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Abstract: 7 

Modern structural design must balance design criteria with increasing objectives like cost 8 

minimization, carbon reduction, and stakeholder interests. However, this multi-domain knowledge 9 

exists in unstructured forms, such as text, formulas, and tables, and converting it into machine-10 

readable structured knowledge within a unified knowledge framework remains challenging. This 11 

paper proposes an ontology-based knowledge modeling and mapping approach to transform 12 

unstructured knowledge from design specifications, cost, and carbon emissions into structured 13 

knowledge. This approach enables self-containing compliance with structural design standards and 14 

supports multi-objective trade-offs. Furthermore, ontology models are transformed into backend 15 

services to facilitate interactive design. The developed system has been rigorously tested and 16 

validated through case studies. This method promotes the standardization, intelligence, and 17 

sustainability of the structural engineering and construction industries, significantly enhancing the 18 

overall efficiency and collaboration within the sector. 19 
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1. Introduction  21 

In contemporary engineering practice, there is a growing emphasis on meeting social 22 

requirements for sustainable development and comprehensive performance [1–4]. Structure design 23 

has shifted from focusing solely on single indices [5–7] to prioritizing the attainment of a balance 24 

across multiple objectives. These objectives encompass structural safety, reliability, economy, 25 

environmental friendliness, and more. This requires innovative approaches to meet the growing 26 

attention to technological advancements, the increasing complexity of designs, diverse stakeholder 27 

concerns, the evolving technological landscape, and the need to avoid impractical or overly heavy 28 

structures. This transition has propelled structural design towards a multi-objective direction. Even 29 

though the need for multi-objectives in structural design is increasing, it is still essential to follow and 30 

satisfy the design codes and specifications(C&S) used in traditional structural design. The calibration 31 

of these C&S is an ongoing process that is important for maintaining the security of national and 32 

global infrastructure systems. As a result, novel approaches are needed to meet the challenges of 33 

modern structural design in achieving multiple design objectives while ensuring compliance with 34 

C&S standards. 35 

With the development of computer technology, multi-objective design has achieved significant 36 

results[5]. Several prominent approaches have emerged, each contributing to different aspects of 37 

optimization. Firstly, parametric design approaches, such as Building Information Modeling (BIM) -38 

based methods that utilize parametric modeling, provide a more flexible framework for changes in 39 

design parameters [6,7]. For example, Oti and Tizani [8] applied the principles of feature-based 40 



modeling to extract information from the BIM model, focusing on sustainable analysis during the 41 

initial phase of structural design.  42 

In addition to parametric methods, machine learning (ML)-based methods provide a new 43 

dimension to the multi-objective design with strongly correlated objectives and automatically 44 

achieving trade-offs between multiple objectives [9–12]. For example, Pengju et al.[13] proposed an 45 

intelligent layout design method based on deep neural networks for reinforced concrete shear-wall 46 

structures, which considered multiple design objectives of vertical displacement of typical floor slabs, 47 

concrete usage, and steel usage; Yimiao et al. [14] used a multi-objective design approach to automate 48 

the mixing ratio design of steel fiber reinforced concrete.  49 

Recent research has made significant strides in advancing multi-objective structural design. 50 

However, design C&S, as indispensable references for structural design, are challenging to integrate 51 

into current multi-objective methodologies. This difficulty arises because C&S are often represented 52 

in multi-source formats, such as textual descriptions, formulas, and material properties. These are not 53 

readily convertible into quantifiable and structured data compatible with parametric modeling and 54 

ML-based frameworks. As a result, design outcomes frequently lack feasibility, compliance, and 55 

efficiency, leading to increased costs associated with manual validation and modifications. 56 

Furthermore, this limitation can compromise overall project quality and delay implementation 57 

timelines. 58 

Ontology, as an advanced semantic technology capable of clearly representing and processing 59 

knowledge structures, offers unique advantages in addressing challenges. By defining concepts, 60 

property, and their relationships, ontology provides a unified semantic framework for design. Also, 61 



the ontology introduces a knowledge reasoning function based on a unified semantic framework that 62 

allows for connecting, analyzing, and reasoning about implicit knowledge through semantic logic 63 

rules and an inference engine. This facilitates automated calculations and decision-making in the 64 

multi-objective design process. While ontology-based structural design methods have made 65 

significant progress in multi-objective structure design, they primarily focus on considering multiple 66 

objectives. For example, some researchers have applied ontology to the design of various structures, 67 

including frame structures [15], cylindrical structures [16] and pile structures [17,18]. However, the 68 

full potential of ontology has not yet been fully realized, particularly in seamlessly integrating design 69 

C&S into the structural design process, where there remains significant room for improvement. 70 

Therefore, this paper aims to extend the functionality of ontology in structural design based on 71 

knowledge mapping and reasoning to address the above needs. The main contributions are as follows. 72 

First, an ontology-based knowledge mapping method is proposed that integrates weakly correlated 73 

multi-domain knowledge (e.g., C&S, domain expert knowledge, sustainability, and cost) and maps 74 

different types of knowledge (e.g., material parameters, design calculation methods, design 75 

requirements) from C&S into an ontology model. This methodology is self-contained and compliant 76 

while addressing multi-objective design. It can independently generate designs that fully adhere to 77 

industry standards without relying on external tools or manual intervention. This significantly 78 

enhances both the efficiency and accuracy of the design process. In addition, the ontology model has 79 

been integrated into a backend service to facilitate interactive design, enabling engineers to participate 80 

in the design process through queries, thereby enhancing usability in real-world applications.  81 



This paper is structured as follows: section 2 reviews multi-objective structural design. Section 82 

3 demonstrates the Framework design and development method. Section 4 shows a case study of 83 

system validation. Finally, Section 5 gives the key conclusions. 84 

2. Review of Multi-objective Structural Design 85 

With the development of computer technology, various multi-objective design methods have 86 

emerged. For example, integrating BIM technology with multiple dimensions (nD BIM) has become 87 

a key focus in architectural and structural engineering research. The nD BIM represents dimensions 88 

beyond the traditional three-dimensional model, including time, cost, sustainability, and beyond. This 89 

extended functionality holds multi-objective considerations promise for enhancing the capabilities of 90 

structural design processes [19]. For example, Zanni et al. [20] investigated how BIM policies, 91 

technologies, and methods can facilitate more accurate predictions of whole-life costs at the design 92 

decision-making stage, thereby saving time and effort in achieving quality assurance more 93 

effectively. Shin et al.[21] integrated management environment of BIM property information as a 94 

new approach for generating a reliable sustainability simulation model in the BIM-based design 95 

process. The practical implementation of nD BIM faces challenges that have hindered its effective 96 

and comprehensive results. Integrating multiple dimensions, such as time, cost, and sustainability, 97 

into BIM has proven complex, with issues related to data standardization and interoperability between 98 

software applications and stakeholders. Technological limitations in existing BIM tools and a lack of 99 

standardized collaboration practices contribute to the industry's slow adoption. Resistance to change 100 

within traditional construction practices, cost considerations, and limited regulatory support impede 101 



the widespread use of nD BIM. Additionally, the need for a skilled workforce and industry-wide 102 

collaboration poses further barriers [15]. 103 

ML-based approaches introduce a new dimension by leveraging advanced algorithms to 104 

complex design spaces. These methods are particularly advantageous for solving context-specific, 105 

tightly relational multi-objective designs [11,22]. For example, Liu et al.[9] proposed a multi-106 

objective design method considering cost, efficiency, and accuracy for automatically placing 107 

reinforcement bars in RC structures. Gustavo et al.[23] used a heuristic algorithm to solve the 108 

structural multi-objective design problem between cost and safety. Chiu and Lin [24]employed ML 109 

methods to achieve a multi-objective structure design with minimum cost, failure probability, 110 

concrete cover spalling probability, maximum plausibility, and minimum maintenance events.  111 

Ontology, the most critical technology in knowledge systems, has attracted attention for its 112 

strength in integrating weakly connected multidisciplinary knowledge and its ability to enable 113 

information sharing between humans and computers [25–27]. Ontology achieves unified knowledge 114 

representation and semantic interrelation by defining standardized knowledge models such as the 115 

resource description framework (RDF) and web ontology language (OWL). Consequently, ontology 116 

is influential in integrating multi-domain knowledge and multi-source data. For example, in the 117 

architecture, engineering, and construction (AEC) domain, ontology in combination with other digital 118 

technologies such as BIM [28], geographic information systems [29], and the Internet of things 119 

[30]are utilized to address various aspects including cost estimation, health monitoring, holistic 120 

decision -making [31]. In addition, ontology-based solutions have enhanced data exchange between 121 

multiple platforms. For example, some research focused on integrating BIM authoring platforms such 122 



as Navisworks and Revit [32] while other studies developed bespoke platforms to address 123 

interoperability challenges [33,34]. 124 

Ontology enables the integration of multi-domain knowledge through a unified knowledge 125 

representation. Furthermore, with the mining and use of semantic rules, the potential of ontology for 126 

structural design has been initially discovered. Semantic rules can express design specifications, 127 

regulations, conditions, and constraints. Meanwhile, logical reasoning combines explicit and implicit 128 

knowledge, allowing the ontology to store and retrieve information and dynamically infer new 129 

knowledge. This capability provides the foundation for handling complex mathematical 130 

representations and calculations in structural design. As a result, ontology demonstrates strong 131 

adaptability in addressing complex design objectives and supporting integrated decision-making. For 132 

example, Zhang et al. [15] presented a holistic approach based on ontology to facilitate a more 133 

thoughtful decision-making process for the early design stage by informing designers of the 134 

environmental impact, cost, and safety considerations. Hou et al. [16] investigated how ontology and 135 

semantic web rules can be used in a knowledge-based system to represent information about structural 136 

design and sustainability and to facilitate decision-making in the design process. Zhang et al. [18] 137 

developed the bridge deck decision system ontology based on the ontology method and semantic web 138 

rule language (SWRL). It can automatically provide financial, safety, and heat flux information for 139 

designers to evaluate and optimize the design scheme in the early design stage of a bridge. 140 

The literature review demonstrates significant progress in the field of multi-objective structural 141 

design. The BIM-based multi-objective design offers a more intuitive way to present design schemes, 142 

and its parametric modeling enables faster adjustments to design elements, supporting various design 143 



variables. Furthermore, the standardized data format ensures consistency in design information, 144 

making the optimization process easier to trace and verify. ML-based multi-objective design methods 145 

can learn complex nonlinear relationships from large datasets, significantly reducing computation 146 

time while effectively balancing conflicts between closely related objectives. Ontology-based 147 

structural design methods leverage the high flexibility of ontology in integrating multi-domain 148 

knowledge, demonstrating significant advantages in addressing and balancing multi-objective 149 

considerations. 150 

Overall, current research has advanced structural design toward multi-objective development. 151 

However, there is a lack of consideration of C&S, which results in design outcomes that require 152 

additional manual compliance checks by experts, resulting in inefficiencies and error-prone. This 153 

paper aims to expand the application of ontology in multi-objective structural design, leveraging its 154 

powerful semantic modeling and reasoning capabilities, focusing on addressing the challenge of 155 

integrating codes and standards (C&S) into the design process. 156 

3. Framework Design and Development 157 

3.1. Framework design 158 

Figure 1 shows the methodology proposed in this paper, which consists of two main parts: 159 

ontology development and interactive web service development.  160 

Firstly, the ontology model, named 'OntoDesign' integrates unstructured knowledge of C&S 161 

with multiple objectives such as cost, carbon emissions, and safety into an ontology-based structured 162 

knowledge. The workflow for OntoDesign can be summarized as follows: A skilled knowledge 163 



engineer integrates various domains of expertise relevant to structure design, including design C&S, 164 

material costs, sustainability considerations, and optimization techniques. These diverse knowledge 165 

inputs are systematically transformed into a unified knowledge model and semantic and query rules. 166 

Then, an interactive web service is developed to facilitate user interaction with the design 167 

process, allowing users to input design requirements and preferences directly into the knowledge 168 

model. This enables a seamless exchange between users and the knowledge system. 169 

The development details of ontology and interactive web service as shown in 3.2 and 3.3, 170 

respectively. 171 

 172 



Figure 1. Workflow of Interactive self-contained compliant structure design method  173 

3.2. Ontology-based Multi-objective Knowledge Molding and Mapping Method   174 

3.2.1 Knowledge mapping 175 

Ontology formally represents knowledge about concepts and their relationships in a specific 176 

domain. It can model the relationships between concepts in the domain into a structured form more 177 

suitable for application in computer systems. The ontology entity model includes classes, individuals, 178 

objects, and data properties. Figure 2 illustrates the basic concepts and their relationships using 179 

domain knowledge from the bridge engineering field. A class represents a category or concept in a 180 

particular domain. For instance, in bridge design, "Bridge," "Pier," and " Beam" are all examples of 181 

classes. An individual is a specific object or entity that belongs to a class. For example, C30 concrete 182 

is a particular individual of the class "Material." Object properties describe relationships between 183 

classes or individuals. It connects different concepts or entities within the ontology. For example, a 184 

beam is a structure component, and its material includes C30 concrete. Data properties describe 185 

specific features or attributes of a class or individual, typically using simple types like numbers and 186 

strings. For example, parameters such as the beam's length and width, the concrete's density, and the 187 

cost are included.  188 
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Figure 2. The example of basic concepts of ontology and their relationships 190 

Sources of multi-objective structural design knowledge include descriptions, methods, and 191 

material parameters related to design C&S, cost, and sustainability. This information exists as 192 

unstructured knowledge, such as text (e.g., names of components and materials such as "beam" and 193 

"concrete"), parameters (e.g., mechanical properties of the material such as 30 MPa), and conditions 194 

(e.g., maximum displacement not to exceed L/800 of the span length). Figure 3 illustrates the 195 

ontology-based knowledge mapping method, which transforms unstructured knowledge into 196 

structured semantic content. Precisely, knowledge in the form of text and parameters is mapped to 197 

ontology entities. Text is expressed in the form of classes and individuals, and knowledge in the form 198 

of parameters is described as data properties. Classes and individuals are associated through logic, 199 

and then individual and data properties are associated with object properties.  200 

 201 

Figure 3. Ontology-based knowledge mapping method 202 

In addition, the conditions and constraints from C&S or legal clauses can be converted into 203 

semantic rules such as SWRL and SQWRL. SWRL is a logic-based semantic rule language that can 204 

establish connections between knowledge and help the system automatically infer hidden information. 205 
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For example, structural design methods are expressed by mathematical formulas, which can be 206 

represented by SWRL rules, as shown in Table 1. This SWRL rule consists of several components 207 

working together to calculate the cross-sectional area of a beam. The rule starts by identifying the 208 

beam instance (?B) and retrieving its width (?Bb) and height (?Bh) from the ontology. Using the 209 

built-in "swrlb: multiply" function, it computes the product of these two values to determine the cross-210 

sectional area (?BAc). Finally, the calculated area is assigned to the beam's "Ac" property, enriching 211 

the ontology with this derived knowledge. Each rule component ensures the calculation process is 212 

logical, consistent, and seamlessly integrated into the ontology framework.  213 

Semantic Query Web Rule Language (SQWRL) is a query language, similar to database queries, 214 

that can extract and filter information from an ontology. For example, SQWRL can filter results based 215 

on the design requirement "the maximum deflection of the main beam in a beam bridge should not 216 

exceed 1/600 of the calculated span length" and provide feedback to the user, as shown in Table 1, 217 

"MaxLength(?BL, ?y)" represents the maximum span length, and "fc(?B,?Bfc)" denotes the 218 

maximum deflection. The condition "swrlb:lessThan(?Bfc, y/600)" ensures that the maximum 219 

deflection is less than 1/600 of the span length. The rule 220 

"->sqwrl:select(?B,?Bwfk,?Bfc,?BTotalCO2,?BTotalCost,?RC)" outputs all relevant parameters for 221 

solutions that meet this requirement. 222 

Table 1. SWRL and SQWRL rules examples 223 

SWRL. rules example 
Calculate the cross-sectional area: 𝐴𝑐 = 𝑏 · ℎ 
Beams(?B)^b(?B,?Bb) ^h(?B,?Bh) ^swrlb:multiply(?B, ?Bb,?Bh)- >Ac(?B,?BAc) 
SQWRL example 
Beam(?B)^Length(?B,?BL)^MaxLength(?BL, ?y) ^ fc(?B,?Bfc) ^ swrlb:lessThan(?Bfc, y/600) 
->sqwrl:select(?B,?Bwfk,?Bfc,?BTotalCO2,?BTotalCost,?RC) 



The proposed method demonstrates generalizability in transforming various codes, safety 224 

requirements, and environmental guidelines into an ontology. Despite the differences in the content 225 

of these documents, the underlying knowledge is consistently represented in the form of text, 226 

parameters, formulas, or rules. This consistency allows for a systematic and uniform conversion of 227 

diverse regulatory information into the ontology framework, enhancing the system's adaptability 228 

across different contexts. 229 

3.2.2 Ontology development 230 

After the knowledge mapping, the ontology modeling will follow the ontology development 101 231 

method [35]. As shown in Figure 2, the process includes eight steps and begins with defining the 232 

scope of knowledge for building the ontology. Next, the potential for ontology reuse is considered. 233 

After that, the critical terms within the specified knowledge scope are enumerated. Subsequently, 234 

classes, properties, instances, and semantic rules are created. 235 

This paper introduces NLP techniques into the ontology modeling process to improve the 236 

efficiency and comprehensiveness of vocabulary extraction from C&S. As shown in Figure 4. The 237 

term frequency-inverse document frequency (TF-IDF) approach is applied to extract key terms and 238 

word frequency statistics in relevant documents, which is instrumental in enabling knowledge 239 

engineers to discern the criticality of vocabulary during the modeling phase. By analyzing term 240 

frequencies within specific documents and evaluating their rarity across the entire corpus, TF-IDF 241 

identifies key terms and assigns significance based on their contextual importance. This nuanced 242 

understanding empowers knowledge engineers to make informed decisions, thereby elevating the 243 

quality of the ontology. 244 



 245 

Figure. 4. Ontology development process 246 

TF-IDF enhances the modeling process by quantifying and prioritizing relevant terms, ensuring 247 

a more accurate and meaningful representation of semantic relationships within the ontology. Term 248 

frequency, tf(t,d), as shown in equation (1), is the relative frequency of term t within document d. As 249 

shown in equation (2), the inverse document frequency measures how much information the word 250 

provides, i.e., if it is common or rare across all documents. It is the logarithmically scaled inverse 251 

fraction of the documents that contain the word (obtained by dividing the total number of documents 252 

by the number of documents containing the term, and then taking the logarithm of that quotient): 253 

 
tf(𝑡, 𝑑) =

𝑓௧,ௗ

∑ 𝑓௧ᇲ,ௗ௧ᇲ∈ௗ

 (1) 

 
idf(𝑡, 𝑑) = log

𝑁

|{𝑑𝜖𝐷: 𝑡𝜖𝑑}|
 (2) 



Where N is the total number of documents in the corpus N=|D|. |{𝑑𝜖𝐷: 𝑡𝜖𝑑}|is the number of 254 

documents where the term t appears (i.e., tf(𝑡, 𝑑) ≠0). If the term is not in the corpus, this will lead to 255 

a division-by-zero. It is therefore common to adjust the denominator to 1+|{𝑑𝜖𝐷: 𝑡𝜖𝑑}|. 256 

The ontology-based multi-objective structural design knowledge model established using the 257 

aforementioned method is illustrated in Figure 5. Note that the ontology model is not fully expanded 258 

for clarity in presenting the content. In the figure, "squarebeam2-8" represents a cross-section whose 259 

data attributes include the dimensions of the cross-section. It is also related to the individual of 260 

materials (C40-R235), the individual of load (Vehicle1) using Object properties ("hasRebar", 261 

"hasConcentratedLoad Vehicle1", "hasReinforcedConcrete"). At the same time, the C40-R235 262 

Individual has cost-related data properties (cost), implied carbon energy data properties (CO2), and 263 

mechanical properties such as modulus of elasticity (Ec) in the specification. 264 

 265 

Figure 5. Examples of entities shown in the knowledge graph 266 



3.3 Interactive Web Services Development Method 267 

The development of ontology facilitates the realization of multi-objective structure design 268 

through knowledge-based reasoning. Nevertheless, operational challenges persist for structure 269 

designers attempting to utilize the ontology for comprehensive design. This segment of the study 270 

focused on crafting an intuitive and user-friendly interface to enhance the accessibility and usability 271 

of the developed system. 272 

The interactive web service development method is shown in Figure 6. The service comprises a 273 

front-end user interface and a backend ontology interaction engine. The interactive interface is 274 

developed using Streamlit [36], collects user information, and displays analysis results. Streamlit is 275 

an open-source Python framework designed to efficiently create interactive data applications for 276 

machine learning and data science teams. The backend employs Owlready [37] as the ontology 277 

interaction tool. Owlready[37]is a Python package designed for ontology-oriented programming, 278 

capable of loading OWL 2. The ontology model described in Section 3.2 is saved as an OWL file and 279 

read into the Python environment using Owlready. 280 

The flow of using this interactive web service is as follows: The user enters the design 281 

requirements (e.g., span length, deck width, load level.) on the front-end page and then inputs them 282 

through the front-end developed by Streamlit, which then writes to the ontology model and triggers 283 

ontology reasoning via Owlready. For example, data attributes such as span and beam width are edited 284 

for all beam section Individuals in the ontology model. Given that beam section Individuals are 285 

associated with different material Individuals, running the reasoner triggers the parallel computation 286 

of various design scenarios (with other sections and materials), resulting in multiple design results 287 



that meet the design criteria. The final design results are exported in .xls format and returned to the 288 

user. 289 

 290 

Figure 6. The development of interactive web services  291 

4. Case Study 292 

The specific development process and effects of the method proposed in this paper will be 293 

illustrated through the case of simply supported beam design and further demonstrate the extensibility 294 

of the method using the case of continuous beam design. 295 

Those case studies take the Design Code of Highway Reinforced Concrete and Prestressed 296 

Concrete Bridges and Culverts[38] as an example and incorporate it into the ontology-based multi-297 

objective structure design model. 298 

4.1. Ontology Development of Bridge Design 299 

In this case study, the multi-domain knowledge consists of the following five fields: bridge 300 

design standard, material carbon emission database, material cost database, optimization knowledge, 301 

and human design experience. The Entities in the ontology model developed for this case study 302 

include 93 Classes, 16 object properties, 83 Data properties, and 58 Individuals. The following 303 



sections will provide a detailed explanation of the knowledge and rules incorporated into this case 304 

study. 305 

 4.1.1 Incorporate bridge design experience and C&S into ontology models  306 

Bridge design mainly relies on two aspects of knowledge: the human experience. In particular, 307 

the selection of bridge type needs to consider the purpose of construction, application, landscape 308 

requirements, and other social factors, which need to be judged by the experience of bridge design 309 

engineers. For example, if the bridge span is less than 8m and is only used for traffic without aesthetic 310 

requirements, choose a simply supported bridge. The SWRL rules are shown in Table 2, "->" on the 311 

left side represents the design conditions, and the right side represents the inference results. In details, 312 

"BeUsedFor(?B, Transportation)" checks whether the beam is used for transportation; 313 

"IsThereAnAestheticRequirement(? B, No)" checks whether there are no special aesthetic 314 

requirements; "swrlb:lessThan(?y,8)" checks whether its maximum length is less than 8m. 315 

"->HasBridgeType(?B,SimplySupportedBridge)" means if all these conditions are true, the system 316 

concludes that the beam type is a "Simply Supported Bridge." 317 

Table 2. SWRL rules for selecting bridge types 318 

If the bridge span is less than 8m and is only used for traffic without aesthetic requirements, then choose a simply 
supported bridge. 
Beam(?B)^Length(?B,?BL)^MaxLength(?BL, ?y)^BeUsedFor(?B,Transportation)^ 
IsThereAnAestheticRequirement(? B,No)^swrlb:lessThan(?y,8) 
->HasBridgeType(?B,SimplySupportedBridge) 

On the other hand, the Chinese bridge design specification [38]  is used as an example to 319 

integrate it into the ontology model in this case study. The related descriptions, material parameters, 320 

coefficient specifications, and calculation rules of the bridges in the specifications were extracted. 321 

The details are as follows: 322 



(1) Material characteristic specification. The choice of materials is a critical issue in bridge 323 

design and is directly related to the bridge's safety performance. Reinforced concrete bridges, as an 324 

example, concrete and steel bars are the two primary materials used in the construction process. The 325 

material properties of concrete and steel bars are specified in the specifications, as shown in Table 3 326 

and Table 4. They are relevant specification parameters of 9 different strength concrete and four types 327 

of steel bars used in reinforced concrete and prestressed concrete components.  328 

Table 3 The concrete specification parameter value 329 

Specification parameter C25 C30 C35 C40 C45 C50 C55 C60 C70 
𝑓(MPa)  16.7 20.1 23.4 26.8 29.6 32.4 35.5 38.5 44.5 
𝑓௧(MPa)  1.78 2.01 2.20 2.40 2.51 2.65 2.74 2.85 3.00 

𝐸(MPa) ×104 2.80 3.00 3.15 3.25 3.35 3.45 3.55 3.60 3.70 
Density(T/m3) 2.38 2.385 2.39 2.40 2.41 2.42 2.44 2.47 2.55 

Where, 𝑓௦ is axial compressive strength; 𝑓௦ௗ is axial tensile strength; 𝐸 represents modulus of 330 

elasticity; 331 

Table 4. Rebar specification parameter value 332 

Specification parameter R235 HRB400 HRB300 KL400 
𝑓௦(MPa)a 235 400 335 400 
𝑓௦ௗ(MPa)b 195 330 280 330 

𝑓௦ௗ′(MPa)c 195 330 280 330 

𝐸௦(MPa)d×105 2.1 2.0 2.0 2.0 

Where, 𝑓௦  is tensile strength standard value; 𝑓௦ௗ  is the tensile strength design value; 𝑓௦ௗ′is 333 

compressive strength design value; 𝐸௦ is the modulus of elasticity; 334 

(2) Coefficient specification. In the bridge design and calculation process, besides the self-335 

weight of the bridge caused by various materials, other variable loads, such as varying effects caused 336 

by automobile loads, also need to be considered. The choice of some coefficients will depend on the 337 

bridge's location, the type of bridge, and the choice of bridge material, such as the level of vehicle 338 

load, the standard value of vehicle load, and the long-term growth coefficient of deflection.  339 



(3) Calculation methods in the design specifications. The bridge design specifications require 340 

crack limits and deflections of flexural members. For example, the calculation method of deflection 341 

under short-term and long-term loads in the code is used to illustrate the calculation process and 342 

method of converting it to the SWRL rule, as shown in Table 5. 343 

Table 5. SWRL rules for deflection calculation 

Deflection of the bridge under short-term load:  
Beams(?B)^M(?B,?BM)^length-cal(?B,?Bla)^G(?B,?BG)^swrlb:multiply(?fnd1,5,?BM,?Bla,?Bla,1000) 
^swrlb:multiply(?fnd2,48,?BG)^swrlb:divide(?Bfnd,?fnd1,?fnd2)->fnd(?B,?Bfnd) 
Deflection under long-term load: 
Beams(?B)^fnd(?B,?Bfnd)^hasReinforcedConcrete(?B,?RC) 
^ReinforcedConcrete(?RC)^ɳ(?RC,?RCɳ) 
^swrlb:multiply(?Bfc,?Bfnd,?RCɳ)->fc(?B,?Bfc) 

(4) Design requirements: This case study transforms the design requirements into semantic query 344 

rules. As shown in Table 6. Q1 is to select a design plan that meets the requirements of "the cracking 345 

width of reinforced concrete members in typical environments does not exceed 0.2mm" and "the 346 

maximum beam deflection must be verified to be less than 1/600 span". Q2 outputs the calculation 347 

results of the optimization function.  348 

Table 6. SQWRL rules 349 

Q1 Select all design solutions that meet the safety calculation 
Beams(?B)  ^σcc(?B,?Bσcc)^σsj(?B,?Bσsj)^fc(?B,?Bfc)^TotalCO2(?B,?BTotalCO2) 
^ TotalCost(?B,?BTotalCost)^ wfk(?B,?Bwfk) 
^hasReinforcedConcrete(?B,?RC)^ReinforcedConcrete(?RC)^fck(?RC,?RCfck) 
^hasRebar(?RC,?R)^Rebar(?R)  
^swrlb:lessThan(?Bwfk,0.2)^swrlb:lessThan(?Bfc,l/600) - 
>sqwrl:select(?B,?Bσcc,?Bσsj,?Bfc,?BTotalCO2,?BTotalCost,?RC,?R) 
Q2 Select the optimized function calculation result 
Beams(?B)^O_F(?B,?BO_F)^hasReinforcedConcrete(?B,?RC)^ReinforcedConcrete(?RC) 
->sqwrl:select(?B,?BO_F,?RC) 

4.1.2 Incorporate multi-objective knowledge into ontology models  350 

In addition to integrating experience and standards into the ontology, the case also integrates 351 

sustainability, cost, and optimization knowledge into the ontology model as described below:  352 

(1) Concrete Sustainability Performance Database. 353 



Carbon emissions are an unavoidable factor in structural design. Concrete is the primary carbon-354 

containing material in most buildings and infrastructures. Focusing on the carbon emissions implicit 355 

in using concrete is one of the fastest measures to reduce emissions. This study selected nine types of 356 

Chinese commercial concrete with different strengths as examples, and their implied carbon energy 357 

per unit volume is shown in Table 7. The energy consumed by these nine types of concrete is 358 

calculated by the Inventory of Carbon & Energy database [39], including the energy consumed 359 

directly and all the energy consumed indirectly, the total energy consumed during the product's 360 

processing, manufacturing, and transportation. 361 

Table 7.  Nine kinds of Chinese commercial concrete embodied carbon energy calculation table 362 

C
on

cr
et

e 
ty

pe
 

Material consumption (kg/m3) Embodied  
Carbon 
 energy  
(kg/m3) 

Water- 
Cement 

 ratio 

Sand 
 rate 
(%) 

Water Cement Mineral 
powder 

Fly 
ash 

Sand Stone Admixture 

C25 0.51 44 180 224 44 83 844 1075 1.61 432 
C30 0.52 41 185 285 0 70 770 1090 1.71 427 
C35 0.50 34 180 310 0 50 630 1223 1.87 448 
C40 0.42 34 185 380 0 60 604 1171 2.28 557 
C45 0.4 40 195 440 0 49 685 1030 6.6 613 
C50 0.33 38 180 490 0 54 638 1043 7.4 657 
C55 0.522 37 173 333 0 0 702 1195 0 515 
C60 0.34 37 170 500 0 0 685 1165 FDN 661 
C70 0.39 35 195 500 0 0 312 1139 FDN 635 

Note: FDN is a Formaldehyde-based Naphthalene superplasticizer commonly used to improve 363 

the workability and strength of concrete.  364 

(2) Material Cost 365 

Materials costs are highly valued in the cost estimation process. Since concrete prices vary in 366 

different regions, this calculation is based on the average prices of eight major concrete suppliers in 367 

Beijing, China. October 10, 2020. The prices of the nine types of concrete selected in this article are 368 

shown in Table 8. Costing is carried out using the simple method in (4) below; its SWRL rules are 369 

represented in Table 9. 370 



Table 8.  Nine types of Chinese commercial concrete price list 371 

Concrete type C25 C30 C35 C40 C45 C50 C55 C60 C70 
Cost(¥RMB/m3) 447.5 457.5 472.5 487.5 502.5 517.5 532.5 547.5 587.5 

 372 

 

Cost =  𝑊



ୀଵ

× 𝐶𝑜𝑠𝑡 (4) 

𝑊 is the unit volume weight (kg/m3),  𝐶𝑜𝑠𝑡 represent the cost per square meter (¥CNY/ m3) 373 
 374 

Table 9. SWRL rules for the total cost of the beam 375 

SWRL rules for the total cost of the beam 
Beams(?B)^Volume(?B,?BV)^ hasReinforcedConcrete(?B,?RC)^ReinforcedConcrete(?RC) 
^Cost(?RC,?RCCost)^swrlb:multiply(?BTotalCost,?BV,?RCCost)->TotalCost(?B,?BTotalCost) 

(3) Optimization method 376 

In this case, optimization knowledge was also introduced to assist engineers in making decisions 377 

among multiple design options. Optimization knowledge includes the objectives, variables, and 378 

functions of the optimization. In this case study, a linear optimization method is e adopted, the 379 

optimization objective function is (5): 380 

 
𝐹(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝐴ଵ𝑓(ୱୟୣ) + 𝐴ଶ𝑓(୬ୣ୰୷ ୡ୭୬ୱ୳୫୮୲୧୭୬) + 𝐴ଷ𝑓(ୡ୭ୱ୲) (5) 

In this case study, the constraint of optimization function is the bridge structure's safety, 381 

including the maximum deflection and crack width. The optimization variables are 𝑥ଵ, 𝑥ଶ, 𝑥ଷ. 𝑥ଵ is 382 

the cross-sectional area of the bridge, 𝑥ଶ is a concrete type, 𝑥ଷ are types of reinforcement. 𝐴ଵ,𝐴ଶ and 383 

𝐴ଷ are weight coefficients that can be adjusted according to the designer's requirements. For example, 384 

when the engineer's design requirements focus more on cost, its weight coefficient will be adjusted 385 

higher. 386 

Due to the differing magnitudes of parameters such as cost, carbon emissions, and safety, it is 387 

necessary to apply normalization before performing linear optimization. The normalization method 388 

is shown below： 389 



𝑥ᇱ =
𝑥 − 𝑥

𝑥௫ − 𝑥

(6) 390 

Where: 𝑥′ is the normalized value, typically within the range [0,1],  𝑥 is the original data value; 391 

𝑥 is the minimum value of the data, 𝑥௫  is the maximum value of the data 392 

The linear optimization calculations are embedded into the ontology model using SWRL rules. 393 

The bridge designer can get the optimal design solution by the design weight coefficient, thus 394 

avoiding decision uncertainty. These rules extract safety, sustainability, and cost outcomes from 395 

different design schemes, followed by normalization and linear optimization calculations. The SWRL 396 

rules governing this process are presented in Table 10. 397 

Table. 10 SWRL rules for optimal calculation 398 

Normalization of costs: 
Beams(?B)^TotalCost(?B,?BTotalCost)^has_Linear_Objective_Function(?B,?LOF) 
^Linear_Objective_Function(?LOF) 
^Cost_max(?LOF,?LOFCm)^O1(?LOF,?LOFO1) 
^swrlb:divide(?BTotalCost1,?BTotalCost,?LOFCm) 
^swrlb:multiply(?BO_F1,?LOFO1,?BTotalCost1)- >O_F1(?B,?BO_F1) 
Normalization of carbon emissions: 
Beams(?B)^TotalCO2(?B,?BTotalCO2)^has_Linear_Objective_Function(?B,?LOF) 
^Linear_Objective_Function(?LOF) 
^O2(?LOF,?LOFO2)^CO2_max(?LOF,?LOFC) 
^swrlb:divide(?BTotalCO21,?BTotalCO2,?LOFC) 
^swrlb:multiply(?BO_F2,?LOFO2,?BTotalCO21)- >O_F2(?B,?BO_F2) 
Normalization of maximum displacement: 
Beams(?B)^fc(?B,?Bfc)^has_Linear_Objective_Function(?B,?LOF)^Linear_Objective_Function(?LOF) 
^O3(?LOF,?LOFO3)^fc_max(?LOF,?LOFfc)^swrlb:divide(?Bfc1,?Bfc,?LOFfc) 
^swrlb:multiply(?BO_F3,?LOFO3,?Bfc1) 
- >O_F3(?B,?BO_F3) 
Normalization to maximum crack widths: 
Beams(?B)^wfk(?B,?Bwfk)^has_Linear_Objective_Function(?B,?LOF) 
^Linear_Objective_Function(?LOF) 
^O3(?LOF,?LOFO3)^wfk_max(?LOF,?LOFwfk)^swrlb:divide(?Bwfk1,?Bwfk,?LOFwfk) 
^swrlb:multiply(?BO_F4,?LOFO3,?Bwfk1)->O_F4(?B,?BO_F4) 
Linear optimization computation: 
Beams(?B)^O_F1(?B,?BO_F1)^O_F2(?B,?BO_F2)^O_F3(?B,?BO_F3)^O_F4(?B,?BO_F4) 
^swrlb:add(?BO_F,?BO_F1,?BO_F2,?BO_F3,?BO_F4)->O_F(?B,?BO_F) 



4.2 Input Design Requirements 399 

The design requirements are outlined in Table 11. The user inputs the standard span, calculated 400 

span, deck width, design load, and other requirements into the Interactive Web Service, as illustrated 401 

in Figure 7.  402 

Table 11. Bridge design requirements in a case study 403 

Bridge Uses： The bridge does not have any social demand other than transportation demand. 

Span and deck width: 
Standard span 8m 
Calculation span 7.6m 
Bridge deck width 13m（traffic lane）+2*1.5（sidewalk） 

Technical standard： 

Design load Highway- level 2 
Environmental standards First-class environment 
Design safety level Level 3 
Main material： 

Beam Concrete, steel bars 
Bridge deck paving 0.04m asphalt concrete、0.06m concrete 

Structure form： Simply supported beam bridge, Connected by 8 T-shaped beams with a width of 
2m. 
Bridge section： 
 
 

 
 
S1:bf1=2m, h=1.4m, b=0.3m, as=0.09m, hf=0.14m, As=15×0.02m 
S2:bf1=2m, h=1.4m, b=0.3m, as=0.09m, hf=0.2m, As=15×0.02m 

 404 



 405 

Figure 7. Input design requirements via interactive web service 406 

4.3 Design Results and Comparison 407 

The ontology model must be checked first before acquiring the design structure. In this case 408 

study, the Pellet reasoner is adopted for continuity checking and mining implicit logical relations and 409 

complex semantic rule reasoning. Pellet is an open-source Java-based OWL 2 reasoner. It 410 

incorporates optimizations for nominals, conjunctive query answering, and incremental reasoning. 411 

Figure 8 shows the consistency checking results, meaning the ontology model is without logical errors. 412 

Then, the design results for the different cross-section shape options and material types obtained by 413 

running the Pellet reasoner are shown in Figure 9. The design results include safety, cost, and 414 

sustainability metrics. The design results are exported and plotted as bar charts for comparison, as 415 



shown in Figure 10. Figure 10 (a) to (c) shows the performance of all the design alternatives that meet 416 

the design criteria regarding safety, cost, and carbon emission. Figure 11. compares the reasoning 417 

results that meet the design criteria and consider the designer's preference (Safety, carbon emissions, 418 

and costs are weighted at 0.2, 0.5, and 0.3, respectively). It can be seen that the S1 bridge option, C25 419 

concrete, and R235 rebar are the most appropriate design solutions for this case study. 420 

 421 

Figure 8. The log of consistency check 422 



 423 

Figure 9. Reasoning results are shown in Protégé. 424 

 425 

 

Figure.10. (a) Safety calculation result—crack width 



 

Figure.10. (b) Safety calculation result—bridge maximum displacement 

 

Figure.10. (c) Calculation results of embodied carbon energy and cost 

Figure 10. Comparison of results  
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Figure 11. Comparison of multi-objective optimization function calculation results 

4.4 Extensibility Validation 426 

The functionality of ontology reuse and SWRL rules overlay provides excellent ontological 427 

scalability [40,41]. To verify the convenient expansibility of the system, the continuous beam bridge 428 

design function is expanded in the OntoDesign system. In this process, users must supplement the 429 

knowledge base and add new rules through the SWRL Tab. The details are shown in Table 12. 430 

The reasoning computation is repeated after extending the ontology model and semantic rules, 431 

as shown in Figure 9. The parameters in the labeled boxes are the result of reasoning based on input 432 

parameters such as cross-section dimensions (b, h), deck width (h0), and span length (Length). 433 

The parameters in the marked boxes are reasoned results according to the input parameters such 434 

as cross-section dimensions (b, h), deck width (h0), and span length (Length). These results include 435 

various design outcomes under this scheme, such as "fc" representing displacement, "TotalCO2" 436 

indicating carbon emissions, and "TotalCost" representing cost. 437 

Table 12. System expansion details  438 

System 
needs 

Design system development content Continuous beam system expansion 
content 

Part1 
Information 
 model 

Class No need to add 
property No need to add 
instance Need to add or modify. 

Part 2  
SWRL rules 

Permanent action concentration No need to add 
Maximum moment Need to re-add 
The variable action effect causes a maximum 
moment 

Need to re-add 

Total moment No need to add 
Reinforced concrete section stress No need to add 
Deflection calculation No need to add 
Embodied carbon energy calculation No need to add 
cost calculation No need to add 
Optimal equation calculation No need to add 

Part 3 
SQWRL 
rules 

Choose plans that meet the requirements of the 
specification 

No need to add 

Select the optimization equation result No need to add 
 439 



 440 

Figure. Inferred facts based on existing facts for continuous beam design. 441 

4.5 Discission 442 

As an initial attempt to implement an interactive, self-contained, and compliant structure design 443 

based on ontology, this case study demonstrates a general method for integrating C&S, cost, and 444 

carbon emissions into the ontology model. It highlights the advantages of the basic ontology-based 445 

structural design approach in terms of efficiency (with inference speeds at the millisecond level) and 446 

its ability to accommodate multiple objectives. 447 

In large-scale designs, ontology-based methods show more significant potential compared to 448 

parametric methods and ML-based multi-objective design methods for the following reasons: 449 

First, as seen in the extensibility verification case, ontology-based semantic reasoning is more 450 

flexible in accommodating changes in design constraints and rules (e.g., design requirements from 451 

standards or regulations). In contrast, traditional design tools are typically limited to specific 452 

objectives and constraints, with less adaptability. 453 



Second, ontology-based structural design approaches offer the potential for collaborative 454 

functionality, enabling all design teams to use a unified knowledge representation method. By 455 

employing a standardized semantic model, ontology clarifies the relationships between different 456 

design concepts, rules, and regulations, ensuring that all teams operate with a common semantic 457 

understanding. In large-scale design projects, this unified knowledge-sharing mechanism can 458 

significantly enhance the consistency of information across teams and departments, reducing design 459 

conflicts caused by miscommunication. For instance, if the structural design proposed by one team 460 

contradicts the environmental requirements set by another, the system can immediately detect this 461 

conflict through reasoning and provide resolution suggestions. This automated conflict detection and 462 

resolution capability can significantly improve the efficiency of multi-team collaboration, reducing 463 

design iterations and errors. 464 

Furthermore, ontology can unify the semantic modeling of design standards, specifications, 465 

parameters, and rules across different tools and software. By standardizing semantic representations, 466 

ontology can overcome data format barriers between various tools, facilitating data exchange and 467 

sharing among design software. For example, widely used structural design software such as 468 

SAP2000, ETABS, and Revit can be integrated with the ontology via interfaces, ensuring that the 469 

data structures and standards in the design models are uniformly represented across all platforms. 470 



5. Conclusion 471 

This paper proposed a self-contained and compliant multi-objective structural design framework 472 

based on an ontology that integrates multiple domain knowledge from design C&S, cost, and carbon 473 

emission. The main contributions are as follows: 474 

Firstly, this study proposed an ontology-based knowledge mapping method to transform various 475 

types of unstructured knowledge into structured knowledge, integrating C&S with multi-domain 476 

knowledge into a unified knowledge representation. The framework ensures that the design results 477 

maintain a balance between multiple objectives and automatically comply with C&S. By converting 478 

fragmented and static codes and standards into a dynamic and intelligent knowledge system, the 479 

proposed approach not only significantly enhances the efficiency and accuracy of structural design 480 

but also provides robust technical support for lifecycle management, cross-disciplinary collaboration, 481 

and innovative decision-making in the construction industry, thereby driving the sector toward greater 482 

intelligence and efficiency. 483 

Moreover, the ontology, seamlessly integrated as a backend service, enables interactive design 484 

by allowing engineers to query and achieve their design objectives. Through rigorous testing in 485 

multiple case studies, the developed system demonstrates its capacity to assist structural engineers in 486 

generating comprehensive design options and identifying the most suitable solutions.  487 

In future work, we aim to enable the enhancement of the multi-objective optimization module 488 

to improve the ability of the ontology to solve complex optimization problems with the help of 489 

Artificial Intelligence methods. In addition, we will extend the scope of the ontology to encompass 490 

applications such as Environmental Impact Assessment (EIA) and Life Cycle Analysis (LCA). Using 491 



a modular ontology design, EIA and LCA knowledge will be integrated into the system, and the 492 

relationships between these domains and structural design objectives will be established. Additionally, 493 

multi-source data integration techniques will be employed to consolidate the diverse data involved in 494 

EIA and LCA, such as life cycle databases and environmental impact factors. This extension will 495 

enhance the system's capability in sustainability assessment and enable designers to identify potential 496 

environmental and social impacts at the early stages of design. Consequently, it will contribute to 497 

further optimization of design solutions, promoting the development of green buildings and 498 

infrastructure. 499 
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