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Radar remote sensing retrieval of vertical profile of 
rainfall kinetic energy in the UK 

 
Jingxuan Zhu, Qiang Dai, Yuanyuan Xiao, Jun Zhang, Lu Zhuo, and Dawei Han 

 

  Abstract—As rainfall undergoes a series of complex 
microphysical processes in the atmosphere, studying its vertical 
profiles is crucial for understanding the mechanisms of rainfall 
evolution. While previous research has focused on vertical profiles 
of rainfall intensity and drop size distribution (DSD) parameters, 
there remains a gap in the study of rainfall energy. This study uses 
the Dual-frequency Precipitation Radar (DPR) in Global 
Precipitation Measurement (GPM) to analyze the vertical profile 
characteristics of rainfall energy (KEt) for the first time. Using 
DPR data collected from 2015 to 2022 across the UK, rainfall 
energy calculations reveal a strong correlation (over 0.99) between 
the rainfall energy of adjacent 125 m height bins, with stratiform 
rain showing higher correlation than convective rain. Specifically, 
below 1500 m, the correlation coefficient for KEt in stratiform rain 
is 0.9973, while for convective rain it is 0.9957, showing higher KEt 
variability in convective rain.  The study also introduces the 
change ratio (R) to characterize the degree of change from the 
lower to upper height bins, finding that rainfall energy variability 
has a larger standard deviation compared to DSD parameters, 
with standard deviations for R mean values of KEt reaching up to 
28.37% for convective rain and 12.08% for stratiform rain within 
1500 m. Additionally, the profiles of rainfall energy exhibit 
significant seasonal variations, with these variations increasing 
with height. KEt is consistently highest in summer and lowest in 
winter at all same altitudes. This study enhances the 
understanding of the vertical pattern of rainfall evolution, 
contributes to providing more accurate surface rainfall energy 
estimates, analyzing influencing factors and the uncertainty of 
vertical rainfall variability. 
 

Index Terms—radar; remote sensing; DPR; vertical profile; 
rainfall energy  

 

I. INTRODUCTION 
AINFALL plays a crucial role in geography and 
environmental studies. It serves as a vital water supply, 
impacting ecosystems, agriculture, and human 

settlements [1], [2], [3], [4], [5]. Accurate estimation of rainfall 
patterns is essential for hydrometeorological studies [6], [7], 
enhancing our understanding of natural processes. 

Apparent vertical precipitation structures exist in the 
atmosphere and are attributed to a series of microphysical 
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processes (e.g., evaporation, drift, fragmentation and merging) 
carried out by raindrops [8], [9]. Therefore, the investigation of 
vertical precipitation profiles can facilitate a more 
comprehensive understanding of precipitation formation and 
evolution [10]. Additionally, this approach can provide more 
accurate surface precipitation information, particularly when 
remote sensing techniques are utilized [11]. The evolution of 
the microphysical processes of raindrops in the atmosphere has 
been investigated in the previous studies with techniques such 
as dense network of disdrometers, numerical weather prediction 
models and remote sensing [10], [12], [13], [14], [15]. 

However, rainfall energy, as one of the important 
characterizations of rainfall microphysics, is often neglected in 
current vertical profile studies. Rainfall energy refers to the 
kinetic energy that is converted from gravitational potential 
energy when raindrops land on the ground [16], [17]. It has a 
striking effect on soil aggregates and is a key driver of soil 
erosion [18], [19]. Rainfall energy is calculated by the drop size 
distribution (DSD) of raindrops and has a more complex 
vertical profile than rainfall intensity. In reality, the variation of 
the vertical profile of rainfall makes its characterization on the 
surface of different heights different. For example, the 
characteristics of raindrops at the top, the waist, and the bottom 
of the same mountain are different [10], [20]. Consequently, the 
accurate observation of the vertical profile of rainfall energy is 
necessary to revel the rainfall energy evolution pattern and the 
three-dimensional influencing elements, such as wind and 
pressure. 

The current accurate rainfall energy measurements are 
mainly based on site disdrometer and weather radar. The 
disdrometer is the most accurate rainfall energy measurement 
instrument at present. This instrument analyzes signal changes 
from an impact or laser sensor to determine the size and velocity 
of raindrops within a given sampling range [17], [21]. Ground-
based dual-polarization radar, on the other hand, is a means of 
acquiring rainfall energy at large scales. It realizes spatial and 
temporal retrieval of regional rainfall microphysical 
characteristics through information on the echo differences of 
distinct signals [16], [22], [23], [24]. 

Nevertheless, both disdrometer and ground-based weather 
radar have practical limitations in observing over widely 
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varying terrain, and it is unlikely that vertical observations of 
rainfall can be realized at continental or even global scales. The 
Tropical Rainfall Measuring Mission (TRMM) satellite 
launched in 1997 carried the first satellite-based Precipitation 
Radar (PR), which provided a homogeneous three-dimensional 
rainfall characterization dataset, making it possible to study the 
rainfall evolution patterns on a large-scale horizontally and 
vertically. Following this, the Global Precipitation 
Measurement (GPM) core satellite, an improved version of 
TRMM, was launched and started operation by NASA and 
JAXA in February 2014, carrying the first satellite-based Dual-
frequency Precipitation Radar (DPR). The DPR is equipped 
with a second signal band (Ka-band) that operates at a higher 
frequency than the Ku-band, which is the only one available for 
the PR, and is designed to accurately capture light rainfall [25]. 

Several studies have utilized data from the PR to investigate 
various aspects of vertical precipitation. Petersen et al. [26] 
used TRMM data to study the vertical structure, lightning, and 
rainfall characteristics of Amazonian and South American 
convection, highlighting the comprehensive nature of the 
TRMM dataset. Haddad and Park [27] proposed a Bayesian 
approach to quantify vertical variability of rainfall using 
TRMM radar and microwave imager measurements. 
Additionally, recent studies have used GPM DPR to study 
rainfall microphysical characteristics such as DSD. For 
instance, Gorgucci and Baldini [28] evaluated the accuracy of 
DSD retrievals using DPR, emphasizing the need for vertical 
profiles that reflect natural variability. Sun et al. [29] used DPR 
data to study the developing, mature, and dissipating stages of 
tropical rainfall, and concluded that the ground-based DSD 
from DPR inversion is reliable. Ramadhan et al. [11] studied 
the vertical structure of raindrop size distribution over West 
Sumatera using GPM observations, providing insights into 
local rainfall patterns. Wen et al. [30] used DPR data to study 
the seasonal variations of vertical precipitation in East China 
below 16 km, and concluded that DPR observations can capture 
the details of precipitation features with high spatial resolution. 

Although some studies have investigated the microphysical 
characteristics of vertical precipitation, there are still study gaps 
in rainfall energy estimation. Existing research on vertical 
precipitation characteristics also lacks in-depth analysis of pure 
liquid-phase precipitation studies. Most of the existing studies 
do not distinguish the phase state and focus on the formation 
process of precipitation at high altitude, ignoring the change 
rule of pure liquid precipitation at the near-surface, which 
precisely the key to rainfall energy estimates. The aim of this 
study is to propose a method for the vertical structural 
estimation of rainfall energy for the first time based on GPM 
DPR data, and to investigate the effect of season on its 
characteristics. This study contributes to accurately characterize 
surface rainfall energy and enhance rainfall evolution cognition 
through the retrieval of radar observation, which can help to 
improve the spatial interpolation study in areas with complex 
topography and large elevation variations, and to realize a more 
accurate estimation of soil erosion. 

II. STUDY AREA AND DATA 

A. Study area 
The UK has a latitudinal range of approximately 49°N to 

59°N. Its climate is temperate maritime, influenced by the 
North Atlantic Warm Current. This climate is characterized by 
frequent rainfall in winter and autumn, with high and uniform 
annual precipitation. According to the State of the UK Climate 
2022 [31], the climate in the UK is becoming increasingly wet. 
Over the past decade, the annual rainfall has increased by 8% 
compared to the period from 1961 to 1990. Notably, 2014 and 
2020 have ranked among the top 10 wettest years in UK history. 
In addition, the recent annual rainfall is likely influenced 
significantly by extreme years. Thunderstorms and torrential 
downpours have become more frequent, exacerbating 
intermittent flooding problems [31]. 

 
Fig. 1. DEM map in the study area. 

 

B. GPM DPR data 
The GPM DPR became operational in April 2014. It 

represents the first dual-frequency precipitation radar in the 
world, incorporating both Ku (13.6 GHz) and Ka (35.5 GHz) 
bands with swath widths of 245 and 120 km, respectively. The 
footprint resolution is 5 km with a vertical resolution of 125m. 
DPR enables all-weather precipitation observations over land 
and ocean, representing a significant enhancement over its 
predecessor, TRMM PR. The primary objectives of DPR 
include enhancing the accuracy and sensitivity of precipitation 
detection and providing global three-dimensional 
microphysical precipitation characteristics (e.g. shapes and 
sizes) to lead a better understanding of storms. The Ka-band 
portion of DPR, known as KaPR, primarily detects echoes from 
ice and snow particles, typically used for detecting snowfall and 



3 
 
 
weak precipitation events. Meanwhile, the Ku-band portion, 
known as KuPR, effectively captures echoes from intense 
precipitation events, primarily used for detecting heavy rainfall. 
By obtaining differentiated information from the two bands 
simultaneously, the three-dimensional precipitation particle 
size distribution can be achieved. 

This study uses Full scan Swath (FS) data from GPM Level-
2 DPR product (2ADPR) version 7, covering the period of 
January 2015 to December 2022 across the entire UK. The 
research focuses on precipitation observations with a liquid-
phase state in the range of 0~6 km above sea level and examines 
two major rainfall types: stratiform and convective. Fig. 2 
shows the probability density function (PDF) of the number of 
rainfall records for whole altitude data and surface data in the 
study area over the eight-year period. Each bar represents a 125 
m vertical bin. Fig. 2(a) shows that most rainfall occurs below 
4 km altitude, with the highest rainfall concentration in the 
500~625 m bin. Convective rainfall is more common at 
altitudes below 750 m and above 3000 m, compared to 
stratiform rainfall. Fig. 2(b) illustrates the record amount at the 
surface level, indicating a higher PDF for convective rainfall 
within the 0~125 m bin and a higher PDF for stratiform rainfall 
within the 125~250 m bin. The PDF differences between the 
two rainfall types are less apparent in other bins. The yellow 
dashed line in Fig. 2(b) represents the elevation PDF of the land 
surface at a grid scale (0.1°×0.1°), which exceeds the PDF of 
both rainfall types within the 125~375 m range, suggesting a 
higher frequency of surface rainfall below 125 m elevation. To 
better understand the vertical profiles, two rainfall scanning 
cases, January 9, 2020 at 0:46:17 UTC (Case A) and February 
15, 2020 at 13:43:22 UTC (Case B), were selected for case 
study (Table I). 

 
Fig. 2. Probability density function (PDF) of the rainfall record 
number for whole height data (a) and surface data (b) in the 
study area between 2015 to 2022. The yellow dashed line in (b) 
represents the land surface elevation PDF at the 0.1°×0.1°grid 
scale. 

TABLE I 
THE BASIC INFORMATION FOR STUDY DATE AND THE TWO 

SCANNING CASES  
 Start Time End Time Stratiform 

pixel 
number 

Convect
ive pixel 
number 

Whole 
period 

2015-01-01 
08:30:26 UTC 

2022-12-31 
18:46:37 UTC 

13,380,35
6 

946,213 

Case 
A 

2020-01-09 
0:46:17 UTC 

2020-01-09 
0:48:56 UTC 

2,194 220 

Case 
B 

2020-02-15 
13:43:22 UTC 

2020-02-15 
13:46:06 UTC 

2,357 188 

III. METHODOLOGY 

A. DSD function algorithm 
DSD function is essential in characterizing precipitation 

microphysics and is commonly expressed in the three-
parameter gamma distribution form [9], [16], [32]. It defines the 
number of particles in the unit volumn for each unit diameter 
(D) interval, denoted as N(D): 

 

 

(1) 

 

 

(2) 

where f(μ) is a function of the shape parameter μ, Γ represents 
the gamma mathematical function, Nw (mm−1·m−3) is the 
normalised intercept parameter, and Dm (mm) is the mass-
weighted diameter parameter, defined as: 

 

 

(3) 

In the DPR algorithm, μ is constant and assumed to be 3. It 
then applies two types of I (rainfall intensity)–Dm relationships 
to estimate DSD parameters for stratiform [Eq (7)] and 
convective rain [Eq (8)], respectively. 

 
 (for stratiform) 

(4) 

 
 (for convective) 

(5) 

In the retrieval process from the storm top to the actual 
surface, ε serves as an adjustment factor, remaining constant 
throughout. Once ε is established, the effective radar reflectivity 
factor (Ze) values are utilized to search for I and Dm in the 
scattering tables for each range bin. Due to the different scan 
swaths of the KuPR and KaPR, the DPR FS data comprises 
High sensitivity beam scan Swath (HS) data collected from the 
inner swath where both Ku and Ka bands are scanned 
simultaneously, as well as other observations obtained solely 
from the outer swath where only Ku band is scanned. These 
data are processed separately using dual-frequency and single-
frequency algorithms for estimation. In the dual-frequency 
algorithm, ε can be inferred when Ku-Ze and Ka-Ze bands are 
available. Conversely, in the single-frequency algorithm, the 
determination of ε relies on the monthly DSD database at grid 
scale to align its estimation closer to the results obtained from 
the dual-frequency algorithm. After determining I and Dm, Nw 
can be solved according to the following equation: 

 
 

(6) 

B. DPR-based rainfall energy estimation 
According to the kinetic energy formula, the energy of a 

raindrop (e, unit: J) is determined by its mass m (kg) and the 
velocity v (m s−1). Assuming the raindrop is spherical, ej can be 
calculated using the diameter D (mm): 
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(7) 

where ρ is the density of water (1 g cm−3). Due to air resistance, 
the terminal velocity of raindrops near the ground remains 
constant. The following V–D relationship is used to estimate v 
[33]: 

 

 

(8) 

where ρ0 (1.20 kg m-3) and ρa are the air densities at sea level 
and observation altitude, respectively. 

The sum of the kinetic energy of each rain drop, within a 
given rain depth that hits a given area, defines the total kinetic 
energy. The rainfall kinetic energy KEt for the unit time (J m−2 
h−1) can be calculated as the product of the kinetic energy of 
each drop of each diameter class, which can be expressed as 
follows: 

 
 

(9) 

where esum (J m-2) is the total energy of all raindrops per unit 
area (m2). 

C. Phase and rain type division algorithms 
The DPR relies on the Classification (CSF) module to 

categorize precipitation pixels into three types: convective, 
stratiform, and other. As stratiform precipitation is 
characterized by low intensity, widespread coverage, and often 
accompanied by bright band echoes, the bright band (BB) is 
widely utilized for identifying stratiform precipitation. For the 
single-frequency module, DPR utilizes the V-method (vertical 
profiling method) and H-method (horizontal pattern method) in 
conjunction to determine precipitation types [25]. The V-
method initially identifies the presence of a bright band on the 
vertical profile and then assesses whether the reflectivity factor 
meets the typical conditions for different rain types. For 
instance, if BB is detected, and the reflectivity factor does not 
exceed 46 dBZ (known as special convective threshold), it is 
classified as stratiform type; if BB is not detected, and the 
reflectivity factor exceeds 40 dBZ (known as conventional 
convective threshold), it is classified as convective type [25], 
[34]. The H-method utilizes the University of Washington 
convective/stratiform separation method [35] to determine if 
the maximum reflectance coefficient in the horizontal pattern 
of the radar beam exhibits convective characteristics. If it is not 
of the convective type, the magnitude of the reflectivity is then 
used to determine if the precipitation is stratiform rain, 
otherwise it is classified as “other”. In the dual-frequency 
algorithm, precipitation is classified using the measured dual-
frequency ratio (DFRm) method [23], which utilizes the 
difference between the reflectivity (in dB units) of Ku and Ka 
bands. The method involves identifying points of local 
maximum and minimum values of DFRm, which are key in 
classifying the precipitation type. The empirical parameters C1 
(0.18) and C2 (0.20) are used in the decision rule: 

  (10) 

  (11) 
 

 

(12) 

In the algorithm for phase state identification in DPR, for 
precipitation with a BB, five bins are selected from the storm 
top bin to the land surface bin, naming them as nodes A to E 
from top to bottom [25]. Among them, B and D represent the 
upper and lower boundaries of the BB, respectively, while A 
and E represent bins where the particle temperature is closest to 
-20°C and 20°C, respectively. Node C corresponds to the peak 
of the BB. In cases without a BB, nodes B, C, and D are all 
considered to be located at the 0°C range bin. Above node A, 
the particle phase state is solid, while between nodes A and D, 
it is classified as mixed phase state. This study focuses on liquid 
precipitation, specifically rain particles located below node D. 

D. Evaluation method 
To understand the vertical variation of variables, the change 

rate R can be calculated using the difference in variable values 
between adjacent height layers in the same observation column. 
When the variable is absent in the preceding height bin, it is 
excluded from the calculation. The equation is defined as 
follows: 

 

 

(13) 

where Xi and Yi refer to the observed values in the lower and 
upper bins of the ith sample pair, respectively. 

In addition, in order to assess the correlation of variables of 
neighboring height bins, Pearson’s correlation coefficient is 
used in this paper, defined as: 

 

 

(14) 

IV. RESULTS 

A. DPR DSD parameters and intensity distribution 
The scanning scenarios for both at 500 m altitude are 

represented in Fig. 3 (a~d) and (e~h), respectively. The events 
used for the vertical analysis examples are marked with 
horizontal lines in Fig. 3 (a) and (e). There are four variables in 
Fig. 3, including rainfall type, Dm, Nw in logarithmic form with 
base 10 (lgNw) and I, where the first three variables are obtained 
from the 2ADPR product and I is calculated from Dm and Nw.  
Both selected cases contain two distinct types of rain, stratiform 
rain and convective rain, divided in DPR CSF module.  
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Fig. 3. Scanned Cases A and B of DPR-derived rain type (a, e), 
Dm (b, f), lgNw (c, g) and I (d, h) at 500 m. 

Specifically, in Case A, the DPR observed widespread rainfall 
in the north of England and the east of Northern Ireland, with I 
concentrating on less than 3 mm h-1, Dm concentrating on less 
than 1.5 mm, and lgNw mainly distributing between 2.8 and 3.7. 
In Case B, the DPR primarily scanned rainfall over western and 
southern Scotland, and observed small-scale rainfall over 
eastern England. Two main rainfall centers are identified, one 
in the range from the western side of the Southern Uplands to 
the southwestern part of the Grampian Mountains, and the other 
at Scafell Pike. The I of Case B is significantly higher than I 
scanned in Case A. Meanwhile, most rainfall in the western 
region of the Southern Uplands exceeded 4 mm h-1, resulting in 
raindrop sizes that were generally higher than in case A. Here, 
Dm values are mainly above 1 mm, with high values exceeding 
2.5 mm and appearing in bright yellow in Fig. 3(f), and lgNw 
values are similar to those of Case A, also concentrated around 
3.5. 

Fig. 4 shows the vertical profile distribution of variables for 
Event I and II (labeled by the red lines in Figs. 3(a) and (e), 
respectively). The black lines at the bottom of subfigures 
represent the ground elevation values. Below the black line, 
there is no rainfall observation data in DPR data, so it is shown 
as a white color patch under the black line. The symbol “×” 
indicates that the rainfall type of the column is convective 
rainfall, while the absence of the symbol “×” indicates 
stratiform rainfall. In Fig. 4(a~c), the liquid observation heights 
for Event I basically do not exceed 1000 m above sea level. 
Among them, I values are concentrated in the range below 1.5 
mm h-1, and the vertical variations of Dm, lgNw and I on the same 
column are almost invisible. For Event II, the overall rainfall 
intensity is much higher than Event I, and the liquid 
precipitation height top is also higher. This is mainly due to the 
high values of Dm, which are mostly above 1.5 mm. Vertical 
variations of several column variables can be clearly seen in the 
figure, where Dm tends to decrease from the top to the bottom, 
and the corresponding I also tends to decrease despite the 
increase of some of the lgNw values. In addition, the lgNw of the 
convective rain in the two events is significantly higher than 
that of the stratiform rain type, which corresponds to lower Dm 
values. 

 
Fig. 4. Vertical profile of Dm (a, d), lgNw (b, e) and I (c, f) in 
Events I and II. Note that black dash lines at the bottom of 
subfigures represent the surface altitude, and the “×” is labeled 
for convective rain. 

Fig. 5 illustrates the contoured frequency of variables versus 
observed heights for different rainfall types over the eight years, 
and due to the magnitude differences, the quantities were 
logarithmized before calculating the frequencies. Here, Fig. 
5(a~c) are for stratiform rain and (d~f) are for convective rain. 
In this study, liquid precipitation within 6 km was selected for 
analysis, and it can be seen from the figure that there is very 
little liquid precipitation over 4 km, and most of the liquid 
precipitation is concentrated below 2 km, regardless of the type 
of rainfall. Comparing Fig. 5(a) and (d), the density centers of 
Dm for stratiform rain are higher than those for convective rain, 
which are 1 mm and 0.85 mm, respectively, and the low Dm 
contours for convective rain are more compact, suggesting that 
the Dm size is more concentrated in this case. Meanwhile, lgNw 
in Fig. 5(b) and (e) show opposite characteristics, with higher 
values of convective rain centered around 3.7 and stratiform 
rain at 3.3. In addition, in Fig. 5(f), the density of convective 
rain does not maintain a decreasing trend with the increase in 
intensity after it is larger than the center of density (about 0.23 
mm h-1). Instead, a second center of density occurs near 1.72 
mm h-1, and the altitude ranges of frequencies in the range of 
50~78 lg% (between yellow and orange patches) continue to 
expand with the increase in rainfall intensity even between the 
two centers of density. It is noteworthy that the DSD parameter 
contours in the middle layer in Fig. 5(d) and (e) both have a 
small tail, indicating that the number of raindrops in convective 
rain is much larger at lower elevations than at higher elevations. 
This result may be attributed to the fact that the strong updrafts 
present in convective rains provide great opportunities for the 
growth of raindrops of varying diameters beneath the cloud 
base. Consequently, this phenomenon leads to an increased 
number of raindrops (large Nw values) and a broad range of 
intensities at lower altitudes. 
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Fig. 5. Contoured frequency of Dm (a, d), lgNw (b, e) and I (c, 

f) versus observed heights for stratiform (a~c) and convective 
(d~e) rain in 2015~2022. 

B. Change ratio of DSD parameters and intensity 
In this study, the R of Dm, lgNw, and I are defined as RD, RlgN 

and RI, respectively. Positive values of the R represent an 
increase change in current bin compared to the upper bin, while 
negative values represent the opposite. Fig. 6 shows the vertical 
profiles of RD, RlgN and RI for Event I and II. It can be seen that 
the RD ratios do not vary much and are mostly negative in the 
vertical view, indicating that the Dm in the air is basically 
unchanged from top to bottom, with a tendency for individual 
precipitation columns to decrease. Specifically, the liquid 
precipitation columns for Event I show little vertical variation 
in Dm, while Event II shows more columns with variations in 
Dm, which may be due to more intense rainfall. As for lgNw, it 
can be seen from Figs. 6(b) and (e) that all columns for both 
events change and show a continuous upward trend from top to 
bottom, except for the tops of individual rain columns of Event 
II appear to have negative values of RlgN. 

 
Fig. 6. Vertical profile of RD (a, d), RlgN (b, e) and RI (c, f) in 
Events I and II. Note that black dash lines at the bottom of 
subfigures represent the surface altitude, and the “×” is labeled 
for convective rain. 

However, from the top to the bottom, under the situation of 
almost constant Dm and increasing lgNw, the overall trend of I 
decreases, mainly due to the increase of air pressure with 
decreasing altitude, which reduces the raindrop velocity, while 
the DSD does not change or changes very little, which further 
affects the gradual decrease of I. Nevertheless, there are still 
some records with positive RI, suggesting that the effect of DSD 
changes on I exceeds the suppression of I increase by altitude 
decrease at this time. 

Fig. 7 depicts the contoured frequency distribution of RD, RlgN 

and RI with height for eight years of stratiform and convective 
rain. All frequency plots show a tree structure. From the bottom 
to the top, at heights below about 750 m, the majority of the RI 
is concentrated near the value of 0, which looks like a tree trunk 
in the diagram. Above 750 m, it looks like a canopy, where the 
R range increases dramatically at an altitude bin of 875 m, and 
reaches its maximum range near 1500 m altitude. Further up it 
decreases and forms a tree top at 3000 m in the figure. 

 
Fig. 7. Contoured frequency of RD (a, d), RlgN (b, e) and RI (c, f) 
versus observed heights for stratiform (a~c) and convective 
(d~e) rain in 2015~2022. 

From the height-concentrated purple patches in the figure, the 
high frequency R are all concentrated near the 0 value. 
Considering 750 m as the demarcation between high and low 
altitude, the RD and RI in the figure are all lower than 0 while 
RlgN is all higher than 0 at low altitude, which indicates that most 
of the raindrop diameters decrease with decreasing altitude, 
accompanied by a gradual increase in the concentration of the 
raindrops. And the R values at high altitude take a wider range 
of values, reflecting a series of complex microphysical 
characteristic changes of raindrops in the high air. Among the 
three variables, RlgN is clearly the one with the largest difference 
between high and low altitudes. In terms of rain types, 
stratiform rain has a wider range of R values than convective 
rain, and the “canopy” is more luxuriant. The orange ranges of 
RD and RlgN for the stratiform rain in the figure are about more 
than twice as wide as for the convective rain. The differences in 
vertical distribution of raindrop parameters between stratiform 
and convective rain may be attributed to the distinct dynamics 
within these rain types. In stratiform rain, the weak vertical 
motion results in stable changes in water content and 
temperature with altitude, leading to less variability in DSD. 
However, external factors like terrain uplift can disrupt this 
stability, altering the coalescence process of raindrops. In 
contrast, convective rain features strong updrafts that promote 
a uniform vertical DSD due to vigorous mixing, despite the 
intense convective activity. 

C. KEt and RKE distribution 
Fig. 8 shows the track distribution of KEt calculations for the 

two cases at a height of 500 m above sea level. It can be seen 
that most of the KEt in the scanning range of Case A does not 
exceed 20 J m-2 h-1, while Case B has a large area of KEt 
exceeding 60 J m-2 h-1 in the high-intensity rainfall region in the 
western part of the Southern Highlands, showing a decreasing 
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trend of KEt from the southwestern part of Scotland to the 
central part of the country. The vertical variability of KEt in Fig. 
9 (a) and (b) is more obvious compared to the vertical profiles 
of DSD parameters and I in both Events in Fig. 4. For the RKE 
profiles in Fig. 9 (c) and (d), the distribution characteristics are 
similar to the RI but the pattern of decreasing with height is 
more apparent. However, compared to the presence of more 
than ten positive values in the RI profiles in both Events, the 
corresponding RKE values are almost all negative. 

 
Fig. 8. Scanned Cases A and B of DPR-derived KEt at 500 m. 

 
Fig. 9. Vertical profile of KEt (a, c), RKE (b, d) in Events I and 
II. Note that black dash lines at the bottom of subfigures 
represent the surface altitude, and the “×” is labeled for 
convective rain. 

Fig. 10 shows the contoured vertical frequencies of KEt and 
RKE. The range of KEt values for convective rain is almost twice 
as large as that for stratiform rain, with the outermost contours 
reaching a maximum of more than 400 and 200 J m-2 h-1, 
respectively. From the high-density patches (in rosy red) in the 
figure, it appears that more convective rain occurs at low 
heights and has a wider range of KEt values compared to high 
heights, with a second density center near 10 J m-2 h-1. In 
addition, high-energy convective rain is even more distributed 
at high altitudes above 3000 m than low-energy rainfall at the 
same height, reflecting the complexity of the raindrop dynamics 
within the convective rain. The frequency change of stratiform 
rain, on the other hand, is very smooth, with the frequency 
decreasing from the center of the distribution around 5 J m-2 h-
1 outward. For RKE, both rain types take values below 0 at low 
altitudes, with a large number of records mainly clustered 
around -5%, indicating that the RKE tends to decrease from top 
to bottom at low altitudes, and the magnitude is large. Similarly, 
the outermost contour of RKE for stratiform rain is much more 
than that for convective rain, indicating that the vertical RKE of 
convective rain is also more concentrated with a higher value 
of RKE, indicating that convective rain is relatively maintained 
at a higher energy level. 

 
Fig. 10. Contoured frequency of KEt (a, c), RKE (b, d) versus 
observed heights for stratiform (a, b) and convective (c, d) rain 
in 2015~2022. 

Fig. 11 and 12 show the gridded distribution of the mean 
values in KEt and RKE for the eight-year observations of the two 
rainfall types in each 250 m height interval for observation 
heights from 250 to 1500 m, respectively, with a gridded 
resolution of 0.1°. The maximum plotting height of 1500 m was 
chosen because the UK does not exceed 1500 m. It can be seen 
from Fig. 11 that the overall values of KEt take an upward trend 
with the observed height, regardless of the rain type. 
Meanwhile, the KEt of convective rain is much higher than that 
of stratiform rain at the same height in the same region. The KEt 
of stratiform rain is highest in the coastal areas of western and 
southern England and central England on average, and the high 
KEt of convective rain is more concentrated in all of England. 
This suggests that convective rain energy is lower in 
mountainous regions (e.g. the Scottish Highlands) than in other 
terrains, and is also related to the characterization of convective 
rain as seen in Fig. 10 (c) as occurring mostly at low altitudes. 

 
Fig. 11. Spatial distribution of mean KEt for stratiform and 
convective rain at various heights. 
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Fig. 12. Spatial distribution of mean RKE for stratiform and 
convective rain. 

As can be seen in Fig. 12, the same rain type RKE values from 
250~750 m are not much different and are mostly negative. As 
the height increases, more and more positive values appear, and 
up to 1500 m, the positive and negative values are almost split 
in half. In addition, for RKE at the same height, the mean value 
of RKE of stratiform rain is always lower than that of convective 
rain, which is shown by the fact that the absolute value of RKE 
of stratiform rain is larger when both RKE values are negative, 
and the RKE of stratiform rain is smaller or negative when 
convective rain RKE is positive. This shows that the RKE of 
stratiform rain decreases more rapidly from top to bottom at low 
observation altitudes, while the RKE of stratiform rain increases 
more slowly from top to bottom at high heights. 

D. Season variability of KEt and RKE 
To comprehend the influence of season on KEt and RKE, Fig. 

13 illustrates the mean curves and lower to upper interquartile 
ranges of distinct rainfall types for all (black solid curve) and 
for the different seasons (color solid curve) using shade error 
plots, as derived from the records between 2015 and 2022. 
Here, March~May, June~August, September~November, and 
December~February are regarded as spring, summer, fall, and 
winter, respectively. In general, there is little seasonal variation 
at lower altitudes, the mean KEt values in stratiform rain were 
8.74, 12.24, 12.00, and 9.01 J m-2 h-1 in the four seasons at 
altitudes below 1500 m. In contrast, the mean KEt values in 
convective rain were 19.22, 27.07, 18.50, and 15.91 J m-2 h-1, 
exhibiting higher values than those observed in stratiform rain. 
However, a large seasonal variation occurs above 1500 m, 
although the KEt curves for the overall feature (black curve) and 
for summer (red curve) almost overlap. In summer, the mean 
KEt reaches maximum among the four seasons for almost all 
heights for both rain types, with only convective rains between 
2000 and 3000 m are exceeded by spring (green curve). In 
addition, mean KEt was lowest in winter at most altitudes, and 
lowest in spring for stratiform rain between 1000 and 2000 m 
and 3250 and 3750 m. Seasonal differences in rainfall energy 
are subtle at lower altitudes, but as altitude increases, the mean 
value curve (black) approaches the summer season curve 
(orange), likely due to variations in liquid water height across 
seasons. Higher temperatures in summer correspond to greater 
rainfall heights, with autumn and spring following, and winter 
having the lowest. Additionally, the high number of 
thunderstorms in the UK during summer leads to the highest 
convective rainfall energy near the surface for all seasons  

 
Fig. 13. Shade error plot of KEt (a, c) and RKE (b, d) for 
stratiform and convective rainfall. 

In Fig. 13(b) and (d), all RKE curves for distinct seasons and 
both rain types exhibit negative values at low altitudes (below 
1125 m for stratiform rain and below 1625 m for convective 
rain). The minimum values of the RKE curves are observed at 
the lowest latitudes, with an overall value of approximately -1. 
68%. The RKE values all increase progressively with height, and 
the convective rain takes on a wide range of fluctuations earlier 
than the stratiform rain, reappearing near 2500 m with negative 
values, while stratiform rain manifests around 3000 m. 
Similarly, the black curve overlaps almost exactly with the 
orange solid line representing summer. The winter months of 
stratiform and convective rain show a very large fluctuation and 
then disappear near 4000 and 3125 m at high altitudes, 
respectively. The next most pronounced fluctuation in RKE 
values is in spring. The pronounced RKE variations in both 
seasons may be related to the small base of KEt itself. 

Figs. 14 and 15 show the spatial distribution of seasonal mean 
KEt and RKE on the 0.1° grid, respectively, at three altitudes 
(500, 1000, 1500 m) selected for analysis. In Fig. 14, the highest 
overall KEt values are observed in summer, followed by 
autumn. The areas of high KEt values in summer are 
concentrated throughout England, while the areas of high 
values in spring, autumn and winter are located in southern 
England, central England and southern Scotland, respectively. 
The KEt values increased substantially with increasing height in 
all seasons, with the most pronounced increase in the west of 
Scotland during winter, whereas there was little spatial 
variation across the country at 1500 m height in fall, with the 
high values mainly located in the coastal regions of England 
and Scotland across the whole UK. Whereas the seasonal 
differences in RKE are not obvious in Fig. 15, the brighter colors 
of the RKE distributions in spring and winter at 1500 m height 
indicate that the absolute values of RKE are larger and KEt varies 
significantly at this height. 
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Fig. 14. Spatial distribution of mean KEt at 500, 1000, 1500 m, 
respectively. 

 
Fig. 15. Spatial distribution of and mean RKE at 500, 1000, 1500 
m, respectively. 

E. Comparison of rainfall characteristics at different heights 
Table II compares the correlation of rainfall microphysical 

parameters between two neighboring height bins below 1500 m 
using the Pearson coefficient. It can be seen that the same 
parameter has an extremely strong correlation vertically, with 
all values exceeding 0.99. Regarding the type of rainfall, 
stratiform rain always has a higher correlation than convective 
rain. Dm is the highest correlation among the parameters, with 
Pearson values of 0.9988 and 0.9967 for stratiform and 
convective rain, respectively. The second highest for stratiform 
rain is still the DSD parameter, lgNw, as high as 0.9981, but its 
correlation in convective rain is the worst among the four 
variables at 0.9946. In addition, Pearson of I is slightly higher 
than that of KEt in both rain types, and the difference between 
rain types is smaller than that of DSD parameters, neither 
exceeding 0.002. 

TABLE II 
PEARSON FOR NEIGHBORING HEIGHT BINS BELOW 1500 M. 

   Dm lgNw I KEt 

Stratiform 0.9988 0.9981 0.9974 0.9973 
Convective 0.9967 0.9946 0.9966 0.9957 
Table III shows the mean and standard deviation of the R 

values within 1500 m. It is found that the R means are always 
negative during stratiform rain, except for lgNw. During 
convective rainfall, only the R mean values of Dm and KEt are 
negative, and the mean value of RD is close to 0. In addition, the 
R means of DSD parameters are small, and none of them 
exceeds 0.1% in absolute value. In contrast, the absolute values 
of the means of RKE are very large, all exceeding 0.5%, and even 
as high as 1.35% for stratiform rain, indicating that the degree 
of variability of KEt is more dispersed than the other variables 
within the 1500 m height. Similarly, the standard deviation of 
RKE always takes the largest value among the four variables 
regardless of the rain type. The high standard deviations of RI 
and RKE for convective rain also indicate that the vertical 
characteristics of convective rain exhibit a high degree of 
dispersion. 

TABLE III 
THE AVERAGE VALUE AND STANDARD DEVIATION OF R WITHIN 

1500 M. 
 Average 
 Dm lgNw I KEt 
Stratiform -0.08 0.08 -0.20 -1.36 
Convective -0.01 0.08 0.34 -0.64 
 Standard deviation 
 Dm lgNw I KEt 
Stratiform 1.57 0.72 8.52 12.08 
Convective 1.70 0.80 15.45 28.37 

V. DISCUSSION 
The GPM DPR observations provide valuable insights into 

rainfall characterization, but uncertainties remain. These 
uncertainties arise from limitations in the accuracy of DPR 
observations and the attenuation of the signal during 
observations from heights of hundreds of kilometers to the 
ground, resulting in potential errors in the observations [36]. 
DPR V06 was also subject to uncertainty introduced by ground 
clutter, which biased the estimates from the true values at the 
surface below 1 km (especially in complex terrain such as 
mountains) [37]. In V07, the DPR algorithm has been 
significantly improved in terms of clutter handling, and an 
improved side-lobe clutter removal procedure has been 
implemented based on [38], which greatly mitigates the effects 
of residual clutter signals. Currently, the validation of DPR 
rainfall characterization observations relies heavily on ground-
based instruments, supplemented by GPM own ground-based 
validation network. However, there are still gaps in research on 
the accuracy of satellite rainfall microphysical observations, 
highlighting the need for further validation using tools such as 
wind profiler radar. However, despite these uncertainties, DPR 
can be a valuable tool for analyzing rainfall microphysical 
horizontal and vertical spatial characteristics. 

Additionally, DPR utilizes a fixed µ of 3 in its gamma 
distribution model for DSD, which is a simplification that 
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introduces some uncertainty into the rainfall estimates. For 
instance, disdrometer data from various geographical regions 
show that while the mode of µ corresponds to the DPR fixed 
value (µ = 3), the median is higher (µ = 7), indicating substantial 
natural variability in µ [39]. However, studies suggest that the 
impact of this practical choice is relatively minor and within 
acceptable operational limits [40], [41]. While this discrepancy 
adds to DSD estimation uncertainty, it does not significantly 
impair the precipitation estimates in DPR. Research indicates 
that retrieval errors from fixed-µ relations are small, with biases 
typically less than +/- 10%, suggesting that the effect of the 
fixed µ is not substantial enough to invalidate the DPR data 
[41]. The operational requirements of the DPR necessitate a 
balance between precision and practicality, and the current 
setting strikes a balance that allows for effective large-scale 
precipitation monitoring [41].  

Whilst our study makes a significant contribution to 
understanding the vertical variability of rainfall microphysics in 
the UK, it is important to recognize the limitations of DPR 
observations. Due to the orbital nature of the DPR on the 
satellite, rainfall observations at the same location are 
discontinuous. Therefore, DPR alone cannot capture the 
complete evolution of a storm system in a given region. Future 
research efforts will aim to address this limitation by integrating 
data from disdrometers at different altitudes, as well as 
observations from radar systems and numerical weather 
prediction models capable of observing at high altitudes. This 
integrated approach will help to develop more accurate three-
dimensional rainfall energy datasets that provide a 
comprehensive understanding of rainfall dynamics and its 
vertical variability. 

VI. CONCLUSIONS 
This study is the first to analyze the vertical profile 

characteristics of KEt using the GPM DPR. The study explores 
the vertical variations in rainfall microphysics and energy over 
the UK using data from the DPR in eight years (2015~2022). 
This work introduces the variable R between height bins to 
amplify the vertical spatial variations of rainfall, enabling 
investigation into the representativeness of ground-based 
observational instruments at different heights. The findings 
highlight significant spatial and temporal variations in rainfall 
microphysical characteristics and kinetic energy, overcomes the 
limitations of conventional instruments in estimating rainfall 
energy in three dimensions. Based on a series of analysis using 
eight-year DPR records, the following conclusions are 
concluded: 

1. A strong correlation (over 0.99) between rainfall energy in 
adjacent 125 m height bins below 1500 m is found in UK. The 
correlation between KEt in adjacent height bins is stronger in 
stratiform rain (0.9973) than in convective rain (0.9957), 
suggesting more variability in KEt for the latter. Additionally, 
the DSD parameters (Dm and lgNw) exhibit higher vertical 
correlation and smaller standard deviation compared to I and 
KEt. 

2. At near-surface altitudes (below 1500 m), Dm, I and KEt 
tends to decrease from top to bottom of the height, while lgNw 
tends to increase. Dm shows less variation with height compared 
to lgNw, indicating more stable raindrop sizes at lower altitudes. 

Seasonal variations in KEt are evident, with little variation at 
lower altitudes but notable differences above 1500 m. KEt peaks 
in summer and reaches its lowest in winter, reflecting seasonal 
influences on rainfall energy distribution. 

3. Convective rain typically shows larger raindrop sizes and 
higher intensity at lower altitudes, while stratiform rain shows 
more uniform microphysical characteristics, indicating 
different precipitation dynamics between rain types. Below 
1500 m altitude, although the mean value of RKE in stratiform 
rain is higher at 1.36% than in convective rain at 0.64%, the 
standard deviations are 12.08% and 28.37%, respectively, 
suggesting that stratiform rain is more variable at lower 
altitudes, but convective rain is more discrete in its variability.  
However, at altitudes above 3000 m, high-energy convective 
rainfall is more frequent than low-energy rainfall at the same 
altitude. 

In conclusion, despite the limitations of DPR observations, 
they remain invaluable for analyzing rainfall characteristics, 
especially in terms of vertical variability. Our study emphasizes 
the importance of further validation efforts and integration of 
multiple observation platforms to improve the accuracy and 
completeness of rainfall datasets. By addressing these 
challenges, we can deepen our understanding of rainfall 
processes and improve the effectiveness of precipitation 
monitoring and forecasting systems. 
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