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ABSTRACT

Developing models that can learn to reason is a notoriously challenging problem.
We focus on reasoning in relational domains, where the use of Graph Neural Net-
works (GNNs) seems like a natural choice. However, previous work has shown that
regular GNNs lack the ability to systematically generalize from training examples
on test graphs requiring longer inference chains, which fundamentally limits their
reasoning abilities. A common solution relies on neuro-symbolic methods that
systematically reason by learning rules, but their scalability is often limited and they
tend to make unrealistically strong assumptions, e.g. that the answer can always be
inferred from a single relational path. We propose the Epistemic GNN (EpiGNN),
a novel parameter-efficient and scalable GNN architecture with an epistemic in-
ductive bias for systematic reasoning. Node embeddings in EpiGNNs are treated
as epistemic states, and message passing is implemented accordingly. We show
that EpiGNNs achieve state-of-the-art results on link prediction tasks that require
systematic reasoning. Furthermore, for inductive knowledge graph completion,
EpiGNNs rival the performance of state-of-the-art specialized approaches. Finally,
we introduce two new benchmarks that go beyond standard relational reasoning
by requiring the aggregation of information from multiple paths. Here, existing
neuro-symbolic approaches fail, yet EpiGNNs learn to reason accurately. Code
and datasets are available at https://github.com/erg0dic/gnn-sg.

1 INTRODUCTION

Learning to reason remains a key challenge for neural networks. When standard neural network
architectures are trained on reasoning problems, they often perform well on similar problems but fail
to generalize to problems with different characteristics than the ones that were seen during training,
e.g. problems that were sampled from a different distribution (Zhang et al., 2023a). This behaviour
has been observed for different types of reasoning problems and different types of architectures,
including pretrained transformers (Zhang et al., 2023a; Welleck et al., 2023), transformer variants
(Bergen et al., 2021; Kazemnejad et al., 2023) and Graph Neural Networks (Sinha et al., 2019).

In this paper, we focus on the problem of systematic generalization (SG), and on systematic reasoning
about binary relations in particular. This refers to the ability of a model to solve test instances by
applying knowledge obtained from training instances, where the combination of inference steps
that is needed is different from what has been seen during training (Hupkes et al., 2020). It is an
essential ingredient for machines and humans to generalize from a limited amount of data (Lake
et al., 2017). For relational systematic reasoning, problem instances can be represented as a labelled
multi-graph (i.e. a knowledge graph) and the main reasoning task is to systematically infer the
relationship between a head entity h and target entity t. Typically, the training data consists of
instances that only require relatively short inference chains, where trained models are then evaluated
on increasingly larger test graphs. Graph Neural Networks (GNNs) intuitively seem well-suited for
relational reasoning (Zhu et al., 2021; Schlichtkrull et al., 2018), but in practice they underperform
neuro-symbolic methods on SG (Rocktäschel & Riedel, 2017; Minervini et al., 2020b). Crucially,
this is true despite the fact that GNNs are expressive enough to encode the required inference process.

Conceptually, there is a fundamental question that has largely remained unanswered: What makes
neural-theorem-prover type methods successful for systematic reasoning? We argue that the outper-
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Figure 1: Left: A (single) relational path reasoning problem over family relations from CLUTRR
(Sinha et al., 2019), where the path P1 allows us to infer the correct relation. Right: A multi-path
reasoning problem over RCC-8 relations where each path provides partial (disjunctive) information
and the target label is obtained by combining information from paths P1, P2 and P3.

formance of such methods can be explained by their focus on modeling single relational paths, as an
alternative to local message passing. To predict the relationship between h and t, conceptually, these
methods consider all the (exponentially many) paths between them, select the most informative path,
and make a prediction based on this path, although in practice heuristics are used to avoid exhaustive
exploration (Minervini et al., 2020b). The emphasis on single paths provides a useful inductive bias,
while also avoiding problems with local message passing such as over-smoothing. Compared to
GNNs, neuro-symbolic methods also have an advantage in how individual relational paths are mod-
eled. Consider a relational path h r1−→ x1

r2−→ ...
rk−→ t, or simply r1; r2; ...; rk if the entities xi are

unimportant. To predict the relationship between h and t, most methods essentially proceed by repeat-
edly choosing two neighboring relations ri; ri+1 and replace them by their composition. Crucially,
the order in which these relations are chosen may determine whether the model finds the answer,
as certain orderings may require knowledge of unseen intermediate relationships. Neuro-symbolic
methods can often avoid such issues by, in principle, considering all possible orderings.

However, neuro-symbolic methods also have important drawbacks, including scalability, and most
fundamentally, their focus on simple rules and single relational paths. Since these limitations are
not tested by existing benchmarks, as a first contribution, we introduce a multi-path, disjunctive
systematic reasoning benchmark based on qualitative spatial (RCC-8) and temporal (Interval Algebra)
calculi (Randell et al., 1992; Allen, 1983b). The considered problems require models to combine
partial (disjunctive) information from multiple relational paths, which are also present in real-world
story understanding problems (Cain et al., 2001). Figure 1 illustrates the difference between single
and multi-path relational reasoning.

In this paper, we propose the Epistemic GNN (EpiGNN), a novel, scalable and parameter-efficient
GNN for systematic relational reasoning. Motivated by the fact that aligning the model’s architecture
with an algorithm that approximately solves the given problem aids generalization (Xu et al., 2020;
Bahdanau et al., 2019), the EpiGNN is designed to simulate an approximation of the Algebraic
Closure Algorithm (ACA) (Renz & Ligozat, 2005), which solves multi-path reasoning on RCC-8 and
IA. This translates to the following inductive biases in the EpiGNN’s structure: (1) having a message
passing function that explicitly simulates the composition of discrete relations in ACA (rather than
general relation vector composition) (2) having epistemic (probabilistic) embeddings that can encode
unions of base relations in ACA (3) having a pooling operation that simulates the intersection operator
in ACA. Below is a summary of our main contributions:

• We propose a novel GNN model, the EpiGNN, based on ACA, which rivals SOTA neuro-
symbolic methods on simple single-path base systematic reasoning while being highly
efficient, and at least two orders of magnitude more parameter-efficient in practice.

• We introduce two multi-path, disjunctive relational reasoning benchmarks that are challeng-
ing for various SOTA models, but where EpiGNNs still perform well.

• Despite being designed for SG-type link prediction, we show that EpiGNNs rival SOTA
specialized approaches for standard inductive knowledge graph completion.

• We theoretically link EpiGNNs to an approximation of the algebraic closure algorithm,
which we term directional algebraic closure.
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2 LEARNING TO REASON IN RELATIONAL DOMAINS

We focus on the problem of reasoning about binary relations. We assume that a set F of facts is given,
referring to a set of relations R and a set of entities E . Each of these facts is an atom of the form
r(a, b), with r ∈ R and a, b ∈ E . We furthermore assume that there exists a set of rules K which can
be used to infer relationships between the entities in E . We write K ∪ F |= r(a, b) to denote that
r(a, b) can be inferred from the facts in F and the rules in K. The problem that we are interested
in is to develop a neural network model fθ which can predict for a given assertion r(a, b) whether
K ∪ F |= r(a, b) holds or not. Note that the set of rules K is not given. We instead have access to a
number of fact sets Fi, together with examples of atoms r(a, b) which can be inferred from these fact
graphs and atoms which cannot. To be successful, fθ must essentially learn the rules from K, and the
considered model must be capable of applying the learned rules in a systematic way to new problems.

2.1 LEARNING TO REASON ABOUT SIMPLE PATH RULES

The most commonly studied setting concerns Horn rules of the following form (n ≥ 3):
r(X1, Xn)← r1(X1, X2) ∧ . . . ∧ rn−1(Xn−1, Xn) (1)

We will refer to such rules as simple path rules. Note that we used the convention from logic
programming to write the head of the rule on the left-hand side, and we use uppercase symbols such
as Xi to denote variables. We can naturally associate a labelled multi-graph GF with the given set
of facts. The rule (1) expresses that when two entities a and b are connected by a relational path
r1; . . . ; rn−1 in this graph GF , then we can infer that r(a, b) is true. Without loss of generality, we
can restrict this setting to rules with two atoms in the body: r(X1, X3)← r1(X1, X2)∧ r2(X2, X3).
Indeed, a rule with more than two atoms in the body can be straightforwardly simulated by introducing
fresh relation symbols. The semantics of entailment are defined in the usual way (see Appendix A for
details). We can think of the process of showing K∪F |= r(a, b) in terms of operations on relational
paths. We say that the path r1; . . . ; ri−2; s; ri+1; . . . ; rk can be derived from r1; . . . ; rk in one step if
K contains a rule of the form s(X,Z)← ri−1(X,Y ) ∧ ri(Y, Z). We say that r can be derived from
r1; . . . ; rk if there exists a sequence of k − 1 such steps that yields r.
Proposition 1. We have that K ∪ F |= r(a, b) holds iff there exists a relational path r1; . . . ; rk
connecting a and b in the graph GF such that r can be derived from r1; . . . ; rk.

Inferring r(a, b) thus conceptually consists of two distinct steps: (i) selecting a relational path between
a and b and (ii) showing that r can be derived from it. Several of the neural network methods that
have been proposed in recent years for relational reasoning directly implement these two steps, most
notably R5 (Lu et al., 2022) and NCRL (Cheng et al., 2023). Neural theorem provers (Rocktäschel &
Riedel, 2017) implicitly also operate in a similar way, considering all possible paths and all possible
derivations for these paths. However, both steps are problematic for standard GNNs. First, by
focusing on local message passing, rather than on selecting individual relational paths, the node
representations that are learned by a GNN run the risk of becoming “overloaded”, as they intuitively
aggregate information from all the paths that go through a given node. Moreover, even for graphs
that consist of a single path, GNNs have a disadvantage: the use of local message passing intuitively
means that relational paths have to be processed sequentially. For example, for r1; r2; r3, models such
as NBFNet (Zhu et al., 2021) can only process r1; r2 as the first valid composition and not r2; r3.

The fact that relational paths can only be processed sequentially by GNNs is an important limitation,
as this might require the model to apply rules, or even capture types of relations, that were not present
in the training data. For instance, we may encounter the following chain of family relationships:

a
has-father−−−−−→ x1

has-father−−−−−→ x2
has-brother−−−−−−→ x3

has-daughter−−−−−−−→ x4
has-brother−−−−−−→ x5

has-mother−−−−−−→ b

Suppose the model has never encountered the great-cousin relation during training. Then we cannot
expect it to capture the relational path has-father; has-father; has-brother; has-daughter. However,

if it can first derive a
has-father−−−−−→ x1

has-aunt−−−−→ b then the problem disappears (assuming the model
understands the great-aunt relation).

2.2 LEARNING TO REASON ABOUT DISJUNCTIVE RULES

The rules that we have considered thus far uniquely determine the relationship between two entities a
and c, given knowledge about how a relates to b and b relates to c. In many settings, however, such
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knowledge might not be sufficient for completely characterising the relationship between a and c.
Domain knowledge might then be expressed using disjunctive rules of the following form:

s1(X,Z) ∨ . . . ∨ sk(X,Z)← r1(X,Y ) ∧ r2(Y,Z) (2)
In other words, if we know that r1(a, b) and r2(b, c) hold for some entities a, b, c, then we can only
infer that one of the relations s1, . . . , sk must hold between a and c. We then typically also have
constraints of the form⊥ ← r1(X,Y )∧r2(X,Y ), encoding that r1 and r2 are disjoint. Many popular
calculi for spatial and temporal reasoning fall under this setting, including the Region Connection
Calculus (RCC-8) and the Interval Algebra (IA) (Allen, 1983a; Randell et al., 1992). RCC-8 uses
eight relations to qualitatively describe spatial relations, as shown in Fig. 2. For instance, ntpp(a, b)
means that a is a proper part of the interior of b. IA is defined similarly (see App. E).

a b
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a b
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a b

ec(a,b)

a,b

eq(a,b)

ba

tpp(a,b)

ab
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Figure 2: RCC-8 relations.

Existing benchmarks for systematic relational reasoning do not
consider disjunctive rules, and thus only test the reasoning abil-
ities of models to a limited extent. We therefore introduce two
new relational reasoning benchmarks, based on RCC-8 and IA
respectively. An example RCC-8 problem is shown in Figure 1,
illustrating how we may need to aggregate evidence from mul-
tiple relational paths, as a single path does not always yield a
unique relation. For instance, from path P3 we can only infer
that one of the relations tppi, ntppi, po holds between nodes 0
and 10. Full details of the proposed benchmarks are provided
in Appendix E. Methods such as R5 and NCRL, which rely on
a single path to make predictions, cannot be used in this setting.
Neural theorem provers cannot handle disjunctive rules either,
and cannot be generalized in a scalable way. We thus need a new
approach for for learning to reason about disjunctive rules.

The characterization in Proposition 1 explains how models can be designed for deciding entailment
with simple rules. A similar characterization for entailment with disjunctive rules is unfortunately not
possible, as deciding entailment with such rules is NP-complete in general. However, for RCC-8 and
IA, and many other calculi, deciding entailment in polynomial time is possible using the algebraic
closure algorithm (Renz & Ligozat, 2005). The main idea is to keep track, for every pair of entities,
of which relationships are possible between these entities. This knowledge of possible relationships
is then propagated to infer constraints about relationships between other entities using the rules in
K (details are provided in the App. C). As we will see next, our proposed epistemic GNN model is
based on the same idea, and can be viewed as an approximate differentiable algebraic closure method.

3 AN EPISTEMIC GNN FOR SYSTEMATIC REASONING

We now present the Epistemic GNN (EpiGNN), a GNN which aims to overcome a number of key
limitations of existing models for systematic relational reasoning. Specifically, EpiGNNs are more
efficient than current neuro-symbolic methods while, as we will see in Section 4, matching their
performance on reasoning with simple path rules. Moreover, they are also able to reason about
disjunctive rules, which has not been previously considered for neuro-symbolic methods.

We start from the principle that reasoning is fundamentally about manipulating epistemic states (i.e.
states of knowledge) and the GNN should reflect this: there should be a clear correspondence between
the node embeddings that are learned by the model and what we can infer about the relationships
that may hold between the entities of interest. Inspired by NBFNet (Zhu et al., 2021), a GNN that
models path-based representations by anchoring node embeddings to a source, we also use a network
which learns the relationships between one designated head entity h and all other entities. Let us
write e(l) ∈ Rn for the embedding of entity e in layer l of the network. This embedding reflects
which relationships may hold between e and the designated entity h. We think of e(l) as a probability
distribution over possible relationships. Accordingly, the embeddings are initialized as:

e(0) =

{
(1, 0, . . . , 0) if e = h

( 1n , . . . ,
1
n ) otherwise

(3)

We associate the first coordinate with the identity relation. Since h is identical to itself, we define
h(0) as (1, 0, . . . , 0). For the other entities, since we have no knowledge, their embeddings are
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Figure 3: Overview of the EpiGNN. Step 1: Independently learn the forward and backward entity
embeddings through epistemic message passing. Step 2: Compose the entity embeddings on a
path between the head (blue) and target (red) entity from the forward and backward model. Each
composition predicts the target relation. Step 3: Aggregate the evidence provided by each prediction.

initialized as a uniform distribution. Note that the entity components correspond to abstract primitive
relations, rather than the relations fromR. We only require that the relations fromR can be defined
in terms of these primitive relations. This distinction is important, because it allows us to capture
semantic dependencies between relations (e.g. both parent and father may exist inR) and to express
(composed) relationships which are outsideR. For l ≥ 1, the embeddings are updated as:

e(l) = ψ({e(l−1)} ∪ {ϕ(f (l−1), r) | r(f, e) ∈ F})

where the argument of the pooling operator ψ is a multi-set and r ∈ Rn is a learned embedding of
relation r ∈ R, where r = (r1, . . . , rn) encodes a probability distribution, i.e. ri ≥ 0 and

∑
i ri = 1.

Message passing The vector ϕ(f (l−1), r) should capture the possible relationships between h and
e, given the knowledge provided by f (l−1) about the possible relationships between h and f and the
fact r(f, e). Since both f (l−1) and r are modeled as probability distributions over primitive relations,
ϕ(f (l−1), r) can be defined in terms of compositions of primitive relations. Specifically, let the vector
aij ∈ Rn represent the composition of primitive relations i and j, which we treat as a probability
distribution, i.e. we require the components of aij to be non-negative and to sum to 1. We define:

ϕ((f1, . . . , fn), (r1, . . . , rn)) =

n∑
i=1

n∑
j=1

firjaij (4)

The initialization of h(0) was based on the assumption that the first coordinate of the embeddings cor-
responds to the identity relation. Accordingly, we want to ensure that ϕ((1, 0, . . . , 0), (r1, . . . , rn)) =
(r1, . . . , rn). We thus fix a1j = one-hot(j), where we write one-hot(j) to denote the n-dimensional
vector which is 1 in the jth coordinate and 0 elsewhere. Note that the composition of two primitive re-
lations is also a probability distribution over primitive relations. This provides an important inductive
bias, as it encodes that the relationship between any two entities can be described by one of the n
considered primitive relations. Rule based methods, including NTP based approaches, also encode
this assumption. However, the message passing operations that are used by standard GNNs typically
do not. We hypothesise that the lack of this inductive bias partially explains why standard GNNs fail
at systematic generalization for reasoning in relational domains.

Pooling The pooling operator ψ has to be chosen in accordance with the view of embeddings as
epistemic states: if x1, . . . ,xk capture sets of possible relationships then ψ{x1, . . . ,xk} should
intuitively capture the intersection of these sets. This requirement was studied by (Schockaert, 2024),
whose central result is that the minimum and component-wise (i.e. Hadamard) product are compatible
with this view, but sum pooling is not. In our setting, since the embeddings capture probability
distributions rather than sets, ψ is L1-normalized after applying the minimum or product.

Training To train the model, we assume that we have access to a set of examples of the form
(Fi, hi, ti, ri), where hi, ti are entities appearing in Fi and the atom ri(hi, ti) can be inferred from
Fi. Different examples will involve a different fact set Fi but the set of relations R appearing
in these fact sets is fixed. We train the model via contrastive learning. This means that for each
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positive example (Fi, hi, ti, ri) we can consider negative examples of the form (Fi, hi, ti, r
′) with

r′ ∈ R \ {ri}. Let us write ti for the final-layer embedding of entity ti in the graph associated with
Fi (with hi as the designated head entity). We train the model using a margin loss, imposing that the
cross-entropy between ti and r should be lower for positive examples than for negative examples.

Facets A crucial hyperparameter is the dimensionality n of the embedding r, as it determines
the number of primitive relations. A large n is essential to express all the relations of interest, but
choosing n too high may lead to overfitting. To address this, we propose to jointly train m different
models, each with a relatively low dimensionality. The underlying intuition is that each model focuses
on a different facet of the relations. Because these facets are easier to model than the target relations
themselves, each of the m models can individually remain relatively simple. In the loss function, we
simply add up the cross-entropies from these m models (see Appendix F for details).

Expressivity The algebraic closure algorithm maintains a set of possible relations for each pair of
entities. Simulating this algorithm thus requires a number of vectors which is quadratic in the number
of entities. As this limits scalability, we instead consider an approximation, which we call directional
algebraic closure, where we only maintain sets of possible relations between the head entity and the
other entities (see Appendix C for details). EpiGNNs can be seen as a differentiable counterpart of
directional algebraic closure, where standard directional algebraic closure emerges as a special case.
Proposition 2 (informal). There exists a parameterisation of the vectors r and aij such that the
predictions of the EpiGNN exactly capture what can be inferred using directional algebraic closure.

Forward-backward model As we noted in Section 2.1, the order in which the relations on a
relational path r1; ...; rk are composed sometimes matters. The model we have constructed thus far
always composes such paths from left to right, i.e. we first compose r1 and r2, then compose the
resulting relation with r3, etc. To mitigate this limitation, we introduce a backward model, which
relies on a designated tail entity. Similar as before, we initialise the embeddings as t(0) = (1, 0 . . . , 0)
and e(0) = (1/n, . . . , 1/n) for e ̸= t. These embeddings are updated as follows:

e(l) = ψ({e(l−1)} ∪ {ϕ(r, f (l−1)) | r(e, f) ∈ F}) (5)

where ψ and ϕ are defined as before. Note that the backward model does not introduce any new
parameters. We rely on the idea that ϕ captures the composition of relation vectors. In the forward
model, the embedding of an entity e is interpreted as capturing the relationship between h and e
and in the backward model, it captures the relationship between e and t. This is why r appears as
the second argument of ϕ in (4) and as the first argument in (5). Let e→ and e← be the final-layer
embedding of e in the forward and backward model. In particular, t→ and h← now both capture
the relationship between h and t. Moreover, for any entity e on a path between h and t, the vector
ϕ(e→, e←) should also capture this relationship. We take advantage of the aggregation operator ψ to
take into account all these predictions. In particular, we construct the following vector:

s = ψ({t→,h←} ∪ {ϕ(e→, e←) | e ∈ Eh,t}) (6)

where we write Eh,t for the entities that appear on some path from h to t. When there are multiple
paths between h and t, we randomly select one of the shortest paths to define Eh,t. The model is
then trained as before, using s as the predicted relation vector rather than t→. Note that while this
approach cannot exhaustively consider all possible derivations, it has the key advantage of remaining
highly efficient. A schematic of the EpiGNN learning dynamics is shown in Figure 3.

4 EXPERIMENTS

We use the challenging problem of inductive relational reasoning to evaluate our proposed model
against GNN, transformer and neuro-symbolic baselines. We consider two variants of the EpiGNN,
which differ in the choice of the pooling operator: component-wise multiplication (EpiGNN-mul)
and min-pooling (EpiGNN-min). Most of the considered benchmarks involve relation classification
queries of the form (h, ?, t), asking which relation holds between a given head entity h and tail entity
t. We focus in particular on systematic generalization, to assess whether models can deal with large
distributional shifts from the training set, which is paramount in many real-world settings (Koh et al.,
2021). We consider two existing benchmarks designed to test systematic generalization for relational
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Table 1: Results (accuracy) on CLUTRR after training on problems with k ∈ {2, 3, 4} and then
evaluating on problems with k ∈ {5, . . . , 10}. Results marked with ∗ were taken from (Minervini
et al., 2020b), those with † from (Lu et al., 2022) and those with 2 from (Cheng et al., 2023). The
best performance for each k is highlighted in bold.

5 Hops 6 Hops 7 Hops 8 Hops 9 Hops 10 Hops

EpiGNN-mul (ours) 0.99±.01 0.99±.01 0.99±.02 0.99±.03 0.96±.03 0.98±.02
EpiGNN-min (ours) 0.99±.01 0.98±.02 0.98±.03 0.97±.06 0.95±.04 0.93±.07

NCRL2 1.0±.01 0.99±.01 0.98±.02 0.98±.03 0.98±.03 0.97±.02
R5† 0.99±.02 0.99±.04 0.99±.03 1.0±.02 0.99±.02 0.98±.03
CTP∗

L 0.99±.02 0.98±.04 0.97±.04 0.98±.03 0.97±.04 0.95±.04
CTP∗

A 0.99±.04 0.99±.03 0.97±.03 0.95±.06 0.93±.07 0.91±.05
CTP∗

M 0.98±.04 0.97±.06 0.95±.06 0.94±.08 0.93±.08 0.90±.09
GNTP∗ 0.68±.28 0.63±.34 0.62±.31 0.59±.32 0.57±.34 0.52±.32

ET 0.99±.01 0.98±.02 0.99±.02 0.96±.04 0.92±.07 0.92±.07

GAT∗ 0.99±.00 0.85±.04 0.80±.03 0.71±.03 0.70±.03 0.68±.02
GCN∗ 0.94±.03 0.79±.02 0.61±.03 0.53±.04 0.53±.04 0.41±.04
NBFNet 0.83±.11 0.68±.09 0.58±.10 0.53±.07 0.50±.11 0.53±.08
R-GCN 0.97±.03 0.82±.11 0.60±.13 0.52±.11 0.50±.09 0.45±.09

RNN∗ 0.93±.06 0.87±.07 0.79±.11 0.73±.12 0.65±.16 0.64±.16
LSTM∗ 0.98±.03 0.95±.04 0.89±.10 0.84±.07 0.77±.11 0.78±.11
GRU∗ 0.95±.04 0.94±.03 0.87±.08 0.81±.13 0.74±.15 0.75±.15
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Figure 4: RCC-8 and Interval Algebra benchmark results (accuracy). R5 and CTP results for 5+ hops
were set to zero since the model took longer than 30 minutes for inference. Models are trained on
graphs with b ∈ {1, 2, 3} paths of length k ∈ {2, 3, 4}. The best model for all cases is EpiGNN-min.

reasoning: CLUTRR (Sinha et al., 2019) and Graphlog (Sinha et al., 2020). We also evaluate on two
novel benchmarks: one involving RCC-8 relations and one based on IA. These go beyond existing
benchmarks on two fronts, as illustrated in Figure 1: (i) the need to go beyond Horn rules to capture
relational compositions and (ii) requiring models to aggregate information multiple relational paths.
For CLUTRR, RCC-8 and IA, to test for systematic generalization, models are trained on small
graphs and subsequently evaluated on larger graphs. In particular, for CLUTRR, the length k of the
considered relational paths is varied, while for RCC-8 and IA we vary both the number of relational
paths b and their length k. In the case of Graphlog, the size of training and test graphs is similar,
but models still need to apply learned rules in novel ways to perform well. We complement these
experiments with an evaluation on the popular task of inductive knowledge graph completion. Here,
the need for systematic generalization is less obvious and a much broader family of methods can
be used. The main purpose of this analysis is to analyze how well EpiGNNs perform compared to
domain-specialized models in a more general setting. Finally, we also analyze the parameter and
time complexity of EpiGNNs.
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Table 2: Results on Graphlog (accuracy). For each world, we report the number of distinct relation
sequences between head and tail (ND) and the Average resolution length (ARL). Results marked
with ∗ were taken from (Lu et al., 2022) and those with † from (Cheng et al., 2023). The best and
second-best performance across all the models are highlighted in bold or underlined.

World ID ND ARL E-GAT∗ R-GCN∗ CTP∗ R5∗ NCRL† ET EpiGNN-mul

World 6 249 5.06 0.536 0.498 0.533±0.03 0.687±0.05 0.702±0.02 0.496± 0.087 0.648± 0.012
World 7 288 4.47 0.613 0.537 0.513±0.03 0.749±0.04 - 0.487± 0.056 0.611±0.026
World 8 404 5.43 0.643 0.569 0.545±0.02 0.671±0.03 0.687±0.02 0.55± 0.092 0.649±0.042
World 11 194 4.29 0.552 0.456 0.553±0.01 0.803±0.01 - 0.637± 0.091 0.758± 0.037
World 32 287 4.66 0.700 0.621 0.581±0.04 0.841±0.03 - 0.815± 0.061 0.914±0.026

Table 3: Hits@10 results on the inductive benchmark datasets extracted from WN18RR, FB15k-237
with 50 negative samples. The results of other baselines except NBFNet are obtained from (Liu
et al., 2023) and the former from (Zhu et al., 2021). The best and second-best performance across all
models are highlighted in bold or underlined.

WN18RR FB15k-237

v1 v2 v3 v4 v1 v2 v3 v4

Rule-Based
Neural LP 74.37 68.93 46.18 67.13 52.92 58.94 52.90 55.88
DRUM 74.37 68.93 46.18 67.13 52.92 58.73 52.90 55.88
RuleN 80.85 78.23 53.39 71.59 49.76 77.82 87.69 85.60

Graph-Based

GraIL 82.45 78.68 58.43 73.41 64.15 81.80 82.83 89.29
CoMPILE 83.60 79.82 60.69 75.49 67.64 82.98 84.67 87.44
TACT 84.04 81.63 67.97 76.56 65.76 83.56 85.20 88.69
SNRI 87.23 83.10 67.31 83.32 71.79 86.50 89.59 89.39
ConGLR 85.64 92.93 70.74 92.90 68.29 85.98 88.61 89.31
REST 96.28 94.56 79.50 94.19 75.12 91.21 93.06 96.06
NBFNet 94.80 90.50 89.30 89.00 83.40 94.90 95.10 96.00

EpiGNN-min 92.45 85.99 84.18 85.77 91.67 95.54 93.74 93.45

Main results Results for CLUTRR, RCC-8, IA and Graphlog are shown in Table 1, Figure 4 and
Table 2. We report the average accuracy and 2σ errors across 10 seeds for CLUTRR and 3 seeds for
RCC-8, IA and Graphlog. For CLUTRR, both variants of our model outperform all GNN and RNN
methods, as well as edge transformers (ET). The EpiGNN-mul model is also on par with the SOTA
neuro-symbolic methods NCRL (Cheng et al., 2023) and R5 (Lu et al., 2022). For RCC-8 and IA,
as expected, the neuro-symbolic methods are largely ineffective, being substantially outperformed
by our method as well as by ET. This highlights the fact that neuro-symbolic methods are not
capable of modeling disjunctive rules. Our model with min-pooling achieves the best results. Edge
transformers also perform well, especially for RCC-8, but they underperform on the most challenging
configurations (e.g. k = 9 and b = 3). Comparing the mul and min variants of our model, we find
that mul performs better on single-path problems (CLUTRR and Graphlog), while min leads to
better results when paths need to be aggregated (RCC-8 and IA). For Graphlog, we only consider
worlds that are characterized as ‘hard’ by Lu et al. (2022), with an Average Resolution Length (ARL)
> 4. Graphlog is amenable to path-based reasoning but is noisier than the other datasets. We find
that EpiGNN-mul is outperformed by R5 and NCRL in most cases, thanks to their stronger inductive
bias. However, EpiGNN-mul clearly improves the SOTA for World 32. Moreover, EpiGNN-mul
outperforms CTPs and the GNN baselines.

The results for inductive knowledge graph completion (KGC) are summarized in Table 3. This task
involves link prediction queries of the form (h, r, ?), asking for tail entities that are in relation r
with some head entity h. We use the inductive splits of FB15k-237 (Toutanova & Chen, 2015) and
WN18RR (Dettmers et al., 2018b) from by Teru et al. (2020) and the evaluation protocol of Bordes
et al. (2013). In inductive KGC, models are evaluated on a test graph which is disjoint from the
training graph. Models thus need to learn inference patterns, but they may not need to systematically
generalize them. Note in particular that the inference chains that are needed for the training and test
graphs come from the same distribution and have the same length. Since all entities need to be scored,
we use the forward-only EpiGNN to efficiently score all entities in the knowledge graph with respect
to the query relation r. The results show that EpiGNNs perform well, being competitive with SOTA
models, and even achieving the best results in two cases, despite not being designed for this task.
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Table 4: Ablation study results. We show the
average accuracy across all configurations (i.e.
4-10 hops for CLUTRR, and k ∈ {2, ..., 9}
and b ∈ {1, 2, 3} for RCC-8), and the accu-
racy for the hardest setting (i.e. 10 hops for
CLUTRR, and b = 3, k = 9 for RCC-8).

CLUTRR RCC-8

Avg Hard Avg Hard

EpiGNN 0.99 0.99 0.96 0.80
- With facets=1 0.94 0.85 0.92 0.68
- Unconstrained embeddings 0.36 0.30 0.38 0.21
- MLP+distmul composition 0.29 0.31 0.13 0.13
- Forward model only 0.94 0.82 0.84 0.51

Ablations We confirm the importance of key archi-
tectural components of our model through an ablation
study on CLUTRR and RCC-8. To show the impor-
tance of jointly training multiple lower-dimensional
models, we show results for for a variant with only
m = 1 facet. To show the importance of modeling
embeddings as epistemic states, we test a variant in
which we remove the requirement that embedding
components are non-negative and sum to 1. To show
the importance of the bilinear composition function ϕ
in (4), we test a variant where the composition func-
tion is replaced by distmul (Yang et al., 2015) after
applying a 4-layer MLP with ReLU activation to both
inputs of ϕ (with the MLP being added to ensure the
model is not underparameterised). To show the im-
portance of the foward-backward nature of the model, we test a variant in which only the forward
embeddings t→ are used. The results in Table 4 confirm the importance of all these components, with
the use of embeddings as epistemic states and the bilinear form of ϕ being particularly important.

ET NCRL R5 EpiGNN
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Figure 5: Parameter complexity across
the relation prediction benchmarks.

Parameter and time complexity Writing n for the total
dimensionality of the relation vectors andm for the number
of facets, the number of parameters is exactly |R|n+ n3

m2 ,
namely |R|n parameters for encoding the relation vectors
and n3

m3 parameters for encoding the aij vectors in each
of the m facets. In practice, we use a large number of
facets, which allows us to keep n

m small. In particular,
when comparing our model with existing neuro-symbolic
models, after hyperparameter tuning each of the models,
we find that EpiGNNs are at least two orders of magnitude
smaller, as shown in Figure 5. The time complexity of
the EpiGNN is O(|E|n+ |F| n

3

m2 ), and thus highly efficient
given that n

m is small in practice. A comparison with the main baselines is shown in Appendix G.5.

5 RELATED WORK

Neuro-symbolic methods Neuro-symbolic methods such as DeepProbLog (Manhaeve et al., 2018)
and NTPs (Rocktäschel & Riedel, 2017) are essentially differentiable formulations of inductive
logic programming, where the latter is concerned with learning symbolic rule bases from sets of
examples (Muggleton, 1991; Muggleton & De Raedt, 1994; Nienhuys-Cheng & de Wolf, 1997; Evans
& Grefenstette, 2018). Although these methods are capable of systematic reasoning, scalability is
a key concern. For instance, by generalizing logic programming, NTPs and DeepProbLog rely on
the exploration of a potentially exponential number of proof paths. Another challenge to scalability
comes from the fact that the space of candidate rules grows exponentially with the number of relations
(Evans & Grefenstette, 2018). More recent methods, including R5 (Lu et al., 2022), CTPs (Minervini
et al., 2020b) and NCRL (Cheng et al., 2023) are somewhat more efficient than NTPs. R5 uses Monte
Carlo Tree search with a dynamic rule memory network, CTPs use a learned heuristic filter function
on top of NTPs to reduce the number of explored paths during backward chaining, and NCRL focuses
on learning how to iteratively collapse relational paths. These methods can systematically reason
but only NCRL scales to knowledge graphs such as FB15k. Moreover, both R5 and NCRL are
limited by their over-reliance on single path sampling and cannot deal with disjunctive rules. CTPs
cannot handle benchmarks such as RCC-8 and IA either, as they cannot model the constraint that
the different relations are pairwise disjoint and jointly exhaustive. Some approaches, such as Logic
Tensor Networks (Badreddine et al., 2022) and Lifted Relational Neural Networks (Sourek et al.,
2018) rely on fuzzy logic connectives to enable more efficient differentiable logic programming.
These frameworks are typically quite general, e.g. being capable of encoding GNNs as a special
case (Sourek et al., 2021). As such, they should be viewed as modeling frameworks rather than
specific models. We are not aware of work that uses these frameworks for systematic generalization.
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More generally, within the context of statistical relational learning, methods such as Markov Logic
Networks (Richardson & Domingos, 2006) have been studied, which can learn weighted sets of
arbitrary propositional formulas, but suffer from limited scalability, a limitation which is inherited by
differentiable versions of such methods (Marra & Kuželka, 2021).

Systematic reasoning There has been a large body of work on learning to reason with neural
networks, including recent approaches based on GNNs (Zhang et al., 2020; Zhu et al., 2021; Zhang &
Yao, 2022), pre-trained language models (Clark et al., 2020; Kojima et al., 2022; Creswell et al., 2023)
or tailor-made architectures for relational reasoning (Santoro et al., 2017; Bergen et al., 2021). Most of
these methods, however, fail at tasks that require systematic generalization (Sinha et al., 2019; 2020)
and are prone learning reasoning shortcuts (Marconato et al., 2023; Zhang et al., 2023a). NBFNet
(Zhu et al., 2021), R-GCN (Schlichtkrull et al., 2018), and graph-convolution methods (Dettmers
et al., 2018a; Vashishth et al., 2020) are examples of scalable and (mostly) parameter-efficient
methods designed for knowledge graph completion. Such methods typically leverage knowledge
graph embedding methods (Bordes et al., 2013; Trouillon et al., 2017; Yang et al., 2015) in the
message passing step. NBFNet uses such methods to compose relations and anchors the embeddings
to a head entity to develop path-based relational representations. GNNs for logical reasoning have
also been proposed, including R2N (Marra et al., 2023) and LERP (Han et al., 2023), but their focus
is again on knowledge graphs and not systematic reasoning. For instance, R2N uses multi-layer
perceptrons (MLPs) for information composition and sum aggregation. This increases the capacity
of the model, which can be beneficial for learning statistical regularities from knowledge graphs,
but which at the same time also hurts a GNN’s systematic reasoning ability, as we have seen in our
ablation analysis. EpiGNNs are inspired by the idea of algorithmic alignment (Xu et al., 2020),
i.e. aligning the neural architecture with the desired reasoning algorithm. Edge Transformers (Bergen
et al., 2021) also rely on this idea to some extent, aligning the model with relational reasoning
by using a triangular variant of attention (Vaswani et al., 2017) to capture relational compositions.
However, compared to EpiGNNs, edge transformers are less scalable, as they cannot operate on sparse
graphs, less parameter-efficient, and less successful at systematic generalization, as we have seen
in our experiments. Finally, the problem of systematic generalization has also been studied beyond
relational reasoning. For instance, there is existing work on benchmarking length generalization for
sequence based methods such as pretrained transformers and recurrent networks, including SCAN
(Lake & Baroni, 2018), LEGO (Zhang et al., 2023b) and Addition (Nye et al., 2021).

6 CONCLUSIONS

We have challenged the view that Graph Neural Networks are not capable of systematic generalization
in relational reasoning problems, by introducing the EpiGNN, a principled GNN architecture for this
setting. To impose an appropriate inductive bias, node embeddings in our framework are treated as
epistemic states, intuitively capturing sets of possible relationships, which are iteratively refined by
the EpiGNN. In this way, EpiGNNs are closely aligned with the algebraic closure algorithm, which
is used for relational reasoning by symbolic methods, and a formal connection with this algorithm
has been established. EpiGNNs are scalable and parameter-efficient. They rival neuro-symbolic
methods on standard systematic reasoning benchmarks such as CLUTRR and Graphlog, while
clearly outperforming existing GNN and transformer based methods. Moreover, we have highlighted
that existing neuro-symbolic methods have an important weakness, which arises from an implicit
assumption that relations can be predicted from a single relational path. To explore this issue, we
have introduced two new benchmarks based on spatio-temporal calculi, finding that neuro-symbolic
methods indeed fail on them, while EpiGNNs still performs well in this more challenging setting.
Finally, despite being designed for systematic reasoning, our experiments show that EpiGNNs rival
SOTA specialized methods for inductive knowledge graph completion.

Limitations The EpiGNN is limited by its statistical nature, where the parameters of the model
will inevitably be biased by training data artefacts. While we have shown that our model can perform
well in settings where existing neuro-symbolic methods fail (i.e. spatio-temporal benchmarks), the
much stronger inductive bias imposed by the latter puts them at an advantage in severely data-limited
settings. This can be seen in some of the Graphlog results. For a variant of CLUTRR where the
model is only trained on problems of size k ∈ {2, 3}, our model is also outperformed by the best
neuro-symbolic methods (shown in Appendix G).
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A SEMANTICS OF ENTAILMENT

For simple path rules of the form (1), the semantics of entailment can be defined in terms of the
immediate consequence operator. Let KF be the grounding of K w.r.t. F , i.e. for each rule of
the form r(X,Z) ← r1(X,Y ) ∧ r2(Y,Z) in K, KF contains all the possible rules of the form
r(a, c)← r1(a, b) ∧ r2(b, c) that can be obtained by substituting the variables for entities that appear
in F . Since we assume that both F and K are finite, we have that KF is finite as well. Let F0 = F
and for i ≥ 1 define:

Fi =Fi−1 ∪ {r(a, c) | ∃b ∈ E . r1(a, b), r2(b, c) ∈ Fi−1 and (r(a, c)← r1(a, b) ∧ r2(b, c)) ∈ KF}

Since there are finitely many atoms r(a, c) that can be constructed using the entities and relations
appearing in KF , this process reaches a fixpoint after a finite number of steps, i.e. for some ℓ ∈ N we
have Fℓ = Fℓ+1. Let us write F∗ for this fixpoint. Then we define F ∪K |= r(a, b) iff r(a, b) ∈ F∗.
Example 1. The canonical example for this setting concerns reasoning about family relationships.
In this case, K contains rules such as:

grandfather(X,Z)← father(X,Y ) ∧ mother(Y,Z)

If F = {father(bob, alice),mother(alice, eve)} then KF contains rules such as:

grandfather(bob, eve)← father(bob, alice) ∧ mother(alice, eve)
grandfather(bob, alice)← father(bob, alice) ∧ mother(alice, alice)
grandfather(bob, bob)← father(bob, alice) ∧ mother(alice, bob)
grandfather(bob, eve)← father(bob, eve) ∧ mother(eve, eve)

. . .

We have F1 = {father(bob, alice),mother(alice, eve), grandfather(bob, eve)}, with F1 = F2 = F∗.
We thus find: K ∪ F |= grandfather(bob, eve).

For the more general setting with disjunctive rules and constraints, we can define the semantics of
entailment in terms of Herbrand models. Given a set of disjunctive rules and constraintsK and a set of
factsF , the Herbrand universe UK,F is the set of all atoms of the form r(a, b) which can be constructed
from a relation r and entities a, b appearing inK∪F . A Herbrand interpretation ω is a subset of UK,F .
The interpretation ω satisfies a ground disjunctive rule of the form s1(a, c)∨. . .∨sk(a, c)← r1(a, b)∧
r2(b, c) iff either {r1(a, b), r2(b, c)} ̸⊆ ω or ω ∩ {s1(a, c), . . . , sk(a, c)} ≠ ∅. The interpretation ω
satisfies a ground constraint of the form ⊥ ← r1(a, b) ∧ r2(a, b) iff {r1(a, b), r2(a, b)} ̸⊆ ω. We
say that ω is a model of the grounding KF iff ω satisfies all the ground rules and constraints in KF .
Finally, we have that K ∪ F |= r(a, b) iff r(a, b) is contained in every model of KF .

B SIMPLE PATH ENTAILMENT: PROOF OF PROPOSITION 1

The correctness of Proposition 1 immediately follows from Lemmas 1 and 2 below.

Lemma 1. Suppose there exists a relational path r1; ...; rk connecting a and b in GF such that r can
be derived from r1; ...; rk. Then it holds that K ∪ F |= r(a, b).

Proof. Let r1; ...; rk be a relational path connecting a and b, such that r can be derived from r1; ...; rk.
Then F contains facts of the form r1(a, x1), r2(x1, x2), ..., rk(xk−1, b). Let us now consider the
derivation from r1; ...; rk to r. After the first derivation step, we have a relational path of the form
r1; ...; ri−2; s; ri+1; ...; rk. In this case, K contains a rule of the form s(X,Z) ← ri−1(X,Y ) ∧
ri(Y,Z). This means that K ∪ F |= s(xi−2, xi). We thus have a relational path of the form
r1; ...; ri−2; s; ri+1; ...; rk, where each relation is associated with an atom that is entailed by K ∪ F .
Each derivation step introduces such an atom (while reducing the length of the relational path by 1).
After k − 1 steps, we thus obtain the atom r(a, b), from which it follows that K ∪ F |= r(a, b).

Lemma 2. Suppose that K ∪ F |= r(a, b). Then it holds that there exists a relational path r1; ...; rk
connecting a and b in GF such that r can be derived from r1; ...; rk.
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Proof. Recall from Appendix A that K ∪ F |= r(a, b) iff r(a, b) ∈ F∗. It thus suffices to show by
induction that r(a, b) ∈ Fi implies that there exists a relational path r1; ...; rk connecting a and b
in GF such that r can be derived from r1; ...; rk. First, if r(a, b) ∈ F0 then by definition there is a
relational path r connecting a and b in GF , meaning that the result is trivially satisfied. Now suppose
that the result has already been shown for Fi−1. Let r(a, b) ∈ Fi \ Fi−1. Then there must exist facts
r1(a, x) and r2(x, b) inFi−1 such thatK contains a rule of the form r(X,Z)← r1(X,Y )∧r2(Y, Z).
By induction, we have that there is a relational path s1; ...; sℓ1 connecting a and x such that r1 can
be derived from this path, and a relational path t1; ...; tℓ2 connecting x and b from which r2 can be
derived. We then have that s1; ...sℓ1 ; t1; ...; tℓ2 is a path connecting a and b. Furthermore, we have
that r1; r2 can be derived from this path, and thus also r.

C REASONING ABOUT DISJUNCTIVE RULES USING ALGEBRAIC CLOSURE

We consider knowledge bases with three types of rules. First, we have disjunctive rules that encode
relational compositions:

s1(X,Z) ∨ . . . ∨ sk(X,Z)← r1(X,Y ) ∧ r2(Y,Z) (7)

Second, we have constraints of the following form:

⊥ ← r1(X,Y ) ∧ r2(X,Y ) (8)

meaning that r1 and r2 are disjoint. Finally, we consider knowledge about inverse relations, expressed
using rules of the following form:

r2(Y,X)← r1(X,Y ) (9)

We now describe the algebraic closure algorithm, which can be used to decide entailment for calculi
such as RCC-8 and IA. We also describe an approximation of this algorithm, which we call directional
algebraic closure.

Full algebraic closure Let us make the following assumptions:

• The knowledge base K contains rules of the form (7), encoding the composition of relations
r1 and r2.

• We also have that K contains the rule
∨

r∈R r(X,Y ) ← ⊤, expressing that the set of
relations is exhaustive.

• For all distinct relations r1, r2 ∈ R, r1 ̸= r2, K contains a constraint of the form (8),
expressing that the relations are pairwise disjoint.

• For every r ∈ R there is some relation r̂ ∈ R, such that K contains the rules r(Y,X) ←
r̂(X,Y ) and r̂(Y,X)← r(X,Y ), expressing that r̂ is the inverse of r.

• K contains no other rules.

Let us write r1 ◦r2 for the set of relations that appears in the head of the rule defining the composition
of r1 and r2 in K. If no such rule exists in K for r1 and r2 then we define r1 ◦ r2 = R. Let E be the
set of entities that appear in F . Let us assume that F is consistent with K, i.e. K ∪ F ̸|= ⊥.

The main idea of the algebraic closure algorithm is that we iteratively refine our knowledge of what
relationships are possible between different entities. Specifically, for all entities e, f ∈ E , we define
the initial set of possible relationships as follows:

X
(0)
ef =


{r} if r(e, f) ∈ F
{r̂} if r(f, e) ∈ F
R otherwise

where r̂ is the unique relation that is asserted to be the inverse of r in K. Note that because we
assumed F to be consistent, if r(e, f) ∈ F and r′(f, e) ∈ F it must be the case that r′ = r̂. We now
iteratively refine the sets X(i)

ef . Specifically, for i ≥ 1, we define the refinement step:

X
(i)
ef = X

(i−1)
ef ∩

⋂
{X(i−1)

eg ⋄X(i−1)
gf | g ∈ E} (10)
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where, for X,Y ⊆ R, we define:

X ⋄ Y =
⋃
{r ◦ s | r ∈ X, s ∈ Y }

Since each of the sets X(i)
ef only contains finitely many elements, and there are only finitely many

such sets, this process must clearly converge after a finite number of steps. Let us write Xef of the
sets of relations that are obtained upon convergence. For many spatial and temporal calculi, we have
that r ∈ Xef iffK∪F ∪{r(e, f)} ̸|= ⊥. In other words, Xef encodes everything that can be inferred
about the relationship between e and f . In particular, we have have K ∪ F |= r(e, f) iff Xef = {r}.
Note that this equivalence only holds for particular calculi: in general, K ∪ F |= r(e, f) does not
imply Xef = {r}. Furthermore, even for RCC-8 and IA, this equivalence only holds because the
initial set of facts F is disjunction-free. We refer to (Renz, 1999; Krokhin et al., 2003; Broxvall et al.,
2002) for more details on when algebraic closure decides entailment.

Directional algebraic closure The algebraic closure algorithm relies on sets X(i)
ef for every pair

of entities, which limits its scalability (although more efficient special cases have been studied
(Amaneddine et al., 2013)). Any simulation of this algorithm using a neural network would thus be
unlikely to scale to large graphs. For this reason, we study an approximation, which we refer to as
directional algebraic closure. This approximation essentially aims to infer the possible relationships
between a fixed head entity h and all the other entities from the graph. The relationship between h
and a given entity e is determined based on the paths in G connecting h to e. For this approximation,
we furthermore omit rules about inverse relations. Other than this, we make the same assumptions
about K as before. We now learn sets X(0)

e which capture the possible relationships between h and e.
These sets are initialized as follows:

X(0)
e =

{
{r} if r(h, e) ∈ F
R otherwise

We define for i ≥ 1, the refinement step:

X(i)
e = X(i−1)

e ∩
⋂
{X(i−1)

f ⋄ s | s(f, e) ∈ F} (11)

with

X
(i−1)
f ⋄ s =

⋃
{r ◦ s | r ∈ X(i−1)

f }

where r1 ◦ r2 is defined as before. We write Xe to denote the sets X(i)
e that are obtained upon

convergence. Clearly, after a finite number of iterations i we have X(i)
e = X

(i+1)
e . Note how the

directional closure algorithm essentially limits the full algebraic closure algorithm to compositions
of the form Xhe ⋄Xef , for entities e and f such that there is a fact of the form r(e, f) in F . As the
following result shows, the algorithm is still sound, although it may infer less knowledge than the full
algebraic closure algorithm.

For a rule ρ of the form (7), we write head(ρ) to denote the set {s1, ..., sk} of relations appearing in
the head of the rule and body(ρ) to denote the pair (r1, r2) of relations appearing in the body.
Proposition 3. Assume that K consists of (i) rules of the form (7), (ii) for each pair of distinct
relations r1, r2 the disjointness constraint (8), and (iii) the rule

∨
r∈R r(X,Y )← ⊤. Let e ∈ E . It

holds that K ∪ F |=
∨

r∈Xe
r(h, e).

Proof. We show this result by induction. First note that we have K ∪ F |=
∨

r∈X(0)
e
r(h, e). Indeed,

either X(0)
e = {r(h, e)} with r(h, e) ∈ F , in which case the claim clearly holds, or X(0)

e = R, in
which case the claim holds because K contains the rule

∨
r∈R r(X,Y ) ← ⊤. Now suppose we

have already established K ∪ F |=
∨

r∈X(i−1)
e

r(h, e) for every e ∈ E . To show that K ∪ F |=∨
r∈X(i)

e
r(h, e), it is sufficient to show that K ∪ F |= ¬r(h, e) for every r ∈ X(i−1)

e \ X(i)
e . Let

r ∈ X(i−1)
e \X(i)

e . Then there must exist some s(f, e) ∈ F such that r /∈ X(i−1)
f ⋄ s. In that case,

for every t ∈ X(i−1)
f we have r /∈ t ◦ s. This means that for every t ∈ X(i−1)

f there exists some

rule ρt in K such that body(ρt) = (t, s) and r /∈ heads(ρt). We have for every t ∈ X(i−1)
f that
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K ∪ F |= t(h, f)→ ∨u∈heads(ρt)u(h, e). Moreover, because of our assumption that K encodes that
all relations are pairwise disjoint, for u ̸= r we haveK |= u(h, e)→ ¬r(h, e). We thus find for every
t ∈ X(i−1)

f thatK∪F |= t(h, f)→ ¬r(h, e). By induction we also haveK∪F |=
∨

t∈X(i−1)
f

t(h, e).

Together we find K ∪ F |= ¬r(h, e).

D EXPRESSIVITY: PROOF OF PROPOSITION 2

In this section, we provide a proof for Proposition 2, which we first restate formally in Proposition 4.
We will show that the base EpiGNN model (i.e. the forward model) is already capable of simulating
the directional algebraic closure algorithm. The proof associates the embeddings e(i) from the GNN
with the sets X(i)

e . We show the result for the min-pooling operator ψmin defined as follows:

ψmin(x1, . . . ,xk) =
min(x1, . . . ,xk)

∥min(x1, . . . ,xk)∥1
(12)

Proposition 4. LetF be a set of facts andK a knowledge base satisfying the conditions of Proposition
3. Furthermore assume that K ∪ F is consistent, i.e. K ∪ F ̸|= ⊥. Let X(i)

e be sets of relations that
are constructed using the directional algebraic closure algorithm, and let eij denote the jth coordinate
of e(i). Let the pooling operation be chosen as ψ = ψmin. There exists a parameterisation of the
vectors ri and aij such that the following refinement condition for (11) holds:

X(i)
e ⊇ {rj | ei+1

j > 0, 2 ≤ j ≤ n} ⊇ X(i+1)
e (13)

Proof. Let r1, ..., rn be an enumeration of the relations in R ∪ {id}, where we fix r1 = id. Let
aij = (aij1 , ..., a

ij
n ) be defined for as follows (i ∈ {1, ..., n}):

aijl =

{
1

|ri◦rj | if rl ∈ ri ◦ rj
0 otherwise

where we define id ◦ rj = rj for every j ∈ {1, ..., n}. Note that aij indeed satisfies the requirements
of the model: the coordinates of aij are non-negative and sum to 1, while a1j = one-hot(j) follows
from the fact that id ◦ rj = rj . Furthermore, we define rj = one-hot(j).

We show the result by induction. For i = 0, if F contains a fact of the form rl(h, e), we have
X

(0)
e = {rl}. We show that e(1) is non-zero in the lth coordinate and zero everywhere else. We have:

ϕ(h(0), rl) =
∑
i

∑
l

h0i r
l
jaij =

∑
j

rlja1j = rl = one-hot(l)

This already shows that e(1) is zero in all coordinates apart from the lth. Now let f ̸= h and rp be
such that rp(f, e) ∈ F . We have

ϕ(f (0), rp) =
∑
i

∑
j

f0i r
p
jaij =

1

n

∑
i

∑
j

rpjaij =
1

n

∑
i

aip

We need to show that the lth coordinate of the latter vector is non-zero. Since K ∪F is consistent and
F contains both rl(h, e) and rp(f, e), it has to be the case there there is some q ∈ {1, ..., n} such that
rl ∈ rq ◦ rp. There thus exists some q ∈ {1, ..., n} such that the lth coordinate of aqp is non-zero.
Since all vectors of the aip vectors have non-negative coordinates, it follows that the lth coordinate of
1
n

∑
i aip is non-zero. We have thus shown that {rj | e0j > 0, 2 ≤ j ≤ n} = {rl} = X

(0)
e ⊇ X(1)

e .

If F does not contain any facts of the form rl(h, e), then X(0)
e = R. We need to show for each

l ∈ {2, ..., n} that either e1l is non-zero or rl /∈ X1
e . We have that e1l is non-zero if the lth component

of ϕ(f (0), rp) is non-zero for every fact of the form rp(f, e) in F , where f ̸= h. Consider such
a fact rp(f, e) and assume the lth component of ϕ(f (0), rp) is actually 0. Since f ̸= h we have
f (0) = ( 1n , ...,

1
n ). The lth component of ϕ(f (0), rp) = 1

n

∑
i aip can thus only be 0 if the lth
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component of aip is 0 for every i. This implies that rl /∈ ri ◦ rp for any i ∈ {1, ..., n}, from which it
follows that rl /∈ X(1)

e .

Now suppose that X(i−1)
e ⊇ {rj | eij > 0, 2 ≤ j ≤ n} ⊇ X

(i)
e holds for every entity e. We show

that (13) must then hold as well. We first show X
(i)
e ⊇ {rj | ei+1

j > 0, 2 ≤ j ≤ n}. To this end,

we need to show that for each rj ∈ X(i−1)
e \X(i)

e it holds that ei+1
j = 0. If rj ∈ X(i−1)

e \X(i)
e it

means that there is some rp(f, e) ∈ F such that rj /∈ X(i−1)
f ⋄ rp. This is the case if rj /∈ rq ⋄ rp

for every rq ∈ X(i−1)
f . This, in turn, means that the jth component of aqp is 0 for every q such that

rq ∈ X(i−1)
f . Furthermore, by the induction hypothesis, we know that rq /∈ X(i−1)

f means f iq = 0.
In other words, for each q we have that either f iq = 0 or that the jth component of aqp is 0. It follows
that the jth component of ϕ(f (i), rp) is 0, and thus also that ei+1

j = 0.

We now show {rj | ei+1
j > 0, 2 ≤ j ≤ n} ⊇ X

(i+1)
e . Let j be such that eij > ei+1

j = 0. We need

to show that rj /∈ X(i+1)
e . If eij > ei+1

j = 0 there needs to be some rp(f, e) ∈ F such that the jth

component of ϕ(f (i), rp) is 0. We have

ϕ(f (i), rp) =
∑
l

∑
j

f il r
p
jalj =

∑
l

f il alp

So when the jth component of ϕ(f (i), rp) is 0 we must have for each l that either f il = 0 or that
ajlp = 0. By the induction hypothesis, f il = 0 implies rl /∈ X(i)

f . Furthermore ajlp = 0 means that

rj /∈ rl ◦ rp. When the jth component of ϕ(f (i), rp) is 0, we thus have that either rl /∈ X
(i)
f or

rj /∈ rl ◦ rp for each l, which implies rj /∈ X(i+1)
e .

Another possibility is to use the component-wise product for pooling embeddings:

ψ⊙ =
(x1 ⊙ . . .⊙ xk)

∥(x1 ⊙ . . .⊙ xk)∥1
where we write ⊙ for the Hadamard product. Using the same argument as in the proof of Proposition
4, we can show that the same result holds for this pooling operator. In practice, however, for numerical
stability, we evaluate ψ⊙ as follows:

ψ⊙(x1, . . . ,xk) =
(x1 ⊙ . . .⊙ xk) + z

∥(x1 ⊙ . . .⊙ xk) + z∥1
(14)

where z = (ε, . . . , ε) for some small constant ε > 0. As long as ε is sufficiently small, this does
not affect the ability of the GNN model to simulate the directional closure algorithm. In particular,
whenever eij = 0 in the GNN with ψmin we can ensure that this coordinate is arbitrarily small in the
GNN with Ψ⊙ (choosing the aij and rj vectors as in the proof of Proposition 4), by selecting ε small
enough. In particular, there exists some δ > 0 such that

X(i)
e ⊇ {rj | ei+1

j > δ, 2 ≤ j ≤ n} ⊇ X(i+1)
e

E DISJUNCTIVE REASONING BENCHMARKS

We introduce two new benchmarks: one based on RCC-8 and one based in IA. Both benchmarks
are similar to CLUTRR and Graphlog in their focus on assessing inductive relational reasoning via
relation classification queries of the form (h, ?, t), where we need to predict which relation holds
between a given head entity h and tail entity t. The available knowledge is provided as a set of facts
F , which we can again think of as a graph. The inductive part refers to the fact that the model is
trained and tested on distinct graphs. The main difficulty comes from the fact that only small graphs
are available for training, while some of the test graphs are considerably larger.

However, different from existing benchmarks, our benchmarks require reasoning about disjunctive
rules, which is particularly challenging for many methods. The kind of knowledge that has to be
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Figure 6: An example from the RCC-8 benchmark with b = 6 paths from the source node 0 to the
target node 17. Each path has a length of k = 3 where k is the number of hops or edges from the node
0 to node 17. The graph has to be collapsed into the single relation ntpp(0, 17) using information
from all the paths.

learned is thus more expressive than the Horn rules which are considered in most existing benchmarks.
As illustrated in Example 2, this means that models need to process different relational paths and
aggregate the resulting information. We vary the difficulty of problem instances based on the number
b of such paths and their length k. Figure 6 provides an example where there are b = 6 paths of length
k = 3. Each path is partially informative, in the sense that it allows to exclude certain candidate
relations, but is not sufficiently informative to pinpoint the exact relation. The model thus needs to
rely on the different paths to be able to exclude all but one of the eight possible relations.

In summary, within the context of benchmarks for systematic generalization, our RCC-8 and IA
benchmarks are novel on two fronts compared to existing benchmarks such as CLUTRR (Sinha et al.,
2019) and Graphlog (Sinha et al., 2020):

1. Going beyond Horn rules for relation composition: The composition of some RCC-8
relations is a disjunction of several RCC-8 relations, and similar for IA.

2. Multi-path information aggregation: Models need to reason about multiple relational
paths (for the case where b > 1) to infer the correct answer.

3. Rich graph topologies: The graph generation process recursively expands an edge in the
base graph with valid subgraphs and leads to significantly diverse graph topolgies

E.1 RCC-8

Region Connection Calculus (RCC-8) (Randell et al., 1992) uses eight primitive relations to describe
qualitative spatial relationships between regions: ntpp(a, b) means that a is a proper part of the
interior of b, tpp(a, b) means that a is a proper part of b and shares a boundary point with b, po(a, b)
means that a and b are overlapping (but neither is included in the other), dc(a, b) means that a and b
are disjoint, ec(a, b) means that a and b are adjacent (i.e. sharing a boundary point but no interior
points), eq(a, b) means that a and b are equal, and ntppi and tppi are the inverses of ntpp and tpp.

Example 2. The RCC-8 calculus describes qualitative spatial relations between two regions using
eight primitive relations. The semantics of the RCC-8 relations are governed by disjunctive rules
such as:

po(X,Z) ∨ tpp(X,Z) ∨ ntpp(X,Z)← ec(X,Y ) ∧ ntpp(Y,Z) (15)
po(X,Z) ∨ tppi(X,Z) ∨ ntppi(X,Z)← tppi(X,Y ) ∧ po(Y, Z) (16)
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Table 5: RCC-8 composition table (Cui et al., 1993) (excluding eq).

dc ec po tpp ntpp tppi ntppi

dc R8
dc, ec, po,
tpp, ntpp

dc, ec, po,
tpp, ntpp

dc, ec, po,
tpp, ntpp

dc, ec, po, tpp,
ntpp

dc dc

ec
dc, ec, po,
tppi, ntppi

dc, ec, po,
tpp, tppi, eq

dc, ec, po,
tpp, ntpp

ec, po, tpp,
ntpp

po, tpp, ntpp dc, ec dc

po
dc, ec, po,
tppi, ntppi

dc, ec, po,
tppi, ntppi R8 po, tpp, ntpp po, tpp, ntpp dc, ec, po,

tppi, ntppi
dc, ec, po,
tppi, ntppi

tpp dc dc, ec dc, ec, po,
tpp, ntpp tpp, ntpp ntpp

dc, ec, po,
tpp, tppi, eq

dc, ec, po,
tppi, ntppi

ntpp dc dc
dc, ec, po,
tpp, ntpp ntpp ntpp

dc, ec, po,
tpp, ntpp R8

tppi
dc, ec, po,
tppi, ntppi

ec, po, tppi,
ntppi

po, tppi,
ntppi

po, eq, tpp,
tppi

po, tpp, ntpp tppi, ntppi ntppi

ntppi
dc, ec, po,
tppi, ntppi

po, tppi,
ntppi

po, tppi,
ntppi

po, tppi,
ntppi

po, tppi, tpp,
ntpp, ntppi, eq ntppi ntppi

as well as constraints encoding that the RCC-8 relations are disjoint. Let K contain these rules and
constraints, and let F = {ec(a, b), ntpp(b, c), tppi(a, d), po(d, c)}. Then we haveK∪F |= po(a, c).
Indeed, using (15) we can infer po(a, c) ∨ tpp(a, c) ∨ ntpp(a, c), while using (16) we can infer
po(a, c) ∨ tppi(a, c) ∨ ntppi(a, c). Using the disjointness constraints, we finally infer po(a, c).

The RCC-8 semantics is governed by the so-called composition table, which describes the composition
mapping between two relations. This is shown in Table 5 where the trivial composition with the
identity element eq being itself is dropped. Each entry in this table corresponds to a rule of the form
(15), specifying the possible relations that may hold between two regions a and c, when we know the
RCC-8 relation that holds between a and some region b as well as the relation that holds between b
and c. For instance, the composition of ec and tppi is given by the set {dc, ec}, which means that
from {ec(a, b), tppi(b, c)} we can infer dc(a, c) ∨ ec(a, c). In the table, we writeR8 to denote that
any RCC-8 relation is possible.

E.2 ALLEN INTERVAL ALGEBRA

We also introduce a benchmark based on Allen’s interval algebra (Allen, 1983b) for qualitative
temporal reasoning. The interval algebra (IA) uses 13 primitive relations to describe qualitative
temporal relationships. IA captures all possible relationships between two time intervals, as follows:
<(a, b) means that the time interval a completely precedes the time interval b; d(a, b) means that a
occurs during b while not sharing any boundary points; o(a, b) means that a overlaps with b; m(a, b)
means that a meets b (i.e. a ends exactly when b starts); s(a, b) means that a starts b (i.e. a and
b start at the same time while a finishes strictly before b); f(a, b) means that a finishes b (a and b
finish at the same time, while b starts strictly before a); =(a, b) means that a equals b; and finally
>, di, oi,mi, si, fi are the inverses of the respective operations defined previously. The composition
table for all the primitive interval relations is shown in Table 6 with the exception of the trivial
composition of primitive elements with the identity element =.

E.3 DATASET GENERATION PROCESS

We now explain how the dataset was created. All sampling in the discussion below is uniform random.
Each problem instance has to be constructed such that after aggregating the information provided
by all the relational paths, we need to be able to infer a singleton label. In other words, problem
instances need to be consistent (i.e. the information provided by different paths cannot be conflicting)
and together all the paths need to be informative enough to uniquely determine which relation holds
between the head and tail entity. This makes brute-force sampling of problem instances prohibitive.
Instead, to create a problem instance involving b paths of length k, we first sample a base graph, which
has b shorter paths, with a length in {2, 3, 4}. This is done by pre-computing relational compositions
for a large number of paths and then selecting b paths whose intersection is a singleton. Then we
repeatedly increase the length of the paths by selecting an edge and replacing it by a short path whose
composition is equal to the corresponding relation.

Finally, to add further diversity to the graph topology, for each of the b paths, we allow 1 edge from
the base graph to be replaced by a subgraph (rather than a path), where this subgraph is generated
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Table 6: Allen’s interval algebra composition table (Allen, 1983b) excluding the trivial composition
with =.

< > d di o oi m mi s si f fi

< <
<, o,
m, d,
s

< <
<, o,
m, d,
s

<
<, o,
m, d,
s

< <
<, o,
m, d,
s

<

> >
>, oi,
mi, d,
f

>
>, oi,
mi, d,
f

>
>, oi,
mi, d,
f

>
>, oi,
mi, d,
f

> > >

d < > d
<, o,
m, d,
s

>, oi,
mi, d,
f

< > d
>, oi,
mi, d,
f

d
<, o,
m, d,
s

di
<, o,
m, di,
fi

>, oi,
di, mi,
si

o, oi,
d, s, f,
di, si,
fi, =

di
o, di,
fi

oi, di,
si

o, di,
fi

oi, di,
si

o, di,
fi

di
oi, di,
si

di

o <
>, oi,
di, mi,
si

o, d, s
<, o,
m, di,
fi

<, o,
m

o, oi,
d, s, f,
di, si,
fi, =

<
oi, di,
si

o
o, di,
fi

o, d, s <, o,
m

oi
<, o,
m, di,
fi

>
oi, d,
f

>, oi,
mi, di,
si

o, oi,
d, di,
s, si, f ,
fi, =
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using the same procedure. Note that the final path count b then includes the paths from this subgraph
as well.

The process is described in more detail below:

1. Sample short paths: Randomly sample n = 100 000 paths of length k ∈ {2, 3, 4} and
compute their composition. Note that this sampling is done with replacement to avoid
uniqueness upper bounds for small graphs.

2. Generate base graphs: Generate the desired number of b-path base graphs, by selecting
paths that were generated in step 1. Each individual path typically composes to a set of
relations, but the graphs are constructed such that the intersection of these sets, across all b
paths, produces a singleton target label.

3. Recursive edge expansion: Randomly pick an edge from a path that does not yet have the
required length k. Select a path from step 1 which composes to a singleton, corresponding
to the relation that is associated with the chosen edge. Replace the edge with this path.

4. Recursive subgraph expansion: Rather than replacing an edge with a path, we can also
replace it with a subgraph. As candidate subgraphs, we use the base graphs from step 2 with
at most ⌊ b2⌋ paths.

5. Keep repeating steps 2 and 3 until we have the desired number paths b with the desired
length of k, with the restriction that step 3 is applied at most once to each path from the
initial base graph.

Some example graphs generated via this procedure for the RCC-8 dataset are displayed in Figure 7.
For higher k, there is greater diversity in the graph topology and complexity of the graph. To create a
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dataset for reasoning about interval algebra problems, we follow the same process as for the RCC-8
dataset. Example graphs generated via this procedure for IA are displayed in Figure 8.
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Figure 7: Some graph instances for the RCC-8 dataset generated using the procedure described in E.3.
The graph topology becomes more diverse for the test instances when sub-graphs are embedded
within a single path, as shown in (g) for path length k = 6 and number of paths b = 1. In this
particular case, there are two sub-graphs that have been embedded in the graph by replacing two
edges. Instances of the type shown in (a), (b), (c), (d), (e), (f) are used in the training set and the
graph topology is fixed in this case. The target edge label between the source node and the tail node
that needs to be predicted by the model is indicated by the dotted line.
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Figure 8: Graph instances for the interval dataset generated using the procedure described in E.3. We
highlight the rich variation in the topology of the graph instance for path length k = 6 and number
of paths b = 3 in (h) by contrasting it with a similar graph instance for the RCC-8 dataset shown
in Figure 7(h). The target edge label between the source node and the tail node that needs to be
predicted by the model is indicated by the dotted line.

E.4 ENSURING PATH CONSISTENCY WITHIN THE DATASET

We ensure that all relational paths in a problem instance in the generated dataset do not informationally
conflict with each other by using the DPC+ algorithm (Long et al., 2016). It efficiently computes
directional path consistency, i.e. Xij ⊆ Xik ⋄Xkj∀i, j ≤ k, for qualitative constraint networks that
we can transform our graph instances to. Note that this takes advantages of the fact that directional
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path consistency is sufficient as a test for global path consistency for networks with singleton edge
labels (Li et al., 2015).

F ADDITIONAL EXPERIMENTAL DETAILS

We now present further details of the experimental set-up, including details of the loss function that
was used for training the model, the considered benchmarks and baselines, and training details such
as hyperparameter optimisation.

F.1 LOSS FUNCTION

Forward model We first consider the base setting, where a single forward model is used. Let a set
of training instances of the form (Fi, hi, ti, ri) be given, where we write ti = (ti,1, . . . , ti,n) for the
final-layer embedding of entity ti in the graph associated with Fi. Let r = (r1, . . . , rn) denote the
embedding of relation r. We write:

CE(ti, r) = −
n∑

j=1

rj log ti,j (17)

Since ri represents the correct label for training instance i, we clearly want CE(ti, ri) to be low,
while for each negative example r′ ∈ R \ {ri} we want CE(ti, r′) to be high. We implement this
with a margin loss, where for each i we let r′i ∈ R \ {ri} be a corresponding negative example:

L =
∑
i

max(0,CE(ti, ri)− CE(ti, r′i) + ∆) (18)

where the margin ∆ > 0 is a hyperparameter.

Full model In general, we use m different models, each intuitively capturing a different aspect of
the relations. Furthermore, instead of the tail node embedding ti, we use the prediction obtained by
the forward-backward model, computed as in (5). Let us write xij to denote the prediction that is
obtained by the jth model for training example i, and let rij denote the embedding of relation ri in
the jth model. We write r′ij to denote some negative example, i.e. r′ij = rpj for some rp ∈ R \ {ri}.
The overall loss function becomes:

L =
∑
i

max
(
0,
( m∑

j=1

CE(xij, rij)− CE(xij, r
′
ij)
)
+∆

)
(19)

F.2 INFERENCE

Relation classification For the relation classification datasets, where we need to answer queries of
type (h, ?, t), at test time, we predict the target relation for which the cross-entropy with the predicted
embedding is minimal. More precisely, let us write xj for the embedding predicted by the jth model,
computed as in (5). Let rj be the embedding of relation r in the jth model. We predict the relation r̂
defined as follows

r̂ = argmax
r∈R

m∑
j=1

CE(xj, rj) (20)

Link prediction For link prediction datasets, where we need to answer queries of type (h, r, ?),
we use the forward-only model, as we need to efficiently compute a score for all the entities in
the knowledge graph. This is possible with one pass of the forward model, whereas with the full
(forward-backward) model we would have to do one pass for each candidate entity. Let tj be the
final-layer embedding of entity t in the jth model. Let us again write rj for the embedding of relation
r in the jth model. The score of entity t is then given by:

score(t) =
m∑
j=1

CE(tj, rj) (21)

Finally, to answer the link prediction query, we rank the set of all candidate entities based on this
score.
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Table 7: Data statistics for different versions of the CLUTRR dataset, with varying training regimes
and different numbers training and testing graphs.

Training regime Unique Hash No. of relations # Train # Test Test regime

k ∈ {2, 3} data_089907f8 22 10,094 900 k ∈ {4, . . . , 10}
k ∈ {2, 3} data_9b2173cf 22 35,394 39825 k ∈ {4, . . . , 10}

k ∈ {2, 3, 4} data_db9b8f04 22 15,083 823 k ∈ {5, . . . , 10}

Table 8: Data statistics of the Spatio-temporal reasoning datasets

Dataset Training regime No. of relations # Train # Test Test regime

RCC-8 b ∈ {1, 2, 3}, k ∈ {2, 3} 8 57,600 153,600 b ∈ {1, 2, 3}, k ∈ {2, . . . , 9}
IA b ∈ {1, 2, 3}, k ∈ {2, 3} 13 57,600 153,600 b ∈ {1, 2, 3}, k ∈ {2, . . . , 9}

F.3 BENCHMARKS

CLUTRR1 (Sinha et al., 2019) is a dataset which involves reasoning about family relationships. The
original version of the dataset involved narratives describing the fact graph in natural language. It
was, among others, aimed at testing the ability of language models such as BERT (Devlin et al., 2019)
to solve such reasoning tasks. However, the original paper also considered a number of baselines
which were given access to the fact graph itself, especially GNNs and sequence classification models.
A crucial finding was that such models fail to learn to reason in a systematic way: models trained on
short inference chains perform poorly when tested on examples involving longer inference chains.
This has inspired a line of work which has introduced a number of neuro-symbolic methods for
addressing this issue. The CLUTRR dataset was released under a CC-BY-NC 4.0 license.

Graphlog2 (Sinha et al., 2020) involves examples for 57 different worlds, where each world is
characterised by a set of logical rules. For each world, a number of corresponding knowledge graphs
are provided, which the model can use to learn the underlying rules. The model is then tested on
previously unseen knowledge graphs for the same world. The aim of this benchmark is to test the
ability of models to systematically generalise from the reasoning patterns that have been observed
during training, i.e. to apply the rules that have been learned from the training data in novel ways.
This dataset is released under a CC-BY-NC 4.0 license.

RCC-8 and IA are the benchmarks that we introduce in this paper, as described in Section E. We
release these benchmarks under a CC-BY 4.0 license.

Inductive Knowledge Graph Completion3 (Teru et al., 2020) is focused on link prediction queries
of the form (h, r, ?) which are evaluated against a given knowledge graph. Different from the more
commonly used transductive setting, in the case of inductive knowledge graph completion, the
training and test knowledge graphs are disjoint. Teru et al. (2020) proposed a number of benchmarks
for this inductive setting by sampling disjoint training and test graphs from standard knowledge graph
completion datasets. In this way, they obtained four different benchmarks from FB15k-237 and four
benchmarks from WN18RR.

Dataset statistics for CLUTRR, Graphlog, RCC-8 and IA, and the Inductive KGC benchmarks are
reported in tables 7, 9, 8, 10. We use a standard 80-20 split for training and validation for CLUTRR
and RCC-8. For Graphlog, we use the validation set that is provided separately from the test set.

F.4 BASELINES

We compare our method against the following neuro-symbolic methods:

CTP Conditional Theorem Provers (Minervini et al., 2020b) are a more efficient version of Neural
Theorem Provers (NTPs (Rocktäschel & Riedel, 2017)). Like NTPs, they learn a differ-

1https://github.com/facebookresearch/clutrr
2https://github.com/facebookresearch/graphlog
3https://github.com/kkteru/grail
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Table 9: Data statistics for the ‘hard’ Graphlog worlds, showing for each world the number of classes
(NC), the number of distinct resolution sequences (ND), the average resolution length (ARL), the
average number of nodes (AN), the average number of edges (AE), and the number of training and
testing graphs.

World ID NC ND ARL AN AE # Train #Test

World 6 16 249 5.06 16.3 20.2 5000 1000
World 7 17 288 4.47 13.2 16.3 5000 1000
World 8 15 404 5.43 16.0 19.1 5000 1000
World 11 17 194 4.29 11.5 13.0 5000 1000
World 32 16 287 4.66 16.3 20.9 5000 1000

Table 10: Dataset statistics for inductive knowledge graph completion. Queries and facts are (h, r, t)
triplets and are used as labels and inputs respectively. The goal is to predict the query targets t once
trained on fact triplets. Note that for the training sets, queries are treated as facts i.e. training data.

Dataset #Relation Train Validation Test
#Entity #Query #Fact #Entity #Query #Fact #Entity #Query #Fact

FB15k-237

v1 180 1594 4245 4245 1594 489 4245 1093 205 1993
v2 200 2608 9739 9739 2608 1166 9739 1660 478 4145
v3 215 3668 17986 17986 3668 2194 17986 2501 865 7406
v4 219 4707 27203 27203 4707 3352 27203 3051 1424 11714

WN18RR

v1 9 2746 5410 5410 2746 630 5410 922 188 1618
v2 10 6954 15262 15262 6954 1838 15262 2757 441 4011
v3 11 12078 25901 25901 12078 3097 25901 5084 605 6327
v4 9 3861 7940 7940 3861 934 7940 7084 1429 12334

entiable logic program, but rather than exhaustively considering all derivations, at each
step of a proof, CTPs learn a filter function that selects the most promising rules to apply,
thereby speeding up backwards-chaining procedure of NTP. Three variants of this model
were proposed, which differ in how this selection step is done, i.e. using a linear mapping
(CTPL), using an attention mechanism (CTPA), and using a method inspired by key-value
memory networks (Miller et al., 2016) (CTPM). We were not able to reproduce the results
from the original paper, hence we report the results from (Minervini et al., 2020b) for the
CLUTRR benchmark.

GNTP Greedy NTPs (Minervini et al., 2020a) are another approximation of NTPs, which select the
top-k best matches during each inference step.

R5 This model (Lu et al., 2022) learns symbolic rules of the form r(X,Z)← r1(X,Y ) ∧ r2(Y,Z),
with the possibility of using invented predicates in the head. To make a prediction, the
method then samples (or enumerates) simple paths between the head and tail entities and
iteratively applies the learned rules to reduce these paths to a single relation. The order in
which relations are composed is determined by Monte Carlo Tree Search.

NCRL Neural Compositional Rule Learning (Cheng et al., 2023) also samples relational paths
between the head and tail entities, and iteratively reduces them by composing 2 relations at
a time, similar to R5. However, in this case, the choice of the two relations to compose in
each step are determined by a Recurrent Neural Network. Moreover, rather than learning
symbolic rules, the rules are learned implicitly by using an attention mechanism to compose
relations. Both R5 and NCRL implicitly make the assumption that the relational reasoning
problem is about predicting the target relation from a single relational path, and that this
prediction can be done by repeatedly applying Horn rules.

The following transformer (Vaswani et al., 2017) variant is also a natural baseline:

ET Edge Transformers (Bergen et al., 2021) modify the transformer architecture by using an attention
mechanism that is designed to simulate relational composition. In particular, the embeddings
are interpreted as representations of edges in a graph. To update the representation of an
edge (a, c) the model selects pairs of edges (a, x), (x, b) and composes their embeddings.
These compositions are aggregated using an attention mechanism, similar as in the standard
transformer architecture.
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We also compare against several GNN models:

GCN Graph Convolutional Networks (Kipf & Welling, 2017) are a standard graph neural network
architecture, which use sum pooling and rely on a linear layer followed by a non-linearity
such as ReLU or sigmoid to compute messages. While standard GCNs do not take into
account edge types, for the experiments we concatenate edge types to node embeddings
during message passing, following (Sinha et al., 2019). GCNs learn node embeddings and
can thus not directly be used for relation classification. To make the final prediction, we
combine the final-layer embeddings of the head and tail entities with an encoding of the
target relation, and make the final prediction using a softmax classification layer.

R-GCN Relational GCNs (Schlichtkrull et al., 2018) are a variant of GCNs in which messages are
computed using a relation-specific linear transformation. This is similar in spirit to how
we compute messages in our framework, but without the inductive bias that comes from
treating embeddings as probability distributions over primitive relation types.

GAT Graph Attention Networks (Velickovic et al., 2018) are a variant of GCNs, which use a pooling
mechanism based on attention. Similar as for GCNs, we concatenate the edge types to node
embeddings to take into account the edge types.

E-GAT Edge-based Graph Attention Networks (Sinha et al., 2020) are a variant of GATs which take
edge types into account. In particular, an LSTM module is used to combine the embedding
of a neighboring node with an embedding of the edge type. The resulting vectors are then
aggregated as in the GAT architecture.

NBFNet Neural Bellman-Ford Networks (Zhu et al., 2021) model the relationship between a desig-
nated head entity and the other entities from a given graph. Our model employs essentially
the same strategy to use GNNs for relation classification, which is to learn entity embeddings
that capture the relationship with the head entity rather than the entities themselves. The
main difference between NBFnet and our model comes from the additional inductive bias
that our model is adding.

In (Minervini et al., 2020b), a number of sequence classifiers were also used as baselines, and we
also report these results. These methods sample a path between the head and the tail, encode the path
using a recurrent neural network, and then make a prediction with a softmax classification layer. We
report results for three types of architectures: vanilla RNNs, LSTMs (Hochreiter & Schmidhuber,
1997) and GRUs (Cho et al., 2014).

F.5 TRAINING DETAILS

F.5.1 INITIALIZATION AND COMPUTE

The relation vectors r and the vectors aij defining the composition function are uniformly initialized.
All baseline results that were obtained by us were hyperparameter-tuned using grid search, as detailed
below. Some baseline results were obtained from their corresponding papers and reported verbatim
(as indicated in the results tables). All experiments were conducted using RTX 4090 and V100
NVIDIA GPUs. A single experiment using the GNN based methods in the paper can be conducted
within 30 minutes to an hour on a single GPU. This includes training and testing a single model on
any benchmark of the following relation prediction benchmarks: CLUTRR, Graphlog, RCC-8, IA
(also see Figure 16 for train/test times on the spatiotemporal datasets). A single hyperparameter set
evaluation would take the same time as an individual experiment. For the inductive knowledge graph
completion setting, training and inference times for a single run are reported in Figure 15.

F.5.2 HYPERPARAMETER SETTINGS

We use the Adam optimizer (Kingma & Ba, 2017). The number of layers of the EpiGNN model is
fixed to 9 and the number of negative examples per instance is fixed as 1. The other hyperparameters
of the EpiGNN model are tuned using grid search. The optimal values that were obtained are
mentioned in Table 11. For inductive knowledge graph completion, the classification task requires
predicting tail entities so we cannot use backward flow in our model. The optimal hyperparameters
for the forward only version of the EpiGNN for this setting are summarized in Table 12. For this
setting, we use 6 message passing rounds similarly with NBFNet Zhu et al. (2021).
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Table 11: Optimal hyperparameters of the full (forward-backward) model on all benchmarks.

Batch
size

Embedding
dim Epochs Facets

Learning
rate Margin

CLUTRR 128 64 100 8 0.01 1.0
Graphlog 64 64 150 1 0.01 1.0
RCC-8 128 32 40 4 0.01 1.0
IA 128 64 40 8 0.01 1.0

Table 12: Optimal hyperparameters of the forward only EpiGNN model on inductive knowledge
graph completion benchmarks.

Batch
size

Embedding
dim Epochs Facets

Learning
rate Margin

FB15k-237 v1 64 64 15 16 0.01 0.2
FB15k-237 v2 64 64 15 16 0.01 0.1
FB15k-237 v3 64 64 15 16 0.01 0.1
FB15k-237 v4 64 64 15 16 0.01 0.1
WN18RR v1 64 16 15 4 0.01 0.5
WN18RR v2 64 16 15 4 0.01 0.4
WN18RR v3 64 64 15 4 0.01 1.1
WN18RR v4 64 16 15 4 0.01 0.7

We conduct the following hyperparameter sweeps: learning rate in {0.00001, 0.001, 0.01, 0.1},
batch size in {16, 32, 64, 128}, number of facets m in {1, 2, 4, 8, 16, 32} and embedding dimen-
sion size in {8, 16, 32, 64, 128, 256}. We also tune the margin ∆ in the loss function over
{10, 1.1, 1.0, 0.9, . . . , 0.1, 0.01}. All model parameters are shared across the different message
passing layers of our model.

The choice of the pooling operator has an important impact on the systematic generalization abilities
of the model. In our experiments, we found that the pooling operator has to be specified as part of the
inductive bias and cannot be learned from the training or validation data, which is in accordance with
findings from the literature on systematic generalization (Xu et al., 2021; Bahdanau et al., 2019).

G ADDITIONAL ANALYSIS

G.1 ADDITIONAL CLUTRR RESULTS

In the main paper, we presented the results for the standard CLUTRR benchmark, where problems
of size k ∈ {2, 3, 4} are used for training. In the literature, models are sometimes also evaluated
on an even harder setting, where only problems of size k ∈ {2, 3} are available for training. We
show the results for this setting in Table 13. As can be seen, our model clearly outperforms both
Edge Transformers (ET) and the GNN and RNN baselines. In this more challenging setting, the
difference in performance between our model and ET is much more pronounced. However, R5, as
the best-performing neuro-symbolic method, consistently outperforms our method in this case. We
hypothesise that this is largely due to the inevitably small size of the training set (as the number of
distinct paths of length 3 is necessarily limited). Rule learners can still perform well in such cases,
which is something that R5 is able to exploit. To achieve similar results with our model, a stronger
inductive bias would have to be imposed. One possibility would be to impose a sparsity prior on the
relation embeddings r and the vectors aij defining the composition function. We leave a detailed
investigation of this possibility for future work.

In the literature, two different variants of the dataset have been used: db_9b2173cf and
data_089907f8. In Table 13, we use the CLUTRR dataset db_9b2173cf, which was in-
troduced in the ET paper (Bergen et al., 2021), to evaluate our model as well as the baselines that
were evaluated by us. The reported baseline results that were obtained from (Minervini et al., 2020b)
and (Lu et al., 2022) are based on the smaller data_089907f8 variant, and are thus not directly
comparable.
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Table 13: Results on CLUTRR (accuracy) after training on problems with k ∈ {2, 3} and then
evaluating on problems with k ∈ {4, . . . , 10}. The best performance for each k is highlighted in
bold. Results marked with ∗ were taken from (Minervini et al., 2020b) and those with † from (Lu
et al., 2022). The results from (Minervini et al., 2020b) and (Lu et al., 2022) were evaluated on a
different variant of the dataset and may thus not be directly comparable.

4 Hops 5 Hops 6 Hops 7 Hops 8 Hops 9 Hops 10 Hops

EpiGNN-mul (ours) 0.96±.02 0.96±.03 0.94±.05 0.92±.07 0.90±.10 0.88±.11 0.85±.13
EpiGNN-min (ours) 0.96±.02 0.95±.05 0.91±.08 0.87±.11 0.82±.13 0.79±.14 0.74±.15

R5† 0.98±.02 0.99±.02 0.98±.03 0.96±.05 0.97±.01 0.98±.03 0.97±.03
CTP∗

L 0.98±.02 0.98±.03 0.97±.05 0.96±.04 0.94±.05 0.89±.07 0.89±.07
CTP∗

A 0.99±.02 0.99±.01 0.99±.02 0.96±.04 0.94±.05 0.89±.08 0.90±.07
CTP∗

M 0.97±.03 0.97±.03 0.96±.06 0.95±.06 0.93±.05 0.90±.06 0.89±.06
GNTP∗ 0.49±.18 0.45±.21 0.38±.23 0.37±.21 0.32±.20 0.31±.19 0.31±.22

ET 0.90±.04 0.84±.02 0.78±.02 0.69±.03 0.63±.05 0.58±.06 0.55±.08

GAT∗ 0.91±.02 0.76±.06 0.54±.03 0.56±.04 0.54±.03 0.55±.05 0.45±.06
GCN∗ 0.84±.03 0.68±.02 0.53±.03 0.47±.04 0.42±.03 0.45±.03 0.39±.02
NBFNet 0.55±.08 0.44±.07 0.39±.07 0.37±.06 0.34±.04 0.32±.05 0.31±.05
R-GCN 0.80±.09 0.63±.08 0.52±.11 0.46±.07 0.41±.05 0.39±.06 0.38±.05

RNN∗ 0.86±.06 0.76±.08 0.67±.08 0.66±.08 0.56±.10 0.55±.10 0.48±.07
LSTM∗ 0.98±.04 0.95±.03 0.88±.05 0.87±.04 0.81±.07 0.75±.10 0.75±.09
GRU∗ 0.89±.05 0.83±.06 0.74±.12 0.72±.09 0.67±.12 0.62±.10 0.60±.12

G.2 EXTENDED ABLATION ANALYSIS

In the main paper, we considered four separate ablations. Table 14 extends this analysis by showing
results for all combinations of these ablations. Facet ablation refers to the configurations wherem = 1;
probability ablation refers to the configuration where embeddings are unconstrained; composition
ablation refers to the configuration where distmult in combination with an MLP is used as the
composition function ψ; and backward ablation refers to the configuration where we only have the
forward model. We can clearly see that the probability and composition function ablation cause a
significantly stronger performance degradation compared to the facet and forward-backward ablation.

Table 14: Results for all combinations of the individual ablations from Table 4.

Facet
Ablation

Probability
Ablation

Composition
Ablation

Backward
Ablation

CLUTRR
Avg

CLUTRR
k = 10

RCC-8
Avg

RCC-8
b = 3, k = 9

True True True True 0.06 0.04 0.12 0.12
True True True False 0.10 0.15 0.12 0.12
True True False True 0.27 0.24 0.25 0.17
True True False False 0.20 0.16 0.25 0.14
True False True True 0.06 0.04 0.12 0.12
True False True False 0.11 0.20 0.12 0.12
True False False True 0.92 0.73 0.81 0.49
True False False False 0.94 0.85 0.92 0.68
False True True True 0.06 0.04 0.22 0.18
False True True False 0.11 0.15 0.12 0.12
False True False True 0.29 0.25 0.60 0.27
False True False False 0.36 0.30 0.38 0.21
False False True True 0.08 0.10 0.12 0.12
False False True False 0.29 0.31 0.12 0.12
False False False True 0.94 0.82 0.84 0.51
False False False False 0.99 0.99 0.96 0.80

G.3 LEARNED SPARSENESS OF RELATION VECTORS

We visualize the learned relation vectors for each benchmark studied in this paper in Figures 9, 10, 11
and 12. It can be seen that the vectors are mostly one-hot, despite the fact that no explicit sparsity
constraints were used in the model. Also, we note that different facets are capturing different parts of
a relation and there is shared structure between different relations if the semantic meaning is similar
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e.g. contrast the vector for grandfather and grandmother or husband and wife in Figure 11, and
similarly, the vectors for si, s share a structure each being the other’s inverse in Figure 10.

Note that for the relation prediction task, there are no entities at each node but rather intermediate
compositions of relations.
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Figure 9: Schematic visualisation of the learned relation vectors with 4 facets with a hidden dimension
of 8 for the RCC-8 benchmark. Notice that the eq relation is learned to be one-hot at the first index
for every facet as it corresponds to the identiy composition in Eq. (4).
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Figure 10: Schematic visualisation of the learned relation vectors for the Interval Algebra benchmark
with 8 facets, each with a hidden dimension of 8. Again, the learned identity relation representation
= corresponds to the identity composition.
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Figure 11: Schematic visualisation of the learned relation vectors for the CLUTRR benchmark.

G.4 EFFECT OF THE NUMBER OF MESSAGE PASSING ROUNDS

We study the effect of varying the number of message passing rounds on the accuracy for varying
values of k and b = 3, for the EpiGNN-min and EpiGNN-mul models on the RCC-8 and IA datasets.
These models are trained ab initio with the same training data and configuration as before but with a
different number of message passing rounds (from 5 to 15) for each instance. The results are displayed
in Figure 13. There are three pertinent observations that can be made. Firstly, the maximum attained
k-hop accuracy decreases with k, which makes sense as it confirms that the problem complexity
increases with k. Secondly, there is a jump in the k-hop accuracy when the number of message
passing rounds matches k after which the accuracy saturates. This rightly suggests that the number of
message passing rounds should at least be equal to the final k-hop in the dataset to ensure that all
information propagates from head entity to tail within the model. Thirdly, these observations are
shared across the dataset types and aggregation functions.

G.5 ADDITIONAL ANALYSIS OF PARAMETER AND TIME COMPLEXITY

Knowledge graph completion The empirical parameter complexity of the EpiGNN on all
splits (Teru et al., 2020) of the inductive knowledge graph completion benchmarks for FB15k-
237 (Toutanova & Chen, 2015) and WN18RR (Dettmers et al., 2018b) is shown in Figure 14. The
parameter estimates of the best performing GNN baselines in Table 3, namely NBFNet (Zhu et al.,
2021) and REST (Liu et al., 2023) are also shown. It can be observed that the EpiGNN is the most
parameter efficient model out of all 3 by at least on order of magnitude on all the splits. The time
complexity with respect to NBFNet is shown in Figure 15 where the EpiGNN is slightly slower than
NBFNet on FB15k-237 for both training and inference but faster for both in WN18RR.
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Figure 12: Schematic visualisation of the learned relation vectors for the Graphlog benchmark.

Spatio-temporal reasoning The training and inference times of the EpiGNN with respect to the
edge transformers (Bergen et al., 2021) (cf. the best baseline in Figure 4) are shown in Figure 16.

G.6 RESULTS ON THE EXPANDED VERSIONS OF RCC-8 AND INTERVAL ALGEBRA DATASETS

The RCC-8 and Inverval algebra datasets presented in the main text can be made more challenging
by increasing the number of paths b and the maximum number of inference hops k. In this section,
we provide results for the expanded RCC-8 and IA datasets for the EpiGNN and Edge Transformers
(being the best baseline in Figure 4).

The Edge transformer is not able to fit graphs in memory on an RTX 4090 GPU with k > 9 and
b ≥ 6 so we need to restrict the comparison in Figure 17. The EpiGNN is able to handle much larger
graphs since it is more compute and parameter efficient so we provide the results for up to k = 15
and b = 8 in Figure 18. Note that our model holds its performance fairly steady on this significantly
expanded dataset with an average accuracy of 0.74 on RCC-8 and 0.77 on the IA dataset for the
hardest setting: k = 15 and b = 8. Edge Transformers significantly deteriorate on IA and can only
achieve an average accuracy of 0.19 at k = 9, b = 6. On RCC-8, the Edge transformer has an average
accuracy of 0.7 for k = 9, b = 6 versus 0.85 for our model.

36



Published as a conference paper at ICLR 2025

5 6 7 8 9 10 11 12 13 14 15
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Interval Algebra, EpiGNN-min

5 6 7 8 9 10 11 12 13 14 15
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 Interval Algebra, EpiGNN-mul

5 6 7 8 9 10 11 12 13 14 15
# Message passing rounds

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

RCC-8, EpiGNN-min

5 6 7 8 9 10 11 12 13 14 15
# Message passing rounds

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 RCC-8, EpiGNN-mul

Accuracy at k=5, b=3
Accuracy at k=6, b=3

Accuracy at k=7, b=3
Accuracy at k=8, b=3

Accuracy at k=9, b=3

Figure 13: Effect of the number of message passing rounds on the k-hop accuracy for the EpiGNN
model on the IA and RCC-8 datasets. There is a sharp jump in performance when k equals the
number of message passing rounds.
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Figure 14: Parameter complexity on all the inductive versions of FB15k-237 and WN18RR.
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Figure 15: Time complexity of the EpiGNN against the NBFNet on all the inductive versions of
FB15k-237 and WN18RR. Results are obtained on a single Nvidia RTX 4090 GPU.
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Figure 16: Time complexity of the EpiGNN against the best baseline on spatio-temporal systematic
reasoning. Results are obtained on a single Nvidia RTX 4090 GPU.
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Figure 17: Performance of EpiGNN-min and Edge Transformers on the expanded version of the
RCC-8 and Interval Algebra datasets. The performance of Edge Transformers deteriorates as the
number of paths is increased compared to EpiGNNs and this effect can be more significantly observed
on the Interval Algebra dataset. We restrict the comparison to b ≤ 6, k ≤ 9 since Edge transformers
cannot fit graphs for the other settings in memory on an RTX 4090 GPU.

38



Published as a conference paper at ICLR 2025

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

RCC-8 b = 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

Interval Algebra b = 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

RCC-8 b = 2

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

Interval Algebra b = 2

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

RCC-8 b = 3

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

Interval Algebra b = 3

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

RCC-8 b = 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

Interval Algebra b = 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

RCC-8 b = 5

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

Interval Algebra b = 5

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

RCC-8 b = 6

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

Interval Algebra b = 6

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

RCC-8 b = 7

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

Interval Algebra b = 7

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

RCC-8 b = 8

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
0.6
0.7
0.8
0.9
1.0

Interval Algebra b = 8

k-hops

Ac
cu

ra
cy

EpiGNN-min

Figure 18: Performance of EpiGNN-min on the complete expanded version of the RCC-8 and
Interval Algebra datasets with maximum values of b = 8, k = 15. The model’s performance is
scalable and is fairly steady for the hardest setting: b = 8, k = 15 highlighting its inductive bias for
systematic generalization.
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