.258 I(1)(1%)
N2 G2’s labour -1.033 -3.328* -9.18*** I(1)(1%) -1.067 -2.877 -9.45*** I(1)(1%) 1.314+++ 0.243+++ 0.198 I(1)(1%)
P1’ G1’s Penalty -1.909 -0.543 -6.13*** I(1)(1%) -2.027 -0.401 -5.94*** I(1)(1%) 1.007+++ 0.318+++ 0.603++ I(1)(10%)
P2’ G2’s Penalty -1.851 -0.173 -8.08*** I(1)(1%) -1.915 -0.316 -8.18*** I(1)(1%) 1.915+++ 0.316+++ 0.588++ I(1)(10%)
A1’ G1’s productivity 1.485 -1.586 -9.18*** I(1)(1%) 1.616 -1.356 -9.34*** I(1)(1%) 1.223+++ 0.306+++ 0.523++ I(1)(10%)
A2’ G2’s productivity 0.166 -2.799 -12.05*** I(1)(1%) 0.835 -2.560 -13.46*** I(1)(1%) 1.428+++ 0.310+++ 0.202 I(1)(1%)

Critical value (1%) -3.476 -4.022 -3.476 -3.476 -4.022 -3.476 0.739 0.216 0.739
Critical value (5%) -2.881 -3.441 -2.881 -2.881 -3.441 -2.881 0.463 0.146 0.463

Critical value (10%) -2.577 -3.145 -2.577 -2.577 -3.145 -2.577 0.347 0.119 0.347

Note: Tests in levels are conducted with model “level (c)” with a constant, and “level (c,t)” with both constant and linear trend. Tests in the first difference are conducted using model “difference (c)” with a constant only. For ADF
and PP tests, asterisks denote rejection of the unit root null at 10% (*), 5% (**) and 1% (***) significance levels. The KPSS test evaluates the null of stationarity. Plus signs indicate rejection of the stationarity null for the KPSS test at
10% (+), 5% (++) and 1% (+++) significance levels. In the conclusion column, ‘S’ stands for stationarity, ‘TS’ stands for trend stationarity, ‘I(1)’ stands for integrated of first order with constant, ‘I(1) TS’ stands for integrated of first
order with trend stationarity.
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4.3 Calibrated parameters

The parameters employed in our model, namely the capital share in production (α),

utility discount factor (β), and capital depreciation rate (δ), are set to typical annual

values found in the economic literature: α = 0.3, β = 0.97, and δ = 0.045. These

values align with those commonly used in macroeconomic models. For instance, the

capital share aligns closely with the empirical estimates presented in seminal works

such as Solow (1956) and more recent analyses by Mankiw et al. (1992) which validate

its appropriateness across different economic contexts. The utility discount factor

is referred from The Green Book (2022) issued by HM Treasury. Also, the capital

depreciation rate is referred from the guidelines of the Office of Tax Simplification.

For Group 1’s population share, we select the top 10%, see justification at section .

Individual income, capital, and consumption shares—ωy1, ωy2, ωk1, ωk2, ωc1, ωc2—are

derived from the sample averages of the individual data, taking approximate values

of 0.40, 0.60, 0.75, 0.25, 0.35, 0.65. These values represent a distributional parameter-

ization that captures the typical asset and income distributions within the dataset.

This range is similar to the one found in data used by Piketty and Saez (2006) in

their analysis of income inequality, providing a credible basis for comparison. The

consistency of these values with established literature highlights their reliability. For

example, Atkinson et al. (2011) also report similar distributions in their comprehen-

sive studies on wealth and income distribution, further validating our approach.

Additionally, the use of these shares allows for a more nuanced understanding of

economic disparities, as highlighted by Saez and Zucman (2016), who emphasize the

importance of detailed distributional analysis in capturing the full extent of economic

inequality. By ensuring our parameterization aligns with such reputable sources, we

enhance the robustness and empirical grounding of our model.

The steady-state values of the output-consumption ratio (1.4760) and capital-

consumption ratio (2.6361) were calculated using the sample means of the relevant

variables, providing a realistic snapshot of the economic environment based on ob-

served empirical trends. These calculations follow methodologies akin to those dis-

cussed in Smets and Wouters (2007). Additionally, the steady-state variables, in-

https://www.gov.uk/government/publications/the-green-book-appraisal-and-evaluation-in-central-government/the-green-book-2020
https://assets.publishing.service.gov.uk/media/5b222b6c40f0b634b73dbf2f/Accounting_depreciation_or_capital_allowances_web.pdf
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cluding labour inputs (N1 = 0.3879, N2 = 0.4415), penalty rates (π1 = 0.1747,

π2 = 0.2011), real interest rate (EQR = 0.0202), and income tax rate (EQT = 0.2000),

were derived as sample averages from the UK Millennium Dataset. By leveraging

sample means from the UK Millennium Dataset, we ensure our model’s parame-

ters are not only theoretically sound but also empirically validated. This approach

aligns with best practices in macroeconomic modelling, where the integration of real-

world data enhances the reliability and applicability of the findings. The use of these

steady-state values allows for a nuanced understanding of the economic dynamics at

play, providing a solid foundation for further analysis and policy recommendations.

For instance, the labour inputs and penalty rates are crucial for understanding the

labour market dynamics and the cost of capital, respectively. The real interest rate

and income tax rate are fundamental in assessing the broader fiscal and monetary

environment, directly influencing investment decisions and consumption patterns.

A summary of these calibrated parameters is provided in Table 4.4, which not

only details the values but also references their sources and justifications, ensuring

transparency and reliability.
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Table 4.4. Calibrated parameters

Series Description Source Value

α Capital share Solow (1956) 0.3000

β Utility Discount Factor The Green Book (2022) 0.9700

δ Capital Depreciation Rate Office of Tax Simplification, UK 0.0453

µ1 Group1’s Population Share Model calibration 0.1000

ωy1 Top 10% Income Share WID 0.3978

ωy2 Bottom 90% Income Share WID 0.6022

ωk1 Top 10% Capital Share WID 0.7566

ωk2 Bottom 90% Capital Share WID 0.2434

ωc1 Top 10% Consumption Share WID 0.3530

ωc2 Bottom 90% Consumption Share WID 0.6470

Y/C Steady State Y/C Ratio Smets and Wouters (2007) 1.4760

K/C Steady State K/C Ratio Smets and Wouters (2007) 2.6361

N1 Steady State Labour of Group1 UK Millennium Dataset 0.3879

N2 Steady State Labour of Group2 UK Millennium Dataset 0.4415

π1 Steady State Penalty Cost of Group1 UK Millennium Dataset 0.1747

π2 Steady State Penalty Cost of Group2 UK Millennium Dataset 0.2011

EQR Steady State Real Interest Rate UK Millennium Dataset 0.0202

EQT Steady State Marginal Income Tax Rate UK Millennium Dataset 0.2000

https://www.gov.uk/government/publications/the-green-book-appraisal-and-evaluation-in-central-government/the-green-book-2020
https://assets.publishing.service.gov.uk/media/5b222b6c40f0b634b73dbf2f/Accounting_depreciation_or_capital_allowances_web.pdf
https://wid.world/country/united-kingdom
https://wid.world/country/united-kingdom
https://wid.world/country/united-kingdom
https://wid.world/country/united-kingdom
https://wid.world/country/united-kingdom
https://wid.world/country/united-kingdom
https://www.bankofengland.co.uk/statistics/research-datasets
https://www.bankofengland.co.uk/statistics/research-datasets
https://www.bankofengland.co.uk/statistics/research-datasets
https://www.bankofengland.co.uk/statistics/research-datasets
https://www.bankofengland.co.uk/statistics/research-datasets
https://www.bankofengland.co.uk/statistics/research-datasets


Chapter 5

Methodology

This chapter explains the methodologies for solving the DSGE model with rational

expectations and in estimating the model. Firstly, it introduces the “Type II fix” and

the terminal conditions in solving the non-linear model. Secondly, this chapter gives

a brief introduction to Indirect Inference in testing and estimating the model.

5.1 Solving the DSGE model with Type II Fix

Suppose the wide class of DSGE models is represented by:

Etyt+1 = g(yt, xt; θ) (5.1)

where yt are endogenous variables with dimension ny × 1 in period t. and xt are

exogenous variables with dimension nx × 1 which we assume are driven by

xt = h(xt−1; γ) + ηt (5.2)

The exogenous variables may contain both observable and unobservable variables

such as a technology shock. Both yt and xt are non-stationary. The function g(·) is

either linear or non-linear with the structural parameters θ ∈ Θ determined by its

equilibrium conditions. Usually, we assume the h(·) as an AR(1) process with AR

coefficient γ and structural innovations ηt ∼ i.i.d. N (0, Rη,t).

The perturbation method and the projection method are the most common meth-

ods used to solve the DSGE models. The perturbation method approximates solu-

tions around a steady state using a Taylor series, making it efficient for models with

47
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small deviations from equilibrium but less accurate for large shocks or nonlineari-

ties; while the projection method uses basis functions to approximate policy or value

functions, offering high accuracy and flexibility for nonlinear models but at a higher

computational cost (Fernández-Villaverde et al., 2016). The following section explains

one of the projection methods, Type II fix, which refers to the definition of "Type II

iteration" from Fair and Taylor (1983), see Appendix C.1 for more details. The nu-

merical algorithms originate from the one to solve the Liverpool model, introduced

by Minford et al. (1984).

The numerical method described here entails a series of iterations that converge

from an arbitrary initial path of values for the expectations to a path of rational expec-

tations, consistent with the forecasts of the model itself. Here is a brief explanation

of the steps of the algorithm.

Step 1: solve the model using actual data and structural errors. Starting with

initial values of rational expectations (RE) and endogenous variables from period 1 to

F, which is defined as the forecasting period, in practice, the initial values were set as

the first couple of periods(e.g.F = 50 for quarterly data, and F = 3 for annual data)

of the actual data. Then, input the above initial values into the model and calculate

the values of variables in the next period as predictions. This gives F periods of

predictions, which are denoted as y f
2 , . . . , y f

F+1,

Step 2: calculate the difference between predictions and the given RE values.

All the differences must be less than a tolerance level. If the gap is greater than

the tolerance level, then use a certain algorithm (e.g. Gauss-Seidel, Powell-Hybrid,

see Appendix C.2 for more details) to renew the given RE from initial values to

predictions until predictions are close enough to the newest RE values. Thus, the

model is solved in the first period. All the differences between the values of variables

when the model is solved and the actual data are saved in all the F periods.

Step 3: iterate over the following periods. The algorithm uses RE values one

period ahead to repeat the above steps to obtain predictions y3, · · · , yF+2, and the

model is solved in the second period. The algorithm needs to solve the model in all

N periods which requires the data in totally N + F periods. In practice, the dataset

is extended at the beginning, the stationary series in the model is kept as the values
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of the last period’s actual data with white noise through the following F period, and

the non-stationary series is extended by time trend regression.

Step 4: Set up the terminal conditions. The numerical method could have mul-

tiple solutions. To find a unique one, terminal conditions are needed, representing

that the model will be in a steady state after a terminal period T. Although T should

be infinity in principle, it has to be a finite number in numerical solutions. Both

Matthews and Marwaha (1979) and Minford et al. (1979) find that solutions are not

sensitive to the choice of T. T is therefore set as the number of the last forecasting

period (N + F). If the RE variables depend on the last period of non-stationary vari-

ables like productivities, the terminal condition can vary, given different structural

parameter values. Generally, the terminal condition is an important component of

the mathematical problem that defines the DSGE model and its solution. It ensures

that the solution is economically meaningful and consistent with the behaviour of

the agents in the model. Over a finite period at the terminal date, we assume that

yT−2 = yT−1 = ET−1yT = ȳ (5.3)

ȳ is a vector of terminal values of all endogenous variables of the model. It verifies

at the terminal date, all endogenous variable values can be expressed as a function

of values of error processes. In the model, productivity is considered as the unit-root

process that drives the non-stationarity property, while other error processes would

be zero. The system can be expressed as:

ȳ = ḡ(ȳ, xt; θ̄) (5.4)

Rewrite this as

ȳ = f (xt; θ̄) (5.5)

This shows at terminal date T, all endogenous variable values can be expressed as

a function of values of exogenous processes. In our model, productivity is consid-

ered as the unit-root processes drive the non-stationarity property, while other error

processes would be zero at T.



50 Methodology

5.2 Indirect inference

This section introduces the methodology used in the empirical analysis: the Indirect

inference. Indirect Inference provides a classical statistical inferential framework for

estimating and testing a model. It is most useful in estimating models for which

the likelihood function (or any other criterion function) is analytically intractable or

too difficult to evaluate, such as nonlinear dynamic models, models with latent (or

unobserved) variables, and models with missing or incomplete data. The following

sections present the main framework of indirect inference in the empirical analysis

of a DSGE model.

5.2.1 Select the auxiliary model

Like other simulation-based methods, indirect inference requires only that it is possi-

ble to simulate data from the economic model for different values of its parameters.

Unlike other simulation-based methods, indirect inference uses an approximate, or

auxiliary, model to form a criterion function. The auxiliary model serves as a win-

dow through which to view both the actual data and the simulated data generated by

the economic model. It compares the performance of the auxiliary model estimated

on the simulated data derived from the economic model, with the performance of

the auxiliary model estimated from the actual data. Indirect inference chooses the

parameters of the economic model so that these two estimates of the parameters of

the auxiliary model are as close as possible (or so that the actual data and the simu-

lated data look the same from the vantage point of the chosen window (the auxiliary

model). The auxiliary model completely independent of the theoretical model is

used to compare the performance estimated on the real data and simulated data and

it does not need to be an accurate description of the data-generating process. This

auxiliary model highlights essential data characteristics, striking a balance between

being too broad, which no model could meet, and too narrow, which would fail

to filter out poor models effectively. These features can include moments, impulse

response functions (IRFs), vector autoregression (VAR) coefficients, or other metrics

like scores. This approach is a generalization of the Simulated Method of Moments.
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Here is a brief explanation of the steps of the algorithm. The following two steps are

the main process during the selection of the auxiliary model.

Step 1: Select the form of the auxiliary model. The auxiliary model can take the

form as Vector Autoregression(VAR), Vector Error Correction Model(VECM), Vec-

tor Autoregression with Exogenous Variables(VARX), Vector Autoregressive Moving-

Average(VARMA), Impulse Response Function(IRF) and moments. If the structural

model is correct, then its predictions about the time series properties of the data

should match those based on actual data. The state-space representation of the log-

linearized DSGE model in general has a restricted VARMA representation for the

endogenous variables. It can be approximately rewritten by a finite order reduced

from the VAR model. A level VAR can be used if the shocks are stationary. If the

shocks or exogenous processes are non-stationary. Non-stationary exogenous pro-

cesses will drive one or more structural equations to have non-stationary residuals.

Since these shock processes are backed by actual data and calibrated parameters, and

if we treat these processes as observable variables then the number of cointegrating

vectors will be less than the number of endogenous variables. This allows one to

represent the solution of the estimated model as a VECM in which the nonstationary

residuals appear as observable variables, and to use an unrestricted version of this

VECM as the auxiliary model. The VECM model is an approximation of the reduced

form of the DSGE model and can be represented as a cointegrated VARX model, see

Appendix C.3 for more explanation on the use of the non-stationary data and VARX

model.

Step 2: Specify the variables and the order of the auxiliary model. After the se-

lection of the model’s form, the variables and order of the model need to be specified.

Usually, the order used is one period lag with a limited number of key macro vari-

ables. By raising the lag order and increasing the number of variables, the stringency

of the overall test of the model is increased significantly. If the structural model is

already rejected at order 1, there is no need to conduct a more stringent test based

on a higher order. Le et al. (2011) shows the normalized Mahalanobis Distance gets

steadily larger, indicating a steadily worsening fit, as the lag order is increased. In fact

the general representation of a stationary log-linearised DSGE model is a VARMA,
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which would imply that the true VAR should be of infinite order, at least if any DSGE

model is the true model. However, for the same reason that we have not raised the

VECM order above one, we have also not added any MA element. As DSGE models

do better in meeting the challenge this could be considered. We could start with a

Direct Wald with order 1 in an auxiliary VAR or VARX (from a VECM) and probably

increase the order of VAR if the test power is low.

5.2.2 Simulate the data and calculate the Wald statistics

Step 1: Back out residuals and innovations. Residuals in the equations without

rational expectations (RE) are directly backed out by LHS(actual data) - RHS(model-

fitted data). Residuals in the equations with RE will back out as the following, as

suggested by McCallum (1976): Estimate a VAR of variables with expectations. Set

the fitted values one period ahead of their expectations. Residuals are calculated as

LHS-RHS. Most residuals obtained are non-stationary due to deterministic trends or

unit roots. The steady state is driven by non-stationary variables. In practice, after

simulating the model from original data in the base run, it computes the differences

between the simulation data and original data to get residuals, either stationary or

non-stationary. It then adds the BGP on the effects of the shocks, whereas in the

version of the model, deterministic components and BGP are fixed. For example,

productivity, and its non-stationarity come from both unit root and deterministic

trends. Firstly, we take the difference in aggregate productivity and regress it on

lagged difference variable ∆ ln At−1 and a constant βA
0 to get its OLS residuals (ϵA

t )

which are used for structural innovations for ln At.

∆ ln At = βA
0 + βA

1 ∆ ln At−1 + ϵA
t (5.6)

For residuals of other equations, we regress each on a time trend to get the fit-

ted value, denoted as x̂t, which is our time-detrended equation residual. Time de-

trending can be skipped if the residuals don’t show any time trend. Then regress x̂t

on x̂t−1 to obtain the stochastic process and the residuals are structural innovations
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for the error x̂t

x̂t = βx
1 x̂t−1 + ϵx

t (5.7)

STEP 2: Bootstrap the residuals. Firstly, define a time vector to ensure all the

errors in each period will be randomly chosen together due to the interactive volatili-

ties of errors, in which some occasional co-movements occur in certain unobservable

environments. The bootstrapped samples in general do not follow the same distri-

butions if these innovations in original samples are not i.i.d. However, we do not

release the i.i.d. assumption. We could also use a random generator to randomly

draw elements from the time vector to yield a bootstrapped time vector with the

same dimension, also resulting in a bootstrapped sample of structural errors. We

bootstrap structural innovations instead of randomly drawing innovations from as-

sumed distributions because firstly the interactive volatilities can hardly be realised

using single distributions. Secondly, the achieved innovations might imply these val-

ues have higher realisation probabilities (same idea as the likelihood), which cannot

be reflected by random draws from given distributions. Furthermore, what distribu-

tions should be used? Bootstrap is indeed based on the large sample theorem where

the original sample of structural innovations has the same distribution with popula-

tion structural innovations and the sample size in our model is insufficiently large.

Le et al. (2011) conduct Monte Carlo experiments to evaluate the accuracy of innova-

tion bootstrap by firstly setting a normal distribution for the original structural errors

(equivalent to a distribution of original innovations), randomly drawing innovations,

and bootstrapping samples to calculate Wald for each sample. It is found that small

sample bootstrap is also accurate, although bootstrap is likely to “under-reject” and

is more accurate in large samples. Additionally, they also verify that Id-If Wald based

on bootstrapped simulations converges to an χ2 distribution as the sample size rises

using a Monte Carlo experiment.

Step 3: Simulate the data. This simulation is called “Full simulation”, different

from a simulation for IRFs where innovations are non-zero only in the starting period

(regardless of the lagged periods preparing for base run and simulation). The boot-

strapped innovations are used to renew structural errors following their stochastic
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processes achieved in step 2.2. Then the model is solved following the same proce-

dures in 2.3 with two differences that innovations now are non-zero and the “Type

II Fix” residuals are added to equations in each period to diminish unobservable un-

certainties. The simulated outputs are variable values when the model is solved. The

net BGP growth rate generally is quite small for quarterly data, e.g. 0.002-0.004 but

significant for annual data. Moreover, BGP has almost no effects on Wald computa-

tion. However, it is better to keep this step to compare simulated data with actual

data which implicitly contains a time trend.

Step 4: Minimize the Wald statistics. Lastly, Wald and the Transformed MD are

calculated after we collect S (1000 in practice) bootstrapped simulations. Define the

structural parameter vector and the auxiliary parameter vector as θ and β respec-

tively.

• Estimated auxiliary parameters β̂ with actual data in the auxiliary model.

• Simulate S samples using the structural model with a given θ.

• Estimate β̃s,θ , (s = 1, 2, · · · , S) with simulated data in the auxiliary model.

• The II estimator of θ is the one such that β̂ and ¯̃βs,θ are closest.

Solving the problem to minimize the Wald statistic yields the optimal estimator θ:

min
θ

[β̂ − ¯̃βs,θ ]
′Ω̂−1[β̂ − ¯̃βs,θ ] (5.8)

where

¯̃βs,θ =
1
S ∑ ¯̃βs,θ (5.9)

To make the results more intuitive, As Wald statistics follows

Walds = [β̂ − ¯̃βs,θ ]
′Ω̂−1[β̂ − ¯̃βs,θ ] ∼ χ2(k) (5.10)

√
2χ2 asymptotically follows a normal distribution as N

(√
2k − 1, 1

)
and {

√
2Wald−

√
2k − 1} is close to a t distribution, where k is the number of coefficients in the aux-
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iliary model. Furthermore, a transformed Mahalanobis Distance is defined as below

MD = Tc

[√
2 Wald a −

√
2k − 1√

2 Wald c −
√

2k − 1

]
(5.11)

where Tc is the critical value of one-tail t distribution on the c% confidence interval,

Walda is the Wald statistics calculated from the actual data, Waldc is the cth percentile

value of the sorted {Walds}. Then it is compared with the critical value of t distribu-

tion with a large degree of freedom on a chosen confidence interval. In practice, the

model isn’t rejected based on a set of parameters if the MD is less than 1.645 with

95% confidence interval. Based on this, a P value is calculated as

P value =
(100 − the Wald percentile )

100
(5.12)

5.2.3 Estimate the structural coefficients

Assuming the model is true, we use the II test given continuously adjusted values of

parameters until the model cannot be rejected. That is to find the parameter values

such as the transformed MD (TMD) or Wald is minimized and this procedure of

searching for optimal parameters is called II Estimation. It is an advantage of II that

estimation and test are not independent. II estimation tells us the optimal parameters

such that the difference between simulated data and the actual data is minimised

while II test tells us how good this minimised difference is. Suppose the minimized

difference can still be strongly rejected. One could believe that the functional forms

of the model are problematic.

The following are basic algorithms of II estimation. Start with a set of calibrated

coefficients, set boundaries according to the literature and then randomly generate

N sets of coefficients with different algorithms. Then each set of the coefficients will

be put into our structural model to simulate the data for endogenous variables. The

difference compared to Bayesian estimation is that we use some auxiliary models like

VAR/VARX/VECM to fit the simulated data and the actual data. Then we have the

difference of the estimated coefficients from the auxiliary model between simulated

data and actual data, for each input parameter, we run 1000 simulations. Then we
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calculate the Wald statistics. The best set of coefficients will have the smallest Wald

statistics which means the best coefficients minimised the distance between actual

data and the simulated data, which also means our structural model can fit the

actual data within the auxiliary framework. The advantage of this methodology is

that because we run 1000 simulations for each set of coefficients, we can plot the

distribution of distance in the simulations and calculate the P value which could

be used to check the fitness of the model statistically. See Figure 5.1 for a quick

reference.

Here we briefly introduced some numerical methods we can use to estimate the

coefficients. Further details can be found in Appendix D.4.

Random selection method. This methodology is operationalized by delineating

boundaries around the calibrated values of the coefficients. These boundaries typi-

cally reference established economic principles or conventions found in the scholarly

literature. Subsequent to this, a random selection between the upper and lower

bounds is undertaken. Another approach is termed grid random selection. After de-

termining the bounds for the coefficients, each decimal is partitioned into ten units.

The algorithm identifies coefficients associated with the minimal Wald statistics and

then progresses to the subsequent decimal.

Simulated-Annealing method. We start from initial parameter values θ1 and

conduct a full II test to obtain TMD1 (or Wald1). Then we randomly generate a

neighbour parameter vector θ2 and follow the same steps to obtain TMD2 (or Wald2).

If TMD2 < TMD1, θ1 is chosen as starting parameters and we repeat the two steps

above to search for a better one. If TMD2 ≥ TMD1, we do not surely reject to

move towards θ2, but calculate an “acceptance probability” (ACP) which provides

a probability to move. Namely, we always surely move to a better new choice,

but we still have a certain chance to move towards a worse choice, which is our

mechanism to escape from a local optimum. The ACP generally takes the form of

α(TMD1, TMD2, T) ∈ [0, 1] where T is called "temperature" which usually starts from

unity and decreases after each estimation iteration. ACP could follow Gibbs equa-

tion α = minexp[(TMD1 − TMD2)T−1], 1 in practice where Tt+1 = qTt, 0 < q < 1.

We randomly draw a value u from a uniform distribution U(0, 1) in each estimation
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iteration. If α ≥ u, we move to θ2; if else, we stay at θ1. Note that the process of

T implies that it would be more difficult to move towards a worse choice as more

iterations are done. Repeat the steps above until we find an acceptable solution for

or reach a maximum number of iterations.
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Figure 5.1. Process of Indirect Inference estimation



§5.2 Indirect inference 59

5.2.4 Test the power of estimation

The size of a test (or significance level, α) is the probability of incorrectly rejecting

the null hypothesis when it is true. This is the probability of making a Type I error.

The power of a test (1− β), is the probability of correctly rejecting the null hypothesis

when it is false. A Type II error occurs when one fails to reject a false null hypothesis.

For a given hypothesis and test statistic, one constrains the size of the test to be small

and attempts to make the power of the test as large as possible. The power of the

Wald test can be checked by positing a variety of false models with either parameter

mis-estimation or model mis-specification.

Step 1a: Parameter mis-estimation. Generate the falseness by introducing a rising

degree of numerical misspecification for the model parameters, moved ±x% away

from their true values. The degree of error in the beliefs, whether of parameters or

errors, cannot be obviously identified from just examining the data sample; from a

given sample with a given θ one can extract different error processes with differ-

ent methods so that there is no uniquely determined set of ρ’s and error moments;

similarly, θ can also be variously estimated or calibrated. Thus, for any given data

sample the information in the sample itself will be consistent with a wide range of

parameters and error moments.

Step 1b: Model misspecification. Generate the falseness by replacing some of the

equations with different set-ups. One can consider replacing the equation of the main

mechanism in the model with an AR process.

Step 2: Monte Carlo simulations. Monte Carlo simulations can be used to test both

parameter mis-estimation and model misspecification. For both mis-specifications,

• Generated 10000-sample data from the estimated model, the True model.

• Calculate the Wald statistics and find the distribution of the Wald for these True

samples.

• Generate a set of 10000-sample of the endogenous from the False model.

• Calculate the Wald statistics and find the distribution of the Wald for these

False samples.
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• Calculate how many of the actual samples from the True model would reject

the False Model on this calculated distribution with 95% confidence.

This gives us the rejection rate for a given percentage degree x of misspecification.

5.2.5 Test the robustness of bootstrap

A particular concern with the bootstrap has been its consistency under conditions of

near-unit roots. Several authors e.g.,Basawa et al. (1991), Hansen (1999) and Horowitz

(2001) have noted that asymptotic distribution theory is unlikely to provide a good

guide to the bootstrap distribution of the AR coefficient if the leading root of the

process is a unit root or is close to a unit root. This is also likely to apply to the

coefficients of a VAR when the leading root is close to unity and may therefore affect

indirect inference where a VAR is used as the auxiliary model, as here. The following

steps use the Monte Carlo experiment to check whether this was a problem in this

model.

Step 1: Drew random samples from the innovations in these error processes, creating

1000 artificial samples of the same length as the original data – 147 observations.

Step 2: Bootstrap each of these samples 1000 times.

Step 3: For each sample they computed the Wald statistic generated by the bootstraps

to check whether the model is accepted or rejected at various confidence levels.

With the Likelihood Ratio, we test the bootstrap’s accuracy by taking the same

model and generating 1000 samples by Monte Carlo. For each one, we generate

the bootstrap distribution of the LR (thus we bootstrap that sample’s innovations to

obtain 1000 data sets; and for each we generate the VAR forecast errors as well as the

model’s forecast errors, using LIML residuals extracted from the data as in our usual

procedure). Then we check whether the true sample LR is rejected on the bootstrap

distribution. Over the 1000 true samples, we obtain the bootstrap rejection rate. We

do not use the bootstrap for the λ tests (the distribution of λ is generated by the

Bayesian stochastic simulation routine) so its accuracy does not arise.



§5.2 Indirect inference 61

5.2.6 Comparison of Indirect Inference and Bayesian Methods

Indirect Inference and Bayesian Methods are two prominent methods for testing and

estimating DSGE models. Indirect Inference is a simulation-based estimation tech-

nique. It involves comparing the simulated data generated by the model with actual

data using auxiliary models or statistics. Bayesian methods incorporate prior beliefs

about the parameters and update these beliefs using the likelihood of observing the

data given the model. This results in a posterior distribution of the parameters. See

Table 5.1 for a comparative summary.

In general, Indirect Inference follows the following steps, see details in section 5.2.1,

5.2.2, and 5.2.3 .

1. Model Specification: Specify the DSGE model.

2. Simulation: Simulate data with the model using initial parameter estimates.

3. Auxiliary Model: Estimate an auxiliary model (e.g.,VAR) on both actual data

and simulated data.

4. Comparison: Compare the estimated parameters of the auxiliary model de-

rived from the actual data with those obtained from the simulated data to de-

termine whether the behavior or moments of the auxiliary model, based on the

actual data, fall within the 95th percentile of the distribution generated from

the simulated data.

5. Parameter Adjustment: Adjust the parameters of the DSGE model to minimize

the discrepancy(measured by Wald statistics) between these estimates.

Bayesian method mainly follows the following process:

1. Prior Specification: Specify prior distributions for the DSGE model parameters.

2. Likelihood Calculation: Calculate the likelihood of observing the data given

the DSGE model.

3. Posterior Distribution: Combine the prior distributions and the likelihood us-

ing Bayes’ theorem to obtain the posterior distribution of the parameters.
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4. Estimation: Use numerical methods (e.g., Markov Chain Monte Carlo, MCMC)

to sample from the posterior distribution and estimate the parameters.

Table 5.1. Comparison of Indirect Inference and Bayesian Methods

Feature Indirect Inference Bayesian Methods

Approach Simulation-based Likelihood and prior-based
Estimation Comparison through auxiliary

models
Posterior distribution via Bayes’
theorem

Computational
Demand

High due to extensive simula-
tions

High due to MCMC or other
sampling techniques

Flexibility High, robust to model misspec-
ification

Moderate, depends on the cor-
rect specification of likelihood

Prior Information No incorporation of prior be-
liefs

Incorporates prior information

Uncertainty Mea-
surement

Limited, focuses on point esti-
mates

Comprehensive, provides full
posterior distributions

Diagnostic Capa-
bility

Formal Wald test Facilitates model comparison
through marginal likelihoods

Sensitivity Sensitive to choice of auxiliary
model

Sensitive to choice of priors

Indirect Inference is a robust and versatile simulation-based estimation technique

that stands out for its ability to handle models with intricate structures and mul-

tiple sources of economic shocks. By simulating data from the DSGE model and

comparing it with actual data through auxiliary models or statistics, this method en-

sures a comprehensive validation process. One of the main advantages of Indirect

Inference is its flexibility; it does not require the exact specification of the likelihood

function, making it resilient to model misspecifications and highly adaptable to dif-

ferent types of economic models. Additionally, it serves as an excellent diagnostic

tool, highlighting discrepancies between the model and real-world data, which can

guide improvements in model specification. However, Indirect Inference has sig-

nificant computational demands, requiring extensive simulations that can be time-

consuming and resource-intensive. The method also has a sensitivity to the choice

of the auxiliary model; different auxiliary models may lead to different parameter

estimates, potentially affecting the robustness of the results. Furthermore, since the

method provides an indirect fit through these auxiliary models, it may not capture

all features of the data, potentially leaving some aspects of the model’s performance
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unexplored.

Bayesian Methods provide a thorough and systematic approach to estimating

DSGE models by integrating prior information with observed data through Bayes’

theorem. This results in a posterior distribution that offers a comprehensive measure

of parameter uncertainty, a notable advantage over traditional point estimates. The

ability to incorporate prior beliefs is particularly beneficial when dealing with lim-

ited or incomplete data, allowing for more informed and accurate estimates. Bayesian

Methods are also adept at facilitating model comparison through the computation of

marginal likelihoods, enabling researchers to assess the relative performance of dif-

ferent models. Despite these strengths, Bayesian Methods come with their own set

of challenges. They are computationally intensive, often requiring sophisticated nu-

merical techniques such as Markov Chain Monte Carlo (MCMC) to sample from the

posterior distribution. This can be both time-consuming and computationally expen-

sive. The results are also sensitive to the choice of priors, which can heavily influence

the estimates, especially in situations with scarce data. Additionally, Bayesian Meth-

ods necessitate the correct specification of the likelihood function, a requirement that

can be difficult to fulfil for complex models with numerous parameters and intricate

relationships. This need for precise specification adds another layer of complexity to

the Bayesian estimation process.

Both Indirect Inference and Bayesian Methods offer valuable tools for estimating

and testing DSGE models, each with its strengths and weaknesses. Indirect Inference

is particularly useful for its flexibility and robustness in modeling misspecification,

while Bayesian Methods provide a comprehensive framework for incorporating prior

information and measuring parameter uncertainty. The choice between these meth-

ods depends on the specific requirements of the analysis, computational resources,

and the availability of prior information. The preference for indirect inference in this

work stems from the fact that Bayesian methods would only be preferable if some

priors were known to be true, which is not the case here. These conclusions are sup-

ported by Monte Carlo experiments, as detailed in Le et al. (2016), Meenagh et al.

(2018), and Meenagh et al. (2021).
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Chapter 6

Empirical analysis

This chapter offers an empirical examination of the model using United Kingdom

data spanning from 1870, grounded in the methodological framework delineated in

the preceding chapter. Initially, the model is tested by a series of simulations to check

the ability to mimic the long-term inequality-growth dynamics and the business cy-

cle properties found in the UK data. Then the model is estimated through indirect

inference techniques. Subsequently, a power test is administered to ascertain the

robustness of both the estimations and the bootstrap resamples. The chapter culmi-

nates in an exploration of policy implications, specifically focusing on taxation and

welfare.

6.1 Simulations

This section first demonstrates the model’s capability to replicate the UK’s inequality-

growth dynamics discussed in the introduction. Following this, it illustrates the

model’s proficiency in capturing the stylized facts of business cycles.

6.1.1 Tendency simulation

The tendency simulation rigorously assessed the model’s capability to replicate the

nuanced long-term dynamics between inequality and growth. This economic sce-

nario began with two homogeneous groups, initially devoid of wealth disparity, en-

suring a baseline where all individual variable values were consistent across both

cohorts. Crucially, the expected values of individual consumption, generated from

an AR(1) process and denoted as EtC1,t+1 = EtC2,t+1 , serve as a foundational as-

65
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sumption that supports the integrity of the initial conditions. This benchmark model

is set as a tax-free system.

As the simulation progresses, the emergence of inequality is attributed solely

to innovations in individual labour input. These innovations are not arbitrary but

are sourced from independent normal distributions with an identical mean for both

groups. This design choice underscores that any resultant inequality is driven by

inherent differences in labour input rather than systemic biases or initial conditions,

thereby isolating the effects of individual effort on economic outcomes.

Each group is given an equivalent probability of ascending to affluence, empha-

sizing the model’s alignment with meritocratic principles. This aspect of the simula-

tion is particularly vital as it reflects real-world economic ideologies where upward

mobility is theoretically based on individual endeavours rather than predetermined

conditions.

The results depicted in Figure 6.1, which illustrate the evolution of growth and

inequality over a span of 150 years, are not just numerical outputs but a compelling

narrative about how small, random differences in productivity can amplify over time

to create significant disparities. The positive mean of 0.02 in labour input innova-

tions, as derived from the UK’s longitudinal data, distinctly catalyzes dual phenom-

ena—escalating capital inequality and bolstered economic growth, vividly illustrated

in Figure 6.1(b). These innovations are not isolated events but accumulate, building

on the momentum provided by previous increments. This cumulative nature en-

sures a sustained elevation in labour input for each group, propelling them towards

a mean level that gradually mirrors long-term expectations. Consequently, as these

mean levels stabilize, the growth rate moderates.

In contrast, scenarios with a zero-mean shock present a starkly different dynamic:

variations in inequality disappeared absolutely and lack a coherent trend with eco-

nomic growth, as depicted in Figure 6.1(a). This distinction underscores the critical

role of the mean shock in shaping economic trajectories. The inherent design of our

model reveals that initial random variations fostering inequality are not counterbal-

anced by subsequent randomness. Instead, the initial disparities in wealth distribu-

tion establish a foundation that perpetuates and even intensifies inequality, primarily
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(a) Simulation with 0-mean labour innovations
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(b) Simulation with 0.02-mean labour innovations

Figure 6.1. Tendency simulations with different labour input innovations

benefiting the initially wealthier group. This self-perpetuating cycle of growth and

inequality is driven by a mechanism where each new increment in wealth further

consolidates the disparity, thereby resisting efforts toward equalization.

This process, once initiated, becomes self-reinforcing. Subsequent innovations

that might theoretically reduce inequality serve only to temporarily dampen the es-

tablished cycle of unbalanced growth. The result is a persistent disparity in capital

distribution between Group 1 and Group 2, observed consistently across various sim-

ulations. The pivotal factor is the subtle yet deterministic growth rate induced by the

mean shock; when paired with random variability, it triggers a disproportionately

significant impact among those who, by chance, initially accumulate more wealth.

The nonlinear response of economic growth to initial capital inequality creates

a dynamic interplay that is crucial for activating this growth-inequality mechanism.

Our findings, robustly supported by simulations rooted in empirical UK data and

detailed in Section 6.2, not only lend substantial credibility to our model but also

offer profound insights into economic policy and theory. They suggest that seem-

ingly minor adjustments in labour input distribution can have extensive and lasting
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impacts on the trajectories of economic inequality and growth.
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Figure 6.2. Tendency of aggregate growth and capital inequality with all relevant
shocks

When all shocks are randomly applied to the base model, either affects the growth

rate (equal shocks to πit, At) or inequality (different shocks to πit or to At), or both

(aggregate consumption shocks), the inequality-growth dynamics are illustrated as

Figure 6.2. To ascertain the robustness of the findings, 1000 simulations were under-

taken. The outcomes indicate that the simulated correlation coefficients(from 0.17-

0.42) closely align with those derived from UK data in Table 1.1.

6.1.2 Impulse response

The main concern in this thesis is how a shock to the penalty rate, ϵπ
t , affects both

individual behaviours and the aggregate economy. Theoretically, if the entrepreneur-

ship penalty rate, π′
it, falls due to a negative shock, both groups (G1 and G2) will be

more inclined to engage in entrepreneurship, accepting a slight reduction in con-
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sumption. However, due to the differing sensitivities in individual productivity to

the penalty rate changes—where G1 is more responsive than G2—the capital distri-

bution will become increasingly unequal. Specifically, the productivity of individu-

als in G1 increases more significantly than in G2 when the penalty rate decreases,

leading to a greater accumulation of capital in G1. Consequently, while aggregate

output and overall economic growth rise due to the increased entrepreneurial activ-

ity spurred by the reduced penalty rate, inequality also rises because the benefits of

the shock are not evenly distributed across the two groups.
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Figure 6.3. IRFs to negative one S.D. of aggregate penalty rate shock

The impulse response functions (IRFs) in Figure 6.3 illustrate the dynamic effects

of a negative standard deviation shock to the aggregate penalty rate on the economy.

This shock incentivizes all groups to increase their entrepreneurial efforts, thereby

boosting overall economic growth. The transmission mechanism operates as follows:
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when the penalty rate decreases, the cost of engaging in entrepreneurial activities is

reduced, making entrepreneurship more attractive to individuals across all groups.

Consequently, both G1 and G2 increase their entrepreneurial activities, leading to

higher levels of investment and innovation.

However, the impact of the reduced penalty rate is not uniform across groups.

G1 individuals are more sensitive to changes in the penalty rate due to their higher

baseline productivity and greater capacity to leverage reduced costs effectively. As

a result, G1 benefits disproportionately from the shock. This increased productivity

and investment from G1 individuals lead to a significant accumulation of capital

within this group, while G2 also benefits but to a lesser extent. Over time, this

differential sensitivity results in a more unequal distribution of capital and income,

thereby increasing inequality.

In terms of economic variables, the negative shock to the penalty rate leads to

several significant changes. The permanent reduction in the penalty rate lowers the

cost of borrowing, resulting in a decrease in interest rates. This stimulates further

investment as cheaper borrowing costs encourage more capital expenditure. Ag-

gregate output increases as the enhanced entrepreneurial activity boosts production

capabilities. Similarly, aggregate capital rises due to the higher levels of investment.

Aggregate consumption also increases as the economy grows and individuals have

more resources at their disposal. The overall effect is a sustained increase in aggre-

gate growth, driven by the enhanced productivity and investment spurred by the

lower penalty rate.

The IRFs clearly show that the negative shock to the penalty rate results in per-

manent improvements in aggregate economic variables such as output, capital, con-

sumption, and growth. However, the unequal distribution of these benefits, with G1

gaining more significantly due to their higher sensitivity to the penalty rate changes,

leads to increased inequality. This detailed explanation of the transmission mech-

anism clarifies why the reduction in the penalty rate results in both higher growth

and higher inequality.
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Figure 6.4. IRFs to one S.D. of G2’s consumption shock

To evaluate whether the model can effectively respond to a variety of shocks,

nine additional shocks were applied to the model. Figure 6.4 specifically illustrates

the impact of a temporary shock on G2’s consumption, which is representative of

a typical demand-side shock. This shock has no lasting effect on inequality and

only a temporary impact on growth and other economic variables. The transmission

mechanism for this shock can be explained in detail:

When G2 experiences a temporary increase in consumption, it leads to a rise in

aggregate demand. This initial surge in demand triggers an immediate response

from the central bank, which lowers interest rates to stabilize the economy. The

reduction in interest rates is aimed at encouraging investment to meet the increased

consumption demand.

However, because the shock to G2’s consumption is temporary, the increased

consumption is not sustained over time. As G2’s consumption returns to its normal

level, the temporary boost in aggregate demand fades. This results in a subsequent
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drop in aggregate output as the economy adjusts back to its equilibrium state. Since

the shock is short-lived, it does not have a lasting impact on economic inequality;

the temporary changes in consumption do not alter the underlying distribution of

wealth or income.

Additionally, the temporary increase in consumption by G2 leads to a short-term

increase in aggregate capital. Businesses respond to the initial rise in demand by in-

vesting more, which temporarily boosts capital levels. However, as the consumption

shock dissipates, aggregate consumption drops back to its original level. This means

there is no long-term change in overall consumption patterns, and the increase in

capital is not sustained.

In summary, the temporary shock from G2’s consumption causes a brief period of

increased demand, leading to lower interest rates and a short-term rise in aggregate

capital. However, this effect is temporary, and once the shock dissipates, the econ-

omy returns to its previous state with no long-term impact on growth or inequality.

The IRFs in Figure 6.3 clearly demonstrate these dynamics, showcasing the transient

nature of changes in economic variables in response to the consumption shock.

See more IRF figures in Appendix B.1.

6.2 Estimation

For model estimation, this study employs the indirect inference method. As elu-

cidated in the preceding chapter, the fundamental premise of indirect inference re-

volves around utilizing an auxiliary model. This auxiliary model aids in determining

the coefficients, both from the simulated data originating from the structural model

and from the actual data. If the divergence between the coefficients derived from

these two datasets is deemed statistically significant, one can infer that the structural

model aptly replicates the real-world data. In pursuing an understanding of the in-

terplay between capital inequality and overall economic growth, it is imperative for

the auxiliary model to encompass both aggregate output and capital inequality. Ad-

ditionally, individual productivity levels are incorporated as exogenous variables to

elucidate their influence on aggregate growth. The subsequent equation delineates
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this auxiliary VARX model:

Yt = βYt−1 + αXt + et (6.1)

where Yt is (Yt, IQKt)
′, Xt is (A1,t, A2,t, trend)′ including a time trend, the estimated

variance of the error term et, is Ω̂e. Then a 6×1 coefficient vector, including 4 VARX

coefficients of the lagged endogenous variables and 2 variances in Ω, is used to cal-

culate the Wald statistics. Table 6.1 presents a juxtaposition of the coefficients derived

from the auxiliary model using actual data versus simulated data. The findings in-

dicate that all VAR coefficients reside within the 95% confidence interval generated

through simulation, although two error variances deviate outside this range. This

overarching pattern of empirical coefficients falling within the bounds of model-

based simulation provides a compelling rationale for the test’s success, while simul-

taneously omitting potential simulated covariation, a factor that may be salient in a

comprehensive joint test.

Table 6.1. Coefficients of the auxiliary model

Auxiliary

coefficients

Actual

value Simulated value β̃

β̂ Lower 2.5% Mean β̄ Upper 2.5%

β11 0.84273 0.43581 0.73774 1.03644

β12 -0.13728 -0.74556 -0.09392 0.65423

β21 -0.02755 -0.05248 0.00564 0.06332

β22 0.95810 0.79738 0.93201 1.04984

Var (ê1) 0.00076 0.00416 0.01394 0.05306

Var (ê2) 0.00011 0.00040 0.00170 0.00681

In the structural model, there are 20 coefficients in total. Out of these, 13 have

been calibrated as constants, as detailed in Chapter 4.3. The remaining 7 coefficients

are estimated through a process wherein 500 sets of these coefficients are randomly

generated. These sets are constructed around the pre-calibrated values, bounded
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by limits determined by fundamental economic principles (refer to Chapter 5.2.3

for an in-depth discussion). Every generated coefficient set is incorporated into the

structural model, yielding S = 1000 instances of simulated data. Subsequently, the

VARX model facilitates the estimation of the auxiliary coefficients β̂, as delineated

in Table 6.1. The mean coefficient value, β̄ is derived from the S simulated samples.

Table 6.2 presents the Wald statistics, the transformed Mahalanobis Distance, and

the computed P-value derived from the estimated coefficients. Given the P-value, the

estimated model cannot be dismissed at a 5% significance level. Figure 6.5 displays

the distribution pattern of the simulated Wald statistics that were used to derive the

P-value. The degrees of freedom correspond to the count of coefficients present in

the auxiliary model, numbering 6 in total.

Table 6.2. The results of indirect inference estimation

Notation Description Value

−ϕ2,1 Effect of Group 1’s penalty rate on their productivity -0.2121

−ϕ2,2 Effect of Group 2’s penalty rate on their productivity -0.2043

−ρπ
2 Effect of capital share on individual penalty rate -0.0010

ρπ
3 Effect of the credit condition on individual penalty rate -0.0842

Ψ1 Elasticity of consumption in the utility 0.2359

Ψ2 Elasticity of leisure in the utility 0.3759

θ2 Effect of entrepreneurship time on individual productivity 0.5509

Wald 9.9543 Number of samples 194

TMD 0.8994 P value 0.1082

The effect of the individual penalty rates on their productivity shows that Group

1’s productivity is more sensitive to its penalty rate. This is consistent with the the-

ory. Richer individuals typically have more opportunities available to them. If the

entrepreneurship penalty rate is high, they might forgo entrepreneurship in favour

of other lucrative opportunities, leading to a bigger loss in potential productivity

than for someone with fewer alternative opportunities. In addition, richer individu-
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als often have more financial cushioning, allowing them to take on riskier ventures

that might have higher potential payoffs. A penalty on entrepreneurship could dis-

courage them from pursuing such high-reward opportunities, leading to a decline

in productivity. The credit ratio shows a negative correlation with the penalty rate.

One of the primary hurdles entrepreneurs face is access to capital. Better credit con-

ditions make it easier for entrepreneurs to obtain the necessary funds to start or

expand their ventures. When credit is readily available, the perceived and actual

penalties or barriers to entrepreneurship are lowered. With favourable credit condi-

tions, entrepreneurs might be more willing to take risks, expand their operations, or

venture into new markets. The increased activity can lead to a broader acceptance of

entrepreneurship in the economy, thereby reducing institutional or regulatory penal-

ties. The estimated marginal effect of capital inequality on the individual penalty

rate, at -0.001, should not be misconstrued as indicating that the entrepreneurship

penalty rate is unresponsive to shifts in capital distribution. This is attributed to the

penalty rate possessing a lower order of magnitude in comparison to capital.

Comparing the elasticity of consumption and leisure in the utility, the higher

elasticity for leisure suggests that, in relative terms, changes in leisure have a more

significant impact on utility than equivalent percentage changes in consumption. If

faced with trade-offs between additional consumption and leisure, these elasticity

values suggest that individuals might be more willing to forgo a small amount of

consumption for additional leisure. If policymakers wanted to influence behaviour

or welfare, interventions or policies that impact leisure time (like working hours, and

vacation policies) might have a more pronounced effect than those that influence

consumption directly (like subsidies or taxes on goods).

The marginal impact of entrepreneurship time on individual productivity show-

cases a direct relationship between the duration spent on entrepreneurial ventures

and one’s efficiency. Specifically, with each additional unit of time (for instance, an

hour) committed to entrepreneurial tasks, an individual’s productivity is projected

to enhance by 0.5509 units. Notably, this estimation closely aligns with the findings

presented by Yang et al. (2021) who utilized quarterly data from the year 1978.
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Figure 6.5. Distribution of the Wald statistics

After obtaining the estimators, we substituted the estimated coefficients into the

model to calculate the residuals(errors)—the differences between the actual data and

the model-implied values. The descriptive statistics and the stationarity test for the

seven structural residuals are summarized in Table 6.4. The residuals of the aggre-

gate output and aggregate capital equation are stationary based on the KPSS test.

The residuals for the aggregate consumption equation are stationary with 10% sig-

nificance level and trend stationary with 1% significance level in ADF tests. More

specifically, the residuals for G1’s consumption are stationary according to both the

ADF and KPSS tests; for G2’s consumption, the residuals are stationary under the

KPSS test at the 1% significance level and also stationary under the ADF test at

the 10% significance level. Both residuals from individual labour equations is non-

stationary. Regardless of some inconsistency of ADF and KPSS test, we regressed

the 7 structural errors on an AR(1) with a deterministic based on Equation 3.23. All

the AR coefficients of the seven variables shown in Table 6.3 are less than one, which

generally indicates these residuals can be treated as stationary or trend stationary

from an empirical perspective, (Box et al., 2015; Brockwell and Davis, 2002). These
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regressions give us the innovations/shocks of these 7 variables, combined with the

other three shocks obtained from 3.20,3.21 and 3.22, Table 6.5 shows all these 10

shocks are stationary.

Table 6.3. AR coefficients of the structural residuals and shocks
d ϵA

t
d ϵA

t−1

d ϵπ
t

d ϵπ
t−1

d ϵY
t

d ϵY
t−1

d ϵK
t

d ϵK
t−1

d ϵC
t

d ϵC
t−1

d ϵM
t

d ϵM
t−1

d ϵC1
t

d ϵC1
t−1

d ϵC2
t

d ϵC2
t−1

d ϵN1
t

d ϵN1
t−1

d ϵN2
t

d ϵN2
t−1

0.2437 0.4943 0.9892 0.9808 0.7309 0.5176 0.7093 0.3515 0.9714 0.9550

Table 6.5 shows the descriptive statistics and the results of stationarity tests of

structural innovations used for bootstrapping. All the innovations are stationary.
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Figure 6.6. Structural residuals
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Figure 6.7. Structural innovations
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Table 6.4. Descriptive statistics of the structural residuals

Series Mean Median S.D. Min. Max. ADF/KPSS
Level(c)

ADF/KPSS
Level(c,t)

ADF/KPSS
Diff(c)

εY
t 0.05160 0.04594 0.19926 0.025821 0.25821 -2.2503

0.2658
-2.0353

0.1591++
-8.4064***

0.2590

εK
t 0.04979 0.04844 0.17710 0.03439 0.16709 -1.4889

0.3077
-1.4463

0.3065+++
-12.596***
0.3702+

εC
t 0.25712 0.28392 0.14739 0.00210 0.92662 -2.8019*

1.2174+++
-4.6238***
0.2755+++

-13.009***
0.0774

εc1
t 0.00603 0.06735 0.09951 -0.0035 0.07839 -4.8599***

0.1027
-4.8598***

0.1023
-12.903***

0.1059

εc2
t 0.39785 0.39805 0.27780 0.54990 0.54200 -2.6842*

0.1349
-2.6649
0.1395+

-12.547***
0.0401

εN1
t 0.75659 0.82978 0.17804 0.45589 0.94598 1.5177

1.3320+++
-2.1562

0.3497+++
-14.448***
0.6039++

εN2
t 0.23097 0.28340 0.11820 0.06640 0.83514 -0.1791

1.4060+++
-2.0179

0.2377+++
-10.524***

0.1534

Note: For ADF tests, asterisks denote rejection of the unit root null at 10% (*), 5% (**), and 1% (***) significance levels. For

KPSS tests. Plug signs denote rejection of the stationarity null at 10% (+), 5% (++), and 1% (+++) significance levels.
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Table 6.5. Descriptive statistics of the structural innovations

Series Mean Median S.D. Min. Max. ADF Level(c)

εA
t 2.43E-20 0.001722 0.2044 -0.06806 0.063535 -9.2273***

επ
t -0.0001 -0.006442 0.04878 -0.16379 0.206004 -4.3506***

εM
t 0.003498 0.004209 0.070859 0.239449 -0.32255 -6.6363***

ηY
t -0.00019 -0.00006 0.001653 0.005112 -0.00664 -8.5317***

ηK
t -0.00047 -0.0006 0.011237 0.04797 -0.0448 -12.4352***

ηC
t 0.00019 0.0009 0.92653 3.36099 -0.3725 -11.4002***

ηc1
t -0.00082 0.005313 0.146793 0.846817 -0.6276 -11.3317***

ηc2
t -0.00024 0.010190 0.034221 0.077810 -0.20961 -2.6680*

ηN1
t 0.001590 -0.00229 0.041421 0.149212 -0.1515 -15.2718***

ηN2
t 0.000723 -0.00295 0.031819 0.099865 -0.07945 -12.5654***

Note: Unit root with a constant null at 10% (*), 5% (**) and 1% (***) significance levels.
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6.3 Power and robustness

Table 6.6 presents the results of the power test against false models, where both

structural parameters and the AR coefficients of the errors are systematically mis-

estimated by ± x% increments. The probability of rejecting these false models in-

creases sharply as the degree of falsification in the parameters escalates. This steep

rise in rejection probability underscores the robustness and reliability of the esti-

mated parameters obtained through indirect inference.

Table 6.6. Power test against numerical falsity of parameters

Parameter falseness True 1% 3% 5% 7% 9%

Rejection Rate with 95% Confidence 5% 7% 68% 92% 99% 100%

The findings from this power test are compelling. They demonstrate that the

indirect inference method is not only capable of accurately estimating the true pa-

rameters but is also highly effective in identifying and rejecting incorrect models.

This is particularly important in econometric modelling, where the precision of pa-

rameter estimates directly influences the validity and predictive power of the model.

By systematically introducing falsification and observing the model’s response, we

confirm that the indirect inference method possesses a high degree of sensitivity and

specificity.

We then conducted a rigorous power test of the indirect inference (II) method

against a deliberately misspecified model to further validate its robustness. In this

misspecified model, we disabled the fundamental mechanism that links wealth in-

equality to entrepreneurship by replacing the equations governing the penalty rate

(equations 3.15) with an independent AR(1) process without capital inequality and

credit conditions. Consequently, in this false model, wealth inequality continues to

arise from random processes but no longer influences innovation directly. Despite

this critical modification, we maintained all other parameters at their fully estimated

values from the benchmark model. As a result, economic growth in the misspecified

model is driven solely by shocks to the aggregate penalty rate, effectively severing
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any linkage between growth and inequality.

Table 6.7. Frequency of rejection of misspecified model

Mis-specified model Number of

Bootstraps

Rejected sam-

ples

Rejection rate

Replace eq.3.15 by AR(1) 1000 1000 100%

This scenario presents a stringent test of the II method’s power. On the same set

of 1000 samples, the rejection rate for this misspecified model at a 95% confidence

level was an astonishing 100%. As shown in Table 6.7, the misspecified model was

rejected in virtually every instance. This near-universal rejection underscores the

exceptional sensitivity and reliability of the II method in identifying and discounting

models that fail to accurately represent the underlying economic dynamics.

We also rigorously evaluated the accuracy of the bootstrap method under Indirect

Inference through a comprehensive Monte Carlo experiment. We began by config-

uring the model with error variances matching the estimated values. Subsequently,

we drew random samples from the innovations in these error processes, generating

1000 artificial samples, each mirroring the original data’s length of 147 observations.

Each of these samples was then bootstrapped 1000 times.

For each artificial sample, we computed the Wald statistic from the bootstraps to

determine whether the model would be accepted or rejected at various confidence

levels. The results, displayed in Table 6.8, indicate that the bootstrap procedure is

notably accurate, though it demonstrates a slight tendency toward under-rejection.

Table 6.8. Robustness of the bootstrap

Nominal rejection rate 10% 5% 1%

True rejection rate 8.7% 4.6% 0.9%

The near-alignment of true rejection rates with nominal rates underscores the

method’s reliability. Specifically, at a 10% nominal rejection rate, the true rate was

8.7%; at a 5% nominal rate, it was 4.6%; and at a 1% nominal rate, it was 0.9%.
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The nominal rejection rate represents the expected frequency at which the model

would be rejected if it were true, based on pre-defined statistical confidence levels.

In essence, a 10% nominal rejection rate means we would expect to reject a true

model 10% of the time due to random sampling variability, while the true rejection

rates are calculated based on the sorted Wald Statistics.

The slight under-rejection observed indicates a conservative bias, where the boot-

strap method is slightly more cautious in rejecting the model. This conservatism can

be advantageous in econometric analysis, as it minimizes the risk of falsely rejecting

a true model, thereby enhancing the robustness of the conclusions drawn from the

analysis.

The results highlight the power and robustness of the indirect inference (II) method

in DSGE modelling. Tests showed that II accurately estimates true parameters and ef-

fectively rejects false models, with rejection probability increasing sharply as param-

eter falsity increases. A stringent power test against a misspecified model confirmed

II’s reliability, with an exceptionally high rejection rate. Additionally, a Monte Carlo

experiment validated the bootstrap method’s accuracy under II, showing true rejec-

tion rates closely aligning with nominal rates. Overall, these findings demonstrate

that II is a robust and powerful tool for precise parameter estimation and model

validation.

6.4 Tax Policy implications

The effect of redistribution stands as a central policy concern within the literature

on growth and inequality. Income tax, as a quintessential redistributive tool, can be

implemented within various frameworks. The subsequent section commences with

simulations of the impact of differing income tax policies on growth and inequality.

The constant proportional tax rate will be considered for simplification but with

various utilisations of tax revenue: general taxation without subsidy transfer(Policy

I), taxation on the rich without transfer (Policy II), and income transfer from the rich

to the poor(Policy III). To compare the policy effects, we set the benchmark model as

a tax-free system.
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Policy I: Income tax on G1 and G2 without transfer. Consider the tax policy where

both the G1 and the G2 are charged a constant income tax rate, τ = 0.2, but with no

individual subsidy (tax revenue all funds government spending). Figure 6.8 shows

that inequality is reduced to a further lesser extent (top-left vs. top-right) while loss

of growth is much higher and quite fluctuated (bottom-left vs. bottom-right). Appar-

ently, taxing without any subsidy is harmful to the economy by reducing aggregate

capital accumulation.
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(a) Simulation of the benchmark model
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(b) Simulation with Policy I

Figure 6.8. Effects on growth and inequality with flat income tax rate

Policy II: Income tax only on G1 without transfer to G2. Now consider the policy

where a constant income tax rate, τ = 0.2, is solely enforced on the rich without

transfer to the poor. Rich has the same φ21 in the previous section while the poor

have the same φ22 as the benchmark model. Figure 6.9 also indicates that the cost of

reducing inequality is still a loss of growth.
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(a) Simulation of the benchmark model

20 40 60 80 100 120 140

0.5 

0.55

0.6 

0.65

0.7 

0.75

0.8 
Capital share of G1

20 40 60 80 100 120 140

-0.2

-0.1

0   

0.1 

0.2 

0.3 
Economic growth rate

(b) Simulation with Policy II

Figure 6.9. Effects on growth and inequality with tax the rich only

Policy III: Income tax on G1 with transfer to G2. Now consider a more realistic pol-

icy, where the government redistributes the tax revenue to improve the living stan-

dard of the poor. The model’s results for aggregate output, growth, and inequality

under different income transfer rates are depicted in Figure 6.10. To mitigate the ef-

fects of randomness, the outcomes for each transfer rate are derived from the mean of

500 bootstrap samples. When juxtaposed with the baseline scenario where the trans-

fer rate is zero, it is unsurprising to observe that income transfers lead to decreased

inequality. However, this comes with the trade-off of diminished growth and, conse-

quently, reduced long-term output. As the rate of redistribution escalates, inequality

continues to decline, yet this is accompanied by an increasingly pronounced adverse

impact on growth. Figure 6.10 also provides a temporal perspective on the economic

ramifications of these transfers, detailing both the cumulative loss in output over

time and the progression of inequality. The decline in inequality is immediate but

subsequently undergoes a partial reversal. This is because as output continuously

diminishes due to the reduced growth rate, the actual value of the transfer concur-

rently decreases. This process not only diminishes the redistributive effect over time
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but also progressively weakens the overall economic health.
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Figure 6.10. Redistributive effects by different income transfer rates over the
long period

Table 6.9. Summary of the Inequality-Growth effect with different transfer rates

Transfer rate 0.1 0.2 0.3

Inequality effect -1.73 % -3.17 % -5.2%

Growth effect -0.61 % -1.43 % -2.9 %

Ratio 2.8 2.2 1.8

Table 6.9 shows the main results of the Inequality-Growth effect, mainly the

changes in the inequalities and growth rates, with different transfer rates. The base

regime was set as non-tax for the comparisons. For simplicity, assume there is no

government spending for which income tax revenue needs to be raised so that the

government here is purely acting on redistribution. The incremental cost of growth

loss in relation to the reduction in inequality becomes steeper with increasing trans-
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fer rates. Specifically, an initial move towards redistribution — shifting from a non-

existent rate to a rate of 0.1 — results in a near 1.7% decrease in the capital share of

the top income bracket, relative to a scenario without transfers. This, however, cur-

tails growth by approximately 0.6%–a ratio of Inequality effect/Growth effect, nearly

2.8. Intensifying the redistributive rate to 0.2 brings about an additional 1.5% drop

in the capital share of the top earners when set against the no-transfer baseline, yet

depresses growth by another 0.8%, yielding a ratio 2.2. Advancing the transfer rate

to 0.3 brings about a further 2% contraction in inequality and a corresponding 1%

reduction in growth, a ratio of 1.8. Consequently, the incremental trade-offs between

diminishing inequality and suppressing growth become more disadvantageous as

redistribution rates ascend.

6.5 Welfare analysis

To elucidate the implications of these policies on both groups, a comprehensive wel-

fare analysis was conducted employing several social welfare functions. One of the

primary frameworks utilized was the average welfare concept as postulated by Ben-

abou (2000), which captures pure economic efficiency while disregarding equity con-

siderations. This approach focuses solely on maximizing total welfare without ad-

dressing the distribution of resources among different income groups.

In contrast, other methodologies such as utilitarian and Rawlsian welfare func-

tions were also scrutinized. The utilitarian approach aggregates individual utilities to

maximize total social welfare, thus providing a balanced view that incorporates both

efficiency and some degree of equity by considering the well-being of all individuals.

However, it can still be skewed towards those with higher incomes, as their marginal

utility of income is lower. The Rawlsian welfare function, built on the foundation of

the “veil of ignorance”(Rawls, 2017), places the utmost importance on the economic

well-being of the least advantaged members of society. This approach aligns with the

principle of justice as fairness proposed by John Rawls, which suggests that social

and economic inequalities should be arranged to benefit the least advantaged mem-

bers of society. Therefore, it emphasizes equity over efficiency, ensuring that policies
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are evaluated based on their impact on the poorest individuals.

By incorporating these diverse frameworks, the welfare analysis provides a nu-

anced understanding of the implications of economic policies. The comparison of

these methodologies highlights the trade-offs between efficiency and equity, illustrat-

ing how different policy choices can lead to varying outcomes for different income

groups.

To outline an optimal policy framework, we follow the approach adopted in Boar

and Midrigan (2022), which reflects different redistributive priorities. The planner

aims to maximize the social welfare function (SWF) defined as:

SWF =

(∫
ωi(τ)

1−∆ di
) 1

1−∆

(6.2)

Here, ωi represents the welfare of household i from a transfer rate τ, and ∆ ≥ 0 is

a parameter that indicates the planner’s preference for redistribution. For instance,

if ∆ = 0, the objective is to maximize the average welfare (AW):

AW =
∫

ωi(τ) di (6.3)

As highlighted by Benabou (2002), this objective captures pure economic efficiency

without considering equity, referring to it as risk-adjusted GDP.

By setting ∆ = ρ, where ρ is the households’ coefficient of relative risk aversion,

the planner’s objective becomes utilitarian welfare (UW):

UW =

(∫
ωi(τ)

1−ρ di
) 1

1−ρ

(6.4)

To demonstrate this, consider the utilitarian social welfare function:

∫
Ui di =

1
(1 − β)(1 − ρ)

∫
ωi(τ)

1−ρ di (6.5)

where Ui is the infinite lifetime utility of individual i consuming a constant stream
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ωi. Thus, the individual’s welfare ωi solves:

Ui =
∞

∑
t=0

βt ω
1−ρ
i

1 − ρ
(6.6)

To convert this measure into a consumption equivalent, we determine the constant

amount of consumption ω̄ each household needs to achieve the utilitarian level of

welfare
∫

Vi di:
1

(1 − β)(1 − ρ)
ω̄1−ρ =

∫
Vi di (6.7)

This implies:

ω̄ =

(∫
ω

1−ρ
i di

) 1
1−ρ

(6.8)

Thus, utilitarian welfare is essentially a weighted average of individual household

welfare, with weights given by each household’s marginal utility, ω
−ρ
i .

Generally, a higher ∆ indicates a stronger preference for redistribution. As ∆ →

∞, the objective reduces to that of a Rawlsian welfare (RW) planner:

RW = min
i

(ωi(τ)) (6.9)

Table 6.10 presents welfare enhancements across various transfer rates, derived from

three optimized social welfare functions. Each scenario is averaged over 500 simu-

lations to mitigate the influence of stochastic fluctuations. As transfer rates ascend

from 10% to 30%, an upward trajectory is observed in the maximized welfare across

all three determinations. Notably, under the Rawlsian paradigm, the welfare of the

bottom 90% experiences a significant enhancement, reaching a peak of 26%. Con-

versely, this comes at a cost to the top 10%, whose welfare deteriorates, spanning a

range from 2.6% to 16.6%. A discernible leap in welfare is observed as the transfer

rate escalates from 20% to 30%. Such nuances necessitate prudence from policymak-

ers when calibrating transfer rates within this range.
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Table 6.10. Welfare gains based on different transfer rates

Transfer rates 0.1 0.2 0.3

A. Maximize Average Welfare

Average welfare gains 12.7% 13.83% 18.58%

welfare gains, bottom 90% 14.4% 16.0% 22.1%

welfare gains, top 10% −2.6% −5.7% −13.1%

B. Maximize Utilitarian Welfare

Utilitarian welfare gains 14.14% 18.06% 23.7%

welfare gains, bottom 90% 16.2% 20.9% 27.9%

welfare gains, top 10% −4.4% −7.5% −14.1%

C. Maximize Rawlsian Welfare

Rawlsian welfare gains 16.67% 19.65% 26.42%

welfare gains, bottom 90% 19.4% 23.3% 31.2%

welfare gains, top 10% −7.9% −13.2% −16.6%

Table 6.10 presents welfare enhancements across various transfer rates, derived

from three optimized social welfare functions: Average Welfare, Utilitarian Welfare,

and Rawlsian Welfare. Each scenario is averaged over 500 simulations to mitigate the

influence of stochastic fluctuations, providing a robust understanding of the potential

impacts of different transfer rates.

As transfer rates ascend from 10% to 30%, an upward trajectory is observed in

the maximized welfare across all three determinations. Notably, under the Rawlsian

paradigm, the welfare of the bottom 90% experiences a significant enhancement,

reaching a peak of 31.2% at a 30% transfer rate. This substantial increase highlights

the effectiveness of Rawlsian principles in reducing inequality and enhancing the

welfare of the majority. However, this comes at a cost to the top 10%, whose welfare

deteriorates significantly, spanning a range from -2.6% at a 10% transfer rate to -16.6%

at a 30% transfer rate.

In detail, the average welfare gains increase from 12.7% at a 10% transfer rate to

18.58% at a 30% transfer rate. The bottom 90% see their welfare gains rise from 14.4%
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to 22.1% as transfer rates increase. Conversely, the top 10% experience a decline in

welfare, from -2.6% at 10% to -13.1% at 30%. Utilitarian welfare gains are slightly

higher compared to average welfare gains, starting at 14.14% for a 10% transfer rate

and reaching 23.7% at 30%. The welfare gains for the bottom 90% follow a similar

pattern, increasing from 16.2% to 27.9%. The top 10% experience a more pronounced

decline, from -4.4% at 10% to -14.1% at 30%. Rawlsian welfare gains are the highest

among the three measures, starting at 16.67% at a 10% transfer rate and reaching

26.42% at 30%. The bottom 90% benefit the most under this paradigm, with welfare

gains increasing from 19.4% to 31.2%. The top 10%, however, see the most significant

welfare losses, from -7.9% at 10

The results suggest that increasing transfer rates can significantly enhance overall

welfare, particularly for the bottom 90% of the population. However, policymak-

ers must consider the adverse effects on the top 10%, who face substantial welfare

losses. The pronounced leap in welfare as the transfer rate escalates from 20% to 30%

underscores the sensitivity of welfare outcomes to transfer rate adjustments.

When juxtaposed with the tax revenue over GDP trends shown in Figure 4.4, we

observe an upward trend leading up to the 1980s. The political motivation for these

continuous tax reforms largely stemmed from catering to the median voter, whose

welfare considerably influenced various social welfare measures. This strategic ap-

proach aligns with the observed sustained decrease in inequality throughout UK

history, largely attributed to redistribution policies.

Governments, driven by political competition, tend to implement redistribution

policies to appeal to the average voter. This political economy perspective explains

the historical tendency of the UK to engage in more extensive redistribution. As

political parties vie for votes, they adopt policies that promise to reduce inequality

and enhance social welfare, thereby appealing to the median voter who typically

benefits from such measures. This dynamic has resulted in sustained redistribution

efforts aimed at mitigating inequality and boosting overall welfare.

However, from the 1980s onward, inequality began to rise, spurred by the Thatcher

reforms. These reforms were aimed at addressing the growing demands of skilled

workers for enhanced growth and elevated wages. These skilled workers emerged
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as a pivotal voting demographic with interests closely aligned with the affluent. This

shift highlights the complex interplay between economic policies and political dy-

namics, suggesting that the interests of different voter demographics can signifi-

cantly influence policy directions and outcomes. Thus, while historical trends to-

wards redistribution have been driven by political incentives to please the median

voter, changes in the economic landscape and voter demographics have led to shifts

in these policies over time.

This analysis underscores the importance of understanding the political economy

behind welfare calculations and redistribution policies. The observed welfare en-

hancements across different transfer rates provide valuable insights for policymakers

aiming to balance growth and inequality while navigating the political landscape.
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Chapter 7

Conclusion

This thesis constructs a structural model to investigate the relationship between cap-

ital inequality and economic growth in the UK. The model was built on the idea that

the marginal utility cost of entrepreneurial activities decreases with rising wealth, so

wealth inequality enhances the entrepreneurship incentives of the rich to stimulate

growth, and the growth, in turn, aggravates inequality. The model incorporates het-

erogeneity by classifying the population into two groups for simplicity: the rich (the

top 10%) who own higher capital holdings and the rest. This structure generates a

stable tendency of the relationship between capital inequality and economic growth,

which is almost independent of parameter values and population shares of indi-

vidual groups, making it applicable to different countries and different population

group-segmentations.

When considering the 10%–90% income segmentation, the benchmark model can-

not be rejected by the Indirect Inference test and can fit the main characteristics of

the UK data from 1870 to 2016. This study is notable as it is the first to apply the

powerful method of indirect inference to UK long-term history, joining recent studies

of UK and US postwar history. This method does not check the model’s ability to

predict events but rather its ability to simulate behaviour similar to that found in the

data.

Compared to Yang et al. (2021), this version of the model incorporates an ex-

ogenous credit ratio, which measures the credit conditions that entrepreneurs face,

modelling the changing credit constraints over two centuries of data. By analyzing

the influence of external shocks on deviations of endogenous variables, we find that

some shocks, such as those on the entrepreneurship penalty rate, have a substan-
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tial impact on both aggregate growth and inequality. In contrast, some shocks have

almost no effect on either aspect, like aggregate consumption shock and aggregate

output shock, while others moderately affect both, like a capital aggregate shock. In

practice, policymakers must face a trade-off between wealth equalization and eco-

nomic growth when implementing redistribution policies. The model suggests that

tax policies transferring income from the top-income group to the low-income group

are more efficient in balancing inequality and growth. However, as the transfer rate

rises, the trade-off worsens, implying that an appropriately low tax rate is prefer-

able for policymakers. The welfare analysis shows that under different social welfare

functions, the welfare gains of the two groups vary. Policymakers prioritizing lower-

income groups can improve their welfare by increasing transfer rates, while those

focusing on economic growth can decrease transfer rates by a relatively small loss on

average welfare.

The present study also has some limitations and shortcomings. Firstly, while

the model primarily addresses the mechanism through which inequality influences

growth, it’s challenging to overlook the reciprocal impact: growth may also positively

affect inequality. This is evident as growth and inequality consistently demonstrate

a positive relationship in the benchmark model, tendency experiment, and redis-

tribution experiments. Regarding model configuration, notable heterogeneity exists

within the top 10% group. Recent data from the 2021 Census by ONS indicates that

the wealthiest 1% of households possess over 20% of the wealth within the top 10%

decile, potentially highlighting variations in entrepreneurial acumen and old money

within this bracket.

Moreover, individual bonds are excluded from the linearized model equations

due to the unavailability of individual credit data. Although macro credit conditions

are incorporated, this may result in approximations when considering tax transfer.

Concerning the model’s adequacy, the simulated outcomes for inequality and growth

display greater volatility compared to the actual data. Finally, the study relies heav-

ily on proxy variables, which could be enhanced with improved datasets in the fu-

ture. Given ample micro-data in subsequent research, incorporating individual credit

equations into the model could lead to more nuanced behaviours of the real interest
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rate and better differentiation between individual capital and wealth.

From a policy perspective, beyond income tax, introducing other instruments like

asset return tax might be worth exploring. Despite the concerns and areas for future

refinement, the model demonstrates a significant long-term trade-off between growth

and redistribution aimed at reducing inequality throughout the UK’s extensive his-

tory.

This thesis presents a new model of growth and inequality, which has been rig-

orously tested by the method of indirect inference—marking the first application of

this technique to the long-term economic history of the UK. The findings highlight

critical insights into the trade-offs between economic growth and inequality, offering

valuable guidance for future policy formulation.
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Appendix

Appendices

A Modelling details

A.1 Substitution of 1 + rt

To prove the equation 1 + rt = α(1 − τ)
EtYi,t+1

Ki,t
+ 1 − δ, we start from the basics of the

Cobb-Douglas production function and derive the expression step-by-step.

1. Cobb-Douglas Production Function:

Yi,t = AtKα
i,tL

1−α
i,t (A1)

2. Marginal Product of Capital (MPK):

MPK =
∂Yi,t

∂Ki,t
= αAtKα−1

i,t L1−α
i,t (A2)

3. Equate MPK to the Rental Rate of Capital:

rt = αAtKα−1
i,t L1−α

i,t − δ (A3)

4. Re-express At in Terms of Output Yi,t:

At =
Yi,t

Kα
i,tL

1−α
i,t

(A4)

5. Substitute At into the MPK Equation:

rt = α

(
Yi,t

Kα
i,tL

1−α
i,t

)
Kα−1

i,t L1−α
i,t − δ (A5)
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Simplify:

rt = α
Yi,t

Ki,t
− δ (A6)

6. In a dynamic model, firms decide on capital stock Ki,t based on the expected

future output EtYi,t+1

rt = α
EtYi,t+1

Ki,t
− δ (A7)

7. Rearrange the Terms:

1 + rt = α
EtYi,t+1

Ki,t
+ 1 − δ (A8)

8. consider the tax the equation can be rewritten as

1 + rt = α(1 − τ)
EtYi,t+1

Ki,t
+ 1 − δ (A9)

A.2 Approximating C-Y ratio by a random walk

Step 1: Redefining Income

We start by redefining an individual’s net income Ỹi,t:

Ỹi,t = Yi,t + (1 − δ)Ki,t−1 − Ki,t − πtZi,t

Here, Yi,t is the individual’s income, (1 − δ)Ki,t−1 represents the depreciated capital

from the previous period, Ki,t is the capital stock, and πtZi,t is the cost of investment.

Step 2: Individual Budget Constraint

The individual’s budget constraint can be rewritten as:

(1 + rt−1)bi,t = Ci,t + bi,t+1 − Ỹi,t

Where:

• bi,t is the amount of bonds held at time t,

• rt−1 is the return on these bonds,

• Ci,t is the consumption,
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• Ỹi,t is the redefined net income.

Step 3: No-Ponzi Condition The no-Ponzi condition ensures that an individual can-

not perpetually finance consumption by issuing new debt. Mathematically, it states

that the present value of all future bond holdings must be equal to the current value

of the bonds:

bi,t+1 = Et

[
∞

∑
j=1

Ci,t+j − Ỹi,t+j

∏
j
s=1(1 + rt+s−1)

]
(A10)

(1 + rt−1)bi,t = Ci,t − Ỹi,t + Et

[
∞

∑
j=1

Ci,t+j − Ỹi,t+j

∏
j
s=1(1 + rt+s−1)

]

The no-Ponzi condition prevents infinite borrowing by ensuring that the present

value of future borrowing (or bond issuance) does not exceed the current value of

the bonds.

Step 4: Rewrite the Budget Constraint

The Euler equation 3.7 describes the intertemporal consumption choice:

CΨ1
i,t =

1
β

Et

[
CΨ1

i,t+1

1 + rt

]
≈ 1

βj Et

[
CΨ1

i,t+j

∏
j
s=1(1 + rt+s−1)

]

For simplicity, assume Ψ1 = 1:

Ci,t = Et

[
Ci,t+j

βj ∏
j
s=1(1 + rt+s−1)

]

Substitute the Euler equation into the budget constraint:

Ci,t = (1 + rt−1) bi,t + Ỹi,t − Et

∞

∑
j=1

Ci,t+j − Ỹi,t+j

Πj
s=1 (1 + rt+s−1)

(A11)

Ci,t = (1 + rt−1) bi,t + Ỹi,t + Et

∞

∑
j=1

Ỹi,t+j

Πj
s=1 (1 + rt+s−1)

− Et

∞

∑
j=1

Ci,t+j

Πj
s=1 (1 + rt+s−1)

(A12)
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Ci,t + Et

∞

∑
j=1

Ci,t+j

Πj
s=1 (1 + rt+s−1)

= (1 + rt−1) bi,t + Ỹi,t + Et

∞

∑
j=1

Ỹi,t+j

Πj
s=1 (1 + rt+s−1)

(A13)

Consider the present value of future consumption:

Ci,t

1 − β
= (1 + rt−1) bi,t + Ỹi,t + Et

∞

∑
j=1

Ỹi,t+j

Πj
s=1 (1 + rt+s−1)

(A14)

Ci,t = (1 − β)

[
(1 + rt−1) bi,t + Ỹi,t + Et

∞

∑
j=1

Ỹi,t+j

Πj
s=1 (1 + rt+s−1)

]
(A15)

The term inside the braces is the household’s spendable wealth hence the whole

RHS expression is permanent net income or

Ci,t = (1 − β) (1 + rt−1) bi,t +
︷︸︸︷
Yi,t (A16)

︷︸︸︷
Yi,t = Ỹi,t + Et

∞

∑
j=1

Ỹi,t+j

Πj
s=1 (1 + rt+s−1)

(A17)

In steady state (at T) we have

Ci,T = (1 − β) (1 + r∗) bi,T +
︷︸︸︷
Yi,T (A18)

Divide through by Yi,t

Ci,t

Yi,t
= (1 − β) (1 + rt−1)

bi,t

Yi,t
+

︷︸︸︷
Yi,t

Yi,t
(A19)

Step 5: Approximating bi,t/Yi,t

In the steady state, we assume bond holdings evolve according to:

(1 + rT−1)bi,T = bi,T+1 (A20)
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Before reaching the steady state, bonds typically follow an AR process:

bi,t+1 = (1 + rt−1)bi,t + xi,t (A21)

The ratio bi,t/Yi,t evolves as:

bi,t+1

Yi,t+1

Yi,t+1

Yi,t
= (1 + rt−1)

bi,t

Yi,t
+

xi,t

Yi,t

Given the relationship in equation A19, we see that Ci,t
Yi,t

depends on (1 + rt−1)
bi,t
Yi,t

and the expected present value of future income streams. Since bi,t
Yi,t

behaves like a

random walk because the random growth rate Yi,t+1/Yi,t is generally close to 1+ rt−1,

bi,t+1

Yi,t+1
=

bi,t

Yi,t
+

xi,t

Yi,t

Therefore, we can conclude that Ci,t/Yi,t can be approximated by a random walk.

A.3 The balanced growth path

Balanced growth process (BGP) refers to a situation where all key economic variables

(e.g., output, capital, and technology) grow at constant rates over time, leading to

a stable long-run equilibrium. Except for some stationary variables, such as the

real interest rate and individual labour inputs, most series in our model are non-

stationary.

In our model, we use the estimated coefficient of the deterministic trend of aggre-

gate productivity as the basis for the BGP. This coefficient represents a steady-state

time trend, not the true BGP growth rate. To calculate the true BGP growth rate for

actual productivity, we start from the steady-state process for aggregate productivity

which is described by the equation:

∆A = βA
0 + βA

1 ∆A
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Thus, the BGP growth rate for aggregate productivity is:

∆A =
βA

0

1 − βA
1

The BGP growth rate of individual productivity is therefore βA
0 /(1 − βA

1 ), which

is the same as the aggregate productivity growth rate.

To calculate the BGP growth rates for output, capital, and consumption, we start

from the implicit aggregate production function in the steady state:

Y = AKαN(1−α)

where Y (output) and K (capital) grow at the same BGP growth rate, and N (labour)

has a zero growth rate.

Hence, the BGP growth rate for both output and capital is:

βA
0

(1 − βA
1 )(1 − α)

This characterization of the balanced growth rates ensures that all key economic

variables are growing at a consistent rate, maintaining the equilibrium necessary for

a stable long-term growth trajectory. This approach is consistent with the endoge-

nous growth model’s requirement that growth is driven by factors within the model,

such as productivity improvements and capital accumulation, as described in Romer

(1986) and Lucas Jr (1988). By specifying these relationships and growth rates, we en-

sure that the model accurately reflects the endogenous nature of long-term economic

growth and adheres to the theoretical foundations of balanced growth processes.
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A.4 Derivations of the log linearized model

Linearization of the individual Euler euqation 3.7,

(vi,tCi,t)
−Ψ1 = (1 + rt) βEt

[
(vi,t+1Ci,t+1)

−Ψ1
]

1. Take the natural logarithm of both sides:

ln
(
(vi,tCi,t)

−Ψ1
)
= ln

(
(1 + rt) βEt

[
(vi,t+1Ci,t+1)

−Ψ1
])

(A22)

2. Simplify using logarithm properties:

−Ψ1 ln (vi,tCi,t) = ln (1 + rt) + ln β + ln Et

[
e−Ψ1(ln vi,t+1+ln Ci,t+1)

]
(A23)

3. Distribute the logarithm inside the expectation:

−Ψ1 (ln vi,t + ln Ci,t) = ln (1 + rt) + ln β + Et [−Ψ1 (ln vi,t+1 + ln Ci,t+1)] (A24)

4. Simplify and isolate the terms:

−Ψ1 ln vi,t − Ψ1 ln Ci,t = ln (1 + rt) + ln β − Ψ1Et [ln vi,t+1]− Ψ1Et [ln Ci,t+1] (A25)

5. Approximate ln (1 + rt) ≈ rt since rt is typically small.

−Ψ1 ln vi,t − Ψ1 ln Ci,t = rt + ln β − Ψ1Et [ln vi,t+1]− Ψ1Et [ln Ci,t+1] (A26)

Thus, the log-linearized Euler equation without the idiosyncratic shocks to con-

sumption is:

rt = Ψ1(Et[ln Ci,t+1])− ln Ci,t)− ln β (A27)

Linearization of individual capital equation 3.8,

Rewrite euqation A9 as

Ki,t = α(1 − τ)
EtYi,t+1

[δ + rt]
(A28)



118 Appendices

1. Take the natural logarithm of both sides:

ln Ki,t = ln
(

α(1 − τ)
EtYi,t+1

δ + rt

)
(A29)

2. Log-linearize the expected output EtYi,t+1 using

Et

[
Yi,t+1

Ci,t+1

]
≈ Yi,t

Ci,t
(A30)

Et ln Yi,t+1 ≈ ln Yi,t + Et ln Ci,t+1 − ln Ci,t (A31)

3. Substitute the expected output into the equation and linearized it as :

ln Ki,t ≈ [α(1 − τ)(Yi/Ki) (ln Yi,t + Et ln Ci,t+1 − ln Ci,t)− rt] /(δ + r) (A32)

4. Substitute the Euler equation A27 into the equation :

ln Ki,t ≈ [α(1 − τ)(Yi/Ki) (ln Yi,t + (rt + ln β)/Ψ1)− rt] /(δ + r) (A33)

5. Regardless of some constant terms

ln Ki,t = ln Yi,t −
[

K
(1 − τ)αY

− 1
Ψ1

]
rt (A34)

which gives individual capital euqation A47 and euqation A53.

Linearization individual labour equation 3.9,

(1 − Φ) (1 − ui,tNi,t − Zi,t)
−Ψ2 = Φ (vi,tCi,t)

−Ψ1 (1 − τ)(1 − α)
Yi,t

Ni,t

1. Take the natural logarithm of both sides:

ln
[
(1 − Φ) (1 − ui,tNi,t − Zi,t)

−Ψ2
]
= ln

[
Φ (vi,tCi,t)

−Ψ1 (1 − τ)(1 − α)
Yi,t

Ni,t

]
(A35)

2. Use the properties of logarithms to separate the terms
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ln(1 − Φ)− Ψ2 ln (1 − ui,tNi,t − Zi,t) = ln(Φ)− Ψ1 ln(vi,t)− Ψ1 ln(Ci,t)+

ln(1 − τ) + ln(1 − α) + ln(Yi,t)− ln(Ni,t)

(A36)

3. Log-linearize around the steady state:

ln(1 − (ui,tNi,t + Zi,t)) ≈ −(ui,tNi,t + Zi,t) = −(ūN̄ + Z̄ + ũi,tN̄ + ūÑi,t + Z̃i,t) (A37)

4. Combining and simplifying, we obtain:

Ψ2(Ñi,t + N̄ũi,t + Z̃i,t) = −Ψ1(ṽi,t + C̃i,t) + Ỹi,t − Ñi,t (A38)

5. Rearrange it as

Ñi,t =
1

Ψ2 + 1
[
Ỹi,t − Ψ1C̃i,t − Ψ2Z̃i,t − Ψ2N̄ũi,t − Ψ1ṽi,t

]
(A39)

6. Substitute Zi,t out using equation 3.6 and equation A41.

ln Ni,t =
1

1 + Ψ2

(
ln Yi,t − Ψ1 ln Ci,t +

2Ψ2ϕ2,i

θ2
π′

i,t

)
(A40)

which gives individual capital euqation A49 and euqation A55. Individual bonds are

removed from the equation list because they take a small share of individual capital

resources which we are not interested in.

Linearization of the individual entrepreneurship time equation 3.14,

Ai,t+1

Ai,t
=

βθ2(1 − τ)Yi,t/wi,t

(1 − β)(1 − τ + π′
i,t)

Taking a first-order Taylor expansion of the right-hand side around a point where

Yi,t/wi,t = Yi/wi and πi,t = πi gives

Ai,t+1

Ai,t
=

βθ2(1 − τ)Yi/wi

(1 − β)(1 − τ + π′
i)
+

βθ2(1 − τ)

(1 − β)(1 − τ + π′
i,t)

d
Yi,t

wi,t
− βθ2(1 − τ)Yi/wi

(1 − β)(1 − τ + π′
i)

2 dπ′
i,t
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Treating the ratio Y/w as roughly time invariant - on the basis that wi,t/Yi,t =

αNi,t and labour is a long-run stationary variable and modelling the penalty rate as

stationary, a linear relationship exists between Ai,t+1
Ai,t

and π′
i,t of the form

ln Ai,t+1 − ln Ai,t = ϕ1,i − ϕ2,i ln π′
i,t (A41)

where ϕ1,i =
βθ2(1−τ)Yi/wi
(1−β)(1−τ+π′

i)
, ϕ2,i =

βθ2(1−τ)Yi/wi
(1−β)(1−τ+π′

i)
2 .

The full log-lineaized model is:

rt = Ψ1(Et[ln C2,t+1])− ln C2,t)− ln β (A42)

ln Yt = ln [µ1 exp(ln Y1,t) + µ2 exp(ln Y2,t)] + ϵY
t (A43)

ln Kt = ln [µ1 exp(ln K1,t) + µ2 exp(ln K2,t)] + ϵK
t (A44)

ln Ct = (1 − τ)
Y
C

ln Yt −
K
C
[ln Kt − (1 − δ) ln Kt−1] + ϵM

t (A45)

ln Y1,t = α ln K1,t−1 + (1 − α) ln N1,t + ln A1,t (A46)

ln K1,t = ln Y1,t −
[

K
(1 − τ)αY

− 1
Ψ1

]
rt (A47)

ln C1,t = Et[ln C1,t+1]−
rt + ln β

Ψ1
+ ϵC1

t (A48)

ln N1,t =
1

(1 + Ψ2)

(
ln Y1,t − Ψ1 ln C1,t + 2

Ψ2ϕ2,1

θ2
ln π′

1,t

)
+ ϵN1

t (A49)

ln A1,t+1 = ln A1,t + ϕ1,1 − ϕ2,1 ln π′
1,t + ϵA

t (A50)

ln π′
1,t = ρπ

0 + ρπ
1 ln π′

1,t−1 − ρπ
2

µ1

ωY1

(
K1,t−2

Kt−2

)2

+ ρπ
3 Cret + ϵπ

t (A51)

ln Y2,t = α ln K2,t−1 + (1 − α) ln N2,t + ln A2,t (A52)

ln K2,t = ln Y2,t −
[

K
(1 − τ)αY

− 1
Ψ1

]
rt (A53)

ln C2,t =
1

ωC2
(ln Ct − ωC1 ln C1,t) + ϵC2

t (A54)

ln N2,t =
1

(1 + Ψ2)

(
ln Y2,t − Ψ1 ln C2,t + 2

Ψ2ϕ2,1

θ2
ln π′

2,t

)
+ ϵN2

t (A55)

ln A2,t+1 = ln A2,t + ϕ1,2 − ϕ2,2 ln π′
2,t + ϵA

t (A56)

ln π′
2,t = ρπ

0 + ρπ
1 ln π′

2,t−1 − ρπ
2

µ2

ωY2

(
K2,t−2

Kt−2

)2

+ ln ρπ
3 Cret + ϵπ

t (A57)
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B Supplemental results

B.1 Impulse response functions

Table B1. Summary of Shocks, Standard Deviations, and Corresponding IRFs

Shocks SD Figures

Aggregate productivity shock 0.020445628852 Figure B1
(Negative) Aggregate penalty rate shock 0.048787239982 Figure 6.3
Aggregate output shock 0.001653150266 Figure B2
Aggregate capital shock 0.011236556192 Figure B3
Aggregate consumption shock 0.092490529822 Figure B4
Consumption shock of G1 0.146793070014 Figure B5
Consumption shock of G2 0.034221186146 Figure 6.4
Labour supply shock of G1 0.041421012817 Figure B6
Labour supply shock of G2 0.031818610053 Figure B7
Credit shock 0.070889134136 Figure B8
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Figure B1. Impulse responses to negative one S.D. of aggregate productivity
shock
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Figure B2. Impulse responses to negative one S.D. of aggregate output shock
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Figure B3. Impulse responses to negative one S.D. of aggregate capital shock
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Figure B4. Impulse responses to negative one S.D. of aggregate consumption
shock
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Figure B5. Impulse responses to negative one S.D. of G1’s consumption shock
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Figure B6. Impulse responses to negative one S.D. of G1’s labour shock



128 Appendices

10 20 30

-0.02

-0.01

0    
Interest rate

10 20 30

0.04

0.06

0.04

0.06

Aggregate output

10 20 30

0   

0.05

0   

0.05

Aggregate capital

10 20 30

0   

0.05

0   

0.05

Aggregate consumption

10 20 30

0   

0.01

0.02

Income of the G1

10 20 30

0.05

0.1 

0.05

0.1 
Income of the G2

10 20 30

0   

0.05

0   

0.05

Capital of the G1

10 20 30

0.05

0.1 

0.05

0.1 

Capital of the G2

10 20 30

0   

0.05

0   

0.05

Consumption of the G1

10 20 30

0   

0.05

0   

0.05

Consumption of the G2

10 20 30

-0.01 

-0.005

0     

Labour of the G1

10 20 30

0.04

0.06

0.08

Labour of the G2

10 20 30

-0.02

-0.01

0    
Capital inequality

10 20 30

-0.025

-0.02 

-0.015

-0.01 

Income inequality

10 20 30

0    

0.005

0.01 

Aggregate growth

Figure B7. Impulse responses to negative one S.D. of G2’s labour shock
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Figure B8. Impulse responses to negative one S.D. of credit shock
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C Methodology details

C.1 The Type II iteration

Fair and Taylor (1983) proposed a basic projection method for solving the DSGE

model. Considering the dynamic rational expectations model given by

fi
(
yt, yt−1, . . . , yt−p, Et−1yt, Et−1yt+1, . . . , Et−1yt+h, xt, αi

)
= uit (i = 1, . . . , n) (C1)

where yt is an n-dimensional vector of endogenous variables at time t, xt is a

vector of exogenous variables at time t, Et−1 is the conditional expectations oper-

ator based on the model and on information through period t − 1, αi is a vector

of parameters, and uit is a stationary scalar random variable which has mean zero

and which may be correlated across equations (E[uitujt] ̸= 0 for i ̸= j) and over

time (E[uituis] ̸= 0 for t ̸= s). The model is nonlinear in that the function fi may be

nonlinear in the variables, parameters, and expectations.

If one were given numerical values for the expected endogenous variables in the

model (C1) for all periods from s on, then it would be straightforward to solve the

model for period s using the Gauss-Seidel iterative technique. The numerical method

described here entails a series of iterations that converge from an arbitrary initial path

of values for these expectations to a path of rational expectations, consistent with the

forecasts of the model itself. Let the initial set of values for the expected endogenous

variables, Es−1ys+r, be represented as gr, r = 0, 1, . . .. Since in general the model

will have no natural termination date, an infinite number of these values need to be

specified in principle. In practice, however, only a finite number of these will be used

in obtaining a solution with a given finite tolerance range. We require that the initial

values be bounded: |gr| < M for every r, where M is not a function of r.

The solution method can be described in terms of 5 steps:

1. Choose an integer k, which is an initial guess at the number of periods beyond

the horizon h for which expectations need to be computed in order to obtain

a solution within a prescribed tolerance level δ. Set Es−1ys+r equal to gr, r =

0, 1, . . . , k + 2h. For the purpose of describing the iterations, call these initial
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values er(1, k), r = 0, 1, . . . , k + 2h; the values at later iterations will then be

called er(i, k), i > 1.

2. Obtain a new set of values for Es−1ys+r, r = 0, 1, . . . , k + h, by solving the model

dynamically for ys+r, r = 0, 1, . . . , k + h. This is done by setting the disturbances

to their expected values (usually zero), using the values Es−1xs, . . . , Es−1xs+h+k

in place of the actual x’s, and using the values er(i, k) in place of Es−1ys+r. Call

these new guesses er(i + 1, k), r = 0, 1, . . . , k + h. If the model is nonlinear, then

the solution for each period requires a series of Gauss-Seidel iterations. Call

each of these a Type I iteration.

3. Compute for each expectation variable and each period the absolute value of

the difference between the new guess and the previous guess, i.e., compute the

absolute value of the difference between each element of the er(i + 1, k) vector

and the corresponding element of the er(i, k) vector for r = 0, 1, . . . , h + k. If

any of these differences are not less than a prescribed tolerance level (i.e., if

convergence has not been achieved), increase i by 1 and return to step (ii). If

convergence has been achieved, go to step (iv). Call this iteration (performing

steps (ii) and (iii)) a Type II iteration. Let er(k) be the vector of the convergent

values of a series of Type II iterations (r = 0, 1, . . . , k + h).

4. Repeat steps (i) through (iii), replacing k by k + 1. Compute the absolute value

of the difference between each element of the er(k + 1) vector and the corre-

sponding element of the er(k) vector, r = 0, 1, . . . , h. If any of these differences

are not less than δ, increase k by 1 and repeat steps (i) through (iv). If conver-

gence has been achieved, go to step (v). Call this iteration (performing steps (i)

through (iv)) a Type III iteration. Let er be the vector of the convergent values

of a series of Type III iterations (r = 0, 1, . . . , h).

5. Use er for Es−1ys+r, r = 0, 1, . . . , h, and the actual values for xt to solve the model

for period s. This gives the desired solution, say ŷs, and concludes the solution

method.
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C.2 Update rational expectations

The following is a general explanation and comparison of the Jacobb method, Gauss-

Seidel, Powell-Hybrid and Levenberg-Marquardt algorithms. See Trefethen and Bau

(2022) for more details. Given a system of linear equations represented in matrix

form as

Ax = b (1)

where A is a square matrix of size n × n, x is the vector of unknowns, b is the

known vector. The system (matrix A )must be diagonally dominant or the method

may not converge.

Jacobb method. The Jacobi method is an iterative algorithm used to solve a

system of linear equations. It is named after the German mathematician Carl Gustav

Jacob Jacobi. The idea behind the Jacobi method is to solve for each unknown xi

on the left-hand side, using the other unknowns from the previous iteration on the

righthand side. The algorithm mainly consists of 2 steps:

Step 1: Initialize. Choose an initial x(0) and set a tolerance level and a maximum

number of iterations.

Step 2: Iterate. For k = 1, 2, . . ., until convergence or maximum iterations reached:

a. For i = 1 to n : compute ∑j ̸=i aijx
(k−1)
j and update the unknown: x(k)i =

bi−∑j ̸=i aijx
(k−1)
j

aii

b. Check convergence: If
∥∥∥x(k) − x(k−1)

∥∥∥ < tolerance, then stop.

The vector x(k) is the approximate solution to the system. The method is simple

to implement. Each update is independent of the others within the same iteration,

making the method easily parallelizable. The method might not converge if the

matrix is not diagonally dominant. Convergence can be slow, especially if the matrix

A is illconditioned.

Gauss-Seidel Algorithm. It is named after German mathematicians Carl Friedrich

Gauss and Philipp Ludwig von Seidel, and is a modification of the Jacobi method.

The idea behind the Gauss-Seidel method is to decompose the matrix A into a lower

triangular part L and an upper triangular part U, so that A = L + U. Then the
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original system can be written as:

(L + U)x = b (2)

Lx = b − Ux (3)

This leads to an iterative method where you solve the left side for x given an initial

guess, and then use that result as the guess for the next iteration. The Gauss-Seidel

method is similar to the Jacobi method but differs in how the updates are performed.

In the Jacobi method, all the updates in a given iteration are based on the values from

the previous iteration. In the Gauss-Seidel method, updates within the same iteration

immediately use the newly computed values, potentially accelerating convergence.

However, the method might not converge if the matrix is not diagonally dominant or

if it’s not positive definite in the symmetric case. Unlike the Jacobi method, it’s harder

to parallelize as each update depends on previous ones within the same iteration. In

practice, the Gauss-Seidel method is useful for solving large sparse systems of linear

equations where direct methods might be computationally expensive. It is often used

as a smoother in multigrid methods.

Levenberg-Marquardt (LM) Algorithm. The LM algorithm is a popular iterative

optimization method used to solve nonlinear least squares problems. It’s a combina-

tion of the steepest descent method and the Gauss-Newton method, aiming to inherit

the stability of the former and the rapid convergence of the latter. A nonlinear least

squares problem aims to find the parameters that minimize the sum of squared resid-

uals between observed data and a nonlinear model. Mathematically, it is formulated

as:

min
x

∥F(x)∥2

where F(x) is a vector of nonlinear functions, and x is the vector of parameters

to be estimated. The LM algorithm works by iteratively updating the parameter

estimates. Here’s an outline of the algorithm:
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Step 1: Initialize. Choose an initial guess x(0), set a tolerance level, maximum

number of iterations, and initialize λ, a damping factor.

Step 2: Iterate. For k = 1, 2, . . ., until convergence or maximum iterations reached:

a. Evaluate the Jacobian matrix J of F at x(k−1).

b. Form the augmented normal equations:
(

JT J + λI
)

∆x = −JT F
(

x(k−1)
)
\.

c. Solve for ∆x.

d. Update x(k) = x(k−1) + ∆x.

e. Check for convergence: If ∥∆x∥ < tolerance, then stop.

f. Adjust λ : If the reduction in error is significant, decrease λ; otherwise, increase

λ.

x(k) is the approximate solution. Combines the best properties of steepest descent

and Gauss-Newton, making it suitable for a wide range of problems. Convergence

is usually faster than using steepest descent alone. The damping factor helps in han-

dling ill-conditioned problems. However, it requires the calculation of the Jacobian

matrix, which can be expensive and the damping factor may require careful tuning

for optimal performance. The Levenberg-Marquardt algorithm provides a power-

ful tool for solving nonlinear least squares problems, combining the robustness of

gradient descent with the efficiency of second-order methods.

Powell’s Hybrid Algorithm. Powell’s Hybrid Algorithm is a nonlinear equation-

solving method used to find the roots of a system of nonlinear equations. It combines

Powell’s dogleg method, which itself is a combination of the steepest descent and

Newton’s methods, with the Levenberg-Marquardt method. The algorithm is often

used when you have a system of nonlinear equations and you want to find the values

of the variables that make all the equations equal to zero. The method is iterative,

meaning that it improves an initial guess through a series of steps until it reaches a

solution that is accurate enough. Here’s an overview of how the algorithm works:

1. Initialization: Choose an initial guess for the vector of unknowns, x, and set

tolerances for convergence.

2. Evaluate the Function and Jacobian: Calculate the value of the functions and

the Jacobian matrix at the current guess.
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3. Compute the Dogleg Step: Determine the direction in which to move x by form-

ing a dogleg path that combines the steepest descent and Newton’s methods.

4. Levenberg-Marquardt Adjustment: If the dogleg step does not lead to a re-

duction in the value of the functions, modify the step using the Levenberg-

Marquardt technique.

5. Update: Update the guess for x using the computed step.

6. Check for Convergence: If the change in x or the value of the functions is less

than the specified tolerances, or if the maximum number of iterations has been

reached, stop the iterations.

7. Repeat: Return to step 2 and continue the iterations.

Powell’s Hybrid Algorithm can be used on problems that are not well-scaled or

have poorly conditioned Jacobians. It is often effective in practice for solving systems

of nonlinear equations. The algorithm is more complex to understand and implement

compared to some simpler methods. Requires the calculation of both the function

values and the Jacobian matrix, which may be computationally intensive. There

is no guarantee of convergence, particularly if the initial guess is not close to the

solution or if the functions are not sufficiently smooth. Powell’s Hybrid method can

be an excellent choice when you are dealing with a system of nonlinear equations,

particularly if other methods have failed to converge. Its combination of multiple

techniques can provide a powerful tool for finding solutions. It is implemented in

various software packages, making it accessible to practitioners who want to solve

nonlinear problems.

While both LM Algorithm and Powell’s Hybrid Algorithm are used for solv-

ing nonlinear least squares problems, they approach the problem in different ways.

Levenberg-Marquardt switches between Gauss-Newton and Gradient Descent based

on a damping parameter and tends to be faster near the solution. Powell’s Hybrid

method avoids second derivative computation, uses a trust region approach, and can

be more suitable when the initial guess is farther from the solution. Powell’s Hybrid

method was used to solve our model in this thesis.
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C.3 Why use the non-stationary data and the VARX auxiliary model

According to Wickens (1982), non-stationary data helps differentiate between tempo-

rary and permanent shocks. For stationary or trend-stationary processes, variables

have short memories, so shocks only temporarily affect them before they return to

their steady trend. In contrast, for unit root processes, variables have long memories,

meaning shocks have permanent effects, and variables do not return to their previ-

ous path after a disturbance. Additionally, permanent shocks can shift endogenous

variables sharing the same balanced growth path (BGP) permanently, where the for-

mer describes business cycle effects (’cyclical component’), and the latter affects the

long-run growth path.

Traditionally, we make data stationary by applying linear (or higher-order poly-

nomial) detrending for deterministic trends or first differencing for stochastic trends.

However, these transformations don’t effectively isolate fluctuations with the desired

periodicity (Canova, 1998). Linear detrending is unsuitable for data with stochastic

trends, while first differencing amplifies high-frequency noise. Both methods risk

leaving significant influences of permanent shocks in the detrended data.

To address this, researchers often use the Hodrick-Prescott (HP) filter or simi-

lar band-pass (BP) filters to decompose economic time series into trend and cyclical

components (Baxter and King, 1999; King and Rebelo, 1993). However, the HP filter

has two main drawbacks: it can create artificial cycles that don’t exist and distort

key business cycle characteristics. Its two-sided moving average filter can misalign

the timing of data, affecting forward-looking properties and potentially biasing dy-

namic parameter estimates in DSGE models (Doorn, 2006). Andrle (2008) criticizes

that the detrending data in the DSGE model may be unable to explain co-movements

of filtered time series because permanent shocks inducing dynamics usually have a

large influence on the business cycle and models using detrended data are less likely

to capture the true business cycle dynamics. Canova and Ferroni (2011) compares

several univariate filtering devices and finds that different approaches yield signifi-

cantly different estimates of parameters. Approaches that can potentially extract the

cyclical component rely on assumptions about trend processes that can cause mis-
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measurement of cyclical components and bias the estimation of deep parameters.

Other criticisms can also be found in Ferroni (2011); Gorodnichenko and Ng (2010).

When the data is non-stationary, the choice of auxiliary model typically should be

a Vector Error Correction (VECM) model, also it can be a Vector Auto Regression with

an Exogenous variable model (VARX) as the auxiliary model. Here is a brief proof

provided by Meenagh et al. (2012). The structural DSGE model after log-linearisation

usually can be written as a function:

A(L)yt = B(L)Etyt+1 + C(L)xt + D(L)et (C58)

where yt is a vector of endogenous variables, Etyt+1 is a vector of expected future

endogenous variables, xt is an exogenous variable which is assumed to be driven by

∆xt = α(L)∆xt−1 + d + b(L)zt−1 + c(L)εt (C59)

The exogenous variables xt include stationary and non-stationary shocks like pro-

ductivity shocks. et and εt are both i.i.d and the means are zero. xt is nonstationary,

yt is linearly dependent on xt. Therefore, yt is also non-stationary. L is the lag op-

erator Yt−s = LsYt and A(L), B(L) etc is a matrix polynomial functions in the lag

operator of order h that have roots of the determinantal polynomial lies outside the

complex unit circle. The general solution of yt can be written as

yt = G(L)yt−1 + H(L)xt + f + M(L)et + N(L)εt (C60)

where f is a vector of constants and polynomial functions in the lag operator have

roots outside of the unit circle. Since yt and xt are both non-stationary, the solution

of the model has p cointegrated relations given by:

yt = [I − G(1)]−1 [H(1)xt + f ] = Πxt + g (C61)

The matrix Π is a p ∗ p matrix, which has rank 0 ≤ r < p, where r is the number

of linearly independent cointegrating vectors. yt − [Πx̄t + g] = ηt, where ηt is the

error correction term. yt is a function of deviation from the equilibrium in the short
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run. In the long run, the solution to the model is given by:

ȳt = Πx̄t + gx̄t = [1 − α(1)]−1[dt + c(1)ξ] (C62)

ξt =
t−1

∑
s

εt−s (C63)

where ȳt and x̄t are the long run solution to yt and xt respectively. It can be

seen that the long run solution of x̄t can be decomposed into two components: a

deterministic trend x̄d
t = [1− α(1)]−1dt and a stochastic trend x̄s

t = [1− α(1)]−1c(1)ξt.

There are two components in the endogenous variables: this trend and a VARMA in

deviations from it. Meenagh et al. (2012) formulate this as a cointegrated VECM with

a mixed moving average error term, wt.

∆yt = −[I − G(1)] (yt−1 − Πxt−1) + P(L)∆yt−1 + Q(L)∆xt + f + M(L)et + N(L)εt

= −[I − G(1)] (yt−1 − Πxt−1) + P(L)∆yt−1 + Q(L)∆xt + f + wt (C64)

where

wt = M(L)et + N(L)εt (C65)

This suggests that the VECM can be approximated by the VARX:

∆yt = −K (yt−1 − Πxt−1) + R(L)∆yt−1 + S(L)∆xt + g + ζt (C66)

where ζt is an i.i.d with zero mean, since

x̄t = x̄t−1 + [1 − α(1)]−1 [d + εt] ȳt = Πx̄t + g (C67)

The VECM can also be rewritten as:

∆yt = K [(yt−1 − ȳt−1)− Π (xt−1 − x̄t−1)] + R(L)∆yt−1 + S(L)∆xt + h + ζt (C68)

which distinguishes between the effect of the trend component and the temporary

deviation of xt from the trend. The advantage is that it is possible to estimate the
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parameters of equation (6) using classical OLS methods. It was also proved by Le

et al. (2012) that this procedure is extremely accurate using Monte Carlo experiments.

According to Le et al. (2016), either equations C66 or equations C68 can be used

as the auxiliary model. The equations C66 can be rewritten as following:

yt = [I − K]yt−1 + KΠxt−1 + n + t + qt (C69)

where the errors qt now consist of the lagged difference regressors and the de-

terministic time trend in x̄t which affect both endogenous and exogenous variables.

Hence we use VARX(1) as the auxiliary model and estimate coefficients by OLS in

this research.
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D Indirect Reference of DSGE models with supercomputer

The following mind map shows the whole technical process of the project in simulat-

ing and estimating the model. For an overview of the files, refer to the notation.xlsx1.

Figure D9. Technical structure of Indirect Inference with Supercomputer

D.1 Preparation

STEP 1: Start the HPC project. Create an account with MySCW and apply for the

MySCW project. The current Welsh HPC is called HAWK. Then, apply for the Qual-

ity of Service. To run the simulation and estimation, it needs to apply for quality

and service at the maximum job 1500, which allows the user to run 1500 jobs on the

1Available at Gitlab of Cardiff University, contact wangh53@cardiff.ac.uk for details. We acknowl-
edge the support of the Supercomputing Wales project, which is part-funded by the European Regional
Development Fund (ERDF) via the Welsh Government.

mailto:wangh53@cardiff.ac.uk
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HAWK simultaneously (the parallel calculation now available in HAWK). Finally, use

Putty and FileZilla in the Windows system or Linux/Mac terminal to interact with

the HAWK.

STEP 2: Set up the work environment. To take full advantage of different pro-

gramming languages and software, This project used Fortran, C++, Matlab, Perl and

Microsoft Visual Studio as the programming tools.

STEP 3: Process the raw data. Save the actual data of variables into “raw_data.xslx”.

STEP 4: Toolboxes. There are mainly two toolboxes in this project: toolbox77.f and

toolbox90.f90.

The following sections explain the main programmes used for the preparation steps.

D.1.1 load_data.m

Step 1: Load all the actual data from Excel.

Step 2: Use VAR1_Analysis.m to generate the initial data of expectation variables.

Step 3: Write the actual data with expectation data into act_data.data.

Step 4: Save the starting endo and exo data into plain data files.

INPUT: raw_data.xlsx, VAR1_Analysis.m

OUTPUT: actual_data.data, start_lags_endog, start_lags_exog

D.1.2 VAR1_Analysis.m

Step 1: Use OLS to fit the actual data with VAR(1).

Step 2: Use the estimated VAR(1) to generate new data.

D.1.3 read_bench.f

Step 1: Load the act_data.data.

Step 2: Extending the data to forecasting periods.

Step 3: Write the bench data files.

INPUT: act_data.data, VAR1_Analysis.m

OUTPUT: bench_end.data, bench_exo.data.
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D.2 Model solving

The main algorithm used is type II fix by using bench_mod1.f and bench_data1.data.

Here are the main steps,

STEP 1: Load the input parameters and actual data from bench_data1.data.

STEP 2: Call the Get_TypeII in bench_mod1.f to calculate Type II fix.

• Specify the dimensions of the innovations of shocks.

• Relate the coefficients in listing to the parameter orders.

• Load the innovations from err(k,j)

• Put all the exogenous variables and shocks in block X.

• Get the type II fix ER(n,i) and the endogenous variables V(N).

• Read and write the type II fix.

D.2.1 bench_mod1.f

The bench_mod1.f is the main file used to solve the non-linear DSGE model, in-

cluding 44 subroutines and functions in total. The Main sets up the structure of the

project with 6 sections,

• Section 1: Reading in errors and terminal coefficients from external files.

• Section 2: Reading control cards that define parameters and settings for the

program.

• Section 3: Reading in initial values of endogenous and exogenous variables,

residuals and coefficient by calling "DATSIM".

• Section 4: Solving a system of equations by calling "DEBCAL".

• Section 5: Performing a rolling forecast by updating the values of the endoge-

nous and exogenous variables and residuals, and then calling "DEBCAL" again.
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• Section 6: Output is generated and saved to an external file.

Use the Get_TypeII to get the type II fix error term and the endogenous variables,

which will be used in the model-solving subroutines. The "er" array contains the

initial values of the residuals while the "x" array contains the initial values of the

exogenous variables. The number of rows in each array is equal to the number of

endogenous and exogenous variables, respectively, while the number of columns is

equal to the maximum number of time periods over which the the simulation will be

run.

Use CONT(IDY) to select the required solution routine. For example, IDY=3

is the Powell-Hybrid algorithm (Originated from MINPAC) and the codes will call

FUNCTH, which controls the Powell-Hybrid procedure. One important section of

FUNCTH is it calls HYBRD1, which is a modification of the Powell hybrid routine

HYBRD. HYBRD1 requires FCNH and calls the HYBRD to solve the system.

Use FCNH to calculate the LHS values of the functions in the model with a new

set of values for the endogenous variables, and to calculate the residuals(stored in

FVEC). FCNH calls EQN to get new values for each endogenous variable, which

EQN achieved this by call typeII.

HYBRD calls many subroutines to finish the algorithm, including

• calls FDJAC1 to calculate the Jacobian matrix.

• calls QRFAC to compute the QR factorization of the Jacobian matrix.

• calls QFORM to accumulate the M by M orthogonal matrix Q from its factored

form.

• calls DOGLEG to determine the direction P.

• calls R1UPDT to determine an Q such that (S+U ∗V ′) ∗Q is lower trapezoidal.

• calls R1MPYQ to computes A ∗ Q in the QR factorization.

• uses function ENORM to calculate the Euclidean norm of the residuals.

• use function SPMPAR to set the machine precision
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If IDY=4, the model will be solved based on the Levenberg-Marquardt algo-

rithm. The code will choose FNCTLM. Similar to FUNCTH, FNCTLM controls

the Levenberg-Marquardt procedure. One important section of FNCTLM is it calls

LMDIF1, which is a modification of the Levenberg-Marquardt method LMDIF. LMDIF1

calls the original LMDIF to solve the system.

LMDIF calls many subroutines to finish the algorithm, including

• calls FDJAC2 to calculate the Jacobian matrix.

• calls FCN to calculate the LHS values of the functions.

• calls QRFAC to compute the QR factorization of the Jacobian matrix.

• calls LMPAR to determine the Levenberg-Marquardt parameter.

• LMPAR calls QRSOLV to compute the QR factorization.

• uses function ENORM to calculate the Euclidean norm of the residuals.

D.2.2 bench_data1.data

The structure of bench_data1.data was determined by codes in bench_mod1.f. The

following table shows the contents of the bench_data1.data

D.2.3 calc_terminal.f90

STEP 1 Set up terminal conditions for the simulations with subroutine CALCFX(FX).

STEP 2 Use boot_shocks.cpp to randomise the shocks’ order using a random seed.

STEP 3 Use bench_mod2.f and bench_data2.data to do the simulation.

D.3 Simulations

Simulations of a DSGE model can established from different standpoints which de-

pends on the objectives of the research, the following parts shows the tendency sim-

ulation, impulse response and the policy simulation.
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Table D2. Model Parameters and Settings

Notation Value Description

NEGP 1 Number of endogenous variable groups
NXGP 1 Number of exogenous variable groups
NPER 377 Number of periods for simulation/length of forecast period
LAG 3 Maximum number of lags in the system
NSTART 4 Starting period of forecast
ITMX 99 Maximum number of iterations
IB 0 Data input instruction
NCG 1 Number of coefficient groups
IRAND 0 Maximum number of random errors
NSK 0 Joint or single shock option
IDYN1 3 Parameters to control the solving algorithms
NDOG 16 Number of endogenous variables
LEXOG 32 Number of exogenous variables
IPAR 30 Number of calibrated coefficients in coef.data
IRHO 10 Number of coefficients of shock processes in ’ar_coeff.data’
PX -1.0 Print option for exogenous terms
P 0 Print option for iteration steps
TOL 0.01 Tolerance level (0.0 < tol < 0.25)
B 0.4 Damping factor (0.0 < b < 1.0)
BR 0 Baserun comparison option
PR 1.0 Baserun print option
NARG 100 Number of expectation variables multiplied by the number of

periods in each forecast run (50)
MAXITR 9999 Maximum number of iterations the model uses to solve for the

rational expectations
BSTEP 0.15 Step size for updating the coefficients
TOLR 0.09 Tolerance for the rational expectations solution
LDOFIX 1 Indicates whether the model is performing a Type II fix

D.3.1 Tendency simulation

This directory aims to check the relation between inequality and growth in the long-run, start

from two identical groups in using the TENDENCY1 folder. Typing bash runme.sh to run

the following:

STEP 1: Generate new data files for identical groups. Run load_data_UK.m to ob-

tain act_data.data with VAR1_Analysis.m to get the values of the expected variables

for both identical groups.

STEP 2: Format the data files for Fortran. Use read_bench.f90 to get the ex-
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Table D3. Structure of bench_data1.data

Row Colum Contents

1 1-19 Parameters control the model solving algorithms
2 1-2 Number of endogenous/exogenous variables
3 1-2 Number of calibrated coefficients and the AR coefficients

of shock processes
4 1-7 Parameters control the model solving algorithms
5 1-8 Parameters control the model solving algorithms
6-21 1 Names of the endogenous variables
22-37 1 Names of the solved endogenous variables
38-53 1 Names of the exogenous variables
54-? 1-4 Actual data of the endogenous variables
?-? 1-4 Extended data of the endogenous variables
?-? 1-4 Actual data of the exogenous variables
?-? 1-4 Extended data of the exogenous variables
4622-4624 1-5 Names of the calibrated coefficients
4625-4626 1-5 Names of AR coefficients of shock processes

tended data with forecasting value and format the data with bench_data1.data ,

bench_data2.data, start_lags_endog start_lags_exog.

STEP 3: Compile all relevant programmes. calc_terminal.f90,calc_shocks.f90,

bench_mod1.f,bench_mod2.f,normal.cpp,shock_set.f,calc_act_gy.f90.

STEP 4: Run the main programme. Obtain the simulation data by

• use calc_terminal.f90, calc_shocks_bench.f90, bench_mod1.f and bench_data1.data

to get the base data.

• use normal.cpp, shock_set.f, base, bench_mod2.f and bench_data2.data to get

the simulation data.

STEP 5: Plot relevant tendency data.

• use calc_act_gy.f90 to gets the act_growth data in logarithm and algorithm.

• matlab < tendency_plot.m

STEP 6: Clear the intermediate files for next simulation.

• rm -rf bench_data1.data . . .
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The following section gives more details about the programme used in the ten-

dency simulation.

calc_shocks.f

Specify the persistence and innovations of the shock process. Errors =

actual data - fitted value.

STEP 1: Preparations

• Specify the names for any parameters and steady state of the variables.

• State the dimension of model variables and data.

• Loads the endogenous variables from ‘act_data.data’ ;

• Generate some missing data (value=0) with functions: e.g AR_param;

• Replace the missing data (value=0) by generated data.

• Represent the full data inputs.

STEP 2: Calculate the fitted value of variables which has shocks in its

equation.

STEP 3: Calculate the residuals by using the actual data − f itting data.

STEP 4: Save the residual data as ‘resids.data’.

STEP 5: Get the detrend residuals by the function OLS.

STEP 6: Save the AR coefficients and the innovations.

INPUT: coef.data, act_data

OUTPUT: resid.data, shock.data, ar_coeff.data, bgp_const.data

bench_mod2.f The difference between bench_mod1.f and bench_mod2.f is just the

read or write the residuals. bench_mod1.f was used to solve the model we write the

residuals, bench_mod2.f was used to simulate the data, we read in the residuals.
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shock_set.f Use shock_set.f to set the chosen shocks with the random.data gener-

ated from normal.cpp.

There are 10 shocks could be used in the model, for TENDENCY1 directory, we

used the labour input shocks only, for TENDENCY2 directory, we used 5 shocks

related to the inequality and growth.

normal.cpp Use normal.cpp to randomly draw a number from a normal distri-

bution. We can also use either the building-in random number generators or the

Box-Muller transformation to generate normally distributed random numbers from

uniformly distributed ones. This is an older method but is still valid.

calc_act_gy.f90 In this file, we calculated the logarithmic/ arithmetic growth rates

to the extended periods using OLS. This work can also be done in read_bench.f by

using bench_exo and bench_endo data.

INPUT: act_data.data

OUTPUT: act_growth.txt

tendency_plot.m plot the relevant plot in twp steps

STEP 1: Read in data from simulation/act_growth data files

STEP 2: generate capital/income share of G1 and logarithmic/ arithmetic growth

Capital share of G1: SIM_OUT(i, 17) = 0.5 ∗ eK2/eK

Income share of G1: SIM_OUT(i, 18) = 0.5 ∗ eY1/eY

Logarithmic growth rate: SIM_OUT(i, 19) = Yi+1 − Yi

Arithmetic growth rate: SIM_OUT(i, 20) = eYi+1 /eYi − 1

STEP 3: Calculate the relevant series to be plotted

STEP 4: Plot the relevant figures.
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D.3.2 IRFs

This part aims to conduct the IRF analysis by giving one temporary shock equal to each ex-

ogenous shock's standard deviation. It could be executed either before or after the estimation.

STEP 1: Compile all the programmes.

STEP 2: Run the base.

• use the base model to get the base data.

STEP 3: Do the IRF simulation.

• use calc_sigma.f90, IRF_shock_set_auto.f to get the irfsim data

• use IRF.f to calculate the difference between base and irfsim.

STEP 4: Plot figures

• use IRF_plot_all.m to plot the 10 IRF figures.

calc_sigma.f90 Calculates the standard deviations of the structural shocks. Input the

shocks.data with number of periods and number of shocks, it outputs the SD of the shocks

to IRF_sigma.data by using the VARIANCE function

INPUT: shocks.data

OUTPUT: IRF_sigma.data

IRF_shock_set_auto.f Sets the SD to be used by reading IRF_sigma.data and setting it

as a shock for IRF analysis one by one according to the input IRF_number, the IRF shocks

data are saved in irfshocks.data.

INPUT: IRF_sigma.data, IRF_number

OUTPUT: irfshokcs.data

IRF.f Generates the forecasted impulse response which is the difference between the base

and irfsim.

INPUT: base,irfsim

OUTPUT: IRFs*.txt
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IRF_plot_all.m INPUT: IRFs*.txt OUTPUT: IRFs*.jpg

D.3.3 Power and robustness

power_sim.sh This file has two parts, first one resets the coef.data by 1%, 3%, 5%,

7%, 9% randomly fault, and then simulates the data. Second part reset the equations

of penalty rate in bench_mod1.f/ bench_mod2.f and then simulate the data.

power_check.m This file mainly used to calculate the Wald statistics and P value

generated from above simulations.

robust_check.m This file is used to drew random samples from the innovations in

error processes, creating 1000 artificial samples of the same length as the original

data – 147 observations. Then bootstrap each of these samples 1000 times. For each

sample compute the Wald statistic generated by the bootstraps to check whether the

model is accepted or rejected at various confidence levels.

D.3.4 Tax policies

We have three policies experiments in the POLICY directory. We need compare

the difference of output and inequality between the results of non-tax regime and

each policy scenario. Since we need to change the model equations a little bit, the

following table summarized the changes in each scenario:

Table D4. Model Parameters and Settings

Types Tax policies Changes of the model codes

Bench zero tax rate bench_mod1/bench_mod2 eq. 16: delate the CEQT;
Policy
I

20% income tax on
both groups

coef.data 25th: set the CEQT as 0.2 and phi2 a little
bit different.

Policy
II

20% income tax on
the rich but no trans-
fer to the poor

coef.data 25th: set the CEQT as 0.2 and phi2 a little
bit different; Delate the CEQT in G2’s equations.

Policy
III

20% tax on the rich
with transfer to the
poor

coef.data 25th: set the CEQT as 0.2 and phi2 a little
bit different; Delate the CEQT in G2’s equations.
Add CEQT ∗ Y2t in G2’s income equation.
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For welfare analysis, substract the simulated consumption data and then calculate the

relevant welfare with welfare_analysis.m.

D.4 Estimation

The basic logics of the estimation is generating N groups of coefficients, then use

one group of coefficients to do the simulation, then calculate the Wald statistics, the

target is to find the corresponding group of coefficients with the Wald statistics <

1.65. The following show the detailed steps of the estimation. 2

STEP 1: Preparation for the data and starting values, coefficients

• Substep 1: Run "load_data.m" to obtain data file "act_data.data"3, "start_lags_endog"

and "start_lags_exog" by

module load matlab/R2019a

matlab < load_data.m

• Substep 2: Set the values like number of variables and parameters, etc. in the

upper part "bench_data1a.data" and "bench_data2a.data" as well as in the lower

part "bench_datab.data".

• Substep 3: Obtain the model data file "bench_data1.data" and "bench_data2.data"

by

bash load_benchdata.sh4

• Substep 4: Run the run_SA.m and fix_coef.sh to get “all_coef.data”.

matlab < run_SA.m

bash fix_coef.sh

STEP 2: Compile all the scripts to the format could be run on the HPC by typing

2Step 1-3 are compiled in the runall.sh, type bash runall.sh to run the project.
3Use VAR1_Analysis.m to get the values of the expected variables.
4Use read_bench.f90 to get the extend the data with forecasting value and format the data.
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bash compile.sh

STEP 3: Run Indirect Inference estimation N times by typing

bash sub_search

The following part shows some details of the relevant programmes used here

D.4.1 compile.sh

Load the intel compilers and compile all the codes to the executable programmes.

D.4.2 sub_search.sh

Eliminates some files and create "MD.data" for saving all newly simulated Walds later.

Runs the file "wald_random.pl" for continuing reading new coefficients, simulating and

calculating the Wald by using the file "submit_jobs"

D.4.3 submit_jobs.sh

This file runs the following files one after another: "1_run_base", "2_run_sims", "3_run_wald",

"4_run_check". All the simulated Walds and relevant statistics, combined with the coeffi-

cients used will be saved in the data file "log.data".

1_run_base
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./calc_shocks #Calculate the shocks.

./calc_terminal #Calculate the terminal condition.

./bench_mod1.f90 #Runs the base to write the residuals(type II fix).

This creates the residual files and exogenous data files in the tmp directory. when

reading in the residuals the model should converge in 1 iteration. AR coefficients of

the shocks can be found in the ar_coeff.data

2_run_sims cp base_run/tmp. . . $WDPATH # Copy base_run/tmp to the sims direc-

tory so that

#the simulation model files can read in the

#residuals and exogenous variable files.

./boot_shocks $randseed #Randomise the shocks’ order using a random seed

./bench_mod2 #Read in the residuals and do the simulation

For i {4..246} controls the periods of simulation(the number of files in tmp )

3_run_wald ./calc_wald # Calculate the Wald statistics

Find the VAR coefficients in the SIMS directory, actVARcoef.txt and simVARcoef.txt

4_run_check Check if the Calculated Wald statistics is normal, otherwise, it will be

9999 to show something wrong in above process.

calc_wald Call the ADD_BGP_TO_SIMS(nsims) to add back BGP to simulated

data and get the all_diff_bgp.data.

Call the CALC_WALD(nboot) to calculate the Wald and get Wald/Trans data.

Calculate the model specified data: err_y_trend5, inequalities and aggregate Growth.

Estimate the auxiliary model, VARX , with the N simulated samples.

Estimate the auxiliary model, VARX, with the actual data.

Calculate the Wald statistics.

Write the Wald/Trans data

5There is no need of this if we use a VARX in calculating the Wald statistics
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Calculate the P value6

D.5 Checklist for a new model

Variations could be done by the following changes:

Table D5. Checklist for a new model
Variations Code need to be changed

Change of the periods of simulation 1.bench_mod1.f & bench_mod2.f:
%s/248/147/gc 2.main.sh: for
i {4..248} → for i {4..147}
3.Gather_sim.f: NSIM=245,NPER=244 →
NSIM=144,NPER=143

Change of the shocks 1.shock_set.f :Comment the relevant
shocks don’t want to count in.

The following table summarises the factors that may impact the final results

Table D6. Factors that may impact the final results

Files Components

normal.cpp mean=0/0.01/0.02
shock_set.f Labour input shock/All relevant shocks
normal.cpp methods to generate the random number

6Find the Wald.txt and MD.data, compare the value in Wald.txt and MD.data. locate the number of the values
which is larger than the one in Wald.txt, then divided by nsim.
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