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Abstract

This work focuses on exploring the development of the Cardiff Model (CM) and

the Artificial Neural Network (ANN) based behavioural model for reasonable model

extrapolation performance while maintaining the interpolation accuracy.

As an opening segment following the theories explained in the literature review,

both the CM and the ANN model accuracy are verified. The potential extrapolation

problems of the two modelling techniques are investigated in detail. The experiments

demonstrate that the determination of the internal model parameters, such as the

model order of the CM, the initial values of hidden neuron numbers, weights and

biases of the ANN, are the key correlated elements to reasonable/accurate model

performance.

One solution to the extrapolation problem with the user-defined CM order is pro-

vided. A modified Levenberg-Marquart (LM) backpropagation training algorithm

that can be utilised as part of the ANN based behavioural model is introduced.

The modified LM algorithm allows the implementation of an ANN technique-based

CM coefficient extractor. The invented coefficient extractor is verified with datasets

acquired under ideal simulation and practical load-pull measurement scenarios from

the Wolfspeed 10W packaged device. Results prove that the novel coefficient extrac-

tor is able to provide interpolation predictions at the same level of accuracy as the

conventional CM, at a Normalised Mean Square Error (NMSE) level below - 50 dB.

Then, a method that combines the conventional A-B wave-based ANN behavioural

model and the invented coefficient extractor for extracting high user-defined order
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CM coefficients is also presented. Two sets of practical load-pull measurement data,

acquired with the Wolfspeed 10W packaged device and the WIN NP12 4x25 um

on-wafer device, are used for method verification. The coefficients, extracted using

the proposed combined method, have been proven with reasonable extrapolation

ability and robustness under different measurement scenarios, maintaining the in-

terpolation accuracy at a NMSE level below - 50 dB for the predicted output power

and - 40 dB for the predicted efficiency.

Another solution to the configuration of the ANN with the values of internal model

parameters is also given. A direct link between the CM and the A-B wave-based

ANN behavioural model is established. The established equation set enables an

alternative ANN determining method. The ANN models proposed using the deter-

mination method can provide accurate prediction for the behaviour acquired from

load-pull characterizations of the Wolfspeed 10W packaged GaN device simulation

and a dense load-pull measurement of WIN NP12 4x75 um GaN HEMT at 20GHz,

with NMSE levels lower than - 40 dB, and also guarantee a reasonable extrapolation

ability for both device output power and efficiency.
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Chapter 1

Introduction

With extensive uses of Radio Frequency (RF) and microwaves across wireless com-

munication systems under different scenarios nowadays, there is an increasing de-

mand for better power amplifiers (PAs) to drive the signals because of the reduced

noise and distortion target: the longer transmission distances, the lower energy con-

sumption and the heat generation expectations. Transistors are one of the essential

components required to operate in the PA design process, with sufficient perfor-

mance related to many desired targets.

Modelling transistors provides an efficient way to design RF/microwave power com-

ponents and systems in a Computer-Aided Design (CAD) environment, especially

when the technology is not established and so the relevant Process Design Kits

(PDKs) are not available. Measurement systems are necessary to extract an accu-

rate transistor model. Different data acquisition criteria are required, e.g., a suffi-

cient number of data points in general or a high-density set when the measurement

system is not precisely controllable for a selectable conditioned data pattern.

As the first step into the details of this work, this Chapter briefly illustrates

the general development path of transistor behavioural modelling techniques for

RF/microwave design. Secondly, it provides a description section of the correlated
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load-pull measurement system setups. Then, it follows up with a section explaining

the objective of this work. Finally, it concludes with a section of the chapter

summary for guidance.

1.1 Transistor Models for RF/Microwave design

In general, based on the model extraction process, transistor models can be separated

into three types: Physical models, compact models, and behavioural models. The

three types of transistor models have their own application scenarios with strengths

and weaknesses.

Both the physical and the compact model types incorporate aspects of the under-

lying device physics. The extracted models of these two model types are analytical

sets of equations or derived coefficients, which can normally be mapped to physical

equivalent features of the transistor. The physical models, which highly rely on the

transistor design technology, are extracted and mainly used for assisting the fabrica-

tion process [1] with priority knowledge about the internal structure of transistors.

This type of model can be applied to investigate the behaviour of transistors; how-

ever, it can be difficult and time-consuming to use for PA design [2], especially when

the device is becoming more complex because of the application demand. Following

the explanation given by [3], the compact models allow an accurate mathematical

approximation from voltage to current. The directly extracted equations/coefficients

of compact models provide a more efficient solution for CAD simulators compared

to the physical models, hence occupying an important position in the circuit design

process, as well as measurement system applications [4].

For the physical/compact model extraction, the pulsed bias, current/voltage (I/V),

and S-parameter measurements are the general used to interpret the transistor char-

acterisation. The pulsed measurement setups, using a Vector Network Analyser

(VNA), provide a safe pulsed-IV measurement operation for the transistor at low
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risk of damage, as well as coverage on the capacitive and inductive effects [5]. For

succeeding in a pulsed model extraction, specific load-pull measurement system se-

tups may be required for data acquisition and extracted model validation.

Different from the other two types of model categories, the behavioural models,

also known as empirical models, do not completely rely on the physical parameters.

Associated with proper measurement system setups, behavioural models can be

divided into more precise divisions according to the level of non-linearity they deal

with.

Beginning with linear S-parameter model for small signal conditions [6], the devel-

opment of behavioural models then moves on to resolve non-linear problems under

large signal conditions [7], [8]. By extending the S-parameter model, the Volterra In-

put Output Map (VIOMAP) [9] is the sequel solution for weak nonlinear to strong

nonlinear systems. With similar approaches to the formulation variation, Hot S-

parameters [10] are then introduced with the inclusion of a different measurement

procedure [11]. The Poly-harmonic Distortion (PHD) modelling technique [12] is

subsequently presented with the Hot S-parameter model as its basis. With the dis-

tortion effects from harmonics reflecting in a chain to the fundamental non-linear

behaviour of the transistor [13], the PHD models then set up the mathematical

framework for the Cardiff Model (CM) [14], [15] and the X-parameter [16] model.

When there was an increased awareness of the power of Artificial Neural Networks

(ANN), it has also been considered to be one of the techniques for generating be-

havioural models from the 1990s [17].

All types of behavioural models offer the possibility for model extraction without

an understanding of the internal device/circuit structure, so can be used as black

box models. This can be an advantage to the manufacturer since it can help protect

the corresponding Intellectual Property (IP), and be easily utilised for designers in

CAD environment [13].
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In this work, the behavioural model type is investigated in detail, especially with the

CM and the ANN technique, to acquire more efficient models that can enable the

direct use of measurement datasets in non-linear RF systems, for the reasons (will

be later detailed and illustrated in the literature review) that the CM provides a

physics-based mathematically formulated non-linear model, and the ANN technique

allows flexible and robust behavioural models.

1.2 Measurement Systems

As mentioned in the previous section, diverse transistor models can be extracted

using different measurement setups. Specific measurement category can allow nec-

essary dataset acquisition. The selection of the measurement systems is notable for

the model generation procedure. The load-pull measurement can be utilised not only

for pulsed model validation but also for large signal behavioural model extraction.

The architecture of the load-pull measurement systems can vary according to specific

modelling/design requirements. A general structure diagram is shown in Fig. 1.1.
DUT

𝑎1

𝑎2𝑏1

𝑏2

DUT

𝑎1 𝑏1

Coupler

𝑎2 𝑏2

Coupler

VNA

Bias T Bias T

DC DC

Reference 
𝑍0

Γ𝐿

Active/Passive 
Load Tuner

Γ𝑆

Figure 1.1: Generic Load-Pull Setup Diagram with Device Under Test (DUT)

In assisting the large signal behavioural model, two types of load-pull measurement

can be done: a passive load-pull measurement with the load tuner; and an ac-
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tive load-pull measurement with a power amplifier controlling the incident signal to

the output of the device [18]. Passive load-pull measurements can enable a speedy

measurement operation, however, they have the drawback of a slower calibration

procedure due to the slow movement of mechanical tuners needed for load termi-

nation, especially for high power applications. Though an active setup sometimes

requires strong power amplifiers, it provides the possibility for measurements to

cover a bigger ΓL range over the Smith Chart [19] and a faster calibration. There-

fore, the active load-pull is more commonly engaged for high reflection coefficient

situations, especially when reflection coefficients are required to be matched at the

short/open edge of the Smith Chart [19].

The active load-pull measurement injects pseudo Continuous Wave (CW), a1 and

a2, response with harmonically related response reflected waves b1 and b2 correlating

to the topology in Fig.1.1. The large signal measurement allows the a/b waves to

be converted/calculated from the current/voltage (I/V) signals with the following

equations [14], [20]:

V =
Z∗

0a+ Z0b√
ℜ(Z0)

(1.1)

I =
a− b√
ℜ(Z0)

(1.2)

a =
V + Z0I

2
√
ℜ(Z0)

(1.3)

b =
V − Z∗

0I

2
√
ℜ(Z0)

(1.4)

where Z0 is the reference impedance shown in Fig.1.1, the default value commonly

chosen to be 50Ω [21].

The measured scattered waves allow the transistor behaviour to be captured in
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the frequency domain, with a fixed input drive level defined by component a1 at

fundamental, hence a1,1. Considering the harmonic impacts, a generic formulation

set can be listed [21], as the basis for large signal transistor modelling technique:

bp,h = F (ap,h) (1.5)

where ‘p’ and ‘h’ represent the port number and harmonic index, respectively.

In the pursuit of the requirement of an efficient and low-cost design procedure in

CAD environment, such as the Simulation Program with Integrated Circuit Empha-

sis (SPICE) [22] package, the Applied Wave Research (AWR) Microwave Office [23],

and the Keysight Advanced Design System (ADS) [24], simulation of measurements

is also a capability. One CAD implementation example in ADS [24] is shown as Fig.

1.2.

Figure 1.2: load-pull setup in ADS

The ‘S1P Eqn’ block, in Fig.1.2, is used based on parameter sweeps to create load

grids in circular or rectangular patterns. The DUT in the middle can be replaced

with model implementation through a Frequency-domain Defined Device (FDD)

component block for model validation.
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1.3 Thesis Objective

Under the present scenario of the RF/microwave CAD design environment, when

developing or extracting non-linear behavioural models for transistors, the key con-

cern commonly focuses on shortening the computation time, while simultaneously

keeping the model robustness [25]. A speedy modelling procedure with robust pre-

dicting ability can save time, and prevent an optimizer converging on an erroneous

load point when trying to optimize the matching networks. In this work, the Cardiff

Model (CM) and Artificial Neural Network (ANN) based model are selected to be

explored for a possible improvement to current modelling solutions that support the

designers better.

The CM has been developed and utilised as a reliable behavioural model in CAD over

the past few decades. It is commercially widely used based on the fact that it can be

extracted regardless of the specific measurement system [11]. The ANN technique

has the robustness and efficient modelling capability for complex nonlinear problems,

hence, as a reason to be chosen for investigation. In addition, the ANN allows

flexible model parameter variation to achieve different types of model performance,

irrespective of specific measurement datasets.

Both models are proven accurate within the measurement-referenced region, repre-

senting an accurate interpolation ability. However, not much work has been done on

engaging the trade-off between interpolation accuracy and extrapolation ability. The

objective of this work is to identify potential problems when using the CM and ANN

approaches, focusing on the extrapolation robustness of both models, and looking

into the practicability of combining the two modelling frameworks, or operating one

to help boost the other model for an optimised model extraction process.
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1.4 Chapter Summary

Given the thesis objective in the previous section, the thesis is arranged as follows,

towards the achievement of the target.

In Chapter 2, the literature review on the CM and the ANN is provided. The

development history of both the CM and ANN will be illustrated, with a brief

conclusion of the basic formulation of other mainstream modelling techniques. The

associating structure categories, parameters and training algorithms to the ANN

will also be introduced. In addition, the implementation platform together with the

present application discussion will be given to the two models, respectively.

In Chapter 3, a comparison is made on the current existing CM and ANN structure.

An ADS load-pull simulation is set up for data acquisition. The extrapolation ability

of the two modelling techniques will be compared in detail. In this investigation,

different ANN structure performance is also looked inside and compared for future

evidence. A conclusion will be proposed as hints into the next step for establishing

a novel model procedure with improved characteristics.

In Chapter 4, a novel CM coefficients extracting process assisted by the ANN tech-

nique is invented. By modifying the Levernberg-Maquart training algorithm to the

ANN model, the CM coefficients can be varied, for a more reasonable extrapolation

predicting ability compared to the conventional mixing theory.

In Chapter 5, an alternative ANN determining method is proposed. With the Taylor

series approximation analysis, both the CM and selected ANN structure can be

reformulated for a matching topology. A set of equations that allows an accurate

ANN structure to be defined from the CM coefficients is established.

Finally, in Chapter 6, the conclusion of this work is delivered, followed by a discussion

about the potential future work coming out of this thesis.
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Chapter 2

Literature Review

Modelling techniques can be considerably useful in the Computer-Aided Design

(CAD) environment and have been significant to the Radio Frequency (RF) de-

sign tasks for reducing time and costs during the prototyping optimisation process.

Amongst the transistor modelling categories, there are a variety of large-signal mod-

els for High-Electron-Mobility transistors (HEMTs).

Based on transistor physics in the time domain, current-voltage (I-V), and charge-

voltage (Q-V), compact models have been applied to measurement systems as indus-

trial standards. Using user-defined closed form mathematical, empirical equations,

the Angelov Model [1] for HEMT transistor is one of the examples that forms the ba-

sis, from which the modifications for improvements have been made on better model

scalability and enhanced model robustness in the recent decade, [2], [3]. Other ex-

amples, including the MIT Virtual Source GaN-HEMT (MVSG) [4], the EEHEMT

Model [5], and the Advanced Spice Model (ASM) HEMT [6] were also introduced to

enable robust circuit simulation with physics-based models. Aside from the mathe-

matical model expressions, the Look Up Table (LUT) type of compact model is also

widely utilized, with the Root model [7], [8] as one of the examples.

The scattered wave formalism (related to equations (1.1)-(1.4)) allows nonlinear

12



behavioural modelling in the frequency domain. This type of transistor model

starts by capturing the linear behaviour with S-parameters. Moving on to capturing

more complex transistor behaviour, the Volterra Input Output Map (VIOMAP) [9],

Hot S-parameters [10] and the Poly-Harmonic Distortion (PHD) Model [11], X-

parameters [12] and the Cardiff Model (CM) [13], [14]. Artificial Neural Network

(ANN) technique based models [15]–[18] were also been well-developed and widely

applied to RF designs [19]–[23].

A robust compact model involves internal device structure, coupled with complex

parameter extraction procedures from measurement that may require a long runtime.

On the contrary, the behavioural models can be extracted directly and applied to

the commercial simulator as a black box. Therefore, the behavioural models can

be selected to keep up with the fast-paced changes of emerging device technologies.

This Chapter will introduce, firstly, the development of the non-linear transistor

behavioural models in general. Since this work aims to combine the CM and the

ANN technique based on their benefits and drawbacks, in this Chapter, the theory

and the application status of the CM and the ANN will be reviewed in detail.

2.1 Development of Behavioural Models

Scattering parameters [17], also called the S-parameters, form the basis of the be-

havioural models. It utilises the concept of pseudo Continuous Wave (CW) a/b

waves. As mentioned in the previous chapter Fig. 1.1 with the two-port load-

pull measurement system, the mathematical relationship between the measured

S-parameters is shown in Fig. 2.1. The theoretical formulations are listed as (2.1a)-

(2.1b).

b1 = S11a1 + S12a2 (2.1a)

b2 = S21a1 + S22a2 (2.1b)
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𝒂𝟐𝒃𝟏

𝒃𝟐

𝑆11

𝑆21

𝑆22

𝑆12

Figure 2.1: S-parameters diagram with DUT

where in (2.1a) and (2.1b), ‘a1’, ‘a2’, ‘b1’, and ‘b2’ can be calculated with (1.3) -

(1.4) from current/voltage (I/V) measurements.

The S-parameters allow accurate modelling results under linear conditions. However,

when a device is operated near/close to saturation under large signal conditions,

its performance behaves with more non-linear features. Under this scenario, the

conventional S-parameter model is no longer robust enough to capture all non-

linear device behaviours. Sets of nonlinear transistor models were then introduced

in an order that follows an approximate development timeline, including the Volterra

Input Output Map (VIOMAP) [9], [24] model, Hot S-parameters [10], and the Poly-

Harmonic Distortion (PHD) Model [11].

By extending the S-parameter model, the VIOMAP model moves from capturing

linear device behaviours towards non-linear behaviours. According to the description

in [9], [24], the VIOMAP kernel Hn,ji1,i2...in(f1, f2, ..., fn) describes the nth degree of

nonlinearity of system ‘H’ as the setup in Fig. 2.2, equivalent to the ‘DUT’ as in

Fig. 2.1. Here, the frequencies ‘fn’ are combined at input terminal ‘in’ into the

frequency component ‘fl + f2 + ... + fn’ of the output signal at output terminal

‘j’ [24].

The correlated Volterra formulation is identical to the S-parameter model at the

linear level. When incorporating third-order non-linearity generated by a device,

the formulations are as follows:
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H

𝒂𝟏

𝒂𝟐

𝒃𝟏

𝒃𝟐

Figure 2.2: The VIOMAP system diagram

b1(1) =H1,11(1)a1(1)

+H1,12(1)a2(1)

+ 3H3,1111(1, 1,−1)a1(1)a1(1)a1(−1)

+ 3H3,1112(1, 1,−1)a1(1)a1(1)a2(−1)

+ 6H3,1112(1,−1, 1)a1(1)a1(−1)a2(1)

+ 6H3,1122(1, 1,−1)a1(1)a2(1)a2(−1)

+ 3H3,1122(−1, 1, 1)a1(−1)a2(1)a2(1)

+ 3H3,1222(1, 1,−1)a2(1)a2(1)a2(−1)

(2.2)

b1(3) =H3,1111(1, 1, 1)a1(1)a1(1)a1(1)

+ 3H3,1112(1, 1, 1)a1(1)a1(1)a2(1)

+ 3H3,1122(1, 1, 1)a1(1)a2(1)a2(1)

+H3,1222(1, 1, 1)a2(1)a2(1)a2(1)

(2.3)

The VIOMAP kernel that relates the a/b waves from the load-pull measurement

system will require computing assistant software when a higher polynomial order is

required in the model equations, as the device behaviour will obtain higher nonlinear-

ity. Accurately applying VIOMAP is challenging. Hence, it lacks user-friendliness.

Simpler than the VIOMAP kernel theory, the Hot S-parameter model is proposed
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with a similar formulation framework to conventional S-parameters. Originally

in [25], the Hot S-parameter model is formulated with (2.4).

b1(f)
b2(f)

 =

HotS11(f) HotS12(f)

HotS21(f) HotS22(f)


a1(f)
a2(f)

 (2.4)

At this stage, the ‘[Hot-S ]’ parameter matrix depends on the power level, funda-

mental and harmonic frequencies, and other intermodulation products related to

device operating point [25].

Later in (2.5), it is ‘fc’ that differs the ‘[Hot-S ]’ parameter matrix from the con-

ventional ‘[S ]’ parameters. The large signal variable ‘a1(fc)’ has an amplitude and

frequency that is not perfectly linear anymore [26]. For the consideration of sta-

bility, related research work shows that Hot S-parameters, under the large signal

domain to deal with non-linear transistor behaviours corresponding to at least 1 dB

compression operating condition, is then extended as (2.5) [26].

b1(fc)
b2(fc)

 =

HotS11 HotS12

HotS21 HotS22


a1(fc)
a2(fc)

+

T12(fc)

T22(fc)

 ej2φ(a1(fc))conj(a2(fc)) (2.5)

here in (2.5), fc is the large signal carrier frequency that always appears in the

injected signal a1. Extra [T ] terms were derived from mixer theory [26].

However, the Hot S-parameter system stability is sensitive to the harmonic frequen-

cies from the load-pull measurement [27]. This then directs towards the requirement

of preliminary analysis and specific measurement system setup for a set of accurate

Hot S-parameters extraction.

The Poly-Harmonic Distortion (PHD) model, proposed in [11], [28], also works

with the travelling waves similar to the S-parameters. Different from the Hot S-

parameters, the PHD model does not rely on special/complex load-pull measure-

ment system setup. With (2.6), the PHD model is defined to capture the non-linear
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transistor behaviour with the input and output of the Device Under Test (DUT),

related directly with the mathematical equation.

Bpm =
∑
qn

Spq,mn (|A11|)P+m−nAqn +
∑
qn

Tpq,mn (|A11|)P+m+nconj (Aqn) (2.6)

where

Kpm(|A11|) = Fpm(|A11|, 0, ...0) (2.7)

Gpq,mn(|A11|) =
Fpm

Re(AqnP−n)

∣∣∣∣
|A11|,0,...0

(2.8)

Hpq,mn(|A11|) =
Fpm

Im(AqnP−n)

∣∣∣∣
|A11|,0,...0

(2.9)

SP1,M1(|A11|) =
Kpm(|A11|)
|A11|

∀{q, n} ≠ {1, 1} : Spq,mn(|A11|) =
Gpq,mn(|A11|)− jHpq,mn(|A11|)

2

(2.10)

TP1,M1(|A11|) = 0

∀{q, n} ≠ {1, 1} : Tpq,mn(|A11|) =
Gpq,mn(|A11|) + jHpq,mn(|A11|)

2

(2.11)

with phasor ‘P ’ being defined as:

P = e+jφ(A11) (2.12)

and ‘q ’ and ‘p’ represent the signal port numbers, ‘m’ and ‘n’ represent harmonic

index.

The PHD model is accurate not only for capturing the non-linear characteristics with

the acquired data from the load-pull measurement system, but also extends to other

aspects, such as harmonics, compression, AM-PM, and time domain waveforms [29].

In recent decades, the PHD model, with its commercial format as the X-parameters,

and the Cardiff Model (CM), which is formulated with the PHD model as the basis,
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have all been widely applied to RF design-related hardware and software. Consider-

ing the X-parameter processing procedure may rely on large data files since multiple

parameter terms ‘Sqp,mn’ and ‘Tqp,mn’ correlated to ‘Kq,m’, ‘Gqp,mn’ and ‘Hqp,mn’ are

required, the CM is thought to be more efficient in this work. It requires reduced

file size by directly extracting equivalent behavioural formulations from the mea-

surement dataset with only one set of coefficient term ‘Mp,h,m,n’ in the polynomial

format. Details for the CM coefficient extraction follow.

2.2 The Cardiff Model (CM)

The CM was first formulated with a Direct Waveform Look-Up Table (DWLU)

approach and then a behavioural model as mentioned in [13], [30]–[33]. In 2006,

the model was proposed for a better model performance when considering the load

impedance [30], compared to the S- and T-parameters proposed in [11].

With the DWLU approach following the given diagram in Fig. 2.3 and equations

(2.13)-(2.14), the load impedance corresponding an and bn travelling waves are able

to be searched by the simulator through the measurement data [30].

Figure 2.3: Definition of the truth model in frequency domain

I1(ω) = a0δ(ω) +
h∑

n=1

ahV
h
IN(ω)δ(ω − 2πhf0) (2.13)

I2(ω) = b0δ(ω) +
h∑

n=1

bhV
h
IN(ω)δ(ω − 2πhf0) (2.14)
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where ‘n’ is the harmonic order index, the VIN is the input CW stimulus, ‘f0’ the

fundamental frequency. ‘a0’ and ‘b0’ are the DC components.

The CM DWLU approach, provides a direct link between the measurement system

and CAD environment and has been proven to be accurate within the covered mea-

surement space. Thereafter, for a further easier and quicker analysis process, and

to ensure the model can be shared simply, the DWLU approach was then developed

in a polynomial mathematical formulation expansion [32].

2.2.1 The Polynomial Formulation of the CM

The CM, extracted directly from the DWLU approach in the polynomial expansion

format, uses the PHD model as its basis [31]. It provides a robust formulation that

can describe the transistor behaviour in response to load-pull measurement. When

implemented in CAD tools, the CM is dealing with the device input and output

relationship of the frequency relative phase and magnitude matrix elements, with

the dataset extracted directly from load-pull measurements [13].

The expansion is formed based on the application of signal mixing with a least-

square fit to measurement datasets [14]. Consider the case of modelling fundamen-

tal load-pull measurements performed on a two-port non-linear network such as

the S-parameter system in 2.1. Two injected Continuous Waveform (CW) pseudo

travelling-wave components A1,1 and A2,1 are used to compute the output frequency

related components Bp,h algebraically [14]. The output components, Bp,h, are a

mixing sum of elements based on the phase and the magnitude grid that is related

to the injected signals. Followed by a user-defined model order, the conventional

mixing product and conjugation rules can be used as the reference to truncate the

polynomial expansion of the model formulation [34].
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The general CM formulation can be shown as below:

Bp,h (|A1,1|) = Qh
1,1

r=
(ord−h)

2∑
r=0

n=h+
(ord−h)

2
−r∑

n=−( (ord−h)
2

−r)

Mp,h,m,n (|A1,1|) |A2,1|m
(
Q2,1

Q1,1

)n


(2.15)

Here in (2.15), ‘M ’ is the symbol of the CM coefficients, ‘p’ and ‘h’ represent the

port number and harmonic order respectively. The correlated ‘Q ’ parameters, Q2,1

and Q1,1, are the complex exponential of the phase of A2,1 and A1,1, and the ‘n’ and

‘m’ terms represent the phase and magnitude exponent parameters, respectively.

In general, the phase exponent parameter ‘n’ can range from −∞ to +∞, and the

magnitude exponent parameter ‘m’ can range from 0 to +∞. However, the values

are constrained for the model accuracy in (2.15).

Following the analysis given in [13], the CM DWLU formulation (2.13) and (2.14)

can be rearranged as the PHD model theory with (2.16) and (2.17) to the 3rd order

expansion.

b1 = Q11

(
T12|a2|Φ−1 + S11|a1|+ S12|a2|Φ + T11|a1|Φ2

)
(2.16)

b2 = Q11

(
T22|a2|Φ−1 + S21|a1|+ S22|a2|Φ + T21|a1|Φ2

)
(2.17)

where:

Φ = ej(
̸ a21−̸ a11) =

Q21

Q11

(2.18)

Sp,h|ah| =
1

n

∑
bp

1

Qp,1

(2.19)

Tp,h|ah| =
1

n

∑
bp
Qh,1

Q2
p,1

(2.20)

From (2.16) and (2.17), values that are assigned to the phase and magnitude expo-
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nent parameters can be summarised and listed in Table 2.1, Table 2.2, and extended

to the 5th and 7th order. These tables indicate the interaction of incident waves

within a non-linear device and demonstrate the different patterns when analysing a

bi-variate mixing process, as in [35].

Table 2.1: Phase and magnitude exponent parameters corresponding to (2.16).
Φ−6 Φ−5 Φ−4 Φ−3 Φ−2 Φ−1 Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7

|a21|0 1st

|a21|1 3rd 1st

|a21|2 3rd 3rd 3rd

|a21|3 5th 3rd 3rd 3rd

|a21|4 5th 5th 5th 5th 5th

|a21|5 7th 5th 5th 5th 5th 5th

|a21|6 7th 7th 7th 7th 7th 7th 7th

|a21|7 7th 7th 7th 7th 7th 7th 7th

Table 2.2: Phase and magnitude exponent parameters corresponding to (2.17).
Φ−3 Φ−2 Φ−1 Φ0 Φ1 Φ2 Φ3 Φ4

|a21|0 1st

|a21|1 3rd 1st

|a21|2 5th 3rd 3rd

|a21|3 7th 5th 3rd 5th

|a21|4 7th 5th 5th 7th

|a21|5 7th 5th 7th

|a21|6 7th 7th

|a21|7 7th

In [32], [36], the two equations (2.16) and (2.17) are combined and generalized to

give:

bp =

n−1
2∑

m=0

Cp,m

(
Q21

Q11

)m

a1 +

n−1
2∑

m=0

Up,m

(
Q11

Q21

)m

a2 (2.21)

where: ‘n’ represents the polynomial order, ‘C ’ and ‘U ’ are the common factors

related to the magnitude and phase of ‘a1’ and ‘a2’ extracted from (2.16) and (2.17).

Then extended including the harmonic factor as:

bp,h = Qh
11

n= ord+1
2∑

n=
−(ord−1)

2

Kp,h,n

(
Q21

Q11

)n

(2.22)
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where

Kp,h,n =

m=q∑
m=0

Mp,h,n,m|a21|m (2.23)

Based on the mixing theory and the least squared approximation, the parameters are

better defined in [14]: the phase exponent parameter ‘n’, which can then be defined

with the mixing order ‘ord ’ and the harmonic ‘h’, ranges from −
(

(ord−h)
2
− r
)
to

h+
(

(ord−h)
2
− r
)
. The magnitude exponent parameter ‘m’ is given by m = |n|+2r

where ‘r ’ is the magnitude restricting terms that can range from 0 to (ord−h)
2

for

(2.15).

The coefficients Mp,h,m,n of the CM can be extracted from the measured datasets

using least-squared approximation.

[Mp,h,m,n] =

([
|A2,1|m

(
Q2,1

Q1,1

)]H [
|A2,1|m

(
Q2,1

Q1,1

)n])−1 [
|A2,1|m

(
Q2,1

Q1,1

)n]H
[Bp,h]

(2.24)

In specific cases when the dataset is pre-normalised to the complex exponential of

the phase of A1,1, the formula can be simplified as follows:

Bp,h =

 r∑
0

n=h+
(ord−h)

2
−r∑

n=−( (ord−h)
2

−r)

Mp,h,m,n|A2,1|m (Q2,1)
n

 (2.25)

The formulation to extract the coefficients Mp,h,m,n will then be:

[Mp,h,m,n] =
(
[A]H [A]

)−1

[A]H [Bp,h] (2.26)

where [A] is the A-matrix ‘|A2,1|m (Q2,1)
n’ populate with the (m,n) exponent pairs

corresponding to the complex exponential of the magnitude and phase of A2,1.

From the definition of the CM in (2.15), the population of the (m,n) exponent

pairs is correlated to the mixing order, which needs to be determined by the user

in advance. The user-defined model order, which will define the necessary model
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complexity, is the key to a proper range of the ‘m’ and ‘n’ values. For a practical and

accurate CM, the order has to be robustly identified linking with the measurement

dataset, which was done through iteration at the beginning of the CM generation.

2.2.2 CM Extraction with Tailored Datasets

Earlier work in [13], [37] applied a repeating parameter sweep process to search for

an appropriate model order from the value of ‘n’ to ‘m’. To overcome the challenge

and the duplicating process of ensuring a robust CAD implementation of the CM

order, the spectrum analysis method in [34] was a recent development, which offers

a direct approach to extract the model coefficients with proper polynomial order.

A set of tailored measurement data will be required for a direct model extraction.

As mentioned in [34], the computed A2,1 value using (2.27) will enable a fundamental

load-pull measurement for this direct model extraction.

Ai
2,1 = A0

2,1 +
A∆

2,1

2

(
1 + cos

(
Sa

i

N

))(
cos

(
Sp

i

N

)
+ jsin

(
Sp

i

N

))
(2.27)

Here in the equation, A0
2,1 sets the center referencing point. The provided ‘Sa’ and

‘Sp’ represent a rate that allow the emulated Amplitude and Phase Modulation

(AM/PM) trajectory, where ‘N ’ counts the total number of points that are defined

for the measurement when ‘i ’ is sweeping from 0 to ‘N-1 ’.

Performing a load-pull measurement using the computed A2,1, and with the Fourier

Transformed collected device response Bp,h, analysis on the spectral lines about the

Fourier index location can be applied, the CM coefficients can then be extracted

with a defined expected model error threshold.

In [34], an example was shown for validation as in Fig. 2.4. The approach has proven

to be accurate for directly extracting the CM with observed model complexity.
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(a)

(b) (c)

Figure 2.4: Analysis example in [34] for B2,1 Fourier Transformed spectrum samples
between - 40 dB and - 60 dB error bar on the trajectory computation dataset at each
n.Sp = n.41 location (Sa = 2, Sp = 41 with N = 739) allows for the identification

of the relevant exponent terms for
(

Q2,1

Q1,1

)n
(a) and |A2,1|m (b-c).

2.3 Artificial Neural Network (ANN) Models

For decades, the Artificial Neural Networks (ANNs) technique has been one of the

research hot-spots for developing transistor non-linear behavioural models used in

the design of RF power amplifiers [15], [16], [19], [25], [26]. ANN models have been

proven to be accurate in different modelling scenarios with high performance. As a

powerful technique, ANNs allow for modelling the input and output relationship for

the required internal circuit parameters or the device behaviour in a wide range of

design cases [22], providing RF designers with an efficient way to create models for
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fitting different measurement datasets [23], [38]–[41].

The accuracy of a model, as one of the main concerns when implementing a model

in CAD environment [21], [42], has been the recipe to determine a suitable ANN

under various RF design scenarios. Different from the CM, the ANN is not usually

formed in a fixed mathematical structure. Varying the internal network structure,

activation functions and training algorithms may all lead to a different result for the

accuracy of the ANN model [43], [44].

2.3.1 Model Structure

ANN structure selection comes with many options, including the Standard Multi-

layer Perceptrons (MLP), the Knowledge-Based Neuron Network (KBNN) structure

and the Combined Network structure [45]. Generally, by performing a feed-forward

operational process based on the selected structure, the network is able to process

given input data to approximate expected output data with different neuron topolo-

gies for most of the RF-related cases [22], [46].

Standard Multilayer Perceptrons (MLP)

Multilayer Perceptrons (MLP) is one of the most commonly used Feed-forward neu-

ral network structures that have been applied for RF designs [22]. A simple diagram

of the structure is shown in Fig. 2.5.

As shown in Fig. 2.5, this is the basic structure type of the feed-forward operational

process. With a sufficient amount of data, the ANN can be trained for accurate

models for transistors and then applied to the design cases [23], [40], [47]. However,

since the accuracy an MLP structure relies on a large amount of training data, small

measurement datasets can be one of the limitations when developing an ANN using

this structure [20].

25



Figure 2.5: General MLP ANN structure

Knowledge-Based Neural Network (KBNN)

Therefore, the KBNN structure was proposed in [20], as the diagram shown in

Fig. 2.6.

Figure 2.6: Knowledge-Based ANN structure

According to the validation shown in [20], the KBNN structure provides a model
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test error that is always lower than given by the standard MLP structured models

with different examples. The performance of the KBNN is better than the standard

MLP not only within the measurement region, but also at the area where it is outside

the model extraction region for extrapolation.

Activation Function

The activation function should be carefully selected since it could make a dramatic

difference in the model training process. The selected activation function for different

network topologies can be different. In general, it will stay the same between nodes

within one hidden layer for one determined model. There are options for activation

functions according to the ANN basis, the most popular ones for the RF design-

related structures are:

The sigmoid function, formulated as (2.28) and plotted within a data range from -5

to 5 as in Fig. 2.7:

sigmoid(x) =
1

1 + e−x
(2.28)

Figure 2.7: The sigmoid activation plot with x=[-5 5] range

The hyperbolic-tangent function, also known as the tanh function, is formulated as
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(2.29) and plotted as in Fig. 2.8:

tanh(x) =
ex − e−x

ex + e−x
=

2

1 + e−2x
− 1 (2.29)

Figure 2.8: The tanh activation plot with x=[-5 5] range

And the rectified linear unit function, also known as the ReLU function, is formu-

lated as (2.30) and plotted as in Fig. 2.9:

Relu(x) =


0 if x ≤ 0

γ if x > 0

= max(0, x) (2.30)

Figure 2.9: The ReLU activation plot with x=[-5 5] range

In an MLP process, it is common to have a non-linear relationship for neurons in
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between the hidden layers. For a feed-forward network, the activation function is

commonly used in between network layers (located as shown in Fig. 2.10 with the

‘f ’ symbol) when processing the input data with hidden or output neurons to the

final outputs [22].

Figure 2.10: KBNN structural diagram with activation function setup

The sigmoid function was recognised as a classical activation function and commonly

utilised as a part of the feed-forward data operational process [48]. However, it has

also been mentioned in [49], and later with experimental evidence in [43], that the

sigmoid function has proven to be slowing down the learning when compared to the

tanh function. Hence, the tanh function will be a better choice, especially with a

small random value of weight for the model training [43].

The ReLU function, shown with Fig. 2.9 and (2.30), was firstly mentioned in [50]

then demonstrated in [51] for better training results compared to the sigmoid and

the tanh function under unsupervised learning circumstances.

For the possible function after the output layer, a linear relationship corresponding

to the neurons is preferred for regression, since it has been proven able to simplify

and speed-up the training process with the chosen error metric, i.e. Mean Squared
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Error (MSE) for the ANN model [22].

Adding Bias to the Neural Network

Referring to Fig. 2.7 - 2.9, all activation function lines go across the origin (0, 0) point

of the axis. To ensure that the centre given by the activation function does not always

fall on zero, which may cause derivative issues for the back-propagation process, the

bias point was added to cooperate with each neuron as shown in Fig. 2.11 on the

structure diagram. With the added bias, as a trainable value to allow a flexible

offset of the model, chances for better fitting results will be possible.

Figure 2.11: Structural diagram with bias added to the setup

2.3.2 Back-Propagation (BP) Training Algorithm

The determined ANN structure will be set up with initialized values of weights and

biases. However, the initial values are usually random so not the best option for the

model. A training process is then needed for the weights and biases of the ANN

to be optimized for an accurate model. Generally, there are three types of training
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categories: supervised training, unsupervised training, and reinforcement training.

The Back-Propagation (BP) training, with gradient-based techniques under the su-

pervised learning category, is usually the optimization method used to minimize the

prediction error of the model. The error calculation and the gradient descent anal-

ysis are the keys to this type of training algorithm. Given the input dataset after

processing with the internal weights and biases through the activation function, the

network output is compared to the given training output dataset for error calcu-

lation, which will then be used as the determined statements to update the initial

weights and bias values.

General gradient descent error back-propagation applies partial differentiation to

the error calculation for weight and bias updates:

Wi+1 = Wi − η
∂E

∂Wi

(2.31)

bi+1 = bi − η
∂E

∂bi
(2.32)

here in (2.31) and (2.32), ‘i ’ represents the index number, ‘W ’ and ‘b’ represent the

weight and bias. The variable ‘η’ is an adjustable variable called learning rate [52],

which can be varied depending on the training algorithm.

Under the gradient descent error back-propagation category, there are the Quasi-

Newton [53], the Levenberg-Mquart (LM) [54] and the Bayesian Regularization [55],

[56] training algorithms, which are popular for RF related model extraction. Among

the back-propagation training algorithms, the LM algorithm allows for the fastest

convergence [22]. The algorithm process procedure can be summarised as shown in

Algorithm1 [54].
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Algorithm 1 Levenberg-Marquart Algorithm
1: Input:p, t
2: a0 = p

3: ak+1 = fk+1
(
W k+1ak + bk+1

)
, k = 0, 1, . . . ,M − 1

4: ei = ti − aMi , i = 1, 2, . . . , N

5: V (x) =
N∑
k=0

e2i (x), x = [W, . . . , b, . . . ]

6: Compute Jacobian J (x) =


∂e1(x)
∂x1

∂e1(x)
∂x2

. . . ∂e1(x)
∂xn

∂e2(x)
∂x1

∂e2(x)
∂x2

. . . ∂e2(x)
∂xn

...
...

. . .
...

∂eN (x)
∂x1

∂eN (x)
∂x2

. . . ∂eN (x)
∂xn


7: ∆x =

[
JT (x)J(x) + µI

]−1
JT (x)e(x)

8: Compute V (x+∆x) by repeating Step 1 to 4
9: if V (x+∆x) < V (x) then

10: µ = µ× β
11: else
12: if V (x+∆x) ≥ V (x) then
13: µ = µ÷ β
14: end if
15: end if
16: Output: a

where in the algorithm, ‘p’ and ‘t ’ are the given input data for training the ANN

model, ‘M ’ represents the number of layers, ‘N ’ represents the number of samples,

and ‘a’ is the final output produced by the model.

The LM training algorithm, as the basis of the Bayesian Regularization training

algorithm, is based on the Quasi-Newton approximation with the Hessian matrix.

By varying the value of the learning rate ‘µ’, the LM algorithm can be as the gra-

dient descent when ‘µ’ is large, as just Newton’s method when ‘µ’ is 0 [57]. In this

instance, an adaptable framework is provided. It is worth noting that its theory

base is comparable to the Least Mean-Squared (LMS) algorithm, which is the the-

ory base of the Cardiff Model. The equivalent theory foundation allows increasing

feasibility when searching for possibilities combining the ANN technique and the

CM. Therefore, the LM training algorithm was selected in this work for further

investigation.
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In this context, it is essential to consider that ANN training algorithms rely on

a random parameters initialisation [43]. Different initial values for hidden neuron

numbers, weights and biases may lead to varied model performance. To avoid the

phenomena of over-learning, under-learning or even failure for the algorithm to

converge, the parameter initialisation procedure may require multiple attempts for

a successful ANN training.

2.3.3 Model Implementation in MATLAB

The ANN implementation process can be implemented in various coding languages

in different computing environments, such as C, C++, and Python, which is popular

nowadays, or C# in some of the measurement systems.

For preliminary ANN testing, MATLAB offers a Neural Network Fitting applica-

tion in the deep learning toolbox with a user-friendly interface. With the Fitting

application, experiments for ANN technique verification can be easily applied, to

explore how ANN structures with different combinations of the selected activation

functions, weights and biases with numbers and values are linked towards different

model performances.

The dataset loading, splitting, the neural number and training algorithm selection

before a training section can all be defined through the Fitting app interface. On

the final interface page, the Fitting app allows essential parameters and plots of the

ANN training to be visualised, as in Fig. 2.12.

The ANN training procedure can be done and saved with the Fitting app. After

the training, the dataset or network adjustment for possible retraining requirements

and the trained network testing function are also available with the app. Therefore,

the Neural Network Fitting app from the MATLAB deep learning toolbox can be a

commendable starting point.
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Figure 2.12: MATLAB ANN toolbox interface

However, when applying the ANN technique for model extraction with RF design

tasks, parameters and plots that represent the training procedure are not suffi-

cient anymore. More RF-related parameters and plots, such as the output power,

efficiency, waveforms and contours on the Smith Chart will be required to be im-

plemented via MATLAB script manually for a successful ANN model extraction

determination.
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In addition, if moving towards the detailed internal parameters of the ANN, the

Fitting app limits the flexibility of adjusting the preset configurations, especially

for the training algorithms. Hence, for further investigation about how the ANN

setup will impact the model performance, independent implementation of the ANN

structure and the training procedure will be a better choice. This can enable a

systematic breakdown, proceeding step by step into the ANN model interactions.

2.4 Conclusion

In this chapter, a brief summary about the development of the RF transistor be-

havioural modelling technique is delivered, including the theory foundation of S-

parameters, VIOMAP, Hot S-parameter model and PHD model. The CM and the

ANN model are thoroughly addressed with the theoretical framework and their prac-

tical implementation. The concluded reviews given to the CM and the ANN model,

e.g., the model extraction determining methods, and critical parameters for consid-

eration, set the stage for the subsequent analysis of the model extrapolation ability

verification and comparison.
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Chapter 3

Extrapolation Analysis and

Comparison of the Cardiff Model

(CM) and the Artificial Neural

Network (ANN) Model

Load-pull measurements for obtaining large datasets from RF devices for model ex-

traction can be expensive and time-consuming. Hence, a robust behavioural model

requires not only an accurate interpolation predicting ability, but also a reason-

able extrapolation predicting ability. The unrealistic optimum power or efficiency

variations, produced by a model with poor extrapolation ability, may lead to the

possibility for an optimiser not to converge or converge on non-physical solutions.

A robust model can prevent the appearance of non-physical behaviour when used in

Computer-Aided Design (CAD) simulation for RF design optimisation procedures.

In this chapter, a comparison of extrapolation ability is made between the Cardiff

Model (CM) and Artificial Neural Network (ANN) based behavioural models. A

Keysight Advanced Design System (ADS) schematic is created for an active load-pull
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measurement simulation to provide a design-related dataset for model extraction,

and an expanded dataset that covers the whole Smith Chart for reference on the

model extrapolation analysis. Two ways of extracting the CM will be presented, one

with the formal CM definition [1] and the other one using spectral line analysis [2].

The potential extrapolation problem from the two CM extraction methods will be

analysed. Then, the ANN models, with selected structure and training technique,

are also tested for their extrapolation ability. The model extraction procedures are

implemented and processed in the MATLAB environment. The discussions on all

the model performances are given respectively at the end.

3.1 Data Acquisition

The load-pull setup, implemented in ADS, is used to acquire pseudo-wave datasets

of the Wolfspeed 10W gallium nitride (GaN) transistor as in Fig.3.1. The device

is measured with a constant input drive corresponding to 1 dB compression at the

optimum load, biased at Vgs=- 2.2V, Vds=28V.

Figure 3.1: A-pull simulation setup with Wolfspeed 10W in ADS

Note that for acquiring a tailored dataset to follow the spectrum analysis in [2], an

extra circulator is added to present the active load-pull. A set of modulated ‘A’

waves for the source is generated using (3.1). The value of ‘Sa’ is chosen as 1, ‘Sp’

is chosen as 19, and ‘k’ is chosen as 6 for the impact of aliasing with a total number
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of data points, ‘N = (2 · k · Sp) + 1’, equals 229 are used for the tailored ‘Ai
2,1’ to

be calculated. A0
2,1 and A∆

2,1 are selected as −2 + 0i and 0.8 + 1i respectively for

a reasonable design-related coverage on the Smith Chart (will be shown later in

Fig. 3.4).

Ai
2,1 = A0

2,1 +
A∆

2,1

2

(
1 + cos

(
Sa

i

N

))(
cos

(
Sp

i

N

)
+ jsin

(
Sp

i

N

))
(3.1)

Using the following (3.2) and (3.3) equations, the A-B wave data can be calculated

with the measured voltage and current. In Fig. 3.2-3.3, the acquired A2,1 and B2,1

and the Fourier Transformed spectrum are plotted for later model analysis. Here,

ZR, the impedance reference is 50Ω.

Ap,h =
Vp + 50IIn

2
√
50

(3.2)

Bp,h =
Vp − 50Iload

2
√
50

(3.3)
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Figure 3.2: A2,1 sample (a) and its Fourier Transformed spectrum (b) on a trajectory
computation.
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Figure 3.3: B2,1 sample (a) and its Fourier Transformed spectrum with -60dB error
bar (which refers to an expecting 0.1% accuracy of the extracted model) (b) on the
trajectory computation.

The correlated reflection coefficient (Γ) is calculated with (3.4) and plotted in

Fig. 3.4.

Γp,h =
Ap,h

Bp,h

(3.4)
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Figure 3.4: Γ2,1 and the correlated power contours on the Smith Chart collected
from the simulation measurement setup with 39.5 dBm as maximum output power
level.

For the extrapolation ability verification, another load-pull simulation without the

circulator is also performed with the same setup in Fig.3.1, to acquire a larger dataset

that covers the whole Smith Chart. The collected data location for extrapolation,

compared to the design-related dataset, is plotted in Fig. 3.5.
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Figure 3.5: Dataset with expanded coverage on the Smith Chart for extrapolation
verification (blue) and the design-related dataset (red) for model extraction.

3.2 The CM Robustness Verification

Two methods are introduced in works of literature to extract the CM coefficient:

utilising user-defined model mixing order with the formal CM definition [1], and

defining the model order by analysing the data complexity when a tailored dataset

is available [2]. Although both methods have proven to be accurate for modelling

transistor behaviour in publications, the extracted model coefficients’ extrapolation

ability remains to be conclusively proven. In this section, the accuracy of extracted

coefficients will be presented first to ensure a correct model extraction. In addition

to robustness verification, the extrapolation performance of the two methods will

also be investigated.
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3.2.1 CM with Conventional Mixing Theory

The formal fundamental CM equation [3], [4] is as follows in (3.5).

Bp,h (|A1,1|) = Qh
1,1

r=
(ord−h)

2∑
r=0

n=h+
(ord−h)

2
−r∑

n=−( (ord−h)
2

−r)

Mp,h,m,n (|A1,1|) |A2,1|m
(
Q2,1

Q1,1

)n


(3.5)

As explained in the literature review section for (2.15), the phase exponent parame-

ter ‘n’, the magnitude restricting terms ‘r ’, and the magnitude exponent parameter

‘m’ are related to the definition of m = |n| + 2r. ‘r ’ indicates the magnitude re-

stricting term, which is varied with integer steps. It is usually limited up to 1 for

fundamental measurement cases [5]. ‘ord ’ presents the model order. ‘Q1,1’ and ‘Q2,1’

are the complex exponential of the phase of A1,1 and A2,1, respectively.

Following the mixing theory, the CM with the appropriate user-defined mixing order

can provide accurate interpolation predictions for measurement data. According to

the analysis from the study presented in [1], [6], for a set of fundamental data, a

5th order CM is generally accurate enough for simulation data. Hence, in (3.5), the

value of ‘ord ’ here is selected to be 5. The value of ‘r ’ is restricted from 0 to 1 in

integral form for the fundamental situation, ‘n’ and ‘m’ can then be calculated and

listed as in Table 3.1.

The listed ‘n’, ‘m’ values are used to populate the
[
|A2,1|m

(
Q2,1

Q1,1

)n]
matrix in (3.6)

for model coefficient extraction. The extracted CM coefficients are listed in Table

3.1 align with the related‘r ’, ‘n’, and ‘m’ values.

[Mp,h,m,n] =

([
|A2,1|m

(
Q2,1

Q1,1

)n]H [
|A2,1|m

(
Q2,1

Q1,1

)n])−1 [
|A2,1|m

(
Q2,1

Q1,1

)n]H
[B2,1]

(3.6)
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Table 3.1: The Extracted CM Coefficients For B2,1 using CM with the conventional
mixing theory

M2,1,m,n

index r n m Real Imag.

1 0 -2 2 0.0151 -0.0182
2 0 -1 1 -0.0462 -0.0433
3 0 0 0 3.1395 0.8942
4 0 1 1 -0.5626 -0.2590
5 0 2 2 0.0200 -0.0457
6 0 3 3 0.0009 -0.0080
7 1 -1 3 0.0049 -0.0100
8 1 0 2 0.0246 -0.0590
9 1 1 3 0.0187 -0.0108
10 1 2 4 0.0025 -0.0032

The listed CM coefficients in Table 3.1, extracted with a user-defined model order

based on the conventional mixing theory, perform a Normalised Mean Square Er-

ror (NMSE) level of - 65.32 dB, which is proven accurate enough as a behavioural

model [1]. The predicted results compared to the original simulated measurement

data are as shown in Fig.3.6.
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Figure 3.6: B2,1 from measurement compare to B2,1 CM prediction with conventional
mixing theory

The expanded dataset shown in Fig. 3.5, is then applied for the extrapolation verifi-

cation. The performance of the CM coefficients is presented in Fig. 3.7. Compared
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to the simulation reference (Fig. 3.7-red stars), it is obvious that the extrapolation

performance (Fig. 3.7-black stars) is not as accurate as the interpolated ones. An

obvious distortion appears at the edge when comparing the extrapolated B2,1 data

points to the simulation results.
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Figure 3.7: Extrapolation performance with CM extracted using conventional mix-
ing theory (original dataset - red and the CM predictions - black).

With the response travelling wave B2,1, the device output power can be calculated

with (3.7).

Pout(dBm) = 30 + 10 log10

(
1

2

(
|B2,1|2 − |A2,1|2

))
(3.7)

The distortion shown with the B2,1 data points may lead to a wrong output power

prediction. As shown in Fig. 3.8, the predicted power contours in black introduce

a different optimum, which does not match up with the simulated reference in red.

This may result in an optimizer converging on an erroneous load point when trying

to optimize the matching network line parameters.
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Figure 3.8: Predicted output power contours (0.4 dBm/step, black) with coefficients
extracted using conventional CM mixing theory compared to the original simulated
results (red).

3.2.2 CM with Tailored Dataset Analysis

In this section, the data spectrum analysis for a proper truncated CM will be im-

plemented, together with the extrapolation ability of the extracted CM coefficients.

The user-defined CM given in the previous subsection presents with extrapolation

challenge. However, this does not mean that the CM will present issues when ex-

trapolating in general. It can be stated that a high user-defined order model allows

a high model accuracy within the interpolation region, but it is very likely to cause

poor extrapolation results. Further data is required out towards the edge of the

Smith Chart if expecting more reasonable extrapolation predictions. This is then

pointing out that a set of reasonable extrapolation results from the CM may require

a properly defined mixing order. A further truncation to the polynomial formula-

tion can be conducted by analysing the Fourier Transformed spectrum plots given

by specific datasets. Under this scenario, the analysis done on tailored datasets,
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explained in [2], can be helpful.

The CM can be extracted with a different procedure, where the value of the phase

exponent parameter ‘n’, the magnitude restricting terms ‘r ’, and the magnitude ex-

ponent parameter ‘m’ are defined. According to the explanation in [2], the collected

B2,1 Fourier Transformed spectrum, plotted in Fig. 3.5, can now be utilised. For

a further truncated CM, as the spectrum analysis given in Fig. 3.9, 5 coefficients

should be extracted here for an accurate model with the - 60 dB error threshold.

With the selected exponents’ value, a different CM is extracted with (3.6), and the

value of the coefficients, align with the related ‘r ’, ‘n’, and ‘m’ values, are listed in

Table 3.2.
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Figure 3.9: The expected exponents’ |A2,1|m(̸ A2,1)
n values of the CM for extracting

coefficients in (n,m).

Table 3.2: The Extracted CM Coefficients For B2,1 with analysis on Tailored Dataset
M2,1,m,n

index r n m Real Imag.

1 0 0 0 3.0776 0.9414
2 0 1 1 -0.6033 -0.1992
3 0 -1 1 -0.1350 0.0091
4 0 2 2 0.0108 -0.0194
5 1 0 2 -0.0393 -0.0146

The performance of the CM extracted with the tailored dataset spectrum analysis

can then be visualised, an NMSE level of - 54.54 dB[1] is shown in Fig.3.10, when
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comparing the predicted results to the simulation data in the measured area.
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Figure 3.10: B21 from measurement compare to B21 CM prediction with analysis on
tailored dataset

The values of the extracted CM coefficients are recorded then for the extrapolation

verification. With the expanded dataset in Fig.3.5, the extrapolation prediction

results from the CM coefficients are plotted in blue and presented in Fig. 3.11-3.12.

The extrapolation performance shown with the B2,1 data points in Fig. 3.11 has been

improved, where the distortion features and erroneous predictions are not presented

compared to the results shown in Fig. 3.7.
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Figure 3.11: Extrapolation performance with CM extracted using analysis on tai-
lored dataset(original dataset - red and the CM predictions - blue).
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Figure 3.12: Predicted output power contours (0.4 dBm/step, blue) with coefficients
extracted using the CM extracted by analysing the tailored dataset compared to the
original simulated results (red).

Also, in Fig. 3.12, the erroneous contours appear to be on the short edge on the

Smith Chart shown in Fig. 3.8 do not exist anymore. In reality, it is uncommon to

have a good accuracy rating for the model extrapolation ability, but the simulation

environment provides the possibility here for reference. The NMSE level calculated

from the predicted power level compared to the simulated results is - 31.3 dB with

the extracted CM coefficients.

3.2.3 Discussion on the CM

Based on the published literature, the CM presented in this section is extracted

with its formal fundamental formulation in two ways: the conventional way of using

user-defined order [4]; and a more robust way of using the spectral line analysis with

tailored load-pull datasets [2]. It has been proven that both ways of getting the

list of exponents/defining the order of the CM offer good model accuracy, when

interpolating within the model extraction data range.
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As a general understanding, it is reasonable to assume that higher interpolation

accuracy will require a higher user-defined mixing order. However, this is not the

case for model extrapolation ability. With the results shown previously, it has been

proven that the extrapolation performance of the CM can be improved by properly

truncating the model order according to the data complexity.

Here, a noteworthy point is that the load-pull measurement is generally restricted

due to the limitations imposed by the measurement system and the constraints of

transistor operation. A tailored dataset can be easily obtained from simulation, but

in reality, it is not a commonly applied function to the actual measurement systems.

This means that a user-defined model order will still be the trend for general CM

coefficient extraction.

3.3 The ANN Solution

Literature shows that the ANN based behavioural models also provide RF designers

with an efficient way to create models for assisting different design cases [7]–[11].

However, there are options for configuring a proper ANN based behavioural model

under different application scenarios.

In this section, an ANN structure will be selected and illustrated first. A configured

ANN model accuracy and the possibility for reasonable extrapolation performance

are explored with different determined values for the parameters that are required

for the selected ANN structure.

3.3.1 ANN Configuration and implementation

Previous work has shown that the Knowledge-Based Neuron Network (KBNN) struc-

tured model with the knowledge layer allows built-in knowledge to give more infor-
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mation and deteriorates slowly in the model extrapolation region [12], therefore, pro-

vides a chance for the model to obtain better extrapolation results [13] compared to

other feed-forward structures without the knowledge layer. When expecting an ANN

model with reasonable extrapolation ability, a Fully Connected Cascaded (FCC)

feed-forward neural network, can be a choice for easier implementation to start

with, as a simpler version of the KBNN model when only one hidden layer is used

in the neural network structure. For a complete ANN configuration, the Levenberg-

Maquart training algorithm illustrated in the literature review (Algorithm1), which

achieves faster convergence compared to other gradient descent algorithms [12], is

also selected to be implemented.

The implementation is done manually, without using the provided ANN toolboxes

in MATLAB. In the same way as the CM, the ANN can be set to predict the pseudo-

wave travelling wave from A2,1 to B2,1 for modelling transistor behaviour. Hence,

for the ANN model, the given input is A2,1, and the target output is B2,1. Since

the common ANN implementations do not deal with datasets in complex number

format to simplify the derivative calculation, both the A2,1 and B2,1 are separated

in real and imaginary parts in vector matrices as the input and target output of the

ANN.

Fig. 3.13 presents a basic one-hidden-layer structure, where in the diagram block,

the knowledge layer of the KBNN is called the cascaded layer for the FCC ANN

model. ‘[HN] ’, ‘[CN] ’ and ‘[ON] ’ indicate the neurons in the hidden layer, cascaded

layer and the output layer, respectively. ‘[HW] ’ and ‘[HB] ’ represent the hidden

weight and bias matrices respectively, ‘[OB] ’ stands for the output bias matrix,

‘[OW] ’ stands for the output weight matrix, and ‘[CW] ’ is the cascaded weight

matrix. The subscript ‘N ’ represents the number of hidden neurons utilised in the

structure. The structure can be adjusted by increasing the number of nodes or layers

if necessary for the dataset during the experiment.
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Figure 3.13: The implemented FCC structure.

The performance of the presented ANN structure can be tested by varying the

correlated internal parameters,e.g., the hidden neuron numbers and the initial values

of the determined weights and biases, and the predicted ANN extrapolation ability

will be verified and compared.

3.3.2 The Accuracy and Extrapolation Ability of the Se-

lected ANN Configuration

The accuracy and extrapolation ability of the selected ANN configuration are ex-

plored by varying the hidden neuron numbers and the initial weights and biases

values to the backpropagation training algorithm in this section.

The datasets presented in Section 3.1, utilised for the CMs verification, are applied

to evaluate the ANN model performance as well. The dataset shown in Fig. 3.2 -

3.4, which is used for the CM coefficient extraction, is applied for ANN training.

The expanded dataset is shown in Fig. 3.5, blue markers, and is used for ANN

extrapolation ability verification. The design-related dataset located as in Fig. 3.4
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is normalised between -1 and 1 before feeding into the network training process.

The scaling factor from the normalisation process of the design-related dataset is

then utilised for preprocessing the expanded dataset plotted with blue markers in

Fig. 3.5.

Impact of Variant Hidden Neuron Number

The value of the hidden neuron number, the subscript ‘N ’ in Fig. 3.13, is varied

between 1 to 15 for the fundamental data prediction. The model error level begins

to degrade with the NMSE level falling below - 40 dB [1] at the point where the

hidden neuron number equals 2. The results shown in Fig. 3.14(a) prove that it

is now an accurate model, however, the extrapolation ability of the ANN with 2

hidden neurons shown in (b) is not yet satisfactory.
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Figure 3.14: The model performance (a) and extrapolation ability (b) of the B2,1

from measurement compared to B2,1 prediction from ANN with 2 hidden neurons.

Experiment results show that when the hidden neuron number is varied, the model

accuracy varies. Another example is shown here with the model prediction results

when the hidden neuron number equals to 6 in Fig. 3.15. Here, the model accuracy

(Fig. 3.15 (a)) is improved compared to the structure with 2 hidden neurons (Fig.

3.14), with the extrapolation ability also appearing marginally enhanced (Fig. 3.15
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(b)).
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Figure 3.15: The model performance (a) and extrapolation ability (b) of the B2,1

from measurement compared to B2,1 prediction from ANN with 6 hidden neurons.

If drawing a step-wise conclusion at this stage, it appears that the results confirm

that when the hidden neuron number increases, the model performance will improve.

Alternatively, when the hidden neuron number is increased to 11, it can be seen

from Fig. 3.16 that the model accuracy decreases compared to the structure with 6

hidden neurons. However, a better extrapolation is presented when matching the

extrapolated B2,1 predictions to the simulation. Given that apart from the hidden

neuron number, there are still other internal parameters to be varied in the ANN

configuration process, the reason for the decrease of model accuracy is not considered

at this stage.
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Figure 3.16: The model performance (a) and extrapolation ability (b) of the B2,1

from measurement compared to B2,1 prediction from ANN with 11 hidden neurons.

The improved extrapolation prediction can also be visualised in Fig. 3.17, where the

predicted power contours are well presented with no erroneous features shown on the

edge of the Smith Chart. The NMSE level provided by the ANN model compared to

the simulation is - 37 dB with 11 hidden neurons. It is an accurate extrapolation [1],

even better than the results given by the CM extracted with the tailored dataset

shown in the previous section (Fig. 3.12).
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Figure 3.17: Extrapolated output power contours (blue) with 11-hidden-neuron
ANN structure compared to the original simulated results (red).
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Figure 3.18: The model accuracy and extrapolation performance summary of the
ANN structure with different hidden neuron numbers.

A summary plot is provided for an overview of the relationship between the model

accuracy and extrapolation ability when the hidden neuron number is varied. As

shown in Fig. 3.18, when sweeping the hidden neuron numbers from 1 to 15, the

accuracy varies. The levels of the calculated NMSE, when the model predictions

are compared to the simulation data, mainly remain around - 40 dB, which is a

sufficiently accurate level for RF design requirements [1]. However, the extrapolation

performance also varies, and is not correlated to the model accuracy. It can be

seen that, for instance, even when the accuracy increases, the performance of the

extrapolation does not always increase to the same degree.

Impact of Weights and Biases Initialisation

It is mentioned in [12] that the LM training algorithm performance depends on the

initial estimation of weights and biases values of the ANN. The testing experiment

started with a random number generator, and the initial values of all the weights

and biases are assigned randomly.

Given the results from the previous section that show how 11 hidden neurons enable
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an ANN model that allows both accurate interpolation and reasonable extrapolation

prediction, here, the ANN model with 1 hidden layer and 11 hidden neurons is tested

under different initial weights and biases values scenarios.

In the implemented LM training algorithm, the initial values for the weights and

biases are generated with a Mersenne Twister random number generator [14]–[16].

Previously for testing the impact of different hidden neuron numbers, the seed of the

random number generator is given as 10 (default setting in MATLAB) to initialise

the values of the weights and biases. Here, the value of the random number generator

seed is changed from 10 to 15 (a randomly selected number) for a different set of

initial weights and biases values, to show how the ANN will perform with different

starting points. The results shown in Fig. 3.19 indicate a similar model accuracy,

however, a significantly different extrapolation result.
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Figure 3.19: The model performance (a) extrapolation ability (b) of the B2,1 from
measurement compared to B2,1 prediction from ANN with 11 hidden neurons and
the random number generator seed changed to 15.

The extrapolation performance can be more easily visualised in Fig. 3.20. Different

from the prediction results offered by the ANN model trained with the random

initial number generator using 10 as the value of the seed, shown in the previous

section, the erroneous features on the short edge of the Smith Chart appear again

when the value of the seed is changed to 15.
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Figure 3.20: Extrapolated output power contours (blue) with CM extracted using
the CM extracted by analysing the tailored dataset compared to the original simu-
lated results (red).

3.3.3 Discussion on the ANN Model

The results indicate that the ANN model accuracy can be independent of specific

measurement datasets, and a properly defined ANN model can provide reasonable

extrapolation results. When changing the number of hidden neurons and the initial

weights and bias values, both will make differences to the ANN model performance.

This happens not only to the interpolation accuracy but also to the extrapolation

ability. However, the correlation between the two factors and the model performance

seems irregular. Increasing the number of hidden neurons does not guarantee a more

accurate model. Simultaneously, an ANN model that is accurate for interpolation

does not always result in comparable extrapolation ability. Therefore, a procedure

to define a proper ANN structure that forms an accurate model with acceptable

extrapolation ability is demanding.

On the other hand, the ANN offers more flexibility in model structure correlating
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to the model accuracy when compared to the CM. However, it may require multiple

attempts or potentially rely on experience for a properly defined structure, such as

a proper number of hidden neurons, and proper initial values of the weights and

biases, which can potentially be time-consuming.

3.4 Conclusion

In the first part of this Chapter, two CMs, extracted using different order definitions,

are illustrated, verified, and compared. It is proven that the tailored dataset provides

a proper truncation method to the polynomial order, which then helps improve the

model extrapolation ability.

The second part presents an implementation and analysis of the selected FCC ANN

structure with the LM training algorithm. An ANN based one-hidden-layer model is

able to capture the nonlinear relationships between the input and output under fun-

damental frequency and provide an accurate model with good extrapolation ability,

with proper hidden neuron numbers and initial weights and bias values.

Both the CM and the ANN models allow accurate behavioural models with rea-

sonable extrapolation ability when required model parameters are properly defined.

This can then enable further experiments to explore the possibility for models with

reasonable extrapolation ability that can be extracted and utilised efficiently.
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Chapter 4

Artificial Neural Network (ANN)

Based Cardiff Model (CM)

Coefficients Extraction Approach

According to the analysis shown in the previous chapter, the Artificial Neural Net-

work (ANN) model provides better extrapolation ability and flexibility for vary-

ing model accuracy than the Cardiff Model (CM), regardless of specific measure-

ment datasets. However, the CM without redundant calculations in commercial

RF design-related software can take less runtime than that of the ANN model [1].

Therefore, the advantages of the two models, the CM and the ANN technique, can

be combined for an accurate behavioural model to be efficiently processed in CAD

environment with enhanced extrapolation ability.

This chapter will present an ANN-based CM coefficients extractor, and a method

that combines the conventional ANN behavioural model and the coefficient extrac-

tor, to ensure reasonable extrapolation behaviour for highly user-defined CM coef-

ficients. The reason that the decision is made to extract a set of CM coefficients

with the aid of an ANN structure when combining the two modelling techniques
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is illustrated first. A modified Levenberg–Marquardt (LM) algorithm that enables

the combination of the CM coefficients extraction process with ANN technique is

implemented. The accuracy of the modified LM algorithm applied with different

FCC feedforward ANN structures for different datasets will be verified, under both

simulation and practical scenarios. For high user-defined order CM coefficients that

allow reasonable extrapolation ability, the combination method for the conventional

A-B wave-based ANN model (explored in Chapter 3) and the ANN-based CM co-

efficients extractor is explained. The prediction results from the proposed method

are expected to provide novel sets of extracted high-order CM coefficients with both

accurate interpolation and reasonable extrapolation ability. Two sets of measure-

ment data will be applied to the verification process, for proving robustness in the

proposed coefficient extraction method.

4.1 Complexity Comparison of the CM and ANN

models

The statement that is given in [1] about the CM implementation in the CAD en-

vironment is more efficient than the ANN can be further justified with the model

complexity comparison with the required number of coefficients.

The results shown in Chapter 3 proved that the Fully Connected Cascade (FCC)

ANN structure allows accurate models for the RF device in an ideal simulation

environment, and simultaneously, enables reasonable extrapolation prediction when

the ANN is properly structured. The mathematical expression of the one-hidden-

layer FCC feedforward ANN structure in Fig. 3.13, can be presented in the following

implementation formula (4.1) when utilising in CAD environment.
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BR
p,h

BI
p,h

 = [OB(2× 1)] + [CW (2× 2)]

AR
2,1

AI
2,1


+ [OW (2× 2)] tanh

[HW (N × 2)]

AR
2,1

AI
2,1

+ [HB(N × 1)]


(4.1)

where ‘R’ and ‘I ’ are the abbreviations of real and imaginary complex data compo-

nents. The subscript ‘HN ’ represents the number of hidden neurons, while ‘HW ’,

‘HB ’, ‘CW ’, ‘OW ’, and ‘OB ’ are representing the number of hidden weights, hid-

den biases, cascade weights, output weights, and output biases respectively, and the

tanh function is presented with (2.29).

To evaluate the equation (4.1) with the given two inputs and two outputs network,

the weights and biases matrices dimension are given to the matrices in the equation

as: ‘[HW (N × 2)]’, ‘[HB(N × 1)]’, ‘[OW (2× 2)]’, ‘[CW (2× 2)]’ and ‘[OB(2× 1)]’,

where ‘N ’ represents the hidden neuron number. At least 13 coefficients will be

required for a complete FCC ANN structure when the number of hidden neurons is

chosen to be 1, regardless of the model accuracy. Increasing the number of neurons

and layers in the ANN structure will be required to achieve an accurate model de-

pending on the complexity of the dataset. For a system with stronger non-linearity,

the number of hidden neurons or layers will need to be increased, which will then

greatly increase the complexity of the structure.

Comparing the number of coefficients to the Cardiff model, the changes will only

be required on the value and the number of the coefficients with a defined process.

Generally for an accurate CM, 5th order model complexity will be sufficient [2], which

will then refer to 10 coefficients in total.

The relationship between the runtime and the number of coefficients is illustrated

in [1]. As the number of coefficients increases, the runtime for both models rises.

A direct linear relationship is presented between the runtime and the number of

hidden neurons for the ANN structure. Differing from a direct linear relationship,
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the runtime of the CM demonstrates a step-shaped kind of growth correlated to the

increase of polynomial order. When the system complexity increases, the CM takes

less runtime compared to the ANN structure. Therefore, when combining the CM

and ANN technique for an efficient model, the CM is considered to be the extracted

model structure rather than the ANN, which can then be efficiently processed in

CAD, while also retaining extraction flexibility.

4.2 Proposed Algorithm Implementation and

Verification

If choosing the CM as the extracted model combined with the ANN technique, in-

stead of having the model input and output as the injected Ap,h waves and the

response travelling wave Bp,h of the ANN model, the model input and output need

to be both the A and B waves and the CM coefficients. However, under the su-

pervised learning category, the ANN model requests target outputs for the error

backpropagation to update the weights and biases. When the CM coefficients are

the expected output from the ANN model, the target output that is required for

the ANN training procedure as a reference is not available. Therefore, modification

of the training algorithm will be necessary.

4.2.1 Algorithm Modification

The conventional Levenberg-Marquardt algorithm flows as in Fig.4.1 [3], according

to the summarised algorithm process procedure as shown in Algorithm1 illustrated

in Chapter 2. The given target output to the ANN training process will be utilised in

the error calculation for MSE1, absolute error and MSE2 in the back-propagation

flow. When target output is not available, in this case, modifications that combine

with the CM for the error calculation are required.
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Figure 4.1: Proposed method summarized flow diagram.

According to the CM coefficient extraction formulation, the response travelling wave

B2,1 can alternatively be the intermediate variable, which is available. Hence, the

error calculation for the half sum of mean square error MSE1, MSE2 and the

internal absolute error can be modified as in (4.2) - (4.4). Then, when the target

and model output in Fig.4.1 is going to be a set of coefficients, which is unknown

from the starting point of the back-propagation, the required error factors can be

calculated through the modelled B2,1 with the CM formulation.

Bp,h Error = Bp,h Modelled −Bp,h Measured (4.2)
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Bp,h Modelled =
∑
r

∑
n

Mp,h,m,n × [A] (4.3)

Mp,h,m,n Error =
(
[A]H [A]

)−1

[A]H [Bp,h Error] (4.4)

MSE =
1

2

N∑
i=1

(Mp,h,m,n Error)
2 (4.5)

where in (4.3) and (4.4), the ’[A]’ matrix is ‘|A2,1|m (Q2,1)
n’ populate with the (m,n)

exponent pairs corresponding to the complex exponential of the magnitude and

phase of A2,1, provided by the CM normalised to the phase of A1,1 as in follows:

Bp,h =

 r∑
0

n=h+
(ord−h)

2
−r∑

n=−( (ord−h)
2

−r)

Mp,h,m,n|A2,1|m (Q2,1)
n

 (4.6)

The values of coefficients ‘Mp,h,m,n’ can be generated by random number generators

initially, and the ‘Mp,h,m,n Error’ represents the inferred error matrix of the coeffi-

cients with ‘p’ and ‘h’ denoting the respective port, harmonic; ‘m’ and ‘n’ are the

magnitude and phase exponents related as m = |n|+2r, ‘r ’ is the magnitude index-

ing term. With the modified error calculation steps, the user-defined input matrix

of the ANN model has been replaced by a matrix made up of the real and imaginary

parts of both A2,1 and B2,1, instead of A2,1 only.

Details of the modified back-propagation Levenberg-Marquart Algorithm [3], [4] used

for the ANN based CM coefficient extractor is written as Algorithm2.
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Algorithm 2 Modified Steps of Levenberg-Marquart Algorithm for CM Coefficients
Extractor
1: Input:A2,1 Measured,Bp,h Measured

2: [A] = (̸ A1,1)
h |A2,1 Calculated|m

( ̸ A2,1

̸ A1,1

)n
3: Initialise: [Wi] , [Bi]← rand [−1, 1]
4: for epoch = 1
5: Mp,h,m,n = [Wi] [A2,1 Measured,Bp,h Measured] + [Bi]
6: Bp,h Modelled =

∑
r

∑
nMp,h,m,n × [A]

7: Bp,h Error = Bp,h Modelled −Bp,h Measured

8: Mp,h,m,n Error =
(
[A]H [A]

)−1

[A]H [Bp,h Error]

9: Compute Jacobian
10: Update: [Wi] and [Bi] till required error level met
11: end for
12: Output:Mp,h,m,n

where [Wi] and [Bi] represent the weight and bias matrices that are required in the

ANN model structure.

4.2.2 Invented Coefficients Extractor Verification

The modified LM training algorithm can be applied with the selected FCC ANN

structure, as an invented CM coefficient extractor. Before exploring the possible

utilisation of the invented extractor, it is firstly verified with the simulated load-pull

measurement data acquired from the Wolfspeed 10W gallium nitride (GaN) device.

Then, a practical load-pull measurement is set up for the same device, for acquiring

datasets for verifying the invented coefficient extractor in the practical scenarios.

The performance of the invented extractor will be presented with both the output

power and efficiency contours on the Smith Chart in this section.

Knowing from the analysis given in Fig. 3.9, 5 coefficients are required for the simu-

lated load-pull data of the Wolfspeed 10W GaN device. For this dataset, one hidden

layer FCC ANN with a 3-hidden-neuron structure is selected and applied With the

modified LM training algorithm (Algorithm2). According to the matrix dimension

required from the algorithm, the input and output matrix for extracting coefficients

is different from the conventional A-B wave-based ANN model structure as Fig. 3.13.
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When the input matrix is modified for a coefficient extractor, the diagram complex-

ity dramatically increases. Hence, the ANN structure in Fig. 4.2 is generated based

on the matrices format.

Hidden LayerInput Matrix Output MatrixOutput Layer

𝐻𝑊1

𝑂𝑊

𝑂𝐵

∑

𝐴2,1,1
𝑅

⋮
𝐴2
𝑅
,1,i

𝐴2,1,1
𝐼

⋮
𝐴𝐼2,1,i
𝐵2,1,1
𝑅

⋮
𝐵2
𝑅
,1,i

𝐵2,1,1
𝐼

⋮
𝐵2
𝐼
,1,i

∑ 𝑡𝑎𝑛ℎ

𝐶𝑊

𝐻𝐵1

𝑀2,1,0,0
𝑅

⋮
𝑀2,1,𝑚,𝑛
𝑅

𝑀2,1,0,0
𝐼

⋮
𝑀2,1,𝑚,𝑛
𝐼

Figure 4.2: One hidden layer FCC feedforward ANN based CM coefficient extractor
structure.

Here in the diagram, ‘i ’ indicates the total number of measurement points.

The coefficients extracted by the invented ANN based coefficient extractor are listed

alongside the original CM coefficients in Table 4.1. With the extracted coefficients,

Table 4.1: The Extracted Coefficients Comparison For Simulated B2,1 of the Wolf-
speed Device Using Different Techniques

M2,1,m,n

Conventional CM ANN Extractor
index r n m Real Imag. Real Imag.

1 0 0 0 3.0776 0.9414 3.0776 0.9414
2 0 1 1 -0.6033 -0.1992 -0.6033 -0.1993
3 0 -1 1 -0.1350 0.0091 -0.1350 0.0090
4 0 2 2 0.0108 -0.0194 0.0108 -0.0194
5 1 0 2 -0.0393 -0.0146 -0.0393 -0.0147

B2,1 predictions can be calculated with the CM formulation, and the output power

predictions can also be calculated from correlated A2,1 and B2,1 predictions with

(3.7).
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The experiments done in Chapter 3 did not contain the analysis of the device DC

response. This is because, when B2,1 predictions come with erroneous features, the

subsequent efficiency predictions will inevitably encounter problems. However, as a

first step in verifying an invented method, the accuracy should be validated for all

the possible prediction requirements.

The B2,0 wave, which is the drain DC current from the same Wolfspeed device load-

pull simulation, is utilised here to obtain the efficiency contours for the invented

coefficient extractor accuracy verification. Analysis of the B2,0 Fourier Transformed

spectrum [5] is done for the required exponent values of the CM coefficients extrac-

tion process. As shown in Fig. 4.3(b), 6 coefficients will be required for this level of

data complexity to obtain an accurate model.
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Figure 4.3: The expected exponents’ |A2,1|m(̸ A2,1)
n values (b) of the CM for ex-

tracting coefficients in (n,m) for the drain DC current B2,0 (a) from the Wolfspeed
device load-pull simulation.

Here, a linear ANN structure (as in Fig. 4.4) without hidden layers is implemented,

for modelling the DC characteristic. The coefficients extracted by the invented

ANN based coefficient extractor are listed alongside the original CM coefficients in

Table 4.2.
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Input Matrix Output MatrixOutput Layer
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Figure 4.4: Linear FCC feedforward ANN based CM coefficient extractor structure
for modelling the drain DC current B2,0.

Table 4.2: The Extracted Coefficients Comparison For Simulated B2,0 of the Wolf-
speed Device Using Different Techniques

M2,0,m,n

Conventional CM ANN Extractor
index r n m Real Imag. Real Imag.

1 0 0 0 0.7255 0 0.7255 0
2 0 1 1 0.0028 0.0141 0.0028 0.0141
3 0 -1 1 0.0028 -0.0141 0.0029 -0.0141
4 0 2 2 0.0020 -0.0018 0.0019 -0.0018
5 1 0 2 -0.0079 0 -0.0079 0
4 0 -2 2 0.0020 0.0018 0.0020 0.0019

The values of the extracted coefficients, listed in Table 4.2 and 4.1, extracted using

the invented ANN based coefficient extractor are close enough to those extracted

with the conventional CM formulation. It can be stated that the invented ANN

based CM coefficients extractor can extract sets of coefficients that can achieve the

same functionality as the CM formulation under the ideal simulation environment.

The extracted coefficients from the ANN based coefficient extractor can be utilised

to calculate the predicted output power and efficiency. With the modelled Bp,h re-

sponses, the device output power and efficiency can be calculated with the following

formulations:
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Pout(dBm) = 30 + 10 log10

(
1

2

(
|B2,1|2 − |A2,1|2

))
(4.7)

Efficiency =
Pout

|Vds ×B2,0|
× 100% (4.8)

The performance of the extracted coefficients, with the device output power and

efficiency contours, are shown in Fig. 4.5, and compared to the simulation results.

According to the comparison, - 66 dB and - 51 dBm levels of Normalised Mean Square

Error (NMSE) are achieved for the Wolfspeed device output power and efficiency

contours respectively. This level of accuracy is proven sufficient for RF modelling

techniques[6].
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Figure 4.5: Simulated dataset (black) and ANN based coefficient extractor extracted
coefficient performance (red) shown with 0.15 dBm output power steps (a) and 2%
efficiency steps (b) contours plotted on the Smith Chart.

Then, a load-pull measurement is set up for the Wolfspeed 10W device, to verify

the invented coefficient extractor in practical situations. The measurement is done

at 3.5GHz, biased at VDS = 28V, IDq =59mA. The measurement is done with the

Agilent N5242A PNAx with external sources, set up as in Fig. 4.6 [7]. The data in

Fig. 4.7 is collected with a constant input drive corresponding to 1 dB compression
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at the optimum load.
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TABLE III

CENTER AND RADII FOR APPROXIMATED POWER CONTOURS IN �
FOR N = 24 (OR SIMILAR STEEP KNEE APPROXIMATION)

TABLE IV

CENTER AND RADII FOR APPROXIMATED EFFICIENCY CONTOURS IN �
FOR N = 24 (OR SIMILAR STEEP KNEE APPROXIMATION)

D. Guidelines for Contours Drawing

Following the results of Sections II and III, a procedure for
contours drawing can be identified as follows.

1) Identify N by analyzing the output I–V characteristics
from pulsed I–V or fan diagram measurements.

2) Draw the normalized power/efficiency contours using
the equations of Section II or the tabulated values of
this section.

3) Denormalize the contours to the estimated Ropt.
4) Account for the frequency dispersion by rotating

the contours on the Smith chart according to the
parasitic/package definition.

This last step is actually very important. In fact, if strong
nonlinear capacitive effects are present, nonlinear embedding
procedure must be applied to properly move the reference
plane from the intrinsic current generator to the device
tabs [17], [18].

IV. EXPERIMENTAL RESULTS

The simplified contour drawing procedure is tested and
compared with load–pull characterization results for all
the three devices using the Cardiff University harmonic
source/load–pull setup. The measurement setup block diagram
and photograph are shown in Fig. 7 consisting of a real-time,
two-port, source/load–pull measurement system [19]. Active
harmonic source/pull strategy is adopted, with frequency mul-
tiplexers enabling the independent behavior of the different
source/load–pull harmonic sources. The use of a large-signal
vector analyzer, and of a comb-generator as reference for phase
realignment of harmonic components, enables the measure-
ment of the waveforms at the device-under-test (DUT) plane
[20]. The system is computerized and controlled by ad hoc
software.

The three devices are as follows:

1) A 0.25-μm GaN HEMT on SiC, the TGF2023-01 from
Qorvo Inc. [photograph in Fig. 8(a)], named here GaN-
FET1. IMAX of 1.2 A. Operating at VDD = 28 V.
Estimated Ropt ≈ 47 �.

Fig. 7. (a) Block diagram and (b) photograph of the adopted active
source/load–pull setup.

Fig. 8. Microscope photographs of (a) GaNFET1 and (b) GaAsFET devices.

2) A 0.5-μm GaN HEMT on SiC, named here GaNFET2.
IMAX of 0.72 A. Operating at VDD = 20 V. IMAX
of 0.34 A. Operating at VDD = 10 V. Estimated
Ropt ≈ 58 �.

3) A 0.35-μm GaAs pHEMT, the TGF2022-06 from Qorvo
[photograph in Fig. 8(b)], named here GaAsFET. Esti-
mated Ropt ≈ 58 �.

It has to be noticed that, while GaNFET1 and GaAsFET are
both based on commercial available processes, GaNFET2 is
based on a research-driven process.

Fan diagram measurements [12] on the devices are shown
in Fig. 9, together with the selected k() functions with
N = 4, N = 6, and N = 24 for the GaNFET1, GaNFET2,
and GaAsFET case, respectively.

The GaNFET1 device has been measured at 3 GHz, with
drain bias voltage of 28 V and quiescent current of 15 mA.
The GaNFET2 device has been characterized at 2 GHz,

Figure 4.6: Measurement setup for the Wolfspeed device [7].
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Figure 4.7: Measured load point location of the Wolfspeed device on the Smith
Chart.

Here with the practical measurement setup, the tailored dataset for the CM model

order determining spectrum analysis is not available. With the conventional CM

formulation (2.15), a 5th model order, which refers to the 10 coefficients listed in

Table 4.3, are extracted to ensure an accurate model [2]. According to the verifica-

tion done with the simulated load-pull measurement dataset previously, the listed

coefficient values should also be the expected results from the ANN based coefficient

extractor.
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Table 4.3: The Extracted Cardiff Model Coefficients For Measured B2,1 of the Wolf-
speed Device Using Conventional CM Formulation

M2,1,m,n

index r n m Real Imag.

1 0 -2 2 0.0086 -0.0036
2 0 -1 1 0.1483 0.1056
3 0 0 0 3.8870 1.4159
4 0 1 1 -0.1093 0.0448
5 0 2 2 0.1528 -0.0006
6 0 3 3 0.0163 -0.0026
7 1 -1 3 0.0015 -0.0007
8 1 0 2 0.1300 0.1225
9 1 1 3 0.0561 0.0354
10 1 2 4 0.0070 0.0023

An FCC feedforward ANN structure that has been structured (as in Fig. 4.8) with

two hidden layers, containing 3 and 2 neurons in the first and second hidden layer

respectively, is selected to the measured data from the Wolfspeed device to extract

10 coefficients.

Hidden LayerInput Matrix Output MatrixOutput Layer
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Figure 4.8: Two hidden layer FCC feedforward ANN based CM coefficient extractor
structure.

The extracted coefficients from the ANN based CM coefficient extractor are listed

in Table 4.4. The coefficient values are close enough to the extracted results given

by the conventional CM formulation in Table 4.3. With the listed coefficients, the

predicted B2,1 can be calculated and so the device output power can be performed

with contours on the Smith Chart as shown in Fig. 4.9.
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Table 4.4: The Extracted Cardiff Model Coefficients For Measured B2,1 of the Wolf-
speed Device Using the invented ANN based Coefficient Extractor

M2,1,m,n

index r n m Real Imag.

1 0 -2 2 0.0086 -0.0036
2 0 -1 1 0.1483 0.1056
3 0 0 0 3.8870 1.4159
4 0 1 1 -0.1093 0.0447
5 0 2 2 0.1528 -0.0006
6 0 3 3 0.0163 -0.0026
7 1 -1 3 0.0015 -0.0007
8 1 0 2 0.1300 0.1225
9 1 1 3 0.0561 0.0354
10 1 2 4 0.0071 0.0023
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Figure 4.9: Output power contours calculated with the extracted coefficients from
the ANN based coefficient extractor (red) vs. Measurement (black) of the Wolfspeed
device with NMSE levels of - 72 dB.

For DC response B2,0, which is the drain DC current, the extracted coefficients using

the conventional CM formulation are listed in Table 4.5.

The same ANN structure as in Fig. 4.4 is utilised for extracting the DC correlated

coefficients. The extracted coefficients from the ANN based coefficient extractor are

listed in Table 4.6.
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Table 4.5: The Extracted Cardiff Model Coefficients For Measured B2,0 of the Wolf-
speed Device Using Conventional CM Formulation

M2,0,m,n

index r n m Real Imag.

1 0 -2 2 0.0044 0.0074
2 0 -1 1 0.0669 -0.0138
3 0 0 0 0.7842 -0.0095
4 0 1 1 0.0521 0.0088
5 0 2 2 -0.0034 -0.0040
6 0 3 3 -0.0007 0.0008
7 1 -1 3 0.0023 0.0016
8 1 0 2 0.0154 -0.0005
9 1 1 3 -0.0009 -0.0003
10 1 2 4 -0.0003 0.0003

Table 4.6: The Extracted Cardiff Model Coefficients For Measured B2,0 of the Wolf-
speed Device Using the invented ANN based Coefficient Extractor

M2,0,m,n

index r n m Real Imag.

1 0 -2 2 0.0044 0.0074
2 0 -1 1 0.0670 -0.0138
3 0 0 0 0.7843 -0.0095
4 0 1 1 0.0522 0.0088
5 0 2 2 -0.0034 -0.0040
6 0 3 3 -0.0007 0.0008
7 1 -1 3 0.0023 0.0016
8 1 0 2 0.0154 -0.0005
9 1 1 3 -0.0009 -0.0002
10 1 2 4 -0.0003 0.0003

Compared with the results of the conventional CM coefficients in Table 4.5, the

values of the two sets of extracted coefficients are close enough, as it was performed

with the fundamental travelling wave response B2,1. With the extracted coefficients

correlated to the DC and fundamental response, the device efficiency contours on

the Smith Chart can be calculated and performed as shown in Fig.4.10.

It can be seen from the results that the ANN extractor can work out sets of co-

efficients similar to the standard least square algorithm with the conventional CM

formulation, and provide accurate results with the device output power and effi-

ciency contours compared to load-pull measurement results under both simulation
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and practical scenarios. Hence, the invented ANN based CM coefficient extractor is

verified as an accurate coefficient extraction method.
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effMAX= 59.14 %
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Figure 4.10: Efficiency contours calculated with the extracted coefficients from the
ANN based coefficient extractor (red) vs. Measurement (black) of the Wolfspeed
device with NMSE level of - 53 dB.

4.3 Models Combination for Extrapolation Abil-

ity

The invented ANN based coefficient extractor is proved accurate for extracting the

CM coefficients in the previous section. The values of the extracted coefficients can

be identical to those extracted with the conventional CM formulation. However,

based on the analysis presented in Chapter 3, the coefficients extracted using the

conventional CM formulation with user-defined model order can potentially pro-

vide erroneous prediction results when extrapolating. When the tailored dataset is

unavailable in practical load-pull measurement scenarios, the required CM mixing

order will still be the user-defined model order. In this case, the invented ANN
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based CM coefficient extractor is not robust enough to guarantee the expected rea-

sonable extrapolation prediction, since the extracted coefficients are still identical

to the conventional CM.

It is also proven in Chapter 3 that a trained conventional A-B wave-based ANN

behavioural model, with properly defined number of hidden neurons and initial

values of weights and biases, can provide reasonable extrapolation predictions as an

accurate behavioural model. Therefore, the trained A-B wave-based ANN model

can be considered and utilised for obtaining reasonable extrapolation predictions

outside the load-pull measurement covered region.

When combining the conventional A-B wave-based ANN behavioural model with

the invented coefficient extractor, the A-B wave-based ANN model extrapolated

data can be easily applied to the coefficient extractor by varying the targets given

to the modified LM training algorithm. Different CM coefficient sets will then be

extracted using both the load-pull measured A-B wave datasets and the A-B wave-

based ANN model predicted B wave datasets, instead of the load-pull measured data

only. Hence, reasonable extrapolation ability can be expected from the extracted

coefficient sets, even for the CM with high user-defined model order.

For applying an artificial set of extrapolated data predicted by the conventional

A-B wave-based ANN behavioural model to the coefficient extractor, here, step 7

in Algorithm 2 is changed from: Bp,h Error = Bp,h Modelled − Bp,h Measured to the

highlighted step as shown in Algorithm 3 below.
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Algorithm 3 Modified Steps of Levenberg-Marquart Algorithm for CM Coefficients
Extractor
1: Input:A2,1 Measured,Bp,h Measured

2: [A] = (̸ A1,1)
h |A2,1 Calculated|m

( ̸ A2,1

̸ A1,1

)n
3: Initialise: [Wi] , [Bi]← rand [−1, 1]
4: for epoch = 1
5: Mp,h,m,n = [Wi] [A2,1 Measured,Bp,h Measured] + [Bi]
6: Bp,h Modelled =

∑
r

∑
nMp,h,m,n × [A]

7: Bp,h Error = Bp,h Modelled −Bp,h ANNpredicted

8: Mp,h,m,n Error =
(
[A]H [A]

)−1 (
[A]H [Bp,h Error]

)
9: Compute Jacobian

10: Update: [Wi] and [Bi] till required error level met
11: end for
12: Output:Mp,h,m,n

Two sets of measured data, from the Wolfspeed 10W packaged device and a

WINNP12 4x25 um GaN on-wafer device measurements, acquired under different

operating scenarios, located in the different regions on the Smith Chart, are utilised

for troubleshooting and proving the robustness of the proposed method.

The coefficients extracted with the 5th model order using the invented CM coefficient

extractor for the Wolfspeed device load-pull measurement data, presented in the

coefficient extractor accuracy verification section in Fig 4.7, Table 4.4, can be applied

for verifying the model extrapolation ability.

A set of manually generated stimulus A2,1 circles are populated for model coefficients’

extrapolation ability testing under practical scenarios, where a load-pull measure-

ment with large coverage on the Smith Chart is time-consuming and expensive to

obtain. The formulation for generating the stimulus A2,1 circles is shown as follows:

Ai
2,1 = A0

2,1 + A∆
2,1(cos (2π

i

N
) + j sin (2π

i

N
)) (4.9a)

A∆
2,1 = ac+ bi (4.9b)

here, A0
2,1 is setting up the centre. A∆

2,1 is defining the data extended coverage range,

where ‘a’ and ‘b’ represent a user-defined real and imaginary parts with a sweeping
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index ‘c’ determined to the magnitude term. The index ‘i’ can be varied from 0 to

N − 1, ‘N ’ is the total number of points.

To get the maximum coverage within the whole Smith Chart based on the measure-

ment data coverage as shown in Fig. 4.7, the sweeping index c has been determined

from 1 to 6 in this case. The calculated stimulus A2,1 circles are plotted as in

Fig. 4.11, together with the A2,1 values acquired from the load-pull measurement.
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Figure 4.11: Calculated A2,1 surrounding the measured dataset of the Wolfspeed
device for the ANN the trained A-B wave-based ANN model to generate the artificial
set of extrapolated data.

With the colour-coded calculated A2,1 in Fig.4.11, the extrapolation results provided

by the coefficients extracted using the measurement data and the invented coeffi-

cient extractor, listed in Table 4.4, are shown in Fig. 4.12 (a,c). Then, the load-pull

measurement data of the Wolfspeed device, in Fig 4.7, is normalised with a scale to

[−1, 1] for conventional A-B wave-based ANN model training. The same feedfor-

ward structure shown in Fig. 3.13 is used here for the A-B wave-based ANN model,

with 7 hidden neurons in the hidden layer. After the ANN model training, applied

the measurement data scale factor to the calculated stimulus A2,1 in Fig. 4.11, the

normalised A2,1 can then be fed into the trained A-B wave ANN model to obtain

an artificial set of extrapolated data. The extrapolated data performance is shown
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in Fig. 4.12 (b,d).
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Figure 4.12: The performance shown with Γ2,1 points plotted on the Smith Chart
and output power of the coefficients extracted invented ANN based CM coefficient
extractor (a,c) and the conventional A-B wave based ANN model (b,d) for the
Wolfspeed device.

Different from the analysis done with simulation datasets in Chapter 3, under prac-

tical scenarios, measurement is not done on the extrapolation region, so the data

reference for accurate extrapolation results comparison is not available. The extrap-

olated device response/model prediction result is evaluated using robust modelling

theory. Ideally, the extrapolated B2,1 wave as a function of the A2,1 should show

expanding circles/ellipses Γ2,1 points when moving away from the optimum on the
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Smith Chart. However, Fig. 4.12 (a) shows clearly that the extrapolated Γ2,1 points

sit on unrealistic trajectories with cusps and knots, when the coefficients are ex-

tracted from the measurement data directly using the invented coefficient extractor.

This is best visualised in Fig. 4.12 (c) where the extrapolated output power is not

following a decreasing trend away from the measured optimum. The erroneous ex-

trapolation behaviours are all absent in the predicted Γ2,1 points and the output

power provided by the trained A-B wave ANN model, as shown in Fig. 4.12 (b,d).

Hence, the trained A-B wave ANN model provides more reasonable extrapolation

results, later defined as an artificial set of extrapolated data, with the calculated

stimulus A2,1 circles.

The artificial set of extrapolated data (shown in Fig. 4.12 (b)) is then fed into the

invented coefficient extractor following the proposed method, as the modified targets

to the LM training algorithm demonstrated in Algorithm3. The coefficient extractor

here has been structured (as in Fig. 4.8) containing 3 and 4 neurons in the first and

second hidden layer respectively. A different set of coefficients is extracted with

the artificial set of extrapolated data and the measurement dataset, and listed in

Table 4.7, compared to the coefficient values extracted using the coefficient extractor

with the measurement data only.

Table 4.7: The Extracted Coefficients Comparison For Measured B2,1 of the Wolf-
speed Device Using Different Methods

M2,1,m,n

Measured Data Only Combined Method
index r n m Real Imag. Real Imag.

1 0 -2 2 0.0086 -0.0036 -0.0030 -0.0035
2 0 -1 1 0.1483 0.1056 0.0089 -0.0002
3 0 0 0 3.8870 1.4159 3.4993 1.3105
4 0 1 1 -0.1093 0.0447 -0.5295 -0.0831
5 0 2 2 0.1528 -0.0006 -0.0042 -0.0163
6 0 3 3 0.0163 -0.0026 -0.0014 0.0004
7 1 -1 3 0.0015 -0.0007 -0.0014 -0.0006
8 1 0 2 0.1300 0.1225 -0.0036 -0.0072
9 1 1 3 0.0561 0.0354 0.0011 -0.0011
10 1 2 4 0.0071 0.0023 0 0.0001
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Figure 4.13: 0.4 dBm Output power contours prediction with the extracted coeffi-
cients using the proposed combined method (red) vs. Measurement (black) of the
Wolfspeed device where the level NMSE of the interpolation region remains - 61 dB.

With the listed coefficients, the predicted B2,1 can be calculated and so the de-

vice output power can be calculated and performed with contours on the Smith

Chart as shown in Fig. 4.13, compared to the measured output power contours of

the Wolfspeed device. The coefficients predicting accuracy in the measurement re-

gion remain. It can be seen that the output power contours demonstrated with no

erroneous features shown in Fig. 4.13 as moving from the optimum to the edge of

the Smith Chart.

The procedure is repeated to obtain the efficiency contours for further proving the

extrapolation ability of the proposed combined method. A linear structure is imple-

mented, as shown in Fig. 4.14, for a conventional A-B wave ANN behavioural model

training.
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Figure 4.14: Linear A-B wave-based ANN model structure.

By feeding the colour-coded calculated A2,1 in Fig.4.11 into the trained A-B wave

ANN model, the predicted DC device response B2,0, which is also the I2,0 (drain DC

current) can then be applied to the invented coefficient extractor using the modified

LM Algorithm3. The pure linear structure as Fig. 4.4, similar to Fig. 4.14 but

changing the input matrix into related A travelling waves only and the output matrix

into the DC device response B2,0, is utilised here as well for the coefficient extractor.

A different set of coefficients is extracted for B2,0, listed in Table 4.8, compared to

the coefficients extracted with the coefficient extractor using measurement data only.

Table 4.8: The Extracted Coefficients Comparison For Measured B2,0 of the Wolf-
speed Device Using Different Methods

M2,0,m,n

Measured Data Only Combined Method
index r n m Real Imag. Real Imag.

1 0 -2 2 0.0044 0.0074 0 0
2 0 -1 1 0.0670 -0.0138 0.0314 -0.0349
3 0 0 0 0.7843 -0.0095 0.7257 0
4 0 1 1 0.0522 0.0088 0.0314 0.0350
5 0 2 2 -0.0034 -0.0040 0 0
6 0 3 3 -0.0007 0.0008 0 0
7 1 -1 3 0.0023 0.0016 0 0
8 1 0 2 0.0154 -0.0005 0 0
9 1 1 3 -0.0009 -0.0002 0 0.0001
10 1 2 4 -0.0003 0.0003 0 0
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Figure 4.15: Predicted efficiency contours (5.6%/step) calculated with the extracted
coefficients using the proposed combined method (red) vs. Measurement (black) of
the Wolfspeed device, where the level NMSE of the interpolation region remains
- 44 dB.

Results as shown in Fig. 4.15 demonstrate accurate predictions within the measure-

ment region since the predicted efficiency contours from the coefficients extracted

with the combined method are aligned with the measured efficiency contours. Also,

no erroneous features appear in the extrapolated efficiency contours. Hence, coeffi-

cients extracted with high user-defined model order by combining the conventional

A-B wave-based ANN behavioural and the invented ANN technique-based CM co-

efficient extractor, is proven able to provide accurate interpolation predictions and

also reasonable extrapolation predictions.

A dataset acquired from load-pull measurement done with a WIN NP12 4x25 um

on-wafer device at 20GHz, biased at VDS = 15V, IDq = 10mA with a constant input

drive corresponding to 3 dB compression at the optimum load, is also utilised here.

This is for verifying the combined method robustness on different device manufacture

techniques, under different operation conditions, and responses located in different

regions on the Smith Chart, compared to the Wolfspeed device measurement. The
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measured WIN device measurement follows the same setup as Fig. 4.6 but with the

R&S ZVA 67 [8], the acquired data location on the Smith Chart is shown in Fig. 4.16.
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Figure 4.16: Measured WIN data.

The process is identical to the analysis for the Wolfspeed device measurement data,

and has been repeated for the WIN device load-pull measurement dataset. Firstly,

the measurement data shown in Fig. 4.16 is utilised for a 5th order model with the

invented ANN based CM coefficient extractor. The extracted coefficients are listed

in Table 4.9.

Table 4.9: The Extracted Coefficients For Measured B2,0 of the WIN Device Using
the Invented ANN Based Coefficient Extractor

M2,1,m,n

index r n m Real Imag.

1 0 -2 2 0.0753 0.0613
2 0 -1 1 0.0156 0.1331
3 0 0 0 0.0383 0.4115
4 0 1 1 0.3171 -0.7009
5 0 2 2 -0.1507 -0.1988
6 0 3 3 0.0226 -0.1242
7 1 -1 3 -0.0225 0.1520
8 1 0 2 -0.2892 0.2043
9 1 1 3 -0.2737 -0.0078
10 1 2 4 -0.0618 -0.1077
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Secondly, a conventional A-B wave-based ANN model is trained with the dataset,

for an artificial set of extrapolated data. In this case with the measurement date

of the WIN device, one hidden layer structure (as in Fig 3.13) containing 4 hidden

neurons is selected for the A-B wave-based ANN model.
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Figure 4.17: Calculated A2,1 surrounding the measured dataset of the WIN device
for the ANN the trained A-B wave-based ANN model to generate the artificial set
of extrapolated data.

To propagate a calculated A2,1 dataset that gets the maximum coverage within the

whole Smith Chart that can be utilised with the trained A-B wave-based ANN

model, values of the sweeping index c of A∆
2,1 in (4.9a) have been determined as

from 1 to 5 for the WIN device. The extrapolated load circles are markers and

colour-coded consistently with c sweeps indexed as shown in Fig. 4.17.

The calculated A2,1 data is then applied with both coefficient sets extracted with the

invented ANN based coefficients extractor and the trained A-B wave ANN model

for extrapolation performance comparison. The extrapolated results are shown in

Fig. 4.18.
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Figure 4.18: The performance shown with Γ2,1 points plotted on the Smith Chart
and output power of the coefficients extracted invented ANN based CM coefficient
extractor (a,c) and the conventional A-B wave based ANN model (b,d) for the WIN
device.

The results demonstrate the same scenario as the results presented with the Wolf-

speed device measurement data. The Γ2,1 points extrapolated by the invented co-

efficient extractor shown in Fig. 4.18 (a) are located on unrealistic trajectories, and

bring with erroneous extrapolated output power values in Fig. 4.18 (c), as moving

from the optimum to the edge of the Smith Chart. The extrapolation results pro-

vided by the trained A-B wave ANN model in Fig. 4.18 (b,d) follow the theoretical

analysis in an ideal modelling state, the predicted Γ2,1 points expand in circles and
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the output power values follow a decreasing trend with no erroneous features as

moving from the optimum to the edge of the Smith Chart.

Then, the artificial set of extrapolated data, which is the colour-coded data with

different markers shown in Fig. 4.18 (b), predicted by the trained A-B wave ANN

model extrapolation, is utilised as the modified targets to the LM training algorithm

demonstrated in Algorithm3. The coefficient extractor has been structured (as in

Fig. 4.8) with containing 5 hidden neurons in both hidden layers for the WIN device,

both hidden layers.

A different set of coefficients is extracted with the artificial set of extrapolated

data and the measurement dataset, listed in Table 4.10. The predicted B2,1 can

be calculated with the listed coefficients, and so the device output power can be

performed with contours on the Smith Chart as shown in Fig. 4.19, compared to the

measured output power contours of the WIN device.

Table 4.10: The Extracted Cardiff Model Coefficients For Measured B2,1 of the
Wolfspeed Device Using the Combined Method

M2,1,m,n

index r n m Real Imag.

1 0 -2 2 0.0289 -0.0150
2 0 -1 1 0.0565 -0.0002
3 0 0 0 0.0882 0.3900
4 0 1 1 0.4974 -0.6540
5 0 2 2 -0.0099 -0.0337
6 0 3 3 -0.0033 -0.0118
7 1 -1 3 0.0095 0.0246
8 1 0 2 -0.0040 0.0226
9 1 1 3 -0.0286 0.0099
10 1 2 4 -0.0046 0.0003
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Figure 4.19: The combined method extracted coefficient performance of the WIN
device, shown with predicted output power contours (1.3 dBm/step) on the Smith
Chart, where the level of NMSE in the interpolation region remains - 51 dB.

A Linear A-B wave-based ANN model is trained for the DC response. By feeding

the calculated A2,1 into the trained model, the artificial set of extrapolated data

is then utilised in the training target modified coefficient extractor, for coefficient

extraction. The extracted B2,0 correlated coefficients are listed in Table 4.11. The

extracted coefficient predicted efficiency contours are shown in Fig. 4.20, compared

to the measured data of the WIN device.

Table 4.11: The Extracted CM Coefficients For Measured B2,0 of the WIN Device
Using the Combined Method

M2,0,m,n

index r n m Real Imag.

1 0 -2 2 0 0
2 0 -1 1 0.0038 -0.0069
3 0 0 0 0.0409 0
4 0 1 1 0.0038 0.0068
5 0 2 2 0 0
6 0 3 3 0 0
7 1 -1 3 0 0
8 1 0 2 0 0
9 1 1 3 0 0
10 1 2 4 0 0
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Figure 4.20: The combined method extracted coefficient performance of the WIN
device, shown with predicted efficiency contours (6.4%/step) plotted on the Smith
Chart, where the level of NMSE in the interpolation region remains - 39.8 dB.

4.4 Discussion

In practical scenarios, when the tailored datasets for properly defined truncated

CMs are not available, the high mixing order CM coefficient sets obtained with

the combined method, can now provide not only interpolation predictions with a

high level of accuracy but also ensure extrapolation without unrealistic power and

efficiency predictions.

However, the introduced combined method utilises the ANN technique as the core,

which then indicates that the model structure will have to be properly selected.

Following the analysis in Chapter 3, different determined values for the number of

hidden neurons and the initial values of the ANN can provide completely different

model accuracy and extrapolation ability. When utilising the conventional A-B

wave-based ANN behavioural model to generate an artificial set of extrapolated

data for the invented ANN technique-based CM coefficient extractor as the training
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target, the A-B wave-based ANN will need to be carefully determined.

Here in this Chapter, the ANN structure determining process relies on parameter

sweeps, and values with the best performance are selected. When the system com-

plexity increases, this way of determining the structure does not always guarantee

success if the sweeping plan proves ineffective. Other procedures can be further

explored for a guaranteed ANN model structure determining method.

4.5 Conclusion

Overall in this chapter, the proposed methods provide verified opportunities for the

high order CM coefficients with reasonable extrapolation ability to be extracted

using the modified ANN technique.

An invented ANN technique-based CM coefficient extractor is introduced. The Wolf-

speed 10W packaged Gallium Nitride (GaN) device load-pull measurement datasets,

under both CAD simulation environment and practical environment, are used for

accuracy verification. With the modified LM training algorithm, the invented co-

efficient extractor is proven able to extract CM coefficients with the same level of

accuracy as those extracted using the conventional CM formulation.

The combined procedure for extracting high user-defined order CM coefficients ex-

ploiting the reasonable extrapolation capabilities is also presented. The procedure

combined the conventional A-B wave-based ANN behavioural model and the in-

vented ANN technique-based CM coefficient extractor. The training target of the

modified LM training algorithm can be varied. The verification results show that

the combined method can help to avoid the non-physical CM model behaviour when

used in CAD simulations to optimize the matching networks when CM model ex-

traction is constrained by load-pull measurement limitations. The robustness of

the proposed combined method is shown by utilising two different GaN devices,
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Wolfspeed 10W packaged GaN device and a WIN Semiconductor GaN on-wafer de-

vice, with practical measured load-pull datasets under different frequency and power

levels.
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Chapter 5

A Discovery of the Artificial

Neural Network (ANN) Structure

Defining Method

It has been presented in Chapter 3 that the Artificial Neural Network (ANN) model

fitting process generally requires an initial setup for the values of the hidden neu-

ron numbers, weights and biases. The ANN structure is not fixed for systems with

different nonlinearity [1]–[3]. Different ANN initialisation configurations used when

training ANNs yield different results with different associated errors [4]–[7]. Overde-

termining the values may lead to the phenomenon of overlearning [8], [9]. For an

optimisation method for finding the optimal configuration of an ANN behavioural

model, an ANN structure determining method is proposed in this chapter.

Considering that the Cardiff Model (CM) provides a mathematically formulated

nonlinear model that is based on the physics of signal mixing theory [10]–[12], the

proposed method utilises the CM with tailored datasets for determining the non-

linearity of systems, hence, the required polynomial order. The ANN structure

(number of hidden neurons) and the internal parameter determination process (val-
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ues of the weights and biases), are guaranteed by the CM coefficients and the method

results in high model accuracy and reasonable extrapolation ability. In the practical

scenario with load-pull measurement systems, an alternative measurement proce-

dure is introduced to acquire the required tailored dataset.

5.1 Proposed ANN Determination Procedure

Overview

The overview of the proposed method in a flow diagram is shown as in Fig. 5.1.

Expand

The tanh function

with the Taylor series expansion

Fully Connected Cascade

(FCC) 

Artificial Neural Network 

(ANN)

Establish 

Analysis and Equations 

for Initializing an FCC ANN Model

Reformulate

CM

[matrix calculation format]

Cardiff Model 

(CM)

Reformulate

FCC ANN

[matrix calculation format]

Compute & Separate

Nonlinear Elements

[with Hidden Bias matrix]

Compare

Reformulated FCC ANN and CM

[in matrix calculation format]

Figure 5.1: Flow diagram summarizing the procedure used to establish the equiva-
lence between ANN and CM coefficients.

It follows these steps in detail:

1. Based on the fact that ANNs require complex numbers to be processed with

the real and imaginary parts separated, the CM (structure diagram shown
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in Fig. 5.2) needs to be reformulated to accommodate the separation of the

complex variables (following the details explained in Step 1).

2. A single hidden layer structure ANN model [13] (conventional structure in

Fig. 5.5) is reformulated, with the Taylor series expansion being applied to

replace the tanh activation function. This provides a better understanding of

how an ANN’s structure operates on non-linear segments from layer to layer

with the tanh activation function.

3. Following the details explained in Step 2, it is important to note that the

tanh function generates both linear and constant terms as well as higher-

order terms. To account for the linear and constant terms, a Fully Connected

Cascaded (FCC) ANN structure is selected to ensure accurate prediction (in-

terpolation) of measured results. It is the higher order terms that contribute

to an improved extrapolation ability [14], [15].

4. After the ANN and CM models have been reformulated, their elements are

matched to establish a new set of equations for identifying the required FCC

ANN model configuration.

5. Finally, the proposed method for determining an FCC ANN model parameters

is derived.

5.1.1 Step 1: Cardiff Model (CM) Equations Reformulation

The conventional CM mathematically relates the input and output power waves of

the device through a set of model coefficients ‘Mp,h,m,n’ [16], [17]. The formulation

for datasets that is phase normalized to the complex exponential of the phase of

A1,1 for fundamental load-pull measurement datasets is as shown in (5.1):

Bp,h =
r=1∑
r=0

n∑
n=0

Mp,h,m,n|A2,1|m ( ̸ A2,1)
n (5.1)
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where ̸ A2,1 represents the complex exponential of the phase of A2,1, the ‘p’ and ‘h’

subscripts denote the respective port and harmonics.

The choice of exponents is driven by mixing theory, which makes the model phys-

ically meaningful. Here in (5.1), the exponents ‘m’ and ‘n’ denote the coefficient-

related power wave’s magnitude and the complex exponential of the phase respec-

tively. The ‘m’ and ‘n’ terms are related as ‘m = |n|+2r’, where ‘r’ is the magnitude

indexing term is limited to integer values from 0 to 1 because of extrapolation con-

cerns [16]–[18]. The simple CM diagram can be shown in Fig. 5.2.

Input Matrix Coefficient Matrix Output Matrix

𝑀2,ℎ,𝑚,𝑛[𝐴2,1] [𝐵2,ℎ]

𝐴2,1
0
∠𝐴2,1

0

𝐴2,1
𝑚
∠𝐴2,1

𝑛

⋮

Polynomial 

Populated  

Matrix

𝐴2,1
1
∠𝐴2,1

-1
∑

Figure 5.2: Conventional CM model diagram.

If propagating magnitude and phase exponent terms ‘m’ and ‘n’ follow a polynomial

order instead of the standard CM mixing order, the conventional CM formulation

(5.1) can be expanded and rearranged as follows from ‘Mp,h,0,0’ to the general ex-

pansion limit ‘Mp,h,m,n’:
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Bp,h = Mp,h,0,0 +Mp,h,1,1A2,1 +Mp,h,1,−1A
∗
2,1

+Mp,h,2,2 (A2,1)
2 + 2Mp,h,2,0A2,1A

∗
2,1 +Mp,h,2,−2

(
A∗

2,1

)2
+Mp,h,3,3 (A2,1)

3 + 3Mp,h,3,1 (A2,1)
2 (A∗

2,1

)
+ 3Mp,h,3,−1A2,1

(
A∗

2,1

)2
+Mp,h,3,−3

(
A∗

2,1

)3
...

+

[
. . . Mp,h,m,n . . .

]
·



...m

k

 (A2,1)
m−k(A∗

2,1)
k

...



(5.2)

where the value of ‘n’, which is the phase exponent term, can now be calculated

with ‘n = m− 2k’. The value of ‘m’ equals to the polynomial order number [11] and

‘k’ ranges from 0 to ‘m’. ‘
(
A∗

2,1

)
’ represents the conjugate operation of A2,1. The

positive integer is known as the binomial coefficient:

m

k

 =
m!

k!(m− k)!
(5.3)

Rearranging (5.2) into matrix form with real and imaginary parts separated, the[
BR

p,h

BI
p,h

]
matrix can be calculated following the expansion of the dot product from

matrices:

[
. . .

(
MR

p,h,m,n + jM I
p,h,m,n

)
. . .

]

and



...m

k

 (AR
2,1 + jAI

2,1)
m−k(AR

2,1 − jAI
2,1)

k

...


.
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Hence, the formulation can be written with the binomial coefficients in the A2,1

matrix expansion folded into the CM coefficients matrices, as (5.4).

Having the ‘A2,1’ stimulus incident waves separated into real and imaginary parts,

the CM can be reformulated as (5.4).

BR
p,h

BI
p,h

 =

[
M0

]
+

[
M1

]AR
2,1

AI
2,1

+

[
M2

]

(
AR

2,1

)2
AR

2,1A
I
2,1(

AI
2,1

)2



+

[
M3

]


(
AR

2,1

)3
(
AR

2,1

)2
AI

2,1

AR
2,1

(
AI

2,1

)2
(
AI

2,1

)3


+ · · ·+

[
Mo

]
...

(AR
2,1)

m−k(AI
2,1)

k

...


(5.4)

where ‘R’ and ‘I ’ represent the real and imaginary parts of the complex data seg-

ments, the [Mo] matrix is computed from sets of model coefficient ‘Mp,h,m,n’, expo-

nent pairs (m,n), associated with the respective mixing order [11], and ‘k’ ranges

from 0 to ‘o’, where ‘o’ represents the expanded polynomial order.

In (5.4), the [Mo] matrices with o as the polynomial order equals up to 3 are shown

in the following as examples:

[
M0

]
=

MR
p,h,0,0

M I
p,h,0,0

 (5.5)

[
M1

]
=

(MR
p,h,1,1 +MR

p,h,1,−1

) (
−M I

p,h,1,1 +M I
p,h,1,−1

)
(
M I

p,h,1,1 +M I
p,h,1,−1

) (
MR

p,h,1,1 −MR
p,h,1,−1

)
 (5.6)
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[
M2

]
=

[
(MR

p,h,2,2+MR
p,h,2,0+MR

p,h,2,−2) 2.(−MI
p,h,2,2+MI

p,h,2,−2) (−MR
p,h,2,2+MR

p,h,2,0−MR
p,h,2,−2)

(MI
p,h,2,2+MI

p,h,2,0+MI
p,h,2,−2) 2.(−MR

p,h,2,2−MR
p,h,2,−2) (−MI

p,h,2,2+MI
p,h,2,0−MI

p,h,2,−2)

]
(5.7)

[
M3

]
=

(MR
p,h,3,3 +MR

p,h,3,1 +MR
p,h,3,−1 +MR

p,h,3,−3

)
(
M I

p,h,3,3 +M I
p,h,3,1 +M I

p,h,3,−1 +M I
p,h,3,−3

)
(
−3M I

p,h,3,3 −M I
p,h,3,1 +M I

p,h,3,−1 + 3M I
p,h,3,−3

)
(
3MR

p,h,3,3 +MR
p,h,3,1 −MR

p,h,3,−1 − 3MR
p,h,3,−3

)
(
−3MR

p,h,3,3 +MR
p,h,3,1 +MR

p,h,3,−1 − 3MR
p,h,3,−3

)
(
−3M I

p,h,3,3 +M I
p,h,3,1 +M I

p,h,3,−1 −M I
p,h,3,−3

)
(
M I

p,h,3,3 −M I
p,h,3,1 +M I

p,h,3,−1 −M I
p,h,3,−3

)
(
−MR

p,h,3,3 +MR
p,h,3,1 −MR

p,h,3,−1 +MR
p,h,3,−3

)


(5.8)

The reformulated CM equation (5.4) can also be presented by the structure diagram

shown in Fig. 5.3.

[𝑀1]

[𝑀2]

[𝑀3]

[𝑀0]

Input Matrix Coefficient Matrix

…

Output Matrix

[𝑀𝑜]

∑
𝐴2,1
𝑅

𝐴2,1
𝐼

𝐵2,1
𝑅

𝐵2,1
𝐼

Figure 5.3: Diagram of the CM model reformulated for Real and Imaginary parts.
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5.1.2 Step 2: General ANN Equations Reformulation

Before moving on to a FCC ANN model structure, a general simplest ANN model

structure shown in Fig. 5.5, is first presented with Fig. 5.4. Based on the previous

experiments, the ANN-based behavioural model necessitates having any input and

output matrices split from the complex form into separate real and imaginary matri-

ces. The model in the diagram gives rise to the following mathematical formulation

(5.9).

Hidden LayerInput Matrix Output MatrixOutput Layer

𝑡𝑎𝑛ℎ

∑
2,1𝐴𝑅

2,1𝐴𝐼

𝐻𝐵1

𝐻𝑁1

𝐻𝑁𝑁

𝐻𝑊1,1

𝐻𝑊1,2

𝐻𝐵𝑁

𝐻𝑊𝑁,1

𝐻𝑊𝑁,2

𝑂𝑁1

𝑂𝑁2

𝑂𝑊1,1

𝑂𝑊1,2

𝑂𝑊2,1

𝑂𝑊2,2

⋮

2,1𝐵𝑅

2,1𝐵𝐼∑
𝑡𝑎𝑛ℎ

⋮

Figure 5.4: Conventional ANN model diagram.

BR
p,h

BI
p,h

 = [OW ] tanh

[HW ]

AR
2,1

AI
2,1

+ [HB]

 (5.9)

where ‘R’ and ‘I ’ are the abbreviations of real and imaginary parts of the complex

data segments, while parameters ‘[HW ]’, ‘[HB ]’ and ‘[OW ]’ represent the number

of hidden weights, hidden biases, and output weights respectively. With the [HB]

given by:

[HB] =


HB1,1

...

HBNH,1

 (5.10)
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the [HW ] given by:

[HW ] =


HW1,1 HW1,2

...

HWNH,1 HWNH,2

 . (5.11)

and the [OW ] given by:

[OW ] =

OW1,1 · · · OW1,NH

OW2,1 · · · OW2,NH

 . (5.12)

The equation can then be structured into a matrix format diagram for the conven-

tional ANN model in Fig. 5.5.

Hidden LayerInput Matrix Output MatrixOutput Layer

𝑡𝑎𝑛ℎ

𝐻𝐵

𝐻𝑊
𝑂𝑊

𝐴2,1
𝑅

𝐴2,1
𝐼 𝐵2,1

𝑅

𝐵2,1
𝐼

Figure 5.5: Conventional ANN model diagram in matrix format.

Inside the ANN structure, the non-linear transfer characteristic function tanh, also

called the activation function [19], is the key to creating non-linearity within any

ANN system. By formulating the tanh activation function with its Taylor series

expansion, the non-linearity terms can be separated clearly for ANN determination

analysis, and can then be compared with the reformulated CM formulation later.

The tanh function is defined as:

tanh (x) =
2

1 + e−2(x)
− 1 (5.13)

Following the Taylor series expansion theory:

f(x) ∼= f(x0) +
f

′
(x0)

1!
(x− x0)+

f
′′
(x0)

2!
(x− x0)

2 +
f

′′′
(x0)

3!
(x− x0)

3 + ... (5.14)
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The tanh function part in (5.9) can be reformulated as:

tanh

[HW ]

AR
2,1

AI
2,1

+ [HB]

 = [α] + ∆ [α] [HW ]

AR
2,1

AI
2,1

+∆2 [α]
[
HW 2

]

(
AR

2,1

)2
AR

2,1A
I
2,1(

AI
2,1

)2



+∆3 [α]
[
HW 3

]


(
AR

2,1

)3
(
AR

2,1

)2
AI

2,1

AR
2,1

(
AI

2,1

)2
(
AI

2,1

)3



+ · · ·+∆o [α] [HW o]


...

(AR
2,1)

o−k(AI
2,1)

k

...


(5.15)

where:

[α] = tanh ([HB]) (5.16)

∆o [α] =
1

o!

tanho ([HB])

([HB])o
. (5.17)

According to (5.16) and (5.17), the [HB] matrices can be calculated and shown in

detail with a polynomial order equals up to 3 :

∆ [α] =
tanh′ ([HB])

([HB])
= sech2 ([HB]) (5.18)

∆2 [α] =
1

2

tanh′′ ([HB])

([HB])2
= − tanh ([HB])sech2 ([HB]) (5.19)

∆3 [α] =
1

6

tanh′′′ ([HB])

([HB])3
=

sech2 ([HB])

3
{tanh2 ([HB])− sech2 ([HB])} (5.20)
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Therefore, the original ANN model equation shown in (5.9) can now be reformulated

as follows:

BR
p,h

BI
p,h

 = [OW ] [α] + [OW ] ∆ [α] [HW ]

AR
2,1

AI
2,1

+ [OW ] ∆2 [α]
[
HW 2

]

(
AR

2,1

)2
AR

2,1A
I
2,1(

AI
2,1

)2



+ [OW ] ∆3 [α]
[
HW 3

]


(
AR

2,1

)3
(
AR

2,1

)2
AI

2,1

AR
2,1

(
AI

2,1

)2
(
AI

2,1

)3



+ · · ·+ [OW ] ∆o [α] [HW o]


...

(AR
2,1)

o−k(AI
2,1)

k

...


(5.21)

Since the defined FCC ANN model deals with datasets that consist of real and

imaginary pairs, the two elements in (5.11) associated with each hidden neuron

in the [HW ] matrix, will also represent the real and imaginary parts of the same

complex number. Hence, [HW ] can be re-written as follows:

[HW ] =


ρ1 cos θ1 ρ1 sin θ1

...

ρNH cos θNH ρNH sin θNH

 (5.22)

Defining the [HW ] matrix in the polar form provides an easier way to explore

possible suitable values. This format is then used to determine corresponding [HW o]

matrices:

109



[HW o] =


ρ1 0 . . . 0

...
. . .

...

0 . . . 0 ρNH





. . .

o

k

 (cos θ1)
o−k(sin θ1)

k . . .

...

. . .

o

k

 (cos θNH)
o−k(sin θNH)

k . . .


(5.23)

Note, the expansion of [HW o] matrix follows the binomial theorem. ‘k’ ranges from

0 to o, and ‘o’ refers to the polynomial order number. The positive integer is known

as the binomial coefficient as: o

k

 =
o!

k!(o− k)!
(5.24)

The [HW o] can then be simply computed (5.25).

[HW o] =


[ρ1(cos θ1 + sin θ1)]

o

...

[ρNH(cos θNH + sin θNH)]
o

 (5.25)

Here in (5.25), since ‘ρNH ’ is set to limit the spread range of when the data is

biased on the tanh activation function without exceeding a proper coverage range

according to the non-linearity, it will be defined respectively unrelated to the phase

angles when analysing the values of the [HW ] matrix. ‘NH ’ here represents the

number of hidden neurons used in the ANN structure.

It must be noted that the constant and linear elements inside the Taylor series re-

formulated ANN model will not be independent of the higher-order non-linearities.

Hence, analysis done on the Taylor Series expansion starts from the higher order ele-

ments, respectively, because the parameters (‘[HW ]’, ‘[HB ]’ and ‘[OW ]’) are shared
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between linear and non-linear elements, so lower order elements will be affected by

the higher order elements due to the calculation operation order. Therefore, extra

weight ‘[CW ]’ (Cascaded Weights) and bias matrices ‘[OB ]’ (Output Bias) will be

required for correcting the constant and linear elements provided by the Taylor series

expansion.

5.1.3 Step 3: FCC ANN Equations Reformulation

The Knowledge-based Neural Network (KBNN) structure, which can also be simpli-

fied to be an FCC ANN structure with one hidden layer, has been proven more robust

than the multilayer perceptron (MLP) structure [14], especially when the dataset is

insufficient. The general ANN structure in Fig. 5.5, is then transformed into an

FCC ANN structure [8] for a possible accurate model with reasonable extrapolation

ability shown in Fig. 5.6.

Hidden Layer

Input Matrix Output Matrix

Output Layer

𝑡𝑎𝑛ℎ

∑𝐴2,1
𝑅

𝐴2,1
𝐼

𝐻𝐵1

𝐻𝑁1

𝐻𝑁𝑁

𝐻𝑊1,1

𝐻𝑊1,2

𝐻𝐵𝑁

𝐻𝑊𝑁,1

𝐻𝑊𝑁,2

𝑂𝐵1

𝑂𝑁1

𝑂𝑁2

𝑂𝑊1,1

𝑂𝑊1,2

𝑂𝐵2

𝑂𝑊2,1

𝑂𝑊2,2

⋮

𝐶𝑁1

𝐶𝑁2
𝐵2,1
𝑅

𝐵2,1
𝐼∑

𝑡𝑎𝑛ℎ

⋮

Cascaded/ Knowledge Layer

𝐶𝑊1,1

𝐶𝑊1,2

𝐶𝑊2,1

𝐶𝑊2,2

Figure 5.6: FCC ANN model diagram.

The diagram executes the mathematical formulation as (5.26), which can then be
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translated into a matrix format FCC ANN model diagram as in Fig. 5.7.

BR
p,h

BI
p,h

 = [OB] + [CW ]

AR
2,1

AI
2,1

+ [OW ] tanh

[HW ]

AR
2,1

AI
2,1

+ [HB]

 (5.26)

Hidden LayerInput Matrix Output MatrixOutput Layer

𝑡𝑎𝑛ℎ

𝐻𝐵

𝐻𝑊
𝑂𝑊

𝑂𝐵

𝐶𝑊

∑

𝐴2,1
𝑅

𝐴2,1
𝐼 𝐵2,1

𝑅

𝐵2,1
𝐼

Figure 5.7: FCC ANN model diagram.

The added extra weights and biases are brought in by the FCC ANN structure

can be utilised for correcting the dependent constant and linear element, generated

by analyzing the 2nd and 3rd order respectively, inside the reformulated expanded

equation in (5.21). The original format of an FCC ANN equation (5.26) will then

be reformulated as (5.27).
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BR
p,h

BI
p,h

 = ([OB] + [OW ] [α])

+ ([CW ] + [OW ] ∆ [α] [HW ])

AR
2,1

AI
2,1



+ [OW ] ∆2 [α]
[
HW 2

]

(
AR

2,1

)2
AR

2,1A
I
2,1(

AI
2,1

)2



+ [OW ] ∆3 [α]
[
HW 3

]


(
AR

2,1

)3
(
AR

2,1

)2
AI

2,1

AR
2,1

(
AI

2,1

)2
(
AI

2,1

)3



+ · · ·+ [OW ] ∆o [α] [HW o]


...

(AR
2,1)

o−k(AI
2,1)

k

...



(5.27)

By using the matrices formulation, shown in (5.27), the FCC ANN structure can

be re-drawn as shown in Fig. 5.8. It is now clear how the levels of non-linearity in

the system are being processed by different weights and biases inside the FCC ANN

model. A direct comparison can now be done between the reformulated CM (Fig.

5.3) and the FCC ANN model (Fig. 5.8).

113



𝑂𝐵
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Figure 5.8: Reformulated FCC ANN model diagram.

5.1.4 Step 4: Equating Formulations and ANN Model

Structure Identification

Comparison can now be analysed with equations (5.4) and (5.27), and also Fig. 5.3

and 5.8. When observing the structure of both models, as in Fig. 5.5 and 5.3, the

similarities between the two model structures can be seen. The coefficient matrix

columns in Fig. 5.3 can fulfill a similar process as the hidden layer and output layer

in Fig. 5.5.

The non-linearities inside the two systems can be equated as follows: where the first

line of the matrices’ calculation in (5.27) will match with the constant [M0] matrix

in (5.4); the second line of the matrices’ calculation in (5.27) is generating the

fundamental part of the response; and the 2nd and 3rd order responding output non-
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linearities are generated by the third and fourth row of the matrices’ multiplication

in (5.27), respectively. Hence, a set of equations (5.28) - (5.32) can be extracted by

equating the linear and non-linear terms inside the calculation processes:

[M0] = [OB] + [OW ] [α] (5.28)

[M1] = [CW ] + [OW ] ∆ [α] [HW ] (5.29)

[M2] = [OW ] ∆2 [α]
[
HW 2

]
(5.30)

[M3] = [OW ] ∆3 [α]
[
HW 3

]
(5.31)

...

[Mo] = [OW ] ∆o [α] [HW o] (5.32)

These equations provide a method for linking CM complexity and coefficients to

FCC ANN model structure and parameters.

By knowing the number and dimensions of the [Mo] matrices required from the

identified CM, the associated ANN matrices dimensions, [OW ], [HB] and [HW ],

necessary to ensure that the matrix equations (5.28) - (5.32) are self-consistent, can

now be determined. The ANN structure with the required hidden neuron number

can now be directly identified, by analyzing load-pull data complexity using the

CM. Consider the case where the accurate modelling of the load-pull data is found

to require a 3rd order non-linear CM [16]. In this case, we need an ANN structure

that can satisfy (5.28) - (5.31). Following the contribution of the non-linearities

inside the expanded ANN structure, the higher order non-linearities segment will be

analysed first, by solving (5.30) - (5.31), then the linear segment can be calculated,

by solving (5.28) - (5.29).

The size of the [M2] matrix, given by the CM, in this case, is [2 × 3]. Hence, the

matrices dimensions on the right-hand side of (5.30), [OW ] ∆2 [α] [HW 2], must also
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result in a [2× 3] matrix, hence implying an ANN structure with 3 hidden neurons.

There is the same scenario for solving (5.31). The size of the [M3] matrix, given

by the CM, is [2 × 4]. Hence the [OW ] ∆3 [α] [HW 3] product must also result in

a [2 × 4] matrix, implying an ANN structure with 4 hidden neurons. However, in

a given FCC ANN model the number of hidden neurons is a single value, hence

different sizes for the required weights ([OW ] and [HW ]), and bias ([HB]) matrices

is not possible. This can be addressed by using the sum of the two different matrix

sizes which, in this case, leads to an FCC ANN structure with 7 hidden neurons.

In summary, it has been identified that an FCC ANN model with 7 hidden neurons

is the maximum complexity necessary to model a 3rd order non-linear system.

5.1.5 Step 5: FCC ANN Model Parameter determination

Now, the ANN model structure identification has been achieved. There is still

a potential situation where the initial values of the ANN model parameters lead

to a non-converging backpropagation training process. Therefore, having properly

determined values of the ANN model parameters [OW ], [HB] and [HW ] can be

helpful for the training process. However, it is not possible to compute the ANN

model parameters, the three matrices [OW ], [HB] and [HW ], directly from the CM

by simply reversing equations (5.28) - (5.31). Two of the ANN model matrices have

to be predetermined. Following the feed forward process of the ANN structure,

the first set of matrices that should be defined are matrix [HB], and [HW ]. Once

determined, [OW ] can then be computed directly using equations (5.33) and/or

(5.34).

[OW ] = [M2]
[
∆2 [α]

[
HW 2

]]−1 (5.33)

[OW ] = [M3]
[
∆3 [α]

[
HW 3

]]−1 (5.34)

The selection of [HB] is critical to ensuring that equations (5.33) and (5.34) give
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the same value of [OW ]. It can be seen from the reformulated CM equation (5.4)

that the [M2] matrix deals with the 2nd order non-linearity and the [M3] matrix

ideals with the 3rd order non-linearity. To determine an FCC ANN using (5.30) and

(5.31), according to the calculation through the tanh function, the [HB] matrix can

now be used to enable hidden neurons to target specific orders of non-linearity. The

values of ∆o [α] matrices will be the key in this step.

The 3rd order non-linear systems require an ANN model with 7 hidden neurons.

Hence, [HB] and [HW ] are as follows:

[HB] =



HB1,1

HB2,1

HB3,1

HB4,1

HB5,1

HB6,1

HB7,1



(5.35)

[HW ] =



HW1,1 HW1,2

HW2,1 HW2,2

HW3,1 HW3,2

HW4,1 HW4,2

HW5,1 HW5,2

HW6,1 HW6,2

HW7,1 HW7,2



(5.36)
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Figure 5.9: Selected bias point (red markers) locations on the tanh(x) function.
Location when 3rd order derivative equals 0 (circle) and location when 2nd order
derivative equals 0 (triangle).

Referring to the Taylor series expansion of the tanh function, (5.15), if an element

of matrix [HB] is set to 0.6585 (bias point Fig. 5.9-circle marker) then the 3rd order

element will be cancelled, because the corresponding element of matrix ∆3 [α] is 0;

alternatively when an element of matrix [HB] equals 0 (bias point Fig. 5.9-triangle

marker), then the 2nd order element will be cancelled because the corresponding

element of matrix ∆2 [α] is 0.

Hence, using the required matrix sizes, mentioned in step 4, set the values of [HB]

matrix elements as follows:

[HB] =



HB1,1

HB2,1

HB3,1

HB4,1

HB5,1

HB6,1

HB7,1



=



0.6585

0.6585

0.6585

0

0

0

0



(5.37)
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hence

[
∆2 [α]

]
=



0.38

0.38

0.38

0

0

0

0



(5.38)

and

[
∆3 [α]

]
=



0

0

0

−0.33

−0.33

−0.33

−0.33



(5.39)

The FCC ANN structure for 2nd and 3rd order non-linear contributions have now

been separated and assigned to hidden neurons[1-3] and [4-7] respectively. There is

now no requirement to solve (5.33) and (5.34) simultaneously. They can be refor-

mulated as follows:

[OW2] = 0.38 [M2]
[
HW 2

2

]−1 (5.40)

[OW3] = −0.33 [M3]
[
HW 3

3

]−1 (5.41)

where the [HW ] and [OW ] have been separated into two parts based on the non-

linear order, as follows:

[HW ] =

HW2

HW3

 (5.42)
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and

[OW ] =

[
OW2 OW3

]
(5.43)

Segment Analysis for the 2nd Order

Analytical solutions for the 2nd order segment are achievable if (5.40) can be solved,

which then require the [HW 2
2 ] matrix to be an invertible square matrix, provided it

is non-singular. Since the defined dimension of the [M2] matrix (5.7) refers to a 3

hidden neurons situation, then [HW 2
2 ], shown below, is a square matrix.

[
HW 2

2

]
=


ρ 0 0

0 ρ 0

0 0 ρ



cos2 θ1 2 cos θ1 sin θ1 sin2 θ1

cos2 θ2 2 cos θ2 sin θ2 sin2 θ2

cos2 θ3 2 cos θ3 sin θ3 sin2 θ3

 (5.44)

To make sure that (5.44) is a non-singular square matrix, the values of the 3 phase

angles have to be selected to ensure the following conditions:


θ1 ̸= θ2 ± pπ

θ2 ̸= θ3 ± qπ

(5.45)

where p and q are any positive integer. For example, in this thesis, θ1 = 45◦,

θ2 = 90◦ and θ3 = 135◦ have been used.

Then the elements of the [HW 2
2 ] matrix used in (5.40) can be calculated by selecting

the value of ρ. The example in the method verification sections with specific datasets

will discuss in detail the criteria for the selection of ρ.
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Segment Analysis for the 3rd Order

Similarly, an analytical solution for the 3rd order segment, is achievable if (5.41)

can be solved, which requires the [HW 3
3 ] matrix to be an invertible square matrix,

provided it is non-singular. Since the defined dimension of the [M3] matrix (5.8)

refers to a 4 hidden neurons situation, then [HW 3
3 ], shown below, is a square matrix.

[
HW 3

3

]
=



ρ 0 0 0

0 ρ 0 0

0 0 ρ 0

0 0 0 ρ





cos3 θ4 3 cos2 θ4 sin θ4 3 cos θ4 sin
2 θ4 sin3 θ4

cos3 θ5 3 cos2 θ5 sin θ5 3 cos θ5 sin
2 θ5 sin3 θ5

cos3 θ6 3 cos2 θ6 sin θ6 3 cos θ6 sin
2 θ6 sin3 θ6

cos3 θ7 3 cos2 θ7 sin θ7 3 cos θ7 sin
2 θ7 sin3 θ7


(5.46)

To make sure that (5.46) is a non-singular matrix, also follows the conditions shown

with (5.45) for all the four angles, for example, θ4 = 36◦, θ5 = 72◦, θ6 = 108◦ and

θ7 = 144◦ are used in this thesis. Then the value of the [HW 3
3 ] matrix used to solve

(5.41) can be selected by sweeping the value of ρ, relating to the specific dataset.

In summary, it has been shown that the proper selection of the hidden node bias

values allows for the allocation of hidden nodes to a specific non-linear order, thus

enabling values of the FCC ANN model parameters to be directly computed from

the corresponding CM coefficients ‘Mp,h,m,n’.

5.2 Method Verification With Simulations

In this section, a set of load-pull simulation data, with a complete 3rd order data

complexity, will be used as the first step for verifying the method using data that

has a very low noise floor. The way of using the proposed method is summarized in

the flow diagram, shown in Fig.5.10.
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Value of hidden weights
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Figure 5.10: Flow diagram summarizing the proposed ANN determining method.

5.2.1 Simulation Data Acquisition

The same simulation setup as illustrated in Chapter 3 is utilised here for the load-

pull simulation of the Wolfspeed 10W device (CG2H40010F), biased at Vgs = -

2.2V, Vds = 28V. In Fig. 5.11-5.12, the data is collected with a constant input drive

corresponding to 1 dB compression at the optimum load.
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Figure 5.11: A2,1 sample (a) and its Fourier Transformed spectrum (b) on a trajec-
tory computed using 229 simulated points with the phase modulation rate of Sp =
19.
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Figure 5.12: B2,1 sample (b) and its Fourier Transformed spectrum (a) with error bar
(red) on the trajectory computation, and the expected exponents’ |A2,1|m( ̸ A2,1)

n

values of the CM for extracting coefficients in (n,m).

According to the analysis in [16], 10 coefficients should be extracted here for an

accurate CM with the -60 dB error threshold (red line in Fig. 5.12-right). Knowing

that the ANN training process requires data normalization before feeding the data,

the CM is extracted after normalizing the data based on the tanh function range,

[-1 1]. The magnitude and phase-restricted terms exponents and the extracted

coefficients are determined, calculated, and listed in Table,5.1. The performance of
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the extracted CM will be discussed later in the next step.

Table 5.1: The Extracted CM Coefficients For B2,1 of the Wolfspeed device
M2,1,m,n

index r n m Real Imag.

1 0 0 0 0.7597 0.1
2 0 1 1 -0.5608 -0.0748
3 0 -1 1 -0.0502 0.0390
4 0 2 2 0.0741 -0.1155
5 1 0 2 -0.2547 -0.1019
6 0 -2 2 0.0222 0.0247
7 1 3 3 -0.0638 -0.0333
8 1 1 3 0.0108 0.1137
9 0 -1 3 0.1177 -0.1419
10 0 -3 3 -0.0162 -0.0070

5.2.2 Method Created Model Analysis with ρ Sweep

According to the identified CM polynomial terms shown in Fig.5.12 using the anal-

ysis explained in [16], it is now clear that [Mo] matrices with the value of ‘m’ up to 3

are all that are required to model this dataset. As defined in section 5.1.4, a dataset

that requires a 3rd order non-linear CM will determine a complete FCC ANN model

structure as 1 hidden layer with 7 hidden neurons.

Following the analysis process in section 5.1.5, with the selected phase angles θ1 =

45◦, θ2 = 90◦ and θ3 = 135◦ for [HW2] and θ4 = 36◦, θ5 = 72◦, θ6 = 108◦ and

θ7 = 144◦ for [HW3], the determined value of [HW ] and [OW ] can be explored with

the CM coefficients (listed in Table 5.1) and a magnitude element ρ sweep plan for

this specific dataset.
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Figure 5.13: The dataset coverage on the tanh(x) function range without the 3rd/2nd

order segment (A-B) location after determined weights and biases. The Fourier
Transformed spectrum comparison plot (C-D) of the modelled B2,1(blue) and the
B2,1 samples from the simulation (red) and the calculated from the CM (orange)
with error bar (redline) on the trajectory computation.
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The effect brought by the different values of ρ is shown in Fig.5.13 and 5.14. It

can be seen from the figures that a bigger value of ρ results in a bigger coverage on

the tanh function within the acquired dataset range (Fig.5.13(a)-(b)), which then

generates a B2,1 model with a more complex Fourier Transformed spectrum, hence

an effective “higher noise floor” comparing to the collected dataset (Fig.5.13(c)) and

the CM predictions (Fig.5.13(d)). Also, as shown in Fig.5.14(a), the performance

of the determined ANN model and the CM gets identical when the value of ρ gets

close to 0. Eventually, as ρ is swept from 0 up to 3, as shown in Fig.5.14(b), the

accuracy of the model decreases.
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Figure 5.14: The FCC ANN performance for B2,1 prediction changing trend with ρ
sweep from 0 to 3.

Theoretically, the value of ρ can be selected from any point where the ANN model

is performing an NMSE level below - 40 dB [12] for an accurate model. However,

knowing from Fig.5.13 and 5.14 that the accuracy of determined ANN model de-

creases when ρ gets bigger, simultaneously, performs identically to the CM with ρ
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approaching 0. In this specific case, ρ = 0.9 is selected to determine an accurate

ANN model, but also different from the CM. With the defined [HB], [HW2] and

[HW3]. (5.40) and (5.41) can now be solved to determine the associated [OW2] and

[OW3] matrices.

Then, the value of [CW ] and [OB] can all be calculated and listed as follows:

[
HW

]
=

HW2

HW3

 =



HW1,1 HW1,2

HW2,1 HW2,2

HW3,1 HW3,2

HW4,1 HW4,2

HW5,1 HW5,2

HW6,1 HW6,2

HW7,1 HW7,2



=



0.6364 0.6364

0 0.9

−0.6364 0.6364

0.7281 0.5290

0.2781 0.8560

−0.2781 0.8560

−0.7281 0.5290



(5.47)

[
OW

]
=

[
OW2 OW3

]

=

OW1,1 OW1,2 OW1,3 OW1,4 OW1,5 OW1,6 OW1,7

OW2,1 OW2,2 OW2,3 OW2,4 OW2,5 OW2,6 OW2,7


=

0.0581 0.6176 0.9579 0.0191 −0.1231 1.3936 0.3113

0.4517 −0.5826 0.7844 0.7317 −0.4842 0.5626 0.1400


(5.48)

CW1,1 CW1,2

CW2,1 CW2,2

 =

 0.4053 −1.9500

−0.0343 −1.2136

 (5.49)

OB1,1

OB2,1

 =

−0.1835
−0.2773

 (5.50)

Performing a feedforward process on the generated FCC ANN, with the weights and

biases listed above, results in a set of B2,1 data that can be compared with the B2,1
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data that is collected from the simulation, see Fig. 5.15.
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Figure 5.15: The B2,1 prediction from the determined FCC ANN (blue stars) and
the B2,1 acquired from the simulation with complete data complexity (red circles)
of the Wolfspeed device.

5.2.3 Repeated Analysis for DC Component

Modelling DC components is essential when developing design-relevant models since

it is related to device efficiency performance, which is one of the key factors to

expect as a design target. The B2,0 plotted in Fig. 5.16, which is the DC drain

current collected from ADS simulation, also has a spectrum complexity consistent

with the model order of 3. Therefore, 10 CM coefficients are extracted for the ANN

determination, listed in Table 5.2, for the same 7 hidden neuron structure as for the

B2,1.
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Figure 5.16: B2,0 sample (a) and its Fourier Transformed spectrum (b) with error bar
(red) on the trajectory computation, and the expected exponents’ |A2,1|m( ̸ A2,1)

n

values of the CM for extracting coefficients in (n,m).

Table 5.2: The Extracted CM Coefficients For B2,0 of the Wolfspeed device
M2,0,m,n

index r n m Real Imag.

1 0 0 0 0.0126 0
2 0 1 1 0.0115 0.0234
3 0 -1 1 0.0115 -0.0234
4 0 2 2 0.0104 -0.0127
5 1 0 2 -0.0487 0
6 0 -2 2 0.0104 0.0127
7 1 3 3 -0.0065 -0.0029
8 1 1 3 0.0226 0.0224
9 0 -1 3 0.0226 -0.0224
10 0 -3 3 -0.0065 0.0029

Here, ρ = 0.9 is still the selected case following the ρ sweep. Therefore, the value

of [HB] and [HW ] will stay the same as previously listed with the phase angles

determined in section 5.1.5. The calculated values of weights and biases (using

(5.51)-(5.53)) are listed below. Performing a feedforward process on the determined

ANN model, the predicted set of B2,0 data can be compared with the B2,0 data that
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is collected from the simulation, see Fig. 5.17.

[
OW

]
=

[
OW2 OW3

]

=

OW1,1 OW1,2 OW1,3 OW1,4 OW1,5 OW1,6 OW1,7

OW2,1 OW2,2 OW2,3 OW2,4 OW2,5 OW2,6 OW2,7


=

0.0084 0.1328 0.1711 −0.0985 0.0303 0.2010 0.1425

0 0 0 0 0 0 0


(5.51)

CW1,1 CW1,2

CW2,1 CW2,2

 =

0.3148 −0.4240
0 0

 (5.52)

OB1,1

OB2,1

 =

−0.1677
0

 (5.53)
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Figure 5.17: The B2,0 prediction from the determined FCC ANN (blue stars) and
the B2,0 acquired from the simulation with complete data complexity (red circles)
of the Wolfspeed device.

When considering the coefficients in Table 5.2, a clear pattern can be seen when the

coefficients are extracted as conjugated pairs. This will result in having the [Mi]
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matrices simplified in dimension because the sum of the imaginary parts is 0. In

this case, the imaginary part from the output of the FCC ANN does not have to

be hard-wired to 0 as when using the conventional ANN structure. The imaginary

part will be 0 directly after the calculation.

5.2.4 Power and Efficiency Contour Plots

With both B2,1 and B2,0, the prediction results for the output power and efficiency

contours are shown in Fig. 5.18 - 5.19. The NMSE calculated between the proposed

method (determined FCC ANN model) and the simulated dataset demonstrates

an NMSE error level lower than - 50 dB [12] for both of the output power and effi-

ciency contours. In this case, the proposed method for determining the FCC ANN

behavioural model structure using the CM coefficients is proven accurate.
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Figure 5.18: The predicted (blue) and simulated (black) output power comparison
of the Wolfspeed device.
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Figure 5.19: The predicted (blue) and simulated (black) efficiency contours compar-
ison of the Wolfspeed device.

5.3 Method Verification with Measurement

For verifying the method robustness with different RF devices, a high-density load-

pull measurement was set up for a WIN NP12 4×75 GaN on-wafer device at 20GHz,

biased with VDS = 15V , IDS = 30mA. In Fig. 5.20 - 5.21, the data is collected

with a constant input drive corresponding to 3 dB compression at the optimum load

for acquiring a dataset with higher complexity.

To allow the analysis in [16] with tailored datasets, an equivalent set of manually

calculated modulated stimulus signal A2,1 generated as a reference for choosing data

points from the measurement dataset, as shown in Fig. 5.21. To get a clean spectrum

plot with a noise floor lower than - 60 dB, the selected measurement A2,1 dataset,

needs to be a good match, at least within - 35 dB error level, to the ideal modulated

A2,1 dataset.
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Figure 5.20: Selected A2,1 samples (a) from the calculation (blue circles)and picked
from measurement (red dots) and its Fourier Transformed spectrum comparison (b,
calculated shown in red and measured shown in blue) on a trajectory computed
using 229 simulated points. of the WIN device measurement

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Real

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Im
ag

Selected Meas B21

(a)

10-6

10-4

10-2

100

-115 -96 -77 -58 -39 -20 -1 18 37 56 75 94 113

Meas B21 SPECTRUM(0,0)
(0,2)

(1,1)
(1,3)

(-1,1)
(-1,3)

(2,2)

(-2,2) (3,3)

(b)

Figure 5.21: B2,1 sample (a) and its Fourier Transformed spectrum (b) with -
60 dB error bar (red) on the trajectory computation, and the expected exponents’
|A2,1|m(̸ A2,1)

n values of the CM for extracting coefficients in (n,m) of the WIN
device measurement.

5.3.1 Model Determination

According to the response Fourier Transformed spectrum in Fig. 5.21, 9 pairs of

magnitude and phase-restricted terms exponents can be defined. The correlated

extracted coefficients are calculated and listed in Table 5.3. Based on the CM refor-

mulation (5.4), all the exponents’ pairs related coefficient components are required
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for a 3rd polynomial order case, because of the [Mo] matrices. When any of them

do not exist on the spectrum plot, the coefficient values will be set to 0.

Table 5.3: The Extracted CM Coefficients For B2,1 of the WIN device measurement

M2,1,m,n

index r n m Real Imag.

1 0 0 0 0.7589 0.7178
2 0 1 1 0.0010 -0.5840
3 0 -1 1 0.0599 -0.0622
4 0 2 2 0.0374 -0.0629
5 1 0 2 -0.1485 -0.1334
6 0 -2 2 -0.0098 0.0125
7 1 3 3 0.0021 -0.0319
8 1 1 3 0.0534 0.0152
9 0 -1 3 0.0130 0.1072
10 0 -3 3 0 0

The required analysis with the ρ sweep plan and the calculation is done. According

to the results shown in Fig. 5.22, ρ = 1.2 is selected in this case for good model

performance. The prediction results for the B2,1 are shown in Fig. 5.23.
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Figure 5.22: The FCC ANN performance for B2,1 prediction of the WIN device
changing trend with ρ sweep from 0 to 3.
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Figure 5.23: The B2,1 prediction of the WIN device from the determined FCC ANN
(blue stars) and the B2,1 acquired from the measurement with the analyzed data
complexity (red circles).

Repeating the same procedure for the DC component, B2,0, which is the drain cur-
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rent. As shown in the spectrum plot from Fig. 5.24, there are 3rd order terms

located close to the - 60 dB noise floor, highlighted in yellow, which could be poten-

tially picked. However, the experiment demonstrates that the FCC ANN models

determined without the 3rd order terms are accurate enough, performing an NMSE

level lower than - 40 dB. Here, with the 6 extracted CM coefficients listed in Ta-

ble 5.4, the FCC ANN model determined using the proposed method with 3 hidden

neurons in the hidden layer is providing B2,0 predictions as in Fig. 5.25.
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Figure 5.24: B2,0 sample (a) and its Fourier Transformed spectrum (b) with
- 60 dB error bar (red) on the trajectory computation, and the expected
exponents’|A2,1|m(̸ A2,1)

n values of the CM for extracting coefficients in (n,m).

Table 5.4: The Extracted CM Coefficients For B2,0 of the WIN device
M2,0,m,n

index r n m Real Imag.

1 0 0 0 0.0036 0
2 0 1 1 0.0096 0.0192
3 0 -1 1 0.0096 -0.0192
4 0 2 2 -0.0009 -0.0025
5 1 0 2 -0.0213 0
6 0 -2 2 -0.0009 0.0025
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Figure 5.25: The B2,0 prediction of the WIN device from the determined FCC ANN
(blue stars) and the B2,0 acquired from the measurement with the analyzed data
complexity (red circles).

With both B2,0 and B2,1, the prediction results for the output power and efficiency

contours for the WIN device are shown in Fig. 5.26 - 5.27. The NMSE calculated

between the proposed method (determined FCC ANN model) and the measured

dataset are both below - 40 dB [12] for the output power and efficiency contours.
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Figure 5.26: The predicted (blue) and measured (black) output power contours of
the WIN device.
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Figure 5.27: The predicted and measured efficiency contours of the WIN device.

5.3.2 Model Extrapolation Ability

While the range of A2,1 values is limited during measurement because of transistor

operation and measurement system limitations, much larger values of A2,1 corre-

sponding to loads covering the whole Smith Chart are possible during CAD opti-

misation. The extrapolation capability of both models therefore needs to be tested

using an appropriately expanded A2,1 range.

A set of A2,1 is manually generated, with a maximised coverage surrounding the

measured A2,1 dataset in circles for model extrapolation ability investigation. The

corresponding output power and efficiency contours are shown in Fig. 5.28 - 5.29.

The problem regions, shown with the prediction results provided by the original CM

coefficients, are zoomed in and highlighted with annotations to identify erroneous

behaviours.

The results in erroneous performance predictions can be better visualised in

Fig. 5.30. The raised features and erroneous predictions, provided by the original
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CM coefficients used for determining the ANN structure, are not presented in the

results offered by the proposed method-determined ANN model.
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Figure 5.28: Comparison of CM (red) and ANN (blue) modelling of the output
power contours of the WIN device.
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Figure 5.29: Comparison of CM (red) and ANN (blue) modelling of the efficiency
contours of the WIN device.
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Figure 5.30: Modeled efficiency vs. output power for the WIN device models, in-
cluding the extrapolation region. CM (red circles) and ANN (blue line).

5.4 Discussion

The method developed has proven robust enough to determine both an appropriate

FCC ANN model structure and the determined set of ANN model parameters,

weights and bias values, using both simulated and measured transistor load-pull

datasets. Several significant observations need to be discussed.

When determining the ANN structure through the established equations based on

the extracted CM coefficient matrices’ dimension, alternatively, a pseudo-inverse can

also be applied to the calculation process. In this case, a square matrix is no longer

required for the matrix calculation, hence, the required number of hidden neurons

in the determined structure could be potentially reduced without compromising the

model accuracy.

The phase angle selection, mentioned in the [HW ] dimension analysis and deter-

mining section, highlights multiple valid, non-singular solutions that can be applied

to the matrices since the correlated magnitude term ‘ρ’ and phase angles ‘θ’ can be
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varied. When varying the phase angles ‘θ’ over 0◦ − 360◦, there can be multiple

(repeating) solutions of the [HW ] matrix which can all provide an invalid, singu-

lar matrix condition. Hence, multiple determination options can be possible for

the ANN model parameters to enable an accurate model performance. All these

solutions can provide similar model performance.

Consider now in this chapter, the selection of ‘ρ’, which defines tanh function oper-

ational range of the ANN hidden nodes and the accuracy of the determined ANN

model, is selected with sweep plans. This can be further investigated for a method

for optimal selection. Besides, although there is no ANN training process presented

in this work, there is a potential that varying the value of ρ can have an impact on

the training if required.

5.5 Conclusion

In this chapter, a novel method, based on the CM, that determines the structure of

a FCC ANN model is introduced. The proposed method is proven appropriate for

non-linear transistor modelling. In addition, a method for determining the values

of the ANN model parameters, values of the required weights and biases, from

the coefficients of the CM extracted by analysing tailored load-pull measurement

datasets has been formulated.

With the dataset collected from the Wolfspeed GaN device load-pull simulation in

ADS, the method has produced an accurate ANN model with an error level lower

than - 50 dB. For the WIN GaN device measurement dataset, the proposed method

also produces an accurate ANN model with an error level lower than - 40 dB.

In addition, under a practical load-pull measurement scenario, the verification

demonstrates that the coefficients of the CM extracted by analysing tailored

load-pull measurement datasets do not always guarantee a reasonable extrapolation
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ability. The extrapolation ability of ANN models determined with the proposed

methods is proven more robust on extrapolation prediction than that of the

extracted CM coefficients.
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Chapter 6

Summary and Future Work

The results shown in Chapters 3-5 demonstrated that the proposed methods for

extracting/determining behavioural models for RF devices, the invented Artificial

Neural Network (ANN) based Cardiff Model (CM) coefficient extractor, the estab-

lished equations allow the Fully Connected Cascaded (FCC) ANN model structure

and values of weights and biases, are all verified to have reasonable extrapolation

predicting ability while maintaining the interpolation prediction accuracy, in the

meantime, proven robust enough with different device responses.

A behavioural model with reasonable extrapolation ability creates the opportunity

for breaking away from the limitation of model extraction with practical load-pull

measurements. This enables much larger operational coverage on the Smith Chart

when utilising behavioural models during CAD optimisation for RF design tasks

with a limited set of practical measurement data. Hence, a more efficient modelling

procedure, which attains the objective of this work.
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6.1 Summary

Specific problems investigated for model extrapolation ability have been solved by

proposing targeted methods.

It is investigated in Chapter 3 that an overdetermined CM will potentially bring er-

roneous extrapolation predictions, in a practical scenario when the tailored datasets

for determining a proper model to extract the CM are not available. In the mean-

time, the conventional A-B wave-based FCC ANN is proven possible to provide a

more reasonable extrapolation prediction than that of the CM, with proper configu-

ration. Since it is illustrated that the CM requires less runtime to be processed in a

CAD environment. The ANN based CM coefficient extractor is invented in Chapter

4 to address the high user-defined CM order extrapolation issue.

The invention in Chapter 4 relies on modifying the conventional Levenberg-

Marquardt (LM) backpropagation training algorithm. The modification is done on

the error calculation condition statement of the LM algorithm. with a combination

of the A-B wave-based ANN model and the modified LM algorithm, the ANN based

CM coefficient extractor is invented. It allows the coefficients to be extracted with

a high user-defined order CM to obtain high interpolation accuracy and reasonable

extrapolation ability.

The challenge for practically utilising the invented high order CM coefficient extrac-

tor is captured from Chapter 4. The invented ANN based CM coefficient extractor,

which allows reasonable extrapolation ability, contains a ’random’ model determi-

nation of the conventional A-B wave based ANN behavioural model configuration.

The structure and the internal parameters of the ANN are selected relying on sweep

plans based on experiences. To escape from falling into traps when searching for

a proper ANN model, a set of equations is established for using the extracted CM

coefficients to determine an ANN configuration properly in Chapter 5.
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The proposed methods in Chapter 5 with the established equations permit A-B

wave-based ANN models to be determined with physics-based theory. By expanding

the CM and the ANN implementing formulation with the Taylor series expansion

theory, it is observed that the two models share similar polynomial structures that

can be compared. The set of equations is established in the process of rearranging

and equalising the CM and the ANN formulation. It is verified that ANN structure

determined by the required matrices dimension of the established equations, and

the ANN weights and biases values calculated from the CM coefficients enable ANN

models to be accurate for interpolation and reasonable for extrapolation without

the backpropagation training process.

6.2 Future Work

The proposed methods in this work have fulfilled the aim to a degree that allows the

CM or the ANN behavioural model to be more robust compared to their conventional

extraction process when utilised in a CAD environment. However, future work still

calls for development based on the current progress. Further exploration can be

suggested to focus on optimisation, or application range expansion of the proposed

methods in this work.

If prioritising the proposed methods’ further optimisation perspective, it is illus-

trated in the discussion section of Chapter 5, where there are remaining significant

investigations for the ANN determination process:

The calculation process of the established equations in Chapter 5, allows the ANN

structure to be determined from the reformulated CM coefficient matrices with di-

mension based on the analysed polynomial order. Experiments have been imple-

mented in MATLAB, which presented that pseudo-inverse for matrices calculation

enables a reduction of hidden neuron numbers for the determined ANN structure.

Moving on to the hidden weights determining process, the correlated magnitude
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parameter allows flexible activation function operational range selection; phase pa-

rameters yield multiple possible solutions for an accurate ANN to be configured

through the established equations. All three parameters indicate that the ANN

determination through the CM can be further optimised.

According to the experiments done for the conventional A-B wave-based ANN struc-

ture in Chapter 3, when multiple solutions for an accurate ANN model appear, the

extrapolation ability presented can be different from one solution to another, even

the interpolation accuracy is at a similar level. Now in this work, the performance

of extrapolation predictions is not fully analysed with all the possible optimised

solutions. The selected approach follows the results offered by sweep plans for en-

suring the determined ANN models are neither identical nor entirely different to

the extracted CM. Further study can be developed on the relationship between the

magnitude and phase parameters to the extrapolation ability of the hidden neu-

ron number minimised ANN models determined from extracted CMs among all the

possible solutions.

It is noteworthy to mention that the tailored datasets for nonlinearity analysis on de-

termining a proper model to extract the CM are not always available with practical

load-pull measurement systems. However, to ensure the reasonable extrapolation

ability for the CM determined ANN in Chapter 5, the tailored datasets are still

utilised to properly define the required model order based on specific data com-

plexity. Although it is mentioned that the ANN structure can be simplified, hence,

speeding up the ANN model processing time when implemented in a CAD environ-

ment. Also, an alternative method is introduced, for acquiring a tailored dataset

from practical load-pull measurements by processing high-density datasets. It can be

expensive to achieve based on the fact that a high-density load-pull highly depends

on the precision of the measurement setup. A trade-off between the ANN training

time and the high-density load-pull measurement cost may need to be taken into

consideration when selecting from the proposed methods.
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Verification experiments done to prove the accuracy, extrapolation ability and ro-

bustness of the proposed methods in this work were based on fundamental load-pull

measurements. To further expand the application range of the proposed methods,

datasets that contain harmonic effects should be studied. Theoretically, the pro-

posed methods should be expandable for higher levels of nonlinearity/system com-

plexity, since the provided formulations are all generalised, and the theory based on

the conventional CM and ANN are both proven valid across harmonics. Verification

with harmonic measurements can then further convince the proposed methods in

this work for practical utilisation in RF-related tasks.
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