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Summary

Rising global temperatures are driving more frequent heatwaves in the UK, increas-

ing overheating risk in the housing stock and compromising the health and comfort

of occupants, particularly the elderly. Given the diversity and scale of the stock, as-

sessing individual buildings for overheating risk is impractical. Instead, representative

archetypes provide a scalable approach to capturing key dwelling variations, enabling

large-scale investigations that are essential for understanding overheating patterns and

developing effective mitigation strategies.

However, the influence of methodological choices on archetype representativeness

remains under-explored. To address this, a minimum segmentation frequency (MSF)

approach was introduced to preserve feature diversity. A sensitivity analysis was

conducted on archetype representativeness to investigate the influence of different

MSF levels, variable counts and clustering metrics. Results showed that lower MSF

values improved representativeness, and the choice of clustering metric impacted the

optimal number of archetypes. The Davies-Bouldin index consistently identified more

representative archetypes than the Calinski-Harabasz and Silhouette indices.

Subsequently, a framework for archetype development was established, integrating

geographical and temporal scales, computational cost and research focus to balance

representativeness and simulation feasibility. Using the framework, building archetypes

derived from English Housing Survey (EHS) data were developed to analyse overheating

risk across regions and dwelling types.

The developed archetypes were evaluated through dynamic thermal simulations,

revealing consistent overheating patterns that align with observed overheating trends,

demonstrating both the cooling potential of a passive measure (e.g., external shutters)

and the overheating severity for different typologies. Simulated internal temperatures

reflected monitoring studies, reinforcing their reliability. A Random Forest model

demonstrated that the data variation within the developed archetypes is sufficient to

reliably identify key drivers of overheating. The model demonstrated strong predictive
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performance, with R² values ranging from 0.79 to 1 for living rooms and 0.79 to 0.96

for bedrooms across both baseline and 2050 climate scenarios. The findings confirm

the utility of the archetypes, derived from the suggested framework, for large-scale

overheating assessments, providing a foundation for future research, policy and adaptive

cooling strategies in a changing climate.
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Chapter 1 |
Introduction

1.1 Overview

The scarcity of fossil fuels, stringent greenhouse gas (GHG) emission targets and

anthropogenic climate change are all factors that contribute to the demand for passively

cooled buildings (DEFRA, 2010). Buildings account for 36% of global energy con-

sumption and 40% of carbon emissions (Langevin et al., 2020). The UK residential

sector accounted for nearly 68 MtCO2e of GHG emissions in 2020 (DBE, 2022). Peak

summer temperatures in the UK could increase by 10°C by the 2080s compared to

the 1990s reference climate (Zero Carbon Hub, 2015). Furthermore, temperatures

exceeding 35°C are becoming more prevalent in the southeast, and several northern

regions may experience temperatures exceeding 30°C at least once every decade by

2100 (Christidis et al., 2020). These rising outdoor temperatures will inevitably affect

indoor environments, making overheating a growing concern.

Overheating refers to the occurrence of high internal temperatures that cause thermal

discomfort, affecting occupants’ health and productivity (Dodoo and Gustavsson, 2016).

This phenomenon has already been observed in UK (Zero Carbon Hub, 2015; Beizaee

et al., 2013; Lomas and Porritt, 2017; Pathan et al., 2017; Symonds et al., 2016) and

dwellings (Brotas and Nicol, 2016) and is likely to increase due to global warming

(Hamdy et al., 2017; DEFRA, 2010), which in turn will increase the cooling demand for

maintaining thermal comfort. During the 2018 summer, a survey of 750 UK dwellings

reported that 15% of living rooms and 19% of bedrooms experienced overheating, and

the operative temperatures surpassed 26°C for more than 32 occupied hours in 69% of

the bedrooms (EFUS, 2021a). Hence there is an urgent need for for passively cooled

buildings to adapt to rising temperatures and increased cooling needs.

Overheating risks are projected to rise in the UK due to climate change, with
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1.1 OVERVIEW

external peak temperatures similar to heatwave patterns becoming hotter, more frequent

and recurring (Mavrogianni et al., 2012; Gupta and Gregg, 2012; Porrit, 2012). The

2003 heatwave in southeast UK, with temperatures reaching 38.5°C (Johnson et al.,

2005), surpassed the 1976 heatwave in the UK, with a peak temperature of 35.9°C in

Cheltenham and 15 consecutive days surpassing 32°C in certain locations (Burt, 2004).

In recent years, the UK has experienced several heatwaves that have surpassed previous

records, demonstrating the ongoing trends of increasing temperatures. The external

temperature in Glasgow in 2018 reached 31.9°C, while Felsham and Porthmadog

recorded 35.6°C and 33°C respectively (McCarthy et al., 2019). Several heatwaves

occurred in the UK during the summer of 2022, resulting in temperatures exceeding

40°C (Davie et al., 2023).

An overview of factors affecting overheating risks in dwellings, their impacts on

occupants and potential solutions are presented in Figure 1.1 as a starting point for the

contextual discussion. Dwelling characteristics and the design, together with climate

and environmental features, affect overheating risks. The impacts on occupants range

from sleep deprivation and reduced productivity to even death. Various solutions to

overheating are found in the literature, ranging from solar shading to improving thermal

properties of materials by adding more insulation.

Indoor overheating poses a significant health threat, especially to the elderly due to

their considerable time at home and limited mobility (Lomas and Porritt, 2017; Porrit,

2012). During the 2003 heatwave across Europe, around 70,000 deaths (Robine et al.,

2008) were reported, of which an approximate of 30,000 and 2091 were from Western

Europe (Kosatsky, 2005) and the UK (Johnson et al., 2005) respectively. Consequently,

public health stakeholders in the UK and Europe (World Health Organization, 2009)

raised their concerns and called for preventative measures to reduce heat-related deaths.

The shift to remote work since the COVID-19 pandemic has further intensified over-

heating risks, as increased indoor occupancy leads to higher internal heat gains. Thus,

the demand for air conditioning increased during lockdown (Khosravi et al., 2023). It

is urgent to reconsider the principles of housing design to reduce the increased risk of

heat-related health complications.

2



1.2 EXISTING BUILDING STOCK AND CHALLENGES

Figure 1.1: An overview of factors affecting overheating, its impacts on occupants and
potential solutions to the problem.

1.2 Existing building stock and challenges

The UK housing stock is among the oldest in the world, and it is anticipated that most

of the current dwellings will continue to be in use until the 2050s (Boardman, 2007).

Given the UK’s low rate of housing demolition (Tink, 2018), the current housing stock

will likely remain for many years. In addition, the government’s emphasis on enhancing

insulation in both new and existing dwellings (Department for Energy Security and Net

Zero and Department for Business, Energy & Industrial Strategy, 2021b) may result in a

greater accumulation of indoor heat during the summer months as a result of increased

air tightness (Davies and Oreszczyn, 2012). The UK’s ambitions to reduce greenhouse

gas emissions by 78% by 2035 and attain net-zero by 2050 may be undermined by the

increased use of air conditioning to maintain thermal comfort indoors if passive cooling

interventions are not implemented effectively (Department for Energy Security and Net

Zero and Department for Business, Energy & Industrial Strategy, 2021c).

The severe temperatures experienced by buildings vary in intensity and duration, and

are influenced by weather patterns documented in meteorological data (Smoyer-Tomic

3
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et al., 2003). Different regions could require different designs and building methods

to control indoor heat efficiently. Choosing the appropriate materials and ensuring

sufficient insulation are crucial factors that greatly impact a building’s thermal inertia and

capacity to control heat (Verbeke and Audenaert, 2018), influencing overheating risks

(Mavrogianni et al., 2012). These building characteristics are important in determining

the performance of dwellings under extreme temperatures.

Dwellings in northern UK, which typically experience colder weather conditions,

frequently incorporate greater insulation and thicker walls (EHS, 2023) to provide strong

thermal retention and prevent heat loss in winter. These dwellings often have cavity

walls, which are more common in the northern regions compared to the southern regions

(EHS, 2023). Design choices, such as building shape and window-to-wall ratios, impact

heat gain, storage and dissipation within a dwelling. Greater window-to-wall ratios

can result in elevated indoor temperatures (Gamero-Salinas et al., 2021), particularly

if the windows are not adequately shaded. While dwellings in southern UK generally

have a reduced wall surface area and increased window size (EHS, 2023), possibly

strategically planned to optimise natural airflow and cooling. These regional variations

have implications for overheating and passive cooling techniques. Although the thick

walls and insulation of northern dwellings assist in heat retention during cold months,

they may exacerbate overheating during warmer seasons. Southern dwellings, designed

to promote airflow, may be more suitable for passive cooling, but they have difficulties

owing to their larger windows, which may additionally increase solar heat gains.

Urban heat islands (UHI) are localised areas where buildings absorb heat from solar

radiation and human activity during the day and release it at night (Eames et al., 2010).

In dense urban environments, street canyons trap heat by limiting longwave radiation

loss (Theeuwes et al., 2013), while urban noise often discourages natural ventilation

as a cooling strategy (Lomas and Porritt, 2017). As a result, indoor temperatures in

urban areas tend to be higher (Tam et al., 2015), increasing the risk of heat-related

fatalities (Oikonomou et al., 2012). Importantly, roughly 24.2% of the UK housing

stock is located in urban settings (EHS, 2023). These challenges underscore the need

for targeted cooling strategies that consider local climate conditions.

Urban areas, such as London, have a higher prevalence of high-density housing,

including flats and terraced houses (EHS, 2023), which are particularly susceptible to
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the UHI effect and often lack adequate natural ventilation. In contrast, rural regions

predominantly feature detached and semi-detached houses with larger surrounding

green spaces that can mitigate heat absorption. Additionally, rural dwellings tend to

have larger floor spaces (EHS, 2023), which can improve the distribution of heat and

potentially reduce the intensity of overheating in individual rooms. These discrepancies

in urban density and dwelling typology emphasise the need for tailored heat mitigation

strategies to the unique characteristics of different regions.

The UK housing stock is highly diverse, with regional differences in insulation

levels, wall thickness, window sizes and dwelling forms (EHS, 2023), all of which influ-

ence how overheating develops across different areas. Given this variability, large-scale

research is essential to support policymakers in developing targeted overheating mitig-

ation strategies. While dynamic thermal modeling can assess how different dwelling

types respond to climatic conditions, modelling each building individually is impractical

due to the vast number of existing homes. Instead, building stock modeling offers a

scalable solution by simulating representative archetypes based on extensive housing

data, enabling more effective scenario analysis and policy interventions.

1.3 Building stock modelling

Building stock modelling plays a vital role in the development and testing of

solutions and policies for improving energy efficiency (Röck et al., 2021; Reyna and

Chester, 2017; Wang et al., 2018), reducing greenhouse gas emissions (Yamaguchi et al.,

2022; Pittam et al., 2014; Stephan and Athanassiadis, 2017), adapting to climate change

by reducing overheating risks (Gupta and Gregg, 2013; Gangolells and Casals, 2012),

assessing the effects of building envelope modifications on indoor air quality (Taylor

et al., 2014b) and optimising resource usage (Nutkiewicz and Jain, 2019; Mastrucci

et al., 2014; Streicher et al., 2019) for a resilient built environment. The modelling

process can be classified into two main approaches: the “one-to-one” method, which

involves modelling every building within the study area, covering a broad spectrum

of its diverse geometric and construction features, and the “archetype-based” method,

which focuses on modelling only a representative subset of buildings. The former

method has seen increased adoption in recent years, especially for smaller geographies
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with fewer buildings. This is primarily due to the declining cost of computation, and

the advancement and increased availability of accessible building simulation tools

(Wang and Zhai, 2016). However, their implementation remains challenging because

“one-to-one” modelling requires significant efforts in terms of human and financial

resources (Hu et al., 2020). On the other hand, in situations where many buildings need

to be assessed using detailed and resource-intensive modelling approaches, developing

building archetypes based on statistical analyses of a representative sample is a more

feasible alternative to “one-to-one” modelling.

Each archetype embodies a range of characteristics of a particular segment of the

building stock, which are often simulated to evaluate performance across a range of

similar buildings while managing computational costs. Therefore, archetype-based stock

modelling provides a pragmatic and time-efficient approach (Shahrestani et al., 2014;

Cerezo Davila et al., 2016) while ensuring that the outcomes obtained adequately reflect

the original larger set of buildings and are well-suited for their intended applications,

spanning from district and urban energy and environmental modelling to national stock

modelling.

Building archetypes are primarily developed through a three-step process involving

data preprocessing, segmentation and clustering. First, the building stock dataset is

analysed to identify relevant features that are significant in the study context, typically

using statistical methods (Famuyibo et al., 2012). Significant features are sometimes

transformed depending on the nature of their distribution and the presence of outliers

to improve clustering effectiveness (Dong et al., 2023). Second, the selected subset

is segmented into homogeneous groups typically based on geography and building

characteristics such as age and type. Third, clustering methods are applied on each

of the segregated subsets to further divide the sub-population into clusters of building

archetypes with similar attributes. The level of segmentation and the selection of

clustering technique depends on several factors such as the scope of the analysis, the

availability and type of the variables required for modelling, and the computational

complexity of the building model.

Ensuring that building archetypes adequately represent the diversity of the building

stock is crucial for reliable simulation results. This concept, known as archetype

representativeness, refers to the similarity in the distribution of relevant variables
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between the archetypes and the original building stock data, measured by comparing

the total dwelling count across various variables.

1.4 Problem statement

The UK housing stock faces increasing risks of indoor overheating due to climate

change, posing challenges to maintaining occupant comfort and reducing cooling

energy use. Projections indicate a significant rise in peak summer temperatures by

2080, raising concerns about thermal discomfort and health, particularly in dwellings

not designed for warmer climates. While energy efficiency improvements, such as

increased insulation and airtightness, have been prioritised to meet carbon emission

targets, they may also exacerbate overheating risks by trapping heat indoors during

summer. Given the diversity in housing stock characteristics, including variations in

construction type, insulation levels, and dwelling forms, overheating risks will not be

uniform across all dwellings. Some dwellings, particularly those with high insulation

and limited ventilation, may be more vulnerable than others.

Addressing this urgent challenge requires large-scale assessments through building

stock modeling, which is essential for capturing the complexity and variability of the UK

housing stock, assessing overheating risks at scale and informing effective mitigation

strategies. Despite advancements in building stock modeling, the influence of methodo-

logical choices on archetype representativeness remains overlooked. Understanding this

influence is crucial for developing more representative archetypes that better reflect the

diversity of the housing stock and regional variations.

Traditional approaches to archetype development often rely on averaged dwelling

characteristics, overlooking the diversity and regional differences in the housing stock,

which can lead to oversimplified archetypes that lack representativeness. Large-scale

overheating investigations in the UK have frequently used simplified archetypes, such

as averaging floor area to define different archetypes, which potentially can misestimate

overheating risks in certain dwellings and regions. Given that floor area influences air

circulation, variations in dwelling size may influence overheating outcomes. Moving

beyond these traditional methods requires adopting more refined methodologies that

capture a wider range of dwelling features.
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The current state-of-the-art lacks a comprehensive framework for developing repres-

entative building archetypes relevant to specific research contexts. The absence of an

adaptable framework in this regard can lead to oversimplified archetypes, potentially

reducing their usability and the accuracy of simulation results, due to low representat-

iveness. While greater complexity in archetypes does not always lead to more accurate

simulations, oversimplification might overlook significant details essential to the build-

ing stock. Conversely, overly detailed archetypes can introduce challenges without

significantly improving prediction accuracy. The focus should be on achieving an desir-

able level of stock detail that effectively captures the essential characteristics needed to

meet research objectives.

1.5 Research contributions

This research synthesises existing knowledge through a literature review on passive

cooling measures and factors influencing indoor overheating. A comprehensive frame-

work was established to describe the potential effectiveness of various passive cooling

strategies, considering factors influencing overheating, including climate, material and

building design, thereby providing valuable insights for future research and policy

development.

A detailed sensitivity analysis of segmentation levels, clustering metrics and variable

counts represents another contribution of this research. This investigation provides valu-

able insights into how different methodological choices influence the representativeness

of building archetypes. The findings informed the creation of an archetype development

framework.

A central contribution of this thesis is the introduction of the minimum segmenta-

tion frequency (MSF) and framework for archetype development that systematically

integrates MSF selection. The MSF approach, a unique pre-clustering segmentation

step, preserves the feature diversity inherent in the building stock at different levels. The

framework guides the development of archetypes a desirable level of representativeness

by strategically balancing granularity and scalability, capturing essential variations in

the housing stock while remaining feasible for large-scale simulations.

The archetypes developed using the MSF approach within the framework were tested

8



1.7 AIM AND OBJECTIVES

through dynamic thermal simulations, demonstrating their ability to replicate established

overheating and cooling patterns across different UK regions and dwelling types. Their

capacity to capture regional and typological variations in overheating risk makes them

a reliable tool for assessing the thermal resilience of the housing stock under current

and future climates. Additionally, the application of a Random Forest model to the

archetype-derived dataset achieved high predictive accuracy across different typologies,

highlighting the MSF-driven archetypes’ ability to preserve and leverage the inherent

diversity of the housing stock. These findings reinforce the applicability of the MSF

approach in building stock modelling, demonstrating its potential for scenario testing,

policy development and targeted mitigation strategies aimed at reducing overheating

risks in dwellings.

1.6 Research questions

1. What are the primary determinants of overheating in the UK housing stock ?

2. Among various passive cooling measures, which appears most suitable for mitig-

ating overheating risks across a range of influencing factors ?

3. How does methodological choices influence building archetype representativeness,

and what recommendations can be made for developing representative archetypes

?

4. Can the developed archetypes, when used in dynamic thermal simulations, reflect

typical patterns of overheating risk and the cooling potential of a passive measure

such as external shutters ?

1.7 Aim and objectives

The aim of this study is to construct a framework for representative archetype

development and assess the ability of the resulting archetypes to investigate overheating

risk in the UK housing stock. The study is structured around several key objectives

that address both the theoretical and practical aspects of overheating risk and building

archetype development. The objectives are as follows:
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1. Review existing literature on factors contributing to overheating risks and passive

cooling strategies to reduce risks.

2. Investigate previous works on building archetype development.

3. Conduct sensitivity analysis to investigate changes in archetype representative-

ness.

4. Develop building archetypes from the English Housing Survey.

5. Investigate whether the data variation in developed archetypes provides sufficient

accuracy through Random Forest, then analyse variation in degree hours across

different scenarios.

1.8 Hypothesis

Archetypes developed using the proposed framework, informed by a pre-clustering

segmentation approach termed the minimum segmentation frequency, can replicate

established overheating patterns, such as regional and dwelling type variations, and

reflect the cooling impact of a passive measure, such as external shutters. This validation

supports their applicability for large-scale overheating assessments and informs future

studies on archetype-based thermal risk analysis.

1.9 Thesis flow and outline

This thesis contains seven chapters, starting with an introduction that sets the

background and outlines the research problem, followed by a comprehensive literature

review and a detailed methodology. Subsequent chapters discuss the results from

various investigations. Figure 1.2 illustrates the context, research questions, objectives

and corresponding findings, with references to specific chapters where each finding is

discussed. The relationships between each research objective and research question are

also highlighted, providing a clear overview of the structured approach taken throughout

the study. The chapters are summarised as follows:
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• Chapter 1 introduces the background and importance of the research, highlighting

the increasing risks of indoor overheating due to climate change, the rising

demand for passively cooled buildings, the challenges of overheating in the UK

housing stock and the need for building archetypes for stock modelling. The

chapter also provides the research questions, aims, objectives and hypothesis.

• Chapter 2 presents the literature review on the influencing factors of indoor

overheating and suitable passive cooling measures to reduce overheating risks.

This is followed by previous works on archetype development to inform the

methodology adopted for creating archetypes for the subsequent overheating

simulation.

• Chapter 3 describes the methodology adopted to develop building archetypes

for overheating simulations. It covers the data preparation, variable selection,

segmentation and clustering processes to create archetypes for the study. The

characterisation of the developed archetypes follows this, providing the thermal

zoning approach, constructional and architectural characteristics, and weather

files to create them.

• Chapter 4 demonstrates a sensitivity analysis of archetype representativeness con-

sidering segmentation level, clustering evaluation metric and variable count. The

chapter discusses findings from the sensitivity analysis and leverages the results

to inform a comprehensive framework for archetype development, considering

overarching factors such as geographical and temporal scales, computational cost

and research focus.

• Chapter 5 provides the methodological choices considered for developing the

archetypes used for the overheating investigation. Moreover, the model validation

results is provided for the overheating investigation by considering the ratio of the

mean indoor temperature for the living room and bedroom to the mean external

temperature.

• Chapter 6 presents the results and discussion of the dynamic thermal simulations

conducted on the developed archetypes. The chapter concludes by contextualising
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these findings within broader literature on overheating mitigation and validating

the archetype framework’s utility for large-scale thermal resilience assessments.

• Chapter 7 concludes the research by revisiting each research question, providing

justification for the study and highlighting its contributions to knowledge. The

chapter also addresses the research limitations and proposes directions for future

work.
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Figure 1.2: Schematic representation of thesis structure and flow.
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Chapter 2 |
Literature review

This chapter presents an in-depth review that establishes the theoretical framework

required to achieve the research objectives of this thesis. It focuses on two primary

themes: overheating and building stock modelling. It provides a comprehensive exam-

ination of the factors that influence overheating, including building design, climate and

occupant behaviour. Additionally, strategies for preventing overheating are discussed.

The chapter then covers studies that used building archetype models for large-scale in-

vestigations, with the aim of understanding the modelling methodologies used to develop

building archetypes and test their applicability to be used for large-scale overheating

analysis.

2.1 Background

Building regulations in the UK have increasingly prioritised energy efficiency

following the oil crises of the 1970s, leading to stricter insulation standards by the 1990s

to reduce energy consumption and carbon emissions. While these measures reduced

winter heating demand, they have also increased overheating risk in some dwellings.

This challenge is now exacerbated by a warming climate, making airtight, insulated

dwellings increasingly difficult to keep cool without additional interventions.

Since 1960, the United Kingdom has experienced a consistent warming trend, with

summer temperatures rising at approximately 0.28°C per decade and winter temperatures

by 0.23°C per decade (Met Office, 2011). This pattern highlights the growing impact

of climate change, which has not only increased average temperatures but has also

led to more frequent and intense heatwaves. Consequently, global climate trends

have exacerbated the challenge of indoor overheating, pushing temperatures beyond

previously recorded limits. Historically, the UK had only moderate summer heat, but

recent years have seen increasingly extreme weather events (Perry et al., 2022).
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The link between climate change and indoor overheating has become increasingly

evident since the late 20th century. The Intergovernmental Panel on Climate Change

(IPCC) (Seneviratne et al., 2021) has repeatedly warned of more frequent extreme

weather events, such as heatwaves, as global temperatures rise. The UK experienced

record temperatures during the 2003 heatwave, reaching 38.5°C in Brogdale, Kent (Met

Office, 2011). The 2018 summer was one of the warmest in UK history, comparable

to 2006, 2003, and 1976, and ongoing climate change has increased the likelihood of

similarly hot summers to an estimated 12% to 25% (Met Office, 2022). More recently,

the external temperature reached 40.3°C Coningsby, Lincolnshire (Zachariah et al.,

2022).

Heat-related deaths are projected to become more common as rising external tem-

peratures, driven by climate change, continue to pose severe health risks, especially

during heatwaves. Hajat et al. (2014) demonstrated that extreme heat is associated with

increased mortality rates, a trend observed in multiple UK heatwaves. If current trends

continue, the number of heat-related deaths in the UK could increase to 7,040 per year

by 2050 (Arbuthnott and Hajat, 2017). Further analysis indicates that over the 35-year

period from 1988 to 2022, approximately 51,670 deaths in the UK and 2,186 deaths in

Wales were associated with the hottest days (Office for National Statistics, 2022).

Addressing the growing risk of overheating requires both immediate and long-term

adaptation measures. Strategies such as retrofitting older buildings with improved ventil-

ation and incorporating external shading are essential for reducing indoor temperatures.

The introduction of new regulations, like the updated Part O of the Building Regulations

(Department for Levelling Up, Housing and Communities, 2021), represents progress

in minimising overheating risks in new constructions. However, the large number of

existing dwellings to tackle remains a challenge. Policymakers and stakeholders must

prioritise comprehensive, scalable solutions that ensure thermal comfort. To support

these efforts, guidelines such as CIBSE TM52 (Chartered Institute of Building Services

Engineers, 2013) and TM59 (Chartered Institution of Building Services Engineers,

2017) have been introduced to set thresholds for indoor thermal comfort and establish

methodologies for assessing overheating risk.
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2.2 Overheating assessment methods

Specialised evaluation methods, like CIBSE TM59 (CIBSE, 2017) and TM52

(CIBSE, 2013), are often used to evaluate overheating risks. Furthermore, they are

referred to as adaptive assessment methods because they evaluate the ability of occu-

pants to adjust to fluctuating temperatures, considering the outdoor climatic conditions.

Conversely, CIBSE Guide A (Chartered Institution of Building Services Engineers,

2006) employs a static approach that uses fixed temperature thresholds to determine

overheating, regardless of external weather conditions or building occupancy patterns.

Consequently, it does not consider the occupants’ ability to adapt.

CIBSE TM59 (CIBSE, 2017) offers an approach specifically for evaluating over-

heating risk in domestic buildings. It is based on two main criteria: 1) the number of

hours during which the indoor operative temperature exceeds Tmax by 1°C or more shall

not be more than 3% of occupied hours; 2) the bedroom operative temperature should

not exceed 26°C for more than 1% of the annual bedroom occupied hours.

The British Standard EN 15251 (BSI, 2007) establishes adaptive comfort temperat-

ures for various categories of buildings and occupants, providing a degree of flexibility

in temperature thresholds. Based on Equation 2.1, this standard divides deviations

from the adaptive comfort temperature to the outdoor running mean temperature into

three groups: high, normal and acceptable. Each group allows a different amount of

deviation. A deviation of ±2K is permitted for sensitive groups, such as the elderly or

infirm (high); for new constructions or renovations, the range is ±3K (normal); and for

existing buildings, a deviation of ±4K is acceptable.

Trm(
◦C) =

(Tod-1 + 0.8Tod-2 + 0.6Tod-3 + 0.5Tod-4 + 0.4Tod-5 + 0.3Tod-6 + 0.2Tod-7)

3.8
(2.1)

• Tod-1 is the daily average of the external temperature for the day before.

• Tod-2 is the daily average of the external temperature for 2 days before.

CIBSE TM52 (CIBSE, 2013) applies thresholds from BS EN 15251 (BSI, 2007)

to determine the maximum allowable temperatures for investigating overheating in
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buildings. This method defines overheating by evaluating the frequency of overheating

occurrences, the intensity of this overheating and the daily temperature thresholds that

are exceeded.

A comprehensive environmental design guide, CIBSE Guide A (CIBSE, 2006)

includes benchmarks for thermal comfort and indoor air quality. The guide establishes

specific temperature thresholds to identify overheated spaces. For example, living areas

must not exceed 28°C for more than 1% of the year, and bedrooms must not exceed

26°C for more than 1% of the occupied hours of the year.

The industry-standard method for assessing dynamic thermal simulations is CIBSE

TM59 (CIBSE, 2017), as required by Part O (Department for Levelling Up, Housing

and Communities, 2021) of the building regulations. A comprehensive framework for

evaluating overheating is provided by the integration of criteria from both CIBSE TM52

(Chartered Institute of Building Services Engineers, 2013) and Guide A (Chartered

Institution of Building Services Engineers, 2006). From TM52, it employs the criterion

that is based on the frequency of overheating occurrences. This criterion states that the

number of hours during the summer season (May to September) in which the difference

between the operative and maximum temperature (∆T) exceeds 1°C should not exceed

3% of the occupied hours. It is important to note that the maximum temperature limits

established by TM52 are influenced by the adaptive threshold limits of BS EN 15251

(BSI, 2007), which are delineated in Equations 2.2 and 2.3. Category I and Category

II are applicable to occupants with normal expectations and vulnerable occupants,

respectively. It incorporates the static temperature threshold for bedrooms from Guide

A. The dynamic and static criteria specified in these standards must be met by a zone to

be classified as not overheated, thus protecting against overheating-related risks.

Tmax(
◦C) = 0.33Trm + 20.8 (2.2)

Tmax(
◦C) = 0.33Trm + 21.8 (2.3)
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2.3 Part O building regulations

Due to rising global temperatures, the housing stock is facing an increasing challenge

in maintaining indoor thermal comfort without relying on mechanical ventilation to an

excessive extent. This dependence can potentially increase energy consumption and

carbon emissions, thereby emphasising the relevance of passive cooling strategies. In

the past, building regulations primarily focused on heat retention. Nevertheless, the

apparent consequences of climate change prompted enforcing regulations specifically

designed to reduce temperature. In the UK, this issue is addressed through Part O of the

Building Regulations (Department for Levelling Up, Housing and Communities, 2021),

which sets requirements to manage and reduce indoor overheating.

Two methods can be employed to demonstrate compliance with Part O (Department

for Levelling Up, Housing and Communities, 2021). The initial approach is the simpli-

fied technique, which offers a simple solution to the requirements. The second approach

is the dynamic thermal modelling method, which is consistent with the principles out-

lined in CIBSE TM59 (CIBSE, 2017). This procedure provides a more comprehensive

evaluation of a building’s thermal performance.

The primary goal of Part O (Department for Levelling Up, Housing and Communit-

ies, 2021) is to promote the development of building designs that are naturally designed

to reduce solar heat gain accumulation. This can be accomplished by optimising window

placement, adopting shading devices and improving ventilation systems. Mechanical

cooling solutions are considered the last option and are only implemented when other

methods are insufficient to preserve thermal comfort.

2.4 Health effects

Overheating in residential buildings threatens the health and overall well-being

of occupants. Elevated indoor temperatures have health consequences, including an

increased risk of pre-existing health conditions and increased mortality rates. Excessive

heat can cause significant distress, and in severe cases, it can lead to life-threatening

conditions (Fanger, 1970). Armstrong et al. (2011) has demonstrated a relation between

excessive mortality and unusually high temperatures. In a study of all fatalities in UK
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and Wales from 1998 to 2007, Brown et al. (2010) discovered an important relationship

between temperature increases and the number of deaths. Similarly, Bull and Morton

(1978) reported an increase in mortality rates when the ambient temperature exceeded

20°C.

High indoor temperatures can considerably disrupt sleep, crucial for maintaining

optimal health and productivity (Okamoto-Mizuno and Mizuno, 2012). The body’s

ability to regulate its temperature is hindered by elevated bedroom temperatures, which

leads to difficulties in maintaining sleep (Harding et al., 2019). Sleep deprivation, which

has been linked to a variety of health issues and decreased productivity, may result from

this disturbance.

Moreover, high indoor temperatures have a significant impact on vulnerable popu-

lations, resulting in an increase in health conditions and a rise in mortality rates. The

prevalence of heat-related illnesses results in a substantial rise in hospital admissions

during heat waves. During periods without heat waves, the range of admissions is 0.05%

to 4.6%, while the spike in admissions ranges from 1% to 11% for each degree of

temperature increase (Santamouris, 2020). A substantial social impact was experienced

in Greater London during the 2003 heatwave. The number of excess fatalities increased

by 44.7% among individuals aged 75-84 and by 33.3% across all age groups (McGregor

et al., 2007).

2.5 Monitoring indoor temperature

The 2017 Energy Follow Up Survey (EFUS) (EFUS, 2021a) provides comprehensive

data on indoor temperatures in 750 UK dwellings. Overheating was characterised by

indoor temperatures that exceed the acceptable level of thermal comfort for more than

3% of the time the room is occupied. Overheating was found to be more prevalent

in flats, with 30% of living rooms affected, as opposed to 12% in homes. There are

substantial regional disparities, as 28% of households in London report experiencing

excessive heat in their living rooms, while only 13% of homes in other regions report

the same issue. The incidence of overheating was substantially higher in bedrooms

than in living rooms. This finding is consistent with a previous meta-analysis of indoor

temperatures in new builds, retrofits, and existing dwellings (Gupta et al., 2019), which
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showed that bedrooms had higher temperatures than living rooms. The adaptive thermal

comfort requirements were exceeded in approximately 19% of UK dwellings’ primary

bedrooms. Furthermore, a substantial 69% of bedrooms were classified as overheated

when the static overheating threshold of 26°C was considered. It is important to

acknowledge that the investigation specifically focused on households experiencing fuel

poverty, potentially affecting the recorded temperatures. These households may exhibit

unique heating and cooling behaviours as a result of financial constraints.

Two of the most extensive monitoring studies on summertime temperatures within

UK dwellings are by Beizaee et al. (2013) and Lomas and Kane (2013), which offer

important insights into the prevalence of indoor overheating. During the cool summer of

2007, Beizaee et al. (2013) conducted face-to-face interviews in 207 homes across UK.

They recorded temperatures and discovered that 72% of living rooms and bedrooms

experienced temperatures below the Cat II lower threshold for more than 5% of the

time. This is indicative of generally cool temperatures according to the BSEN15251

adaptive thermal comfort model (BSI, 2007). Nevertheless, modern dwellings were

significantly warmer, and 21% of bedrooms exceeded 26°C for over 5% of the nighttime

hours when using static criteria. Lomas and Kane (2013) monitored 268 Leicester

dwellings during the summer of 2009. They found that, despite that the majority of

rooms were deemed excessively cool by adaptive criteria, 15% of bedrooms experienced

overheating for more than 30% of the summer when a fixed 26°C threshold was applied.

These findings are consistent with the prior research conducted by Wright et al. (2005),

which documented high temperatures exceeding 36°C in living rooms and bedrooms

during the 2003 heatwave in London and Manchester.

The internal temperatures of 101 London dwellings were monitored by Mavrogianni

et al. (2017) in August 2009, with a particular emphasis on the living and sleeping zones.

As per the data, the average daytime temperature in living rooms was 23.1°C, with a

peak temperature of 26.1°C. The average mean nighttime temperature in bedrooms

increased slightly to 23.4°C, with the highest recorded temperature being 26.2°C. In

addition, Pathan et al. (2017), which monitored temperatures in London, provided

additional evidence of the overheating risk. The research presents the results of a

monitoring investigation of overheating in 122 London dwellings during the summers

of 2009 and 2010. The optimal indoor comfort temperature was determined by utilising
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the ambient temperature in the adaptive thermal comfort method for The American

Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard

55. More than 1% of the summertime occupied hours in 29% of all living rooms and

31% of all bedrooms monitored during 2009 fell outside the comfort zone recommended

by the standard to achieve 90% acceptability. During the summer of 2010, 37% of the

monitored living rooms and 49% of the monitored bedrooms were occupied for more

than 1% of the time outside of this comfort zone.

McGill et al. (2016) conducted a meta-analysis of summertime temperatures in newly

built dwellings across various regions. Their findings indicate that 57% of bedrooms

and 75% of living rooms exceeded overheating thresholds, with indoor temperatures

surpassing 25°C for more than 5% of annual occupied hours. Additionally, 30% of

living rooms exceeded the adaptive comfort threshold, with temperatures remaining

at least 1K above this limit for more than 3% of occupied hours. The widespread

prevalence of overheating in both living rooms and bedrooms underscores the need

for improvements in building standards and design practices to effectively mitigate

overheating risks.

These studies collectively emphasise the significant risk of overheating in UK

dwellings, encompassing both modern and old dwellings. The prevalence of overheating

in both living rooms and bedrooms is significant, with the latter being at the greatest

risk, as revealed by the EFUS (EFUS, 2021a) and extensive research by Beizaee et al.

(2013), Lomas and Kane (2013), Mavrogianni et al. (2017) and Pathan et al. (2017).

The results of McGill et al. (2016) further emphasise that the current building standards

and design practices may not be sufficient to guarantee thermal comfort, particularly

in new constructions. The consistent evidence of high temperatures disrupting sleep

and exacerbating health issues underscores the urgent requirement for effective cooling

strategies and building designs that counteract the effects of overheating.

2.6 Thermal zoning

Thermal zoning is the process of dividing a building into separate zones with

individually controlled heating and cooling systems. This is essential for effectively

managing energy consumption and guaranteeing the best possible thermal comfort
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for occupants. Establishing zoning simplicity is essential, mainly when conducting

simulations that include numerous dwellings, as observed in national scale evaluations.

The number of zones and the level of zoning complexity directly influence the amount

of time required for simulating the building model. A literature review conducted by

Shin and Haberl (2019) revealed that there are presently no explicit thermal zoning rules

but rather general recommendations and considerations.

The Building Research Establishment Domestic Energy Model (BREDEM) (Dick-

son et al., 1996) provides a per-floor approach to zoning within the framework of UK

building standards. Typically, one level is designated for the living room and another for

the bedrooms. Several of the UK’s commonly used housing stock models are derived

from the BREDEM (Badiei, 2018), highlighting its essential role in national energy

modelling methodologies. Conversely, the SAP (Standard Assessment Procedure)

(Building Research Establishment, 2021) simplifies the thermal zoning by separating

the living room from all other rooms and combining them into a single zone. Given

the vast number of dwellings that are considered, these simplified zoning methods are

suitable for large-scale studies.

Taylor et al. (2013) demonstrated that the computed annual energy demand was

within a 10% difference when the built form was based on the actual dimensions,

window frames were included and living rooms were separated. Heo et al. (2018)

further underscored the importance of thermal zoning. The annual heating demand

predictions were significantly underestimated by 17% and 26% when the number of

thermal zones was reduced to one per floor and subsequently to a single zone for the

entire dwelling.

A rectangular zoning method based on width-to-depth ratio was used by Swan et al.

(2013) to simulate 16,952 Canadian dwellings. This method combined all habitable

rooms within dwellings into a single thermal zone. The separate floors of the main area

were not distinguished but instead merged into a single thermal zone. This approach

has similarities to the one employed in the Canadian Residential Energy End-use Model

(CREEM) (Farahbakhsh et al., 1998). Due to the insufficient geometrical details in the

original datasets, a major obstacle in large-scale thermal modelling works, simplification

was necessary.

Badiei (2018) investigated three different zoning strategies: a single zone strategy,

23



2.7 OVERHEATING INFLUENCING FACTORS

a two-zone strategy with separate thermal zones for each floor of the dwellings (floor

zoning) and a two-zone strategy with one thermal zone allocated to the living area

and another to the rest of the dwelling, similar to SAP zoning (Building Research

Establishment, 2021). The results indicated that the floor zoning approach was closest

to the reference model in terms of space heating demand. Following an assessment

of the internal temperatures and space heating demand estimates of the three zoning

approaches, it was concluded that the floor zoning strategy is the most suitable for

representing the dataset. Therefore, it is crucial to select appropriate zoning methods

that achieve a balance between precision and computational practicality in energy

modelling.

These studies underscore the importance of incorporating effective thermal zoning

into building models to estimate indoor temperature and energy consumption adequately.

The methodologies implemented in BREDEM (Dickson et al., 1996), SAP (Building

Research Establishment, 2021), and the CHREM (Farahbakhsh et al., 1998), as well

as the research conducted by Taylor et al. (2013) and Heo et al. (2018), demonstrate

that simplified zoning techniques, such as the separation of living areas from other

zones or the use of a floor-based zoning strategy, can achieve a satisfactory level of

accuracy without necessitating many computational resources. Conducting practical and

efficient national-level assessments would be advantageous by concentrating on critical

areas within buildings, such as living rooms and main bedrooms, where controlling the

temperature is the highest priority give higher occupancy rates in the spaces.

2.7 Overheating influencing factors

2.7.1 Occupancy
Occupant behavior significantly influence overheating risk in homes. While the

primary focus often lies on building design and materials, how people use a space

plays a crucial role in heat gain and indoor thermal comfort. Implementing strategies to

manage occupancy-related heat generation is crucial for maintaining thermal comfort

within the building. The number of occupants and their activities directly contribute to

internal heat gain (Climate Change Committee, 2022), making enhanced management

strategies essential to effectively control indoor temperatures and ensure comfort.
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In addition to the number of occupants, occupancy factors that increase the risk of

overheating include occupants’ vulnerability, building use and thermal comfort percep-

tion. The elderly are most vulnerable to overheating (Lomas and Porritt, 2017) because

of their lack of mobility, which could limit the use of passive cooling measures such as

natural ventilation (Fletcher et al., 2017). Occupant behaviour influences overheating

risks by altering the use of the adopted passive cooling measures and consequently

their effectiveness (Porrit, 2012; Vellei et al., 2017; Petrou et al., 2019; Ozarisoy and

Elsharkawy, 2019). Morgan et al. (2017) found that occupants who used programmed

ventilation did not report overheating within 26 dwellings, whereas 46% of occupants

did not understand or use programmatic controls, resulting in varying overheating levels

amongst dwellings. Ridley et al. (2013) discovered that occupants’ lack of operational

knowledge of their louvres and exterior blinds contributed to increased solar heat gains

during the summer. Baborska-Narożny et al. (2017) found a 70% variation in over-

heating levels across 18 monitored flats adopting different ventilation practices; the

household with the lowest risk of overheating efficiently used mechanical ventilation.

These findings inferred that occupants lack awareness of how systems and passive

cooling measures could significantly contribute to increased overheating levels indoors.

Petrou et al. (2019) showed that when the number of occupants was increased, the

internal mean temperature was increased in the bedrooms but not in the living rooms.

Possibly owing to the limited sample size, the findings for five and six occupants were

not statistically significant.

Occupants must adopt passive cooling strategies to decrease the use of mechanical

cooling and to abide by the UK’s carbon emission targets for 2050 (Gupta and Gregg,

2020). Avoiding mitigation strategies may result in a drive to acquire mechanical cooling

systems, as happened during the 2003 heatwave (Wright et al., 2005). According to

Peacock et al. (2010), people in the UK may not be as willing to use air-conditioning

units as in the US, but factors such as cheap operation and capital costs may encourage

them. If UK occupants mimic US occupants’ behaviours, 550,000 London residences

would have air-conditioning units installed by 2030. This estimate is likely to increase

beyond 2030 because of a warming climate.

Meinke et al. (2017) investigated occupants’ cooling preferences; fewer participants

kept air-conditioning as their first choice once informed about the associated energy
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use. This finding implies that some individuals may not be aware of the causes of

climate change or, more precisely, how their use of mechanical cooling may contribute

to global warming. Nonetheless, this finding should be considered carefully because of

the small number of occupants (n = 5) who chose to save energy. Moreover, occupant

perception of different passive cooling technologies was not considered. A more

profound knowledge of adaptive behaviour and passive cooling efficiency, as suggested

by Murtagh et al. (2019), can help society in mitigating the effects of climate change.

2.7.2 Internal heat gains
Internal heat gains are a critical factor contributing to overheating in residential

buildings, originating from various sources as illustrated in Figure 2.1. Collectively,

sources of internal heat gains contribute to the thermal environment within buildings.

By understanding and quantifying these contributions, mitigation strategies can be

developed to reduce overheating risks (Chen, 2019), such as improving building fabric

and ventilation. These sources include:

• Occupant metabolic heat: Heat emitted by occupants through daily activities.

• Electrical appliances and lighting: Heat produced from every household equip-

ments and lighting systems.

• Cooking: Heat generated during food preparation.

• Mechanical systems heat gain: Heat produced by systems such as HVAC units.

Previous research has demonstrated that internal heat gains influence overheating

levels, with impacts being more pronounced in living rooms. This may be more common

in flats where an open floor plan is more likely to be used, especially for the kitchen,

dining and living areas. Peacock et al. (2010) established three distinct energy usage

scenarios for appliances and cooking to analyse the effect of internal heat gains on

overheating risk: scenario A (5682 kWh), scenario B (5064 kWh) and scenario C (5906

kWh). The research demonstrated that scenario C had more occupied overheating hours

than scenarios A and B by 0.5% and 2.5%, respectively. The study highlights the effect

of internal heat gains on internal temperatures, despite modest differences in electricity

consumption, as a scenario with more tenants and greater electricity consumption may

reveal a greater difference.
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Figure 2.1: Sources of internal heat gains within a dwelling, from (Tamizharasan and
Senthilkumar, 2018).

2.7.3 Construction
Different construction types play a crucial role in determining the thermal perform-

ance of buildings and their susceptibility to overheating. Older dwellings, particularly

those built before the 1980s, often feature less insulation, making them less likely

to overheat compared to newer, well-insulated constructions. These older buildings

typically have solid walls that lack cavity insulation, which, while less energy-efficient

in winter, can help dissipate heat more effectively in summer. However, the absence of

solar shading (Gupta and Gregg, 2012; Vellei et al., 2017; Petrou et al., 2019; Baborska-

Narożny et al., 2017; Hacker et al., 2005; Toledo et al., 2016), and the presence of

excessive glazing area (Orme et al., 2003; Gupta and Gregg, 2012) could increase the

risk of overheating. While dwellings constructed post-1980 often have the increased

insulation standards aimed at improving energy efficiency for winter heating, which

inadvertently exacerbate overheating risks in summer. Moreover, cavity insulated dwell-

ings, which became more common in recent decades, tend to retain heat more than

solid-walled dwellings, placing them at a higher risk of overheating.

Willand et al. (2016) estimated that an additional 15.84 kWh/day of cooling energy

was required to keep the living room in a 6-star dwelling at the temperature of a 3-star
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dwelling, where the star rating reflects the energy efficiency of Australian dwellings.

Similarly, Sajjadian et al. (2015) projected that the cooling load in a Passivhaus detached

dwelling in London in the 2080s would be 14 times that in 2011, highlighting the need

for effective summer cooling strategies.

Several studies have identified south glazing as an overheating factor in Passivhaus

dwellings (McLeod et al., 2013; Ridley et al., 2013; Dan et al., 2016), where either

solar shading (McLeod et al., 2013; Dan et al., 2016) or glazing ratio modification

(McLeod et al., 2013) will be needed to minimise overheating risks. In addition, the

Passivhaus overheating criteria could be modified to assess thermal comfort and account

for occupants; occupants did not report thermal discomfort in overheated dwellings

(Ridley et al., 2013; Dan et al., 2016). Post-occupancy resident training on building

systems and efficient ventilation strategies (Fletcher et al., 2017) are also recommended

to reduce overheating risks in Passivhaus dwellings.

The findings in Table 2.1 indicate that highly insulated dwellings, including Passivhaus

dwellings, are susceptible to overheating, particularly in the absence of effective shading

or ventilation strategies. This is especially relevant as Part L of the UK Building Regula-

tions recommends high insulation standards for newly built dwellings to improve energy

efficiency, which may unintentionally increase overheating risks if not complemented

by appropriate passive cooling measures. The studies reviewed demonstrate how factors

such as orientation and occupant behaviour influence overheating severity in insulated

dwellings. Moreover, the findings highlight that highly insulated structures respond dif-

ferently across regions, as variations in climate, solar exposure and ventilation potential

affect their thermal performance. Therefore, understanding indoor thermal dynamics in

highly insulated dwellings is essential for refining building regulation recommendations

to ensure that energy efficiency improvements do not compromise thermal comfort.
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Table 2.1: Findings on overheating in Passivhaus dwellings.

Reference Dwelling type Location Methodology Main findings

Hidalgo-

Betanzos

et al. (2015)

Detached Spain Monitoring The dwelling passed the

TM52 overheating criteria but

not the Passivhaus criteria

(11.4% over 25ºC).

McLeod

et al. (2013)

End-terrace UK Modelling Solar shading and the modi-

fication of glazing ratios ef-

fectively reduced overheating

risks in the rooms with south-

facing windows.

Ridley et al.

(2013)

Detached UK Monitoring,

Modelling

The dwelling overheated in

the summer, but the occupants

reported no thermal discom-

fort.

Sameni

et al. (2015)

Flat UK Monitoring Regression analysis indicated

that occupancy is the most

influential factor in reducing

overheating risks.

Fletcher

et al. (2017)

End-terrace UK Monitoring Overheating occurred during

the cold months and night-

time.

Mlakar and

Štrancar

(2011)

Detached Slovenia Modelling Solar shading and natural vent-

ilation provided thermal com-

fort in a hot and humid cli-

mate.

Ridley et al.

(2014)

Detached UK Monitoring Each dwelling’s susceptibility

to overheating risk was influ-

enced by its south oriented

windows.
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Reference Dwelling type Location Methodology Main findings

Colclough

et al. (2018)

Semi-

detached

UK Monitoring Post-occupancy engagement

is determined to be the key

to understanding the thermal

behaviour of highly insulated

dwellings and improving oc-

cupant behaviour.

Mitchell

and Natara-

jan (2019)

Flats and

houses*

UK Monitoring Fewer bedrooms passed the

Passivhaus overheating cri-

teria when applied at room

level and not building level.

Figueiredo

et al. (2016)

Detached Portugal Monitoring,

Modelling

Passivhaus construction is

found to be feasible in the

southern European climate,

but different parts of the re-

gion could need different pass-

ive solutions to overcome

overheating.

Sage-

Lauck

and Sailor

(2014)

Semi-

detached

USA Monitoring Phase change material (PCM)

in semi-detached flats reduced

overheating hours from 400 to

200 h.

Dan et al.

(2016)

End-terrace Romania Monitoring,

Modelling

The occupants were uncon-

cerned despite their dwelling

failing the overheating cri-

teria.
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2.7.4 Design
The section delves into how the geometrical layout of interior and exterior surfaces

plays a critical role in residential overheating. It explores various architectural elements

and dwelling orientations that impact thermal comfort, examining both empirical studies

and theoretical perspectives. This section highlights how specific design choices, from

floor plans to window orientations, influence heat accumulation and air circulation

patterns, thereby affecting the overall thermal behavior of residential spaces.

2.7.4.1 Orientation

Indoor temperatures can be directly influenced by the direction of a building, which

can considerably affect the amount of solar heat gain it receives. During the peak

summer months, different orientations can expose different building sections to more

intense and prolonged sunlight. Furthermore, the direction of the prevailing wind

is a critical factor in natural ventilation, which can be used to cool internal zones.

Cross-ventilation can be improved by orienting buildings to capitalise on the prevailing

cool breezes, thereby minimising the risk of overheating. As a result, it is imperative

to understand the implications of both wind direction and solar exposure to develop

effective passive cooling strategies and reduce the risk of overheating.

Gupta and Gregg (2012) found that west-facing flats had more overheating hours

than south-facing flats by 22%. Espinosa et al. (2019) found that reduced glazing

on the southwest orientation reduces overheating risks significantly, meaning that the

south and west windows of flats are extremely sensitive to overheating. Habitzreuter

et al. (2020) showed that south-southwest oriented rooms were prone to overheating

due to a lack of shading from nearby buildings. In addition, Dengel and Swainson

(2012) discovered that southwest orientation posed a bigger risk of overheating in flats.

Overall, the findings indicate that certain orientations make spaces more susceptible to

overheating.

2.7.4.2 Dwelling type

Different dwelling types tend to have varying exposure levels to external heat gains

due to differences in building surface areas. This results in distinct overheating risks for
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each type of dwelling. For instance, flats, with their compact designs and often limited

natural ventilation, tend to be more susceptible to overheating compared to detached

houses, which usually have wider exposing surfaces for heat dissipation. Similarly, the

specific design elements of each dwelling type, such as window size and placement,

insulation levels and construction materials, further influence their thermal performance.

Flats are the most sensitive dwelling type to overheating risks (Beizaee et al., 2013;

Lomas and Kane, 2013; Hamdy et al., 2017; Baborska-Narożny et al., 2017; Firth et al.,

2010; van Hooff et al., 2014), where the top floors are most vulnerable (Gupta and

Gregg, 2020; Orme et al., 2003; Habitzreuter et al., 2020; Capon and Hacker, 2009;

Mavrogianni et al., 2015; Quigley and Lomas, 2018). Petrou et al. (2019) showed that

converted flats had the lowest internal temperature compared to other dwelling types.

On the other hand, Taylor et al. (2018) found that converted flats had the highest internal

temperature. Unlike other dwelling types, converted flats have had little research on

their internal conditions; thus, more research may be required to confirm their internal

conditions. Many studies in the UK have shown that detached dwellings are least

likely to overheat (Beizaee et al., 2013; Lomas and Kane, 2013; Firth et al., 2010;

Mavrogianni et al., 2017). In a Dutch context, however, Hamdy et al. (2017) found it

to be at the highest risk of overheating, along with flats. The difference in conclusions

could be due to the architectural arrangement of the dwellings investigated in Hamdy

et al. (2017), where the detached dwelling had considerable glazing area. The semi-

detached dwelling in Hamdy et al. (2017), reported to be the coolest, did not have as

many windows on the sides as the detached dwelling.

2.7.4.3 Living room and bedroom

The internal temperatures and overheating risks in bedrooms and living rooms are

influenced by the varying occupancy patterns of these spaces. Bedrooms are often

used for rest and sleep, particularly during the night when external temperatures are

lower. In contrast, living rooms are occupied throughout the day and evening, resulting

in increased internal heat accumulation from activities such as cooking and the use

of electronic devices, particularly if they are situated near kitchens. Their placement

and function further exacerbate the susceptibility of living rooms to overheating in

close proximity to sources of internal heat increases. As a result, distinct temperature
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thresholds are recommended for each room to manage these variations in heat exposure

and usage.

The CIBSE has developed static (CIBSE, 2006) and adaptive (Chartered Institute of

Building Services Engineers, 2013; CIBSE, 2017) overheating criteria for bedrooms

and living rooms. A lower static threshold criterion makes bedrooms more vulnerable

to overheating than living rooms (Beizaee et al., 2013; Lomas and Kane, 2013; McGill

et al., 2016). Lomas and Kane (2013) found a statistically significant relationship

between the dwelling age and the temperature difference between the bedrooms and

living rooms. Beizaee et al. (2013) discovered that living room temperatures were

higher than bedroom temperatures in flats and significantly higher than the internal

temperature of living rooms in other dwelling types. They also determined dwelling

age as an influencing factor on the temperature differences between living rooms and

bedrooms. Mitchell and Natarajan (2019) found that 60% of the house bedrooms met

the Passivhaus overheating criteria, while 83% of bedrooms in flats did. Petrou et al.

(2019) showed that bedrooms were cooler than living rooms in bungalows, converted

flats and purpose-built flats. Wright et al. (2005) found that during the 2003 heatwave,

some flats in London had marginally cooler bedrooms than living rooms. However,

their investigation in Manchester did not include flats and instead focused on detached

and semi-detached dwellings, where bedrooms were consistently warmer.

2.7.5 Infiltration
Infiltration, which describes the unintended entry of external air into a building

structure through gaps and cracks, substantially affects the quality of indoor air and

the energy efficiency of buildings (Younes et al., 2011). Overheating risk can be

exacerbated by increased heat absorption from the exterior during hot weather, which

can be a consequence of higher infiltration rates. Alternatively, lowering infiltration

rates may help maintain cooler indoor temperatures, but they can also impede natural

ventilation, essential for removing internal heat gains. In order to accurately model the

thermal behaviour of various types of dwellings, it is imperative to consider suitable

air infiltration rates. Fan pressurisation tests are typically employed to quantify the air

leakage rate at a set pressure difference, typically 50 Pascals (Pa).

By investigating 471 houses and 87 large panel system (LPS) units from the BRE

database, Stephen (2000) examined the air leakage rates in the UK dwellings. The
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research demonstrated that older residences do not generally have higher air leakage

rates, which challenges the notion that older buildings inherently have higher air leakge

rates. Conversely, the disparities in infiltration rates were considerably more pronounced

when different wall constructions were taken into account. Solid masonry, cavity

masonry, timber-framed and LPS houses each exhibited unique characteristics in terms

of air leakage, underscoring the substantial impact of construction type on infiltration.

2.8 Passive cooling strategies

Passive cooling has been recognised as a sustainable method for reducing cooling

demand through heat transfer through conduction, convection and radiation (Al-Obaidi

et al., 2014). There are three major types of passive cooling strategies: solar and heat

protection, heat modulation and heat dissipation. Most passive cooling research is

based on the Mediterranean climate, and recent warming trends suggest that the UK

climate will resemble that of the Mediterranean in the future (Zero Carbon Hub, 2015).

Therefore, findings from studies of the Mediterranean climate could be a useful predictor

of what may occur in the UK in the future.

2.8.1 Heat and solar protection
Solar and heat protection reduces solar heat gains indoors which lowers overheating

risks. It is possible to install protections that prevent solar heat gains from entering the

building to prevent the temperature inside from rising.

2.8.1.1 Vegetation

Plants on building surfaces provide cooling via evapotranspiration, while their soil

layers provide insulation. Dry green roofs have high thermal resistance, which is

beneficial for lowering winter heat losses (Zinzi and Agnoli, 2012). Zinzi and Agnoli

(2012) investigated green roof cooling in Barcelona, Palermo and Cairo. Barcelona,

which receives far more rainfall than Cairo or Palermo during the summer, had the

greatest reduction in discomfort hours above 26°C. Gagliano et al. (2014) found that

green roofs reduced cooling loads by 80% in Sicily, Italy, for the summer months

(June to September). It could be that a green roof may cool a bungalow faster than a

two-storey dwelling.
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According to Virk et al. (2014), insulated roofs decrease green roofs’ cooling

effectiveness. However, the research was conducted on a four-storey office building

in London, not a dwelling. This finding would likely indicate green roofs’ cooling

potential if the same investigation was conducted in the domestic sector. Castleton

et al. (2010) concluded that the cooling potential of green roofs could be optimised

for the UK context by applying it to poorly insulated dwellings. Vegetation can be

useful at the neighbourhood level by producing a cooling effect for the microclimate.

Previous studies have shown that a decrease in the ambient temperature can be achieved

if vegetation is applied at the neighbourhood level (Emmanuel and Loconsole, 2015;

Laureti et al., 2018; Battista et al., 2019). New constructions can be subjected to a

vegetation requirement, which will result in a sufficient number of dwellings with

vegetation per neighbourhood, providing a cooling effect at the neighbourhood level as

well as cooling non-vegetated dwellings.

2.8.2 Wall insulation
Increasing the insulation level may increase the risk of overheating (Hamdy et al.,

2011; Fletcher et al., 2017; Willand et al., 2016), which could necessitate additional

passive cooling measures. Tink (2018) found that internal wall insulation increases the

risk of overheating in a semi-detached dwelling in Leicestershire. The authors claim the

increased risk of overheating was low for that particular dwelling, location and time.

This suggests that if future climate data had been used instead of 2015 temperature data,

and a mid-terrace dwelling instead of a semi-detached dwelling was investigated in a

different local setting, overheating hours may have been greater. Similarly, Porrit (2012)

showed that the increase in overheating risk owing to internally inserted wall insula-

tion was minimal, with the west-facing living room and east-facing bedroom having

increased overheating hours. The family occupancy did not experience the increased

overheating hours considering the different rooms and orientations. Mavrogianni et al.

(2013) found that a dwelling with internally placed wall insulation had a slightly higher

internal temperature than a dwelling with externally placed insulation. It can be de-

duced that internally placed wall insulation tends to slightly increase overheating risk

compared to externally placed wall insulation.
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2.8.3 Solar shading
External and internal solar shadings have different cooling potentials, with external

shading being the better option in most contexts. Tillson et al. (2013) showed that

external shadings outperformed dark and light internal shadings in preventing over-

heating; light-coloured roller and venetian blinds reduced the proportion of overheated

housing stock by 27% and 18%, respectively. Porrit (2012) found that external shutters

reduced degree hours over 26°C by 39% compared to internal blinds and curtains, which

lowered degree hours by 20% and 15%, respectively. Although several studies have

identified solar shading as an effective passive cooling strategy for reducing overheating

(Dodoo and Gustavsson, 2016; Gupta and Gregg, 2012; Porrit, 2012; Kinnane et al.,

2017; van Hooff et al., 2014; Mavrogianni et al., 2014; Psomas et al., 2016; Alders,

2017; Birchmore et al., 2017), its application in the UK may be limited due to the

prevalence of outward window openings that external shadings could block (Grussa

et al., 2019). In addition, solar shading reduces daylighting, which may affect occu-

pants’ productivity and wellbeing. Habitzreuter et al. (2020) found that external shading

reduced overheating and daylighting by 74% and 30%, respectively. The effect of

decreased daylighting reduces with increasing storeys, as the daylight factor increases.

The average daylighting level was nearly the same for a low-rise flat without shading

and a high-rise flat with shading. Baborska-Narożny et al. (2017) found that occupants

preferred sufficient daylighting over solar heat gains when choosing solar shading. The

findings highlight the importance of balancing cooling reduction and daylighting in

solar shading design.

2.8.4 Heat modulation
Heat modulation reduces internal temperatures and minimises substantial temper-

ature fluctuations by utilising a building’s thermal mass. It differs from heat and sun

protection in that it works when internal and external heat gains are present. In a warm

climate, heat modulation may not be able to release stored heat and absorb additional

heat, causing heat build-up.
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2.8.4.1 Thermal mass

Thermal mass is the property of an indoor material to absorb and store heat over

time; this lets the heat escape later and lowers cooling needs at peak times (Orme et al.,

2003). Buildings with high thermal mass, such as those constructed from materials like

bricks, concrete, and stone, exhibit slower thermal response times. This means they

heat up and cool down more gradually compared to buildings with low thermal mass,

effectively dampening indoor temperature swings (Peacock et al., 2010). The inherent

ability of these materials to store and later release heat helps to shift the indoor heat

peaks, thereby aiding in maintaining more constant indoor temperatures.

The integration of thermal mass into building design is increasingly recognized by

regulators as a strategy to combat overheating, especially in lightweight constructions

that are prone to higher temperature variability (McLeod et al., 2013). The effective use

of thermal mass is particularly significant under varying climatic conditions. Research

by Jimenez-Bescos (2017) indicated that thermal mass, combined with night ventila-

tion, could significantly reduce overheating in buildings modeled with future climate

scenarios, though the effectiveness was less pronounced with historical climate data

from the 1970s.

2.8.4.2 Phase change material

Phase change materials (PCMs) are a subcategory of thermal mass that can cool

buildings passively. Their cooling performance comes from their capacity to absorb

and release heat based on their phase change point, which is determined by their latent

heat of fusion. The material transitions from the solid to liquid phase when heat is

absorbed. When the indoor temperature decreases at night, the heat absorbed during

the day is released until the PCM reaches its melting point and reverts to its solid

phase. Phase change material can be incorporated into numerous building components,

offering diverse potential for arrangement and composition, which can be useful for

different contexts. Phase change material-enhanced wallboards are favourable due to

their practicality in being incorporated into the building fabric, lower cost and overall

cooling performance (Saffari et al., 2017).
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Auzeby et al. (2016) tested PCMs in mid-terrace dwellings in Aberdeen, Newcastle

and Southampton using climate data from the 2030s, 2050s and 2080s. The adop-

tion of PCMs reduced domestic overheating in the investigated cities; however, the

well-insulated construction was in a greater need of PCMs than the poorly insulated

construction. Sajjadian et al. (2015) used the 2020s, 2050s and 2080s climate data

to assess PCM’s cooling performance in a detached Passivhaus dwelling. Auzeby

et al. (2016) and Sajjadian et al. (2015) found that the PCM’s cooling efficiency is

location and climate dependent, with the southern UK having the slightest decrease in

overheating hours. They show that while PCM usage in dwellings may be beneficial

until the 2050s, it cannot completely decrease overheating risks in the 2080s. As a

result, when the external temperature rises, PCMs require additional passive cooling

to maintain their cooling effectiveness. However, Auzeby et al. (2016) only looked at

July, ignoring the heating season and the rest of the summer months, which may skew

any conclusions based on a single summer month. Moreover, Sajjadian et al. (2015)

investigated a Passivhaus dwelling, which has a different thermal environment than

traditional dwellings. It may be inferred that different UK regions may require different

PCM compositions and arrangements for optimal cooling performance.

The use of PCM has been investigated in other geographic regions. Fernandes and

Costa (2009) modelled a standard family dwelling in Portugal to examine the cooling

effectiveness of PCMs and showed that PCMs are least effective for southern Portugal.

PCM performance varies across Mediterranean and American cities, according to

Ascione et al. (2014) and Baniassadi et al. (2019) respectively, with lower performance

in hotter cities.

2.8.5 Heat dissipation
The process of releasing excess heat from a building through heat sinks at lower

temperatures is referred to as heat dissipation. The method of heat dissipation works in

a manner similar to that of heat modulation in that it is effective when heat gains are

present within the building for them to be dissipated via convective heat movement, that

is, natural ventilation removing excess hot air.
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2.8.5.1 Natural ventilation

The movement of air provided by natural ventilation enhances the transfer of heat

between the interior and exterior of a building. Depending on the external temperature,

it is often used in the evening to draw in fresh air from outside and push out warm air

from within the dwelling. Air changes per hour (ACH) is a common way to indicate

the air exchange rate between an enclosed internal space and its external environment.

The amount of cooling achieved by natural ventilation is subject to variables such as

the size of the windows and the ventilation strategy used. Different strategies must

be adopted to optimise the use of natural ventilation for different constructions and

climates. Shikder et al. (2012) investigated the effectiveness of natural ventilation in

Birmingham, Edinburgh, London and Manchester. The authors discovered that London

would require the most ACH to prevent overheating. This means more adaptation

measures are needed in the south before the 2050s to maintain or improve thermal

comfort. Weng (2017) in a follow-up study to Shikder et al. (2012) concluded that

nighttime ventilation would be more effective than daytime ventilation in the 2080s.

However, depending on the location, using natural ventilation may compromise security.

Roetzel et al. (2010) claimed that the potential of window opening to dissipate heat gains

could vary depending on its opening type and size. Different results may perhaps be

observed for different opening types, with varying effectiveness of nighttime ventilation.

Peacock et al. (2010) adopted a window opening strategy in Edinburgh and London

using the 2030s climate. Bedroom windows were left open throughout the night,

ignoring noise pollution and security. Other windows in the dwelling were open if

occupants were at home and closed at night; all windows were closed if occupants were

not present. Edinburgh had nearly no degree hours above 28°C, while London was still

at risk with 9.5%–11.5% of overheating hours considering different insulation levels

and climates, reduced from 12% to 19%. This might imply that when the climate warms,

the difference between the internal and external temperatures will be low, resulting in

fewer heat exchanges. Improving the microclimate condition could be a solution to

over- come such ineffectiveness. The study also revealed that natural ventilation is more

effective for non-insulated dwellings.
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2.8.5.2 Cool paint

Cool walls and roofs reflect significant amounts of solar heat gain owing to their

albedo value, which decreases the temperature of the microclimate and surrounding

interior thermal zone. As a result of its effective cooling in residential and urban settings

(Garshasbi et al., 2020; Zhang et al., 2018; Laureti et al., 2018; Battista et al., 2019),

cool roof solutions are becoming increasingly popular (Synnefa and Santamouris, 2012).

Pisello and Cotana (2014) studied the performance of a cool roof on a residential

building in Italy. In the summer and winter, the average operative temperature of the

zone below the roof decreased daily by 2°C and 0.5°C, respectively. In July and January,

peak temperatures were lowered by 4.7°C and 1.3°C, respectively. This study implies

that cool roofs reduce summer cooling while causing modest winter heat losses. As

the climate warms, extra passive cooling measures may be required alongside cool

paint to reduce winter heat losses. The winter penalty can be minor in temperate

zones, according to Gentle et al. (2011) and Barozzi and Pollastro (2016). Nonetheless,

the winter penalty produced by cool materials is not well documented in the UK. A

monitoring study by Zinzi and Fasano (2009) assessed the cooling potential of an

innovative white paint with high solar reflectivity made from a milk and vinegar mixture.

The adjacent thermal zone’s temperature dropped significantly, proving that cool paints

engineered to minimise cooling needs perform better than typical white paints on the

market.

2.8.6 Combination of passive cooling measures
Previous subsections have explored how individual passive cooling measures per-

form in different contexts, such as the influence of construction types, layout, orientation,

and room types on overheating risks. However, the combined effects of multiple passive

cooling strategies can offer a more comprehensive approach to mitigating overheating.

Combining strategies like nighttime ventilation, daytime shading, solar shading, and

natural ventilation can enhance overall cooling performance and reduce the dependency

on mechanical cooling systems.

Nighttime ventilation with daytime shading protects a solid-walled dwelling from

overheating but may not prevent the increase in the internal temperature of dwellings

with internal wall insulation (Mavrogianni et al., 2014; Lee and Steemers, 2017). Using
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solar shading and natural ventilation for a detached house in Germany, Banihashemi et al.

(2017) obtained a significant cooling reduction. The combined use of solar shading and

natural ventilation has also been of vital importance in preventing indoor temperatures

from rising to critical levels in other European countries (Mlakar and Štrancar, 2011;

Dan et al., 2016; Chvatal and Corvacho, 2009).

Findings on the combined usage of different passive cooling strategies are presented

in Table 2.2. All studies adopted thermal simulation as their methodology, which could

be due to time and cost constraints. Construction thermal properties, system design

and operation, occupancy and weather are all factors that can affect modelling results.

Referring to Adekunle and Nikolopoulou (2016) monitoring and modelling studies

indicated that 67% and 22% of spaces were overheated, respectively. This suggests that

modelling could underestimate indoor overheating levels and should be treated more

carefully.

Ibrahim and Pelsmakers (2018) investigated two different combinations of passive

cooling strategies; it is assumed that one is more occupant-dependent than the other

owing to the existence of internal shadings. Both passive combinations significantly

reduced overheating hours, indicating that adopting multiple passive cooling strategies

may lessen the influence of occupancy on overheating risks. Furthermore, the effect

of orientation on overheating risks may also be reduced. The reduction of overheating

hours was almost identical for an elderly couple living in a west oriented dwelling to a

family couple living in a north oriented dwelling (Porrit, 2012).

Combining multiple passive cooling strategies reduces overheating hours more

effectively than employing a single passive strategy; however, its effectiveness reduces

as the climate warms. Based on the strategies suggested from the findings, it is evident

that building envelope modification and limitation of heat gains are most effective in

reducing over- heating hours. Moreover, all the studies were conducted on traditional

dwellings and not energy-efficient dwellings.

2.9 Effectiveness of passive cooling strategies

This section analyses the cooling effectiveness of passive strategies based on the

influence of different overheating factors. Three scales, ‘high’, ‘medium’ and ‘low’
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Table 2.2: Findings on the use of multiple passive cooling strategies. Dwelling features
consist of the dwelling type, main orientation and occupancy

Reference Passive cooling strategies Dwelling features Main findings

Capon
and
Hacker
(2009)

Solar shading, cool wall, cool
roof insulation and nighttime
ventilation.

1. Flat, southwest
(living room),
northeast (bedroom),
couple.
2. Semi-detached,
southwest,
family.

1. In the 2050s, the exceedance
of occupied hours according to
CIBSE Guide A overheating
criteria was reduced
from 67% and 41% to 26% and
8% for
living rooms and bedrooms
respectively in the flat.
2. Annual overheating hours for
the semi-detached dwelling
reduced from 83% and 53% to
2.2% and 1.1% in
living rooms and bedrooms
respectively.

Ibrahim
and Pels-
makers
(2018)

Combination 1:
Nighttime ventilation,
internal and external shading.
Combination 2:
Nighttime ventilation, improved
glazing and external shading.

Detached, north and
family.

Exceedance of Passivhaus
overheating criteria reduced
from 15% (2050s) and 22%
(2080s) to 1% and 2%, 0%
and 2% for combinations 1
and 2 respectively.

Porrit
(2012)

Cool roof, cool wall, nighttime
ventilation, window rules,
curtain, internal
wall insulation, loft insulation.

Mid- and end-terrace,
all orientations and
family + elderly.

Overheating risk was mitigated
completely using a combination
of measures together for both
dwelling types.

Gupta
and Du
(2013)

Combination 1:
Window rules, external shutter.
Combination 2:
Cool roof, cool wall, window
rules and
external shutter
Combination 3:
Cool roof, cool wall, thermal
mass and external shading.

End-terrace, south
and occupancy not
specified.

Overheating hours above 26°C
and 28°C in bedrooms and
living rooms were reduced
from 25.7% to 1.1%, 0.5% and
0% using combinations 1, 2,
and 3, respectively
(50th percentile 2080s climate
data).

Gupta
and
Gregg
(2012)

Combination 1:
External wall insulation
and roof insulation, low-e
double glazing, cool wall,
cool roof, exposed thermal mass
and louvred shading.
Combination 2:
External wall insulation, low-e
double glazing, cool wall,
cool roof and louvred
shading.
Combination 3:
Roof insulation, cool
roof and louvred
shading.
Combination 4:
External wall insulation,
roof insulation, low-e
double glazing, cool wall
and cool roof.

Mid-terrace, flat,
detached and semi-
detached all west
oriented, family and
couple.

Combination 1 achieved the
greatest reduction in overheating
hours for the 2030s and 2050s
climates. However, for the
2080s, no combination
sufficiently reduced overheating
hours.

Orme
et al.
(2003)

Thermal mass, nighttime
ventilation, curtain and reduced
internal heat gains.

Semi-detached,
south and family.

The degree hours above 27°C
decreased by 67.9%–79.7%
across different bedrooms.
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were used to express the cooling performance of passive strategies. For example,

‘high’ in ‘weather’ implies that the passive cooling measure’s cooling efficiency is

highly influenced by the corresponding overheating factor, that is, its cooling efficiency

decreases as the climate warms, and ‘low’ in ‘dwelling type’ suggests that the changes

in cooling effectiveness of the passive measures are slightly influenced by different

built forms. While ‘medium’, represents modest influences of the overheating factors

on the passive strategies. The optimum passive interventions for a warming climate

are solar shading and cool paint, according to Table 2.3. Furthermore, solar shading

offers significant cooling performance in both traditional and energy-efficient dwellings.

Cool paint appears to be the least affected by different dwelling types and changes in

orientation. Thermal mass, PCM and natural ventilation all require air circulation for

optimum cooling performance, which is dependent on occupant behaviour.

2.9.1 Vegetation
Vegetation is climate sensitive, and adequate rainfall as well as warm temperatures,

are required for optimal performance (Zinzi and Agnoli, 2012; Ziogou et al., 2018).

Furthermore, its cooling effectiveness appears to vary substantially with different ori-

entations (van Hooff et al., 2014), most likely due to shadowing from surrounding

structures. Previous studies did not adequately account for the effects of occupancy on

vegetation’s cooling effectiveness. Occupants may water the plants or erect shading,

which may affect the vegetation’s cooling performance. More research is therefore

needed on the effects of human behaviour on the cooling performance of vegetation.

Zinzi and Agnoli (2012) revealed that green roofs’ cooling effectiveness increases with

more exposed surfaces, with a higher cooling potential for uninsulated dwellings.

2.9.2 Wall insulation
Occupant behaviour influences overheating risks in highly insulated dwellings

owing to the variety of building operations, such as the use of solar shading and natural

ventilation (Fletcher et al., 2017; Ridley et al., 2013; Morgan et al., 2017; Ridley et al.,

2014; Sameni et al., 2015). Both van Hooff et al. (2014) and Porrit (2012) showed

significant variation in the performance of wall insulation with respect to different

orientations. Figueiredo et al. (2016) concluded that Passivhaus construction is a

feasible concept in the Mediterranean climate, and Hidalgo-Betanzos et al. (2015) found
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that the investigated Passivhaus dwelling passed the TM52 (CIBSE, 2013) overheating

criteria. Increasing insulation levels in UK dwellings can be a viable passive solution

as the Mediterranean climate is now hotter than the temperate climate. Other passive

strategies, like cool paint, may be needed to reduce overheating risks given greater

insulation levels.

Table 2.3: Effectiveness of passive cooling strategies against overheating factors.

Overheating
Factors

Vegetation Wall insulation Solar shading Thermal mass PCM

Occupancy Lacks robust evid-
ence

High (Hamdy
et al., 2011; Rid-
ley et al., 2013)

Medium (Ridley
et al., 2014, 2013)

High (Kuczyński
et al., 2021)

High (Fernandes
and Costa, 2009)

Dwelling type Medium (van
Hooff et al., 2014;
Zinzi and Agnoli,
2012)

Medium (Porrit,
2012)

High (Gupta and
Gregg, 2012; Por-
rit, 2012)

Medium (van
Hooff et al.,
2014)

Medium (van
Hooff et al.,
2014)

Orientation High (van Hooff
et al., 2014)

High (Porrit,
2012)

Medium (Porrit,
2012)

High (van Hooff
et al., 2014)

High (Berardi and
Soudian, 2019)

Construction High (Ziogou
et al., 2018; van
Hooff et al.,
2014)

Medium (Willand
et al., 2016;
Hamdy et al.,
2011)

Low (Porrit, 2012;
Gupta and Gregg,
2012)

Medium (Morgan
et al., 2017;
Hacker et al.,
2005)

Medium
(Figueiredo
et al., 2016)

Weather Medium (Ziogou
et al., 2018; Zinzi
and Agnoli, 2012)

Medium
(Figueiredo
et al., 2016)

Low (Gupta and
Gregg, 2012,
2013)

High (McLeod
et al., 2013;
Peacock et al.,
2010)

High (Sajjadian
et al., 2015;
Sage-Lauck and
Sailor, 2014)

Overheating
Factors

Natural ventila-
tion

Cool paint

Occupancy High (Vellei et al.,
2017; Petrou
et al., 2019)

Low (Pisello
et al., 2015)

Dwelling type High (Porrit,
2012; van Hooff
et al., 2014)

Medium (van
Hooff et al., 2014;
Porrit, 2012)

Orientation High (Porrit,
2012; van Hooff
et al., 2014)

Low (Porrit, 2012;
van Hooff et al.,
2014)

Construction High (Peacock
et al., 2010; van
Hooff et al.,
2014)

High (van Hooff
et al., 2014; Porrit,
2012)

Weather High (Panayiotou
et al., 2010; Shik-
der et al., 2012)

Medium (Gupta
and Gregg, 2012)

2.9.3 Solar shading
Despite its reliance on occupant behaviour (Ridley et al., 2014, 2013; Mavrogianni

et al., 2014), Gupta and Gregg (2012) found external louvred shading to be the most

effective passive strategy in the 2080s climate. Compared to terraced and detached

dwellings, only flats had significant cooling variations in the cooling performance of

solar shading (van Hooff et al., 2014), whereas Gupta and Gregg (2012) found lower

cooling effectiveness for flats and mid-terrace dwellings. This could be due to higher

storey flats having higher solar heat gains than other dwelling types and fewer exposed
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surfaces to provide solar shading for mid-terrace dwellings. Similarly, Porrit (2012)

found that external shutters were more effective in reducing overheating hours than fixed

shading. In addition, they showed significant differences in the cooling performance

of solar shading (e.g. fixed shading and external shutter) between end-terrace and

mid-terrace dwellings. van Hooff et al. (2014) used automated shading rather than fixed

external shading, which could explain the similar cooling performance on the terraced

and detached dwellings. In both well-insulated (Tink, 2018; McLeod et al., 2013; Ridley

et al., 2013; Mlakar and Štrancar, 2011; van Hooff et al., 2014; Psomas et al., 2016) and

traditional dwellings (Gupta and Gregg, 2012; Porrit, 2012; Tink, 2018), solar shading

normally provides optimal cooling performance. However, overheating hours can vary

greatly for different shading orientations as some are energy in-efficient (Habitzreuter

et al., 2020) or difficult to shade (Gupta and Gregg, 2020; Kolokotroni et al., 2007;

Gupta and Gregg, 2013; Mitchell and Natarajan, 2019).

2.9.4 Thermal mass
Heat dissipation and modulation strategies are often influenced by occupants’ use of

natural ventilation and external shading (Kuczyński et al., 2021). Sufficient air exchange

is required to improve the cooling effectiveness of thermal mass. In addition, the use of

nighttime ventilation to increase the cooling effectiveness of thermal mass will become

less effective as the climate warms, as not enough air exchanges can occur with the

outside environment because of the lower temperature difference; this will reduce

thermal mass’ cooling effectiveness as the external temperature increases (McLeod

et al., 2013; Peacock et al., 2010; Jimenez-Bescos, 2017; Mulville and Stravoravdis,

2016). Moreover, previous studies have established the usefulness of thermal mass in

well-insulated dwellings (McLeod et al., 2013; Hacker et al., 2005).

2.9.5 Phase change material
Ineffective ventilation strategies adopted by occupants can delay the solidification

of PCM, affecting its cooling effectiveness (Guarino et al., 2017). The use of PCMs has

been shown to be effective in well-insulated dwellings to reduce overheating risks (Sage-

Lauck and Sailor, 2014; Auzeby et al., 2016; Figueiredo et al., 2016). Furthermore,

south and west orientations allow for optimal solidification cycles and sharp temperature

fluctuations, respectively (Berardi and Soudian, 2019). Information regarding the
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influence of different dwelling types on the cooling effectiveness of PCM was scarce.

Therefore, it is assumed that the influence of different dwelling types on the cooling

effectiveness of PCM would be similar to that of thermal mass due to their similar

heat-modulating behaviours.

2.9.6 Natural ventilation
Several studies have found a significant association between occupant behaviour

and using natural ventilation to decrease overheating risks (Vellei et al., 2017; Petrou

et al., 2019; Morgan et al., 2017; Ridley et al., 2014; Baborska-Narożny et al., 2017;

Toledo et al., 2016; Mavrogianni et al., 2017, 2014). van Hooff et al. (2014) found that

the variation in the cooling effectiveness of natural ventilation for different orientations

was modest for traditional dwellings and greater for insulated dwellings (Peacock

et al., 2010; van Hooff et al., 2014). Porrit (2012) showed different cooling potentials

achieved by natural ventilation for different orientations in traditional dwellings. It is

worth noting that Porrit (2012) and van Hooff et al. (2014) employed different window

opening strategies. Natural ventilation should be prioritised by occupants in highly

insulated dwellings, given its reported importance.

2.9.7 Cool paint
The cooling efficiency of a cool roof may be enhanced by occupants adjusting the

indoor environment’s temperature with respect to the cool roof’s cooling impact (Pisello

et al., 2015); the cooling impact may be challenging to quantify precisely by occupants

to adjust the indoor environment accordingly. Unlike cool walls, cool roofs are less

sensitive to overheating in different orientations (Porrit, 2012). Furthermore, dwellings

with minimal insulation (van Hooff et al., 2014; Zinzi and Agnoli, 2012) and more

exposed surfaces (van Hooff et al., 2014) benefit the most from cool paint. However,

it is worth noting that Gupta and Gregg (2012) evaluated a combination of cool walls

and roofs, and van Hooff et al. (2014) did not specify whether cool roofs or walls were

employed, simply that cool paint was applied to exterior surfaces (Porrit, 2012).

2.9.8 Summary
The framework in Table 2.3, describes the extent to which overheating factors influ-

ence the performance of passive cooling strategies, highlighting that their effectiveness

is influenced by dwelling characteristics, ventilation potential, occupant behaviour and
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climate conditions. It highlights that the effectiveness of passive cooling strategies

differs depending on various overheating-influencing factors, which impose constraints

on their cooling performance. For instance, solar shading is more effective for detached

dwellings with greater facade exposure, while thermal mass requires sufficient night

ventilation, which may be restricted in airtight dwellings or those where window open-

ing is limited due to noise or safety concerns. Additionally, natural ventilation can

be further limited in elderly homes, where reduced occupant adaptability reduces the

likelihood of effective window operation for heat dissipation. Similarly, its effectiveness

decreases in warmer climates due to reduced indoor-outdoor temperature differentials.

The framework highlights the need for a context-specific approach in selecting passive

cooling measures, given how differing potential has been identified from previous works

in different settings.

2.10 UK housing stock variation

Overheating risks in the UK housing stock are well documented, highlighting the

urgent need for large-scale strategies to address widespread vulnerabilities. The stock is

notably diverse in terms of construction type, insulation levels, dwelling age, and design

features. For example, data from the English Housing Survey (EHS, 2023) indicate that

cavity-insulated walls account for nearly 50% of dwellings, while solid uninsulated walls

and other types comprise the remainder. Additionally, the age distribution spans multiple

eras, from pre-1919 to post-1980 constructions, and building typologies range from

predominantly two-storey dwellings to bungalows and taller structures such as multi-

storey flats. This inherent diversity directly impacts thermal performance, making it

essential to incorporate these numerical details into any effective overheating mitigation

strategy.

Modelling millions of dwellings, each characterised by a wide range of features,

makes detailed, building-by-building simulations impractical for national-scale analyses.

While such granular modelling can yield valuable insights for localised assessments,

the computational and data demands make it unsuitable for broader applications. An

approach that groups dwellings based on shared characteristics is therefore essential

to for large-scale policy implementation, allowing researchers to extract meaningful
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patterns and inform scalable interventions.

An archetype-based building stock modelling framework offers a promising solu-

tion to these challenges. This method allows for the assessment of overheating risks

across a manageable number of representative dwellings by effectively capturing critical

variations in key features, such as floor area distributions, construction types, insula-

tion levels and other essential parameters. This can be helpful to support nationwide

strategies to mitigate overheating risks across the UK’s diverse housing stock.

2.11 Building archetype development

Building archetypes have become fundamental in building stock models, serving as

representative buildings that address a wide range of research objectives, from mitigating

overheating risks (Taylor et al., 2015; Rajput et al., 2022) to reducing greenhouse gas

emissions (Yamaguchi et al., 2022; Pittam et al., 2014; Stephan and Athanassiadis,

2017). The characteristics of available data and specific study objectives influence the

development of archetypes, emphasising the need for a systematic approach and a robust

understanding of the complexities involved in their formulation.

2.11.1 Modelling principles

2.11.1.1 Bottom-up and top-down approaches

Different approaches are employed in developing building archetypes, broadly

categorized into bottom-up and top-down methods. Bottom-up approaches rely on

engineering models of identified archetypes, with results extrapolated to the entire

building stock using weightings. Conversely, top-down approaches use statistical

modelling techniques on aggregated stock data, focusing on identifying broad patterns

without necessarily categorizing the building stock into specific archetypes.

Bottom-up models, as highlighted by Kavgic et al. (2010), are built from detailed

data on various components, combined to estimate energy usage impacts. This method

is particularly useful for identifying the most cost-effective CO2e emission reduction

strategies based on available technologies. These models require extensive empirical

data, including details on building elements, thermal characteristics, and heating patterns.

An example is CREEM (Farahbakhsh et al., 1998), which uses detailed house records
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to estimate energy consumption and assess the impact of retrofit and fuel-switching

scenarios. Top-down models, on the other hand, work at an aggregated level, analysing

historical time series of national energy consumption or CO2e emissions to investigate

the relationships between the energy sector and the economy. These models, such as

econometric top-down models, lack detailed technological descriptions and focus more

on macroeconomic trends.

2.11.1.2 Steady-state and dynamic models

Building physics-based models, a subset of bottom-up models, can be categorised

by their underlying modelling principles: steady-state, quasi-steady-state and dynamic

as follows:

• Steady-state models: These models assume that the building’s thermal conditions

remain constant over time, providing a simplified view of energy flows. They

are less resource-intensive and can accommodate a larger number of archetypes,

thus potentially increasing building stock representation. However, they do not

capture the temporal variations in energy use and thermal behavior. Examples of

steady-state models include the SAP (Building Research Establishment, 2021)

used in the UK for regulatory compliance.

• Quasi-steady-state models: These models offer a compromise between steady-

state and dynamic models by incorporating some temporal variations while main-

taining a relatively simple computational structure. They provide more accurate

results than steady-state models but with lower computational demands compared

to fully dynamic models.

• Dynamic models: Dynamic energy models enable the investigation of detailed

scenarios, capturing the temporal variations in energy use and indoor environ-

mental conditions. These models consider factors such as weather changes,

occupancy patterns, and thermal mass effects, offering a high level of detail and

accuracy. However, they are often associated with high computational costs,

which typically limit the number of archetypes to less than a hundred (Mavrogi-

anni et al., 2012; Taylor et al., 2014a; Gupta and Gregg, 2012).
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2.11.2 Segmentation and clustering
Segmentation and clustering are crucial steps in the process of developing rep-

resentative building archetypes from large datasets. These techniques help to group

buildings with similar characteristics, allowing for the creation of a manageable number

of archetypes that accurately represent the diversity within the building stock.

Segmentation involves dividing the dataset into meaningful subsets based on specific

criteria. This initial step is essential to ensure that the subsequent clustering process

is more focused and effective. Segmentation can be based on various attributes such

as building type, age, size or geographic location. By segmenting the dataset, we can

ensure that the clustering algorithm operates on more homogeneous groups, improving

the accuracy and relevance of the resulting clusters.

Clustering is the process of grouping similar instances within the segmented data into

clusters. The selection of an appropriate clustering algorithm is a critical consideration,

guided by both the research objectives and the nature of the dataset (Pistore et al., 2017).

In the context of building archetype development, clustering helps identify groups of

buildings that share similar characteristics, enabling the creation of archetypes that

represent these groups. The choice of clustering technique depends on the specific

requirements of the study, such as the nature of the data, the desired number of clusters

and computational resources. Several clustering techniques have been deployed in past

research on building archetype development:

• k-means: This is a partitional clustering technique that assigns each instance

to exactly one of k mutually exclusive partitions. It is widely used due to its

simplicity and efficiency. However, it is not well-suited for handling building

data comprising both numerical and categorical variables (De Jaeger et al., 2020;

Ali et al., 2019; Tardioli et al., 2018; Li et al., 2018; Borges et al., 2022; Ofetotse

et al., 2021; Echlouchi et al., 2022).

• k-medoids: Similar to k-means, this technique also creates k partitions, but it is

better at handling heterogeneous data. It is more robust to outliers compared to

k-means but can be computationally intensive for large datasets (Tardioli et al.,

2018; Murray et al., 2020; Li et al., 2018; Madbouly et al., 2022).
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• Hierarchical: This method builds a hierarchy of clusters either through agglomer-

ative (bottom-up) or divisive (top-down) approaches. It is useful for understanding

the structure within the data and does not require the number of clusters to be

specified in advance. However, it can be computationally expensive for large

datasets (Tardioli et al., 2018; De Jaeger et al., 2020).

• k-prototype: This algorithm can simultaneously manage categorical and numerical

data, making it one of the most effective methods for handling heterogeneous

datasets such as building stocks. Despite its effectiveness, its application in

developing building archetypes is relatively under-explored (Preud’homme et al.,

2021).

Pre-clustering segmentation1 or partitioning of the primary dataset has been found

to capture the diversity of the building stock better than without Ali et al. (2019), thus

enhancing the representativeness of resulting archetypes. Borges et al. (2022) used a

deterministic method followed by k-means clustering to investigate the intricacies of

Andorra’s building stock. Similarly, Ali et al. (2019) first developed typologies through

segmentation and subsequently employed k-means for clustering on the Irish building

stock. However, the k-means algorithm, while effective in many cases, can fail to handle

categorical variables and not account for aspects such as the total number of dwellings

of each archetype. Tardioli et al. (2018) explored multiple clustering algorithms on

segmented subsets but did not consider k-prototype clustering. Furthermore, Borges

et al. (2022) and Tardioli et al. (2018) did not partition the segmented typologies into

smaller datasets, which could have potentially enhanced the stock representativeness

achieved through clustering.

Models with lower levels of disaggregation tend to generate results with diminished

confidence, while models with higher disaggregation levels yield more precise outcomes,

according to previous research conducted by Natarajan and Levermore (2007). For

1The terms segmentation and clustering are sometimes used synonymously in the literature as
they both involve grouping of cases, but differences exist between them. In the context of archetype
development, segmentation is an analysis-driven process that involves grouping cases into segments based
on the scope and objectives of the study. Segmentation is usually applied on the primary dataset before
clustering. On the other hand, clustering is a statistical technique that uses machine learning algorithms
to group cases or data points into clusters based on their similarities. One of the key differences between
segmentation and clustering is that segmentation is typically driven by human knowledge and expertise,
while clustering is driven by machine learning algorithms.
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instance, a model that only includes two "notional" dwellings significantly overestimated

the anticipated carbon reductions. While models like DECarb (Natarajan and Levermore,

2007), UKDCM (Palmer et al., 2006) and BREHOMES (Shorrock and Dunster, 1997)

have made significant advances in reducing dependence on average performance by

generating heterogeneous building stock representations, they still fail to fully resolve

this issue. The granularity of a model is a critical factor to consider; models with only

one or two dwelling categories are overly simplistic, while an excessively detailed

categorisation can result in insufficient supporting data for each category. One of the

primary criticisms of models with minimal disaggregation is that they provide only

broad or indicative results for relative differences when evaluating efficiency measures.

Conversely, the need for more data to adequately support each detailed category presents

a challenge for highly disaggregated models (Kavgic et al., 2010). Hence, it is essential

to establish a suitable equilibrium in model granularity to ensure that energy and carbon

performance assessments are both accurate and practical.

2.11.3 Archetype-based modelling
A key factor when determining the representation of a building stock is the number of

archetypes, which ranges from two to several thousand previous works. Lechtenböhmer

and Schüring (2011) used only two archetypes, one 120m2 single/two family and one

1457m2 large apartment building, to represent the European Union (EU) residential

building stock. The authors acknowledged significant uncertainties arising from their

choice of two archetypes. Nevertheless, the research offered approximate estimations

of the potential, suitability and cost associated with upgrading the EU building stock.

Portella (2012) developed a building stock model for France using 45 non-residential and

54 residential archetypes. The final energy demand was estimated at 435.5TWh/year

for the residential and 179.4TWh/year for the non-residential sectors, which were 1.1-

7.4% lower than the official statistics. Famuyibo et al. (2012) developed 13 archetypes

to represent approximately 65% of the Irish housing stock, indicating that some studies

might choose fewer archetypes even if they offer limited representation of the building

stock.

Research by Molina et al. (2020) on the residential building stock of Chile demon-

strated that a set of 496 archetypes represented the entire stock comprising 6.5 million

dwellings while 90 of these archetypes represented 95% of the stock. The difference of
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406 archetypes between the two thresholds indicated the presence of a large number

of outlier archetypes. A χ2 analysis in the same research revealed that the return on

representativeness diminishes with increasing number of archetypes. The suitable num-

ber of archetypes was found to be dependent on the level of detail in the information

sources and the desired outcomes or research questions. These findings highlight the

variability in archetype selection, often influenced by different levels of segmentation,

indicating the importance of methodological decisions in building stock modelling

research, ensuring a balance between representation and manageability in modelling.

In larger, national-scale investigations, a broader range of archetypes is needed

to account for the diversity in building characteristics and regional disparities, as

highlighted in previous studies (Mata et al., 2013; Gendebien et al., 2014; Shorrock and

Dunster, 1997). On the other hand, studies focused on a geographically limited, district-

scale scope can achieve satisfactory representation of the building stock with fewer

archetypes, owing to the more uniform set of characteristics in such areas (Streicher

et al., 2019; De Jaeger et al., 2020; Echlouchi et al., 2022). However, it’s important

to note that even studies of the same geographic scale may require varying range of

archetypes (Firth et al., 2010; Loucari et al., 2016), reflecting the diverse goals and

subtleties of each research. While geographic scale often serves as a determinant for the

number of archetypes, the distinct objectives of each study can further influence their

selection, emphasising the complexities involved in archetype development.

The archetypes developed by Ballarini and Corrado (2017) utilised averaged val-

ues of building features based on heating systems and construction typologies. This

approach can be helpful in contexts with limited data but may fail to account for the

variability that exists in the building stock. A more granular approach, such as clustering

each typology subset, could leverage the available data more effectively than average

values, leading to archetypes that reflect stock diversity more closely. Using information

theory and cluster analysis, the advanced approach from Geraldi and Ghisi (2022)

attempts to overcome such limitations by incorporating real-world parameter variability

into their archetypes. Nevertheless, the approach requires extensive computational

resources and depends on subjective decision factors such as spatial configurations.

Overheating risk assessment for residential buildings could benefit from a data-

driven approach that incorporates accurate weather data representative of local climatic
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conditions. Studies have demonstrated that weather files play a crucial role in determ-

ining relative overheating risks across dwelling types, underscoring the importance

of using climatic data that reflects real-world variations. For instance, Taylor et al.

(2014a) examined the influence of weather data on overheating assessments but re-

lied on London-based building archetypes as a national proxy, which may not fully

capture the diversity of dwelling characteristics across different contexts. Similarly,

Mourkos et al. (2017) highlighted the significance of precise weather data selection,

while Taylor et al. (2015) noted that using weather files from a single location could

overlook climate variability, potentially affecting the accuracy of overheating predic-

tions. Additionally, these studies did not explore how specific dwelling characteristics

interact with climate-driven overheating risk, limiting their applicability to broader

overheating assessments.

Symonds et al. (2017) simulated the indoor temperatures of 823 dwellings in dif-

ferent regions based on the English Housing Survey. While the dataset represents the

national housing stock, concerns remain about the regional representativeness of the

randomly selected subset. The methodology did not specifically target dwellings most

susceptible to overheating but focused on cross-validating simulated indoor temper-

atures with monitored data. Additionally, the model struggled to predict maximum

indoor temperatures during extreme weather, likely due to limited details on individual

dwelling characteristics.

Using building archetypes, Wright and Venskunas (2022) investigated overheating

risks across UK regions. However, they overlooked variations in dwelling size that

influence heat gains and temperature regulation, assigning a fixed floor area to each

dwelling type. The study also excluded older buildings with unique thermal properties,

focusing solely on contemporary constructions. Their evaluation of solar shading and

natural ventilation was limited to modern, average-sized dwellings, neglecting the

potential differences in larger, older buildings with solid wall constructions, where

design affects air circulation and heat retention. Investigating passive cooling strategies

while accounting for the interactions between diverse building characteristics, rather than

relying on average values, could provide a more detailed understanding of overheating

risks.

Moreover, previous archetype-based overheating studies have often relied on simpli-
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fied dwelling representations, which may not fully capture the range of characteristics

influencing overheating risk. For instance, Mavrogianni et al. (2012) defined 15 ar-

chetypes based on dwelling type and age, with fixed average floor areas assigned to

each typology. While this provides a structured approach to defining archetypes, it

does not account for the variation in floor area within each dwelling type, which can

influence air circulation and heat dissipation. Smaller dwellings may respond differ-

ently to overheating than larger ones, and findings based on averaged values may not

always be applicable across all homes within a typology. Additionally, as floor area is

often linked to window size, assuming fixed averages may overlook how differences in

window-to-floor area ratios affect solar gains and ventilation potential.

Similarly, orientation assumptions vary across studies and may introduce limitations

in representing real-world dwelling conditions. Mavrogianni et al. (2012) defined

archetypes with four fixed orientations (N, E, S, W), but in reality, some dwellings may

have intermediate orientations (e.g., SW, NW) or a combination of multiple orientations,

which can influence solar exposure and overheating risk. Gupta and Gregg (2013)

assigned a single west-facing orientation to all archetypes, based on its link with

overheating, but this approach reduced variability in how different orientations influence

thermal performance. Mulville and Stravoravdis (2016) similarly examined overheating

using a single semi-detached archetype, considering only two main orientations (N/S

and W/E), which may not fully capture how overheating risk varies across a wider range

of orientations.

Beyond floor area and orientation, some studies also adopt simplified assumptions

regarding thermal performance characteristics, such as U-values. The ARUP report

(Bouhi et al., 2021) categorised archetypes based on average floor area per dwelling

type, without distinguishing between different dwelling ages, despite that older and

newer dwellings of the same typology may have different floor areas (EHS, 2023).

Furthermore, the report considered fixed U-values for different wall types—such as

cavity walls (insulated/uninsulated) and solid walls (insulated/uninsulated), which may

not fully reflect variability in construction materials and thermal performance. Similarly,

Peacock et al. (2010) examined overheating risk using three broad construction categor-

ies—timber frame (U=0.47 W/m²K), twin leaf masonry (U=0.37 W/m²K), and pre-1900

solid walls (U=1.6 W/m²K), but did not explore variations within each category due
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to differences in material properties or wall thickness. Orme et al. (2003) followed a

similar approach, defining fixed average floor areas for different dwelling types, which

may not capture the diversity in internal layouts and spatial configurations.

Given these variations in approach, there is scope to explore alternative methodo-

logies for archetype development that allow for greater variation in dwelling charac-

teristics. One approach is to incorporate a range of floor areas within each dwelling

type rather than relying on averages, to better reflect how dwelling size influences

overheating dynamics. Similarly, instead of applying fixed orientations across all ar-

chetypes, orientations could be assigned based on observed distributions in the housing

stock, ensuring a more representative assessment of solar exposure effects. In addition,

thermal transmittance values could be defined with a broader range of U-values to

capture differences in construction quality and material properties rather than assigning

a single value per wall type.

2.12 Summary

Building stock modelling has become an increasingly important tool for assessing

energy performance and overheating risks in the residential sector. By simulating

archetype dwellings that represent larger subsets of the housing stock, policymakers and

researchers can evaluate a wide range of retrofit or design interventions at scale, which

can be computationally infeasible on a dwelling-by-dwelling basis. This approach is

especially relevant in contexts like the UK, where a diverse housing stock and ambitious

climate targets intersect with growing concerns about summertime overheating. Yet,

the effectiveness of building stock models largely depends on how well the chosen

archetypes capture variations in building stock features.

Two key challenges emerge in current modelling efforts. The first is a lack of clarity

on how specific methodological choices—such as which variables are included, how

buildings are segmented and which clustering techniques are used, influence the overall

representativeness of archetypes. Without guidance on these decisions, researchers

risk creating archetype sets that overlook critical aspects of the housing stock. The

second challenge is that existing archetype development methods often rely on broadly

generalised or parametric models, which can overlook essential real-world variations
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such as main façade orientation, construction, window and floor areas for different

dwelling types in each region.
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Chapter 3 |
Methodology

The previous chapter reviewed the risk of overheating associated with various

construction types, geometries, occupancy patterns and weather conditions. The invest-

igation highlighted the impact of these factors on overheating and discussed potential

passive cooling strategies to mitigate these risks.

A systematic approach is helpful to develop building archetypes that can adequately

reflect the varying characteristics of the building stock. The methodology employed to

achieve this will be detailed in the subsequent sections. The steps taken to develop the

archetypes are detailed in Section 3.1, involving the use of segmentation and clustering

techniques to develop archetypes. The characterisation approach employed to define

these archetypes is detailed in Section 3.2, which describes the geometry (e.g. varying

floor areas), construction types, thermal zoning, material specifications, weather files

and associated occupancy for the archetypes to conduct thermal simulations.

3.1 Archetype development

The proposed four-step methodology for developing building archetypes, illustrated

with an example for better contextualisation, is shown in Figure 3.1. The process begins

with the identification of variables frequently employed in previous research. Subsequent

steps involve the identification, selection, cleaning, cross-referencing and transformation

of pertinent datasets. Key variables are then identified via regression analysis and used

to partition the primary dataset into frequency-based subsets. A clustering algorithm

is subsequently applied to each subset to generate representative archetypes. A case

number is assigned to each archetype through the algorithm to determine the distribution

of each archetype within the EHS. These case numbers are then used to link the

archetypes to their corresponding cases in the EHS. This allows for obtaining the total

dwelling count each archetype represents. The innovation of this methodology resides
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in the incorporation of MSF during segmentation, procedures for data transformation

and variable selection, and the adoption of a suitable clustering evaluation metric and

variable count— collectively contributing to an enhanced representation. The involved

steps are discussed in detail in the following sub-sections.

Figure 3.1: Overview of the methodology. Example application is given on the right to
illustrate the progressive selection of variables and building count.

3.1.1 Data preparation
Primary datasets for archetype development usually consist of both numerical and

categorical variables. For instance, geometric attributes such as floor area are numerical,

whereas technical features such as heating systems and fuel types fall into the categorical

category. The type of variable not only affects the selection of clustering algorithm

and evaluation metrics but also impacts domain-specific modelling at the end of the

clustering process. Data preparation and transformation are, therefore, important steps

for archetype development.

The EHS (EHS, 2023) was selected as the primary dataset for this study due to

various considerations: (a) the comprehensiveness and reliability of the dataset, (b) its

status as one of the most extensively studied building stock and (c) the opportunity
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it offers for a more substantial contextualisation of research findings. The EHS is

a national survey of the energy efficiency and condition of housing, and people’s

housing circumstances in the UK (DLUHC, 2017). The survey is commissioned by the

Department for Levelling Up, Housing and Communities (DLUHC) and has been run

since 1967. Data is collected through a household interview and a physical inspection of

a sample of properties by a qualified professional. The independent categorical variables

from the EHS were transformed into binary variables to satisfy the prerequisites for

multiple linear regression (Sass et al., 2014; Li, 2016). Additionally, clustering outputs

can be biased by skewed distributions and outliers (Olson and Delen, 2008), thus,

scalarising data prior to clustering is essential to provide uniform weighting. Given its

robust performance with various clustering methods (Tardioli et al., 2018), the Min-Max

scalarisation was used to convert the floor area variable into a common scale ranging

from 0 to 1 to improve the clustering performance.

3.1.2 Variable selection
Variables used in previous archetype development works are shown in Figure 3.2.

Dwelling type and age emerged as the most frequently used variables. Some household

characteristic variables such as household size (Paravantis and Santamouris, 2016)

and tenure (Ofetotse et al., 2021), have seen comparatively limited utilisation. This

might be attributed to the prevalent assumption of standardised occupancy profiles

for dwelling archetypes, which consequently leads to excluding these variables from

clustering algorithms. Variables such as ventilation systems (Ali et al., 2019) and the

thickness of domestic hot water cylinders (Famuyibo et al., 2012), are rarely included,

primarily because they are absent from most datasets. The omission of ventilation

systems in analyses is often due to the limited variation in building stock. For instance,

the majority of the UK homes rely on natural ventilation. Additionally, modelling

challenges associated with ventilation (Cao, 2019), may also contribute to its exclusion.

An important variable implemented is energy data (Paravantis and Santamouris, 2016;

Ofetotse et al., 2021; Borges et al., 2022), which associates each dwelling type with its

total energy consumption to establish a suitable benchmark.

A multiple linear regression model was used to examine the energy efficiency of the

building stock. Energy efficiency rating (sap12) was chosen as the dependent variable

to serve as a proxy indicator for the wide range of features that influence energy use
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Figure 3.2: Variables used in previous building stock modelling works.

and indoor conditions across the building stock. Its relationship with the independent

variables is demonstrated in Equation 3.1, where dependent and independent variables

are on the y-axis and x-axis respectively. Independent variables were first identified

by cross-referencing variables from the EHS dataset with those commonly used in

previous works. The identified variables and their EHS symbols (in bracket) are: floor

area (floory), loft insulation thickness (loftins4), number of storeys (storeyx), boiler

system (boiler), fuel type (fuelx), system age (sysage), dwelling age (dwage5x), type

of wall and insulation (wallinsz), dwelling type (dwtypenx), double glazing percentage

(dblglaz2), heating system (heat4x), number of rooms (nrooms1a), number of bedrooms

(nbedsx), income (hhinc5x), number of occupants (hhsizex), household age (agehrp2x)

and tenure groups (tenure2). The coefficient of determination (R2) was used to evaluate

the regression model, executed using IBM SPSS Statistics (Version: 27.0.1.0). The
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R2 value of the regression model was 0.753, predicting roughly three-quarters of the

variance in the building stock’s energy efficiency ratings. This agrees with the results of

earlier research, which found that dwelling geometry, heating system efficiency and wall

U-value together account for 75% of the energy efficiency rating (Stone et al., 2014).

y = β0 + β1x1 + · · ·+ βnxn + ϵ (3.1)

where y is the dependent variable, x1...xn are the independent variables β0 is the

constant term when all predictors are zero, β1...βn are the regression coefficients of the

independent variables and ϵ is the residual term.

Household-related variables such as hhsizex and agehrp2x achieved low regression

coefficients, resulting in their exclusion from the final regression model, presented

in Table 3.1. Only heat4x and fuelx were found to be insignificant, having p−values

(Sig.) ≤ 0.05. Hence, it was decided to keep fuelx only since retaining it may act

as a substitute for both variables boiler and heat4x. For example, if fuelx is gas, the

associated heat4x will likely be central heating systems, while if fuelx is electric, the

corresponding heat4x would be electrical heating systems. Hence, this approach allows

for an optimised variable selection without compromising the representation of the

building stock features. In addition, multicollinearity was investigated using variance

inflation factors (VIFs) to verify the validity of the regression outputs. An average

VIF score of 1.95 suggests a moderate level of multicollinearity between the variables,

thereby indicating minimal influence of multicollinearity on the regression outputs

(Shrestha, 2020).

3.1.3 Segmentation
Pre-clustering segmentation is an important step in ensuring representativeness

of the resulting archetypes by avoiding imbalances in the distribution of variables.

To achieve this, two segmentation approaches were implemented: knowledge- and

frequency-based partitioning.

3.1.3.1 Knowledge-based

Knowledge-based segmentation groups buildings based on their inherent character-

istics, such as dwelling type and region, to account for regional variations. In this study,
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Table 3.1: Multiple linear regression estimates of influencing variables on the indoor
environment.

Independent variables Unstd. coefficients Std. coefficients t-statistics Sig.
Symbol Name Category β Std. error β

β0 Constant 67.462 .0342 197.137 .000
floory Floor area .023 .001 .119 17.041 < .001
dwtypenx Dwelling type End-terrace 1.778 .212 .054 8.404 < .001

Mid-terrace 6.019 .197 .229 30.495 < .001
Semi-detached 2.063 .173 .090 11.944 < .001
Converted flat 9.115 .379 .166 24.046 < .001
Low rise purpose built flat 8.444 .266 .317 31.794 < .001
High rise purpose built flat 7.509 2.057 .104 3.651 < .001

dwage5x Dwelling age Pre-1919 -9.349 .225 -.366 -41.548 .000
1919 to 1944 -8.527 .182 -.304 -46.961 .000
1945 to 1964 -7.480 .152 -.303 -49.081 .000
1965 to 1980 -5.891 .144 -.245 -40.776 .000

dblglaz2 Double glazing percentage 80% or more double glazed 3.192 .192 .089 16.592 < .001
heat4x Heating system Storage heater 1.327 .787 .027 1.687 .092

Fixed room heater -9.454 .822 -.136 -11.505 < .001
sysage System age Less than 3 years 1.343 .177 .058 7.573 < .001

More than 12 years .990 .159 .051 6.225 < .001
fuelx Type of fuel Not identified - communal system 1.427 1.245 .020 1.146 .252

Oil fired system -7.473 .268 -.147 -27.932 < .001
Solid fuel -5.805 .970 -.031 -5.987 < .001
Electric -7.952 .926 -.198 -8.587 < .001

boilerx Boiler type No boiler -3.765 1.184 -.107 -3.179 .001
Standard boiler (floor or wall) -7.016 .230 -.199 -30.535 < .001
Back boiler (to fire or stove) -10.520 .513 -.111 -20.509 < .001
Combination boiler -4.030 .284 -.079 -14.166 < .001
Condensing boiler -.692 .134 -.029 -5.161 < .001

loftins4u Loft insulation thickness No roof above -.617 .229 -.021 -2.697 .007
None -11.499 .332 -.178 -34.684 < .001
Less than 100m -3.166 .181 -.090 -17.451 < .001
100 to 150mm -1.673 .123 -.071 -13.607 < .001

storeyx Number of storeys 1 -.878 .225 -.025 -3.906 < .001
3 1.701 .153 .063 11.106 < .001
4 4.011 .315 .070 12.731 < .001
5 4.679 .509 .047 9.191 < .001
6 8.285 2.022 .117 4.097 < .001

wallinsz Type of wall and insulation Cavity uninsulated -5.198 .127 -.216 -40.779 .000
Solid with insulation 1.799 .298 .031 6.040 < .001
Solid uninsulated -6.935 .178 -.298 -38.976 .000
Other 3.973 .397 .050 10.006 < .001

the EHS data was segmented into 63 distinct typologies incorporating seven dwelling

types (end-terrace, mid-terrace, semi-detached, detached, bungalow, converted flat, and

purpose built flat) and nine regions (North East, North West, Yorkshire and the Humber,

East Midlands, West Midlands, East, London, South East and South West).

3.1.3.2 Frequency-based

Variables in the segmented data from the previous step often have uneven distribu-

tions, with certain features being dominant. This bias can cause clustering algorithms

to overlook less frequent but important features. For instance, given the prevalence of

cavity insulated walls in the wallinsz variable, the clustering algorithm may only identify

archetypes with cavity insulated walls and overlook wall types such as solid walls with

insulation. Hence, “minimum segmentation frequency” (MSF) was introduced to retain

feature diversity in the segmented data before clustering is applied. The approach

divides the segmented data into smaller subsets, each containing a number of cases close

to the specified MSF value. For example, MSF-15 represents the division of each of the

63 segments from the previous step into further subsets, each comprising approximately
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15 cases. To examine the influence of MSF on the number and representativeness of the

resultant archetypes, a sensitivity analysis was conducted. This involved repeating the

frequency-based segmentation step eight times with different MSF values, ranging from

15 to 50, in increments of five.

3.1.4 Clustering
Clustering is a multivariate classification technique that groups objects into distinct

clusters based on their intrinsic characteristics. Objects within the same cluster share

comparable characteristics, reflecting a high level of within-cluster coherence while

retaining unique distinctions between clusters.

Standard k-means and k-modes are clustering algorithms for numerical and categor-

ical data respectively. They are not suitable for mixed data because they use different

dissimilarity measurements (Huang, 1998). k-means uses the Euclidean distance, which

measures the distance between two points in a numerical space. On the other hand,

k-modes uses the Hamming distance, which is a measure of the difference between

two binary vectors. Huang (1998) proposed k-prototype, which clusters mixed data

types using k-means’ Euclidean distance and k-mode’s Hamming distance, the first

and second expressions in Equation 3.2 respectively. The algorithm utilises the mean

and mode of numerical and categorical variables respectively to minimise dissimilarity

between cluster points. Clusters are formed randomly based on the predetermined

number of clusters k, the algorithm is then iterated until each cluster’s mean and mode

values are adjusted and minimised based on the distance between cluster points.

d(x, y) =

p∑
i=1

||xi − yi||2 + γ

q∑
i=p+1

δ(xi, yi) (3.2)

where the first term represents the Euclidean distance between two numerical datapoints,

the second term represents the Hamming distance between two categorical datapoints,

and γ and δ are weighting factors to balance numerical and categorical distributions.

3.1.4.1 Cluster evaluation

The performance and efficacy of clustering techniques are determined using eval-

uation metrics, which quantifies the quality of cluster formations by assessing the

cohesiveness of the groupings and how different they are from one another. Clustering
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evaluation metrics can be divided into two categories: internal and external. Internal

metrics measure the quality of the clusters themselves, while external metrics measure

the accuracy of the clustering algorithm against known ground truth labels. Internal

metrics are commonly used for unsupervised clustering, where ground truth labels

are not available. This research investigated the following three most commonly used

metrics:

• Davies-Bouldin index (IDB) quantifies cluster quality by balancing its compact-

ness and separation, enabling the comparison of solutions and optimisation of

cluster numbers (Liu et al., 2010), as defined in Equation 3.3. Separation measures

the distance between clusters, and compactness measures data point proximity

within clusters. Lower values of IDB indicate well-separated, condensed clusters.

IDB =
1

k

k∑
i=1

max
i ̸=j

(
si + sj
dij

)
(3.3)

where k is the number of clusters, i and j represent cluster labels where si and

sj are cluster samples with respect to their centroids and dij denotes the distance

between the centroids.

• Silhouette index (ISIL), also known as Silhouette coefficient, describes the cohes-

iveness and separation of clusters by comparing the similarity of an object within

its cluster to that of the objects in other clusters (Rousseeuw, 1987). Equation 3.4

is used to calculate ISIL, which ranges from -1 to 1. ISIL > 0.5 signifies robust

clustering (Rousseeuw, 1987) where higher values denote a more distinctive and

compact cluster.

ISIL =
1

n

n∑
i=1

bi − ai
max{ai, bi}

(3.4)

where ai is the average distance between a data point i and all other data points in

the same cluster and bi is the smallest average distance between the data point

i and all other data points in the other clusters. Therefore, ai represents the the

cohesiveness of the cluster containing the data point i and bi denotes the extent of

separation from the other clusters.
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• Calinski-Harabasz index (ICH) determines the optimal number of clusters by

measuring the separability of clusters, and is calculated using Equations (3.5)

to (3.7), dividing the total between-cluster dispersion (Bk) by the total within-

cluster dispersion (Vk) (Caliński and Harabasz, 1974). A greater value of ICH

indicates that the clusters are more distinct from one another and more dense

within themselves.

Bk =
k∑

i=1

Ci||mi −m||2 (3.5)

Wk =
k∑

i=1

∑
x∈Ci

||x−mi||2 (3.6)

ICH =
VB

VW

× n− k

k − 1
(3.7)

where k is the number of clusters, n is the total number of data points, Ci is the

size of cluster i, m is the total mean of the dataset, mi is the mean of cluster i, x

is a data point in cluster i, VB is the average between-cluster sum of squares and

VW is the average within-cluster sum of squares.

3.1.4.2 Determining the number of clusters

k-prototype clustering algorithm was implemented on the segmented subsets with

the value of k ranging from 2 to 15. This range allowed a balanced examination of

cluster possibilities while preserving computational feasibility. To determine the number

of archetypes for each subset, optimal values of ISIL, ICH and IDB were considered.

3.1.4.3 Post-processing of clustering outputs

The clustering algorithm assigns each case in the segmented subset to a specific

cluster. The algorithm also identifies the centroid of each cluster. Where modelling is

relatively straightforward and requires only the variables used in clustering, the centroid

can act as the archetype, representing the cluster. In cases where modelling should

ideally be based on real cases, the archetype is the closest case from the centroid. The

matching of the centroid to a real case allows access to all variables in the original EHS
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dataset, not just the seven variables used in clustering. Corresponding dwelling count is

then found by aggregating the rounded dwelling weight (aagpd1920) values of EHS

cases sharing the same cluster number or ID. This step is repeated for all segmented

subsets (63 in this research) to identify all archetypes in the EHS dataset.

Modelling the identified representative archetypes in appropriate simulation pro-

grams is the next step. Depending on the study objectives, more information than

the variables utilised for clustering may be required for modelling individual cases.

For example, floor area was used as a clustering variable in this study because of its

importance in investigating energy and environmental performance of buildings. How-

ever, 3D geometric modelling for energy simulation requires the translation of floor

area into building height, width and depth. Instead of making assumptions about the

geometry parameters, i.e. width, depth and height, further EHS variables such as ground

floor width (Fdhmwid1), depth (Fdhmdep1) and ceiling height (cheight0) can be used

to effectively create the 3D geometry of the ground floor of the selected EHS case.

Cross-linking the cluster number with the EHS ID (serialanon) thus affords the user to

extend downstream simulation capabilities in terms of purpose and scope, which is one

of the strengths of data-driven archetype identification.

Representative archetype development also offers the benefit of extending the ana-

lysis time horizon. For example, future energy and environmental performance under a

changing climate can be evaluated using archetypes derived from the current building

stock features. Assumptions about the evolution of the building stock such as the

changes in heating systems from gas-fired boilers to heat pumps can be encapsulated

in multiple scenarios with varying replacement rates, which can then be simulated

to investigate the effects of their installation. Assuming that the core features of the

current building stock remain unchanged, the representative archetypes can be suitable

for assessing how existing buildings might perform under future warming conditions.

However, the applicability of the archetypes may be limited in scenarios that involve

changes to the core building stock features, i.e. the changes to the variables used for

clustering. For instance, if a future scenario considers that a significant share of the new

buildings by 2050 will be purpose-built flats with smaller floor area than the present, the

characteristics of the building stock will change. In such cases, the baseline archetypes,

which are based on the current data, serve as a starting point but may require adaptation
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or the development of new archetypes to reflect these changes.

3.1.4.4 Estimating representativeness

The representativeness of the building stock achieved by the archetypes was determ-

ined by comparing the total number of dwellings per variable between the clustering

models and EHS using the mean absolute percentage error (MAPE). The MAPE of the

variables was then averaged to indicate the clustering model’s overall representativeness,

where lower MAPE indicated greater representativeness. The MAPE equation is defined

as:

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3.8)

where n represents the total number of cases, and yi and ŷi are the total dwelling

count for the variables of the EHS and clustering models respectively.

3.2 Defining archetype characteristics

Followed by the development of building archetypes, it is essential to characterise

them and prepare each for simulation. This involves defining the thermal properties,

thermal zoning, internal heat gains and external weather conditions of the archetypes.

Once the optimal number of building archetypes was determined, four main steps were

involved to prepare the archetypes for simulation, as illustrated in Figure 3.1. Firstly,

using DesignBuilder, the initial average footprints of different dwelling types were

constructed based on the English Housing Survey (EHS), followed by determining the

average room dimensions for both the living room and the main bedroom. Secondly, a

Python script was developed to define building features, where the EnergyPlus input data

files (IDF)s generated from DesignBuilder were processed to create various archetypes

with different characteristics based on the EHS data, i.e. varying floor areas and

constructions. Thirdly, the IDFs were simulated using EnergyPlus to determine the

indoor temperature of the living room and main bedroom of each archetype. Lastly, the

indoor temperature was assessed using defined metrics to determine overheating, i.e.

degree hours above temperature thresholds.
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Figure 3.3: Flowchart outlining the overheating modelling process, including input
data sources, processing steps, simulation tools and output metrics

3.2.1 Thermal zoning and geometry
Previous research on overheating has predominantly concentrated on main bedrooms

and living rooms, due to their significant occupancy rates. These spaces are considered

essential in overheating risk assessment due to their substantial contribution to occupant

exposure to thermal discomfort, resulting from prolonged occupancy and associated

internal heat gains.

This study incorporated a range of dwelling sizes, which required rescaling based on

the EHS dimensions. While detailed internal layouts have been employed in previous

studies, their suitability for diverse dwelling configurations is limited. To address this

challenge, a simplified two-zone model, containing the living room and main bedroom

on the ground floor living room and first floor respectively, was adopted. This approach

results in a manageable yet representative assessment of overheating risks across varying

dwelling sizes, focusing on the mostly occupied internal spaces.

Internal dimensions for approximately 50% of the dwellings were available from

the EHS data, which enabled the computation of the average internal dimensions for

living rooms and bedrooms for each dwelling type in each region. In combination with

the footprint measurements (width and depth) that were available for all dwellings,

the dimensions were rescaled using this data. This scaling method enabled a more

precise representation of room sizes in the overheating model, even in the absence of

detailed internal dimension data, by adjusting the internal space proportions based on

the building footprint.

The window areas from the EHS were incorporated after the layout for the two
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thermal zones was established in the model. The SAP methodology was also adopted

to recalculate the window areas of dwellings with extensions, taking into account the

total area, age, and type of the dwelling. This recalibration was necessary to avoid

inaccuracies in window size estimations for dwellings with extensions, which could have

a substantial impact on indoor temperature predictions. This was due to the potential

misallocation of window areas between the main and extended sections of the dwelling

as the EHS variables provided total window areas for both sections combined without

further specification.

3.2.2 Internal heat gains
Households of comparable size typically have similar appliance sets, indicating that

equipment heat loads are relatively independent of floor area. This study maintains

uniformity in analysing equipment loads across different dwellings using a uniform

average wattage (W). This approach addresses the limitation of the EHS, which lacks

specific data on the number and types of appliances in individual households. In

addition, employing a uniform average wattage (W) value rather than a variable one is

particularly advantageous given the study’s primary focus on the impact of construction,

geometry and weather on indoor temperature. This approach minimises the variation of

internal heat gains, facilitating a more concentrated investigation of the key variables

influencing thermal performance. For bedrooms, an 80 W load was assumed, active

from 08:00 to 23:00. In the living room, a 450 W load was applied, with peak usage

occurring between 18:00 and 22:00. For kitchens, a 300 W load was assigned, with

peaks in the morning from 08:00 to 09:00 and in the evening from 18:00 to 20:00.

The relationship between lighting and floor area is more direct than appliances. Typ-

ically, more lighting would be required to achieve adequate illumination in larger spaces,

leading to increased lighting energy consumption. Wattage per square meter (W/m²)

was implemented to simulate internal heat gains from lighting precisely. This approach

acknowledges that although the number and type of appliances in a household may

stay mostly the same, the required lighting in dwellings could vary greatly depending

on their size. Per CIBSE TM59 (Chartered Institution of Building Services Engineers,

2017), a value of 2 W/m² was chosen to account for lighting usage between 18:00 to

23:00.

Bedrooms were presumed to be occupied 24 hours a day, similar to TM59 (Chartered
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Institution of Building Services Engineers, 2017). This assumption ensures that the

heat accumulation in these rooms is consistently accounted for throughout the day and

night, as at least one occupant is present. Additionally, a sensible heat gain of 75 W per

occupant is considered to reflect the internal heat contribution from occupants. The heat

gain profile for the living rooms and kitchens was aligned with typical usage patterns

during the hottest periods of the day, occupied from 09:00 to 22:00.

3.2.3 Building fabric
The U-values for external walls varied from 0.35 to 2.1 W/m2K, based on the age

of the dwelling. These values were obtained from SAP tables (Building Research

Establishment, 2021), which provide the U-values based on dwelling age and wall type.

For older dwellings, i.e. pre-1919, higher U-values were adopted, which corresponded to

thicker bricks with minimal or no insulation. The brick and insulation thicknesses were

modified to reflect changes in U-values for different constructions. For instance, post-

1980 dwellings were constructed with reduced U-values, suggesting that the walls were

more adequately insulated, per contemporary building regulations. Internal partition

walls were assumed to be constructed from brick, plastered on both sides, with a U-value

of 1.450 W/m2K for all constructions.

The ground floor was also modelled based on the dwelling age. Higher U-values

were adopted for dwellings constructed pre-1980. The ground floor was constructed

with cast concrete, floor screed and timber flooring, which lacked insulation, resulting

in greater heat loss, with U-values around 1.35 W/m2K. Conversely, it was assumed that

insulation had been installed under the floor screed in dwellings constructed after 1980,

which led to improved thermal performance and reduced U-values (0.25 W/m2K). For

internal floors, an uninsulated suspended wooden floor with a U-value of 1.657 W/m2K

was considered.

Loft insulation thickness was essential in determining the U-values of the roof

structure, which varied from 0.16 to 2.1 W/m2K based on the insulation level. The

varying U-values resulted from different loft insulation thicknesses, as determined by

the variable loftins4 from the EHS (EHS, 2023). The roof structure consisted of clay

tiles and roof screed, which, combined with the insulation thickness, determined the

overall thermal performance of the roof.

Given the typical range of U-values for double glazing, which ranges from 2.0 to
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3.1 W/m2K, An average U-value of 2.55 W/m2K was selected for the simulations. The

EHS does not provide detailed information on the type of gas used between the panes

or the thickness of the glass, making it difficult to accurately determine the U-value of

glazing for each building archetype.

3.2.4 Infiltration
An approach to modelling infiltration is to apply a schedule that specifies the number

of times the air in a closed space is replaced per hour (ACH). ACH is also used to

describe the leakage rate, which is the frequency at which the internal air volume of a

building is replaced by outside air within one hour, subject to specific testing conditions

(del Ama Gonzalo et al., 2022). One of the most common approaches is to distribute

the ACH value equally across all thermal zones.

The infiltration rates of dwellings are influenced by the type of wall construction,

as evidenced by empirical data (Stephen, 2000). Dwellings with cavity walls were

assigned 12 ACH at 50 Pa. This relatively low infiltration rate suggests that cavity walls

offer better airtightness compared to other wall types. While dwellings with solid walls

have a higher average ACH, approximately 15 ACH at 50 Pa. The increased air leakage

associated with solid walls highlights their lower airtightness than cavity walls.

3.2.5 Weather file
The selection of appropriate weather files is essential for accurately evaluating

overheating risk in the housing stock. This thesis adopts Design Summer Year (DSY)

weather files to simulate overheating risks under current and future climate conditions.

DSY files represent typical summer weather patterns likely to cause overheating in build-

ings. All simulations were conducted from 1 May to 30 September, aligning with the

warmest months and the highest risk of overheating in the UK. For the baseline scenario,

weather data from 1961-1990 was adopted to reflect current climatic conditions, chosen

due to its representation of historical weather commonly used in building simulations.

DSY files for the 2050 high-emission 50th percentile scenario were employed to project

future climate scenarios. This scenario captures the potential impacts of climate change,

including significant increases in average temperatures and the frequency of extreme

heat events. Additionally, region-specific DSY files for different parts of the UK were

used to account for regional climatic variations. The following cities were chosen for
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the climatic representativeness of their respective regions:

• North East: Newcastle

• North West: Manchester

• Yorkshire and the Humber: Leeds

• East Midlands: Leicester

• West Midlands: Birmingham

• East: Norwich

• London: London (Heathrow)

• South East: Bristol

• South West: Portsmouth

3.3 Overheating investigation

Following the development and characterisation of the archetypes, their thermal

performance is simulated to provide indoor temperature profiles for additional analysis.

Individual EnergyPlus input data file (IDF) files are prepared, incorporating variables

such as building design, orientation and insulation. The EnergyPlus engine is then used

to process these files and simulate different indoor temperatures. The simulation results

allow for the evaluation of the frequency and intensity of high indoor temperatures and

the efficacy of solar shading for different regions.

Threshold-based approaches for evaluating overheating risk in dwellings often rely

solely on counting the number of hours that temperatures exceed a predetermined

limit, neglecting the severity of each exceedance—thus, surpassing the threshold by

1°C is treated the same as exceeding it by 5°C, although the latter poses a greater

risk to comfort. Furthermore, while adaptive comfort criteria can incorporate external

temperatures, they may not be sufficiently refined for nighttime conditions in bedrooms,

where overheating is especially problematic (Porrit, 2012). Consequently, to capture

both the duration and magnitude of exceedances, employing a degree-hours metric
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provides a more nuanced basis for assessing thermal comfort and evaluating potential

overheating.

3.3.1 Random Forest
Random Forest (RF) models were used to assess whether the developed archetypes

capture sufficient variation in key building characteristics to reflect overheating patterns

across different dwelling types and regions in the UK. The models were applied separ-

ately for each dwelling type within each English region to evaluate how well the dataset

represents the diverse climatic and architectural conditions influencing overheating.

The target variables—degree hours above 26°C (bedrooms) and 28°C (living rooms),

were used to assess overheating severity. Model performance was evaluated using R²

scores to determine whether the archetypes provide a robust basis for overheating risk

prediction.

A composite variable, dwage5x_wallinsz, was developed by merging dwelling age

(dwage5x), and wall type and insulation (wallinsz) into a single variable for the RF

model. This approach was essential because the U-value of the external walls, was

determined considering both the age of the dwelling and its insulation. If these variables

were considered separately, the significance of one could potentially outweigh the other,

leading to a skewed interpretation of their impact on overheating. The model effectively

captures their combined influence by merging them.

3.3.2 Passive cooling effectiveness
Based on the literature review, external shutters were identified as the most ef-

fective passive cooling measure across various influencing factors. While cool paint

also showed potential, it was excluded to avoid winter heat loss, given the study’s

focus on summer months. The current scope is centered on evaluating the cooling

potential of passive strategies using archetype-based modelling, which necessitates

a balance between practical applicability and computational feasibility. Assessing a

single, well-established cooling intervention, such as external shutters, allows for a

focused analysis of whether the developed archetypes can effectively capture cooling

performance variations across different dwelling types and regions. This approach

provides a baseline for understanding the interaction between overheating risk and

passive cooling potential within the modelled housing stock, forming the foundation for
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future studies incorporating additional mitigation measures.

Using both baseline and future year weather data, the effectiveness of solar shading

was investigated across different regions. External shutters were modelled in EnergyPlus

with the following characteristics:

• Blind-to-glass distance: 0.0150 meters

• Slat orientation: Horizontal

• Slat width: 0.0250 meters

• Slat separation: 0.0188 meters

• Slat thickness: 0.0010 meters

• Slat angle: 45.0 degrees

• Slat conductivity: 0.900 W/m-K

• Slat beam solar and visible transmittance: 0.000

• Slat beam solar and visible reflectance (both sides): 0.800

• Slat diffuse solar and visible transmittance: 0.000

• Slat diffuse solar and visible reflectance (both sides): 0.800

• Slat emissivity (both sides): 0.900

• Blind opening multipliers (top, bottom and sides): 0.500

The external shutters were modelled to close when the internal temperature surpasses

22°C. This approach, which assumes no restrictions on window openings, was chosen

to initiate shading in cases that could cause occupant discomfort. It is important to

note that fully open windows were not considered in the simulations– limited window

openings was assumed per SAP (Building Research Establishment, 2021).

The effectiveness of external shutters was investigated by considering the percentage

reduction in degree hours exceeding 26°C and 28°C before and after their implement-

ation on the archetypes. Additionally, the proportion of dwellings passing the TM59

overheating criteria in the baseline climate was compared to the 2050 climate scenario to
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determine whether shutters remain an effective mitigation strategy under future warming

conditions. This approach provides a comparative analysis across different dwelling

types and climates, highlighting both current and future cooling performance trends.

3.4 Model validation

It is imperative to validate the model employed to estimate the severity of indoor

overheating with building archetypes to confirm the predictive accuracy of the outputs

by comparing them to real-world data. An empirical approach was implemented to

validate the overheating model by comparing the simulated results and the observed data

from the 2017 Energy Follow Up Survey (EFUS). The following steps were followed

for the validation process:

1. Data extraction from EFUS:

• The mean indoor air temperatures for living rooms and bedrooms of end-

terrace dwellings during the summer of 2018 were obtained from the EFUS

2017.

• The mean external temperature for the same period was extracted that was

included in the survey (from the Met Office).

2. Normalisation of EFUS Data:

• The focus of the validation is on how the indoor temperature responds to

external climatic conditions. By normalising the mean indoor temperature

by the mean external temperature, these external factors are accounted for.

This ratio, termed the indoor-outdoor temperature ratio (IOTR), is calculated

as follows:

IOTR (EFUS) =
Mean indoor temperature (EFUS)

Mean external temperature (EFUS)

3. Model simulation:

• The housing stock model was used to simulate hourly indoor temperatures

for end-terrace dwellings.
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• The mean indoor temperature for living rooms and bedrooms was calculated.

• The mean external temperature from the weather file used for EnergyPlus

simulation was also obtained.

4. Normalisation of model output:

• Similarly, the mean indoor temperature from the EnergyPlus output was

normalised by the mean external temperature from the adopted weather file.

IOTR (EnergyPlus) =
Mean indoor temperature (EnergyPlus)

Mean external temperature (Weather file)

5. Comparison and analysis:

• The normalised temperatures from the EFUS data and the model were

compared. This comparison highlighted the model’s accuracy in predicting

indoor temperatures relative to external conditions.

3.5 Summary

This chapter outlines the development of representative building archetypes to

investigate overheating risks in the UK housing stock. Using the English Housing

Survey (EHS) dataset, the process begins with data preparation, followed by variable

selection for clustering, ensuring that key parameters influencing overheating risk are

appropriately considered. A clustering analysis is then conducted to determine the

optimal number of archetypes using different evaluation metrics. Once the archetypes

are established, they are characterised based on internal heat gains, geometry, orientation

and weather conditions, with a Python script used to generate archetypes of different

features. The chapter then describes the overheating assessment methods, detailing

how overheating is quantified using simulated data to evaluate risk levels across the

developed archetypes, followed by the validation steps to verify the simulated data.
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Chapter 4 |
Representativeness

4.1 Impact assessment of methodological parameters

on archetype representativeness

This section presents a sensitivity analysis to explore the influence of different

methodological parameters on archetype representativeness. By examining variations

in segmentation levels, variable counts and evaluation metrics, this analysis aims to

develop a methodological framework through sensitivity analysis, considering diverse

research focuses, scales, temporal scopes and computational costs. This framework

will subsequently be used to refine parameters for building archetype development

specifically tailored to overheating investigations.

4.1.1 Segmentation level
A range of MSF values was investigated using the English Housing Survey, consider-

ing various metrics to identify the ideal number of archetypes. Figure 4.1 illustrates the

sensitivity analysis of different segmentation levels, highlighting the trade-off between

granularity and representativeness. Increasing the segmentation level (i.e., decreasing

the MSF) increases the representativeness of the building stock features by partitioning

the data into finer subsets, each subjected to clustering. However, this also results in a

greater number of archetypes, which may increase computational costs for consequent

simulations. Therefore, selecting an appropriate segmentation level is crucial, as it

influences the number of resulting archetypes and their representativeness to different

extents for each clustering evaluation metric.

4.1.2 Clustering evaluation metric
Different clustering evaluation metrics identified varying number of archetypes,

each offering distinct levels of representativeness. Figure 4.1 illustrates the number of
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archetypes and their corresponding representativeness for different clustering evaluation

metrics. Across varying levels of MSF, ISIL consistently identified the fewest number

of archetypes. This observation may suggest that ISIL tends to identify more uniform

clusters, potentially overlooking variations within the building stock, making it less

suitable for a comprehensive stock analysis. On the other hand, IDB detected the most

archetypes, which can be preferable for studies requiring a thorough representation of

building characteristics. While ICH identified fewer archetypes than IDB, it nonetheless

demonstrated satisfactory representativeness, attempting to balance the number and

representativeness of the archetypes. Thus, while each clustering evaluation metric

has its intrinsic strengths and limitations, its strategic selection and application depend

on the specific goals and granularity required in the research. By carefully choosing

the evaluation metric, variable count and MSF, researchers can achieve their desirable

archetype representativeness, whether they seek a broad overview or a detailed portrayal

of the building stock.

4.1.3 Variable count
The sensitivity analysis also explored the influence of variable count on archetype

representativeness. Five variable groupings were investigated, as illustrated in Figure

4.2. Across all metrics, a reduction in variable count typically resulted in higher

representativeness, suggesting that using fewer clustering variables would result in a

smaller number of building archetypes with higher representativeness. ISIL showed the

biggest reduction in MAPE with decreasing variable count, followed by ICH, then IDB.

The difference in the MAPE between IDB and ICH was considerably smaller than the

difference between IDB and ISIL. In addition, ICH identified more archetypes than IDB

as the variable count decreased. These findings suggest that IDB can be suitable for

studies with a variety of variable counts or limited data availability, as it can achieve

satisfactory representativeness with a relatively low variable count. Given that IDB

demonstrated better performance than ISIL and ICH in identifying archetypes across

different variable counts and MSF, it was selected as the primary metric for further

investigations. This decision enables a more focused exploration of how similar the

distributions of variables in clustered outputs are to that of the EHS data.

The distribution of variables in the clustering outputs varied considerably for differ-

ent segmentation levels. Figure 4.3 highlights the impact of segmentation level on the
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Figure 4.1: Impact of segmentation levels on representativeness and the number of
resulting archetypes, evaluated using different clustering metrics. The bar plot represents
the number of archetypes, while the line plot shows MAPE values, where lower MAPE
indicates higher representativeness.

distribution of the categorical variables in the clustering outputs. Significant deviations

can be observed between No-MSF and MSF-15 models. The No-MSF model consist-

ently overestimated the share of the dominant feature at the expense of less-dominant

ones. Hence, the resulting distribution was noticeably different from the distribution

in the EHS. On the other hand, the distributions of all seven categorical variables in

the MSF-15 outputs were almost similar to that of the distributions in the EHS. The

No-MSF model overestimated the categories of sysage, loftins4 and wallinsz by 22.5%,

14.5% and 12.5%, respectively. The model overestimated systems aged more than 12
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Figure 4.2: Effect of variable count in on archetype representativeness considernig
a range of variable count on one segmentation level, e.g. MSF-15. The analysis
includes key housing characteristics such as floor area (floory), loft insulation thickness
(loftins4), number of storeys (storeyx), double glazing percentage (dblglaz2), dwelling
age (dwage5x), wall type and insulation (wallinsz), fuel type (fuelx) and system age
(sysage). The bar plot represents the number of archetypes, while the line plot displays
MAPE values, where lower MAPE indicates higher representativeness.

years, buildings with loft insulation thickness of 150mm or more and cavity insulated

buildings. The tendency of the No-MSF model to overestimate building stock character-

istics can have significant implications, especially if it is used to inform policy-making

or strategic planning. For example, overestimating the prevalence of older systems

(as indicated by sysage) could suggest that there are more inefficient systems than is
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the case, which could lead to the misallocation of resources for system replacements.

Moreover, misrepresenting the number of buildings with substantial insulation could

lead to policymakers believing that buildings are better insulated than they are, delaying

essential energy efficiency measures.

The floor area distributions from the clustering outputs are shown in Figure 4.4,

where the MSF-15 model’s distribution was similar to that of the EHS, with an average

difference of around 0.66%. In contrast, the No-MSF model’s floor area distribution

considerably deviated from the EHS. This model particularly underestimated the area

of detached houses by approximately 45.5% and, conversely overestimated the area

of other dwelling types, with converted flats being the most affected. The No-MSF

model’s limited ability to accurately represent the building stock’s floor area could

result in miscalculations of energy demands and efficiency, leading to inadequate or

excessive provisions for heating, cooling and lighting. Within the EHS, detached

dwellings showed significant variance in floor area distribution, potentially causing the

clustering algorithm to focus on the most common sizes, overlooking larger dwellings.

Furthermore, the limited sample size of converted flats may have constrained the al-

gorithm’s ability to effectively learn, possibly increasing its sensitivity to anomalies and

skewing the overall representation. Therefore, adopting frequency-based segmentation,

e.g. MSF-15, is essential to mitigate these discrepancies observed in the No-MSF

model, and to provide a more accurate representation of the building stock’s floor area

distribution.

The MSF-15 model’s ability to represent the building stock is further demonstrated

by its close alignment with the EHS’s distribution of dwelling types across different

regions, as shown in Figure 4.5. For example, in London, the MSF-15 model’s distribu-

tion of end- and mid-terrace dwellings differed from the EHS by less than 0.1%, while

its distribution of purpose-built flats differed by approximately 0.43%. In contrast, the

No-MSF model underrepresented London flats by 3.94% and incorrectly identified the

South West region as having the most purpose-built flats. Misidentifying regions with

predominant dwelling types can skew regional development plans, potentially causing

overcrowding or under-utilisation, which may lead to ineffective housing and urban

development strategies.
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Figure 4.3: Comparison of the distribution of categorical variables in the clustering
outputs and EHS.

4.2 Archetype development framework

Insights gained from the sensitivity analysis informed the development of a com-

prehensive framework for guiding the creation of building archetypes. The framework
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Figure 4.4: Floor area distribution of the clustering outputs and EHS.

allows the user to consider the interaction between influencing and decision factors

during the archetype development process. As presented in Table 4.1, the framework

comprises four influencing factors: geographical scale, research focus, temporal scale

and computational cost. Given a set of influencing factors pertinent to the specific

archetype development study, a user can choose the corresponding recommended values

of the three decision factors: minimum segmentation frequency (MSF), evaluation

metric and variable count.

Influencing factors are broadly categorised into features. The geographical scale is

divided into district, city and national, based on stock homogeneity. Research focus is

classed into specific and broad, depending on how broad the study objectives are. The

specific research focus is linked with the investigation into specific characteristics of

the building stock, typically within a single domain, e.g. energy efficiency and carbon

emissions. Whereas the generic research focus is typically multi-domain and requires

the modelling of interdependent factors, e.g. energy and environmental performance

and the cost of retrofitting. Another way to differentiate between ‘specific’ and ‘broad’

research focus is to look at the number of dependent variables needed to identify

significant variables for use in clustering using regression analysis. Specific research

would normally require one dependent variable, whereas the broad focus might involve
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Figure 4.5: The distribution of dwelling types and regions between the clustering
outputs and EHS.

multivariate regression analysis with two or more dependent variables. Temporal scales

range between short- and long-term, referring to instantaneous to monthly and annual

to decadal respectively. Computational cost depends on the detail and number of

domains being modelled. Hence it is characterised by two features: low and high, with

the assumption being that simplified or steady-state models are computationally less

expensive than detailed and dynamic models to simulate the building archetypes.

Minimum segmentation frequency is inversely linked with segmentation level, i.e.

the number of resulting data partitions from frequency-based segmentation. In this

framework, MSF is divided into low, moderate and high with corresponding values of
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more than 40, between 25 and 40, and less than 25 respectively. There are three clus-

tering evaluation metrics in the framework: Calinski-Harabasz (ICH), Davies-Bouldin

(IDB) and Silhouette (ISIL). Variable count refers to the number of variables selected

for clustering. Even though the regression results may suggest a higher number of

significant variables within the building stock data, the user may opt to use fewer vari-

ables to handle multicollinearity and reduce computation time during clustering. In the

framework, low, moderate and high variable count refers to between 2 and 3, between 4

and 6, and more than 6 variables respectively.

Table 4.1: Framework for developing building archetypes considering different influen-
cing factors.

Influencing factor Feature MSF1 Evaluation metric2 Variable count3

Geographical scale District High ISIL or IDB Low
City Low to moderate IDB or ICH Moderate to high
National Low IDB or ICH Moderate to high

Research focus Specific Moderate to high ISIL or IDB Low
Broad Moderate to high IDB or ICH Low to moderate

Temporal scale Short-term Low IDB or ICH Moderate to high
Long-term Moderate to high IDB Low

Computational cost Low (e.g. steady-state simulation) Low IDB or ICH Moderate to high
High (e.g. dynamic simulation) Low to moderate IDB Low to moderate

Notes:
1Minimum segmentation frequency (MSF): Low (MSF: <25), Moderate (MSF: 25-40), High (MSF: >40).
2Evaluation metric: ICH (Calinski-Harabasz), IDB (Davies-Bouldin), ISIL (Silhouette).
3Variable count: Low (2-3), Moderate (4-6), High (>6).

4.2.1 Geographical scale
The methodological approach to archetype development is significantly influenced

by the geographical context (Ali et al., 2019). Neighbourhoods and homogeneous

districts are often characterised by limited data availability (Liu et al., 2010). In such

cases, simplified models with few variables is generally more applicable than detailed

models that require disaggregated data. A low segmentation level, i.e. high MSF, is

often sufficient for neighbourhoods and districts due to the homogeneity in building

characteristics such as age, materials, construction and usage. This reduced complexity

avoids the unnecessary partitioning of data, as the buildings are likely homogeneous

enough to be adequately represented with fewer archetypes. ISIL can be ideal in these

circumstances, as demonstrated in Figure 4.1, as the index consistently identified the

fewest archetypes. However, if increased representativeness is desired within the scope

of the available computational resources, IDB can be employed to provide a more

comprehensive portrayal of the building stock.

Conversely, the likelihood of the existence of high-quality data is higher for urban

87



4.2 ARCHETYPE DEVELOPMENT FRAMEWORK

and national contexts, which supports the use of more complex modelling. Higher

levels of segmentation, i.e. low MSF, can be adopted in such cases. In heterogeneous

larger geographies, ICH and IDB indices are more applicable as they are better suited

in identifying a broader range of representative archetypes, as shown in Figure 4.1.

Representativeness is crucial in large-scale studies for accurately representing the variety

of building characteristics found in heterogeneous building stocks, to ensure a detailed

and encompassing view of the urban and national building landscapes.

4.2.2 Research focus
Research focus in building stock modelling varies from specific studies targeting a

single domain to broader analyses considering multiple domains. The particular needs

of the study, regardless of the geographical scale, often leads to the adoption of varying

number of archetypes. For instance, a specific research on the effects of increasing cavity

wall insulation on internal temperatures, a low to moderate segmentation level is often

sufficient, particularly as the dataset tends to be uniform in insulation characteristics.

The homogeneity of the data in this case facilitates the adoption of fewer variables.

ISIL is an ideal choice for evaluation metric because it results in fewer archetypes, as

shown in Figure 4.1. However, for studies that target all types of wall insulation, IDB

may be more appropriate, as it can handle more variables and is capable of identifying

archetypes with high representativeness.

Modelling complexity increases in studies with a broader research focus and mul-

tiple objectives. For instance, studies on indoor overheating due to climate change

and corresponding energy demand requires the consideration of complex interactions

between two interconnected domains: building thermal and energy systems. To effect-

ively address this dual focus, the study would likely require a multivariate regression

analysis to identify relevant clustering variables, using at least two dependent variables:

indoor temperature and energy consumption. Hence, higher segmentation levels and

more variables may be needed to adequately model the variations in building thermal

characteristics, and energy and environmental systems to study their influence on indoor

temperature and energy demand. When high segmentation levels are required, the

choice between ICH and IDB can be guided by the variable count and availability of

computational resources. ICH appeared to be more effective for high variable counts, as

shown in Figure 4.2, as it identifies fewer archetypes than IDB, albeit at the expense of
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representativeness. However, in cases where computational cost is not a concern, IDB is

a better choice for enhanced representativeness.

4.2.3 Temporal consideration
Building stock modelling studies focusing on short-term analysis may require

archetypes that comprehensively represent existing building characteristics. Hence,

representative archetypes are essential for ensuring relevant analyses to inform effective

decision-making and policy formulation. Figures 4.1-4.5 demonstrate how higher

segmentation levels are well-suited to achieving high representativeness of variables

such as “type of wall and insulation” (wallinsz), and are capable of adequately capturing

different building typologies with a floor area variation closely resembling that of the

original building stock, i.e. the EHS. Among all clustering evaluation metrics, IDB is

found to be particularly effective for such comprehensive analyses as it achieved the

highest representativeness with a low variable count, as shown in Figure 4.2.

For long-term building stock analyses that anticipate changes in building characterist-

ics, a low to moderate level of segmentation, and a low variable count are recommended

to minimise computational costs and avoid the risk of archetypes becoming inconsistent

or irrelevant over time. For instance, referring to Figure 4.3, it is observed that the

No-MSF (i.e. no frequency-based segmentation) model tends to overestimate the pre-

valence of cavity-insulated dwellings within the existing building stock. However, this

overestimation might be considered less-critical when projecting future (e.g. by 2050 or

2100) scenarios for indoor overheating assessment, given the anticipated rise in newly

constructed dwellings featuring cavity wall insulation.

4.2.4 Computational cost
Simplified modelling such as steady-state simulations, due to their relatively lower

computational demands (Gatt et al., 2020), are well-suited for building stock studies

comprising a wide range of archetypes. Simplified models are often able to deal with

diverse variables from multiple domains. A high level of segmentation is, therefore,

recommended to account for the diversity of variables. IDB is typically preferred in

these scenarios for its ability to handle a variety of clustering variables with high

representativeness, as shown in Figure 4.2. However, ICH can also be used, especially

when fewer archetypes are sufficient, offering flexibility in model design.
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In contrast, detailed such as whole-building dynamic simulations are computation-

ally expensive Hong et al. (2020), requiring careful considerations of the impact of

the selected segmentation level on the number of resulting archetypes. While a larger

number of archetypes can fully leverage the capabilities of dynamic simulations to

provide detailed temporal insights, researchers often face limitations in computational

power. This consideration becomes particularly crucial as the geographical scope in-

creases and the building stock becomes more diverse. When less resources, both time

and computation, are available to the user, adopting a moderate to lower segmentation

level can be a practical approach to acquiring meaningful insights while dealing with

resource constraints. This approach limits the dataset from being overly segmented,

thereby reducing the number of archetypes needed for individual dynamic simulations.

The combination of IDB and low variable count can be advantageous for representative

clustering, as demonstrated in Figure 4.2, especially when dynamic simulations are

used as the analysis tool.

4.3 Summary

The summary has been as follows: This chapter investigates the methodological

parameters that influence archetype representativeness, focusing on segmentation levels,

clustering evaluation metrics and variable count. The analysis demonstrates that dif-

ferent clustering evaluation metrics yield varying levels of representativeness, with the

Davies-Bouldin index identifying the highest number of archetypes with the greatest

representativeness. Higher segmentation levels result in a greater number of archetypes,

improving representativeness by capturing a broader range of building characteristics.

While a reduced number of variables leads to fewer archetypes with sufficient represent-

ativeness, adopting many variables can increase complexity without major improvement

of representativeness. Findings from the sensitivity analysis informed the development

of an archetype framework, considering factors such as geographical and temporal

scales, computational costs and research focus. The framework provides guidance

on selecting appropriate parameters to develop representative archetypes tailored to

different research contexts, aiming to balance complexity and practicality.
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Archetype development

This chapter presents the development and validation of building archetypes used

in this research. It outlines the process of creating the archetypes, detailing variable

selection, segmentation and clustering evaluation metric. Following the development, a

validation is conducted to ensure that the archetypes adequately reflect the characteristics

of the UK housing stock to prepare for overheating simulations.

5.1 Developing archetypes for overheating analysis

A comprehensive framework for archetype development was introduced in Chapter 4.

This framework provides a methodical approach to generating representative archetypes

by simplifying the complex nature of many building features into manageable groups.

While the previous chapter focused on identifying variables related to energy efficiency,

the present investigation requires particular adjustments to the methodology in terms of

choosing the variables, segmentation level and clustering evaluation metric to address the

unique challenges associated with overheating risk assessment. This work demonstrates

the flexibility of the archetype development framework by adjusting it to align with the

specific context of overheating for different regions at the national level, highlighting

the framework’s adaptability for conducting context-specific evaluations for different

research settings.

This investigation uses the virtual archetypes from clustering to identify the closest

real-world equivalents within the English Housing Survey (EHS), particularly emphas-

ising factors pertinent to overheating risks. Such selection prioritises important variables

related to overheating for the clustering procedure, while also using additional data from

secondary factors that were not included in the initial selection, i.e. any EHS variable

not included in clustering.

The insufficient sample size of converted flats in the EHS limited the clustering
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algorithm’s capability to represent these dwellings accurately. Furthermore, the meth-

odology employed to represent the housing stock, which assumes typical internal

arrangements like living spaces on the ground level and bedrooms on the first level,

may not precisely represent the spatial arrangements of converted flats. The distinctive

architectural designs and varying degrees of attachment to the surrounding surfaces in

these flats make their inclusion more challenging, hence, converted flats were excluded

from this study.

5.1.1 Variable selection
For the overheating assessment, the variables that were identified by multiple linear

regression, such as loft insulation thickness (loftins4) and dwelling age (dwage5x),

will be kept because they are important factors in both energy efficiency and indoor

overheating. Nevertheless, particular variables such as fuel type (fuelx) and system age

(sysage) will be omitted, given that they are more influential on energy performance

than indoor temperature. The double glazing percentage (dblglaz2) has also been

removed as a clustering variable, as the majority of buildings in the dataset are already

double-glazed. Moreover, as the study considers both short- and long-term investigation,

e.g. the baseline and 2050s climate scenario, it is likely that the housing stock will

be fully double glazed by 2050. Retaining dblglaz2 would increase the number of

archetypes without yielding major benefits, only leading to higher computing costs

for simulations. New variables, window size (winsiz), calculated from summing the

window areas on each side from the EHS data, and orientation (felorien), have been

included to more accurately represent overheating factors. These factors are essential for

establishing archetypes that accurately represent the effects of solar heat gains, which

directly influence indoor overheating. This approach aims to ensure that the chosen

variables are relevant and assist in a more effective and concentrated investigation of

overheating by reducing the number of variables and decreasing computational cost for

simulations given a specific research focus.

5.1.2 Clustering evaluation metric
In Chapter 4, it was shown that the Davies-Bouldin index consistently identified

more archetypes with a higher degree of representativeness than the Silhouette and

Calinski-Harabasz indices. This makes the Davies-Bouldin index particularly useful for
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analysis requiring a thorough and detailed representation of the building stock, e.g. a

national-scale investigation.

5.1.3 Segmentation level
It is important to acknowledge the anticipated variance in building constructions

and geometries given the nationwide scope of this study. Higher segmentation levels

are, therefore, ideal for capturing greater detail and potentially ensuring that the model

appropriately represents the differences between various regions and building types.

The number of archetypes was effectively reduced from 9253 to 5561 by adopting

MSF 17-20 for various dwelling types– this reduction is nearly half the original num-

ber of buildings. Despite this substantial reduction, the distribution of the clustering

variables is consistent with the original data, as illustrated in Figure 5.1. Furthermore,

the mean floor and window area of the reduced set of archetypes were 0.55% and

0.3% different from those of the EHS respectively. This balance between maintaining

representativeness and reducing the number of archetypes demonstrates the effective-

ness of using MSF levels within this range, such as MSF 17-20. This supports the

validity of the approach for accurately modelling the diverse types of dwellings and

their characteristics within the EHS dataset.
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Figure 5.1: The distribution of clustering output to the EHS based on the dwelling
counts of the clustering variables.

5.1.4 Understanding variations from the EHS
The EHS adopts a two-stage stratified sampling method, selecting geographic areas

and sub-sampling households by tenure to create a representative sample of English

households. While this approach reduces sampling errors and biases, systematic and

random errors remain. For instance, households in newly developed areas not listed in

the Postcode Address File (PAF) may be under-represented. Furthermore, households
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that choose not to participate might differ from respondents. Although the EHS uses

stratification and weighting to address these issues, it cannot entirely eliminate these

limitations.

Achieving representative archetypes is challenging due to the inherent limitations of

the EHS sampling design, including potential biases and sampling frame constraints.

Using clustering techniques to reduce the number of archetypes balances computational

efficiency with representativeness. While this method may cause minor discrepancies

in dwelling counts across variables, these differences are justifiable given the EHS’s

inherent limitations. The clustering approach effectively captures housing stock diversity

while maintaining manageable archetype numbers, ensuring key variables influencing

indoor overheating are well represented.

5.2 Validation results and analysis

A comparison of the housing stock model’s outputs with empirical data from the

EFUS (Department for Energy Security and Net Zero and Department for Business,

Energy & Industrial Strategy, 2021a) is crucial for assessing the model’s predictive

capabilities. This is achieved by calculating the indoor-outdoor temperature ratio

(IOTR), as explained in Section 3.4. By normalising indoor temperatures relative to

external conditions across diverse dwelling types and regions, this study evaluates the

model’s capability to accurately represent the influence of external climate on indoor

thermal environments. This investigation selects end-terrace archetypes to carry out the

validation steps. The following analysis discusses the model’s performance, identifying

its strengths and weaknesses. Model assumptions, variations in building characteristics

and occupant behaviour are also discussed to explain model outcomes. This evaluation

validates the model’s capabilities while pinpointing areas for improvement.

The EFUS dataset presents a limitation in providing only mean monthly temperatures

for key indoor spaces, rather than hourly readings. By comparing the IOTR for June,

July and August from the survey with corresponding simulated data from EnergyPlus,

the aim is to ensure that the model has the capacity to adequately reproduce the impact

of external climate on the indoor thermal environment within the typology of interest,

i.e. end-terrace dwellings in each region.
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A small discrepancy was observed when comparing the IOTR between the model

and EFUS data. The model estimated the IOTR to be 0.73% higher for the living

room (1.36 compared to 1.35) and 5.71% higher for the bedroom (1.44 compared to

1.36). While these differences indicate a modest overestimation of indoor temperatures,

particularly in the bedroom, the model still performs well overall. The following section

discusses potential explanations for these differences.

5.2.1 Addressing model discrepancies
The comparison between the building stock model’s overheating predictions with

empirical data from the EFUS revealed minor discrepancies in the IOTR for living

rooms and bedrooms. The discrepancies observed may be explained by the following

points:

• For the EnergyPlus model, more dwelling sizes were included, potentially con-

sisting of smaller dwellings that could experience higher temperatures given less

volume for air circulation. Differences may also be present in the construction

data. For instance, some EFUS dwellings were at risk of fuel poverty, which

may have a different distribution of dwelling ages, potentially with an over-

representation of pre-1919 dwellings that typically have lower insulation levels

and better natural ventilation. However, the focus of this study is solely on over-

heating during summer months, where the primary drivers are external climatic

conditions, solar gains and ventilation behaviour, rather than heating-related influ-

encing factors that are more relevant in winter. Given that EFUS represents the

only large-scale, nationally representative indoor temperature survey of the UK

housing stock, it remains a practical dataset for validation in this study. While

some dwellings in EFUS may be at risk of fuel poverty, their proportion within

the overall survey is relatively small, and the dataset still captures a broad range

of dwelling characteristics.

• The EFUS (Department for Energy Security and Net Zero and Department for

Business, Energy & Industrial Strategy, 2021a) shows that living rooms are

frequently occupied during the day and evening. During weekdays, about 43%

of households have an occupant indoors during the day, increasing to 60% on

weekends. The survey shows that bedrooms are predominantly occupied during
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the nighttime— 94% of households reported an occupant within the dwelling

during nighttime. During the day, however, bedrooms are less likely to be

occupied, particularly on weekdays. In the EnergyPlus model, TM59 occupancies

(Chartered Institution of Building Services Engineers, 2017) are adopted, which

consider a worst case scenario for metabolic heat gains as it assumes constant

bedroom occupancy, which potentially results in the model’s slight overestimation

of bedroom temperatures given a higher discrepancy (IOTR = 5.71%).

• Window opening may also contribute to the reported discrepancies between

the EnergyPlus model and EFUS. Window opening behaviour can considerably

influence indoor thermal performance, especially during summer. The EnergyPlus

model adopted window opening rules per CIBSE TM59 (Chartered Institution of

Building Services Engineers, 2017), which assumes fully opened windows when

indoor temperatures exceeded 22°C during occupied periods in each room. An air

change per hour (ACH) of 2 was adopted to account for potential limitations in

window opening capabilities, similarly, this also assumes a worst case scenario as

higher ACH are recommended per SAP (Building Research Establishment, 2021).

The EFUS did not report window opening behaviours, but the adopted patterns

may have been more effective in reducing internal temperatures than the model’s

assumed behaviour.
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Chapter 6 |
Discussion and results

This chapter presents the outcomes of the dynamic thermal simulations performed

on the developed archetypes, analysing the mean indoor temperature, degree hours

above critical thresholds and TM59 compliance (i.e., pass or fail for overheating risk)

once shutter has been placed. The findings support the use of archetype-based modeling

for capturing regional and dwelling-type variations in overheating risk.

6.1 Indoor temperature variation

An analysis of mean internal temperatures across various archetypes reveals vari-

ations in thermal performance when segmented by dwelling type and region, as show

in Figure 6.1. For further insight, a detailed breakdown of the minimum and max-

imum temperature variations in baseline and future climate, along with the external

temperature distributions for these regions, is provided in the Appendix A.2.

The analysis of regional variations in internal temperatures reveals higher temperat-

ures in the South compared to northern regions. London recorded the highest internal

temperatures, with living rooms averaging 23.93°C and bedrooms 23.59°C, reflecting

findings from Beizaee et al. (2013) and Lomas and Kane (2013), which identify London

as the region with the highest internal mean temperature. This can be due to the UHI

effect, high-density housing and limited night-time cooling. In contrast, the North

East and North West showed the lowest temperatures, with living rooms averaging

21.85°C and 21.84°C, and bedrooms 21.83°C and 21.82°C respectively, reflecting the

influence of cooler external conditions and greater night-time cooling potential. Midland

regions, such as the East Midlands and East, recorded intermediate temperatures, with

living rooms around 22.20°C and bedrooms 21.94°C, reinforcing the broader trend

of increased internal temperatures in the South due to higher external temperatures,

increased solar radiation and the prevalence of better-insulated dwellings (EHS, 2023).
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Figure 6.1: Daily mean temperature distribution in living rooms and bedrooms across
regions and dwelling types in baseline climate.
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Moreover, the mean internal temperature distribution reveals a pattern consistent

with previous monitoring studies on the influence of dwelling age on internal thermal

conditions. Pre-1919 dwellings recorded lower mean internal temperatures, with both

bedrooms and living rooms maintaining cooler conditions compared to newly built

constructions. Dwellings built after 1980 consistently show higher internal mean

temperatures, particularly in bedrooms, where heat retention is more pronounced due

to improved insulation and airtightness. These findings are in agreement with Beizaee

et al. (2013) and Lomas and Kane (2013), who reported that older homes, particularly

those constructed before 1919, tend to have lower internal temperatures as a result of

increased heat loss through solid, uninsulated walls.

Similarly, distinct temperature patterns emerge across dwelling types, with flats

recording the highest indoor temperatures, while bungalows and detached dwellings

remain the coolest. Flats recorded the highest mean occupied temperatures, with living

rooms averaging 23.78°C and bedrooms 23.12°C, consistent with Beizaee et al. (2013)

and Lomas and Kane (2013), who identified flats as most prone to overheating. In con-

trast, bungalows had the lowest temperatures in bedrooms (21.52°C), likely benefiting

from greater exposure to external airflow. Detached dwellings followed a similar trend,

with living rooms at 22.04°C and bedrooms at 22.08°C, reinforcing findings that their

larger external surface area facilitates heat dissipation. Mid-terrace dwellings averaged

22.19°C in living rooms and 22.23°C in bedrooms, while end-terraces recorded similar

values of 22.19°C and 22.24°C, reflecting their shared walls’ insulating effect while

retaining better ventilation potential than flats. Although bungalows were not considered

in Beizaee et al. (2013) and Lomas and Kane (2013), their inclusion in the EFUS (EFUS,

2021a) confirmed that bedrooms in bungalows tend to be the coolest. These findings

confirm that flats face the greatest overheating risk, while detached dwellings and

bungalows remain cooler, with terraced dwellings in between.

6.2 Overheating influencing variables

This section employs a Random Forest analysis on the archetype dataset to evaluate

the influence of various building characteristics on overheating risk, quantified as degree

hours above 26°C and 28°C in bedrooms and living rooms. The analysis explores
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whether the increased variation captured within the archetype data enables the RF model

to reflect overheating influences. Model accuracy is subsequently assessed to establish

whether the resulting patterns are reliable, and consistent with established trends.

The robustness of the results is reinforced by the strong performance of the Random

Forest (RF) model. As shown in Figures 6.2 and 6.3, the high R² values across different

dwelling types and regions demonstrate the model’s ability to accurately predict the

influence of various factors on degree hours in both bedrooms and living rooms under

baseline and future climate conditions. The scatter plots, with points clustering closely

near the diagonal, indicate consistent performance across both room types. This strong

predictive accuracy can be attributed to the rich variation in the data provided by the

comprehensive archetypes—variation that traditional parametric models, which often

use less diverse data, may fail to capture. The following factors were considered:

• Thermal transmittance of building elements (dwage5x_wallinsz)

• Orientation of main facade (felorien)

• Household size (hhsizex)

• Terrain (area3x)

• Total window area (winsiz)

• Total floor area (floory)

In addition to the strong model accuracy identified, the patterns observed in the

analysis (see Table A.2) are consistent with existing literature. In southern regions,

where solar heat gains are higher, window area and orientation emerge as dominant

factors. This effect is particularly evident in flats and detached homes, where larger

window surfaces and direct sunlight exposure significantly increase overheating risk. In

contrast, in northern regions, where solar gains are lower, the influence of window area

and orientation is less, and the thermal transmittance of constructions is more influential.

By 2050, these trends become even more pronounced: solar-driven overheating remains

the primary concern in the South, while thermal transmittance becomes increasingly

influential in the North.
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Figure 6.2: Relationship between bedroom and living room R2 values for random
forest model performance in the baseline climate, categorised by region and dwelling
type.

Figure 6.3: Relationship between bedroom and living room R2 values for random
forest model performance in the 2050 climate, categorised by region and dwelling type.

6.3 Regional analysis of overheating

The Random Forest models have effectively captured key influencing variables, as

demonstrated by their predictive accuracy, while internal mean temperature patterns

align with established trends across regions and dwelling types. Building on this
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foundation, the analysis now progresses to a regional analysis of overheating risk,

quantified in terms of degree hours above 26°C in bedrooms and 28°C in living rooms,

as shown in Figure 6.4.

London consistently recorded the highest overheating risk across all dwelling types

and climate scenarios, with flats being the most affected dwelling type. In the baseline

scenario, London’s flats accumulate 870 degree hours above 26°C in bedrooms and

794 degree hours above 28°C in living rooms, which is higher than any other region.

By 2050, these values increase considerably, reaching 2390.5 and 2459.1 degree hours

respectively, indicating a near threefold increase. Other dwelling types in London, such

as bungalows and mid-terrace homes, also record increases, with bungalows reaching

1582.8 bedroom degree hours and 1154.4 living room degree hours.

The South East and South West consistently show the next highest overheating

risks, with overheating levels well above those seen in northern regions. In the baseline

scenario, South East flats record 246.7 bedroom degree hours and 183.1 living room

degree hours, while the South West follows closely with 228.5 bedroom degree hours

and 106.5 living room degree hours. By 2050, overheating intensifies, with flats in

the South East reaching 1563 bedroom degree hours and 1377.5 living room degree

hours, while the South West reaches 1951 bedroom degree hours and 1712.3 living

room degree hours. These trends indicate that southern England will face extreme

overheating conditions, second only to London. The higher temperatures in these

regions are mostly driven by increased solar radiation exposure compared northern

areas, making overheating mitigation strategies essential for future developments.

Northern regions show considerably lower degree hours in both the baseline and

projected climate scenario. In the baseline climate, bedroom degree hours for flats

in the North East are 93.1, while the North West records an even lower 51.6, both

substantially lower than values seen in the South. Living room overheating risks follow

a similar pattern, with the North East at 85.7 degree hours and the North West at just

0.4. However, despite these lower starting values, the 2050 projections reveal a sharp

percentage increase in overheating. In the North East, flats increase to 409.9 bedroom

degree hours and 342.1 living room degree hours, while the North West reaches 411.2

bedroom degree hours and 211.1 living room degree hours. Although the absolute

values remain lower than in the South, these three- to fivefold increases demonstrate
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that climate change will intensify overheating risks across the entire country, even in

traditionally cooler northern regions.

Among all dwelling types, flats are the most vulnerable to overheating in every

region and scenario. In London, flats reach 2390.5 bedroom degree hours and 2459.1

living room degree hours by 2050, making them the most heat-stressed dwellings in the

UK. This trend is consistent across other regions, with flats in the South East reaching

1563.0 bedroom degree hours and 1377.5 living room degree hours, while those in the

South West rise to 1951.0 bedroom degree hours and 1712.3 living room degree hours.

Even in the North East and North West, where overheating is less severe, flats still

record the highest overheating levels, highlighting their structural disadvantages. In

contrast, detached dwellings tend to perform better, benefiting from larger surface areas

for heat dissipation and improved cross-ventilation, making them less prone to extreme

overheating.

The findings of Fosas et al. (2018) and Mulville and Stravoravdis (2016) indicate

that higher insulation levels and improved fabric energy efficiency can lead to increased

overheating risk in some dwellings. The increased overheating risk in well-insulated

homes is evident in the current analysis, where post-1980 dwellings consistently recor-

ded the highest degree-hour accumulations across both baseline and future scenarios.

Post-1980 dwellings averaged approximately 107.7 degree hours above 28°C in living

rooms and 160.5 degree hours above 26°C in bedrooms, higher than the values for

older constructions. By 2050, these figures increase to around 701.9 degree hours in

living rooms and 969.9 degree hours in bedrooms, while dwellings built before 1919 or

between 1919 and 1980 maintain considerably lower degree hours.

Thermal simulations conducted using the archetype-based modeling framework

have demonstrated their robustness in capturing both present and projected overheating

trends across the UK housing stock. The findings further reinforce the reliability of this

approach in assessing overheating risks under current and future climate conditions, with

strong alignment between simulated outputs and prior empirical and modeling studies.

This consistency underscores the framework’s capacity to provide meaningful insights

into regional and dwelling-type variations, making it a valuable tool for large-scale

overheating assessments.
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Figure 6.4: Average degree hours for bedrooms and living rooms in current and future
climate.

6.4 Passive cooling performance

A further check on the archetype-based simulations involves evaluating the effect-

iveness of external shutters as a passive cooling strategy by comparing the number of

archetypes that fail the overheating criteria before and after shutter installation. The

observed reduction in dwelling failures provides a quantitative measure of the cooling

impact, demonstrating that the application of external shutters can markedly decrease

the percentage of units exceeding the TM59 threshold.

In regions with higher solar heat gains, such as London, the South East, and the

South West, external shutters exhibit more pronounced cooling performance, actively

reducing overheating levels. For example, in South West flats, the baseline degree hours

decrease from 228.5 to 98.1 (around 57.1% reduction), and under the 2050 scenario,

it drop from 1951.0 to 796.8 degree hours (a 59.2% reduction). This demonstrates

that shutters can significantly counteract the effects of intense solar exposure in these

areas. However, despite these substantial reductions, the cooling effect of shutters
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alone is insufficient to completely eliminate overheating risk, suggesting that additional

measures will be necessary in regions with extreme solar gains. In contrast, northern

regions, where baseline overheating is lower, experience relatively smaller reductions in

degree hours.

To note, in the base scenario, the application of shutters led to a reduction in over-

heating failures in almost 27% of the buildings, allowing more dwellings to pass the

TM59 criteria. However, by 2050, as the climate warms, this benefit diminished signi-

ficantly, with shutters only reducing failures in about 10% of the buildings. Despite still

providing some cooling potential, fewer dwellings were able to meet TM59 require-

ments, even with shutters are used. The overall overheating failure rate also increased

sharply, rising by over 65% compared to the base scenario without shutters.

Across all scenarios, flats consistently recorded the most degree hours, both prior to

and following the installation of shutters. This trend is observed in all regions, where

flats continue to exceed TM59 thresholds in 2050 despite the application of shutters.

In contrast, detached dwellings show consistently lower degree hours. These findings

align with patterns observed in previous studies, where flats tend to face greater thermal

discomfort due to their design characteristics, while detached homes experience more

favorable conditions given more exposing surfaces.

The findings of this study reinforce the validity of the archetype-based modeling

framework in capturing key patterns in passive cooling potential of external shutters.

Wright and Venskunas (2022) demonstrates that shading provides notable cooling

benefits, particularly in detached dwellings, where lower overheating risks are observed

in London and other southern regions. Furthermore, regional variations in shading

effectiveness are evident, as similar performance trends emerge across different climatic

conditions. The analysis further indicates that while shading remains a significant

passive cooling measure under future climate scenarios, its efficacy is particularly

pronounced in buildings with larger exposed surfaces, e.g. detached dwellings. These

findings align with Porritt et al. (2013), who highlight the reduced effectiveness of

shading in flats and terraced dwellings due to installation constraints. Collectively, these

results demonstrate that the archetype-based methodology reliably reflects the primary

drivers of overheating risk and mitigation across diverse dwelling types.
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6.5 Summary

The archetype-based approach derived from the proposed framework has proven re-

liable in capturing typical overheating patterns and their primary drivers. Moreover, the

observed reduction in overheating following the application of external shutters aligns

with patterns reported in previous studies, reinforcing the reliability of the archetype

framework in simulating both baseline conditions and targeted cooling interventions.

Overall, the results demonstrate the approach’s capability for large-scale overheating

assessments and its potential to guide evidence-based strategies for mitigating summer

thermal risks in the UK housing stock.

Figure 6.5: Average degree hours for bedrooms and living rooms in current and future
climate after shutter placement.
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Conclusion

Rising temperatures and more frequent heatwaves are intensifying overheating risks

in the UK housing stock, posing challenges to occupant comfort, health, and well-being.

To address these risks at a national scale, it is essential to use representative archetypes

that accurately reflect the diversity of housing characteristics. This study introduced

an MSF-based framework for archetype development, enabling a more comprehensive

assessment of regional overheating patterns. By validating the framework through

simulations and evaluating its ability to capture key overheating drivers and mitigation

patterns, the research demonstrates its robustness for large-scale overheating analysis.

This chapter first discusses the research findings, outlining key insights from the

analysis. It then highlights the main contributions, particularly advancements in arche-

type development for overheating assessments. This is followed by a discussion of

research limitations, identifying areas for further refinement and proposing directions

for future work.

7.1 Research findings

7.1.1 Research question 1
1. What are the primary determinants of overheating in the UK housing stock ?

This question is addressed in Section 2.7, where a review of the literature on over-

heating and its influencing factors was conducted. The literature review identified

building design, construction and household characteristics as important factors influen-

cing indoor overheating. There is a greater overheating risk in certain types of dwellings,

such as flats and mid-terraced houses, as well as rooms that face south or west and other

orientations in between. Due to the lower temperature threshold in the static overheating

criterion, bedrooms are often more likely to be identified as overheated. Living rooms

109



7.1 RESEARCH FINDINGS

are typically warmer than bedrooms in flats, most likely due to greater heat gains from

cooking in open-plan flats and higher solar heat gains. On the other hand, living rooms

in houses are usually located on the ground floor and receive comparatively less solar

heat gains than bedrooms on the first floor. The type and age of the dwelling, as well

as the number of floors and floor area, may influence the difference in the internal

temperature between bedrooms and living rooms.

Solid-walled constructions are less susceptible to overheating than well-insulated

contemporary constructions. Therefore, the placement of wall insulation must be

carefully considered because of the likely increased risk of overheating associated

with internally placed insulation, given that a sizeable share of the UK housing stock

still has solid-walled constructions. However, findings suggest that the increased risk

of overheating caused by internal wall insulation can be avoided in the current and

possibly future climate with additional passive strategies such as external solar shading,

which can offer optimal cooling effectiveness in well-insulated constructions. On the

other hand, cool paint has been found to be the more ideal passive strategy to reduce

overheating in uninsulated dwellings.

7.1.2 Research question 2
1. For different influencing overheating factors, how does the effectiveness of passive

cooling measures vary in reducing indoor temperatures ?

Section 2.9 addresses the current research question by identifying the most com-

monly used passive cooling measures and investigating their applications. Building on

the identification of key overheating factors from the preceding section, each passive

cooling strategy was introduced into a framework that assessed its relative effectiveness

against different overheating factors, drawing on findings from earlier research. This

framework provides a comprehensive view of how various passive cooling measures

perform in relation to specific overheating influences, based on established evidence

from prior studies.

Vulnerable occupants, such as the elderly or infirm, can greatly affect the effective-

ness of passive cooling measures reliant on occupant interaction, like natural ventilation.

Window opening or manual control of ventilation systems may not be consistently or ef-

fectively managed by these individuals, increasing overheating risks. The effectiveness
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of natural ventilation is significantly decreased without active occupant participation to

regulate temperatures. To address this, intelligent ventilation systems that automatically

adjust airflow based on real-time temperature and air quality data could ensure effective

heat dissipation, maintaining thermal comfort and reducing overheating risks for those

unable to manually manage these systems.

As the climate warms, the effectiveness of individual passive cooling strategies is

expected to decrease, especially by the 2080s when higher ambient temperatures and

more frequent heatwaves become common. Natural ventilation and thermal mass, which

depend on cooler external temperatures for heat dissipation, may lose effectiveness as

rising outdoor temperatures reduce the potential for natural heat loss. To address this,

a combination of passive cooling measures will be necessary to reduce overheating

effectively. For instance, integrating solar shading, cool roofs and automated ventilation

systems can reduce solar gains and improve heat dissipation. As single strategies

become less effective in extreme future climates, adopting multiple strategies together

will be crucial for maintaining thermal comfort and mitigating overheating risks.

The effectiveness of passive cooling strategies varies significantly for different

overheating factors, including dwelling type, occupancy and orientation. Strategies such

as solar shading and cool paint perform optimally under different conditions, with solar

shading being highly effective across most dwelling types, and cool paint being least

affected by orientation or construction type.

Solar shading and cool paint are identified as the most effective passive cooling

strategies for both current and future climates. Solar shading consistently shows high

performance, in both traditional and energy-efficient dwellings, while cool paint offers

significant potential in dwellings with minimal insulation and large, exposed surfaces.

7.1.3 Research question 3
1. How do methodological choices affect archetype representativeness, and what

recommendations can be made for developing representative archetypes ?

There is an increasing need for representative building archetypes to better capture

building diversity and improve the accuracy of building simulations and overheating

risk assessments. A review of building archetype development methods identified key

parameters influencing representativeness and introduced a frequency-based partitioning
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approach, "minimum segmentation frequency," to improve it. A sensitivity analysis

investigated the impact of segmentation levels, variable counts and clustering evaluation

metrics on archetype representativeness. Higher segmentation levels produced more

representative archetypes, with the Davies-Bouldin index consistently identifying more

archetypes with higher representativeness, followed by the Calinski-Harabasz and

Silhouette indices. Lower variable counts resulted in fewer but more representative

archetypes across all indices.

The sensitivity analysis informed the development of a comprehensive framework

for creating representative building archetypes. The framework considers geographical

and temporal scales, computational cost and research focus. Researchers aiming to

develop representative archetypes may benefit from the following recommendations for

selecting segmentation levels, clustering evaluation metrics and variable counts for their

particular research goals:

• Lower segmentation levels can be suitable for district-scale studies with homo-

geneous building stock and when more resource-intensive dynamic simulations

are needed. Whereas higher segmentation levels are better suited for more hetero-

geneous city- and national-level stocks, and when steady-state simulations are

sufficient.

• If computational resources are not a limiting factor, the Davies-Bouldin index

can be an effective metric for achieving high archetype representativeness. For

resource-limited scenarios, the Calinski-Harabasz index offers a viable alternat-

ive, achieving a balance between representativeness and computational cost by

identifying fewer archetypes. However, the Calinski-Harabasz index may not be

ideal for clustering with few variables. The Silhouette index can be suitable for

building stocks with one or more dominant variables, or for studies with specific

objectives, as it consistently identified the least number of archetypes in this study.

• For national-scale studies with specific objectives that require dynamic simula-

tions over a long-horizon, reducing the number of variables used for clustering can

be beneficial. This approach simplifies the complexities of national landscapes,

reduces computational cost, and avoids producing overly detailed archetypes that

may become less relevant in the future as building trends and technologies evolve.
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7.1.4 Research question 4
• Can the developed archetypes, when used in dynamic thermal simulations, reflect

typical patterns of overheating risk and the cooling potential of a passive measure

such as external shutters?

The analysis reveals similarity in mean internal temperature patterns across regions,

dwelling ages and dwelling types. For example, London consistently shows the highest

temperatures, attributed to factors such as the urban heat island effect, high-density

housing and limited opportunities for night-time cooling. This trend mirrors previous

studies, with the North East and North West generally recording the coolest conditions,

while Midland regions fall somewhere in between. Likewise, older dwellings with

less insulation tend to maintain lower internal temperatures compared to more modern

constructions that retain heat more effectively. Among dwelling types, flats experience

the highest internal temperatures, while detached houses and bungalows remain cooler,

with bungalows, particularly their bedrooms recorded the lowest temperatures. Overall,

these consistent patterns reinforce the reliability of the findings and their alignment with

established research on internal temperature distributions.

Similarly, the archetypes effectively capture variations in overheating risk across

regions, dwelling types and ages. Based on degree hours, newer constructions recorded

the highest overheating risk due to improved insulation and airtightness, which contrib-

ute to greater heat retention. Regional differences are also well reflected, with southern

regions, particularly London, experiencing the most severe overheating, while northern

regions consistently record lower values. Among dwelling types, flats are the most

vulnerable, accumulating the highest degree hours and recording the greatest severity,

reinforcing their increased susceptibility to overheating.

The analysis also shows that external shutters provide the greatest benefit to those

dwellings most susceptible to high solar heat gains, notably reducing overheating in

flats and in regions with intense solar exposure, while improvements are more modest

in areas with lower solar exposure. Moreover, as the climate warms, relying solely

on a single passive measure such as shutters may prove insufficient, as evidenced by

a decline in the number of archetypes meeting TM59 standards in 2050 compared to

baseline conditions.
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The results demonstrate that the developed archetypes effectively capture typical

patterns of overheating risk and the key influencing factors across different regions and

dwelling types. By leveraging a Random Forest model, the analysis highlights how the

variation in the stock features influence degree hours, with strong predictive accuracy

(R² values between 75–99). This demonstrates sufficient variation in key variables to

identify vulnerability across dwelling types and regions, making them a reliable tool for

informing mitigation strategies and policy decisions.

The comprehensive analysis confirms that simulating the developed archetypes can

capture the spatial and typological variations in both internal temperature distributions

and overheating risks across the UK housing stock. The typical pattern of shading

potential is well reflected, and the Random Forest model reveals that key variations

influencing overheating risk are effectively captured.

7.2 Research contributions

This research synthesises existing knowledge through a literature review on passive

cooling measures and factors influencing indoor overheating. A comprehensive frame-

work was established to describe the potential effectiveness of various passive cooling

strategies, considering factors influencing overheating, including climate, material and

building design, thereby providing valuable insights for future research and policy

development.

A detailed sensitivity analysis of segmentation levels, clustering metrics and vari-

able counts represents another key contribution of this research. This investigation

provides valuable insights into how different methodological choices influence the

representativeness of building archetypes.

A central contribution of this thesis is the introduction of the minimum segmenta-

tion frequency (MSF) and framework for archetype development that systematically

integrates MSF selection. The MSF approach, a unique pre-clustering segmentation

step, preserves the feature diversity inherent in the building stock at different levels. The

framework guides the development of archetypes a desirable level of representativeness

by strategically balancing granularity and scalability, capturing essential variations in

the housing stock while remaining feasible for large-scale simulations.
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The archetypes developed using the MSF approach within the framework were tested

through dynamic thermal simulations, demonstrating their ability to replicate established

overheating and cooling patterns across different UK regions and dwelling types. Their

capacity to capture regional and typological variations in overheating risk makes them

a reliable tool for assessing the thermal resilience of the housing stock under current

and future climates. Additionally, the application of a Random Forest model to the

archetype-derived dataset achieved high predictive accuracy across different typologies,

highlighting the MSF-driven archetypes’ ability to preserve and leverage the inherent

diversity of the housing stock. These findings reinforce the applicability of the MSF

approach in building stock modelling, demonstrating its potential for scenario testing,

policy development and targeted mitigation strategies aimed at reducing overheating

risks in dwellings.

7.3 Limitations and future works

This research reviewed both domestic overheating studies and archetype develop-

ment works to inform the creation of archetypes tailored for national-scale overheating

assessments. However, several limitations that could potentially offer new contributions

are discussed in the following subsections.

7.3.1 Archetype development
The use of minimum segmentation frequency improved archetype representativeness

noticeably. However, its effectiveness is sensitive to the distribution of the variables,

being less pronounced for skewed distributions. Future research can explore alternative

segmentation approaches to account for the skewness in the data. Clustering can

also be investigated without setting thresholds on the number of cases per segmented

subset. Further research could also look into the application of MSF in conjunction

with clustering algorithms other than k-prototype. These investigations may enable the

exploration of further objectives, including minimising the number of archetypes while

maintaining sufficient representativeness, even with increasing variable counts.

Compared to the larger geographies such as the United States and China, UK

housing stock can be considered homogeneous, despite noticeable regional variations.

On the other hand, dense cities in the developing Asia are often characterised by a
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larger share of multifamily buildings that are more homogeneous in nature than the UK

housing stock. The generalisability of the proposed approach for the development of

representative archetypes can be investigated in other contexts of varying homogeneity

and stock characteristics.

The physical, thermal and system characteristics of non-domestic buildings vary

significantly depending on building type, use and location. Although the use of MSF for

pre-clustering segmentation resulted in higher representativeness for the investigated

dwelling stock, further research should be conducted on how well the combined MSF

and k-prototype work on non-domestic building stock, particularly focusing on the

effects of knowledge- and frequency-based segmentation on representativeness.

7.3.2 Overheating analysis
The modelling of internal layouts for archetypes used a simplified two-zone ap-

proach, with a ground floor living room and a first floor bedroom. While practical,

this method may not capture the diverse internal layouts found in the UK housing

stock. Future research could use machine learning or predictive techniques to generate

more detailed layouts based on factors like floor area, number of rooms and dwelling

type. Additionally, generative design methods, such as generative adversarial networks

(GANs), could be explored to create prototype layouts. Incorporating more accurate

layouts could enhance overheating risk assessments and lead to more effective design

and policy interventions that address the thermal performance of various dwelling types.

Converted flats were excluded from the overheating modelling due to their unique

characteristics and complex, varying surrounding environments. Converted flats often

have irregular layouts and variable thermal properties. These factors make it challenging

to apply the two-zone model used in this study, which assumes a more consistent internal

layout. These complexities, including the diverse thermal behaviours and interactions

with surrounding structures, were beyond the scope of this work. Future studies could

explore these unique factors to better assess the overheating risks specific to converted

flats.

This study aimed to determine whether passive cooling patterns could be captured

using the developed archetype framework, with external shutters selected as the focus

due to their suitability in the literature. Shutters were identified as an appropriate

measure within the study’s scope, given their dynamic control and ability to reduce

116



7.3 LIMITATIONS AND FUTURE WORKS

summer overheating without compromising winter solar heat gains. Unlike fixed

shading solutions, shutters allow for seasonal adaptability, preserving heat retention

during colder months. Future research could build on this framework by developing

archetypes that account for both summer and winter conditions, incorporating additional

variables such as fuel type and heating system efficiency to explore a broader range of

adaptation strategies.

Assuming passive cooling strategies are operated once internal temperatures exceed

22°C oversimplifies real-world behaviour. Occupants may limit window or shutter use

due to security concerns or comfort preferences, influencing the effectiveness of these

measures. This assumption overlooks the variability in how households manage ventila-

tion and shading. Future research could incorporate monitoring data from observations,

surveys or smart technology to model actual usage patterns.
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Appendix A |
Appendix

A.1 Research landscape

The distribution of journals and conferences for the overheating literature is shown

in Figure A.1. Most of the articles selected were in building energy-oriented journals

such as Energy and Buildings and Building and Environment, which accounted for 16%

and 13.4% of the total studies respectively. The search method is provided in Table A.1

Figure A.2 shows the methodologies, overheating criteria and contexts of the studies

reviewed, as well as the percentage of dwelling types. Only 8% of the studies adopted

a mixed methodology of modelling and monitoring, with modelling methodology ac-

counting for 58% of the total studies. More than half of the studies were conducted in

the UK (60%). 27% and 13% of the papers were from Europe and other countries such

as the USA, Australia and Canada respectively. The Passive House Planning Package

(PHPP) overheating criteria (Passivhaus Trust, 2018) which was the least used overheat-

ing criteria, was used in 10% of the studies, followed by the Chartered Institution of

Building Services Engineers (CIBSE) Technical Memorandum 59 (TM59) (Chartered

Institution of Building Services Engineers, 2017). Chartered Institution of Building

Services Engineers Guide A (Chartered Institution of Building Services Engineers,

2006) was used in 33% of the total studies, which was the most employed overheating

criteria. Detached dwellings were the most considered dwelling type, considered in

28% of the studies, followed by purpose-built flats (21%), while converted flats were

the least studied dwelling type. Both mid and end-terrace dwellings were considered

for calculating the dwelling type percentage for studies on ‘terraced’ dwellings.
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A.1 RESEARCH LANDSCAPE

Figure A.1: Distribution of sources covered in this review paper.
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A.1 RESEARCH LANDSCAPE

Figure A.2: Distribution of dwelling types, thermal comfort criteria, methodology and
the context covered in the reviewed publications.

Table A.1: Search strings used for finding the literature.

Search strings and Boolean operators
AND OR Theme
“overheating”, “natural ventil-
ation”

“window opening” Natural ventila-
tion

“overheating”, “vegetation” “green roof”, “green wall” Vegetation
“overheating”, “solar shad-
ing”

“fixed shading”, “solar protec-
tion”, “shutter”

Solar shading

“overheating”, “thermal
mass”

“PCM”, “heavyweight con-
struction”, “lightweight con-
struction”

Thermal mass

“overheating”, “cool paint” “cool roof”, “cool wall”, “al-
bedo”

Cool paint

“overheating”, “passive cool-
ing”, “wall insulation”

- Wall insulation

“overheating”, “Passivhaus”,
“natural ventilation”, “thermal
mass”, “cool paint”, “vegeta-
tion”, “wall insulation”

All the above strings for “OR” Passive cool-
ing strategies -
Passivhaus
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A.2 INDOOR TEMPERATURE VARIATION

A.2 Indoor temperature variation

Figure A.3: Daily average maximum temperature distribution in living rooms and
bedrooms across regions and dwelling types (base climate no shutter).
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A.2 INDOOR TEMPERATURE VARIATION

Figure A.4: Daily average minimum temperature distribution in living rooms and
bedrooms across regions and dwelling types (base climate no shutter).
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A.2 INDOOR TEMPERATURE VARIATION

Figure A.5: Daily average minimum temperature distribution in living rooms and
bedrooms across regions and dwelling types (2050 climate no shutter).
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A.2 INDOOR TEMPERATURE VARIATION

Figure A.6: Daily average mean temperature distribution in living rooms and bedrooms
across regions and dwelling types (2050 climate no shutter).
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A.2 INDOOR TEMPERATURE VARIATION

Figure A.7: Daily average maximum temperature distribution in living rooms and
bedrooms across regions and dwelling types (2050 climate no shutter).
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A.2 INDOOR TEMPERATURE VARIATION

Figure A.8: Daily average minimum temperature distribution in living rooms and
bedrooms across regions and dwelling types (base climate shutter added).
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A.2 INDOOR TEMPERATURE VARIATION

Figure A.9: Daily average mean temperature distribution in living rooms and bedrooms
across regions and dwelling types (base climate shutter added).
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A.2 INDOOR TEMPERATURE VARIATION

Figure A.10: Daily average maximum temperature distribution in living rooms and
bedrooms across regions and dwelling types (base climate shutter added).
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A.2 INDOOR TEMPERATURE VARIATION

Figure A.11: Daily average minimum temperature distribution in living rooms and
bedrooms across regions and dwelling types (2050 climate shutter added).
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A.2 INDOOR TEMPERATURE VARIATION

Figure A.12: Daily average mean temperature distribution in living rooms and bed-
rooms across regions and dwelling types (2050 climate shutter added).
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A.2 INDOOR TEMPERATURE VARIATION

Figure A.13: Daily average maximum temperature distribution in living rooms and
bedrooms across regions and dwelling types (2050 climate shutter added).
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A.3 EXTERNAL TEMPERATURE VARIATION

A.3 External temperature variation

Figure A.14: The distribution of external temperatures per region used for each cliamte
scenario.
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A.4 RANDOM FOREST ANALYSIS OF OVERHEATING DRIVERS ACROSS
REGIONS AND DWELLING TYPES

A.4 Random Forest analysis of overheating drivers across
regions and dwelling types

Table A.2: Top features influencing overheating in bedrooms and living rooms in each
dwelling type across the regions.

Region Dwelling type Top feature (Bedroom) Top feature (Living room)
Baseline 2050 Baseline 2050

East

Bungalow dwage5x_wallinsz dwage5x_wallinsz dwage5x_wallinsz dwage5x_wallinsz
Detached felorien winsiz dwage5x_wallinsz winsiz
End-terrace felorien felorien dwage5x_wallinsz floory
Flat winsiz hhsizex winsiz winsiz
Mid-terrace winsiz winsiz winsiz winsiz
Semi-detached felorien felorien dwage5x_wallinsz dwage5x_wallinsz

East Midlands

Bungalow winsiz dwage5x_wallinsz winsiz winsiz
Detached felorien dwage5x_wallinsz felorien dwage5x_wallinsz
End-terrace hhsizex hhsizex floory dwage5x_wallinsz
Flat winsiz hhsizex winsiz winsiz
Mid-terrace felorien winsiz felorien floory
Semi-detached winsiz felorien area3x dwage5x_wallinsz

London

Bungalow floory dwage5x_wallinsz floory floory
Detached felorien dwage5x_wallinsz felorien dwage5x_wallinsz
End-terrace felorien winsiz felorien dwage5x_wallinsz
Flat winsiz winsiz winsiz winsiz
Mid-terrace felorien felorien felorien dwage5x_wallinsz
Semi-detached winsiz area3x winsiz winsiz

North East

Bungalow winsiz dwage5x_wallinsz dwage5x_wallinsz dwage5x_wallinsz
Detached winsiz floory floory floory
End-terrace loftins4 felorien winsiz felorien
Flat winsiz winsiz winsiz winsiz
Mid-terrace felorien winsiz floory floory
Semi-detached winsiz felorien floory dwage5x_wallinsz

North West

Bungalow winsiz dwage5x_wallinsz winsiz winsiz
Detached floory dwage5x_wallinsz floory dwage5x_wallinsz
End-terrace winsiz winsiz winsiz dwage5x_wallinsz
Flat winsiz hhsizex winsiz winsiz
Mid-terrace winsiz winsiz floory floory
Semi-detached winsiz felorien floory dwage5x_wallinsz

South East

Bungalow dwage5x_wallinsz dwage5x_wallinsz winsiz dwage5x_wallinsz
Detached felorien dwage5x_wallinsz dwage5x_wallinsz dwage5x_wallinsz
End-terrace felorien felorien dwage5x_wallinsz dwage5x_wallinsz
Flat winsiz hhsizex winsiz winsiz
Mid-terrace winsiz winsiz felorien dwage5x_wallinsz
Semi-detached felorien felorien dwage5x_wallinsz dwage5x_wallinsz

South West

Bungalow winsiz dwage5x_wallinsz winsiz dwage5x_wallinsz
Detached winsiz dwage5x_wallinsz winsiz dwage5x_wallinsz
End-terrace felorien winsiz felorien dwage5x_wallinsz
Flat winsiz winsiz winsiz winsiz
Mid-terrace winsiz winsiz winsiz winsiz
Semi-detached winsiz winsiz floory dwage5x_wallinsz

West Midlands

Bungalow winsiz dwage5x_wallinsz winsiz dwage5x_wallinsz
Detached felorien winsiz winsiz dwage5x_wallinsz
End-terrace felorien felorien felorien dwage5x_wallinsz
Flat winsiz winsiz winsiz winsiz
Mid-terrace winsiz winsiz felorien winsiz
Semi-detached winsiz hhsizex winsiz dwage5x_wallinsz

Yorkshire

Bungalow winsiz dwage5x_wallinsz floory floory
Detached winsiz dwage5x_wallinsz winsiz dwage5x_wallinsz
End-terrace winsiz felorien winsiz area3x
Flat winsiz winsiz winsiz winsiz
Mid-terrace winsiz winsiz winsiz winsiz
Semi-detached felorien dwage5x_wallinsz floory dwage5x_wallinsz

Note: dwage5x_wallinsz represents a composite variable consisting of combinations of
variables dwelling age (dwage5x), type of wall and insulation (wallinsz). The variables
are dwelling age, and type of wall and insulation (dwage5x_wallinsz), orientation
(felorien), household size (hhsizex), terrain (area3x), total window area (winsiz) and
floor area (floory)
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A.4 RANDOM FOREST ANALYSIS OF OVERHEATING DRIVERS ACROSS
REGIONS AND DWELLING TYPES

Table A.3: Feature importance output for overheating risk using Random Forest for the
baseline climate.

Region Dwelling type Feature Bedroom Living room

South East Detached dwage5x_wallinsz 0.2308 0.2850

South East Detached felorien 0.2492 0.2471

South East Detached winsiz 0.1937 0.1999

South East Detached floory 0.1220 0.1179

South East Detached area3x 0.0702 0.1132

South East Detached hhsizex 0.1035 0.0215

South East Detached loftins4 0.0306 0.0155

South West Detached dwage5x_wallinsz 0.1214 0.1083

South West Detached felorien 0.2260 0.1821

South West Detached winsiz 0.2776 0.3278

South West Detached floory 0.2294 0.2814

South West Detached area3x 0.0995 0.0753

South West Detached hhsizex 0.0269 0.0141

South West Detached loftins4 0.0192 0.0109

North West Detached dwage5x_wallinsz 0.0264 0.0000

North West Detached felorien 0.1784 0.0000

North West Detached winsiz 0.2328 0.0000

North West Detached floory 0.4043 0.0000

North West Detached area3x 0.1200 0.0000

North West Detached hhsizex 0.0274 0.0000

North West Detached loftins4 0.0107 0.0000

East Midlands Detached dwage5x_wallinsz 0.1346 0.1459

East Midlands Detached felorien 0.2935 0.2820

East Midlands Detached winsiz 0.2820 0.1343

East Midlands Detached floory 0.1247 0.0984

East Midlands Detached area3x 0.0490 0.1092

East Midlands Detached hhsizex 0.0696 0.0201

East Midlands Detached loftins4 0.0466 0.2102

East Detached dwage5x_wallinsz 0.2415 0.3936

East Detached felorien 0.2449 0.2258

East Detached winsiz 0.2421 0.1980

East Detached floory 0.0834 0.0932

East Detached area3x 0.0792 0.0439

(Continued on next page)
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REGIONS AND DWELLING TYPES

(Continued from previous page)

Region Dwelling type Feature Bedroom Living room

East Detached hhsizex 0.0837 0.0162

East Detached loftins4 0.0252 0.0293

Yorkshire and the
Humber

Detached dwage5x_wallinsz 0.2112 0.1671

Yorkshire and the
Humber

Detached felorien 0.1920 0.2427

Yorkshire and the
Humber

Detached winsiz 0.3760 0.2872

Yorkshire and the
Humber

Detached floory 0.1513 0.2246

Yorkshire and the
Humber

Detached area3x 0.0115 0.0273

Yorkshire and the
Humber

Detached hhsizex 0.0350 0.0209

Yorkshire and the
Humber

Detached loftins4 0.0230 0.0302

West Midlands Detached dwage5x_wallinsz 0.1186 0.0967

West Midlands Detached felorien 0.3169 0.2651

West Midlands Detached winsiz 0.2859 0.3702

West Midlands Detached floory 0.1957 0.2231

West Midlands Detached area3x 0.0387 0.0179

West Midlands Detached hhsizex 0.0294 0.0250

West Midlands Detached loftins4 0.0149 0.0020

North East Detached dwage5x_wallinsz 0.0269 0.0062

North East Detached felorien 0.0982 0.0862

North East Detached winsiz 0.4513 0.3242

North East Detached floory 0.3371 0.5029

North East Detached area3x 0.0429 0.0673

North East Detached hhsizex 0.0411 0.0126

North East Detached loftins4 0.0025 0.0005

London Detached dwage5x_wallinsz 0.0631 0.2580

London Detached felorien 0.4792 0.4301

London Detached winsiz 0.2157 0.1161

London Detached floory 0.1371 0.0789

London Detached area3x 0.0387 0.0387

London Detached hhsizex 0.0274 0.0242

London Detached loftins4 0.0389 0.0540

(Continued on next page)
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(Continued from previous page)

Region Dwelling type Feature Bedroom Living room

South East Semi-detached dwage5x_wallinsz 0.1459 0.3652

South East Semi-detached felorien 0.3121 0.2429

South East Semi-detached winsiz 0.2249 0.1878

South East Semi-detached floory 0.1376 0.1156

South East Semi-detached area3x 0.0520 0.0587

South East Semi-detached hhsizex 0.0722 0.0167

South East Semi-detached loftins4 0.0554 0.0132

North East Semi-detached dwage5x_wallinsz 0.0915 0.1871

North East Semi-detached felorien 0.2187 0.1614

North East Semi-detached winsiz 0.4446 0.2558

North East Semi-detached floory 0.1401 0.2633

North East Semi-detached area3x 0.0339 0.0288

North East Semi-detached hhsizex 0.0399 0.0183

North East Semi-detached loftins4 0.0313 0.0852

West Midlands Semi-detached dwage5x_wallinsz 0.0727 0.2360

West Midlands Semi-detached felorien 0.1841 0.1172

West Midlands Semi-detached winsiz 0.3783 0.3641

West Midlands Semi-detached floory 0.1463 0.0744

West Midlands Semi-detached area3x 0.0532 0.0902

West Midlands Semi-detached hhsizex 0.0707 0.0308

West Midlands Semi-detached loftins4 0.0947 0.0873

North West Semi-detached dwage5x_wallinsz 0.1536 0.0741

North West Semi-detached felorien 0.1462 0.0986

North West Semi-detached winsiz 0.3265 0.0402

North West Semi-detached floory 0.1687 0.4413

North West Semi-detached area3x 0.1197 0.3107

North West Semi-detached hhsizex 0.0323 0.0270

North West Semi-detached loftins4 0.0530 0.0081

Yorkshire and the
Humber

Semi-detached dwage5x_wallinsz 0.0951 0.1157

Yorkshire and the
Humber

Semi-detached felorien 0.3641 0.2134

Yorkshire and the
Humber

Semi-detached winsiz 0.2264 0.1884

Yorkshire and the
Humber

Semi-detached floory 0.2062 0.3705
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Yorkshire and the
Humber

Semi-detached area3x 0.0439 0.0248

Yorkshire and the
Humber

Semi-detached hhsizex 0.0291 0.0671

Yorkshire and the
Humber

Semi-detached loftins4 0.0351 0.0199

East Midlands Semi-detached dwage5x_wallinsz 0.1223 0.1379

East Midlands Semi-detached felorien 0.2485 0.2674

East Midlands Semi-detached winsiz 0.2572 0.0870

East Midlands Semi-detached floory 0.1092 0.1053

East Midlands Semi-detached area3x 0.1251 0.3110

East Midlands Semi-detached hhsizex 0.0475 0.0274

East Midlands Semi-detached loftins4 0.0901 0.0640

London Semi-detached dwage5x_wallinsz 0.0914 0.1861

London Semi-detached felorien 0.2331 0.1678

London Semi-detached winsiz 0.2440 0.3283

London Semi-detached floory 0.0933 0.1729

London Semi-detached area3x 0.2316 0.0302

London Semi-detached hhsizex 0.0818 0.0442

London Semi-detached loftins4 0.0249 0.0705

East Semi-detached felorien 0.3315 0.1709

East Semi-detached winsiz 0.1782 0.2101

East Semi-detached hhsizex 0.1472 0.0237

East Semi-detached dwage5x_wallinsz 0.1090 0.4291

East Semi-detached floory 0.0926 0.0916

East Semi-detached loftins4 0.0895 0.0244

East Semi-detached area3x 0.0519 0.0504

South West Semi-detached winsiz 0.3064 0.2820

South West Semi-detached floory 0.2614 0.3010

South West Semi-detached felorien 0.1774 0.1851

South West Semi-detached area3x 0.1236 0.0753

South West Semi-detached dwage5x_wallinsz 0.0674 0.1097

South West Semi-detached hhsizex 0.0349 0.0259

South West Semi-detached loftins4 0.0289 0.0209

London End-terrace dwage5x_wallinsz 0.1690 0.2108

London End-terrace felorien 0.3456 0.2963
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London End-terrace winsiz 0.1687 0.1779

London End-terrace floory 0.1487 0.2289

London End-terrace area3x 0.0768 0.0246

London End-terrace hhsizex 0.0628 0.0371

London End-terrace loftins4 0.0284 0.0245

North West End-terrace dwage5x_wallinsz 0.1180 0.0236

North West End-terrace felorien 0.1673 0.1667

North West End-terrace winsiz 0.4266 0.3815

North West End-terrace floory 0.1119 0.1613

North West End-terrace area3x 0.1364 0.2669

North West End-terrace hhsizex 0.0353 0.0000

North West End-terrace loftins4 0.0044 0.0000

East Midlands End-terrace dwage5x_wallinsz 0.0936 0.1296

East Midlands End-terrace felorien 0.1254 0.1193

East Midlands End-terrace winsiz 0.1671 0.0905

East Midlands End-terrace floory 0.1989 0.3582

East Midlands End-terrace area3x 0.0832 0.2173

East Midlands End-terrace hhsizex 0.2999 0.0488

East Midlands End-terrace loftins4 0.0319 0.0364

South East End-terrace dwage5x_wallinsz 0.0957 0.2626

South East End-terrace felorien 0.3080 0.2534

South East End-terrace winsiz 0.2728 0.2462

South East End-terrace floory 0.0877 0.0984

South East End-terrace area3x 0.0655 0.0623

South East End-terrace hhsizex 0.1443 0.0361

South East End-terrace loftins4 0.0260 0.0411

Yorkshire and the
Humber

End-terrace dwage5x_wallinsz 0.0639 0.1567

Yorkshire and the
Humber

End-terrace felorien 0.2579 0.2483

Yorkshire and the
Humber

End-terrace winsiz 0.4238 0.3370

Yorkshire and the
Humber

End-terrace floory 0.1382 0.0836

Yorkshire and the
Humber

End-terrace area3x 0.0565 0.1441
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Yorkshire and the
Humber

End-terrace hhsizex 0.0437 0.0235

Yorkshire and the
Humber

End-terrace loftins4 0.0160 0.0068

East End-terrace dwage5x_wallinsz 0.1237 0.3127

East End-terrace felorien 0.3771 0.0802

East End-terrace winsiz 0.2174 0.2621

East End-terrace floory 0.1018 0.2549

East End-terrace area3x 0.0487 0.0078

East End-terrace hhsizex 0.0993 0.0472

East End-terrace loftins4 0.0320 0.0351

West Midlands End-terrace dwage5x_wallinsz 0.0517 0.2619

West Midlands End-terrace felorien 0.5669 0.2758

West Midlands End-terrace winsiz 0.1631 0.2147

West Midlands End-terrace floory 0.0529 0.1132

West Midlands End-terrace area3x 0.0287 0.0851

West Midlands End-terrace hhsizex 0.0931 0.0316

West Midlands End-terrace loftins4 0.0436 0.0178

North East End-terrace dwage5x_wallinsz 0.0679 0.0533

North East End-terrace felorien 0.3093 0.2302

North East End-terrace winsiz 0.1823 0.3901

North East End-terrace floory 0.0697 0.1628

North East End-terrace area3x 0.0047 0.0336

North East End-terrace hhsizex 0.0067 0.0560

North East End-terrace loftins4 0.3594 0.0741

South West End-terrace dwage5x_wallinsz 0.0782 0.1181

South West End-terrace felorien 0.3089 0.4388

South West End-terrace winsiz 0.1543 0.1162

South West End-terrace floory 0.1102 0.1321

South West End-terrace area3x 0.1733 0.0145

South West End-terrace hhsizex 0.1494 0.1006

South West End-terrace loftins4 0.0258 0.0798

London Mid-terrace dwage5x_wallinsz 0.0629 0.2039

London Mid-terrace felorien 0.4491 0.2462

London Mid-terrace winsiz 0.2600 0.2142
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London Mid-terrace floory 0.0932 0.2364

London Mid-terrace area3x 0.0340 0.0220

London Mid-terrace hhsizex 0.0740 0.0452

London Mid-terrace loftins4 0.0268 0.0321

East Mid-terrace dwage5x_wallinsz 0.0380 0.1757

East Mid-terrace felorien 0.3032 0.2252

East Mid-terrace winsiz 0.4065 0.3525

East Mid-terrace floory 0.0924 0.1472

East Mid-terrace area3x 0.0456 0.0381

East Mid-terrace hhsizex 0.0888 0.0305

East Mid-terrace loftins4 0.0256 0.0308

Yorkshire and the
Humber

Mid-terrace dwage5x_wallinsz 0.0599 0.0971

Yorkshire and the
Humber

Mid-terrace felorien 0.2500 0.2176

Yorkshire and the
Humber

Mid-terrace winsiz 0.5409 0.3608

Yorkshire and the
Humber

Mid-terrace floory 0.0813 0.1356

Yorkshire and the
Humber

Mid-terrace area3x 0.0243 0.0013

Yorkshire and the
Humber

Mid-terrace hhsizex 0.0305 0.0344

Yorkshire and the
Humber

Mid-terrace loftins4 0.0132 0.1531

South West Mid-terrace dwage5x_wallinsz 0.0585 0.0648

South West Mid-terrace felorien 0.1703 0.2510

South West Mid-terrace winsiz 0.4832 0.5354

South West Mid-terrace floory 0.0816 0.0513

South West Mid-terrace area3x 0.0794 0.0171

South West Mid-terrace hhsizex 0.0810 0.0326

South West Mid-terrace loftins4 0.0461 0.0478

North West Mid-terrace dwage5x_wallinsz 0.0362 0.0788

North West Mid-terrace felorien 0.1325 0.0961

North West Mid-terrace winsiz 0.4261 0.2447

North West Mid-terrace floory 0.2122 0.5103

North West Mid-terrace area3x 0.0133 0.0219
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North West Mid-terrace hhsizex 0.0483 0.0180

North West Mid-terrace loftins4 0.1313 0.0303

East Midlands Mid-terrace dwage5x_wallinsz 0.0605 0.0479

East Midlands Mid-terrace felorien 0.4321 0.4611

East Midlands Mid-terrace winsiz 0.2190 0.1066

East Midlands Mid-terrace floory 0.0832 0.2765

East Midlands Mid-terrace area3x 0.0789 0.0469

East Midlands Mid-terrace hhsizex 0.0826 0.0186

East Midlands Mid-terrace loftins4 0.0438 0.0424

West Midlands Mid-terrace dwage5x_wallinsz 0.0530 0.1128

West Midlands Mid-terrace felorien 0.2693 0.3268

West Midlands Mid-terrace winsiz 0.4018 0.0896

West Midlands Mid-terrace floory 0.1818 0.1366

West Midlands Mid-terrace area3x 0.0381 0.1679

West Midlands Mid-terrace hhsizex 0.0445 0.1013

West Midlands Mid-terrace loftins4 0.0115 0.0650

South East Mid-terrace winsiz 0.3214 0.2463

South East Mid-terrace felorien 0.3179 0.2718

South East Mid-terrace area3x 0.1080 0.0416

South East Mid-terrace floory 0.0905 0.1518

South East Mid-terrace dwage5x_wallinsz 0.0877 0.2326

South East Mid-terrace hhsizex 0.0565 0.0167

South East Mid-terrace loftins4 0.0181 0.0391

North East Mid-terrace felorien 0.2984 0.2039

North East Mid-terrace winsiz 0.2568 0.1030

North East Mid-terrace loftins4 0.1812 0.1277

North East Mid-terrace floory 0.1328 0.3829

North East Mid-terrace dwage5x_wallinsz 0.0729 0.0673

North East Mid-terrace area3x 0.0397 0.0589

North East Mid-terrace hhsizex 0.0182 0.0563

Yorkshire and the
Humber

Flat dwage5x_wallinsz 0.0426 0.0256

Yorkshire and the
Humber

Flat felorien 0.0552 0.0360

Yorkshire and the
Humber

Flat winsiz 0.7926 0.8478
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Yorkshire and the
Humber

Flat floory 0.0713 0.0501

Yorkshire and the
Humber

Flat area3x 0.0163 0.0177

Yorkshire and the
Humber

Flat hhsizex 0.0072 0.0122

Yorkshire and the
Humber

Flat loftins4 0.0149 0.0107

North West Flat dwage5x_wallinsz 0.0571 0.1017

North West Flat felorien 0.0267 0.0487

North West Flat winsiz 0.7758 0.4951

North West Flat floory 0.0828 0.3118

North West Flat area3x 0.0118 0.0089

North West Flat hhsizex 0.0331 0.0292

North West Flat loftins4 0.0126 0.0046

London Flat dwage5x_wallinsz 0.0753 0.0676

London Flat felorien 0.3003 0.2981

London Flat winsiz 0.3595 0.3810

London Flat floory 0.0879 0.1627

London Flat area3x 0.0183 0.0270

London Flat hhsizex 0.1451 0.0477

London Flat loftins4 0.0135 0.0158

North East Flat dwage5x_wallinsz 0.0293 0.0571

North East Flat felorien 0.0178 0.0181

North East Flat winsiz 0.8890 0.8015

North East Flat floory 0.0218 0.0286

North East Flat area3x 0.0064 0.0002

North East Flat hhsizex 0.0238 0.0499

North East Flat loftins4 0.0119 0.0447

South West Flat dwage5x_wallinsz 0.0507 0.0447

South West Flat felorien 0.1082 0.0934

South West Flat winsiz 0.5988 0.6577

South West Flat floory 0.0576 0.0732

South West Flat area3x 0.0066 0.0103

South West Flat hhsizex 0.1600 0.0833

South West Flat loftins4 0.0182 0.0373
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South East Flat dwage5x_wallinsz 0.0793 0.0977

South East Flat felorien 0.1222 0.1105

South East Flat winsiz 0.5747 0.6096

South East Flat floory 0.0916 0.1020

South East Flat area3x 0.0191 0.0287

South East Flat hhsizex 0.1024 0.0383

South East Flat loftins4 0.0106 0.0132

East Midlands Flat winsiz 0.5756 0.3756

East Midlands Flat floory 0.1211 0.1286

East Midlands Flat felorien 0.0991 0.2250

East Midlands Flat dwage5x_wallinsz 0.0857 0.0955

East Midlands Flat hhsizex 0.0733 0.0288

East Midlands Flat loftins4 0.0253 0.0947

East Midlands Flat area3x 0.0200 0.0519

East Flat winsiz 0.3683 0.4454

East Flat felorien 0.2317 0.3316

East Flat hhsizex 0.1932 0.0424

East Flat floory 0.1212 0.1204

East Flat dwage5x_wallinsz 0.0562 0.0431

East Flat loftins4 0.0157 0.0097

East Flat area3x 0.0135 0.0074

West Midlands Flat winsiz 0.5139 0.5017

West Midlands Flat felorien 0.1721 0.1549

West Midlands Flat floory 0.1310 0.1259

West Midlands Flat area3x 0.0673 0.0736

West Midlands Flat hhsizex 0.0608 0.0730

West Midlands Flat dwage5x_wallinsz 0.0456 0.0618

West Midlands Flat loftins4 0.0093 0.0091

North East Bungalow dwage5x_wallinsz 0.2002 0.2941

North East Bungalow felorien 0.1962 0.1843

North East Bungalow winsiz 0.3378 0.1670

North East Bungalow floory 0.1608 0.2149

North East Bungalow area3x 0.0290 0.0168

North East Bungalow hhsizex 0.0715 0.0721

North East Bungalow loftins4 0.0045 0.0508
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East Bungalow dwage5x_wallinsz 0.4138 0.3607

East Bungalow felorien 0.1672 0.1470

East Bungalow winsiz 0.2106 0.2679

East Bungalow floory 0.0847 0.1111

East Bungalow area3x 0.0350 0.0438

East Bungalow hhsizex 0.0448 0.0568

East Bungalow loftins4 0.0438 0.0126

South West Bungalow dwage5x_wallinsz 0.2598 0.1812

South West Bungalow felorien 0.1281 0.1131

South West Bungalow winsiz 0.4540 0.5033

South West Bungalow floory 0.0872 0.1221

South West Bungalow area3x 0.0086 0.0169

South West Bungalow hhsizex 0.0189 0.0104

South West Bungalow loftins4 0.0435 0.0529

South East Bungalow dwage5x_wallinsz 0.4099 0.2640

South East Bungalow felorien 0.0888 0.1814

South East Bungalow winsiz 0.3332 0.3489

South East Bungalow floory 0.1008 0.1362

South East Bungalow area3x 0.0583 0.0364

South East Bungalow hhsizex 0.0043 0.0238

South East Bungalow loftins4 0.0048 0.0093

Yorkshire and the
Humber

Bungalow dwage5x_wallinsz 0.1901 0.1001

Yorkshire and the
Humber

Bungalow felorien 0.0828 0.1153

Yorkshire and the
Humber

Bungalow winsiz 0.3332 0.3360

Yorkshire and the
Humber

Bungalow floory 0.2957 0.3435

Yorkshire and the
Humber

Bungalow area3x 0.0540 0.0577

Yorkshire and the
Humber

Bungalow hhsizex 0.0213 0.0135

Yorkshire and the
Humber

Bungalow loftins4 0.0230 0.0339

East Midlands Bungalow dwage5x_wallinsz 0.1170 0.0548

East Midlands Bungalow felorien 0.0446 0.0821
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East Midlands Bungalow winsiz 0.7345 0.7278

East Midlands Bungalow floory 0.0854 0.0819

East Midlands Bungalow area3x 0.0084 0.0228

East Midlands Bungalow hhsizex 0.0020 0.0167

East Midlands Bungalow loftins4 0.0081 0.0140

West Midlands Bungalow dwage5x_wallinsz 0.0494 0.0937

West Midlands Bungalow felorien 0.0932 0.0687

West Midlands Bungalow winsiz 0.7817 0.7136

West Midlands Bungalow floory 0.0552 0.0625

West Midlands Bungalow area3x 0.0132 0.0076

West Midlands Bungalow hhsizex 0.0021 0.0329

West Midlands Bungalow loftins4 0.0052 0.0210

North West Bungalow dwage5x_wallinsz 0.0856 0.0189

North West Bungalow felorien 0.1324 0.0872

North West Bungalow winsiz 0.6569 0.6856

North West Bungalow floory 0.0612 0.1327

North West Bungalow area3x 0.0263 0.0114

North West Bungalow hhsizex 0.0284 0.0235

North West Bungalow loftins4 0.0092 0.0407

London Bungalow dwage5x_wallinsz 0.3621 0.1998

London Bungalow felorien 0.0244 0.0690

London Bungalow winsiz 0.0407 0.0601

London Bungalow floory 0.4743 0.5506

London Bungalow area3x 0.0381 0.0391

London Bungalow hhsizex 0.0411 0.0623

London Bungalow loftins4 0.0193 0.0192

The following variables are considered: dwelling age, and type of wall and insulation (dwage5x_wallinsz), felorien (felorien),
household size (hhsizex), area3x (area3x), total winsiz (winsiz), loft insulation thickness (loftins4) and floory (floory)

Table A.4: Feature importance output for overheating risk using Random Forest for the
2050 climate.

Region Dwelling type Feature Bedroom Living room

North West Detached dwage5x_wallinsz 0.3170 0.3319

North West Detached floory 0.2338 0.2490

North West Detached hhsizex 0.1390 0.0561
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North West Detached felorien 0.1115 0.1280

North West Detached area3x 0.0979 0.1129

North West Detached winsiz 0.0832 0.1030

North West Detached loftins4 0.0176 0.0191

Yorkshire and the
Humber

Detached dwage5x_wallinsz 0.4100 0.6948

Yorkshire and the
Humber

Detached winsiz 0.1795 0.0920

Yorkshire and the
Humber

Detached floory 0.1728 0.0871

Yorkshire and the
Humber

Detached hhsizex 0.1138 0.0221

Yorkshire and the
Humber

Detached felorien 0.0885 0.0913

Yorkshire and the
Humber

Detached area3x 0.0245 0.0068

Yorkshire and the
Humber

Detached loftins4 0.0108 0.0060

South West Detached dwage5x_wallinsz 0.3079 0.4774

South West Detached floory 0.2523 0.1881

South West Detached winsiz 0.1791 0.1960

South West Detached felorien 0.1591 0.1085

South West Detached area3x 0.0469 0.0192

South West Detached hhsizex 0.0385 0.0054

South West Detached loftins4 0.0162 0.0054

East Detached winsiz 0.2263 0.3358

East Detached dwage5x_wallinsz 0.2237 0.2027

East Detached floory 0.1927 0.1748

East Detached felorien 0.1363 0.1451

East Detached hhsizex 0.1063 0.0330

East Detached area3x 0.0912 0.0812

East Detached loftins4 0.0235 0.0273

West Midlands Detached winsiz 0.2834 0.3139

West Midlands Detached dwage5x_wallinsz 0.2251 0.4398

West Midlands Detached floory 0.1571 0.0957

West Midlands Detached hhsizex 0.1304 0.0161

West Midlands Detached felorien 0.1209 0.1021
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West Midlands Detached area3x 0.0673 0.0234

West Midlands Detached loftins4 0.0159 0.0089

South East Detached dwage5x_wallinsz 0.3811 0.6226

South East Detached floory 0.2065 0.1500

South East Detached felorien 0.1519 0.1347

South East Detached hhsizex 0.1047 0.0151

South East Detached winsiz 0.0970 0.0605

South East Detached area3x 0.0347 0.0116

South East Detached loftins4 0.0241 0.0056

East Midlands Detached dwage5x_wallinsz 0.2661 0.4945

East Midlands Detached felorien 0.2323 0.1963

East Midlands Detached winsiz 0.2083 0.1543

East Midlands Detached floory 0.1313 0.0813

East Midlands Detached hhsizex 0.1065 0.0169

East Midlands Detached area3x 0.0306 0.0257

East Midlands Detached loftins4 0.0249 0.0310

London Detached dwage5x_wallinsz 0.2283 0.4348

London Detached winsiz 0.2141 0.1257

London Detached floory 0.1975 0.2043

London Detached felorien 0.1471 0.1284

London Detached hhsizex 0.1279 0.0426

London Detached area3x 0.0533 0.0409

London Detached loftins4 0.0317 0.0232

North East Detached floory 0.4295 0.5612

North East Detached winsiz 0.2110 0.2052

North East Detached hhsizex 0.1395 0.0526

North East Detached felorien 0.1089 0.1016

North East Detached dwage5x_wallinsz 0.0590 0.0219

North East Detached area3x 0.0483 0.0519

North East Detached loftins4 0.0039 0.0056

North West Semi-Detached felorien 0.2322 0.1508

North West Semi-Detached winsiz 0.2146 0.2094

North West Semi-Detached floory 0.1566 0.1189

North West Semi-Detached dwage5x_wallinsz 0.1498 0.4085

North West Semi-Detached hhsizex 0.1296 0.0563
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North West Semi-Detached area3x 0.0770 0.0213

North West Semi-Detached loftins4 0.0402 0.0348

East Semi-Detached felorien 0.2728 0.0841

East Semi-Detached hhsizex 0.1995 0.0830

East Semi-Detached winsiz 0.1828 0.1741

East Semi-Detached dwage5x_wallinsz 0.1515 0.4011

East Semi-Detached floory 0.1053 0.1782

East Semi-Detached area3x 0.0476 0.0396

East Semi-Detached loftins4 0.0406 0.0399

South East Semi-Detached felorien 0.3060 0.2088

South East Semi-Detached dwage5x_wallinsz 0.2785 0.6012

South East Semi-Detached winsiz 0.1472 0.0875

South East Semi-Detached floory 0.0995 0.0696

South East Semi-Detached hhsizex 0.0796 0.0098

South East Semi-Detached area3x 0.0575 0.0133

South East Semi-Detached loftins4 0.0318 0.0098

Yorkshire and the
Humber

Semi-Detached dwage5x_wallinsz 0.2363 0.5278

Yorkshire and the
Humber

Semi-Detached felorien 0.2168 0.0972

Yorkshire and the
Humber

Semi-Detached floory 0.1991 0.0937

Yorkshire and the
Humber

Semi-Detached winsiz 0.1641 0.1332

Yorkshire and the
Humber

Semi-Detached hhsizex 0.0908 0.0299

Yorkshire and the
Humber

Semi-Detached area3x 0.0750 0.1077

Yorkshire and the
Humber

Semi-Detached loftins4 0.0178 0.0106

London Semi-detached area3x 0.2655 0.0371

London Semi-detached felorien 0.2132 0.0734

London Semi-detached windowarea 0.1728 0.3454

London Semi-detached floorarea 0.1356 0.2230

London Semi-detached hhsizex 0.0997 0.0556

London Semi-detached dwage5x_wallinsz 0.0944 0.2318

London Semi-detached loftins4 0.0188 0.0336
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South West Semi-detached windowarea 0.2925 0.1649

South West Semi-detached felorien 0.2405 0.0969

South West Semi-detached floorarea 0.1814 0.2636

South West Semi-detached dwage5x_wallinsz 0.1049 0.3937

South West Semi-detached area3x 0.0918 0.0314

South West Semi-detached hhsizex 0.0600 0.0262

South West Semi-detached loftins4 0.0288 0.0233

North East Semi-detached felorien 0.2900 0.0782

North East Semi-detached floorarea 0.2081 0.2115

North East Semi-detached windowarea 0.1841 0.1555

North East Semi-detached area3x 0.1071 0.0418

North East Semi-detached dwage5x_wallinsz 0.1052 0.4705

North East Semi-detached hhsizex 0.0801 0.0224

North East Semi-detached loftins4 0.0253 0.0201

West Midlands Semi-detached hhsizex 0.2432 0.1822

West Midlands Semi-detached dwage5x_wallinsz 0.1641 0.4831

West Midlands Semi-detached windowarea 0.1579 0.0965

West Midlands Semi-detached felorien 0.1411 0.1098

West Midlands Semi-detached floorarea 0.1236 0.0612

West Midlands Semi-detached area3x 0.1059 0.0473

West Midlands Semi-detached loftins4 0.0642 0.0199

London Flat winsiz 0.2896 0.3285

London Flat felorien 0.2844 0.3018

London Flat floory 0.1531 0.1679

London Flat hhsizex 0.1318 0.0613

London Flat dwage5x_wallinsz 0.1052 0.0986

London Flat loftins4 0.0226 0.0264

London Flat area3x 0.0134 0.0155

South East Flat hhsizex 0.3272 0.1122

South East Flat winsiz 0.2713 0.4253

South East Flat felorien 0.1628 0.1705

South East Flat floory 0.1165 0.1498

South East Flat dwage5x_wallinsz 0.0856 0.0910

South East Flat area3x 0.0213 0.0316

South East Flat loftins4 0.0153 0.0196
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North West Flat hhsizex 0.3994 0.1976

North West Flat winsiz 0.1972 0.3506

North West Flat felorien 0.1439 0.1527

North West Flat floory 0.1237 0.1837

North West Flat dwage5x_wallinsz 0.0898 0.0592

North West Flat area3x 0.0324 0.0348

North West Flat loftins4 0.0135 0.0213

South West Flat winsiz 0.5291 0.5738

South West Flat hhsizex 0.1774 0.0959

South West Flat felorien 0.1050 0.1094

South West Flat floory 0.0757 0.1049

South West Flat dwage5x_wallinsz 0.0624 0.0547

South West Flat loftins4 0.0370 0.0442

South West Flat area3x 0.0134 0.0171

Yorkshire and the
Humber

Flat winsiz 0.3575 0.5578

Yorkshire and the
Humber

Flat hhsizex 0.3342 0.1678

Yorkshire and the
Humber

Flat dwage5x_wallinsz 0.1010 0.0694

Yorkshire and the
Humber

Flat floory 0.0936 0.0856

Yorkshire and the
Humber

Flat felorien 0.0716 0.0559

Yorkshire and the
Humber

Flat loftins4 0.0285 0.0487

Yorkshire and the
Humber

Flat area3x 0.0136 0.0147

West Midlands Flat winsiz 0.4760 0.5186

West Midlands Flat felorien 0.1614 0.1794

West Midlands Flat floory 0.1442 0.1396

West Midlands Flat hhsizex 0.1355 0.0689

West Midlands Flat dwage5x_wallinsz 0.0526 0.0687

West Midlands Flat area3x 0.0165 0.0147

West Midlands Flat loftins4 0.0137 0.0102

East Midlands Flat hhsizex 0.3342 0.0819

East Midlands Flat winsiz 0.3296 0.4332
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East Midlands Flat floory 0.1102 0.1657

East Midlands Flat dwage5x_wallinsz 0.0836 0.0838

East Midlands Flat felorien 0.0788 0.1011

East Midlands Flat loftins4 0.0343 0.1024

East Midlands Flat area3x 0.0295 0.0318

North East Flat windowarea 0.8014 0.8569

North East Flat hhsizex 0.0592 0.0444

North East Flat dwage5x_wallinsz 0.0496 0.0241

North East Flat felorien 0.0287 0.0284

North East Flat floorarea 0.0281 0.0260

North East Flat area3x 0.0245 0.0085

North East Flat loftins4 0.0085 0.0116

East Flat hhsizex 0.3487 0.1177

East Flat windowarea 0.2634 0.4152

East Flat felorien 0.2317 0.3044

East Flat floorarea 0.0769 0.0818

East Flat dwage5x_wallinsz 0.0500 0.0536

East Flat loftins4 0.0160 0.0162

East Flat area3x 0.0133 0.0110

South West Bungalow dwage5x_wallinsz 0.6509 0.5131

South West Bungalow winsiz 0.1691 0.2603

South West Bungalow floory 0.0929 0.1050

South West Bungalow felorien 0.0390 0.0669

South West Bungalow hhsizex 0.0226 0.0149

South West Bungalow loftins4 0.0173 0.0312

South West Bungalow area3x 0.0082 0.0087

London Bungalow dwage5x_wallinsz 0.5616 0.3147

London Bungalow floory 0.2592 0.4114

London Bungalow area3x 0.0652 0.1036

London Bungalow hhsizex 0.0347 0.0451

London Bungalow winsiz 0.0320 0.0355

London Bungalow felorien 0.0288 0.0829

London Bungalow loftins4 0.0184 0.0068

Yorkshire and the
Humber

Bungalow dwage5x_wallinsz 0.5267 0.3516
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Yorkshire and the
Humber

Bungalow floory 0.2493 0.4202

Yorkshire and the
Humber

Bungalow winsiz 0.1283 0.1359

Yorkshire and the
Humber

Bungalow felorien 0.0420 0.0443

Yorkshire and the
Humber

Bungalow hhsizex 0.0241 0.0201

Yorkshire and the
Humber

Bungalow area3x 0.0213 0.0207

Yorkshire and the
Humber

Bungalow loftins4 0.0083 0.0072

North East Bungalow dwage5x_wallinsz 0.4229 0.4233

North East Bungalow floory 0.2396 0.2207

North East Bungalow winsiz 0.1341 0.1918

North East Bungalow hhsizex 0.1042 0.0445

North East Bungalow felorien 0.0756 0.0746

North East Bungalow area3x 0.0166 0.0140

North East Bungalow loftins4 0.0070 0.0310

South East Bungalow dwage5x_wallinsz 0.5994 0.5000

South East Bungalow floory 0.1742 0.1809

South East Bungalow winsiz 0.1395 0.1724

South East Bungalow felorien 0.0511 0.0701

South East Bungalow area3x 0.0241 0.0346

South East Bungalow hhsizex 0.0076 0.0278

South East Bungalow loftins4 0.0041 0.0142

West Midlands Bungalow dwage5x_wallinsz 0.4938 0.3908

West Midlands Bungalow floory 0.3826 0.3206

West Midlands Bungalow winsiz 0.0648 0.1930

West Midlands Bungalow loftins4 0.0252 0.0364

West Midlands Bungalow felorien 0.0225 0.0346

West Midlands Bungalow area3x 0.0064 0.0162

West Midlands Bungalow hhsizex 0.0048 0.0085

East Bungalow dwage5x_wallinsz 0.5496 0.4211

East Bungalow winsiz 0.2502 0.1844

East Bungalow floory 0.0746 0.1881

East Bungalow felorien 0.0508 0.1258
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East Bungalow area3x 0.0338 0.0441

East Bungalow hhsizex 0.0247 0.0257

East Bungalow loftins4 0.0163 0.0108

East Midlands Bungalow dwage5x_wallinsz 0.4543 0.3032

East Midlands Bungalow winsiz 0.3619 0.3991

East Midlands Bungalow floory 0.1445 0.2150

East Midlands Bungalow felorien 0.0215 0.0467

East Midlands Bungalow loftins4 0.0105 0.0103

East Midlands Bungalow area3x 0.0046 0.0173

East Midlands Bungalow hhsizex 0.0028 0.0084

North West Bungalow dwage5x_wallinsz 0.5130 0.2773

North West Bungalow winsiz 0.2724 0.4116

North West Bungalow floory 0.1215 0.1493

North West Bungalow felorien 0.0496 0.0643

North West Bungalow loftins4 0.0181 0.0415

North West Bungalow area3x 0.0171 0.0309

North West Bungalow hhsizex 0.0084 0.0251

South West End-terrace winsiz 0.2549 0.0710

South West End-terrace dwage5xwallinsz 0.1609 0.5974

South West End-terrace area3x 0.1552 0.0934

South West End-terrace floory 0.1451 0.1034

South West End-terrace felorien 0.1256 0.0726

South West End-terrace hhsizex 0.1152 0.0396

South West End-terrace loftins4 0.0430 0.0226

North East End-terrace felorien 0.4460 0.2433

North East End-terrace winsiz 0.2445 0.1951

North East End-terrace loftins4 0.1044 0.0456

North East End-terrace area3x 0.0783 0.1912

North East End-terrace floory 0.0781 0.0666

North East End-terrace dwage5xwallinsz 0.0362 0.1917

North East End-terrace hhsizex 0.0125 0.0664

South East End-terrace felorien 0.2671 0.1914

South East End-terrace winsiz 0.2472 0.2036

South East End-terrace dwage5xwallinsz 0.2064 0.4761

South East End-terrace floory 0.1080 0.0674
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South East End-terrace hhsizex 0.1056 0.0254

South East End-terrace area3x 0.0384 0.0231

South East End-terrace loftins4 0.0272 0.0130

East Midlands End-terrace hhsizex 0.4126 0.0881

East Midlands End-terrace winsiz 0.1961 0.1034

East Midlands End-terrace floory 0.1212 0.2439

East Midlands End-terrace felorien 0.0875 0.1105

East Midlands End-terrace area3x 0.0848 0.0749

East Midlands End-terrace dwage5xwallinsz 0.0703 0.3421

East Midlands End-terrace loftins4 0.0274 0.0371

London End-terrace winsiz 0.3168 0.2358

London End-terrace floory 0.1884 0.1658

London End-terrace felorien 0.1825 0.1349

London End-terrace dwage5xwallinsz 0.1602 0.3723

London End-terrace area3x 0.0849 0.0450

London End-terrace hhsizex 0.0434 0.0272

London End-terrace loftins4 0.0238 0.0190

East End-terrace felorien 0.2376 0.0463

East End-terrace dwage5xwallinsz 0.1894 0.3316

East End-terrace hhsizex 0.1819 0.0264

East End-terrace winsiz 0.1718 0.1973

East End-terrace floory 0.1526 0.3636

East End-terrace area3x 0.0351 0.0202

East End-terrace loftins4 0.0317 0.0146

North West End-terrace winsiz 0.2338 0.2000

North West End-terrace felorien 0.1895 0.2143

North West End-terrace area3x 0.1745 0.0795

North West End-terrace floory 0.1583 0.2061

North West End-terrace hhsizex 0.1563 0.0293

North West End-terrace dwage5xwallinsz 0.0719 0.2525

North West End-terrace loftins4 0.0155 0.0183

Yorkshire and the
Humber

End-terrace felorien 0.3398 0.2215

Yorkshire and the
Humber

End-terrace floory 0.1653 0.1541
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Yorkshire and the
Humber

End-terrace area3x 0.1617 0.2812

Yorkshire and the
Humber

End-terrace winsiz 0.1540 0.0971

Yorkshire and the
Humber

End-terrace dwage5xwallinsz 0.0803 0.1952

Yorkshire and the
Humber

End-terrace hhsizex 0.0692 0.0318

Yorkshire and the
Humber

End-terrace loftins4 0.0298 0.0191

West Midlands End-terrace felorien 0.3928 0.2394

West Midlands End-terrace hhsizex 0.1733 0.0279

West Midlands End-terrace winsiz 0.1477 0.0939

West Midlands End-terrace dwage5xwallinsz 0.1256 0.5105

West Midlands End-terrace floory 0.0858 0.0818

West Midlands End-terrace area3x 0.0491 0.0397

West Midlands End-terrace loftins4 0.0258 0.0068

East Mid-terrace winsiz 0.2599 0.3169

East Mid-terrace felorien 0.2200 0.1541

East Mid-terrace hhsizex 0.1618 0.0729

East Mid-terrace floory 0.1419 0.1583

East Mid-terrace dwage5xwallinsz 0.1187 0.2316

East Mid-terrace area3x 0.0634 0.0472

East Mid-terrace loftins4 0.0341 0.0190

Yorkshire and the
Humber

Mid-terrace winsiz 0.5297 0.3347

Yorkshire and the
Humber

Mid-terrace felorien 0.1275 0.1610

Yorkshire and the
Humber

Mid-terrace hhsizex 0.1266 0.0493

Yorkshire and the
Humber

Mid-terrace floory 0.1078 0.1996

Yorkshire and the
Humber

Mid-terrace dwage5xwallinsz 0.0405 0.0906

Yorkshire and the
Humber

Mid-terrace area3x 0.0345 0.0306

Yorkshire and the
Humber

Mid-terrace loftins4 0.0333 0.1341

North East Mid-terrace winsiz 0.2819 0.1327
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North East Mid-terrace loftins4 0.2416 0.1077

North East Mid-terrace floory 0.1869 0.4875

North East Mid-terrace felorien 0.1279 0.0730

North East Mid-terrace dwage5xwallinsz 0.0677 0.0662

North East Mid-terrace hhsizex 0.0551 0.0311

North East Mid-terrace area3x 0.0390 0.1018

North West Mid-terrace winsiz 0.3972 0.1434

North West Mid-terrace felorien 0.2263 0.1227

North West Mid-terrace floory 0.1688 0.5900

North West Mid-terrace hhsizex 0.0893 0.0251

North West Mid-terrace dwage5xwallinsz 0.0620 0.0504

North West Mid-terrace loftins4 0.0306 0.0312

North West Mid-terrace area3x 0.0258 0.0371

West Midlands Mid-terrace winsiz 0.5037 0.2777

West Midlands Mid-terrace felorien 0.1750 0.2343

West Midlands Mid-terrace floory 0.1218 0.2029

West Midlands Mid-terrace dwage5xwallinsz 0.0935 0.1648

West Midlands Mid-terrace hhsizex 0.0749 0.0395

West Midlands Mid-terrace area3x 0.0165 0.0276

West Midlands Mid-terrace loftins4 0.0147 0.0532

London Mid-terrace felorien 0.2875 0.1783

London Mid-terrace winsiz 0.2257 0.1508

London Mid-terrace floory 0.1505 0.1644

London Mid-terrace dwage5xwallinsz 0.1369 0.4382

London Mid-terrace area3x 0.0866 0.0300

London Mid-terrace hhsizex 0.0828 0.0262

London Mid-terrace loftins4 0.0300 0.0121

South East Mid-terrace winsiz 0.2814 0.2174

South East Mid-terrace felorien 0.2712 0.1912

South East Mid-terrace floory 0.1482 0.2003

South East Mid-terrace dwage5xwallinsz 0.1391 0.3005

South East Mid-terrace hhsizex 0.0913 0.0208

South East Mid-terrace area3x 0.0352 0.0339

South East Mid-terrace loftins4 0.0336 0.0359

South West Mid-terrace winsiz 0.4018 0.3026
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South West Mid-terrace felorien 0.1949 0.1659

South West Mid-terrace floory 0.1400 0.2498

South West Mid-terrace dwage5xwallinsz 0.0847 0.1660

South West Mid-terrace hhsizex 0.0682 0.0355

South West Mid-terrace loftins4 0.0592 0.0491

South West Mid-terrace area3x 0.0511 0.0310

The following variables are considered: dwelling age, and type of wall and insulation (dwage5x_wallinsz), felorien (felorien),
household size (hhsizex), area3x (area3x), total winsiz (winsiz), loft insulation thickness (loftins4) and floory (floory)
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