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BACKGROUND & AIMS: The adult pancreas protects against
cancer by actively expelling genetically mutated cells. Pancreatic
cancer starts with cells carrying KRASmutations; however, it is not
clear how some KRAS mutant cells override cell elimination
mechanisms to survive in tissues. METHODS: An in vivo mouse
model of sporadic tumorigenesis was used to induce Kras and/or
Tp53mutations in low numbers of cells in the adult pancreas. The
mutant cell fate was monitored over time using quantitative
fluorescence imaging. Gene signatures of noneliminated mutant
cell populations were identified using bulk RNA sequencing. Dif-
ferential gene expression was overlapped with publicly available
datasets. Key molecular pathways were validated in murine
pancreas using immunofluorescence and functionally tested using
inhibitor studies in vivo and epithelial coculture systems in vitro.
RESULTS: Although most genetically mutant cells are eliminated
from the adult pancreas, a population of KRASG12D- or
p53R172H-expressing cells are stably retained. Wnt5a signaling,
cell dormancy, and stemness were identified as key features of
surviving KrasG12D cells in vivo. Wnt5a specifically inhibits apical
extrusion of RasV12 cells by promoting stable E-cadherin–based
cell–cell adhesions at RasV12: normal cell–cell boundaries in vitro.
In the pancreas, Wnt signaling, E-cadherin, and b-catenin are
increased at cell–cell contacts between noneliminated KrasG12D
cells and normal neighbors. Active Wnt signaling is a general
mechanism required to promote KrasG12D and p53R172H cell
retention and cell survival in vivo. CONCLUSIONS: RAS mutant
cells activate Wnt5a and cell dormancy to avoid cell expulsion and
to survive in the adult pancreas.
FLA 5.7.0 DTD � YGAST66770_proof
Keywords: Early Tumorigenesis; Pancreatic Cancer; Epithelial
Homeostasis; Cell Extrusion; Cell Competition; Oncogenic RAS;
Wnt5a; Cell Dormancy.

pithelial tissues are continuously exposed to muta-
Etional insults and, as a result, genetically mutant
cells often arise in a tissue. Most human cancers start
sporadically from epithelial cells carrying genetic mutations
that activate oncogenes or inactivate tumor suppressor
function. Remarkably, epithelial tissues protect against
tumorigenesis by actively removing genetically mutant
cells.1 In general, genetically different cells compete for
survival in tissues, resulting in the elimination of “less fit”
mutant cells via apoptosis, extrusion, and/or cell differen-
tiation.1 Under certain conditions,2,3 competition is tipped in
favor of mutant cells. This is better understood in rapidly
https://doi.org/10.1053/j.gastro.2025.02.042
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

The adult pancreas actively eliminates KRAS-expressing
cells, preventing the occurrence of preneoplasia. KRAS
mutations are required at all stages of pancreatic
cancer; however, it is not clear how some KRAS mutant
cells override cell elimination mechanisms to survive

NEW FINDINGS

Activation of Wnt5a pathway and cell dormancy prevent
KRAS cell expulsion from the tissue. Wnt5a signaling
promotes stable cell–cell adhesions between KRAS
mutant cells and normal neighbors, allowing mutant
cells to be stably retained in the tissue.

LIMITATIONS

Future studies are needed to determine the upstream
regulators of Wnt5a and cell dormancy.

CLINICAL RESEARCH RELEVANCE

Inhibition of Wnt5a and/or disruption of cell dormancy
could provide new strategies to prevent pancreatic
tumour initiation and promote tissue health. By
understanding the biology of these initial stages of
disease will lead to the development of new early
detection tools/biomarkers for pancreatic cancer.

BASIC RESEARCH RELEVANCE

Genetically mutant cells activate Wnt5a and cell
dormancy to override homeostatic tissue controls, which
would otherwise rid tissues of mutant cells. Activation of
Wnt5a and a dormant cell state occurs early in cancer
development, before preneoplastic growth, to promote
survival of cancer-causing cells in a competitive tissue
environment.

2 Salvador-Barbero et al Gastroenterology Vol. -, Iss. -
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proliferating tissues that are actively replenished via
defined stem cell compartments; tumor risk increases when
stem cells acquire genetic mutations that confer a compet-
itive advantage over wild-type counterparts.4–6 In contrast,
our understanding of how competition outcomes shape
tumorigenesis in slow proliferating adult tissues that lack a
bona fide stem cell compartment remains poorly detailed.

In the pancreas, we recently demonstrated that cells
expressing oncogenic Kras (KrasG12D) are outcompeted by
healthy neighbors and are eliminated from exocrine and
endocrine epithelial compartments.7 We have previously
described how interactions with normal cells trigger robust
evolutionary conserved cell biology phenotypes in Ras
transformed cells, resulting in the elimination of the mutant
cells via cell segregation and cell extrusion.7–10 Removal of
KrasG12D cells from adult pancreas tissues requires local
remodeling of E-cadherin–based cell–cell adhesions at
normal–mutant boundaries and dynamic changes in mutant
and normal cell volume.7 Importantly, we demonstrated
that abrogation of KrasG12D cell elimination in the pancreas
significantly increased the appearance of preneoplastic le-
sions,7 suggesting cell competition and the subsequent
expulsion of mutant cells are disease preventative.

Activating mutations in oncogenic RAS is the
principal driver gene event in human pancreatic ductal
FLA 5.7.0 DTD � YGAST66770_proof
adenocarcinoma,11 the most common type of human
pancreatic cancer. KRAS mutations are detected in >90%
of human tumors and in vivo mouse studies have found
that KRAS signaling is essential for disease to progress
through all stages.12 Missense mutations in TP53 are the
second most common mutation detected in approximately
70% of human pancreatic ductal adenocarcinoma13 and
required for metastasis.14 How genetically mutant cells
survive and grow in the competitive environment of the
adult pancreas remains unclear. We sought to understand
the mechanisms underpinning how mutant cells avoid cell
expulsion and survive in the adult pancreas.

Methods
Mouse Lines, Induction of Cre Recombinase
In Vivo, Inhibition of Wnt Pathway In Vivo

Animals were housed in conventional pathogen-free animal
facilities and experiments were conducted in accordance with
UK Home Office regulations (ASPA 1986 and EU Directive
2010) under the guidelines of Cardiff University Animal Wel-
fare and Ethics Committee. Pdx1-CreERT; LSL-KrasG12D/þ15; LSL-
Trp53R172H/þ16; Rosa26LSL-tdRFP17 male and female 6- to 8-
week-old mice were induced by intraperitoneal injection of
tamoxifen in corn oil (low dose: 1 mg/40 g bodyweight once;
megadose: three 9 mg/40 g injections4). Wnt signaling inhibi-
tion followed low-dose tamoxifen schedule; mice were aged to
35 days post Qinduction (p.i.) and treated with WNT-974
(Stratech) 1.5 mg/kg or vehicle (dimethyl sulfoxide [DMSO])
in corn oil by oral gavage 5 d/wk for 4 weeks.

RNA Sequencing
Sequenced reads Fastq files were quality checked using

FastQC software (Babraham QBioinformatics). Reads were
aligned to the mouse genome using the STAR package, and
reads were counted using the FeatureCounts package, after
removing duplicates using the MarkDuplicates tool (GATK).
Differential expression was normalized and calculated using
DESeq2 package, comparing different genotypes against con-
trol. Gene set enrichment analysis (GSEA) software, version
4.2.2 (Broad Institute) was used for pathway enrichment
analysis and Prism software, version 10.0.2 (GraphPad) was
used for heatmap graphs and normalized enrichment score
graphs (GEO ID: GSE255283).

Tissue Staining
Pancreas was harvested at specified time points and fixed in

10% neutral buffered formalin overnight at 4�C, before
dissection into 2 pieces (head-body and body-tail) and
embedded in either paraffin or OCT embedding matrix.
Formalin-fixed paraffin-embedded (FFPE) pancreas was
sectioned (7-mm thickness) and stained with anti-RFP, anti–
cleaved caspase-3, and anti–Ki-67 staining were performed
via immunohistochemistry in FFPE tissue sections. Tissues
sections were dewaxed and rehydrated. For antigen retrieval,
tissue sections were incubated for 15 minutes at 37�C in 20 mg/
mL Proteinase K diluted in Tris Q-buffered saline with Tween 20
or boiled in citrate buffer pH 6 for 15 minutes (Supplementary
Table 14). Tissues were then blocked with 3% H2O2 for 20 or
� 29 April 2025 � 12:10 pm � ce
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10 minutes at room temperature (depending on the antigen
retrieval method) and 5% NGS Tris-buffered saline with Tween
20 for 60 minutes at room temperature. Sections were incu-
bated overnight at 4�C with the primary antibody diluted in 5%
NGS Tris-buffered saline with Tween 20 (Supplementary
Table 14). Tissues were stained with the secondary antibody
ImmPRESS goat anti-rabbit (MP-7451, Vector Laboratories) for
60 minutes at room temperature, followed by 3,30-dia-
minobenzidine tetra hydrochloride chromogen (peroxydase
substrate kit, Vector Laboratories). Sections were dehydrated
and mounted with DPX (Sigma-Aldrich). Immunofluorescence
co-staining using either anti-CD44 and anti-RFP (Rockland) was
performed in FFPE tissue slices using the same antigen
retrieval and primary antibody incubations as described for
immunohistochemistry, followed by Alexa Fluor secondary
antibody incubation for 60 minutes at room temperature and
Hoechst (ThermoFisher) (Supplementary Table 14) and
mounted using Mowiol (Sigma-Aldrich).

For b-catenin, E-cadherin, K-cadherin, and RFP (Creative
Diagnostics) immunofluorescence staining, pancreas was
embedded in butyl-methyl methacrylate plastic under UV after
dehydration and resin infiltration.7,18 Tissue was sectioned in
2-mm-thick slices and rehydrated. Tissue staining followed the
same protocol as immunofluorescence in FFPE sections.

Pancreas embedded in OCT embeddingmatrix was sectioned
(10-mm thickness), permeabilized with 0.05% sodium dodecyl
sulfate (Sigma-Aldrich) and 0.05% Triton X100 (Sigma-Aldrich)
solution, blocked with phosphate-buffered saline (PBS) with
Tween 20 (0.01% Triton X100) and stained with anti-p27, anti-
Wnt5a, anti-Dvl2 and anti-Sox9 primary antibodies for 2 hours at
room temperature, Alexa Fluor secondary antibody incubation
for 60 minutes at room temperature and Hoechst (Thermo-
Fisher) and mounted using Mowiol (Sigma-Aldrich). Antibody
details are detailed in Supplementary Table 14.

Global levels of endogenous RFP were measured in 10-mm
formalin-fixed OCT frozen sections, as described previously.7

RFP-positive area was averaged from 3 tissue slices per
mouse separated by at least 20 mm between each section.

To assess the presence of pancreatic intraepithelial
neoplasia (PanIN) lesions, FFPE sections were stained with
Alcian blue, as described previously.7 b-galactosidase activity
was determined using the Senescence b-galactosidase Staining
Kit (9860, Cell Signaling) using the manufacturer’s instructions.

Madin-Darby Canine Kidney Cell Lines and
In Vitro Experiments

For extrusion assays, Madin-Darby Canine Kidney (MDCK)-
pTR GFP–RasV12 cells were combined with parental MDCK cells
at a 1:50 ratio and induced using tetracycline, as described
previously.7,9 For Wnt signaling experiments, GFP-RasV12 cells
were treatedwith PBS,Wnt3a (1mg/mL), orWnt5a (100 ng/mL)
2 hours post-tetracycline induction.

c-Myc was silenced in tetracycline-induced GFP-RasV12
cells by transfection with 100 ng si (small interfering) RNA
oligos targetingMyc (see Supplementary Material). GFP-RasV12
cells were mixed with parental MDCK cells 24 hours after
transfection and fixed after an additional 48 hours

For Wnt pathway inhibition, GFP-RasV12-expressing cells
were transfected with siMyc1þ2/siScr or treated with recom-
binant Wnt5a/PBS for 24 hours and then mixed with parental
cells. Wnt5a treatment was maintained during the whole
FLA 5.7.0 DTD � YGAST66770_proof
experiment. WNT-974 (Stratech, 1 mM) or OMP-18R5 (10 mg/
mL) was added to the medium 8 hours after GFP-RasV12 and
parental cells were mixed.

Confrontation assays and migration speed analysis were
carried out as described previously.3 siMyc/siScr-GFP-RasV12
cells were plated 24 hours after transfection and inserts were
removed 8 hours after. Cells were treated with PBS/Wnt5a for
8 hours before inserts were removed. PBS/Wnt5a treatment
was maintained during the whole experiment. WNT-974/DMSO
was added when inserts were removed.

Pancreatic Ductal Epithelial Cell Co-Culture
Assays

Harvesting and culture of nontransformed pancreatic ductal
epithelial cells, cell–cell mixing, and immunostaining was car-
ried out as described previously.7 Transformed tumor-derived
epithelial cells obtained from KC mice (KrasG12D-expressing
ductal epithelial cells) were treated with PBS or recombinant
Wnt5a for 24 hours, before being prelabeled with CMFDA
Green CellTracker dye (ThermoFisher Scientific) 1:1000 for 1
hour at 37�C. PBS/Wnt5a was maintained in the medium; 12
hours after plating cells were treated with DMSO or WNT-794
(Stratech, 1 mM) for 36 hours. Cells were fixed and stain using
anti–E-cadherin antibody (BD Biosciences).

Statistical Tests
Statistical analyses were performed using Prism software,

version 10.0.2. Normally distributed data, as determined by the
Shapiro-Wilke test or D’Agostino and Pearson test were
analyzed using unpaired Student t tests. A P value of < .05 was
considered as significant and a rejection of the null hypothesis.
Graphical data represent mean ± SD. Gene sets were consid-
ered enriched if they had a false discovery rate of <0.25.
Heatmaps were created by computing normalized gene counts
for each individual sample into row z scores.

Additional methods are described in Supplementary
Material.
Results
Cells Expressing KrasG12D or p53R172H
Mutations Are Eliminated From Adult Pancreas

Co-expression of both mutations in the same cell
abrogates cell elimination in vivo. To model sporadic
pancreatic cancer, we used the following pancreas-specific
genetically engineered mouse models: KC: Pdx1-CreERT;
LSL-KrasG12D/þ; Rosa26LSL-tdRFP; PC: Pdx1-CreERT; LSL-
Trp53R172H/þ; Rosa26LSL-tdRFP; and KPC: Pdx1-CreERT; LSL-
KrasG12D/þ; Trp53R172H/þ; Rosa26LSL-tdRFP. Our experimental
control was Pdx1-CreERT; Rosa26LSL-tdRFP mice (Figure 1A,
left). Adult mice were treated with low-dose tamoxifen and
aged for 7, 35, or 70 days p.i. (Figure 1A, right).7 To monitor
cell fate, we measured RFP levels over time. Consistently,7

we found that low-dose tamoxifen induced stochastic RFP
labeling in approximately 20%–25% of the tissue in all ge-
notypes (Figure 1B and C). RFP fluorescence significantly
decreased in KC and PC tissues, and it did not significantly
change in double-mutant (KPC) tissues from 7 to 35/70
days p.i. (Figure 1B and C). Pancreas tissue histology was
� 29 April 2025 � 12:10 pm � ce
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Figure 1. Cells expressing p53R172H are eliminated from adult pancreas in vivo. Coexpression of p53R172H mutations
prevents KrasG12D cell elimination in vivo. (A) Schematic of mouse models (left), tamoxifen treatment and time points (right).
(B) Representative images of endogenous RFP fluorescence. Scale bar: 500 mm. (C) Percentage of RFP fluorescence per total
tissue area. N ¼ numbers described in the graph. (D) Percentage of RFPþ ducts at 7 days p.i. (n ¼ 3 Q20mice). (E) Percentage of
RFPþ cells per total number of cells in islets at 35 days p.i. (n ¼ 3 mice). (F) Percentage of RFPþ clusters grouped according to
cluster area (mm2). Control, KrasG12D (KC), p53R172H (PC), double mutant (KPC). Data represent mean ± SD. Student t tests
were used to analyze the data. *P < .05; **P < .001; ***P < .0001.
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unaffected by low-level transgene expression
(Supplementary Figure 1A). Because exocrine acinar cells
comprise >90% of the adult pancreas, these data suggest
that changes in global RFP fluorescence reflect changes in
RFPþ acinar cell populations over time. RFPþ ducts were
significantly less frequent in KC and PC tissues 7-day p.i.
compared with control, while number of RFPþ ducts in KPC
tissues was comparable to controls (Figure 1D). The per-
centage of RFPþ cells per islet significantly decreased in KC
and PC tissues, whereas the frequency of RFPþ cells per islet
in KPC tissues was comparable to wild-type controls
(Figure 1E). We have previously shown that KrasG12D cells
are competitively eliminated at cell boundaries with sur-
rounding normal cells, resulting in the elimination of small
clusters.7,19 The percentage of small clusters (<50 mm2)
significantly decreased in KC and PC tissues over time, while
no significant differences were found in KPC tissues,
compared with controls (Figure 1F), suggesting KPC cells do
not respond to cell–cell interactions with normal cells. Thus,
like KrasG12D-expressing cells,7 p53R172H single mutant
cells are eliminated from all epithelial compartments. Cells
expressing both KrasG12D and p53R172H mutations are
not eliminated from endocrine/exocrine epithelial tissues.
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Transcriptional Profiles of Noneliminated Mutant
Cells Indicate Activation of Pro-Survival Signals

We consistently found that approximately 10% of tissue
area remains RFP-labeled in KC (KrasG12D) and in PC
(p53R172H) tissues post the 35-day time point7 (Figure 1B
and C), indicating that some mutant cells are not eliminated
from the pancreas in vivo. We found rare Alcian blue–
positive lesions7 in 6 of 9 KC mice at 168 days p.i.
(Supplementary Figure 1B), suggesting some noneliminated
KrasG12D cells progress to PanINs. No PanIN lesions were
detected in PC tissues. PanIN lesions were detected more
frequently in 5 of 5 KPC tissues (Supplementary Figure 1B)
and 4 of 5 KPC mice developed tumors by 168 days p.i.

To identify gene signatures of noneliminated mutant
cells and determine whether common pathways are acti-
vated by all mutant cells, we performed bulk RNA
sequencing (Figure 2A). Whole pancreata were harvested
from experimental cohorts (KC/PC/KPC/control) at 35 days
p.i. We used anti-leptin antibodies to enrich for acinar/
ductal epithelial cells and fluorescence-activated cell–sorted
leptinþ RFPþ cells for RNA sequencing (see Supplementary
Methods). We assumed that most RFPþ cells isolated for
RNA sequencing are acinar in origin as RFPþ ductal cells are
rare at 7 days p.i. (Figure 1D). We compared differential
gene expression in noneliminated mutant cells to wild-type
controls. Unsupervised principal component analysis
(Supplementary Figure 2A) and unsupervised clustering
heatmaps of normalized differentially expressed genes
(Supplementary Figure 2B) showed distinct transcriptional
profiles for RFPþ cell populations of each genotype. In
general, KC cells up-regulated genes, whereas PC and KPC
cells down-regulated genes compared to wild-type controls
(Supplementary Tables 1–3).
FLA 5.7.0 DTD � YGAST66770_proof
To elucidate the biological pathways underpinning
mutant cell retention in pancreas tissues, we applied GSEA
(GSEA Hallmarks, KEGG MEDICUS databases). We generated
normalized enrichment scores with P values adjusted using
false discovery rate of <0.25 to rank statistically significant
gene sets enriched in KC, PC, or KPC transcriptomes
compared to wild-type controls. KC, PC, and KPC (Figure 2B
and C, Supplementary Figure 2C–F, 2G) signatures deregu-
lated Kras, MAPK, and p53 signaling pathways, suggesting
deregulation of Kras signaling and/or p53 pathway is a
general requirement for mutant cells to remain in tissues.
KC signatures positively enriched for pro-survival and pro-
tumorigenic pathways (eg, epithelial to mesenchymal tran-
sition, tumor necrosis factor–a signaling, hypoxia, angio-
genesis, Notch signaling, and Wnt signaling) and immune
response (eg, Il2-Stat5 signaling and tumor necrosis factor–
a via nuclear factor kB signaling) (Figure 2B). Gene signa-
tures from both PC (Figure 2C) and KPC (Supplementary
Figure 2G) negatively enriched for apoptosis pathways
and inflammatory responses, suggesting cell survival is a
requisite for retention of mutant cells in tissues.
Gene Signatures of Noneliminated Krasg12d
Cells Correlate With Pancreatic Ductal
Adenocarcinoma Initiation and With Increased
Stemness and Cellular Reprogramming

KRAS mutations are detected in the majority of human
pancreatic ductal adenocarcinoma tumors and are required
to drive all stages of pancreatic cancer.12 Thus, we focused
our analyses on understanding how KrasG12D cells avoid
cell elimination. Expression of oncogenic Kras in the
pancreas triggers injury and stress responses, which often
translate as cellular reprogramming and changes in cell
fate.20,21 KC signatures positively correlated with WP_Pan-
creatic_Adenocarcinoma_Pathway in GSEA analysis contrary
to PC and KPC signatures (Supplementary Figure 2H–J). A
consistent up-regulation of pancreas stem and progenitor
genes (eg, Nkx6-1, Prom-1, Hnf1b)22 was observed in non-
eliminated KC signatures (Figure 3A). QCanonical markers of
spasmolytic polypeptide-expressing metaplasia22 were up-
regulated in noneliminated KC cells (Supplementary
Figure 3A), as well as acinar, ductal, and mucin genes
(Supplementary Figure 3B). Stemness gene signatures
enriched in KC signatures compared with wild-type control,
contrary to PC and KPC signatures (Supplementary
Figure 3A–3I). Gene signature data imply that non-
eliminated KrasG12D populations represent differentiated
acinar cells and early embryonic pancreatic progenitors,
cells undergoing acinar–ductal metaplasia and gastric py-
loric and intestinal metaplasia, all of which are evident in
tissues at very early time points.
598
Noneliminated KrasG12D Mutant Cells Express
Features of Cell Dormancy

Analysis of RFP levels in tissues over time (Figure 1C)
indicated that noneliminated cells are not actively dividing
� 29 April 2025 � 12:10 pm � ce
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Figure 2. RNA sequencing results indicate cell fate changes in p53R172H and KrasG12D mutant retained cells. (A) Experi-
mental design for tissue collection for RNA sequencing. (B, C) Normalized enrichment scores (NES; false discovery rate <0.25)
of GSEA on the Hallmarks and KEGG MEDICUS gene sets for the RNA sequencing analysis of (B) KC retained cells or (C) PC
retained cells. Full list of genes can be found in Supplementary Tables 4–7.
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Figure 3. Cell dormancy/diapause gene signatures and cell cycle arrest are features of noneliminated Ras mutant cells.
Heatmaps show row z scores of (A) pancreatic progenitor associated23 (C) cell cycle (KEGG M7963) associated and (F) cell
dormancy22 gene signatures. Full list of genes can be found in Supplementary Table 10. (B, D) Percentage of Ki-67–positive
cells/total cells. N ¼ numbers described in graph. (D) Percentage of p27 positive nuclei/total nuclei in each RFPþ cluster (n ¼ 3
mice). (F) Mean fluorescence intensity relative to background of Sox9 per nuclei of RFPþ cells (n ¼ 3 mice). (G, I) Confocal
images of cell extrusion experiment. Scale bar: 100 mm. (H) Proportion of nonextruded GFP-RasV12 cells relative to non-
extruded siScr-GFP-RasV12 cells (n ¼ 3 experiments). (J) Percentage of Ki-67–positive cells extruded GFP-RasV12 cells of
total extruded cells (n ¼ 3 experiments). siScr, scrambled siRNA; siMyc1þ2, two siRNA oligos targeting endogenous Myc.
Data represent mean ± SD. Student t tests were used to analyze the data. *P < .05; **P < .001; ***P < .0001.
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in tissues. We found no evidence of cell senescence (b-
galactosidase activity; Supplementary Figure 4A) or
increased caspase-3–positive events (Supplementary
Figure 4B) in 35-day KC pancreas tissues, suggesting a
general absence of apoptosis. KC transcriptomes negatively
correlated with oxidative stress response pathways (GOB-
P_RESPONSE_TO_OXIDATIVE_STRESS, M3223;
Supplementary Figure 4C). PC and KPC (Supplementary
Figure 4D and E) gene signatures positively correlated
with oxidative stress, suggesting noneliminated mutant p53-
expressing populations (PC, KPC) are potentially under
oxidative stress, whereas this is unlikely for KC cells. Im-
munostaining for Ki-67 showed an absence of proliferation
in all tissues (Figure 3B). GSEA analyses identified enrich-
ment of proliferation-related pathways (eg, E2F targets and
GF-Rtk-Ras-Erk signaling) and enrichment of pathways
indicative of dysregulation of the cell cycle towards genomic
instability (eg, G2M checkpoint, Htlv Tax to spindle assembly
checkpoint, Hbv-Hbx to Ras/Erk signaling, DNA-replication
termination)24 in noneliminated KC cells compared to con-
trols (Figure 2B). We observed a general down-regulation of
cell cycle genes in KC signatures (Figure 3C). Similarly, gene
expression profiles of PC cells (Figure 3C) and GSEA ana-
lyses of mutant p53-expressing cells indicated a general
down-regulation of cell cycle and proliferation-related
pathways (PC; Figure 2C; KPC; Supplementary Figure 2E).
We scored a significant increase in p27-positive RFPþ nuclei
in KC tissues compared to controls (Figure 3D), suggesting
noneliminated KrasG12D cells are arrested at the G1 stage of
the cell cycle.25 Interestingly, noneliminated KC gene sig-
natures were also enriched for pathways associated with
cancer cell dormancy (eg, oxidative phosphorylation,
unfolded protein response, and hypoxia; Figure 2B). Cell
dormancy describes a reversible cell cycle arrested state,
often triggered by cell stress.26 Diapause is a temporary halt
in embryogenesis when conditions are detrimental to
development.27 Cell dormancy (Figure 3E, Supplementary
Figure 4F) and diapause (Supplementary Figure 4G) gene
signatures were enriched in noneliminated KC cells
compared to control. Using Sox9 as a marker of dormant
cells, we found that Sox9 fluorescence was significantly
increased in RFPþ nuclei in KC tissues compared with RFPþ

nuclei in wild-type controls (Figure 3F). NRF2 (a tran-
scription factor activated during cell dormancy28) pathway
and NRF2 target genes (Supplementary Figure 4H and I)
positively enriched in noneliminated KC cells only. Diapause
gene signatures were not significantly enriched in PC cells
(Figure 3E, Supplementary Figure 4G). These data infer that
noneliminated mutant cells deregulate the cell cycle to-
wards an arrested state; however, 2 copies of functional p53
are required for cells to adopt a dormant or diapaused
state.29–31
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Cell Cycle Arrest Prevents Mutant Cell Extrusion
In Vitro

We hypothesized that mutant cells override cell elimi-
nation in vivo by arresting in the cell cycle. To test this, we
used previously established cell competition assays and
FLA 5.7.0 DTD � YGAST66770_proof
MDCK cells expressing GFP-tagged constitutively active
oncogenic RasV12 (GFP-RasV12).8–10 When surrounded by
normal MDCK cells, GFP-RasV12–expressing MDCK cells are
outcompeted via cell extrusion.9,10 In contrast, MDCK cells
expressing mutant p53 are outcompeted by normal cells via
necroptosis.32 c-Myc is a key regulator of the cell cycle and
depletion of Myc triggers cell dormancy.33 We induced cell
cycle arrest in GFP-RasV12 cells via Myc knockdown using 2
c-Myc siRNAs (siMyc-GFP-RasV12). Expression of c-Myc
siRNA yielded a decrease in Myc and phospho-p38 protein
levels, an increase in p21 protein levels (Supplementary
Figure 5A and B) and a marked reduction in GFP-RasV12
cell confluency (Supplementary Figure 5C). In cell extru-
sion assays,9,10 GFP-RasV12 cells were first transfected with
siScr or siMyc oligos and then mixed with normal MDCK
cells at 1:50 ratios. The proportion of nonextruded GFP-
RasV12 cells significantly increased when GFP-RasV12
cells were depleted for Myc (Figure 3G and H). Non-
extruded siMyc-GFP-RasV12 cells were not proliferating,
whereas the minority of Ki-67–positive cells were extruded
(Figure 3I and J). We also used cell confrontation assays10

and live-cell imaging of normal–mutant interactions across
an entire epithelial cell sheet (Supplementary Figure 5D).
Upon collision with normal MDCK cells, GFP-RasV12 cells
are triggered to retract and segregate away from normal
cells, separating via the formation of smooth boundaries.10

GFP-RasV12 cells depleted for Myc (siMyc1þ2) retracted
less efficiently than GFP-RasV12 siScr controls
(Supplementary Figure 5E and F). Thus, RasV12 cells
depleted for Myc and exhibiting cell cycle arrest are not
extruded or triggered to segregate by normal cells, sug-
gesting cell cycle arrest protects RasV12 mutant cells from
cell elimination.
Noneliminated KrasG12D Cells Activate
b-Catenin Independent Wnt Signaling In Vivo

The Wnt pathway positively regulates cancer cell
dormancy,34,35 diapause,36 and stemness.37 GSEA analyses
identified an enrichment for Wnt pathway activation in
noneliminated KC transcriptomes compared to controls
(Wnt signaling modulation Lgr/Rspo, Wnt5a-Ror signaling
pathway) (Figure 2B) and increased expression of Wnt
pathway–related genes (Figure 4A). Wnt/b-catenin pathway
gene expression and signatures were generally down-
regulated in KC and PC cells (Figures 2C and 4B,
Supplementary Figure 6A). Both KC and PC gene signatures
positively correlated with Wnt5a-Ror signaling pathway
(Supplementary Figure 6B and C), and Wnt ligands and
receptors associated with Wnt5a-Ror signaling were
increased in KC cells (Figure 4C and D, Supplementary
Table 11).

To investigate active Wnt signaling in vivo, we first
analyzed expression of CD44 protein, a target of b-catenin–
dependent and independent signaling.38 Consistently,39 we
observed CD44 labeling at cell membranes in PanINs
(Supplementary Figure 6D). CD44 was significantly
increased at RFPþ:RFP– cell–cell boundaries in KC and PC
tissues compared to wild-type controls (Supplementary
� 29 April 2025 � 12:10 pm � ce
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Figure 4.Wnt pathway is activated at normal–mutant cell–cell boundaries in vivo. Heatmaps show row z scores of (A) Wnt
signaling pathway (WP_Wnt_signaling MM15829), (B) Wnt/b-catenin pathway (Hallmark_Wnt_beta_catenin_signaling
MM3864) or (C) Wnt5a-Ror pathway (KEGG_Medicus_Wnt5a_Ror_signaling M47823) related genes. (D) Wnt5a messenger
RNA reads relative to control reads obtained from the RNA sequencing experiment (n ¼ 3 samples). (E, F) Mean fluorescence
intensity relative to background of Wnt5a (E) or Dvl2 (F) (n ¼ 3 mice). (G) Representative images of RFP and b-catenin staining.
Scale bar: 50 mm. (H, I) Mean fluorescence intensity relative to background of b-catenin in the nuclei of RFPþ cells (H) or at the
boundary between RFPþ:RFP– cells (I) (n ¼ 3 mice). (J) Confocal images of pancreas tissues stained with anti-RFP and anti–E-
cadherin. Scale bar: 20 mm. (K) Mean fluorescence intensity relative to background of E-cadherin at the boundary between
RFPþ:RFP– cells (n ¼ 5 mice). Data represent mean ± SD. Student t tests were used to analyze the data. *P < .05.
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Figure 6E. F, and H). In contrast, CD44 was significantly
reduced within a cluster of KC and PC cells (Supplementary
Figure 6E, G, and I). We compared CD44 levels in tissues
where KrasG12D cells are not competitively eliminated
(high dose of tamoxifen-KC megadose)7 and found CD44
levels were significantly lower at mutant–normal cell
boundaries in KC megadose tissues compared to KC low-
dose tissues (Supplementary Figure 6E and F), and signifi-
cantly higher between KC cells (Supplementary Figure 6E
and G). We observed significant increase in Wnt5a
(Figure 4E) and Dvl2 (Figure 4F) protein in KC cells relative
to controls, suggesting Wnt5a signaling is active in non-
eliminated KrasG12D cells in vivo. Nuclear b-catenin was
undetectable in both control and KC cells (Figure 4G and H),
indicating that Wnt/b-catenin signaling is not active in
noneliminated KC cells, consistent with our transcriptional
analysis. Instead, b-catenin was significantly increased at
RFPþ:RFP– cell–cell contacts in KC tissues compared to
controls (Figure 4G and I). Moreover, E-cadherin was also
significantly elevated at RFPþ:RFP– boundaries in KC tissues
compared to controls (Figure 4J and K). We also detected
increased messenger RNA expression of atypical cadherin-6
(Supplementary Figure 7A) and increased protein levels (K-
cadherin) in KC cells (Supplementary Figure 7B and C).
Together, our data suggest that b-catenin–independent Wnt
signaling is active in vivo and Wnt signaling increases
cohesiveness and/or stability of E-cadherin-based cell–cell
adhesions at cell–cell boundaries between noneliminated
KrasG12D cells and normal neighbors.
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Wnt5a Inhibits RasV12 Cell Extrusion In Vitro by
Stabilizing E-Cadherin–Based Cell–Cell
Adhesions

To establish whether Wnt5a directly inhibits RAS
mutant cell elimination, we returned to MDCK cell extrusion
assays.9,10 The proportion of nonextruded GFP-RasV12 cells
significantly increased in the presence of Wnt5a compared
with PBS-treated controls (Figure 5A and B). Remarkably,
addition of Wnt3a had no effect on RasV12 cell extrusion
rates (Figure 5A and B), suggesting only b-catenin–
independent Wnt signaling inhibits RasV12 cell extrusion.

Cell extrusion requires dynamic remodeling of E-
cadherin–based cell–cell adhesions at normal–mutant cell–
cell boundaries.9,40,41 E-cadherin and b-catenin staining was
more defined and significantly increased at normal–mutant
cell–cell contacts in Wnt5a-treated cells compared to PBS-
treated controls (Figure 5C–E). In contrast, Wnt3a treat-
ment had no significant effect on E-cadherin or b-catenin at
RasV12–normal cell–cell contacts; instead, E-cadherin/b-
catenin was diffuse/weak and sometimes absent, like con-
trols (Figure 5D and E). Treatment with Wnt5a significantly
increased the levels of E-cadherin (Supplementary
Figure 7D), but had no effect on b-catenin levels
(Supplementary Figure 7E) detected at cell–cell contacts
between RasV12 cells, suggesting Wnt5a signaling specif-
ically modulates E-cadherin at cell–cell contacts. Addition of
Wnt3a had no statistically significant effect on E-cadherin or
b-catenin at cell–cell contacts between RasV12 cells
FLA 5.7.0 DTD � YGAST66770_proof
(Supplementary Figure 7D and E). In cell confrontations
assays,10 Wnt5a treatment significantly reduced RasV12 cell
speed compared to PBS-treated controls, whereas normal
MDCK cell speed was unaffected (Supplementary Figure 7F),
implying Wnt5a signaling specifically affects RasV12 cell
cohesion.

E-cadherin endocytosis is required for apical extrusion
of RasV12 cells from normal MDCK cell sheets.41 Before cell
extrusion events (16 hours),41 E-cadherin staining was
weakly visible/diffuse at RasV12–normal cell–cell contacts
in PBS-treated controls and was often detected in distinct
intracellular puncta in both RasV12 and normal cells
(Figure 5F). In contrast, Wnt5a-treated cells showed strong,
defined E-cadherin at cell–cell contacts and E-cadherin–
positive puncta were less visible in RasV12 cells and
neighboring cells, which was reflected in a significant
reduction in fluorescence intensity (Figure 5F and G).
Caveolin-1 (a key regulator of endocytosis and cell extru-
sion42) fluorescence was significantly reduced at RasV12–
normal cell–cell contacts in Wnt5a-treated cells compared
with PBS controls (Supplementary Figure 7G and H), sug-
gesting Wnt5a treatment blocks E-cadherin recycling/
endocytosis at RasV12–normal boundaries. Together, our
data showed that Wnt5a stabilizes E-cadherin–based cell–
cell adhesion at normal–mutant boundaries potentially by
preventing E-cadherin internalization, which correlates with
a significant reduction in RasV12 cell extrusion and increase
in RasV12 cell cohesion.
Wnt Signaling Is Required to Promote Retention
of Mutant Cells In Vitro and In Vivo

Next, we set out to test whether Wnt signaling is
required to prevent mutant cell elimination. In MDCK cells,
overexpression of RasV12 induces expression and secretion
of Wnt5a in a porcupine-dependent manner.43 Porcupine is
an acyltransferase enzyme required for the lipidation and
trafficking of Wnt proteins.44 We observed a significant
reduction in the proportion of nonextruded siMyc 1þ2-GFP-
RasV12 cells from normal monolayers treated with porcu-
pine inhibitor WNT-974, compared to DMSO-treated co-
cultures (Figure 6A and B). In cell confrontation assays,10

WNT-974–treated siMyc 1þ2-GFP-RasV12 cells efficiently
retracted and segregated from normal cells with a smooth
boundary (Supplementary Figure 8A–C), compared with
DMSO-treated cells.

The effects of Wnt5a on RasV12 cell extrusion rates
were reversed in the presence of WNT-974 (Figure 6C and
D) or the Frizzled receptor antagonist OMP-18R539

(Figure 6C and E) compared with DMSO-treated controls.
Wnt5a induced a significant decrease in the level of intra-
cellular E-cadherin fluorescence in RasV12 cells, which was
rescued in the presence of WNT-974 (Figure 6F and G),
implying that Wnt signaling is required to prevent E-cad-
herin internalization and endocytosis. In cell confrontation
assays, Wnt5a treatment significantly decreased RasV12 cell
speed, and this significantly increased in the presence of
WNT-974 (Supplementary Figure 8D). We repeated cocul-
ture experiments using primary murine pancreatic ductal
� 29 April 2025 � 12:10 pm � ce
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Figure 5.Wnt5a induces stable E-cadherin–based cell–cell adhesion in RasV12 cells. (A) Confocal images of cell extrusion
experiment. Scale bar: 100 mm. (B) Proportion of nonextruded GFP-RasV12 cells relative to nonextruded PBS-treated GFP-
RasV12 cells (n ¼ 3 experiments). (C, F) Confocal images of GFP-RasV12 cells mixed with MDCK cells 48 hours (C) or 16 hours
(F) after treatment. Scale bar: 20 mm. (D, E) Mean fluorescence intensity of E-cadherin (D) or b-catenin (E) at the boundary
between GFP-RasV12 and MDCK cells relative to PBS-treated cells (n ¼ 3 experiments). (G) Mean fluorescence intensity of
intracellular E-cadherin in GFP-RasV12 relative to PBS-treated cells (mixed with MDCK cells; n ¼ 3 experiments). Data
represent mean ± SD. Student t tests were used to analyze the data. *P < .05; **P < .001.
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epithelial cells.7 When mixed with nontransformed pancre-
atic ductal epithelial cells, prelabeled KRasG12D-expressing
ductal epithelial cells are often visible on the apical surface
of the underlying nontransformed cells (Supplementary
Figure 8E). Treatment with Wnt5a significantly increased
the number of KrasG12D-exxpressing cells integrated into
FLA 5.7.0 DTD � YGAST66770_proof
the monolayer (Supplementary Figure 8E and F). This effect
of Wnt5a was significantly reduced in the presence of WNT-
974 (Supplementary Figure 8E and F). Consistent with
MDCK experiments, Wnt5a treatment induced a significant
reduction in the level of intracellular E-cadherin fluores-
cence in KrasG12D ductal epithelial cells, which was
� 29 April 2025 � 12:10 pm � ce

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440



Q17

- 2025 XXXX 13

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546
reversed after treatment with WNT-974 (Supplementary
Figure 8G and H).

To functionally test whether active Wnt signaling is
necessary for mutant cell retention in vivo, we first induced
low-level recombination in adult KC or PC tissues, waited
for 35 days p.i. for most mutant cells to be eliminated, and
then administered WNT-974 or vehicle for 4 weeks
(Figure 6H). CD44 fluorescence significantly decreased in
WNT-974–treated KC tissues compared with vehicle
(Supplementary Figure 9A), suggesting Wnt activity is
reduced after treatment. We measured a significant
decrease in RFP fluorescence in the WNT-974–treated KC
tissues (Figure 6J–I) and in PC tissues (Supplementary
Figure 9B and C) compared to vehicle-treated controls.
Thus, inhibition of Wnt pathway induces the expulsion of
KrasG12D or p53R172H cells from pancreas tissues in vivo,
suggesting Wnt signaling is required to promote mutant cell
retention. Notably, we observed a significant decrease in
Sox9 fluorescence in RFPþ nuclei (Figure 6K) and a signif-
icant decrease in percentage of p27-positive cells
(Supplementary Figure 9D) in KC tissues treated with WNT-
974, compared to KC tissues treated with vehicle. These
data suggest that active Wnt signaling is required to pro-
mote cell dormancy/cell stemness in some KrasG12D cells
in vivo. Our data support a model (Supplementary
Figure 9E) whereby activation of Wnt signaling allows
mutant cells to switch to a dormant cell state, avoid cell
expulsion, and survive in the pancreas.

High WNT5A Expression Correlates With
Pancreatic Cancer Progression and Poor
Prognosis in Humans

To translate our findings to the clinical setting, we mined
publicly available RNA sequencing45 and proteomic datasets
(Clinical Proteomic Tumour Analysis Consortium, The Can-
cer Genome Atlas Program). WNT5A (Figure 7A), DVL2
(Supplementary Figure 10A), FRIZZLED7 (FZD7,
Supplementary Figure 10B) gene expression levels were
elevated in PanIN lesions and increased pancreatic tumors
compared to normal tissues. Expression of WNT5A protein
was significantly increased in tumors of increasing grade
compared to normal tissues (Figure 7B, Supplementary
Figure 10C). High expression of WNT5A correlated with
poor overall survival compared to medium/low expression
(Figure 7C, P ¼ .1). FZD7 (Supplementary Figure 10D)
significantly increased at the protein level in human
=
Figure 6.Wnt signaling prevents apical extrusion of RasV12 ce
promotes elimination of noneliminated cells in vivo. (A, C) C
transfected with siMyc/siScr (A) or treated with PBS/Wnt5a (C
Proportion of nonextruded GFP-RasV12 transfected in (A) relativ
of GFP-RasV12 nonextruded cells treated with DMSO/WNT-974
cells. (F) Confocal images of GFP-RasV12 cells mixed with MDC
hours. Scale bar: 20 mm. (G) Mean fluorescence intensity of in
DMSO-treated cells (n ¼ 3 experiments). (H) Experimental des
images of endogenous RFP fluorescence in KC pancreas harves
mm. (J) RFPþ area per total tissue area relative to vehicle (vehic
intensity relative to background of Sox9 per nuclei of RFPþ cel
represent mean ± SD. Student t tests were used to analyze the

FLA 5.7.0 DTD � YGAST66770_proof
pancreatic adenocarcinoma samples compared to normal
tissues. We conclude that elevated expression of WNT5A
and high WNT5A signaling are strongly associated with
human pancreatic cancer.

Discussion
Tissue homeostasis is fundamental to healthy aging of an

organism and cell competition is an important regulator of
tissue health. Here, we extend our previously published
results7 to show that, like KrasG12D-expressing cells,
p53R172H-expressing cells compete with normal cells for
survival in the adult pancreas and are often expelled from
the tissue. We report that cell expulsion is inefficient, and a
proportion of KrasG12D- or p53R172H-expressing cells are
not eliminated from the tissue, suggesting these cells have a
survival advantage. We found that Wnt5a signaling is active
in noneliminated cells and directly inhibits cell elimination
mechanisms both in vitro and in vivo, promoting mutant cell
survival. We found that coexpression of p53R172H and
KrasG12D in the same cell (KPC) provides all mutant cells
with a survival advantage and “double-mutant” KPC cells
are not eliminated, consistent with previous studies.32,46

Apical cell extrusion is an active process that requires
direct interaction with normal cells.9 E-cadherin is a key
modulator of apical cell extrusion,7,9,40,41 suggesting E-
cadherin must be dynamically remodeled for cell extrusion
to occur. We previously showed that E-cadherin is
decreased at KrasG12D–normal cell–cell adhesions in vivo,
specifically at time points before KrasG12D cell elimina-
tion,7 and is predominantly intracellular in KrasG12D-
expressing ductal epithelial cells surrounded by normal
ductal epithelial cells in vitro.7 Here, we extended these
findings to show that E-cadherin and b-catenin are
increased specifically at cell–cell contacts between
KrasG12D cells that are not eliminated and normal neigh-
bors in vivo. Using MDCK and primary pancreatic ductal
epithelial cell systems, we showed that treatment with
Wnt5a induced a significant decrease in the level of intra-
cellular E-cadherin detected in RAS cells. Instead, E-cad-
herin and b-catenin are increased at RAS–normal cell–cell
contacts. Moreover, inhibition of Wnt signaling restores
appearance of intracellular E-cadherin in RAS cells and
apical extrusion events. Together our data support a model
whereby stable cell–cell adhesion induced by Wnt5a
signaling prevents cell extrusion. We also found that
caveolin-1, an important driver of RasV12 cell
lls from normal epithelial monolayer in vitro. Inhibition of Wnt
onfocal images of cell extrusion experiment, GFP-RasV12
) and DMSO/WNT-974 for 48 hours. Scale bar: 100 mm. (B)
e to siScr-GFP-RasV12 (n ¼ 3 experiments). (D, E) Proportion
(D) or DMSO/OMP-18R5 (E) relative to PBS-/DMSO-treated
K cells treated with PBS/Wnt5a and DMSO/WNT-974 for 16
tracellular E-cadherin in GFP-RasV12 in F relative to PBS-/
ign for Wnt inhibition experiments in vivo. (C) Representative
ted 28 days post-vehicle/WNT-974-treatment. Scale bar: 500
le n ¼ 4 mice; WNT-974 n ¼ 5 mice). (K) Mean fluorescence
ls in tissues treated with vehicle/WNT-974 (n ¼ 3 mice). Data
data. *P < .05; **P < .001; ***P < .0001.
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Figure 7.WNT5A protein levels are increased in human pancreatic adenocarcinoma compared to normal human pancreas. (A)
WNT5A expression levels in normal pancreas, low-grade PanINs, high-grade PanINs and tumors (GSE210351). (B) The z value
of WNT5A protein in normal pancreas and pancreatic adenocarcinoma. (C) Kaplan-Meier graph showing probability of survival
depending on high or low WNT5A expression levels. **P < .001; ***P < .0001.
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extrusion,42,47 is also decreased at RasV12–normal cell–cell
contacts after Wnt5a treatment. In development, Wnt5a
signaling regulates cell cohesion and tissue fluidity via
caveolin-dependent and clathrin-dependent endocytosis.48

In human epithelial cells, Wnt5a induces b-catenin mem-
brane localization and association with E-cadherin,
increasing intercellular adhesion.49 Whether Wnt5a directly
modulates E-cadherin endocytosis/recycling and/or stabil-
ity of E-cadherin at the membrane at RasV12–normal cell–
cell boundaries requires further investigation.

RasV12 cells in a cell cycle arrested state were not
extruded from MDCK monolayers. In pancreas, non-
eliminated KrasG12D cells stained positive for p27, and up-
regulated cell dormancy signatures and pathways known to
induce cell dormancy.50 Thus, exiting the cell cycle protects
KrasG12D cells from cell elimination in vivo and in vitro.
FLA 5.7.0 DTD � YGAST66770_proof
Increased glycolysis and oxidative phosphorylation are also
associated with pancreatic cancer stem cells.51,52 Indeed,
our data indicate that some noneliminated KrasG12D cells
adopt progenitor and/or stem cell characteristics, suggest-
ing dormant cells are also stem-like cells and may represent
a cancer cell of origin. Future studies are required to
determine whether normal–mutant interactions in the adult
pancreas induce cellular stress responses in genetically
mutant cells and whether this in turn activates cell
dormancy. Interestingly, Wnt5a has been shown to induce
and maintain cancer cell dormancy in metastatic niches by
negatively regulating canonical Wnt/b-catenin
signaling.34,35 An exciting future direction of this work will
be to elucidate whether the cell dormancy phenotype
described here is regulated via Wnt-dependent mechanisms
described for dormant metastatic cancer cells. Here, we
� 29 April 2025 � 12:11 pm � ce
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show that inhibition of Wnt restores cell extrusion and cell
segregation of cell cycle arrested RasV12 cells from normal
cells in vitro. Sox9 levels in RFPþ nuclei significantly
decreased and percentage of p27-positive KrasG12D cells
are significantly reduced in WNT-974–treated tissues, sug-
gesting a mechanistic link between active Wnt and cell
dormancy/cell stemness in vivo is plausible.

KRAS is a key driver of pancreatic ductal adenocarci-
noma. Single-cell profiling of pancreatic tumorigenesis in
mouse models demonstrates that Kras mutant cells are very
heterogeneous and show signatures of tumorigenesis even
before premalignant lesions are established.20 Our RNA
sequencing data confirmed this early transformation and
cellular heterogeneity profile of KrasG12D cells. Pancreatic
cancer is a devastating disease, which is generally diagnosed
at late and incurable stages. An improved understanding of
the biology of how pancreatic cancer starts and grows in
adult tissues will inform the development of new early-
detection tools. Our results challenge current understand-
ing of how cancers start in the adult pancreas and suggest
that genetically mutant cells must override tissue homoeo-
stasis mechanisms to survive in tissues, before malignant
transformation/expansion.
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Supplementary Methods

Mouse Lines, Induction of Cre Recombinase
In Vivo, Inhibition of Wnt In Vivo

Pdx1-CreERT, LSL-KrasG12D/þ, LSL-Trp53R172H/þ,
Rosa26LSL-tdRFP mouse lines have all been described previ-
ously.7 Animals were housed in conventional pathogen-free
animal facilities and experiments were conducted in
accordance with UK Home Office regulations (ASPA 1986
and EU Directive 2010) under the guidelines of Cardiff
University Animal Welfare and Ethics Committee. Mice were
genotyped by polymerase chain reaction analysis following
standard methods and using previously published primer
sequences.7 Both male and female 6- to 8-week-old exper-
imental and control mice were injected with intraperitoneal
injection of tamoxifen in corn oil as described previously.7

Low recombination levels were obtained by administering
1 tamoxifen dose of 1 mg/40 g bodyweight, while high
recombination (megadose) was induced by 3 injections of 9
mg/40 g over 5 days.7 Pancreata were harvested at 7, 35,
70, 140, or 168 days post tamoxifen induction. To test the
functional role of Wnt signaling in vivo, 6- to 8-week-old
experimental and control mice were induced with low-dose
tamoxifen, aged to 35 days post induction of Cre recombi-
nase (p.i.) and treated with WNT-974 1.5 mg/kg or vehicle
(DMSO) in corn oil by oral gavage, 5 days per week for 4
weeks. At the end of the treatment pancreatic tissue was
harvested and treated as described below. No statistical
method was used to predetermine sample size. For most
animal studies, experiments were not randomized, and in-
vestigators were not blinded to allocation during experi-
ments. To test the functional role of Wnt signaling mice
were randomly allocated into vehicle or WNT-974–treated
groups. All experiments were reproduced using at least 3
animals of each genotype.

Pancreas Digestion and RNA Sequencing
Pancreas tissues were harvested 35 days post low-dose

tamoxifen induction. To reach the minimum of 5000 cells
and a minimum of 100 ng RNA/sample for bulk RNA
sequencing, we combined 3 pancreas tissues of the same
genotype to produce 1 sample per genotype. Each sample
was replicated 3 times to generate 3 biological repeats per
genotype for sequencing. Pancreas tissues were digested as
described previously.e1 Using an ethylene glycol-bis(b-
aminoethyl ether)-N,N,N0,N0-tetraacetic acid–based buffer
the pancreas from each mouse was inflated and slightly
digested with collagenase. The tissue was chopped and
further digested using a calcium-based buffer with colla-
genase. Single-cell digested tissue was stained with leptin
PNA-A488 (ThermoFisher) and 40,6-diamidino-2-
phenylindole (ThermoFisher Scientific). 40,6-Diamidino-2-
phenylindole–negative, leptin-positive, RFP-positive cells
were sorted using the FACSAria Fusion sorter (BD Bio-
sciences). A minimum of 5000 cells were sorted for each
sample. RNA was extracted using the RNeasy Micro kit
(Qiagen) following the manufacturer’s recommendations.

Paired-end sequencing was performed using Sanger
sequencing Illumina 1.9. Sequenced reads Fastq files were
quality-checked using FastQC. Reads were aligned to the
mouse genome (Ensembl-GRCm38 Mus musculus) using the
STAR package, and reads were counted using the Featur-
eCounts package, after removing duplicates using the
MarkDuplicates tool (GATK). Differential expression was
normalized and calculated using DESeq2, comparing the
different genotypes against the control. Finally, GSEA soft-
ware, version 4.2.2 was used for enrichment analysis of
different pathways and Prism software, version 10.0.2
(GraphPad) for heatmap graphs and normalized enrichment
score graphs. The RNA sequencing data generated during
this study are available at GEO ID: GSE255283 (reviewers
token krcxkmcihrklhqh).

Madin-Darby Canine Kidney Cell Lines and
In Vitro Experiments

To assess the interactions between RasV12 and MDCK
cells, MDCK-pTR GFP–RasV12 cells were combined with
parental MDCK cells at a 1:50 ratio.9,10 Treatment with
tetracycline (2 mg/mL) induces GFP-RasV12 expression in
MDCK-pTR GFP–RasV12 cells.9,10 Cells were plated at a
density of 2.5 � 105 cells per well in MW24 plates (Corn-
ing) carrying 18-mm diameter glass cover slips (VWR).
Mixed cells were incubated for 30 hours or 48 hours at
37�C before fixed with 4% formaldehyde (ThermoFisher
Scientific). Cells were then permeabilized and stained
(Supplementary Table 14). GFP-RasV12 cells were consid-
ered nonextruded when >30% of their cytoplasm was
basally protruded. Three technical replicates per experi-
ment in 3 experiments (ie, using 3 independent passages
from at least 2 frozen stocks of parental and GFP-RasV12
MDCK cells) were performed and at least 150 GFP-
RasV12 cells were quantified per replicate.

For c-Myc silencing, tetracyclin-induced GFP-RasV12 cells
were transfected with 100 ng siRNA oligos targeting Myc
using Lipofectamine 3000 (Invitrogen) (siRNA siMyc1:
AAGACGUUGUGUGUUCGCCUC – as GAGGCGAACACA-
CAACGUCUU, siRNA siMyc2: AAUUUCAACUGUUCUCGCCGC –
as GCGGCGAGAACAGUUGAAAUU and siScr). For cell extru-
sion and proliferation experiments, GFP-RasV12 cells were
trypsinized and mixed with parental MDCK cells 24 hours
after siMyc1þ2 transfection and were then fixed following a
further 48 hours.

For experiments comparing PBS, Wnt3a, and Wnt5a
treatments effect, RasV12 cells were mixed 1:50 with
parental MDCK cells and once cells were set, induced with
tetracycline. Two hours post-tetracycline induction, cells
were treated with 1 mg/mL of human recombinant Wnt3a
(Peprotech), 100 ng/mL of human recombinant human/
mouse Wnt5a (R&D Systems), or PBS (control-Sigma-
Aldrich). Cells were fixed 30 hours after PBS, Wnt3a, or
Wnt5a treatment for cell extrusion analysis and for analysis
of E-cadherin/b-catenin at the RasV12-MDCK contact or
within GFP-RasV12 cell clusters. E-cadherin endocytosis
and caveolin fluorescence were assessed by fixing cells 16
hours after PBS/Wnt5a treatment.
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For Wnt pathway inhibition experiments, tetracycline
induced GFP-RasV12 cells were transfected with
siMyc1þ2/siScr or treated with recombinant Wnt5a/PBS
for 24 hours and then mixed with parental MDCK cells.
Wnt5a treatment was maintained during the whole exper-
iment. WNT-974 (Stratech) porcupine inhibitor (1 mM) or
OMP-18R5 (10 mg/mL) was added to the medium 8 hours
after GFP-RasV12 and MDCK cells were mixed and plated.
DMSO-treated GFP-RasV12 cells were used as control for
both inhibitors. To assess cell extrusion, cells were fixed 48
hours after plating. E-cadherin endocytosis was assessed by
mixing RasV12 cells with MDCK parental cells, then RasV12
expression was induced by tetracycline and treated with
PBS or Wnt5a 2 hours after. Four hours after PBS/Wnt5a
treatment, cells were treated with DMSO or WNT-974. Cells
were fixed 16 hours after PBS/Wnt5a treatment.

Immunofluorescent staining was performed by per-
meabilization of cells with 0.05% SDS (Sigma-Aldrich) and
0.05% Triton X100 (Sigma-Aldrich) solution for 15 minutes.
Cells were stained with anti–Ki-67, anti–E-cadherin, anti–b-
catenin or Caveolin primary antibodies for 2 hours at room
temperature, Alexa Fluor secondary antibody incubation for
60 minutes at room temperature and Hoechst (Thermo-
Fisher) (Supplementary Table 14) and mounted using
Mowiol (Sigma-Aldrich). For proliferation analysis at least
30 extruded and 30 nonextruded cells were quantified in
siMyc 1þ2 treated cells per experimental replicate (ie, us-
ing 3 independent passages of parental and GFP-RasV12
MDCK cells). For E-cadherin, b-catenin, or Caveolin at
least 10 GFP-RasV12 cell clusters per experimental repli-
cate were quantified. Fluorescence intensity at the border
between RasV12 and parental MDCK cells were quantified
by measuring mean fluorescence intensity of 2.27 � 2.27-
pixel circles (regions of interestQ19 ) along the membrane
separated by approximately 5 pixels. E-cadherin endocy-
tosis was measured quantifying the mean fluorescence in-
tensity of the cytoplasm of each RasV12 cell. At least 10
cells were quantified in 3 technical replicates per experi-
ment in 3 experiments.

Confrontation assays and migration speed analysis were
carried out as described.10 The 1 � 104 cells were plated in
inserts (Ibidi) in MW24 plates, allowed to form monolayers
(8 hours) before removing the insert and moving the plate
to IncuCyte S3 (Sartorius) for live cell imaging. Images were
captured every 15 minutes for 48 hours. siMyc/siScr-GFP-
RasV12 cells were plated 24 hours after transfection and
inserts were removed 8 hours post transfection. For Wnt5a
experiments, cells were treated with PBS/Wnt5a for 8
hours before inserts were removed. PBS/Wnt5a treatment
was maintained during the whole experiment. WNT-974
porcupine inhibitor (Stratech)/DMSO (Sigma-Aldrich) was
added to the medium when inserts were removed. Retrac-
tion was measured as the distance GFP-RasV12 cells
migrated during 24 hours, following initial cell–cell collision
with MDCK cells. Coefficient of boundary smoothness was
measured using Fiji in cell confrontation assays at the end
of the 24-hour experiment and as described previously.10

This was calculated by measuring the length of the cell–
cell boundary between GFP-RasV12 and MDCK cells at the
end of the experiment (dashed line in Supplementary

Figure 8A) divided by the length of a straight line from
the top to the bottom of the collision (solid line in
Supplementary Figure 8A). A value of 1.0 indicates a linear
boundary. We performed 3 technical replicates per experi-
ment in 3 experiments (ie, using 3 independent passages of
parental and GFP-RasV12 MDCK cells).

Western blotting was performed using GFP-RasV12 cell
lysates transfected with siMyc/siScr siRNAs at 48 hours
post transfection (Supplementary Figure 3E), treated for 48
hours with WNT-974/DMSO 24 hours post transfection
(Supplementary Figure 5D). Cells were lysed using Laemmli
buffer (0.0625 M Tris base, 2% sodium dodecyl sulfate,
10% glycerol). Proteins were separated on 12% poly-
acrylamide gels under reducing polyacrylamide gel elec-
trophoresis conditions. Proteins were then transferred to
polyvinylidene difluoride membranes (Immobilon-P,
Merck) using wet transfer (1 hour, 100 V). Membranes were
blocked in 5% milk Tris-buffered saline with Tween 20 for
1 hour and antibodies were added in the same buffer at the
concentrations listed in Supplementary Table 14 for over-
night at 4�C or 2 hours at room temperature. Secondary
antibodies (Supplementary Table 14) were added in 5%
milk Tris-buffered saline with Tween 20 and membranes
were developed using ECL luminol kit (Merck) and chem-
iluminescence films (Amersham Hyperfilm ECL, GE
Healthcare). Protein levels were quantified using Fiji
(RRID:SCR_002285) software “Gels” tool.

Real-time cell confluency was measured using Incucyte
S3 live cell imaging instrument and software (version
2020). The 1 � 103 cells siMyc/siScr-GFP-RasV12 cells
were plated 24 hours after transfection with siMyc/siScr
siRNAs in MW96 (Corning). Images were captured every 15
minutes for 48 hours. We performed 3 technical replicates
per experiment in 3 experiments.

Imaging and Image Analysis
Immunohistochemical imaging was done using the Axio

Scan Z1 slide scanner (Zeiss) 20� magnification. Fluores-
cence imaging of tissue sections was carried out a Zeiss
LSM710 confocal microscope. Fluorescence imaging of
MDCK/PDEC cell cultures was performed using Zeiss
LSM880 or Leica Sp8 confocal microscope.

The percentage of RFPþ tissue area was determined
using endogenous RFP levels quantified as described.7 Us-
ing Fiji (RRID:SCR_002285) software, positive areas were
thresholded using RFP fluorescence. Tissue auto-
fluorescence was used to determine total tissue area. The
percentage of RFPþ ducts were analyzed using E-cadherin/
RFP/Hoechst-stained sections to identify ducts. At least 20
ducts were quantified per mouse and ducts were consid-
ered positive when they contained at least 1 RFPþ cell. The
percentage of RFPþ cells in pancreatic islets were scored in
FFPE immunohistochemical sections stained with anti-RFP
antibody and using “positive cell count” tool in QuPath-
0.4.1 software. RFPþ cluster size, perimeter, and area
were determined in FFPE immunohistochemical sections
stained with anti-RFP antibody and using QuPath software,
version 0.4.1 by analyzing shape features of RFPþ (3,30-
diaminobenzidine tetra hydrochloride–positive) areas. Ki-
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67–positive and cleaved caspase-3–positive cells were
analyzed using QuPath software, version 0.4.1 positive cell
count feature.

Wnt5a fluorescence intensity in the tissue was quanti-
fied by masking the tissue area (AF568) and measuring
mean fluorescence intensity for Wnt5a (AF488). CD44, b-
catenin, and E-cadherin fluorescence intensity at the border
between RFP-positive and -negative cells were quantified by
measuring mean fluorescence intensity of 2.43 � 2.43-pixel
circles (regionsQ21 of interest) along the membrane (RFPþ/
RFP–) separated by approximately 5 pixels. CD44, Dvl2, and
K-cadherin fluorescence in clusters was quantified by
masking RFPþ (AF568) areas and quantifying mean fluo-
rescence intensity for CD44/Dvl2/K-cadherin (AF488). b-
catenin and Sox9 fluorescence in nuclei was quantified by
masking nuclei (Hoechst) and quantifying mean fluores-
cence intensity for b-catenin/Sox9 (AF488) in RFPþ cells. To
avoid noise associated with tissue autofluorescence, fluo-
rescence intensity measurements were made relative to
image global mean fluorescence intensity (AF488).

Children’s Brain Tumor Network, The Cancer
Genome Atlas, and GSE210351 Data Analysis

Children’s Brain Tumor Network and The Cancer
Genome Atlas data were analyzed using UALCAN data
analysis portal. The z values represent SDs from the median
across samples for the given cancer type. Log2 spectral
count ratio values from Clinical Proteomic Tumour Analysis
Consortium were first normalized within each sample pro-
file, then normalized across samples. GSE210351 data45

were analyzed using Geo2R-GEO-NCBI tool.

Supplementary Q22References
e1. Assi M, Dauguet N, Jacquemin P. DIE-RNA: a repro-

ducible strategy for the digestion of normal and injured
pancreas, isolation of pancreatic cells from genetically
engineered mouse models and extraction of high
quality RNA. Front Physiol 2018;9:129.

e2. Dudgeon C, Harris CR, Chen Y, et al. A novel model of
pancreatic cancer dormancy reveals mechanistic in-
sights and a dormancy gene signature with human
relevance. 2020. bioRxiv 2020;04.13:037374.

Statistical Tests
Statistical analyses were performed using Prism 10

software (GraphPad). Normally distributed data, as deter-
mined by the Shapiro-Wilke test or D’Agostino and Pearson
test were analyzed using unpaired Student t tests. Human
data statistical analysis was performed using the UALCAN
data analysis portal. A P value of <.05 was considered as
significant and a rejection of the null hypothesis. Graphical
data represent mean ± SD. No statistical method was used
to predetermine sample size. Definition of n is in the figures.
GSEA was performed using GSEA software, version 4.2.2.
GSEA was used to identify gene sets that were differentially
expressed between 2 groups of samples. Gene sets were
considered enriched if they had a false discovery rate of
<0.25. Heatmaps were created by computing normalized
gene counts for each individual sample into row z scores.
SuperPlots show all the quantified points (smaller circles)
and the mean for each mouse/experiment (larger circles).
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Supplementary Figure 1. Noneliminated mutant cells can progress to mucin-positive lesions. (A) H&E staining of pancreas
tissues harvested at 35 days p.i. from control, KrasG12D (KC), p53R172H (PC) or double mutant (KPC) expressing mice. Scale
bar: 100 mm. (B) Pancreas tissues from KC, PC, and KPC mice harvested at 168 days p.i. and stained for mucin (using Alcian
blue). Scale bar: 500 mm. Boxed area shown magnified (lower panel).
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Supplementary Figure 2. Transcriptomic analysis indicates Kras and p53 pathways deregulation in retained cells. (A) Principal
component analysis of control, KrasG12D (KC), p53R172H (PC) or double-mutant (KPC) transcriptomic data obtained at 35
days p.i. PC1 and PC2 of normalized data are shown. (B) Unsupervised clustering heatmap of the top 2500 differentially
expressed genes (after normalization) between the 12 samples sequenced (3� Control, KC, PC and KPC). GSEA enrichment
plots showing (C) KEGG_MAPK_signaling_pathway (M10792) and (D) KEGG_p53_signaling_pathway (M6370) positive cor-
relation in KC cells compared to control and (E) KEGG_p53_signaling_pathway (M6370), and (F) KEGG_MAPK_signa-
ling_pathway (M10792) negative correlation in PC cells compared to control. (G) Normalized enrichment scores (NES) of GSEA
on the Hallmarks and KEGG Medicus gene sets for the RNA sequencing experiment analysis of KPC retained cells. Only gene
sets with an false discovery rate of <0.25 were included in the graph. The complete list that contains the results of GSEA
analysis is provided in Supplementary Tables 8–9. GSEA enrichment plots of WP_pancreatic_adenocarcinoma_pathway
(M39732) positively correlated in (H) KC cells and negatively correlated in (I) PC cells and (J) KPC cells compared to control.
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Supplementary Figure 3. Noneliminated KrasG12D (KC) are stem-like, whereas p53R172H-expressing populations are not.
(A, B) Heatmaps showing gene expression in noneliminated KrasG12D (KC) cells and control of (A) spasmolytic polypeptide-
expressing metaplasia and (B) pancreatic lineage. Heatmaps show row z scores for the expression of each gene for 3 samples
(3 pooled mice per sample) per genotype obtained from the RNA sequencing experiment. Genes are listed in rows, genotypes
in columns. GSEA enrichment plots indicate positive correlation in KC retained cells compared to control for (C) Enrichment of
Ramalho_stemness_up (M9473), (D) Malta_curated_stemness_markers (M30411) (embryonic, neural, and hematopoietic stem
cells), (E) Boquest_stem_cell_up (M1834), (F) Wong_embryonic_stem_cell_core (M7079), and (G) Ivannova_hematopoiesis_-
stem_cell (M6813). GSEA enrichment plots indicate negative correlation for Ramalho_Stemness_up (M30411) in (H) p53R172H
(PC) retained cells and (A) KrasG12D p53R172H (KPC) retained cells compared to control. For more information on source
data see Supplementary Table 13.
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Supplementary Figure 4. Noneliminated KrasG12D cells up-regulate cell dormancy-associated pathways. (A) Representative
images of b-galactosidase staining of pancreas tissue harvested from a KrasG12D (KC) mouse at 35 days p.i. (scale bar: 1000
mm) and in PanIN lesions as positive control (scale bar: 250 mm). (B) Percentage of cleaved caspase-3–positive cells/total cells
in control, KC, p53R172H (PC) or double-mutant (KPC) pancreas tissues harvested at 7 and 35 days p.i. mean ± SD per
mouse. N ¼ number of mice described in the graph. (C, D, E) GSEA enrichment plots for GOBP_RESPONSE_TO_OX-
IDATIVE_STRESS (M3223) showing (C) negative correlation in KC retained cell signatures compared to control; positive
correlation for (D) PC and (E) KPC retained cell signatures compared to control. Heatmaps showing gene expression in (F)
pancreatic dormant cell gene signaturee2 (G) diapause gene expression22 and (H) NRF2 target genes (NRF2_Q4 M14141)
(rows) in control, KC or p53R172H (PC) cell transcriptomes (columns). The heatmap shows row z scores for each gene ob-
tained from 3 samples per genotype (3 pooled mice per samples) from the RNA sequencing experiment. Only genes with z
scores of a fold change of 2 (F) or 2.25 (H) are shown. The full list of genes can be found in Supplementary Tables 12 and 13. (I)
GSEA enrichment plots showing positive correlation in KC retained cells compared to control for WP_NRF2_pathway
(M39454).
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Supplementary Figure 5. Cell cycle arrest abrogates RasV12 cell extrusion in vitro. (A) Immunodetection of indicated antigens
in GFP-RasV12 cells transfected with scrambled siRNA (siScr) or 2 siRNA oligos targeting endogenous Myc (siMyc1, siMyc2
or combined siMyc1þ2). Lysates were collected 48 hours after transfection. p-p38, phospho-p38; p-ERK, phospho-ERK. Anti-
vinculin staining was included as protein loading control. (B) Quantification of protein levels in the blot in (A). Values are relative
to siScr protein levels. (C) Real-time cell confluence of GFP-RasV12 cells transfected with different siRNAs as quantified via
Incucyte S3 imaging. Cell confluence was determined in cells 12 hours post siRNA transfection over 48 hours. Data indicate
mean ± SD for 3 experiments per condition. (D) Schematic representation of cell confrontation assay experiments. Illustration
created with BioRender.com. (E) Representative time-lapse images of cell confrontation assays. GFP-RasV12 cells expressing
either siScr or siMyc1þ2 confront nonlabeled parental MDCK cells. Dashed lines highlight the border between GFP-RasV12
cells and MDCK cells. Solid lines indicate MDCK cell migration front at the beginning of the experiment. Scale bar: 100 mm. (F)
Relative retraction distance during 24 hours of siScr-GFP-RasV12 (black bar) or combined Myc1þ2 siRNA (green bar) after
collision with parental MDCK. Results are presented as retraction distance in siMyc-GFP-RasV12 relative to siScr-GFP-
RasV12. Data represent mean ± SD measurements of 3 experiments. Student t test was used to analyze the data. **P < .005.
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Supplementary Figure 6.Wnt pathway is active in noneliminated KrasG12D or p53R172H cells. (A) Heatmap of Wnt signaling
pathway (WP_Wnt_signaling, MM15829) related genes (rows) in Control and p53R712H (PC) cell transcriptomes (columns).
The heatmap shows row z scores for each gene obtained from the RNA sequencing experiment. Only genes with z scores of a
fold-change of 2 are shown in the Wnt pathway panel. The full list of genes can be found in Supplementary Table 11. GSEA
enrichment analysis plots showing positive correlation in (B) KrasG12D (KC) and (C) PC retained cells compared with control
for the KEGG_MEDICUS_reference_WNT5A_ROR_signaling_pathway (M47822). (D) Representative images of PanINs in
pancreas tissue sections harvested from KC mice at 140 days p.i. Left:Mucin-positive PanINs (blue). Scale bar: 100 mm. Right:
Confocal image of anti-CD44 antibody (cyan) labeling and Hoechst (blue) in PanINs in a consecutive tissue slice. Scale bar: 50
mm. (E) Representative confocal images of pancreas tissues harvested at 35 days p.i. stained with CD44 and RFP from Control,
KC and KrasG12D high-dose tamoxifen (9 mg/40 g over 5 days, KC megadose) mice. Scale bar: 50 mm. (F–I) Mean fluo-
rescence intensity relative to background of CD44 at the boundary between RFP-positive and RFP-negative cells (F, H) or in
entire RFP-positive clusters (G, I) in control, KrasG12D low-dose (1 mg/40 g, KC) and KrasG12D high-dose tamoxifen (KC
megadose) tissues (F, G) or control and PC tissues (H, I) harvested at 35 days p.i. CD44 fluorescence was quantified and
reported as in Figure 4H. SuperPlot shows all the quantified regions of interest (ROI) (F, H) or RFP-positive clusters (G, I)
(smaller circles) and the mean for each mouse (n ¼ 3 samples; larger circles). The graphs show mean ± SD for the 3 mice. *P <
.05;**P < .001; ***P < .0001. ns, P > .05 (Student t test).
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Supplementary Figure 7.Wnt5a increases RasV12 cell cohesion. (A) Cdh6 messenger RNA reads relative to control reads in
the 3 samples in control and 3 samples in KrasG12D (KC) obtained from the RNA sequencing experiment. Graph represents
mean ± SD reads. (B) Representative confocal images of pancreas tissues stained with K-cadherin and RFP harvested at 35
days p.i. from control and KC mice. Scale bar: 50 mm. (C) Mean fluorescence intensity relative to background of K-cadherin
RFP-positive clusters in control or KC pancreas tissues harvested at 35 days p.i. SuperPlot shows all the quantified RFPþ

clusters (smaller circles) and the mean for each mouse (n ¼ 3 samples; larger circles). The graph shows mean ± SD for the 3
mice. *P ¼ .0474 (Student t test). (D, E, H) Mean fluorescence intensity of E-cadherin (D), b-catenin (E), or Caveolin-1 (CAV1) (H)
in GFP-RasV12 cell clusters (mixed with MDCK cells) treated with PBS (black), Wnt3a (pink), or Wnt5a (yellow) for 30 hours (D,
E) or 16 hours (H) relative to PBS-treated cells. SuperPlot shows all the quantified GFP-RasV12 clusters (smaller circles) and
the mean for each experiment (n ¼ 3 samples; larger circles). The graphs show mean ± SD for the 3 experiments. *P ¼ .0117;
***P ¼ .0003; ns, P > .05 (Student t test). (F) Cell speed (mm/h) at which RasV12 (circles) or MDCK (squares) cells treated with
PBS (black) or Wnt5a (yellow) migrate. The data represent mean ± SD from 3 independent experiment. *P ¼ .0268; ns, P ¼
.8202 (Student t test). (G) Confocal images of CAV1 in GFP-RasV12 cells mixed with MDCK cells treated with PBS or Wnt5a for
16 hours. Scale bar: 20 mm.
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Supplementary Figure 8. Cell cycle arrest and Wnt signaling prevent GFP-RasV12/KC-TDEC segregation from normal
MDCK/PDEC cells in vitro. (A) Representative time-lapse images of cell confrontation assays. GFP-RasV12 cells expressing
combined Myc1þ2 siRNA (siMyc 1þ2-GFP-RasV12) confront nonlabeled parental MDCK cells. Assays were conducted in the
presence of DMSO or WNT-974 (1 mM). Dashed lines highlight the border between GFP-RasV12 cells and MDCK cells. Solid
lines indicate migration front of MDCK cells at the beginning of the experiment. Scale bar: 100 mm. (B) Retraction distance of
GFP-RasV12 cells transfected with siScr; black bars) or siMyc-GFP-RasV12; green bars) after collision with parental MDCK
cells until 24 hours later. Assays were conducted in the presence of DMSO (solid bars) or WNT-974 (hatched bars). Values are
relative to PBS-/DMSO-treated cells. Data represent mean ± SD of 3 experiments. *P < .05 (Student t test). (C) Coefficient of
boundary smoothness in cell confrontation assay. Data represent mean ± SD of 3 experiments. **P < .005 (Student t test). (C)
Cell speed (mm/h) at which RasV12 cells treated with PBS (black) or Wnt5a (yellow) and DMSO or WNT-974 migrate. The data
represent mean ± SD from 3 independent experiment. *P ¼ .0156; **P ¼ .0058 (Student t test). (E, G) Confocal images of
transformed KrasG12D ductal epithelial cells (green) mixed with nontransformed PDECs at 1:50 ratios in vitro showing inte-
grated/nonintegrated KrasG12D cells (E) or E-cadherin intracellular levels (G). Cells were pretreated with PBS (black) or Wnt5a
(orange) for 6 hours and fixed 48 hours after mixing and DMSO or WNT-974 treatment. Scale bar: 50 mm. (F) Proportion of
integrated KrasG12D ductal epithelial cells relative to integrated PBS-/DMSO-treated KrasG12D ductal epithelial cells (n ¼ 3
experiments). Cells were treated as in E. Data represent mean ± SD. Student t test was used to analyze the data. **P < .001.
(H) Mean fluorescence intensity of intracellular E-cadherin in KrasG12D ductal epithelial cells relative to PBS-/DMSO-treated
cells (n ¼ 3 experiments). Cells were treated as in (E). Data represent mean ± SD. Student t test was used to analyze the data.
*P < .05; **P < .001.
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Supplementary Figure 9.Wnt signaling inhibition promotes KrasG12D (KC) cell elimination in vivo. (A) Mean fluorescence
intensity relative to background of CD44 at the boundary between RFP-positive and RFP-negative cells in vehicle or WNT-
974–treated KrasG12D (1.5 mg/kg, KC) tissues harvested at the end of the treatment (see Figure 6H). CD44 fluorescence was
quantified and reported as in Figure 4H. Control quantification is the same used in Supplementary Figure 6F. SuperPlot shows
all the quantified regions of interest (ROIs) (smaller circles) and the mean for each mouse (n ¼ 3 samples; larger circles). The
graph shows mean ± SD for the 3 mice. Student t test was used to analyze the data. *P ¼ .0467. (B) Representative images of
endogenous RFP fluorescence in PC pancreas tissue sections harvested 28 days post treatment with vehicle or WNT-974 (1.5
mg/kg). Scale bar: 500 mm. (C) Percentage of RFP area in PC mice treated with WNT-974 or vehicle and relative to vehicle-
treated tissues. Data represent mean ± SD per mouse. Student t test was used to analyze the data, ***P < .0005. (D) Per-
centage of p27-positive nuclei in RFPþ clusters from KC tissues treated with vehicle or WNT-974. Data represent mean ± SD
per mouse. Student t test was used to analyze the data, *P ¼ .0410. (E) Schematic summarizing the main findings of the study.
Illustration created with BioRender.com.
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Supplementary Figure 10. Components of the WNT5A-ROR signaling pathway are up-regulated in human pancreatic cancer.
DVL2 (A) and FZD7 (B) expression levels in normal pancreas, low-grade PanINs, high-grade PanINs, and tumors (GSE210351).
(C, D) The z value of Wnt5a (C) or FZD7 (D) protein in normal pancreas (blue) and pancreatic adenocarcinoma (red). The box
plots show individual values for each sample; normal n ¼ 74; primary tumor n ¼ 137. Student t tests were used to analyze the
data. *P ¼ .032; ***P < .0001. The data were obtained from the Clinical Proteomic Tumour Analysis Consortium.
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Supplementary Table 14.XXXX Q23

Antibody and fluorescence stains Application Antigen Retrieval Dilution Source Identifier

Ki-67 IHC, IF ProK 15’ 1:500 Abcam ab16667

CC-3 IHC Citrate pH 6 15’ 1:300 Cell Signaling 9661s

RFP IHC, IF ProK 15’ 1:500 Rockland 600-401-379

Lectin PNA-A488 FACS — Invitrogen L21409

c-Myc WB — 1:500 Santa Cruz sc788

Phospho-p38 WB — 1:1000 Cell Signaling 9211s

p38a WB — 1:1000 Santa Cruz sc136210

Vinculin WB — 1:1000 Sigma Aldrich V4505

Phospho-ERK WB — 1:1000 — —

ERK WB — 1:1000 Cell Signaling —

p21WAP/Cip WB — 1:1000 Sigma Aldrich P1484

CD44 IF ProK 15’ 1:25 Cell Signaling 3570S

K-cadherin IF PoK 15’ 1:50 ThermoFisher MA1-06305

b-catenin IF Citrate pH 6 15’ 1:50 BD Biosciences 610154

RFP IF Citrate pH 6 15’ 1:500 Creative Diagnosis DPATB-H83194

E-cadherin IF Citrate pH 6 15’ 1:1000 BD Biosciences 610182

p27 IF — 1:25 Santa Cruz SC-528

Sox9 IF — 1:100 ThermoFisher PA5-81966

Wnt5a IF — 1:50 Santa Cruz SC-30224

Dvl2 IF — Santa Cruz SC-13974

goat anti-rabbit AF568 IF — 1:1000 ThermoFisher A-11011

donkey anti-mouse AF488 — 1:1000 ThermoFisher A-21202

goat anti-rabbit AF488 IF — 1:1000 ThermoFisher A-11008

goat anti-rabbit HRP WB — 1:5000 Vector Laboratories MP-7451-15

goat anti-mouse HRP WB — 1:5000 Vector Laboratories MP-7802-15

Phalloidin IF — 1:1000 Sigma Aldrich 65906

E-cadherin IF — 1:100 ThermoFisher 13-1900

Caveolin IF — 1:50 Abcam Ad2910

Hoechst — — 1:1000 ThermoFisher H3570

FACS, fluorescence-activated cell sorted; IF, immunofluorescence; IHC, immunohistochemistry; WB, western blot.
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