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Abstract
Aim  To evaluate a deep learning-based time-of-flight (DLToF) model trained to enhance the image quality of non-ToF PET 
images for different tracers, reconstructed using BSREM algorithm, towards ToF images.
Methods  A 3D residual U-NET model was trained using 8 different tracers (FDG: 75% and non-FDG: 25%) from 11 sites 
from US, Europe and Asia. A total of 309 training and 33 validation datasets scanned on GE Discovery MI (DMI) ToF 
scanners were used for development of DLToF models of three strengths: low (L), medium (M) and high (H). The training 
and validation pairs consisted of target ToF and input non-ToF BSREM reconstructions using site-preferred regularisa-
tion parameters (beta values). The contrast and noise properties of each model were defined by adjusting the beta value of 
target ToF images. A total of 60 DMI datasets, consisting of a set of 4 tracers (18F-FDG, 18F-PSMA, 68Ga-PSMA, 68Ga-
DOTATATE) and 15 exams each, were collected for testing and quantitative analysis of the models based on standardized 
uptake value (SUV) in regions of interest (ROI) placed in lesions, lungs and liver. Each dataset includes 5 image series: ToF 
and non-ToF BSREM and three DLToF images. The image series (300 in total) were blind scored on a 5-point Likert score 
by 4 readers based on lesion detectability, diagnostic confidence, and image noise/quality.
Results  In lesion SUVmax quantification with respect to ToF BSREM, DLToF-H achieved the best results among the three 
models by reducing the non-ToF BSREM errors from -39% to -6% for 18F-FDG (38 lesions); from -42% to -7% for 18F-PSMA 
(35 lesions); from -34% to -4% for 68Ga-PSMA (23 lesions) and from -34% to -12% for 68Ga-DOTATATE (32 lesions). 
Quantification results in liver and lung also showed ToF-like performance of DLToF models. Clinical reader resulted showed 
that DLToF-H results in an improved lesion detectability on average for all four radiotracers whereas DLToF-L achieved the 
highest scores for image quality (noise level). The results of DLToF-M however showed that this model results in the best 
trade-off between lesion detection and noise level and hence achieved the highest score for diagnostic confidence on average 
for all radiotracers.
Conclusion  This study demonstrated that the DLToF models are suitable for both FDG and non-FDG tracers and could be 
utilized for digital BGO PET/CT scanners to provide an image quality and lesion detectability comparable and close to ToF.
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Introduction

Bismuth germanate (BGO)-based detectors, though not 
time-of-flight (ToF) capable, were initially preferred in 
clinical scanners for their photon stopping power (higher 
sensitivity) and higher photoelectric fraction. However, 
conventional BGO detectors had limited timing resolution 
due to their light output and decay time. Recent advance-
ments in silicon photomultipliers (SiPMs) and fast read-
out electronics have improved BGO’s potential for PET 
scanners by measuring Cherenkov photons emitted upon 
511 keV interaction [1].

Using ToF information, the location of positron-emitting 
radiopharmaceuticals within the scanner’s field of view 
(FOV) can be estimated with an uncertainty governed by the 
scanner’s coincidence timing resolution (CTR). Depending 
on the activity distribution, this can have a positive impact 
on contrast recovery at a given noise level [2, 3]. Addition-
ally, the impact of erroneous data correction processes, 
particularly attenuation correction, is reduced when ToF 
information is leveraged during reconstruction [4, 5]. More-
over, this localisation leads to higher signal-to-noise ratio 
(SNR) gain as the contribution of random coincidences will 
be smaller [6].

The convergence of small low-uptake lesions, that are 
of paramount importance in early cancer detection, is also 
influenced by the type of reconstruction algorithm and the 
selection of its hyperparameters (e.g. number of iterations, 
regularisation strength, etc.). Ordered subsets expectation 
maximisation (OSEM) and block sequential regularised 
expectation maximisation (BSREM [7]) are two model-
based iterative reconstruction algorithms widely used with 
ToF information and point spread function (PSF) modelling 
for improved diagnostic confidence and lesion detectability 
[8–10]. PSF modelling is a resolution recovery technique 
that accounts for the processes that lead to resolution loss 
in PET [11]. A BSREM algorithm, commercially available 
in GE HealthCare’s PET/CT scanner as Q.Clear™, uses 
regularisation during reconstruction in order to ensure noise 
reduction and effective convergence of tracer-avid features. 
The main limitations of the model-based reconstruction 
algorithms are (i) they rely on practical assumptions in order 
to mathematically formulate the characteristics of the PET 
system, the acquired data, and the image and (ii) the selec-
tion of their hyperparameters that depends on a number of 
factors including the scanner configuration, acquisition pro-
tocol and more importantly the patient.

With the recent advancements in artificial intelligence 
and deep learning (DL), data-driven algorithms have gained 
significant attention in image reconstruction [12, 13]. 
These algorithms no longer rely on the assumptions used in 
model-based algorithm. Instead, they learn a mapping from 

measured data to image (i.e. direct reconstruction [14–16]), 
or from one image state to another state (e.g. high-noise to 
low-noise [17–19] or low-iteration to high-iteration [20]). In 
Mehranian et al., we trained a deep convolutional neural net-
work (dCNN), named as DLToF, in order to map the images 
reconstructed by non-ToF BSREM algorithm to their ToF 
counterparts for improved lesion detectability in 18F-FDG 
oncology PET scans in scanners without ToF capability 
[21]. Recently, Sanaat et al. [22] also used dCNNs to syn-
thesize ToF sinograms (or images) from non-ToF sinograms 
(or images) in 18F-FDG brain imaging.

In recent years, there has been a tremendous progress in 
long axial FOV or total-body L[Y]SO-based PET scanners 
that are now commercially available world-wide. Thanks to 
their high sensitivity, they allow a reduction in acquisition 
time or injected activity without impairing image quality, 
to perform delayed imaging and simultaneous total body 
dynamic imaging, among others [23, 24]. To provide an 
affordable long-axial FOV with even higher sensitivity, GE 
HealthCare (GEHC) has recently introduced a new digital 
BGO-based PET/CT scanner, Omni Legend™, with detector 
assembly that is scalable up to 128 cm, providing an excep-
tionally high sensitivity [25].

Given that the benefits of ToF technology manifest in 
image space and ToF image properties can be emulated by 
deep learning, the DLToF model [21] has now been deployed 
in Omni Legend PET systems, commercially branded as 
Precision DL™. This model was trained and deployed for 
18F-FDG oncology exams only with three different levels 
of contrast to noise trade off (low: L, medium: M and high: 
H). In this study, we extended the DLToF models beyond 
FDG by training them with a range of radiotracers with the 
hypothesis that with additional tracers the model can be bet-
ter generalised for four radiotracers of interest: 18F-FDG, 
18F-PSMA, 68Ga-PSMA and 68Ga-DOTATATE. Hence, 
these resulting models were considered for oncology, and 
prostate and neuroendocrine tumours (theranostics) PET 
imaging.

Materials and methods

Data acquisition and processing

The PET list-mode data and CT-based attenuation correc-
tion (CTAC) images of a total of 342 exams utilising 8 dif-
ferent tracers scanned on GEHC’s LYSO-based Discovery 
MI (DMI) ToF PET/CT scanners were retrospectively col-
lected and used for development of multi-tracer DLToF 
models. Supp Materials Fig. 1shows the distribution of the 
datasets per tracers. As shown, about 75% of datasets were 
FDG and the rest were non-FDG. The data were collected 
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from 11 sites in US, Europe and Asia and were split into 
training (n = 309) and validation (n = 33) sets.

A total of 60 DMI clinical exams, 15 exams each for a 
set of 4 primary tracers (18F-FDG, 18F-PSMA, 68Ga-PSMA, 
68Ga-DOTATATE), were additionally collected to be used 
as an independent testing set. These exams were used for 
quantitative evaluation as well as clinical reader studies. 
Supp. Materials Tables 1 and Supp. Materials Table 2 sum-
marise the distribution of the training, validation and testing 
sets per site and per tracer. To test the models on a non-ToF 
PET scanner, four exams were also collected from a GEHC 
’s BGO-based Omni Legend scanner for the four primary 
radiotracers. The testing and validation cases were chosen 
by two nuclear medicine experts based on the availability 
of the data as well as pathologically challenging cases with 
small lesions.

Using training datasets from different clinical sites 
enhances the generalizability of DLToF models, accommo-
dating different reconstruction parameters and acquisition 
protocols at each site. The DMI’s PET subsystem offers a 
nominal ToF resolution of 385 ps, with varying sensitiv-
ity based on the number of detector rings (3–6) providing 
axial FOVs of 15–30  cm. Various scanners and imaging 
protocols at sites resulted in a range of injected 18F-FDG 
activity (mean ± SD: 315 ± 120 MBq) and scan duration 
(161 ± 46 s/bed). Patient sizes also varied (body mass index, 
BMI 27.3 ± 6.0  kg/m²), and uptake times ranged from 
82 ± 26 min. Each subject underwent a whole-body CT scan 
for PET attenuation correction using 100–120 kVp.

Each dataset was reconstructed using the ToF BSREM 
and non-ToF BSREM algorithm with different regularisa-
tion (beta) values depending on the site preferred values. 
Three models of different strengths, low (L), medium (M) 
and high (H), were trained in supervised leaning. The train-
ing and validation pairs consisted of target ToF and input 
non-ToF BSREM reconstructions. The strength of each 
model in terms of image contrast and noise level was 
defined by adjusting the beta value of target ToF images. 
Supp. Materials Tables 3 and Supp. Materials Table 4 sum-
marise the beta values chosen for each DL-ToF model, clini-
cal site, and target-input pair for FDG and non-FDG tracers. 
Each image was reconstructed with a 256 × 256 matrix size 
and field-of-view 700 mm (x-y pixel size: 2.73 mm, slice 
thickness: 2.79 mm). Whole-body image volumes used for 
validation and training were axially divided into equally 
spaced contiguous 3D patches, each of 50 slices (14 cm).

To improve the generalisability of the DLToF models for 
phantoms, augmented datasets from an anthropomorphic 
Torso phantom, scanned on a DMI scanner with an axial 
FOV of 25 cm, were included in the training set. As shown 
in Supp Materials Fig. 2, the phantom is comprised of liver 
and lungs with inserted FDG-avid lesions. The phantom list 

data includes three high-count scans that were augmented to 
generate extra datasets. Two half-duration and four quarter-
duration scan datasets were generated from each one of the 
three scans. The ToF BSREM and non-ToF BSREM images 
of each resulting dataset were augmented by a random ± 45° 
rotation, resulting in a total of 84 phantom datasets. The full, 
half, and quarter duration datasets were acquired at count 
levels of 700, 350, and 175 M counts in single-bed-position 
scans, respectively.

To ensure consistent performance of the models for 
matrix sizes larger than 256, 50% of all training patches 
were resampled to larger matrix sizes up to 384 × 384 (voxel 
size 1.82 × 1.82 × 2.07 mm3). Supp. Materials Table 5 sum-
marises the number of training and validation patches using 
FDG, non-FDG and phantom datasets. The training patches 
were scaled in standardised uptake value (SUV) and capped 
at SUV of 20 for both training and inferencing. This value 
was chosen experimentally and based on the observation 
that ToF reconstruction primarily impacts small lesions with 
low SUV [26]. Additionally, this threshold allows a reduc-
tion of the dynamic range of input images and as a result 
minimises artifacts occasionally observed around very hot 
regions such as bladder or kidneys.

Model training

A 3D U-Net network [27] with residual and skip connec-
tions was implemented in PyTorch 1.6 (www.pytorch.org) 
(schematic shown in Supp Materials Fig. 3). DLToF net-
works were trained in a supervised session where their pre-
dicted ToF images were compared to target ToF ones based 
on mean squared error (MSE) loss function. Supp. Materi-
als Table 6 summarises the network and training hyperpa-
rameters that were experimentally optimised. The ADAM 
algorithm [28] was used to update the networks’ trainable 
parameters for a maximum of 100 epochs on a workstation 
with a NVIDIA A40 GPU with 48 GB memory. The valida-
tion set was used to monitor the network’s generalisation 
error to avoid over-fitting. The epoch at which a model had 
the lowest validation loss and showed no artifacts was cho-
sen as a stopping point.

Evaluation

The trained DL models were quantitatively evaluated using 
the testing sets based on SUV measures including lesion 
SUVmax (maximum voxel intensity), SUVmean (mean inten-
sity of voxels) in normal liver and lungs and the noise in the 
liver using volumes of interest (VOIs) selected per subject. 
For each subject, 5 VOIs of size 7 × 7 × 7 voxels (~ 7 mL) 
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(Supp. Materials Table 10). P-values were Bonferroni 
corrected.

Results

Quantitative analyses

Figures 1, 2 and 3 showcase the performance of the DLToF 
models in comparison with input non-ToF BSREM and 
target ToF BSREM images for subjects scanned using 18F-
FDG, 18F-PSMA and 68Ga-DOTATATE on a Discovery MI 
PET/CT scanner. The patients have multiple small lesions 
that have a lower contrast in the non-ToF image compared 
to ToF images. The DLToF models improve the conspicuity 
and contrast of the lesions towards their target ToF images. 
Since the models were trained to provide different levels of 
smoothness, the liver noise as well as lesion contrast is dif-
ferent among these models. DLToF-H results in highest con-
trast enhancement toward ToF while DLToF-L results in the 
highest noise reduction and DLToF-M provide a balanced 
contrast enhancement and noise reduction.

Table 1 summarises the quantification results of non-ToF 
BSREM and DL-ToF methods on the DMI’s 60 testing set 
(15 exams per 4 radiotracers) for SUVmax of the 128 book-
marked lesions, and SUVmean in lungs and liver. The per-
centage difference from the target ToF BSREM method is 
provided (mean ± standard deviation). The DLToF method 
reduces the lesion’s SUVmax difference for each radiotracer 
set depending on their strength or smoothness level. In par-
ticular, DLToF-H reduces the average difference from -38.9 
to -5.9% for F18-FDG, from -41.8 to -6.7% for F18-PSMA, 

were defined in the lungs, and 5 similar VOIs in liver. Noise 
in the liver was calculated as the standard deviation of five 
VOI mean values. For each subject, up to 5 small lesions 
were bookmarked and segmented using an adaptive thresh-
olding method (42% of maximum minus minimum SUV in 
a 7 × 7 × 7 bounding box). The relative difference in SUV 
values (compared to the target ToF BSREM SUVs), scatter 
plots and Box-whisker plots were generated. The statisti-
cal significance of differences in SUVs was evaluated using 
unequal variance (Welch) t-test. Additionally, normalised 
root-mean-square error (NMSE) between SUV of reference 
ToF images (x) and other images (y) for bookmarked VOIs 
was calculated by:

NMSE =
∑ N

i=1(xi − yi)2

∑ N
i=1y2

i

where N is the total number of voxels in the VOIs. SUVmean 
was used for lungs and liver and SUVmax for lesions.

Four radiologists, (K.M.B, P.A.F, M.H and A.I), blinded 
to the image reconstruction method, independently rated all 
60 testing sets. Each exam had 5 image series: ToF and non-
ToF BSREM, DLToF-L (low), DLToF-M (medium) and 
DLToF-H (high). The images were evaluated based on three 
metrics: low-contrast lesion detectability, diagnostic confi-
dence, and image noise/quality based on the Likert scale. 
The scores were 1 (poor), 2 (satisfactory), 3 (good), 4 (very 
good), and 5 (excellent) with image noise metrics scored on 
the same 0–5 scale as described previously [29]. Statistical 
analysis of the clinical scores was performed with a two-
sided paired t-test for each model strength compared to ToF-
BSREM (Supp. Materials Table 9) and non-ToF-BRSREM 

Fig. 1  DL-ToF enhancement of an 18F-FDG test subject with a BMI of 34.0 kg/m2 with an injected activity of 521.3 MBq of scanned on DMI PET/
CT scanner. Arrows point to lesions with lower conspicuity in non-ToF BSREM. Display window: 0–5 SUV
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and -H are statistically insignificant at the level of 0.05. 
Supp. Materials Table 8 shows the NMSE performance of 
the methods in lesions, lungs and liver. As shown, DLToF-H 
gives rise to the lowest errors for lesions and the error for 
other regions are relatively low for all methods.

Figure 4 shows scatter plots of lesion SUVmax for non-
ToF BSREM and DL-ToF images compared with reference 

from -33.5 to -3.7% for 68Ga-PSMA and from -33.5 to 
-12.0% for 68Ga-DOTATATE exams. The results in liver and 
lungs show the differences are relatively small and under 
8% for all methods. Supp. Materials Table 7 reports the sta-
tistical significance analyses for lesions’ SUVmax difference 
between target ToF BSREM and other methods. The dif-
ferences between ToF BSREM and particularly DLToF-M 

Fig. 3  DL-ToF enhancement of an 68Ga-DOTATATE test subject with a BMI of 23.1 kg/m2 with an injected activity of 187.9 MBq of scanned on 
DMI PET/CT scanner. Arrows point to lesions with lower conspicuity in non-ToF BSREM. Display window: 0–5 (top) and 0–15 (bottom) SUV

 

Fig. 2  DL-ToF enhancement of a 18F-PSMA test subject with a BMI of 23.5 kg/m2 with an injected activity of 346.7 MBq of scanned on DMI PET/
CT scanner. Arrows point to lesions with lower conspicuity in non-ToF BSREM. Display window: 0–5 (top) and 0–15 (bottom) SUV
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Clinical reader study

Table  2 shows the average reader scores from four read-
ers for the different PET reconstruction methods (5 image 
series) for 15 testing exams per 4 tracers (in total 300 
images). Supp. Materials Table 9 shows p-values for the 
scores, using pairwise comparisons with respect to ToF 
BSREM methods. The results show that in terms of low-
contrast lesion detectability DLToF-H scores higher than 
ToF images, on average, for most of the tracers. In terms 
of image quality and noise, DLToF-L achieves the best 
scores whereas DLToF-M scores on average higher than 
ToF images for most of the tracers. These results highlight 
that one can choose a model that matches preferences as 
some radiologists prefer sharper but noisier images whereas 
some prefer smoother ones. Overall, DLToF-M provides a 
balance between lesion detection and noise reduction and 
can be a recommended model for most users.

Evaluation on non-ToF PET scanners

To evaluate generalisability of the developed DLToF mod-
els on a real non-ToF PET scanner, for each of the studied 
radiotracers one subject was acquired on an Omni Legend 
32 cm PET/CT scanner. In this study, the non-ToF BSREM 
and DLToF images were evaluated visually. Figures 6 and 
7 show examples of 18F-FDG and 18F-PSMA radiotracers. 
Supp Materials Fig. 4 and Supp Materials Fig. 5 show two 
subjects scanned with 68Ga-PSMA and 68Ga-DOTATATE. 
As seen, the models improve the conspicuity of small low-
contrast lesions especially as the strength of the model is 
increased towards DLToF-H. Other improvements are higher 
contrast of small features such as vessel walls and adrenals. 
These examples show the expected ToF-like enhancement 
of DLToF models for the image sets from scanners that were 
not used for training.

Discussion

In this study, three generalised deep learning models were 
trained for ToF-like enhancement of features in non-ToF 
BSREM PET images made with FDG as well as a range 
of other tracers used for oncology imaging. These models 
offer three levels of smoothness or model strength to accom-
modate the wide range of user preferences in terms of con-
trast and noise levels. This is subsequent to the user chosen 
regularization parameter of BSREM for a given model to 
give additional control of the overall image quality. Since 
the BSREM algorithm, unlike OSEM, is a convergent algo-
rithm while also suppressing noise, this algorithm was used 

ToF BSREM images. Consistent with Table 1, the non-ToF 
BSREM method presents a notable deviation of the fitted 
line (in terms of the slope) in comparison to ToF BSREM 
method for all radiotracers. As the strength of DLToF is 
increased, the fitted line slope for DLToF methods gets 
closer to 1 which demonstrates lesion SUVmax enhancement 
of the input non-ToF images towards ToF. The results show 
that with DLToF-H the slope of the fitted lines is increased 
from 0.60 to 0.95 for 18F-FDG (+ 58%), from 0.57 to 0.97 
for 18F-PSMA (+ 70%), from 0.64 to 0.91 (+ 42%) for 68Ga-
PSMA and from 0.73 to 0.97 (+ 32%) for 68Ga-DOTATATE 
exams.

These results demonstrate that as the strength of DLToF 
is increased from low to high, the lesions’ SUV measure is 
increased towards their target SUVs. As shown in Fig. 5, 
the evaluation of liver noise (measured as the average of the 
standard deviations over 5 liver VOIs per 15 exams for each 
radiotracer), shows that the DL-ToF models provide differ-
ent smoothness levels, with DLToF-L resulting in a noise 
level lower that non-ToF BSREM and DLToF-H resulting 
in a noise level as high or slightly higher than ToF images. 
These noise results are consistent with the noise level per-
ceived in Figs. 1, 2 and 3.

Table 1  Quantitative performance of the DL-ToF models evaluated on 
60 testing exams (15 exams per 4 radiotracers), for lesion SUVmax, 
lung SUVmean and liver SUVmean as a percentage difference from ToF 
BSREM. N is the number of bookmarked lesions. Bold text indicates 
the least difference in lesion SUVmax to ToF BSREM for each radio-
tracer
Radiotracer Methods Lesion 

SUVmax(%)
Liver 
SUVmean(%)

Lung 
SUVmean(%)

18F-FDG 
(n = 38)

Non-ToF 
BSREM

-38.9 ± 15.5 4.6 ± 4.3 7.7 ± 13.9

DLToF-L -37.0 ± 16.0 2.0 ± 4.3 3.8 ± 13.0
DLToF-M -21.9 ± 17.4 3.9 ± 4.2 4.1 ± 13.9
DLToF-H -5.9 ± 24.3 3.5 ± 3.8 4.1 ± 13.4

18F-PSMA 
(n = 35)

Non-ToF 
BSREM

-41.8 ± 10.0 1.5 ± 4.8 -1.9 ± 12.0

DLToF-L -38.0 ± 13.6 0.7 ± 4.4 -2.0 ± 11.0
DLToF-M -20.8 ± 22.4 1.4 ± 4.5 -2.9 ± 9.4
DLToF-H -6.7 ± 28.4 0.4 ± 4.5 -2.1 ± 10.0

68Ga-PSMA 
(n = 23)

Non-ToF 
BSREM

-33.5 ± 10.3 1.9 ± 4.8 2.5 ± 12.2

DLToF-L -25.2 ± 12.9 0.8 ± 4.3 -0.7 ± 13.0
DLToF-M -15.4 ± 12.0 2.6 ± 4.2 0.8 ± 10.7
DLToF-H -3.7 ± 15.4 2.2 ± 4.6 2.3 ± 11.6

68Ga-
DOTATATE 
(n = 32)

Non-ToF 
BSREM

-33.5 ± 13.0 0.5 ± 4.6 5.4 ± 19.1

DLToF-L -37.7 ± 13.2 -0.3 ± 3.7 3.1 ± 14.8
DLToF-M -23.9 ± 19.1 0.6 ± 4.0 0.3 ± 15.3
DLToF-H -12.0 ± 22.1 -0.3 ± 4.1 4.4 ± 15.5
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Fig. 5  Noise performance of different methods measured as the average of standard deviation (SD) of SUVmean values in liver VOIs in 15 testing 
exams (5 VOI per exam) per radiotracer

 

Fig. 4  Scatter plots of lesion SUVmax or non-ToF BSREM and DL-ToF models compared to ToF BSREM images. Each dot corresponds to a lesion. 
The dashed line is a line of identity
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PET imaging using four different radiotracers. Supp Materi-
als Table 11 compares the quantitative performance of the 
DL-ToF multi-tracer with the FDG single-tracer version 
for our 15 FDG test exams. As shown for the cohort of 38 
lesions used in this comparison, the multi-tracer improves 
upon the single-tracer version which can be attributed to the 
larger training sets of the new model. Additionally, six FDG 
exams were selected for blinded reading by one of our read-
ers (KMB) comparing the two versions in terms of diagnos-
tic confidence, lesion detection and overall image quality. 
The results presented in Supp Materials Fig. 10 show a com-
parable performance between these models for this subset 
of exams.

Our quantitative evaluation in Table 1 indicates that the 
non-ToF BSREM algorithm results in about -37% error in 
SUVmax for target lesions averaged across all four radio-
tracers with respect to the reference ToF BSREM algorithm 
whereas DLToF-H reduces the error to about -7%. This 
improved quantitative performance is consistent with the 
clinical reader study in Table  2 which demonstrated that 
DLToF-H notably increased lesion detection compared to 
ToF BSREM. For the 18F-FDG, 68Ga-PSMA and 68Ga-
DOTATATE testing sets, DLToF-H scored slightly higher 
than ToF BSREM (~ 2% on average) while for 18F-PSMA 
testing set ToF BSREM score slightly higher (~ 2%) for 
lesion detectability. These results showed that DLToF with 
the highest strength performs as well as ToF BSREM for 
lesion detectability. Noise measurements in Fig.  5 show 
that this model results in an average noise level across all 
radiotracers as high as ToF BSREM (0.47 for DLToF-H 
versus 0.46 for ToF BSREM). Compared to the quantita-
tive performance of DLToF H and L models, and their noise 
performance, DLToF-M provides a balanced performance 
which can explain the on-average higher diagnostic confi-
dence score of this model. Our additional lesion SUVmax 
quantitative analyses in terms of scatter plots in Fig.  4 
and NRMSE in Supp. Materials Table 8 also showed that 
DLToF-H presents the best match to ToF BSREM and has 
the lowest NRMSE for all tracers. Our qualitative evalua-
tion of the DLToF models, on Omni PET/CT scanner test-
ing sets, showed that the models improve image quality 
and lesion conspicuity as expected for a non-ToF BSREM 
image. Quantitative evaluations using a large Omni dataset 
in terms of feature SUV change from the baseline non-ToF 
BSREM is out of the scope of this study and will be per-
formed in future work.

While this study has some limitations, they do not sig-
nificantly affect the validity of the conclusions. Our testing 
sets do not include randomly selected exams (i.e. combi-
nation of normal/abnormal) but rather patients were cho-
sen with small and low-contrast lesions or those that were 
completely missed in non-ToF BSREM images. Therefore, 

to train DLToF models and shift the learning task to ToF 
enhancement instead of denoising as much as possible. In 
this work, the emphasis was on the generalisation of DLToF 
for a range of radiotracers as well as different image matrix 
sizes by including different training datasets as well as 
matrix size data augmentation.

We trained a single model using training datasets from 8 
different radiotracers. This design was chosen over multiple 
models each specific for a tracer or a disease application for 
two main reasons. Firstly, our initial evaluation (presented 
in Supp Materials Figs.  6–9) showed that our previous 
FDG-only DLToF models are generalised to an extent that 
can provide ToF-like enhancements for non-FDG exams. 
Therefore, adding non-FDG data to the FDG training pool 
(75% FDG and 25% non-FDG) is aligned with fine-tuning 
or transfer learning schemes. Secondly, the lower abun-
dance of non-FDG exams in nuclear medicine departments 
limits the number of non-FDG datasets for training of tracer 
specific models. Similarly, Sanaat et al. [30] trained a single 
multi-tracer DL model for partial volume correction in brain 

Table 2  Clinical image quality scoring from four readers of 15 test-
ing images per radiotracer based on different criteria, mean ± standard 
deviation. 1 is poor, 5 is excellent. Bold indicates the best (highest) 
score
Tracer Method Low-contrast 

Lesion
Detectability

Diagnostic
Confidence

Image
Quality

18F-FDG ToF 
BRSREM

4.22 ± 0.99 3.97 ± 1.12 3.33 ± 1.13

Non-ToF 
BSREM

3.70 ± 1.08 3.78 ± 1.01 3.98 ± 0.93

DLToF-L 3.55 ± 1.20 3.67 ± 1.14 4.82 ± 0.47
DLToF-M 4.10 ± 0.75 4.15 ± 0.73 4.23 ± 0.65
DLToF-H 4.12 ± 0.90 3.90 ± 0.99 3.47 ± 0.91

18F-PSMA ToF 
BRSREM

4.73 ± 0.58 4.40 ± 0.81 3.70 ± 0.98

Non-ToF 
BSREM

3.47 ± 1.05 3.63 ± 1.01 4.45 ± 0.59

DLToF-L 3.57 ± 1.03 3.72 ± 0.90 4.83 ± 0.46
DLToF-M 4.22 ± 0.80 4.32 ± 0.81 4.40 ± 0.69
DLToF-H 4.63 ± 0.58 4.40 ± 0.69 3.60 ± 0.87

68Ga-PSMA ToF 
BRSREM

4.43 ± 0.81 4.20 ± 0.82 3.70 ± 0.98

Non-ToF 
BSREM

3.55 ± 1.05 3.60 ± 0.98 4.37 ± 0.76

DLToF-L 3.87 ± 1.07 3.87 ± 1.03 4.73 ± 0.52
DLToF-M 4.25 ± 0.77 4.23 ± 0.83 4.28 ± 0.76
DLToF-H 4.47 ± 0.70 4.05 ± 0.79 3.27 ± 0.95

68Ga-DOT-
ATATE

ToF 
BRSREM

4.12 ± 0.92 3.90 ± 0.93 3.43 ± 1.21

Non-ToF 
BSREM

3.98 ± 0.89 3.98 ± 0.91 4.02 ± 0.83

DLToF-L 4.00 ± 1.10 4.03 ± 1.12 4.75 ± 0.51
DLToF-M 4.25 ± 0.86 4.32 ± 0.85 4.20 ± 0.73
DLToF-H 4.32 ± 0.75 4.25 ± 0.77 3.57 ± 0.91
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Fig. 7  DL-ToF enhancement of a representative 18F-PSMA-1007 test 
subject with a BMI of 39.1 kg/m2 with an injected activity of 249 MBq 
scanned on a GE Omni Legend™ PET/CT scanner. Demonstrating 

two sub-5 mm PSMA avid retroperitoneal nodes at the L5 level. Dis-
play window: 0–6 SUV

 

Fig. 6  DL-ToF enhancement of a representative 18F-FDG test subject with a BMI of 26.3 kg/m2 with an injected activity of 346 MBq scanned on 
a GE Omni Legend PET/CT scanner. Display window: 0–5 SUV
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