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ABSTRACT: Computational modeling is an integral part of catalysis research. With it, new methodologies are being developed and
implemented to improve the accuracy of simulations while reducing the computational cost. In particular, specific machine-learning
techniques have been applied to build interatomic potential from ab initio results. Here, we report an energy-free machine-learning
calculator that combines three individually trained neural networks to predict the energy and atomic forces of metallic particles. The
investigated structures were a monometallic Pd nanoparticle, a bimetallic AuPd nanoalloy, and supported Pd metal crystallites on
silica. Atomic energies were predicted via a graph neural network, leading to a mean absolute error (MAE) within 0.004 eV from
density functional theory (DFT) calculations. The task of predicting atomic forces was split over two feed-forward networks, one
predicting the force norm and another its direction. The force prediction resulted in a MAE within 0.080 eV/Å against DFT results.
The interpretability of the graph neural network predictions was demonstrated by underlying the physics of the monometallic
particle in the form of cohesion energy.

1. INTRODUCTION
Many phenomena, such as the arrangement of metal atoms in
gas-phase or supported metal particles, their interactions with a
surface, or with substrates in a reactive environment, are
governed by complex atomic interactions. The development of
metal-based materials is instrumental to many industry sectors,
e.g. energy1−3 and environmental control.4 Since its develop-
ment in the 1960s,5 the density functional theory (DFT) has
become the workhorse of condensed matter theoretical research
and an instrumental tool to enhance and guide the development
of metal-based technologies.
Developing these materials, e.g. metal-based catalysts or high-

performance alloys,6−13 requires exploring chemical systems
that are too complex to be treated by DFT. Instead, classical
force fields, e.g. Sutton-Chen, Finnis-Sinclair, or Gupta
potentials,14−16 have been developed with the aim of reducing
the computational resources necessary to explore these chemical
spaces. Although widely employed over the past decades,17−21

these force fields’ accuracy does not reach that of ab initio
calculations, e.g. DFT.22−24 Furthermore, the parametrization
and formulation of these force fields, based on the bulk
properties of the material, make them fundamentally unable to
describe accurately the energies and forces of small particles or
systems involving an interface between the metal and another

material as is the case of metal nanocoating or supported metal
particles with a large ration of undercoordinated atoms.25−27

The recent progress in predicting potential energy surfaces
(PES) based on representative data sets of spanned chemical
space interpreted through machine learning (ML) architectures
led to neural network interatomic potentials (NNIPs) with near-
DFT accuracy.28−35 ML has proven to be a powerful tool for
accelerating computational research.28,29,34,36−41 NNIPs allow
for highly efficient computation at a cost up to 1000 times
cheaper than an accurate DFT calculation.
The present work introduces an innovative tool for predicting

the energies and forces of individual atoms forming isolated and
supported metal clusters. The method introduced reaches the
so-called near-accuracy at a computational cost several orders of
magnitude lower than that of DFT and provides a reliable tool
for the exploration of the chemical space associated with a
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collection of particles with different shapes and sizes, known as a
metastable ensemble.26,41,43

Our approach combines state-of-the-art graph neural net-
works (GNN) in an energy-free approach, where distinct neural
networks compute the atomic energies independently from the
forces. The investigated systems are gas-phase palladium and
AuPd bimetallic clusters and supported palladium clusters on α-
silica. The predictions reached near-DFT accuracy at a small
fraction of its computational cost. The resulting set of neural
networks predicting atomic energies and forces was organized in
a specific architecture called a machine-learning calculator (ML-
calculator). The ML-calculator forms an autonomous tool that
can be coupled with existing DFT algorithms to accelerate the
calculation rate or work on its own as an independent NNIP for
geometry optimization.25,26,43−69

2. METHOD
2.1. Density Functional Theory Calculations. All

calculations performed to generate the required data sets, i.e.,
geometry optimizations of Pd-pure and AuPd-alloy clusters in
gas-phase and Pd supported on hydroxylated α-SiO2(001), a
widely employed support material in the catalyst production
industry,42 were carried out using spin-polarized density-
functional theory (DFT) as implemented in the Vienna Ab
initio Simulation Package (VASP).70−72 The revised PBE
functional from Perdew, Burke, and Ernzerhof (RPBE) was
used to calculate the exchange−correlation energy.73,74 The
projected-augmented wave (PAW) pseudopotentials were
employed to describe core electrons.72,75 Dispersion corrections
were included through Grimme’s dispersion correction scheme,
DFT-D3.76 The plane-wave kinetic cutoff was set to 500 eV, the
electronic energy convergence threshold set to 1 × 10−7 eV, and
the ionic convergence to 0.04 eV/Å. Gaussian smearing was
employed to describe the distribution of electrons around the
Fermi level, with a smearing parameter of 0.2 eV for pure
metallic structures and 0.1 eV for SiO2 surfaces and supported
clusters.

Supported Pd NPs on the α-SiO2(001) surface were modeled
using a p(2 × 2) supercell preventing the interactions of
supported metal atoms with periodic images. The silica support
contained 3 SiO2 layers, and all surface dangling bonds were
saturated with hydroxyl groups. Only the surface hydroxyl
groups and the Pd cluster were relaxed during geometry
optimizations. A vacuum layer of at least 10.0 Å was placed
perpendicularly to the surface. Calculations were performed
using a k-points density of 0.2 points/Å. Details on the setup and
its justification are provided in Supporting Information, Section
S1.

2.2. Data Sets. Creating a reference data set representative
of the targeted PES is crucial to training a machine-learning
neural network (NN). Due to the cost of running DFT
calculations, the data set size should be kept as small as possible
while ensuring the integrity of the chemical environments
relevant to the PES. Three data sets were prepared in the present
work: Pd-pure, AuPd-alloy, and Pd-silica data sets. Neural
networks are known to extrapolate poorly beyond the points
included in the data set used to train them,81 and therefore, it is
paramount to include structures outside the potential energy
minima to improve the NN’s versatility and capability,
particularly for tasks such as geometry optimization: each
metal structure included in the data set were either shrunk by a
factor 0.8 or stretched by a factor 1.2 to ensure that, upon
geometry relaxation through DFT, the PES around the
equilibrium position is explored and represented in each
network trained in this work.

2.2.1. Pd-Pure. The data set covers gas-phase isolated Pd
structures containing up to 55 atoms. It contains a total of 439
distinct structures taken from the literature and built from
chemical intuition.59,77−80

2.2.2. AuPd-Alloy. The data set contains gas-phase structures
with sizes ranging from 17 to 34 atoms of 116 Pd-pure and 45
Au-pure clusters derived from the literature.82,83 Besides, the
data set includes 93 structures of bimetallic AuPd gas-phase with
various ratios with 19−27 atoms in random, Janus, and core−
shell arrangements.

Table 1. Construction of the Perturbed Symmetry Functions Used to Fingerprint Non-Local Informationa

nonlocal radial function nonlocal angular function

G2 symmetry-function G3 symmetry-function
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hyperparameters: η, l, Rc nonlocal information hyperparameters: ξ, λ, l, Rc nonlocal information
aThe hyperparameter η controls the width of the Gaussian function described by the G2 function, and Rs centres the Gaussian at the specified
distance away from the atom target of the fingerprint. In the G3 function, λ determines whether the cosine function is centered on 0 or π, and ξ
controls the width of the angular function. In the non-local functions, Rc is the cut-off radius of the fingerprint, and l determines the order of the
Chebyshev polynomial employed.
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2.2.3. Pd/SiO2(001). The data set combines the gas-phase Pd-
pure data set (439 structures) with 66 structures of up to 8 Pd
atoms supported on the α-silica slab. It also contains 7 silica
structures derived from the pristine α-silica (001) surface: a fully
hydroxylated surface, a shrunk along the axis perpendicular to
the slab, another two with only top −OH groups shrunk and
elongated, and the last ones with one, two and three −OH
groups missing.

2.3. Capturing the Atomic Environment. The atomic
environment of each atom in the data set was converted into a
processable vector via a procedure known as fingerprinting.
Over the years, several flavors have been developed based on, for
instance, atom-centered symmetry functions or smooth overlap
of atomic position (SOAP).84−86 To predict the properties at
local (atomic energies and forces) and global (total energy)
levels, the fingerprint must satisfy the following characteristics:

i) Translational and rotational invariance, i.e., the predicted
property does not change upon translation or rotation of
the entire system in space;

ii) Uniqueness, i.e., it captures each distinct atomic environ-
ment in a fashion that prevents degenerated representa-
tion of different atoms;

iii) Computational efficiency, i.e., the time to compute it must
remain minimal against the time needed to calculate
reference data points;

iv) Completeness, i.e., it captures the most relevant features.
The completeness of the different fingerprints employed
by the community is an ongoing debate and an active field
of research.87

The fingerprint developed in the present work includes local
and nonlocal data from the atomic structure. Local information
was obtained using the G2 and G3 symmetry functions
introduced by J. Behler, respectively capturing radial and
angular features.88,89 These functions have been extensively
described in the literature and successfully employed to generate
mul t ip le neura l ne twork in te ra tomic potent i a l s
(NNIPs).29,31−33,86,88,89 Nonlocal information was expressed
through the G2 and G3 functions combined with the Chebyshev
polynomials basis, respectively relabeledG2 andG3 as described
in Table 1. Nonlocal functions are referred to in this work as

perturbed symmetry functions. These functions capture atomic
distances and angles centered on all neighbors of the target atom
and provide the network with additional information regarding
2-bodies and 3-bodies features existing around the target atom,
i.e., they depend on a cutoff radius.90 The cutoff function
employed in this work is the cosine function introduced by
Behler and given in eq 188
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The prediction of atomic forces was decomposed into two
parts: amplitude and direction. The force amplitude is
translation and rotation invariant; therefore, the symmetry and
perturbed symmetry functions can be used for their predictions.
The directional fingerprint, GD, was used to determine the
direction of the force. It is based on the G2 symmetry function
and described in eq 235
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(2)

where |rij| represents the Euclidian norm of the vector rij from
the fingerprinted atom i to its neighbor j. The number Nj
represents the number of neighbors accounted for, and the
factor 1/Nj is used to normalize the fingerprint.
To complete the fingerprint, information relevant to the

chemical nature of the environment around each atom was
captured through a collision-free weighting approach introduced
by Beevers et al.91 According to number theory, any given
natural integer, Z , can be expressed as a product of prime
factors raised by an appropriate exponent in a unique fashion, as
shown in eq 3.

= · · · =
=

Z p p1 2 3 5 , ...,a a a
n

a

n
n

a0

1

n n1 2 2

(3)

where pn are successive prime numbers and an are the
appropriate exponents. Passing eq 3 to the logarithmic, prime

Figure 1. Workflow of extracting the fingerprint of each atom in the system and applying atomic weight. From (a) DFT-optimized particles, the
symmetry functions are employed to extract fingerprint matrices (b,c) and weight vectors for each atom (d). Each atomic weight is then applied to the
fingerprint matrices (e,f), and those matrices are normalized (g) and fed to ML algorithms (h).
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numbers form the basis of a vector space where the exponents
are its coefficients, as described in eq 4.

= · =
=

Z a x x plog( ) , with log( )
n

n n n n
1 (4)

The chemical nature of elements in the fingerprint was
described by associating them with a distinctive prime number,
forming a basis set of the form X = {p1, p2, ..., pK} for K-elements
in the structure. Thus, the fingerprint reflected both the atom’s
nature and the nature of its closest neighbors. The weight
associated with each fingerprint was calculated through eq 5.

= +W (5)

where ω is the on-site weight, ω = pi, where pi is the prime
number associated with the atom’s element in the basis set X,
and ω̃ is the neighbor’s weight contribution calculated using eq 4
as the sum of the logarithm of the prime number associated with
the element of each neighbor within the cutoff radius around the
targeted atom. The fingerprinting procedure is sketched in
Figure 1.
Three different sets of fingerprints were used in this work.

Table 2 shows the symmetry functions G2 and G3 applied on
each data set; Table 3 shows the parameters used for theG2 and

G3 perturbed functions. Finally, the same fingerprint was applied
to each data set for the direction-covariant fingerprint, given in
Table 4. The initial parameters were chosen similar to
parameters in the literature and iteratively corrected to include
the additional terms until the best accuracy is reached.28,32,33,92

2.4. Building the Neural Networks. 2.4.1. Graphical
Neural Network: Energy Prediction. The data used in this work
covered a wide variety of cluster shapes and sizes, leading to
different fingerprint arrays, i.e., nontabular data, which GNN can
handle conveniently. The developed GNN required three
elements to predict atomic energies: The fingerprint matrix,
Me, which describes the atom’s environments; the adjacency
matrix, A, which represents the node connections within the
graph; and the atom-weight matrix, W, which captures the
element of each atom. The reader is referred to the PyTorch and
PyTorch-Geometric libraries documentation for details on the
different parameters used to build the networks.93,94 Table 5
reports the different GNN structures employed on each data set
studied in this work.
The predicted total energy of a cluster was calculated as a sum

of individual atomic contributions independently of the cluster’s
shape, size, nature, or state (gas-phase or supported). All data
sets were split into 80% for training and 20% for validation

Table 2. Detailed of the G2 and G3 Symmetry Functions Employed on Each Dataset Understudied in This Work

function weights Rs [Å] η [Å2] λ [Ø] ξ [Ø]
Pd-Pure & AuPd-Alloy Data Sets

G2 none (Pd-pure); Pd: 2, Au: 3 (AuPd-nanoalloy) [2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0] [0.5, 1.0, 3.0, 6.0] n.a. n.a.
G3 none (Pd-pure); Pd: 2, Au: 3 (AuPd-nanoalloy) n.a. n.a. [+1, −1] [1.0, 2.0, 4.0, 8.0, 16.0]

Pd-Silica Data Set
G2 H: 2, O: 3, Si: 5, Pd: 7 [3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0] [1.0, 3.0, 6.0] n.a. n.a.
G3 H: 2, O: 3, Si: 5, Pd: 7 n.a. n.a. [+1, −1] [2.0, 8.0, 16.0]

Table 3. Detailed of the G2 and G3 Symmetry Functions Employed on Each of the Datasets Understudied in This Work

function weights Rs [Å] η [Å2] Cheby. order λ [Ø] ξ [Ø] Pseudo-Cheby. order

Pd-Pure & AuPd-Alloy Data Sets

G2 none (Pd-pure); Pd: 2, Au: 3 (AuPd-nanoalloy) 0.0 [1.0, 3.0, 6.0] [2, 4, 6] n.a. n.a. n.a.

G3 none (Pd-pure); Pd: 2, Au: 3 (AuPd-nanoalloy) n.a. n.a. n.a. [+1, −1] [1.0, 4.0, 8.0, 16.0] [3, 4, 5]

Pd-Silica Data Set

G2 H: 2, O: 3, Si: 5, Pd: 7 0.0 [1.0, 3.0, 6.0] [2, 4, 6] n.a. n.a. n.a.

G3 H: 2, O: 3, Si: 5, Pd: 7 n.a. n.a. n.a. [+1, −1] [1.0, 8.0, 16.0] [3, 4, 5]

Table 4. Detailed of the GD Function Employed on all of the Datasets Understudied in This Work

weight Rs (Å) η (Å2) λ (Ø) ξ (Ø)
GD none [2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0] [1.0, 3.0, 6.0] Ø Ø

Table 5. Detailed Structure of the GNN Built for Energy Predictions

GNN structure optimizer weight and biases

Pd-pure: 150−150−150−150−150−1a Pd-pure: NAdam, L2-regularization
strength: 0.5 × 10−3, 660 epochs.

Pd-pure, AuPd-alloy: weights: Xavier
uniform, bias:

= =( 0.0, 1.0)
AuPd-alloy: 400−150−150−150−150−1 AuPd-alloy: NAdam, L2-regularization

strength: 0.5 × 10−3, 960 epochs

Pd/silica: 150−150−150−150−150−150−1 Pd/silica: NAdam, L2-regularization
strength: 10−3, 1200 epochs

Pd/Silica: weights: Kaiming normal, bias:
= =( 0.0, 1.0)

no message passing. global-add-pool readout function activation functions:
RReLU (Pd-pure and Pd/silica), Leaky-ReLU (AuPd-alloy).

aIndicates the number of neurons in each layer, i.e. a first, second, third, fourth, and fifth layer containing 150 neurons and an output layer of 1
neuron.
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during the learning process. From the training set, 16% of the
total data set was used for on-the-fly validation, avoiding
overfitting. The NNIPs defined in the present work were built
according to the workflow depicted in Figure 2 and described as
follows:
a) the chemical space is sampled using DFT, data sets are
created, and the fingerprints are constructed;

b) a graph neural network (GNN) is employed to predict
atomic energies. Each node in the graph corresponds to a
cluster atom with an associated energy. A readout
function sums the energy predicted on each node
according to eq 6, where εn is the value attached to one
node (atom) in the graph:

=E
n

nGNN
,nodes (6)

2.4.2. Feed-Forward Neural Network: Forces Prediction.
Classic feed-forward networks were built to predict the forces’
norms and directions, as illustrated in Figure 2. The NNs’
structures are described in Tables 6 and 7.

3. RESULTS
3.1. Data Preprocessing. 3.1.1. Near-Equilibrium Struc-

tures. The quality of the data employed during training is

intrinsically linked to the quality of the prediction, and therefore,
great care was taken regarding the data set’s preprocessing. In
particular, the DFT cluster optimization led to a significant
proportion of the data set describing quasi-identical near-
equilibrium structures. In order to avoid overweighting quasi-
identical images in the data sets, a filter that operates on each
trajectory step was designed. The filter recursively compares the
energy per atom of consecutive images. If the energy difference
falls under a threshold, the image is ignored and not included in
the data set (details given in Supporting Information, Section
S2).
For the gas-phase data sets, an energy threshold of 3 × 10−3

eV/atom was chosen to capture the diversity of the spanned
structures in the fingerprint. On supported Pd/SiO2 clusters,
due to the complexity of this chemical space and rigidity of the
support, a lower threshold of 1 × 10−3 eV/atom was set to
include a higher number of atomic environments close to the
equilibrium. For consistency, the Pd-pure gas-phase clusters
included in the Pd−SiO2(001) data set also used the same
threshold.

3.1.2. Fingerprint Noise Reduction. In the scope of this work,
the fingerprinting procedure can be considered as an
information channel converting information from the atomic
simulation environment (ASE) object into a tensor object. This
procedure may introduce noise in the data that can perturb the

Figure 2. Schematic workflow of the predictive ML-calculator introduced in this work. (a) The data set is generated. The data set stores DFT total
energies and atomic forces as targets, and the fingerprint of each atom is extracted. (b) Each fingerprint is assembled into a graph. Each node in the
graph represents an atom, and a connection between two nodes represents a chemical bond. The GNN predicts atomic and total energies. (c) The
second set of NNs predicts the Euclidian norm of the force acting on each atom and its direction. (d) The predictions are compared against the data set
data.

Table 6. Detailed Structure of the Feed-Forward NNs Built for Forces-Norm Predictionsa

feed-forward NN structure optimizer weight and biases

Pd-pure and AuPd-alloy:
280−80−60−1. Activation function: RReLU all data sets: NAdam, L2-regularization strength:

0.5 × 10−3, 1200 epochs.
all data sets: weights: Xavier normal, bias:

= =( 0.0, 1.0)Pd/silica:
80−40−40−1. Activation function: Leaky-ReLU

aThe softplus activation function was applied to the output layers of each NN.

Table 7. Detailed Structure of the GNN Built for Energy Predictions

feed-forward NN structure optimizer weight and biases

all data sets: 400−120−100−100−100−3, activation functions:
Leaky-ReLU (all data sets).

all data sets: NAdam, L2-regularization strength:
10−4, 1000 epochs.

all data sets: weights: Xavier uniform,
bias: zeros
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learning procedure and hinder the performance of theML-based
algorithm.95 To reduce the influence of the noise on the data’s
quality, different preprocessing methods were tested to improve
the NN’s predictions. Two commonly employed methods were
compared, principal component analysis (PCA) and autoen-
coders (AE), which proved powerful preprocessing tools. Their
details and results are described in the Supporting Information,
Section S3.96,97 In brief, PCA builds linear relationships between
components by projecting a matrix of dimension [N × D] to a
new matrix [N × D′], where N represents the number of atoms

in a cluster, D the initial dimension of the fingerprint, and each
dimension D′ represents a linear component derived from the
initial D-dimensional fingerprint with D′ < D. AE follows the
same principle as PCA but through a structure similar to neural
networks, building more complex relationships than linear
components as PCA does. Whereas PCA remains deterministic,
AE must be trained to reduce the initial fingerprint’s dimension
efficiently, leading to the loss of noise in the original data. The
most significant influence of preprocessing was observed in
predicting the norm of forces. The results obtained using PCA

Figure 3. (a) The learning curve of the AE to reduce the dimension of the forces norm fingerprint from 60D to 30D. (b) The mean average error
(MAE) of the neural network predicting the atomic forces norm with different preprocessing through autoencoding (AE) and principal component
analysis (PCA). RMSE and MAE are in eV/atom.

Figure 4. (a) Illustration of the part of the ML-calculator predicting the energy. The GNN requires the adjacency matrix (A), the energy fingerprint
(Me), and atom weights (W). (b−d) show the correlation between predicted and DFT-energies for Pd-pure, AuPd-alloy, and Pd-silica data sets.
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and AE were compared only on Pd/SiO2 using the fingerprints
described in Tables 2 and Table 3.
The results obtained after the reduction of the initial 60D

fingerprint indicate better performance from PCA by 0.02−0.03
eV/Å on average against AE, as illustrated in Figure 3. An
improvement of 0.05 eV/Å against the baseline result obtained
without preprocessing the initial 60D fingerprint. The AE
preprocessing performs the encoding-decoding procedure with
minimal error, as shown by the AE learning curve in Figure 3a,
where a RMSE below 0.01 eV/atom was reached after just 200
epochs, indicating that the encoding-decoding procedure is
performed with minimal loss of information through data-
compression, i.e. the dimension-reduced vector contains all the
relevant information stored in the initial vector. However,
despite this, PCA produced better results and was employed in
this work to preprocess the fingerprint associated with forces
norm.

3.2. ML-Calculator: Energy Predictions. Figure 4 shows
the energy predictions and the mean absolute errors (MAE) for
the three systems: Gas-phase Pd and AuPd nanoparticles and
Pd/α-SiO2(001). The MAE ranges between 0.003 and 0.007
eV/atom and follows the order AuPd-alloy (gas) < Pd-pure
(gas) < Pd/SiO2, as shown in Table 8. The most significant
errors in the predicted energies correspond to unstable
structures whose geometries are far from any minima in the
potential energy surface.

It is worth mentioning the flexibility of the ML-calculator in
accurately predicting the energy of alloy particles from a
relatively small data set containing actual multimetallic
structures. Figure 5 compares the predicted and DFT-calculated
total energies of 12 particles containing 20 atoms with

compositions from Au6Pd14 to Au18Pd2 with Random, Janus,
and core−shell configurations. The GNN predicts total errors
from 0.001 to 0.017 eV/cluster.

3.3. ML-Calculator: Forces Predictions. Atomic force is
the product of the force norm and the direction vector. Figure 6a
describes the PCA-transformed forces-norm generated from a
first NN feeding a second feed-forward NN for predicting the
vectorial forces. The accuracies of the predictions are
summarized in Table 9, where δE represents the energy
threshold to select two images from the same optimization
path (near-equilibrium preprocessing), MAE is the mean
absolute error, and RMSE is the root mean squared error.
Predictions of the vectorial forces consistently show an
improvement compared to the forces norm, as illustrated in
Table 9 by reducing the MAE by 37%, 22%, and 44% for the Pd-
pure, AuPd-alloy, and Pd/silica data sets, respectively. This
observation can be explained mathematically: The norm is
multiplied with a 3D vector whose components are inferior or
equal to 1 (direction unit vector), generating smaller values.
Furthermore, because the direction vector is trained independ-
ently from the norm, the second NN can undirectly learn a
correction to the force norm in each of the 3 vectorial
coordinates and apply it to the norm before the loss is calculated.
In the chosen structure of two embedded feed-forward NNs,

the rotation-covariant direction NN acts as the unit-vector
prediction and corrects the forces-norm. It is also noticeable in
Table 9 that the more accurate the “guess” on forces norm, the
higher the accuracy on the resultant vectorial force. Figure 6b−d
shows the graphical comparison between predicted and DFT
forces for the three systems understudy. The accuracy reached
on all of the data sets studied in this work lies within the so-called
near-DFT accuracy, referring to a level of accuracy where the
trained force field can compete with DFT, usually considered to
be reached in the literature for a force RMSE around or under
0.100 eV/Å.22,28,32,33,92,98

3.4. Interpretability of the Results. The GNN is trained
to provide a set of atomic energies with the only restriction that
the sum of energies should approach the DFT energy of the
system under study. This raises the question of the
interpretability of each atomic contribution to the total energy;
does the GNN learn the “physics” associated with the data set, or
is the predicted atomic energy a mathematical artifact with no
physical value?
Four Pd-pure gas-phase clusters, illustrated in Figure 7, were

chosen to predict the cohesion energy of specific atoms in the
vertex, edges, and facets. The energy variation of pulling

Table 8. Predictions Accuracy in Forces Norm and Total
Vectorial Forces for the Three Datasets Understudied in This
Worka

data set
δE,

eV/atom
number
of entries

energy error,
MAE,
eV/atom

energy error,
RMSE,
eV/atom

gas-phase Pd-pure 0.003 15,500 0.004 0.016
gas-phase
AuPd-alloy

0.003 11,000 0.003 0.011

gas-phase and
supported
Pd/SiO2

0.001 25,000 0.007 0.020

aδE is the energy threshold used in the pre-processing filter.

Figure 5.Diagrammatic representation of the bimetallic clusters containing 20 atoms. TheDFT andGNNpredicted total energies and their difference,
ΔE(GNN), are in eV over the entire tested cluster, i.e. eV/cluster.
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individual atoms away from the metal cluster can be approached
with a Morse potential curve,99,100 the general equation is in eq
8.

= [ ]V r( ) e 2ea r r a r r2 ( ) ( )eq eq (8)

where re represents the equilibrium distance between the target
atom and the cluster, ε is the potential reached at the bottom of
the Morse curve well and quantifies the strength of the
interaction between the atom and the rest of the cluster, i.e.,
the cohesion energy, Ecoh. The parameter a expresses the width
of the well and is related to the stiffness of the interaction, ke, at
the bottom of the well, =a k

2e . In addition, the norm of the
force vector predicted by the NN should equal the derivative of
the Morse curve, expressed in eq 9.

=V
r

a
d
d

2 e (e 1)a r r a r r( ) ( )eq eq

(9)

The distances between the targeted atoms and the clusters
were systematically increased, and the energies and forces were
predicted. Figure 8a represents the predicted energies following
the Morse curves, i.e. with coefficients of determination (R2) at
least 0.9. Themeaning of correlation between predicted energies
and the Morse potential indicates that the GNN learned the
underlying physics carried by the atomic fingerprints. In other
words, an interpretable physical meaning can be associated with
each contribution to the total energy predicted by the GNN.

Figure 6. (a) Illustration of the part of the ML-calculator predicting atomic forces. A first feed-forward NN predicts the forces’ norm using the atomic
weights multiplied by the PCA-reduced fingerprint,Mn. A second feed-forward NN predicts the total force using the direction fingerprint for input,Mf,
andmultiplying the 3D output with the predicted forces norm. (b−d) show the correlations between DFT and predicted forces for the Pd-pure, AuPd-
alloy, and Pd-silica-data set.

Table 9. Predictions Accuracy in Forces Norm and Total
Vectorial Forces for the Three Datasets Understudied in This
Worka

data set
δE,

eV/atom
number
of entries

norm
MAE,
eV/Å

vectorial
force MAE,
eV/Å

vectorial
force
RMSE,
eV/Å

gas-phase
Pd-pure

0.003 240,000 0.080 0.050 0.112

gas-phase
AuPd-alloy

0.003 150,000 0.055 0.043 0.109

gas-phase and
supported
Pd/SiO2

0.001 500,000 0.086 0.048 0.120

aδE is the energy threshold used in the pre-processing filter.
Figure 7. Representation of the four Pd-pure clusters selected to
evaluate the interpretability of the energy predictions. From left to
right: Pd5, Pd7, Pd19, and Pd38. The initials V, E, and F indicate the
position of the atoms selected to investigate their cohesion energy on
the vertex, edge, and facet.
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The cohesion energies predicted by the GNN are in good
agreement with values reported in the literature, with errors
under 0.02 eV, demonstrating the applicability of the algorithm
introduced in the present work.101,102 They also agree well with
the cohesion energy calculated from DFT, i.e. 1.52, 1.71, 2.30,
and 2.59 eV for Pd5, Pd7, Pd19, and Pd38, respectively.
The evaluation of the predicted forces norm also shows good

agreement (R2 ≥ 0.9) with the expected trend given by eq 9 and
represented in Figure 8b, demonstrating the interpretability of
the ML-calculator.

4. CONCLUSION
The work presents an improved atomic cluster fingerprinting
that is able to capture local and nonlocal and the nature of atoms
matter, easing the use of advanced computational techniques in
physical science, particularly nanoscience and catalysis. The
fingerprint feeds three machine learning structures to accurately
predict atomic and cluster energies, atomic forces norm and
direction. Following an energy-free approach, these grap- and
feed-forward networks were combined in an autonomous
machine-learning calculator.35 This calculator was tested against
gas-phase Pd, AuPd, and Pd/SiO2 clusters, representing
contemporary challenges to designing multimetallic and
supported catalysts. Analysis of the energy and forces
predictions revealed a near DFT accuracy for the different
systems. Besides, the atomic energy interpretability was tested
and confirmed to encapsulate physical meaning, such as the
cohesion energy. Overall, the innovative ML-calculator is
accurate and highly flexible, producing competitive results or
better than existing neural networks’ interatomic potentials
(NNIPs).28,32,33,103−108
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