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Abstract

Robotic manipulation of volumetric elastoplastic deformable materials, from foods such as dough to construction materials
like clay, is in its infancy, largely due to the difficulty of modelling and perception in a high-dimensional space. Simulating
the dynamics of such materials is computationally expensive. It tends to suffer from inaccurately estimated physics
parameters of the materials and the environment, impeding high-precision manipulation. Estimating such parameters from
raw point clouds captured by optical cameras suffers further from heavy occlusions. To address this challenge, this work
introduces a novel Differentiable Physics-based System Identification (DPSI) framework’ that enables a robot arm to infer
the physics parameters of elastoplastic materials and the environment using simple manipulation motions and incomplete
3D point clouds, aligning the simulation with the real world. Extensive experiments show that with only a single real-world
interaction, the estimated parameters, Young's modulus, Poisson’s ratio, yield stress and friction coefficients, can ac-
curately simulate visually and physically realistic deformation behaviours induced by unseen and long-horizon ma-
nipulation motions. Additionally, the DPSI framework inherently provides physically intuitive interpretations for the
parameters in contrast to black-box approaches such as deep neural networks.
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1. Introduction using well-defined equations of motion and deterministic
models (Featherstone, 2014), deformable materials do
not follow such straightforward patterns. Directly ap-
plying these methods is problematic because it is ex-
tremely difficult and often infeasible to accurately model
and perceive real-world elastoplastic materials and
measure the underlying physics parameters that govern
their motions and deformations (Arriola-Rios et al., 2020;
Yin et al., 2021). Additional challenges such as time-
varying material properties (saturation, dryness, etc.)
make the deformation dynamics even more unpredict-
able. As a result, achieving high-precision manipulation
for such materials with motion planning or data-driven

Despite the recognised importance of robotic manipulation
of deformable materials, this topic remains underexplored,
particularly when it comes to high-precision manipulation
of volumetric elastoplastic materials. A primary challenge
in this area arises from the materials’ infinite degrees of
freedom (DoFs), leading to highly unpredictable defor-
mation dynamics.

The intrinsic complexity of these dynamics inhibits the
direct application of conventional robotic motion plan-
ning methods, which typically require explicit physics
models for all concerned objects (Latombe, 2012).
Learning approaches, such as reinforcement learning
(RL), often involve training an agent to learn to interpret
its perception and take actions through inefficient trial & 154001 of Engineering, Cardiff University, Cardiff, UK
error in a realistic physiCS-based simulation (COllinS 2School of Computer Science and Informatics, Cardiff University, Cardiff,
et al., 2021; Kroemer et al., 2021), which is both chal- UK
lenging and largely unavailable when it comes to de- .
formable materials. Corresponding author: v .

. L L Ze Ji, School of Engineering, Cardiff University, Queen’s Buildings, 14-

In contrast to the well-studied rigid body dynamics in 17 The parade, Cardiff CF24 3AA, UK.
robotics, where motions can be predicted and controlled Email: jizl @cardiff.ac.uk



https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649251334661
https://journals.sagepub.com/home/ijr
https://orcid.org/0000-0002-7612-614X
mailto:jiz1@cardiff.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1177%2F02783649251334661&domain=pdf&date_stamp=2025-05-09

The International Journal of Robotics Research 0(0)

techniques is challenging due to the high computational
cost and the lack of techniques to capture the dynamics
accurately and efficiently.

To close this gap, this research proposes a Differentiable
Physics-based System Identification (DPSI) framework for
the robotic manipulation of volumetric elastoplastic mate-
rials. Our framework can efficiently estimate key physics
parameters governing material deformation dynamics using
minimal and simple manipulation motions (in less than
5 min with a good initial guess). The estimated physics
parameters enable accurate material simulation for long-
horizon predictions of real-world elastoplastic deformation
behaviours.

The workflow of the proposed DPSI framework can be
summarised as follows. As shown in Figure 1, a robot
equipped with an in-hand 3D camera (Zivid) and three end-
effectors is deployed to manipulate the elastoplastic object
(e.g., play dough). Before manipulation, the robot takes
multi-view point clouds of the object to minimise occlu-
sions. These point clouds are used to create the initial
particle system for the material point methods (MPM)-
based simulation. The robot then performs a manipula-
tion motion on the object and captures point clouds of the
deformed state. Physics simulations of the same manipu-
lation are run with the same initial state and motion, whose
resultant particle states are compared to the real-world
deformed state through variants of the Chamfer distance
(CD) and the earth mover’s distance (EMD) loss. The
parameters of the simulated physics models are updated
after every simulation to minimise the loss. To facilitate fast
optimisation, we use a differentiable simulator built on the
TaiChi auto-differentiation mechanism, which allows au-
tomatic gradient computation from the losses and gradient-
based optimisation for the physics parameters (Hu et al.,
2019, 2020).

Real-world manipulation system

Our approach achieves unprecedented simulation-to-real
alignment accuracy, characterised by the integration of the
following novel features.

1.1. High-fidelity physics

Unlike previous methods that either employ non-physics-
based models (e.g., neural networks) or highly simplified
material geometry representations (e.g., sparse keypoints),
we use high-fidelity physics-based simulation powered by
the MPM (Jiang et al., 2016), which simulates materials as
Lagrangian particles and keeps track of their positions and
velocities. It achieves faster simulation by computing the
motions, deformation gradients, and frictional contacts on a
background Eulerian grid (Gao et al., 2017; Hu et al., 2018;
Jiang et al., 2016; Stomakhin et al., 2013). MPM-based
simulations provide highly efficient and realistic simulation
with high physical plausibility by closely following real-
world physics laws such as Newton’s laws and elastic and
plastic energy conservation models.

1.2. Incomplete and noisy observations

Unlike existing works that rely on synthetic videos with
complete sequences of perfect observations (Kaneko, 2024;
Lietal., 2023; Murthy et al., 2020), our framework uses 3D
point clouds to observe real-world object geometries.
Capturing the full depth of an object during manipulation is
impractical due to occlusions caused by the end-effector or
environment. This means that only the point clouds before
and after a manipulation motion are practical to obtain and
informative enough to observe the full geometry of the
deformed object in real-world experiments. In addition,
real-world point clouds tend to suffer from inaccurately
estimated camera matrices and sensory noises.

Motion planning, differentiable trajectory optimisation, manipulation policy learning
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Figure 1. The proposed system identification framework enables a robot to interact with elastoplastic material via simple manipulation
motions (orange box) and then identify the physics parameters of the real-world manipulation dynamics. The parameters are found
using gradients computed, through differentiable simulation, from a differentiable point-cloud-based similarity function between the real
and simulated observations of the manipulated material (blue and red boxes). These parameters then enable accurate simulations that
allow the real-world grounding of motion planning, trajectory optimisation or policy learning techniques (cyan box).
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1.3. Small data, short and simple motions

Using extensive and diverse manipulation motions to col-
lect real-world deformation data is time-consuming and
costly. Existing studies demand a significant number of real-
world interactions or complete sequences of simulation
videos to identify object deformations under various mo-
tions, yet still resulting in simulations with insufficient
accuracy for real-world applications (Kaneko, 2024; Li
et al., 2023; Lin et al., 2022; Shi et al., 2023). Our goal
is to recover physics parameters that enable accurate pre-
dictions of long-horizon, unseen and complicated elasto-
plastic material manipulation dynamics, using minimal
simple and short real-world interactions.

1.4. Joint parameter estimation

We aim to jointly estimate the physics parameters provided
by physics models. Besides Newton’s laws, we employ the
fixed corotated elastic energy model (Stomakhin et al.,
2012), the von Mises plasticity model (Jones, 2009) and
the dynamic friction model in our simulation. These lead to
six key parameters: Young’s modulus £, Poisson’s ratio v,
yield stress o), material density p and the friction coeffi-
cients of the table 7, and end-effectors #,, (assuming the
three end-effectors share the same coefficient). The first four
parameters primarily govern the deformation responses,
while the last two handle frictional contacts. These pa-
rameters are heavily intertwined in governing the behav-
iours of the manipulated object and there is no intuitive
solution to identify one of them without estimating the
effects of other parameters. Therefore, we seek to identify
these parameters simultaneously.

1.5. Differentiable physics

Identifying the physics parameters in their discretised
spaces via search or evolutionary algorithms is computa-
tionally slow due to the exponentially growing number of
possible combinations as the discretisation becomes finer.
While gradient-based optimisation methods offer faster
convergence toward the minimum, it is infeasible with most
physics simulations because many computation steps are not
differentiable and these simulators do not support derivative
computations. In this work, we explore the feasibility of
optimising system parameters using gradients computed by
differentiating loss functions through a physics simulator
written by DiffTaiChi, a programming language tailored for
GPU-accelerated parallel computation and automatic dif-
ferentiation (Hu et al., 2019, 2020). DiffTaichi generates
derivative functions for simulation steps via source code
transformation that retains arithmetic intensity and parallel-
ism. It uses a memory-efficient tape to record the order of
computation kernels for forward simulation and traverses
their derivative functions in the backward order to generate
gradients through the computation graph. We build DPSI
upon DiffTaiChi and explore the feasibility of directly

optimising several physics parameters jointly with gradients
computed by differentiating point-cloud-based loss functions
through the high-fidelity physics simulator.

Substantial experiments demonstrate that our main
contribution, DPSI, can achieve highly accurate simulation-
to-reality alignment for elastoplastic materials manipulated
by unseen, long horizon and complex motions using minimal
simple and short interactions, and noisy and incomplete
observations. Results show that when multiple solutions and
parameter uncertainty exist, DPSI can provide physically
intuitive parameter interpretations that can guide further
system identification, model improvement, and motion ad-
aptation. Statistics on the computation costs also indicate
promising practical deployment of the DPSI framework.

The rest of the article reviews related literature, presents
formally our method and experiment results, and discusses
limitations and future directions.

2. Related work

2.1. Deformable object manipulation

Both model-free and model-based approaches have been
taken for manipulating deformable materials. Existing
model-free methods often lack manipulation precision due
to the absence of physics laws that describe the motion and
deformation under complex contacts (Cherubini et al.,
2020; McConachie et al., 2020; Shen et al., 2024; Shi
et al., 2023, 2024). Physics-model-based methods, while
more accurate, struggle with aligning the simulated dy-
namics with the real world and often rely on simplified
geometric representations for higher computational effi-
ciency, sacrificing manipulation precision (Navarro-
Alarcon et al., 2016; Shetab-Bushehri et al., 2023; Yang
et al., 2023). With or without a model, many of them use
simulations that offer a cost-effective way to test manipu-
lation methods and allow the collection of massive data for
learning-based approaches (Arriola-Rios et al.,, 2020;
Collins et al., 2021; Yin et al., 2021). However, inaccurate
dynamics predictions and control precision are unaccept-
able for many tasks such as surgery, assembly and disas-
sembly. Therefore, akin to the way humans efficiently learn
about object and environment physics properties, this work
proposes to actively identify system parameters that enable
high-precision simulation of real-world manipulation dy-
namics for volumetric elastoplastic objects.

2.2. Deformable object modelling

Simulators are essential for advancing robotic manipulation,
providing a fast, low-cost alternative to real-world testing
(Collins et al., 2021; Featherstone, 2014). In recent years,
arguably the most efficient and accurate simulation for 3D
deformable objects is achieved by the material point method
(MPM) (Jiang et al., 2016). Like most well-known methods
for simulating continuum matter, such as position-based
dynamics (PBD) and smoothed particle hydrodynamics
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(SPH) (Yin et al., 2021), MPM represents the object as
Lagrangian particles and keeps track of their positions and
velocities. Unlike pure Lagrangian methods, MPM achieves
faster simulation by computing the motions, deformation
gradients, and frictional contacts on a background Eulerian
grid (akin to the finite element method), governed by elastic
and plastic energy functions and Newton’s laws in the form
of partial differential equations (Gao et al., 2017; Hu et al.,
2018; Jiang et al., 2016; Stomakhin et al., 2013). MPM has
been proven superior to other methods in terms of efficiency
and visual effects for objects that undergo large deforma-
tions, fractures, and self-collision (Hu et al., 2018). Despite
its advantages, accurately identifying physics parameters
for real-world robotic manipulation of elastoplastic objects
remains an open challenge.

2.3. Deformable object system identification

Unlike rigid bodies (Chen et al., 2022; Heiden et al., 2022;
Jaques et al., 2022), identifying the physics properties of
deformable objects is more complex than for rigid bodies,
primarily due to the difficulty in measuring key parameters
like material properties and friction coefficients (Arriola-
Rios et al., 2020; Yin et al., 2021). Previous research has
mostly focused on linear and planar deformable objects,
such as ropes and cloths (Caporali et al., 2024; Sundaresan
et al., 2022; Yang et al., 2022).

Early works that sought to identify 3D volumetric
material properties have much simpler assumptions and
scenarios. For instance, one of the earlier works uses
gradient-based optimisation to retrieve the stiffness of a
spring system representing elastic deformable objects
(Lloyd et al., 2007), while another work uses an exhaustive

search method to find the value of Poisson’s ratio for an
elastic form object (Giiler et al., 2017). They focus on single
parameter identification for volumetric elastic deformable
objects with reduced Dofs that under-represent the geom-
etries and deformation behaviours of real-life objects.
Recent efforts like GradSim (Murthy et al., 2020) have
used differentiable physics and rendering to identify five
parameters for elastic objects with much higher DoFs from
single-view simulation videos, demonstrating the feasibility of
differentiable system identification with synthetic videos. Two
following works, PAC-NeRF (Li et al., 2023) and LPO
(Kaneko, 2024) propose to jointly reconstruct object geom-
etries (shapes, positions and colours) and physical properties
by using a voxel neural radiance field (Sun et al., 2022) that
performs differentiable rendering and allows gradients to be
back-propagated from the image space to the Eulerian grid.
Compared to these works that focused on simulations,
our study tackles the more challenging task of system
identification for real-world objects through robot interac-
tions. Similarly, we also employ the material point method
(Hu et al., 2018) and DiffTaiChi (Hu et al., 2020) for
differentiable physics simulation and study the system
identification task without known object geometries.
However, we aim to align simulations with real-world
dynamics with minimal robot interactions, using only in-
complete, occluded, and noisy point cloud data.

3. Method

3.1. Overview

The proposed differentiable physics-based system identi-
fication (DPSI) framework, as shown in Figure 2, can be
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Figure 2. The overall workflow of the proposed differential physics-based system identification (DPSI) framework. Modules in each
colour are elaborated in individual subsections of the Method section. Green: differentiable dynamics modelling and the physics
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divided into the following modules: differentiable dynamics
modelling, real-to-sim object and trajectory reconstruction
and the loss functions. This section starts with a formal
problem description and elaborates on each of these
modules.

3.2. Problem statement

We define the physics parameter identification problem for
real-world deformable materials as follows. Denote A’/
and X% as the observations of a deformable object before
and after a manipulation trajectory 7"*“ of time duration T'is
applied, denote 86“” as the observation of the real-world
end-effector before the manipulation, the stochastic real-
world forward dynamics can be written as follows:

real real real | yreal gpreal _real Qreal
X~ (XX, 07, T, S

where @““ is the set of real-world parameters that
govern the behaviours of the dynamical process. As it is
unlikely to obtain p™* and @°* explicitly, we use an
approximate, deterministic and differentiable dynamics
model, /* to simulate such a dynamical process,
written as follows:

sim __ psim rec sim _rec rec
XY = (A, 8, T, SY)

where 6" is the set of adjustable parameters that govern the
behaviours of the simulated deformation and contact pro-
cess, X is the reconstructed initial observation of the real
object, X3™ is the resultant observation of the reconstructed
object after manipulated by the reconstructed motion 7"
and Sy is the initial observation of the simulated end-
effector. In our work, we assume the end-effectors are rigid
bodies, meaning the observations of the real or simulated
end-effectors are coordinates of their frames relative to the
world frame, that is, S € R?, which can be readily retrieved
from the robot platform or simulator. As we are interested in
point cloud observations from the real world and particles in
the simulation, all object observations will be 3D point sets,
that is, X € RV*3 where N is the number of points or
particles.

With these notations, the optimisation problem could be
formulated as the minimisation of some distance function
between the real-world and simulated observations after
manipulation. As the parameters are optimised with a
dataset of interaction experiences with the real objects, D,
the minimisation problem can be written as follows:

1 i
min - d (Xreal’ Asim ) ( 1 )
om |D| ED: r r

The rest of this section will discuss the differentiable
simulation dynamics /*”", the reconstructed object state,
X", the reconstructed end-effector trajectory, 7, and the
loss functions, d(A7<!, A5m).

3.3. Differentiable dynamics modelling

3.3.1. Material point method (MPM). This work employs
the mean-least-square material point method (MLS-MPM)
to simulate the deformable object manipulation dynamics.
MPM is a meshless, hybrid computation scheme that en-
ables efficient computation and preserves high physical
fidelity for various materials, especially for elastoplastic
materials that undergo large deformation, while the MLS-
MPM arises from a novel weak form discretisation of the
conservation equations and replaces the shape functions in
the force computation with MLS approximators, leading to
faster and more realistic simulation of sharp separation of
particles and two-way coupling with rigid objects that
traditional MPM cannot simulate.

We modified the standard procedures in one simulation
step of the MLS-MPM as shown below to incorporate end-
effector control following Xian et al. (2023). The readers are
referred to the original paper for more details about MPM
(Stomakhin et al., 2013) and MLS-MPM (Hu et al., 2018).

1. Compute particle deformation gradient using the MLS
approximation equation.

2. Applied plasticity to recompute deformation gradients
and particle stress using the elastic energy model

3. Particle to grid. Use the affine particle-in-cell transform
(Jiang et al., 2015) to transfer the velocities and masses
of the Lagrangian particles to the background Eulerian
grid nodes. In our implementation, we assume equal
volume and mass for the particles.

4. Update end-effector positions given control inputs.

5. Compute grid node momenta and velocities with
gravity applied.

6. Signed-distance field (SDF)-based collision detection
with rigid objects (end-effector and boundaries) and
frictional contact computation.

7. Grid to particle. Use the affine particle-in-cell transform
to transfer the velocities and affine coefficients from the
grid nodes to the particles. Perform SDF-based collision
detection and frictional contact computation again to
minimise particle penetration.

8. Update particle positions with the new velocities.

3.3.2. Elastoplasticity. We assume strain elastoplasticity for
the studied objects, meaning that the strain-stress rela-
tionship of the material is described using the deformation
gradient that can be decomposed into elastic and plastic
parts, F = FZF?, and the first Piola—Kirchoff stress, P, as P =
OW/OF®, where W(FF) is the elastic energy density function.
In this study, we use the fixed corotated model (Stomakhin
et al., 2012) as the energy function for its robustness under
large deformation, although other constitutive models may
be used for different needs. The fixed corotated elastic
energy density function is

A
P(FY) =l —R7[+ 205 =1 @)
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where J© = det(F%), and 1 and u are the Lamé parameters,
such that
E

Ev
SN v

where E is Young’s modulus and v is Poisson’s ratio. Thus,
the stress can be calculated as
oY

P=_— = 2u(Ff — RE)(FE)" +A(JF — 1)JE

F ®)

where R” is the rotation matrix that comes from the polar
decomposition of the deformation gradient, F* = RS,
where S” is a symmetric matrix. In practice, they are
computed from the singular value decomposition of F as
FF = UPEE(VE)T = UF(VE) ' VEEE(VE)T and then RF =
UE(VE) and S = VEZE(VE) (Baker, 2005).

For the n-th simulation step, we compute a trial elastic

deformation gradient, F&”. If no plastic deformation ap-
. _ . =E,
pears, meaning F™" = ™"~ then we assign F&-" = F .
However, if the yield criterion is violated, F " needs to be
modified according to the plasticity model. This process of

modifying IEE’n is called the return mapping process, which
determines how the object would respond plastically.

In this work, we follow Gao et al. (2017) to use the von
Mises model (Jones, 2009) to compute the return mapping,
which takes on the associative plastic flow assumption. The
projection process of the trial stress outside of the yield
region can be described e — ghn

succinctly as €
- - ~ ~E,
= ySE’n/HSE’nH, where eE’":log<F n) and €& =

log(F5™) are the trial and modified Hencky strains, 3" =
~E,n

e&" — w(€")/3 1 is the trial deviatoric stress, and
3,57" /|IF""|| is the modifying term based on the solution
given in Gao et al. (2017). In particular, based on the von
Mises yield criterion, /3J, — 6, <0, where o, is the yield
stress and J, is the second deviatoric stress invariant, it was
derived that , = |[§*"|| — 6,/2u. With the fact that the
singular vectors of the trial elastic deformation gradient do
not change, the return mapping operation is done on the
eigenvalues of the trial Hencky stress, thus on the eigenvalues
of the trial elastic deformation gradient. Then, we can obtain
the result of the return mapping by taking the exponential of

the modified deviatoric stress: $E" = ¢ and then the

modified deformation gradient: F&" = U £ (VE ",

Note that the Hencky strain formation is only used in
plastic response computation. At each simulation step, we
compute the trial deformation gradient using the MLS
approximation equation, apply plastic response, and then
compute the new stress with equation (5).

3.3.3. Frictional contacts. Collision detection is done by
checking the distance of the particles to the surface of the

rigid objects using pre-computed signed distance fields
(SDFs). For each rigid object (table, and three end-effectors
in our case), we employ the procedure described in Park
et al. (2019) to generate SDFs for watertight meshes. We
assume that the frictional contacts only happen in two cases:
between the particles and the table, or between the particles
and the end-effector. We also assume uniform friction co-
efficient distribution over the contact surface of the table and
the end-effectors. When a particle or grid node and an object
are in contact, we follow Stomakhin et al. (2013) to de-
termine the velocity of the particle and grid nodes using
dynamic friction with sticky impulse.

Specifically, for each particle, we calculate the local
normal 7’ and the velocity Vop; Of the rigid object at the
particle position. Then, we project the particle velocity v
into the object reference frame to have v,,; = v — v, No
collision is applied if the particle is separating from the
object, that is, v, = v, - 7 >0. Define the tangential por-
tion of the relative particle velocity as v, = v, — 7v,. For
sticky impulse, we set the relative particle velocity v, after
the collision to 0 if ||v,| < —uv,, where u is the friction
coefficient. If the sticky impulse is overcome, dynamics
friction is applied, such that v/, = v,(1 + uv,/||v/||). After
the collision, the new particle velocity in the world frame is
calculated as v =V, + v,y We represent the friction
coefficients for the table and the manipulators separately as
Hy and Hom-

3.3.4. Differentiable programming. Several programming
tools are available for creating differentiable simulations,
such as PyTorch (Arnavaz et al., 2023; Sundaresan et al.,
2022), DiffTaiChi (Hu et al., 2020), Jax (Schoenholz and
Cubuk, 2020) and neural-network-based simulators
(Heiden et al., 2021). We build our simulator based on
DiffTaiChi due to its automated differentiation mechanism,
GPU-accelerated parallel computation, fast computation
kernel evaluation, intuitive Python APIs, rich community
support and various promising applications (Huang et al.,
2021; Lin et al., 2022; Xian et al., 2023).

In particular, for each numerical computation step,
DiffTaiChi flattens its computation branches (e.g., boundary
and collisions) and replaces mutable local variables with
extra local storage variables, producing straight-line codes
without mutable variables. It then uses standard source code
transform to generate the derivative function based on the
adjoint method. To compute gradients with a loss function,
DiffTaiChi records the order of computation kernels and the
scalar variables in the forward simulation direction, and
then it computes the gradients for the concerned variables
by evaluating the derivative functions in the reversed
simulation direction (Hu et al., 2020). We build a simulator
based on this programming language to allow automatic
gradient computation for the physics parameters.

In summary, the elastic and plastic models describe the
deformation behaviours of the object using Young’s mod-
ulus £, Poisson’s ratio v and yield stress o,, the computation
of the particle and grid velocities will involve another
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parameter, the object density p, and the frictional contact
processes are controlled by respective friction coefficients:
table friction coefficient ¢, and manipulator friction coef-
ficient y,,. We optimise these six parameters to align the
simulation to the real-world dynamics.

3.4. Real-to-sim object reconstruction

3.4.1. Real-world platform. To collect real-world data, we
set up a deformable object manipulation system where a
Kuka ITWA LBR 14 industrial arm (Kuka, 2024) is
equipped with a Zivid One + medium camera (Zivid, 2024)
for perceiving the object, and one of the three end-effectors,
namely a rectangular cuboid, a cylinder roller and a bullet-
shaped object for collecting interaction experiences with
different contact geometries, as shown at the bottom-left of
Figure 1. We use plasticine (non-hardening modelling clay)
as the main material for our experiments and cloud slime
and soil for generalisation experiments. The clay and cloud
slime are purchased from Amazon.”

3.4.2. Real-world perception. We create a multi-view
point-cloud capture and fusion process to obtain the real-
world observation of the deformable object X’ 6"“’ and & ’Teal.
In particular, for each object state, the robot arm moves to
six poses around the object for the camera to take a point
cloud of the scene. The point clouds are fused and then
cropped to contain only the points of the object.

These observations are noisy and incomplete in three
senses. Firstly, due to camera calibration error, the fusion
result always exhibits a ~+3 mm discrepancy. Secondly, due
to joint limits, the robot arm cannot reach poses that allow
the camera to capture the bottom part of the object. To
simplify the problem, we assume that the angle between the
object boundary and the table surface is equal to or greater
than 90°, which allows the camera to capture as much as
possible the bottom part of the object. We then project all
points to its bottom to form a closed surface. Note that the
initial configuration of the object can be manually shaped to
satisfy this assumption of contact angle but the end con-
figuration of the object after being manipulated is out of
manual control, which tends to have more occlusions.
Lastly, we only take the observations before and after ap-
plying the manipulation motions, without providing the
intermediate observations during the manipulation, because
it is impractical to do so when too much occlusion occurs
during manipulation.

3.4.3. Reconstruction pipeline. To simulate the object as a
set of particles, we design a pipeline to reconstruct the object
particle system X" from the given fusion point cloud, as
shown by the orange boxes in Figure 2. Firstly, we down-
sample the processed fusion point cloud and create a wa-
tertight mesh using the ball-pivoting (BP) algorithm
(Bernardini et al., 1999). The artificial bottom surface points
prevent the BP algorithm from creating a non-flat bottom
mesh surface. To sample particles, we create a set of voxels

that fill in the reconstructed mesh surface uniformly given a
resolution (1080 x 1080). Lastly, we fill particles into the
voxels with a given density (4 x 10° particles/m’). We
assume that the particles are uniformly distributed within
the mesh.

For the end-effectors, we assume they are rigid bodies. In
simulation, we keep track of the coordinate of its frame and
a pre-computed SDF for collision detection.

3.5. Real-to-sim trajectory reconstruction

3.5.1. Manipulation motions. As we are interested in re-
covering real-world dynamics with small data and short,
simple motions, we design experiments in two contact
complexity levels, for which we create two poking motions
and two poking-shifting motions for optimisation and in-
distribution validation, and three longer motions for out-of-
distribution validation. These motions are summarised in
Table 1 in terms of consecutive trajectory segments in the
world frame.

The first contact level focuses on identifying the pa-
rameters that primarily govern the deformation of the object
(Young’s modulus, Poisson’s ratio, yield stress and material
density) using two poking motions, which press the object
down by a certain distance. The second level further in-
cludes the friction coefficients, using two poking-shifting
motions, which press down the object and make horizontal
shifting movements. For out-of-distribution validation,
three longer motions with more drastic contact processes are
created. Each motion uses a different end-effector. The
triple-poking motion is designed for the round end-effector
to validate the long-term deformation prediction with small
fraction influences. The flattening motion is designed to
validate the long-term deformation and frictional contact
prediction under large linear movements, using the cylinder
end-effector. The pressing-180-rotating motion is designed
to validate the long-term deformation and frictional contact
prediction under large rotational movements using the
rectangle end-effector.

All motions start from a configuration where the end-
effector tip is positioned at the top centre of the object. ROS
(Quigley et al., 2009) and the Movelt!-based (Gorner et al.,
2019) OMPL planner (Sucan et al., 2012) are used to plan
real-world motion trajectories 7““. For calculating each
motion plan, we pass a series of waypoints to the Movelt!
planner by discretising each segment of the motion with an
interval of 0.002 m or 5°.

A challenging phenomenon that occurs during our data
collection process is that the object tends to stick to the end-
effectors after contact is made. If we allow this to happen
and assume that the object always drops down eventually,
the optimisation process will be extremely difficult due to a
large uncertain dynamics process of the object dropping
from the air. For example, the object may bounce out of the
workspace or even off the table. This further exacerbates the
difficulty of optimising with only the start and end obser-
vations of the object. However, it is beyond the capability of
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Table 1. Waypoint designs and statistics of the interaction motions. For collecting optimisation data, there are two motions for each of the
two levels of contact complexity. For out-of-distribution validation, one motion per end-effector is designed. Directions of the waypoints
are relative to the robot base frame, as shown in Figure 1. Each waypoint of the real trajectories takes an uneven time interval, while each

waypoint in simulation takes exactly 0.01 s.

Sim. Num.
Optimisation motions (short and simple) Duration (sec.) Real Num. waypoints  waypoints
Lv. 1 Poking-1 —z 0.015 m, +z 0.03 m 0.86 38 87
Poking-2 —z0.02 m, +z 0.03 m 0.93 40 94
Lv. 2 Poking-shifting-1 —z0.02 m, —x 0.03 m, +z 0.03 m 1.52 68 152
Poking-shifting-2 —z0.02 m, +x 0.03 m, +z 0.03 m 1.50 54 153
Validation motions (unseen, longer, more complex contacts)
Flattening (cylinder) —z 0.025 m, +x 0.025 m, +z 0.025 m, 3.74 275 378
—x 0.025 m, —z 0.025 m,
—x 0.025 m, +z 0.025 m
Triple-poking (round) +y 0.025 m, —z 0.025 m, +z 0.025 m, 4.55 328 460
—y 0.025 m, —z 0.025 m, +z 0.025 m,
—y 0.025 m, —z 0.025 m, +z 0.025 m
Poking-180-rotating (rectangle) —z 0.025 m, about +z 180°, +z 0.025 m 6.23 504 625

current perception hardware and, thus, a future research
direction. To simplify the problem, we take a simple
workaround by covering the end-effector with a thin layer of
flour before each manipulation motion is executed. We sink
the effector into the flour and flick it gently to ensure that it is
only covered by a thin layer of flour. This greatly prevents
the sticking phenomenon from happening. Note that the
end-effector friction coefficient we are optimising for is then
the one covered by flour instead of the original value.

3.5.2. Time duration constrained reconstruction. To simulate
end-effector motions, the real-world trajectory generated by
Movelt! is inconvenient as it has uneven time differences
between consecutive waypoints and the simulation can only
handle a constant step size dt. Thus, for a motion segment
between a pair of waypoints, we reconstruct its simulation
counterpart to have constant velocity by dividing the travelled
distance by the real-world time duration, which is provided by
the motion planner, and then we discretise the segment with a
constant dt. In this study, we set df = 0.01 second for better
simulation stability. A larger d¢ will result in a too-high
compounding error during simulation stepping, while a
too-small d¢ will demand too much computation. The sta-
tistics of the real and reconstructed motions are summarised
in Table 1. It can be seen that the validation motions are much
longer than the optimisation ones. The Movelt! trajectories
and the reconstructed ones are saved as .npy files and will be
open to the public upon acceptance.

3.6. Loss functions

We use four loss functions to calculate the difference be-
tween the simulated and real object states. As we are dealing

with points and particles, it is natural to select point-based
metrics. Therefore, we employ the two most common
distance metrics for point sets, namely, the Chamfer dis-
tance (CD) and the earth mover’s distance (EMD). Given
two point sets Xy and X, the CD and EMD are defined as
follows.

dCD(XO, ‘X | Zmln”x y||2
xeX
1
—_— mim|x —
‘Xﬂ};xeX H y||2
dep(Xo, X Zd)wn Xin [x — @),
EMD

where x and y denote the 3D coordinates of the points, ¢
denotes a one-to-one injective mapping that only exists
when |Xy| <|X;|. In practice, a linear assignment algorithm
is used to calculate ¢“*°. We also find that the three average
operations reduce the magnitudes of the gradients of the
physics parameters to an order of 4 to 5, which is undesired
for optimisation; therefore, we use the distances without
averaging the values over the point sets.

To calculate the loss between the real and simulated
end configurations, one can use the original fusion point
cloud X' ’Te“l or the reconstructed particle systems X% as
the target observations. Thus, there are two variants for
each loss: dPCD,CD(XrTeal, XST""), dpRT,CD(X}}eC, Xstm)’
deD_EMD(X}}wl, X;Em), dpRT_EMD(X;?C, X;fm). When re-
constructing A", we decrease the particle density for filling
the voxels slowly until |X|<|X%5"| is satisfied. When
computing losses involving the real-world point clouds, we
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downsample it with a voxel radius of 0.005 so that the
number of points in it is about 1/6 of the number of particles
in the reconstructed system. This is because a point cloud
only contains points on the surface, while the reconstructed
particle system is non-hollow.

Finally, although the CD and EMD losses are very
common in calculating point set distance, they are not
intuitive to visualise and understand. Also, as revealed by
the experiment results shown in Section 4.3, the CD and
EMD losses focus on different spatial aspects of two
point sets, which make them biased for result analysis
across all loss functions. To make results easier to an-
alyse and compare in a more unbiased way, we further
calculate the heightmaps of the fusion point cloud and the
simulated particles, denoted as Z7¢* and 3. Specifi-
cally, we discretise a 0.11 x 0.11 m? square area centred
at the centre of the object into a 32 x 32 grid. For each cell
of the grid, we find the point or particle in the x-y range
with the highest z value and assign that value as the
height of that cell. To compare the distance between two
heightmaps, we simply take their summed pixel differ-
ence as follows.

dHeightmap = ZZHI’;"UI - I;ff';”z
i

In practice, we use the fusion point cloud without
downsampling to compute I’Te"l. However, a particle
density that is too low will result in void cells when
generating Z5", and we found that a density value of 4 x
10° particles per cubic metre is good enough for gen-
erating 32 x 32 heightmaps. The heightmap distance is
only used for evaluation purposes because we found it
leads to very poor optimisation results when used as a
loss function.

4. Results

This section presents the design of the experiment and the
result analyses including the optimisation and generalisa-
tion performances of the DPSI framework in identifying the
physical characteristics of elastoplastic matter through
simple robot manipulation.

4.1. Experiment design

The performance of the DPSI framework is examined in
three steps: loss landscape analysis, in-distribution perfor-
mance analysis and out-of-distribution generalisation
analysis. The first step visualises the four loss functions
(PCD-CD, PRT-CD, PCD-EMD and PRT-EMD) to help
understand how the physics parameters are related to the
loss value distributions. The second step investigates the in-
distribution performance of the proposed DPSI framework,
that is, whether it can produce realistic simulations for
unseen object configurations with the same motions used in

parameter identification. The loss landscape and in-distribution
performance analyses are carried out at two levels of contact
complexity. At each level, the performances are compared
across four loss functions and five optimisation datasets
(see data collection description below). The last step ex-
plores the out-of-distribution generalisability of the DPSI
by inspecting the simulation accuracy of three unseen
longer motions using identified parameters from the
contact complexity level 2 experiment.

4.1.1. Data collection. For each optimisation motion (i.e.,
Poking-1, Poking-2, Poking-shifting-1, Poking-shifting-
2), we collect datapoints by executing the motions on
the objects with different end-effectors. Each datapoint
contains the multi-viewpoint point clouds of the object
before and after a manipulation motion. For each of the two
complexity levels, five optimisation datasets are created to
examine the data hungriness of the proposed DPSI
framework.

With level (Lv.) 1 as an example, the first dataset is
created with both motions (Poking-1 and Poking-2). Each
motion is performed twice using three different end-
effectors. Therefore, 6 datapoints are created for each
motion, and a total of 12 datapoints are created for both
motions. The second dataset for Lv. 1 is similar, except that
only one datapoint is created from each motion-effector
pair, resulting in three datapoints for each motion, and a total
of six datapoints for both motions. The other three datasets
for Lv. 1 are more straightforward, with only one datapoint
collected for each dataset. The three datapoints are created
using the three end-effectors individually, performing the
second motion from Lv. 1 (i.e., Poking-2). We name these
datasets as [2-mix, 6-mix, I-rectangle, 1-round and I-
cylinder, respectively. Data collection for Lv. 2 is similar,
except that the two motions of Poking-1 and Poking-2 are
replaced by Poking-shifting-1 and Poking-shifting-2, re-
spectively. The datasets will be open-sourced upon the
acceptance of the article.

For in-distribution validation, with each contact com-
plexity level, we collect two extra datapoints from the
second motion (i.e., Poking-2 and Poking-shifting-2) with
all three end-effectors, resulting in 12 validation datapoints.
For out-of-distribution validation, where we collect two
datapoints with each of the three long-horizon motions,
resulting in six datapoints.

For each datapoint, the real-world object is initially roughly
shaped into a convex shape. We then acquire its point cloud by
fusing the captured multi-view data. Next, we calculate the
coordinates of the top centre of the object, where the end-
effector tip will be moved to, and the motion will always be
executed from there. We perform the same point cloud cap-
turing and fusion process after a motion is executed. Each
datapoint takes no more than 2 min to collect, with most of the
time spent on capturing point clouds.

4.1.2. Optimisation and validation. At each contact level,
for each pair of loss function and dataset, gradient descent is
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carried out with the Adam algorithm (Kingma and Ba,
2015) with three random seeds for 100 iterations (gradi-
ent updates). For each datapoint, the simulation loads the
initial particle configuration, simulates the motion and
produces the resultant particle state, which is used to
compute losses and gradients. Each optimisation iteration
goes over all datapoints within a dataset and takes the
average gradients to update the parameters. In-distribution
validation is done after every gradient update with the
validation dataset, simulating all datapoints and calculating
the losses.

Table 2 displays the step sizes and the value ranges of
the parameters of interest for gradient updates. To de-
termine the appropriate step sizes, we randomly sample
20 sets of parameter values and compute the statistical
means and standard deviations of the gradients for each
parameter based on the /2-mix dataset. We then ran-
domly initialise the parameters, run the Adam optimiser
for 100 gradient updates with uniformly randomly
generated gradients using the statistical means and
deviations with different step sizes, and select the step
size that allows the randomised parameters to converge
in about 70 gradient updates. The value ranges of the
parameters are selected according to either the defini-
tions of the physics models (Jones, 2009; Stomakhin
et al., 2013) or values reported by various research on
manual parameter identification experiments with sim-
ilar real-world materials, such as soil and clay (StructX,
2014-2024; Waheed and Asmael, 2023). However, a
too-high value of Young’s modulus £ was found to cause
numerical instability in the simulation with the particles
exploding away. Thus, an empirical upper bound for £
was determined by slowly increasing it until the sim-
ulation became unstable.

4.2. Loss landscape analysis

The loss landscapes, including point-cloud and particle
chamfer distance (PCD CD, PRT CD), point-cloud and
particle earth mover’s distance (PCD EMD, PRT EMD), are
computed over three pairs of physics parameters: (£, v), (o,
p) and (ug, u.). For each pair, we set other parameters to
fixed values and compute the losses with the parameters of
interest discretised into 30 intervals. Figure 3 displays the
loss landscapes computed at the two contact complexity
levels and five datasets. To facilitate distribution-level

Table 2. Step sizes and the ranges of values for the parameters:
Young’s modulus E, Poisson’s ratio v, yield stress ,, material
density p and the friction coefficients of the table #, and end-
effector 7,,,.

Parameter E (kPa) v p (kg/m3) o, (kPa) 7, N
Step size 4000 0.01 10 500 0.01 0.01
Min value 10000 0.01 1000 1000 0.01 0.01
Max value 300000 0.48 2000 20000 2.0 2.0

comparison, the loss landscapes are centralised to have
zero means (subtracting the mean of the matrix). The fol-
lowing observations can be drawn.

Firstly, we compare the landscapes in Figure 3 ver-
tically to examine the sensitivity of the loss functions
against different parameters. At contact complexity level
1, it shows that the CD and EMD losses exhibit quite
similar value changing directions along the E, v and p
axes, while quite the opposite directions along the ), axis.
This can be observed from the vertically reversed colour
distributions between the first and last two rows of
landscapes against ¢, and p. On the other hand, the losses
at level 2 contact complexity exhibit similar distribu-
tional patterns along all parameter axes. In addition, at
level-2 contact complexity, the PRT CD loss is more
sensitive (exhibiting more drastic value changes) along
the v axis than other losses (see the second row of the
level-2 landscapes against £ and v). In contrast, the values
of the PRT CD and both EMD losses are more sensitive
along the o, axis (the last three rows of the level-2
landscapes against 6, and p). The level-2 landscapes
against the friction coefficients (¢, and x,,) show that all
losses distribute very similarly over these two parame-
ters. Overall, the EMD losses seem to be more sensitive to
all the parameters, as their loss landscapes tend to be less
flat.

These observations indicate that, with the adopted von
Mises plasticity model, whose plastic deformations are
governed by the yield stress (o,) of the material, the CD
and EMD losses may focus on different aspects of the point
sets, as they tend to disagree with each other dis-
tributionally along the o, axis. Also, we may expect the
EMD losses to perform better in parameter identification
because they exhibit higher sensitivity against most
parameters.

Secondly, by comparing the landscapes horizontally,
Figure 3 shows the distributional patterns of most (not all)
loss landscapes are quite similar across the five datasets.
This means that the loss values, and thus the optimisation
processes, are not sensitive to the number of datapoints used
in computation. This observation allows us to expect the
recovery of physics parameters with small data, even with a
single interaction experience.

Thirdly, many of the loss distributions display large areas
of flat regions, where the loss values are very similar. This
indicates many optimisation saddle points and that multiple
parameter value combinations may serve as plausible so-
lutions, describing the same physical characteristics.
Whether this is an issue from an inaccurate physics model or
a general fact of the real-world dynamics remains to be
determined.

4.3. In-distribution performances

This subsection investigates the in-distribution performance
of the parameter identification task through gradient descent
at two levels of contact complexity. For each level,



Yang et al.

11

Level 1 contact complexity
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Figure 3. Loss landscapes (centralised to have zero means) at level-1 (left) and level-2 (right) contact complexity over pairs of physics
parameters. Darker colours represent higher loss values. Parameters: Young’s modulus (E) against Poisson ratio (v), yield stress (o)
against material density (p) for both levels, and table friction coefficient (u,) against manipulator friction coefficient (u,,) for level 2. Other
parameter values are fixed while computing the losses over one pair of parameters. Each column presents the losses computed with a
different dataset. Each row presents the values of a different loss function. PCD: point cloud. PRT: particle system. CD: Chamfer

distance. EMD: earth mover’s distance.

experiments are conducted with the four loss functions and
five datasets. To evaluate the performances thoroughly, the
four loss functions and a heightmap-based distance function
are used to evaluate the differences between the real and
simulated manipulation results using the in-distribution
validation dataset. This enables the observation of the in-
fluences on other distance functions from minimising each
objective. In particular, this subsection investigates the
following questions.

Can the loss functions be minimised (does optimisation
converge)?

Do the loss functions agree with each other in such
system identification tasks?

If local minima appear and multiple solutions exist,
do they produce visually distinct manipulation
results?

How does the number of datapoints affect
optimisation?
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® Does DPSI produce parameter values that are physically
realistic and interpretable? Are they close to the pa-
rameter values reported in relevant literature and studies?

4.3.1. Quantitative results. We start by analysing the
quantitative results of the parameter identification task. The
changes of the validation losses and parameter values over
the course of optimisation at both contact complexity levels
are shown in Figures 4 and 5. The best parameter values
corresponding to the lowest validation heightmap loss
among the three random seeds are summarised in Table 3.

First of all, we start by observing the tendency of
convergence. The top five rows in Figures 4 and 5 show that,
at both contact complexity levels, most of the individual
validation loss curves (dotted lines) tend to stabilise and
converge, which indicates that DPSI can effectively con-
verge to local minima. The last four rows in Figure 4 and the
last six rows in Figure 5 reveal that the parameters converge
to different solutions. Table 3 also shows that multiple
parameter solutions exist for a low validation heightmap
distance at both levels of experiments. These observations
mean the parameter identification task at both contact
complexity levels does converge but has multiple local
minima and solutions, aligned with the large flat regions
observed from the loss landscapes.

However, the parameter distributions in Figure 5
clearly show that some parameters converge to much
smaller and distinct value regions than those found in the
level-1 experiments. More specifically, the values of
Young’s modulus (£), Poisson’s ratio (v) and yield stress
(o,) become more converged, while they are more dis-
persed in the level-1 results. Interestingly, the material
density (p) remains quite dispersed at both contact
complexity levels. This is not surprising because, com-
pared to the level-1 motions, the higher contact com-
plexity induced by the shifting parts of the level-2
motions naturally poses a stricter selection range for the
physics parameter values.

Also, some parameter values are closer to empirical
studies of soft/hard/saturated clay in the level-2 experi-
ments. For example, Young’s modulus values are closer to
the reported range of 5000 to 54000 kPa, the material
density seems to be closer to 1400 kg/m®, and Poisson’s
ratio is closer to the reported range of 0.4 to 0.5 (Waheed
and Asmael, 2023; StructX, 2014-2024). However, the
recovered yield stress values are higher than the reported
values for clays (210 to 600 kPa) (Rehman et al., 2018)
because the reported values were found to make the material
collapse in simulation. Based on the empirical values from
Waheed and Asmael (2023); StructX (2014-2024) and the
loss landscapes, we hand-pick a set of parameter values and
calculate the validation losses at both levels. As denoted in
Table 3, the resultant performances are reasonable but not as
good as the performances of the DPSI method.

Secondly, the top five rows in Figure 4 reveal that, in
most cases, the CD and EMD losses have a negative cor-
relation. For example, the red curves of the first column

show that minimising the PRT EMD loss reduces both EMD
losses and the heightmap distance, but increases both CD
losses. Also, Table 3 shows that optimising the CD losses
tends to produce large yield stress values (o)), while
optimising the EMD losses tends to produce small ones.
Similar observations can be made from the level-2 re-
sults, but only the PCD CD validation losses tend to
exhibit opposite tendencies compared to the other losses
(observe the blue lines that deviate from others in
Figure 5). This is aligned with the analyses of the loss
landscapes at both contact complexity levels, where
reversed distributional patterns of the CD and EMD
losses were observed. Furthermore, the EMD losses tend
to produce smaller validation heightmap distances at
both levels as shown by the green and red lines in Figures
4 and 5 and the average heightmap distances in Table 3,
indicating better sim2real alignment. This again is
aligned with the analysis of the level-2 loss landscapes,
where only the PCD CD loss distributes significantly
differently along the o, axis.

Thirdly, the results show that it is possible to obtain
comparable performances with just one datapoint at both
contact complexity levels. This can be concluded by
comparing the results horizontally: (1) most validation
curves of the top five rows in Figures 4 and 5 with
1-datapoint show highly similar tendencies with the 6-mix
and 12-mix datasets, and (2) the last four rows in Figure 4
and last six rows in Figure 5 also show that the parameters
found with different datasets mostly converge to similar
value regions. Moreover, Table 3 shows that the lowest
validation heightmap distances at level-1 contact com-
plexity and the third lowest at level-2 are achieved by
optimising with the 1-rec. and 1-round datasets. These
results are aligned with the analysis of the loss landscapes,
where similar loss distributions are observed among dif-
ferent datasets.

4.3.2. Qualitative results. We now examine the manipu-
lation processes simulated using the best physics parameters
corresponding to the lowest validation heightmap losses
presented in Table 3. Figure 6 shows the resultant particles
and heightmaps after the manipulation of objects at two
contact complexity levels with three end-effectors (two
object configurations are included for each contact level and
end-effector).

Firstly, all the simulated particles and heightmaps
post-manipulation are highly similar to the ground truths
across the loss functions and datasets. This shows that
minimising any of the four loss functions with any of
the five datasets can indeed reproduce visually plausi-
ble manipulation results close to the real-world system.
It indicates that DPSI is not data-hungry and it is robust
to the choice of common point-based loss objectives.
These characteristics are highly preferred in robotic ap-
plications, as they lead to smaller data collection costs,
simpler observation preprocessing, and simpler loss
function engineering.
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Figure 4. Validation losses (top five rows) and parameter values (last four rows) over 100 gradient updates at level-1 contact complexity.
Each column presents the results of optimising with a different dataset. Each row shows the changes of an evaluation metric or a
parameter, denoted on the left. In each figure, different colours indicate the results of minimising a different loss function, as labelled by
the legend on the top. For the top five rows, each colour has three dotted lines corresponding to the results of three random seeds and a
solid line corresponding to their means. For the last four rows, each colour has three solid lines corresponding to the results of three

random seeds.
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Figure 5. Validation losses (top five rows) and parameter values (last six rows) over 100 gradient updates at level-2 contact complexity.
Each column presents the results of optimising with a different dataset. Each row shows the changes of an evaluation metric or a parameter,
denoted on the left. In each figure, different colours indicate the results of minimising a different loss function, as labelled by the legend on
the top. For the top five rows, each colour has three dotted lines corresponding to the results of three random seeds and a solid line
corresponding to their means. For the last four rows, each colour has three solid lines corresponding to the results of three random seeds.
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Table 3. The parameter values corresponding to the lowest validation heightmap distance in each optimisation case at both contact

complexity levels.

Dataset
Contact complexity Loss Metric/Parameter 12-mix  6-mix 1-rec. I-round 1-cyl. Avg. Height map (mm)
Level 1 PCD Min. height map (mm)  2267.44 2176.21 1973.81 2183.30 2327.01 2185.55
CD  Young’s modulus (kPa) 300,000 10,000 300,000 300,000 294,991
Poisson’s ratio 0.480 0.480 0.480 0.480 0.348
Yield stress (kPa) 20,000 12,367 1000 7527 20,000
Material density (kg/m®) 1000 1380 1225 1000 1000
PRT Min. height map (mm)  2287.21 2293.42 228598 2311.87 2290.71 2273.83
CD  Young’s modulus (kPa) 189,900 300,000 179,373 196,393 20,335
Poisson’s ratio 0.165 0.010 0.223 0.010 0.178
Yield stress (kPa) 7373 10,286 7016 12,358 2466
Material density (kg/m®) 1157 1088 1210 1000 1797
PCD Min. height map (mm)  2024.78 2039.95 2040.51 2186.90 2272.50 2112.93
EMD Young’s modulus (kPa) 265,420 237,337 270,940 300,000 193,790
Poisson’s ratio 0.445 0.439 0.419 0.480 0.436
Yield stress (kPa) 1403 1036 1382 5839 10,138
Material density (kg/m®) 1487 1379 1482 1000 1009
PRT Min. height map (mm)  2000.36 1999.14 1980.35 1999.34 2016.10 1999.06
EMD Young’s modulus (kPa) 300,000 300,000 300,000 300,000 271,247
Poisson’s ratio 0.453 0.480 0.480 0.478 0.442
Yield stress (kPa) 1000 1000 1059 1000 1000
Material density (kg/m®) 1542 1670 1214 1518 2000
*Validation height map (mm) with hand-picked parameters: 2122.59
Level 2 PCD Min. height map (mm)  3163.64 3091.73 3622.58 3423.00 3125.04 3285.20
CD  Young’s modulus (kPa) 47,700 42,136 91,785 132,840 28,679
Poisson’s ratio 0.444 0.451 0.364 0.095 0.403
Yield stress (kPa) 11,407 10,479 7839 15,590 14,514
Material density (kg/m®) 1810 1919 1819 1000 1880
Table friction 0.725 0.696 1.816 0.696 0.715
Manipulator friction 1.495 1.448 1.264 1.037 0.704
PRT  Min. height map (mm) 308831 2865.14 3104.15 3031.56 2999.36 3017.70
CD  Young’s modulus (kPa) 66,514 47,786 28,023 24,068 256,786
Poisson’s ratio 0.331 0.376 0317 0.309 0.451
Yield stress (kPa) 1904 1809 8363 8063 1537
Material density (kg/m®) 1267 1284 1926 1965 1225
Table friction 0.473 0.488 0.414 0.419 0.487
Manipulator friction 0.494 0.604 0.249 0.293 0.084
PCD Min. height map (mm)  2933.23 2667.43 2959.43 2895.74 2979.04 2886.97
EMD Young’s modulus (kPa) 48,459 14,959 135,207 113,474 12,017
Poisson’s ratio 0.392 0.400 0.374 0.339 0.369
Yield stress (kPa) 1417 1176 1359 1340 10,921
Material density (kg/m®) 1319 1409 1313 1331 1995
Table friction 0.544 0.525 0.508 0.453 0.434
Manipulator friction 0.805 1.308 0.194 0.381 0.878
PRT Min. height map (mm)  2598.28 3060.10 2847.69 2760.83 3172.49 2887.88
EMD Young’s modulus (kPa) 27,779 10,000 222,856 144,827 10,000
Poisson’s ratio 0.359 0.330 0.435 0.383 0.303
Yield stress (kPa) 1008 9635 1000 1000 7377
Material density (kg/m®) 1396 2000 1492 1445 2000
Table friction 0.487 0.373 0.311 0.543 0411
Manipulator friction 1.013 1.478 0.015 0.625 1.433

*Validation height map (mm) with hand-picked parameters: 2985.5688

Bolded texts denote the three lowest losses at each level. It can be seen that the PRT EMD loss tends to produce the best results and DPSI can find
parameters that outperform hand-picked parameters (from the geotechnical literature) with even just one interaction datapoint.
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Figure 6. The particles and heightmaps of the objects after applying the second motions at contact level 1 (a and b) and 2 (¢ and d),
simulated with the best set of physics parameters. Darker colours of the heightmaps indicate greater heights of the object. For each
combination of the loss function and dataset at each level, three trajectories on two object configurations are simulated (3 effectors x 2
datapoints). There are three groups in each subfigure, with the ground truth point clouds and heightmaps placed in the leftmost column. In
each group, a row shows the results corresponding to a loss function and a column results corresponding to a dataset. (a) Level-1
contact, object configuration 1; (b) Level-1 contact, object configuration 2; (c) Level-2 contact, object configuration 1; and (d) Level-2

contact, object configuration 2.

Secondly, by examining the details of the heightmaps
more carefully, it shows that optimising the CD losses
tends to produce heightmaps with darker colours (which
represent greater heights of the object) while optimising
the EMD losses tends to produce heightmaps where

the objects look slightly bigger and wider. This is es-
pecially true at level-1 contact complexity, where the
heightmaps in the first two rows for each object con-
figuration in Subfigures 6(a) and 6(b) are generally
darker than those in the last two rows (see Figure 7 for
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Figure 7. Selected examples from Figure 6(b) to show that the CD
losses produce darker-coloured heightmaps while the EMD
losses produce lighter-coloured and wider heightmaps, which can
be intuitively explained by the optimised yield stress values and
their potential difference in spatial focus.

enlarged examples). At level 2, the PRT CD loss
sometimes changes its focus on the x and y directions,
producing lighter-colour heightmaps (see the second
rows of the heightmaps associated with the rectangle and
round end-effectors in Subfigures 6(c) and 6(d)). This
observation indicates that optimising the CD losses
tends to produce particles that match the height of the
ground truth shapes, that is, in the z direction, while
optimising the EMD losses tends to match the x and y
directions.

This may be caused by the fact that these losses distribute
differently along the yield stress axis (the CD and EMD
losses at level 1, the PRT CD loss at level 2). According to
physics intuitions, a smaller yield stress will cause the object
to yield more easily and respond more drastically to the
poking forces, hence the more spreading in the x and y
directions and more compressing in the z direction, and vice
versa. One can see that a greater yield stress value in Table 3
corresponds to a darker heightmap in Figure 6, and vice
versa.

Thirdly, though the particles and heightmaps are very
similar, they are produced by quite different parameter
combinations. From the results at contact level 2 in
Subfigures 6(c) and 6(d), one can observe a correlation
between the friction coefficients and the material
density—the three key parameters that determine how
much the object will be moved in the shifting motion
direction. The parameters in Table 3 and their corre-
sponding visualisations exhibit the following physi-
cally plausible relationships (see Figure 8 for a few
examples):

1. With similar weights (p), the object is moved at a longer
distance when the manipulator frictions (u,,) is greater
(compare the parameters and visualisations between the
results from the PCD EMD loss with the 12-mix and
1-rec. datasets)

Manipulation friction:
1.013 |

Table friction:

0487 |  0.696

Material density (kg/m?):

1319 | 1995

Figure 8. Selected examples from Figure 6(d) to show the
physically realistic associations between object movements and
three physics parameters, demonstrating the physical plausibility
of different physics parameter values.

2. With similar manipulator frictions (x,,), the object is
moved further when the table friction (u,) is low
(compare the parameters and visualisations between the
PCD CD loss with the 1-round dataset and the PRT
EMD loss with the 12-mix dataset)

3. With similar friction values, the object is moved further
when it is lighter (compare the results from the PCD
EMD loss with the 12-mix and the 1-cyl. datasets)

These relationships between parameters and visual-
isations align with our understanding of real-world
physics, demonstrating that DPSI can produce physi-
cally plausible and interpretable parameter values.
Moreover, the variations in parameter values suggest that,
aside from the mismatch of the models and the materials,
there is hardly any fixed set of parameter values that can
simulate a material in every condition. These parameters
will always have some differences in different conditions
(e.g., heat, light, and humidity) and they change over time
(e.g., drying). Therefore, the fact that DPSI can estimate
the parameters with only one interaction makes it highly
promising for fast parameter re-identification that can be
performed online to recalibrate simulation accuracy effi-
ciently, eliminating the need to keep track of previously
identified parameter values.

Fourthly, the visualisations in Figure 6 also reveal
limitations and potential improvement directions of the
physics model. By comparing with the ground truths, the
simulated contact areas of the objects always deform more
sharply with insufficient elastic returning. The real objects,
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on the other hand, tend to respond more elastically after
being plastically deformed, hence the higher and smoother
surfaces shown in the ground truths. This is more obvious
for contact areas with sharp edges, such as the four edges
of the rectangle end-effector or the sharp sides of the
cylinder end-effector. In addition, at level-2 cases, with the
effectors shifting horizontally, some simulated particles
are unrealistically displaced and stay floating. In the real
world, the displaced parts would fall because of gravity.
What’s more, the shifting motion in the real world causes
the whole object to tilt in the moving direction, while in the
simulation the contact impact tends to remain in a much
smaller region around the contact area. These inconsis-
tencies can be caused not only by inaccurate modelling,
but also by various computation approximations, such as
time integration method, simulation step size, and contact
handling.

4.3.3. Summary. In short, this subsection presents a detailed
examination of the in-distribution performances of DPSI
with motions at two levels of contact complexity. By an-
alysing the validation loss curves, the parameter values and
their manipulation visualisations, we can answer the pro-
posed questions:

® The loss functions can be minimised, demonstrating the
feasibility of DPSI even in the presence of noisy and
incomplete point cloud observations.

® The loss functions produce similar visualisations, but
do not always agree with each other on the found
parameter values. The CD and EMD losses seem to
focus on quite different spatial aspects of the point
sets. They distribute differently along the yield stress
(o,) axis and produce different yield stress values.
However, it seems that, as the optimisation motion
becomes more complex, the loss functions agree more
on the parameter solutions.

® There are many local minima and possible parameter
solutions, but they produce visually and physically
similar manipulation results with physically intuitive
interpretability.

® The number of datapoints has a minor influence on the
optimisation performances both quantitatively and
qualitatively, indicating that DPSI is not data-hungry
even in the presence of real-world perception challenges.

® Discussions on the visualisations and parameter values
show that DPSI can produce physics parameter values
with physically realistic and interpretations.

4.4. Generalisation

This subsection will look at the out-of-distribution per-
formance of DPSI by visualising the manipulation processes
of three unseen and much longer motions that induce more
complex contact dynamics with the best parameters
(Table 3) found at the level-2 contact complexity identifi-
cation task.

To recall, there are three unseen motions. The triple-poking
motion moves the round end-effector to poke the object at
three different locations along the y axis. The flattening motion
moves the cylinder end-effector to press and flatten the object
towards the positive and negative x directions. The poking-
180-rotating motion moves the rectangle end-effector to press
the object down and then rotate 180° about the z axis. The
triple-poking motion is less relevant to the friction coeffi-
cients, while the last two motions involve complex frictional
contacts. Table 4 summarises the heightmap distances of the
simulated results of the unseen motions (each with two object
configurations). Figure 9 visualises the trajectories of the real
manipulation trajectory and its simulations with the top two
best DPSI-found parameters and the hand-picked parameters.
The animation videos of them are included in Supplementary
materials. Figure 10 presents the resultant particles and their
heightmaps of each motion and object configuration simulated
by the DPSI-found parameters. The following observations
can be drawn.

Firstly, in Figure 9, (as well as the animation video), it
can be seen that, for all motion and object configuration
pairs, the real and simulated trajectories are highly similar.
Figure 10 also shows that, although discrepancies exist, the
simulated particles and their heightmaps of the manipu-
lation results are also highly similar across the loss
functions and datasets. This visual similarity proves that
DPSI can recover physics parameters from simple inter-
actions that allow the accurate simulation of unseen,
longer, and more complex manipulation motions, ex-
hibiting robustness against perception and data challenges.
Moreover, we note that it is the single-datapoint cases that
achieve 11 out of 18 top-three lowest heightmap losses
across the three unseen motions as shown in Table 4, where
2 achieved by the hand-picked parameters and 5 by the 12
mix and 6 mix datasets.

Secondly, the found physics parameters retain their
physical meanings and interpretability for the unseen and
more complex motions. Evidence supporting this can be
found in Figure 10 produced by different parameters (see
Figure 11 for selected examples).

¢ The first example is that when the yield stress (g,) is
smaller, the resultant heightmaps of the unseen motions
tend to be lighter, meaning the objects are more com-
pressed down.

® Another example is that, when moving the cylinder end-
effector along the x axis after pressing down the object, a
higher manipulator friction coefficient (,,) causes larger
whole-body displacement of the object, while a smaller
value causes the effector to slip away and compress
down the particles along its moving direction. This is
shown more clearly in the bottom-right case (cylinder
end-effector) of Figure 10, where the resultant object
bodies that are more concentrated to the heightmap
centres correspond to larger manipulator friction coef-
ficients, while the objects whose upper part of the
heightmaps are flattened correspond to smaller one.
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Table 4. The lowest pixel-wise heightmap distances (in mm) achieved by the three unseen motions (each with two object configurations),
simulated by the best parameters found at the level 2 contact complexity identification task.

Motion Object Num. datapoint 12 6 1 (rec.) 1 (round) 1 (cyl.) Avg. over losses
Poking-180 rotating Config. 1 PCD CD 2384.72  2302.12 2394.64 3827.77  2288.37 2639.52
PRT CD 3318.00  2845.03 2316.25 2309.38  4499.31 3057.59
PCD EMD 2700.57  2306.85 297197 334645 225547 2716.26
PRT EMD 2290.37  2299.37 3605.89 2361.34  2357.05 2582.81
Avg. over dataset  2673.42  2438.34  2822.19 2961.24  2850.05 —
Hand-picked parameters: *2132.04
Config. 2 PCD CD 5367.10  5345.52 5473.18 4822.09  5770.72 5355.72
PRT CD 4218.07 422791 580293 5766.13  *3994.08 4801.82
PCD EMD 4187.56  4469.51 4300.81  4026.08  5467.30 4490.25
PRT EMD 4175.07  4768.15 432336  4226.68  4978.39 449433
Avg. over dataset  4486.95  4702.77 4975.07 4710.25 5052.62 —
Hand-picked parameters: 5283.87
Triple-poking Config. 1 PCD CD 2956.06  2919.90 3028.85 3089.34  2949.11 2988.65
PRT CD 2960.77 297196 296299  2963.06  *2798.67 2931.49
PCD EMD 2895.86  2875.01 2839.52 2863.56  3003.25 2895.44
PRT EMD 3100.87 303549 2852.95 3034.08  3059.61 3016.60
Avg. over dataset 297839  2950.59  2921.08  2987.51 2952.66 —
Hand-picked parameters: 2983.62
Config. 2 PCD CD *4175.07 4768.15 432336  4226.68  4978.39 4630.09
PRT CD 4395.60  4399.77 473159 4685.70  4245.47 4491.62
PCD EMD 4430.33 449540 441759 4426.74  4379.40 4429.89
PRT EMD 4529.65  4304.59 4300.22 427290 = 4536.17 4388.70
Avg. over dataset  4508.76  4467.01  4499.59  4505.60  4444.43 —
Hand-picked parameters: 4517.24
Flattening Config. 1 PCD CD 2443.54  2536.84 2153.18 224494  2403.77 2356.45
PRT CD 2020.59  1988.33  2496.75  2547.35 1860.49 2182.70
PCD EMD 2149.35  *1835.63 2233.75 2196.98  2545.52 2192.25
PRT EMD 227580  2439.66 2407.77 2287.72  2539.93 2390.18
Avg. over dataset 222232 2200.12 232286 2319.25 2337.43 -
Hand-picked parameters: 2051.06
Config. 2 PCD CD 532590  5378.31 4752.87 475635  5743.95 5191.48
PRT CD 5622.73  5387.05 5282.32 5119.63 5817.57 5445.86
PCD EMD 505842  4697.61 5798.36  5891.09  5190.65 5327.23
PRT EMD 4996.47  5460.32 5686.20 5152.61 5493.27 5357.77
Avg. over dataset  5250.88  5230.82  5379.94  5229.92  5561.36 —

Hand-picked parameters: *4483.75

Bolded texts denote the top three lowest losses. Underlined texts denote the losses achieved by the cases which have achieved the top-three lowest in-

distribution validation performances.

¢ The last example is that, for the poking-180-rotating
motion results shown at the top of Figure 10, when the
objects are more rotated by the end-effector, at least
two of the following three conditions can be verified
true from Table 3 at the same time: a relatively small
material density, a relatively small table friction co-
efficient, and a relatively large manipulator friction
coefficient. This is physically intuitive as any two of
the three conditions would make the object easier to
move.

Thirdly, the found solutions are not globally optimal.
Despite the visual similarity, Table 4 shows that the best
generalisation results are not always achieved by the cases
with the best in-distribution validation performances, as the
underlined and bolded texts rarely coincide. In addition,
though the hand-picked parameters do achieve the best
results in two out of six object simulations, they are not the
best fit for every scenario. This again suggests the impor-
tance of re-fitting the parameters on the fly for every new
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Figure 9. The long-horizon manipulation motions. Every
subfigure visualises from top to bottom the real manipulation
process and its simulations with the top two best DPSI-recovered
parameters and hand-picked parameters. (a) Triple-poking, object
configuration 1; (b) triple-poking, object configuration 2; (c)
flattening, object configuration 1; (d) flattening, object
configuration 2; (e) poking-180-rotating, object configuration 1;
and (f) poking-180-rotating, object configuration 2.

scenario as there are hardly two objects that are identical
especially for elastoplastic materials. Qualitatively, from the
heightmaps and trajectories in Figures 9 and 10, one can
also recognise certain visual discrepancies between the real
objects and their simulation counterparts, indicating a
certain degree of mismatch between the found parameters
and the actual solutions. This could be improved by further
diversifying the data (and the motions that produce them)
used for optimisation. Other directions for improvement
may include better observational noise removal or better
physics model selection/approximation.

Finally, the modelling limitations observed in the in-
distribution visualisation still exist in the unseen motion
visualisations (Figures 9 and 10). The insufficient elastic
returning at contact areas, especially with sharp ma-
nipulator edges, can be seen from all visualisations
where the primary contact areas of the object rarely
return to heights close to the real object (compare also
the enlarged heightmaps in Figure 11). Floating dis-
placed particles can be observed from the poking-180-
rotating motion visualisations, where many particles are
carried away during rotations. The insufficient
spreading of the influence of contacts can be recognised
from the first object configuration of the flattening
motion visualisations where the object is not tilted
enough in the second half of the trajectory. See
Figure 12 for enlarged examples.

In summary, the results and discussions above strongly
support the argument that DPSI can recover physics pa-
rameters that produce the accurate simulation of unseen,
longer, and more complex deformable object manipulation
dynamics by optimising with very few real-world noisy and
incomplete point-cloud data collected by simple and short
interacting motions.

4.5. Cloud slime and soil materials

This subsection reports the DPSI performances with cloud
slime and soil materials. Note that we use the same elas-
toplastic physics models in simulation. To do so, we collect
a single interaction data point for each material using the
cylinder end-effector and the poking-shifting-2 motion,
optimise the parameters with the PRT EMD loss from a
randomised initialisation for 100 iterations with three
random seeds, and validate the results on another data
collected with the flattening motion and the cylinder end-
effector. The real manipulation trajectory of the flattening
motion and its simulations based on the found parameters
are shown in Figure 13. The recovered parameters are
presented in Table 5.

Figure 13 shows that DPSI manages to recover pa-
rameters that simulate cloud slime and soil as closely as
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Figure 10. The particles and heightmaps of the objects after applying the long-horizon unseen motions, simulated with the best set of
physics parameters found at the level 2 contact complexity experiments. Darker colours of the heightmaps indicate greater heights of
the object. For each motion, two object configurations are manipulated with three end-effectors. The results for each trajectory are
grouped with the ground truth placed on the left. In each group, a row shows the results corresponding to a loss function and a column
results corresponding to a dataset. (a) Object configure 1 and (b) object configure 2.
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Figure 11. Selected examples from Figure 10 to show the
physically realistic associations between the manipulation results
and the found parameter values. Comparisons to the ground truths
reveal the modelling limitations (insufficient elastic returning).

F % ¥

Time

Figure 12. Selected frames from two trajectories in Figure 9 to
show modelling limitations (floating particles and insufficient
spreading of contacts). The areas around the green cycles show
that the second part of the flattening motion does not tilt the object
up, and there are floating particles in the poking-180-rotating
motion.
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possible despite the mismatch of the physics models and
the target materials. Especially in the case of soil,
Table 5 shows that DPSI finds large table friction co-
efficients and small end-effector friction coefficients to
simulate the effect of the soil being flattened, although
these are likely not close to the actual values. This
suggests that DPSI will seek to find parameters that
make the deformations of the simulated object as re-
alistic as possible, regardless of whether the physics
models are a good match for the real materials. On the
other hand, this also suggests that the manual selection
of the physics models is important for DPSI to produce
the best deformation simulation.

® o 0 O

+

,.!

m Height
Maps

Time

Figure 13. Comparison of the real manipulation trajectories and the
resultant height maps for the cloud slime and soil materials and
their simulation counterparts based on the recovered physics
parameters. In each subfigure, the second to last rows correspond to
the results with three random seeds. (a) Cloud slime and (b) soil.

4.6. Cause and treatment to local minima

As shown by the loss landscapes and the optimisation re-
sults, although DPSI can find good solutions, it could get
stuck in local minima. Therefore, we performed extra ex-
periments to optimise the PRT EMD loss with the three 1-
datapoint datasets at contact level 1 with eight more random
seeds to examine the random seed sensitivity of DPSI. The
results are shown by the black dotted lines in Figure 14.

First of all, these dotted lines show consistent results with
the previous conclusions: they converge to stable (though
different) loss and parameter values, still reveal the negative
relationship between the CD and EMD losses, and can achieve
comparable performances with results from larger datasets. On
the other hand, it can be seen that the main cause of converging
to different solutions is the different initial parameter values,
which were determined by the pseudo-random process con-
trolled by different random seed values. This is not surprising
as gradient-descent algorithms with complex physics problems
are known to be sensitive to the choice of the initial solution
(Antonova et al., 2023; Hu et al., 2020).

To further test the assumption, we perform the same
experiments with the four loss functions using the same set of
seeds but manually initialise the solutions using the hand-
picked parameters in Table 6 selected according to the
material/geotechnical engineering literature (Rehman et al.,
2018; Waheed and Asmael, 2023; StructX, 2014-2024).
These hand-picked parameter values are less accurate in
terms of validation loss as shown in Table 3. However, the
(highly overlapped) solid lines in Figure 14 show that with
this initial solution, DPSI converges with near-zero variances
across eight random seeds, except for optimising the PCD
CD loss with the 1-rec. dataset. This confirms that the dif-
ferentiation process of the DPSI system is largely deter-
ministic and the found solutions rely largely on the initial
solutions, the optimisation algorithm and the loss functions.
Moreover, with a good guess of the initial values, DPSI could
converge very quickly (within 20 iterations shown by the red/
green solid lines).

Table 5. Physics parameters recovered by the DPSI method for cloud slime and soil materials with three random seeds.

Random seed 1 2 3
Young’s modulus (kPa) 30,0000 10,6971 11,7831
Poisson’s ratio 0.4 0.33 0.03
Yield stress (kPa) 13,836 3907 10,469
Cloud slime Material density (kg/m>) 1000 1000 1491
Table friction 1.18 0.13 0.54
Manipulator friction 2.0 0.01 0.58
Random seed 1 2 3
Young’s modulus (kPa) 10,000 88,963 10,696
Poisson’s ratio 0.32 0.33 0.08
Soil Yield stress (kPa) 9333 1000 10,037
Material density (kg/m®) 2000 1653 1823
Table friction 2.0 1.08 1.83
Manipulator friction 0.01 0.01 0.01
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Figure 14. Validation losses (top five rows) and parameter values M e, as® - :':. ....“ ws SNy 8
(last four rows) over 100 gradient updates at level-1 contact = -1 e a .
complexity from optimising the loss functions with an extra set of 8 - L. Ll e
random seeds. Solid lines (highly overlapped) are results with the . s EEE N aEEEEnd ; =
same initial solution, while dotted lines show results of optimising =N N B S

the PRT EMD loss with randomised initial solutions. Each column
presents the results of optimising with a different dataset. Each row
shows the changes of an evaluation metric or a parameter, denoted
on the left. In each figure, different colours indicate the results of
optimising a different loss, as labelled by the legend on the top.

4.7. Remark on CD and EMD losses

As mentioned previously, the CD and EMD losses seem to
focus on different spatial aspects of the object’s geometry,
leading to deformations that match either the horizontal or
the vertical directions. With the results of optimising the
four losses with the same initial solutions shown in

Hollow target Filled target

Figure 15. Correspondence examples for the CD and EMD
computations with hollow and filled point sets as targets. Colours
indicate corresponding points. Note the CD loss is directional.

Figure 14, we can analyse the differences between CD and
EMD losses with hollow or filled point sets.

4.7.1. Hollow or filled point sets. For the CD losses, it can
be seen by comparing the blue and orange solid lines in
Figure 14. The blue solids in the first two rows indicate that
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optimising the CD loss with a hollow point cloud target can
achieve smaller losses in both CD loss metrics. However,
the third to fifth rows in Figure 14 show that optimising CD
with a filled particle system target (PRT CD loss) out-
performs PCD CD in terms of both EMD loss metrics and
the height map distance. On the other hand, optimising the
EMD loss with a filled particle system target (red lines)
exhibits the same pattern, consistently showing inferior
performances in terms of the CD loss metrics while out-
performing the PCD EMD losses (green lines) in terms of
both EMD loss metrics and the height map distance.
Therefore, the results indicate that optimising with a filled
particle system target generated from a reconstructed wa-
tertight mesh is better than optimising with a hollow point
cloud target.

The cause behind it is the inaccurate point-to-point
correspondences generated with a hollow point set. As
shown by Figure 15, a hollow point set either averages the
spatial information of an area of particles over a thin layer of
target points in computing the CD loss or ignores the in-
formation of a large body of particles within the particle
body in computing the EMD loss. On the contrary, with a
non-hollow target, the point correspondences connect
spatially closer points and do not disregard information
within the object body.

4.7.2. CD or EMD. Figure 14 shows that either with a
hollow or non-hollow target, the EMD losses (green and red
lines) consistently outperform the CD losses (blue and orange
lines) in terms of the EMD and height map distance metrics
while being inferior in terms of the CD metrics. Again, we
believe that this is another consequence of the different ways
CD and EMD compute the point correspondences.

Figure 15 shows that, with a hollow target, CD dis-
tributes the spatial information of the points within over the
surface points, which is problematic. Take the shape in
Figure 15 as an example, the particles above the target
surface will be forced down, while the particles below the
target surface will be pushed up, which is not supposed to
happen. On the other hand, the EMD loss does not suffer
from this effect because it corresponds the particles to the
closest points from the target surface only. With a non-
hollow target point set, the CD loss produces different
correspondences in the two computation directions, which
results in a mixture of correct and wrong spatial relations,
while the EMD loss is more likely to find the best match
spatially due to the one-to-one correspondence generated by
a linear assignment algorithm.

In short, this analysis leads to the conclusion that the PRT
EMD loss, which computes point correspondences between
the filled simulation particle system and a non-hollow target

Table 7. Computational costs (time and GPU memory consumption) of the TaiChi-based differentiable simulator used in the DPSI
framework with an Nvidia GeForce RX 4090 GPU. The costs of simulations with three motions and particle densities are reported. cp.:
compile-time costs. The first time a program is run takes extra time to compile TaiChi kernels. 100 FB-iterations (min): the runtime of 100

forward and backward computations in minutes.

Motion Particle density 4 x 107 6 x 107 8 x 107
Poking-1 Number of particles 1946 2808 3926
CP. Forward time (s) 9.56 9.83 9.23
Forward time (s) 1.45 1.61 2.17
Forward GPU (GB) ~1.6 ~1.8 ~1.9
CP. Backward time (s) 24.69 24.71 24.42
Backward time (s) 2.27 2.39 2.56
Backward GPU (GB) ~1.7 ~1.8 ~1.9
100 FB-Iterations (min) 6.71 7.18 8.37
Poking-shifting-1 Number of particles 3880 5836 7738
CP. Forward time (s) 11.09 14.63 23.97
Forward time (s) 2.87 7.06 16.78
Forward GPU (GB) ~1.9 ~2.2 ~2.5
CP. Backward time (s) 26.15 27.67 27.34
Backward time (s) 4.31 5.42 5.79
Backward GPU (GB) ~1.9 ~2.2 ~2.5
100 FB-iterations (min) 12.47 21.30 38.10
Flattening Number of particles 3059 4688 6271
CP. Forward time (s) 14.02 15.19 15.94
Forward time (s) 6.08 6.54 7.88
Forward GPU (GB) ~1.8 ~1.9 ~2.1
CP. Backward time (s) 31.95 34.83 34.93
Backward time (s) 10.14 12.29 13.03
Backward GPU (GB) ~1.8 ~1.9 ~2.1
100 FB-iterations (min) 27.53 31.90 35.35
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point cloud, is the most ideal choice for capturing the correct
spatial differences between point sets.

4.8. Remark on computation cost

In this subsection, we report the running time and GPU
memory needed for forward and backward computations for
the DPSI framework with different particle densities and
motions. The statistics are summarised in Table 7, which
were obtained using an Nvidia GeForce RTX 4090 GPU.

It can be seen that the computation time and memory
increase as the number of simulation particles and the length
of motion increase. Because of the pre-compilation of
kernels when they are first called in a TaiChi programme,
the first forward and backward passes always take much
longer and the later repetitive calls are much faster, as
denoted by ‘CP. Foward time (s)’.

With particle numbers around 2000 to 4000, a DPSI
optimisation run that consists of 100 iterations of forward-
backward computations using 1 datapoint can be done in
about 10 min. As shown by Figures 4 and 5, most runs
converge within 50 iterations, which means that a plausible
solution can be found by DPSI in about 5 min. With a good
initial guess of the parameters, as shown by the dotted lines
in Figure 14, this runtime can be further reduced to around
2 min. In addition, the memory consumption for these
simulations is within 3 GB, which permits implementations
on portable and small GPUs. With no more than 2 min for
the 3D reconstruction pipeline, a parameter identification
process could take less than 5 min to complete. These
statistics confirm that DPSI meets the criteria in compu-
tational costs for practical deployment. It also suggests
again that it is practical to perform parameter identification
with DPSI at any time without the need to rely on previously
found parameters or slow manual measuring techniques.

5. Conclusion

This work addresses the important problem of closing the
gap between simulated and real-world manipulations of
elastoplastic objects. In particular, we propose a differen-
tiable physics-based system identification framework
(DPSI) that can identify physics parameters through gra-
dient descent algorithms. Substantial experiments demon-
strate that the proposed framework can identify parameters
that reproduce quantitatively and qualitatively realistic
elastoplastic object manipulation dynamics in the presence
of real-world perceptual and data collection challenges.
These challenges include (1) simple and short motions, (2)
incomplete trajectories, (3) object occlusions, (4) point
cloud noises and (5) small data. The proposed framework is
the first example of system identification with differentiable
physics-based, particle-based simulation for robotic volu-
metric elastoplastic object manipulation. It serves as the
foundation for faster and more accurate real-world de-
ployments of deformable object manipulation.

In addition, with the use of physics-based dynamics
models, the identified parameters are physically meaning-
ful. The experiments reveal that different parameter values
found through optimisation can be interpreted in a way that
is aligned with our understanding and intuitions about real-
world physics. Therefore, the DPSI framework not only
gives users confidence in the simulation controlled by the
physics models and these parameters but also provides users
with intuitive angles to identify the limitations of the re-
constructed manipulation dynamics.

5.1. Limitations and future research

Several limitations can be observed from the experiments
conducted in this work. The most obvious would be the
under-representativeness of the physics models that de-
scribe the underlying manipulation dynamics. As discussed
in the Results section, there is a lack of elastic returning
effect at the areas of contact with sharp edges of objects, the
insufficient spread of force impact that causes the defor-
mation to stay near the local contact area, and the artefacts of
floating displaced particles. Though these inaccuracies may
be negligible for coarse manipulations that appear more often
in our daily lives, they would lead to unacceptable solutions
for high-precision manipulation tasks such as surgery and
soft object assembly. In addition, various approximations in
the MLS-MPM and programming implementations also
contribute to the simulation inaccuracy. As such, future
research is needed to develop more accurate physics models,
numerical approximations, and coding implementations to
simulate object deformations.

Secondly, an important assumption of this work is that
the deformation behaviour of the target material in need of
parameter identification can be simulated by the selected
elastoplasticity model. Thus, it should be noted that when
the target material’s behaviour is largely underrepresented
by the selected physics model, DPSI would not be able to
produce very realistic simulations. In other words, the
manual selection of the elastoplasticity model is of high
importance for the proposed DPSI framework. For example,
our results with soil reveal that DPSI found parameters to
make simulations appear as close to the real materials as
possible, but the use of the von Mises plasticity model will
make it difficult to recover parameter values that accurately
reflect realistic soil or foam behaviours, which are better
captured by the DruckeraPrager model.

Thirdly, an important lesson learnt from the results is that
increased complexity of motion and contact mode leads to
fewer local minima and better system identification accu-
racy. The number of local minima indicates that the col-
lected data is insufficient to fully induce the correct values
of the concerned parameters. Thus, in the future, we en-
vision a better framework that incorporates learning-based
approaches to allow the automatic selection of diverse tools
and interaction motions to achieve more efficient and ac-
curate parameter identification.
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Another limitation comes from the means of capturing
real-world observations. In this work, we employ the multi-
view fusion point clouds as the observation space, which
suffers from noise and the inaccurate estimate of the camera
extrinsic matrix. In the future, new methods should be de-
veloped to reduce point cloud noises and improve the precision
of camera calibration. Lastly, the simulated scene in this work
is limited to an end-effector, a table surface, and a target
elastoplastic object. Efforts are needed to extend the frame-
work to support more realistic and complex contact dynamics.
More experiments are also needed to examine the feasibility of
large-scale simulation in terms of efficiency and accuracy.
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Notes

1. Visit our project page at: https://ianyangchina.github.io/SI4RP-
data/.

2. Modelling Clay (https://amzn.eu/d/fK3HIGa). Cloud Slime Kit
(https://amzn.eu/d/9BYM1kx).
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Appendix
A. Optimisation results with height map loss

As mentioned in the main text, optimising the parameters
using the height map loss results in unsatisfactory per-
formances. Here, we compare the optimisation and
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Figure 16. Optimisation and validation losses over 100 gradient
updates at level-1 contact complexity from optimising the PRT CD,
PRT EMD, Height Map and Negated Height Map loss functions.
Each row shows the changes of an evaluation metric or a parameter,
denoted on the left. In each figure, different colours indicate the
results of minimising a different loss function, as labelled by the
legend on the top. Each colour has three dotted lines corresponding to
the results of three random seeds and a solid line corresponding to
their means. (a) Optimisation losses. (b) Validation losses.

validation losses of minimising the height map loss with
those of minimising the PCD CD and PRT EMD losses in
Figure 16.

The green curves show that minimising the height
map loss results in an increase of the height map loss with
both optimisation and validation datasets, which is
counterintuitive. To verify that the counter effect is not
due to mistaken loss computations, we further optimise
the negated height map loss (by effectively using the
negated gradients from the height map loss), which re-
sulted in worse performances (red curves). In addition,
the height map loss is found to perform worse than the
PCD CD loss, which was found to be the worst in all
point-based loss functions (see the blue curves in Figures
4 and 5). Therefore, we discarded the results from the
main article to reduce complications during the result
analysis.

The possible cause of this phenomenon could be the loss
of spatial information and geometric precision during height
map computations. While height maps appear to be visually
more intuitive to humans, it is computed by collecting the
highest z values of the points within an area defined by
the height map resolution. As such, the gradients from
the height map loss are only relevant to the z values of the
highest points in each cell, having no connections with the
points that are lower in each cell nor with the horizontal
aspect of the selected points.

B. Skill planning with the MPM simulator

To demonstrate the feasibility of planning with the MPM
simulator, we create a simple greedy exhaustive search
algorithm that selects 10 actions to manipulate a piece of
clay to match a target height map using the cylinder end-
effector. The process is summarised in Algorithm 1.

In short, the algorithm starts with an initial object
configuration in the simulator and performs exhaustive
searches to find eight consecutive actions that result in the
lowest height map distance from the target height map. An
action effectively applies one of the two poking-shifting
motions at one of the nine locations surrounding the object.
As shown by Figure 17, the neighbouring locations are
0.03 m away from each other in the x and y directions. The
height from which the skill motion starts is set to the highest
z value of the object before each action. For each action, the
algorithm queries the simulator for the height map loss
values of the manipulation results of applying the two
poking-shifting motions at the nine locations (hence 18
forward simulations). An empty action that does not move
the end-effector is also considered in each search. The
action with the lowest loss is selected and the algorithm
proceeds to the next action search with a new object state
from the last action. The algorithm returns a plan of eight
actions.

Figures 18 and 19 visualise two plans returned by the
algorithm that successfully manipulate the clays to a
shape close to their respective target height maps. These
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examples showcase the feasibility of planning with the
MPM simulator. Each plan takes roughly 7.5 min to
finish on a 4090 GPU, where each iteration (search over
19 actions) takes roughly 0.9 min. This is not yet real-
time but promising considering the high dimensionality

of deformable object states.

Algorithm 1: Greedy exhaustive search

Initialise object particle system
Initialise MPM simulator: ENV
Load target height map

Load DPSI-found parameters: ENV.set_parameters(8°™)

Effector_init_pos <— ENV.get_object_centre()
New_state <— ENV.get_state()
Plan =]
For n =0 to Number_of- actions:
| >Evaluate all skills and start locations
| Min_loss <— oo
Fori=1to2:
| Forj=—1to1:
| | Fork=—1to1:
| | Load skill trajectory: skill;

Effector_init_pos’.x + = 0.3 X j
Effector_init_pos’.y + = 0.3 X k

|
|
|
| ENV.set_state(New _state)
| ENV.set_agent_pos(Effector_init_pos’)
| ENV.simulate(skill;)
| Loss = ENV.get_loss()
| If Loss < Min_loss:
| | Min_loss < Loss
| | Bestaction,, < (i, j, k)
| | Final_state - ENV.get_state()
Evaluate empty action
ENV set_state(New _state)
ENV .set_agent_pos(Effector_init_pos”)
ENV.simulate(empty_action)
Loss = ENV.get_loss()
If Loss < Min_loss:
| Min_loss <— Loss
| Best.action,, <— (empty_action)
| Final_state <— ENV.get_state()
Plan.append(Best_action,,)
New _state <— Final_state
eturn Plan

|
|
|
|
|
|
|
|
|
|
|
|
|
>

°—-

| Effector_init_pos’ = Effector_init_pos.copy()

Effector_init_pos’.z = ENV.get_object_height()

Poking-shifting-1 Object centre (topo view)

. J\- ) ° ™

.‘\* ©0.03 mo;f’ °

A
Poking-shifting-2 o

Y ’

.‘

Figure 17. Action composition for the skill planning algorithm
with the cylinder end-effector. An action applies one of the two

poking-shifting motions at one of the nine neighbouring locations
surrounding the object from the highest z value of the object.

e W

A

Figure 18. Visualising a plan returned by the exhaustive search
algorithm that takes eight actions to flatten a piece of clay to match

a target height map (bottom right). All height maps are plotted
under the same colour/value distribution shown by the colour bar.
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Figure 19. Visualising a plan returned by the exhaustive search
algorithm that takes eight actions to flatten a piece of clay to
match a target height map (bottom right). All height maps are
plotted under the same colour/value distribution shown by the
colour bar.
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