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Abstract: Advances in data science and artificial intelligence (AI) offer unprecedented op-
portunities to provide actionable insights, drive innovative solutions, and create long-term
strategies for sustainable development in response to the triple existential crises facing
humanity: climate change, pollution, and biodiversity loss. The rapid development of AI
models has been the subject of extensive debate and is high on the political agenda, but
at present the vast potential for AI to contribute positively to informed decision making,
improved environmental risk management, and the development of technological solu-
tions to sustainability challenges remains underdeveloped. In this paper, we consider four
inter-dependent areas in which data science and AI can make a substantial contribution
to developing sustainable future interactions with the environment: (i) quantification and
tracking progress towards the United Nations Sustainable Development Goals; (ii) embed-
ding AI technologies to reduce emissions at source; (iii) developing systems to increase our
resilience to natural hazards; (iv) Net Zero and the built environment. We also consider
the wider challenges associated with the widespread use of AI, including data access and
discoverability, trust and regulation, inference and decision making, and the sustainable
use of AI.

Keywords: artificial intelligence; data science; sustainability; climate change; air pollution;
Sustainable Development Goals; natural hazards; Net Zero; built environment; digital twins

1. Introduction
Climate change will bring fundamental changes to our environment—changes that

have the potential to pose significant threats to all aspects of society: our health, wealth,
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wellbeing, critical infrastructure, security, and future prosperity. These impacts are oc-
curring, and increasing in severity, at a greater rate than was previously expected, and
there will be severe challenges in implementing adaptation strategies at the pace that is
required [1,2]. Developing new technologies, together with successful policies and inter-
ventions, will be crucial if we are to respond to these threats and ensure that we develop
sustainable interactions with the natural environment [3].

Advances in data science and artificial intelligence (AI) offer unprecedented opportunities
to address these challenges and pave the way for sustainable futures. Environmental chal-
lenges are inherently global and the complexity of integrated environmental–social–economic
systems [4], together with the sheer volume of data that need to be assessed, means that
human decision-making abilities need to be augmented with AI, capitalising on the combi-
nation of algorithms, machine learning (ML), and high-performance computing to deliver
the information necessary for evidence-based decision making [5,6]. By harnessing the vast
amounts of data generated across multiple sectors and applying cutting-edge AI algorithms,
these technologies can provide actionable insights, drive innovative solutions, and create
long-term strategies for sustainable development in response to the triple existential crises
facing humanity: climate change, pollution, and biodiversity loss [7]. Within this, AI has an
important role to play in improving our ability to forecast and communicate environmental
risks which will be critical to enable resilience of individuals, communities, businesses, and
governments [8,9] and to improve preparedness and response to natural hazards [8–10].

The rapid development of AI models has recently been the subject of a great deal
of debate and is high on the political agenda. Much of the focus has been on the use of
large language models (LLMs) that utilise the increasing availability and quantity of text
data, including on-line text, websites, and social media posts to train models that can
generate natural language responses in a variety of contexts [11]. LLMs have multiple
applications, including as virtual assistants, chatbots, or text generators, such as ChatGPT,
but the potential uses of AI go far beyond these applications and the ability to generate
new insights through identifying patterns within multiple, diverse, data sources means
that AI has huge potential to contribute positively to informed decision making, improved
risk management, and technological innovation. In addition to recent developments
in AI technologies, there has been an explosion in the quantity and complexity of data
related to the environment, including those from environmental monitoring and satellite
remote sensing/Earth observation large-scale numerical modelling of the climate and other
environmental systems.

The UK Government’s National AI Strategy [12] highlights the need for digital tech-
nologies in supporting the move towards Net Zero targets, and the AI Council’s roadmap
advocates the use of AI in developing innovative solutions to climate change and increasing
the pace of decarbonisation across the most impactful sectors [13]. The AI Strategy gives a
number of examples of climate change and mitigation challenges where AI might have a
role to play, including: (i) using ML vision to monitor the environment; (ii) using ML to
forecast electricity generation and demand and control its distribution around the network;
(iii) using data analysis to find efficiencies in emissions-heavy industries; and (iv) using AI
to model complex systems, like the Earth’s own climate, so we can better prepare for future
changes. The AI Strategy notes that, although AI applications in energy and climate are
being developed, they are predominantly outliers and there are many applications across
different sectors that are yet to be realised.

The aim of this paper is to explore the ways in which data science and AI have the
potential to make a substantial contribution in addressing the challenges associated with
environmental and climatic change and helping develop sustainable future interactions
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with the environment. To illustrate this, we present a series of examples of current and
possible future applications, based upon the following application areas:

(1) Quantification and tracking progress towards the UN Sustainable Development
Goals (SDGs);

(2) Embedding AI technologies to reduce emissions at source;
(3) Developing systems to increase our resilience to natural hazards;
(4) Supporting a transition to Net Zero and a sustainable built environment.

In drawing together the examples presented in the paper, we asked domain experts:
(i) what they consider to be the most important environmentally related challenges in their
areas; and (ii) how AI can help in addressing those challenges. Some of the examples reflect
well-developed use cases, whilst others are more speculative in nature. We also consider
some of the challenges associated with the widespread use of AI, including data access and
discoverability, trust and regulation, inference and decision making, and the sustainable
use of AI.

2. Quantification and Tracking Progress
The UN’s 2030 Agenda for Sustainable Development calls for a plan of action for

people, planet, and prosperity, aiming to take the bold and transformative steps that
are urgently needed to shift the world onto a sustainable and resilient path. A robust
follow-up and review mechanism for the implementation of the 2030 Agenda requires a
solid framework of indicators and statistical data to monitor progress, inform policy, and
ensure accountability of all stakeholders. This requires high-quality, accessible, timely, and
reliable disaggregated data with comprehensive global coverage to ensure that indicators
are comparable over both space and time, but in many countries such data are not routinely
available. The UN Environment Programme (UNEP) estimates that of the 91% of the
environmentally related SDG indicators, there are suitable data for tracking progress for
less than a third [14].

SDG indicators are, by their very nature, global representations of the state of the
environment, climate, and health and calculating many of them is not straightforward, as
they often do not align with routinely recorded data. This poses a number of challenges,
including: (i) lack of data with comprehensive global coverage; (ii) substantial variation in
the availability, quality, and accuracy of data over time and space and in the availability
of knowledge about how data were collected, e.g., detailed information on survey design,
calibration of sensors used to capture the data, or modelling assumptions; (iii) lack of
consistency between datasets from different sources and measured at different scales, for
example, whether tropical forests sequester (based on remote sensing) or emit carbon (the
latter based on national inventories) [15].

Using data science and AI to bring together disparate sources of data in a coherent
fashion is essential in understanding and tracking changes in the complex interactions
between the climate, natural ecosystems, human social and economic systems, the built
environment, and health. This understanding will be crucial in ensuring that SDG targets
and indicators are true and accurate representations of the world that the SDGs aim to
protect and are available in a consistent manner.

Consider the need to estimate exposures to air pollution required for SDG 11.6.2
(‘country-level population-weighted annual average exposure to particulate matter in
cities’) and SDG 3.9.1 (‘mortality rate attributable to household and ambient air pollution’).
Air pollution is one of the greatest threats to global health and economic development
and it is estimated that 4.2 million deaths annually can be attributed to ambient (outdoor)
air pollution [16]. Producing global assessments of the effects of air pollution on health
requires an assessment of exposures in every country. However, although monitoring of air
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quality is increasing around the world there are still many countries and regions in which
it remains sparse and cannot provide the information that is required.

Alongside monitoring there are other methods that can be used to assess levels of air
pollution that do provide comprehensive spatial coverage, including estimating aerosol
optical depth using remote sensing and land-use information. However, there are a number
of challenges in making full use of these data in this setting: (i) they are often not available
at high enough resolutions and therefore do not capture finer-scale variation in air pollu-
tion; and (ii) they are fundamentally different quantities in monitoring, with each having
different biases and uncertainties.

The Data Integration Model for Air Quality (DIMAQ) was developed by the WHO to
address these challenges and provide a method for ‘joining together’ data that are available
at different spatial and temporal scales. DIMAQ is based upon a Bayesian hierarchical
modelling framework and combines information from ground monitoring, remote sens-
ing satellites, chemical transport models, land use, population density, topography, and
other sources. The result is high-resolution estimates of air pollution for every country in
the world, together with associated measures of uncertainty. DIMAQ can also produce
exceedance probabilities, e.g., the probability that levels of pollution in any area exceeded
WHO Air Quality Guidelines (AQGs) [16].

The results can be seen in Figure 1, which show how data from ground monitoring,
which are sparse in many regions, can be supplemented with those from other sources
to produce high-resolution estimates of PM2.5 in the form that can be used to calculate
air-pollution-related SDG indicators 11.6.2, country-level average exposures, and 3.9.1,
mortality rate attributed to household and ambient air pollution. In addition to SDG
indicators, DIMAQ provides essential information that enables governments to understand
the seriousness of air pollution in their countries and provides them with an evidence base
with which to promote action [17,18]
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(PM2.5) are integrated with estimates from remote sensing (based on aerosol optical depth), land use,
and other sources of information related to air pollution. The image at the top shows the locations of
PM2.5 monitors within the World Health Organization’s Ambient Air Quality Database and the image
on the bottom shows the results of the DIMAQ (see text for details) which produces a comprehensive
set of estimates at a 0.1◦ resolution across the globe.

3. Embedding AI Technologies to Reduce Emissions at Source
3.1. Chemical Catalysis

Catalysis is a vitally important enabling technology that will play a critical role in
achieving sustainability development targets. Over 90% of chemicals require a catalyst in
their manufacture, and at least 80% of all goods use a catalyst somewhere in the manufac-
turing chain. Hence the impact is broad, contributing to fuels, medicines, food, consumer
products, energy, and many other sectors. Improved catalysts are required for many trans-
formations, but one increasingly important example is the development of new catalysts
for the conversion of carbon dioxide (CO2) to valuable chemicals and fuels, which can be
achieved by reaction with hydrogen derived from renewable routes. This aligns with sus-
tainable development by converting CO2 into useful products, reducing greenhouse gases
(GHGs), which contribute to mitigating climate change. It also delivers resource efficiency,
as using CO2 as a valuable feedstock reduces our reliance on fossil fuel resources and
promotes the concept of the circular economy. This application contributes to the following
SDGs: (i) SDG 7: Affordable and clean energy; by manufacturing clean fuels; (ii) SDG 9:
Building resilient infrastructure, promoting inclusive and sustainable industrialisation,
and fostering innovation; (iii) SDG 12: Ensuring sustainable consumption and production
patterns; (iv) SDG 13: Take urgent action to combat climate change and its impacts.

The potential uses for chemicals that can be produced from CO2 as a consequence
of creating better catalysts are wide ranging. A variety of chemical intermediates can
be prepared, and the most flexible of these is most likely methanol, which can be used
inherently as a fuel, converted to other products used in the manufacture of many other im-
portant commodities, or converted into liquid fuels using known conventional technology.
Furthermore, CO2 can be converted directly into synthetic liquid transport fuels, avoiding
methanol as an intermediate, and using CO2 as a replacement feedstock for fossil fuel
resources will benefit manufacturers of chemicals, impacting on all of our lives. Examples
of potential products are pharmaceuticals, building materials, and consumer products.
Other beneficiaries are the energy sector, wider industries, society, and the environment,
through the reduction of emissions and more efficient use of resources.

Research into the discovery and development of new and more effective catalysts, such
as those for CO2 conversion, generates data from a range of experimental and computer
simulation approaches. The data generated are batch data and include metrics on catalyst
performance, such as activity and relative quantities of products generated, and are logged
with process conditions, like temperature, flow rate, and pressure. Batch data are also
generated from a wide range of analytical techniques that are used to identify the structure,
composition, and chemical properties of the catalysts, and typically five or six different
analytical techniques are employed for each catalyst prepared, including high-resolution
electron microscopy which generates atomic-scale images of the surfaces of active catalysts.
Data processing typically takes place manually from spreadsheets of data for the catalyst
performance and the spectra, profiles, and images from catalyst analysis are typically
processed individually for each experiment. However, AI is already playing a role in the
processing of images from electron microscopy, using automated recognition of catalyst
particles and atomic features [19].
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Research data are typically at the point scale, originating from individual experiments.
If the technology extends beyond the laboratory and is successfully commercialised, then
the scale expands considerably. For commercial operations, data will move to real time, and
the opportunity for data processing could shift to more complex models capable of learning
from historical trends and adapting to changing operating conditions. This approach would
be required to optimise commercial production.

There are several areas that algorithms impact in catalyst design. A detailed un-
derstanding of the kinetics (rate) of a chemical process is important in unravelling the
mechanism and critical in scaling up a reaction. Reaction kinetics modelling is approached
using AI and ML and it helps to predict the influence of operating parameters, like tem-
perature and pressure, reaction rates, and selectivity. ML is now starting to be used in the
process of catalyst discovery and development [20] and identifying novel catalysts with
desired properties for specific reactions [21]. There are also approaches used for reinforce-
ment learning for process control, with the aim to optimise chemical reactor parameters
over time to improve the desired product yields and reduce energy consumption. Compu-
tational modelling of catalysis is making more rapid use of AI compared to experimental
studies [22]. The importance of using AI for combined computational and experimental
catalysis is now emerging, and it will accelerate to become increasingly important to un-
cover correlations between catalyst properties and catalytic activity [23]. This is the ultimate
goal of much research in catalysis, as knowledge of links between material properties and
activity can speed catalyst discovery through directed design, creating improved catalysts
that underpin many sustainability goals.

3.2. Agriculture and Food Production

Chemistry has a reputation for producing the causes of climate change. It also has,
by definition, the means of helping to mitigate and eliminate these causes, for example,
the move towards a completely non-carbon-based fertiliser system for soil fertility and
health and other rhizosphere-related resources, e.g., carbon sequestration, the elimination
of broad-spectrum eradicant pesticides, only grass-fed cattle and other farmed animal
systems, and the eventual perennialization of all arable food cropping [24]. This application
contributes to (i) SDG 1: End poverty in all its forms everywhere; (ii) SDG 2: Ending hunger,
improving food security and nutrition, and promoting sustainable agriculture; (iii) SDG 13:
Take urgent action to combat climate change and its impacts.

Approaches to making a globally sustainable agricultural food production system, in
the short term, can sometimes be overlooked in favour of biological engineering research,
e.g., vertical farming, fake meat and dairy products, and robotic weed and pest control
using mechanical, heating, or other physical processes. These are intensive in raw materials,
energy use, and storage and cannot be delivered by even the most optimistic of current
projections for the scale of food production needed using technologies currently available.

Even with these potential developments combined with new business plans and poli-
cies favouring sustainable agriculture, we will still have an inherently non-sustainable food
production system. Apart from the harvesting of food-crop and animal products, all current
inputs to agriculture are nominally replaceable, seasonal, and calendar based and involve
high energy demands and disruption of what could be an enormously more intrinsically
productive system. Furthermore, the problems of annual cropping are demonstratively ob-
viated in the production of food from grass-fed animal husbandry because the crops, grass
and its companion plants, are all perennial. This must now change by the perennialization
of all our cropping systems. The technology is building very rapidly for wheat [25] in the
US and (non-irrigated) rice [26] in China and we now have a new opportunity to direct
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perennialisation technology development—particularly to demonstrate its necessity and
inevitable adoption by exploitation of AI based modelling.

The key challenge is the perennialisation of arable food production and the need for
new technologies for crop production and protection. A number of automation approaches
already exist, land robotics, unmanned aerial vehicles (drone technologies), and remote
detection of key chemical markers for crop and animal production and health. These
technologies will need to be developed for purpose but will be able to follow the enormous
datasets already accumulated by traditional means and held by organisations such as Defra
and the USDA. AI systems that can combine data from all of these sources, together with
climate projections, crop yield forecasting, and disease models, could open novel ways to
obviate even the least sustainable harvesting systems. One particular challenge where AI
has huge potential to contribute is the ‘scale of application’ from regional all the way to
global, involving predicting the perennial crop plants themselves and providing an entirely
new crop production and protection system, including the further elaborated sentinel plant
technology [27]. Such AI systems could be used to determine what new products and
services are required for the perennialisation of arable cropping.

4. Developing Systems to Increase Our Resilience to Natural Hazards
AI has demonstrated significant potential to address resilience goals that form the

basis of major international agreements such as the Sendai Framework [28] and the Resilient
Cities Network (formerly the Rockefeller 100 Resilient Cities) [29], as well as contribute
to (i) SDG 9: Building resilient infrastructure, promoting inclusive and sustainable indus-
trialisation, and fostering innovation; (ii) SDG 11: Making cities and human settlements
inclusive, safe, resilient, and sustainable; and (iii) SDG 13: Take urgent action to combat
climate change and its impacts. AI has shown particular promise in improving risk man-
agement of multi-hazards [30], where two or more concurrent hazards interact to create a
greater impact, and cascading hazard scenarios [31], where a major hazard triggers further
hazards that continue through time, as well as contributing to improved forecasting and
early warning systems [32].

4.1. Earthquakes

Large continental earthquakes pose a classic example of a cascading hazard; earth-
quake shaking leads to landslide generation followed by impacts from debris flows and
flooding that can last for decades after the event [31]. These cascading events can reach
volumes greater than 1 million m3 of sediment and result in thousands of fatalities. Post-
earthquake debris flows pose two particular problems in our ability to predict their hazards:
(i) triggering events depend on random spatial and temporal factors such as rainfall in-
tensity and duration, subsurface hydrology, ground stress state, and sediment thickness;
(ii) key properties of sediment that govern both the triggering and bulking of debris flows
change through time by erosion and as vegetation cover increases. The adaptive nature of
ML models provides more flexible estimates of susceptibility and hazards when compared
to more traditional deterministic and empirical–statistical methods [33,34]. In these rapidly
changing contexts, the heavy parameterisation of deterministic debris flow models and
requirement for long records of debris flow data in empirical–statistical methods limit their
applicability for post-earthquake hazard prediction.

A spatial hazard model for post-earthquake debris flows was developed using a
number of geospatial datasets (topography, earthquake intensity, coseismic debris volume)
and a post-earthquake debris flow dataset [34]. By integrating a range of different ML
methods, it was possible to predict post-earthquake debris flow potential at the catchment
scale (<10 km2) for the Longmen Mountains, China. While there is the possibility to include
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a temporal element to aid real-time prediction, the datasets available were not of high
enough spatial or temporal accuracy to allow that. As with many of the cases considered
within this paper, although the model proved to work well, the limitation was (and still
is) data.

4.2. Tsunamis

Another example is the classification of submarine earthquakes and determining the
risk of tsunami events. Tsunamis are a serious threat to coastal areas, impacting the lives
of over 700 million people, leading to an urgent need for effective early warning systems.
Since the 1940s, tsunami warning technology has improved with seismic networks, Deep-
ocean Assessment and Reporting of Tsunamis (DART) buoys, and GPS buoys providing
real-time data which, together with advances in numerical models, have helped reduce false
alarms [35–38]. However, warning systems still face challenges including high false alarm
rates and unreliability. UNESCO highlights problems in issuing timely warnings for local
tsunamis, especially when the tsunami’s source and impact area are in close proximity [39].
Dependence on earthquake data often leads to precautionary alerts, later cancelled when
sea-level data show no danger. While this approach prioritises safety, it damages the
credibility of warning centres and leads to public scepticism. Since the 1950s, 75% of
tsunami warnings leading to evacuations were false [35], like the 1986 Honolulu evacuation,
which caused over USD 30 million in losses. Improving detection and public awareness is
needed to address this credibility and economic issues and aligns with the UNESCO-led
intergovernmental priority of SDG 11, promoting inclusive, safe, resilient, and sustainable
cities, and in accordance with Target 5 of the Sendai Framework [28]. Digital signal-
processing techniques and low-frequency sound recordings from earthquakes, known as
acoustic-gravity waves, can be used to train AI algorithms to classify earthquake type
and magnitude [34]. Acoustic-gravity waves are generated alongside the tsunami, though
travelling at a much higher speed—at the speed of sound in water—across thousands
of kilometres while carrying vital information about the earthquake’s source. This is a
significant step for a reliable early tsunami warning system since the type of earthquake
can dictate if a tsunami will be generated at all. For the training of the model, data of
200 earthquakes were collected by hydrophones (underwater microphones) in the Pacific
and Indian Oceans. Moreover, a newer generation of the AI model was trained with
acoustic signals from 1400 earthquakes alongside the water elevation measured by all
available DART buoys (ca. 15–20 per earthquake) [40]. This version is now capable not
only of determining if an earthquake is tsunamigenic but can also calculate the size of
the tsunami in coastal areas, globally, within a few seconds. An example of the outputs
from the resulting Global Real-time Early Assessment of Tsunamis software can be seen in
Figure 2. This technology comprises a collection of models that have been integrated into
software with the goal to make it operational to complement efforts by warning centres
and provide a more reliable assessment, globally.

4.3. Flooding

Understanding flood propagation is challenging due to high computational costs
associated with running complex hydrological models. Incorporating dynamic changes
in topography and geomorphology in physical-model-based prediction systems is highly
complex whereas AI-based predictions can easily accommodate these dynamic changes [41].
With their ability to represent complex systems and integrate diverse inputs, AI models
can provide faster predictions and data-driven solutions can help to balance accuracy
with efficiency while addressing parameter uncertainties and resource constraints [42].
Artificial neural networks (ANNs) and long short-term memory (LSTM) deep learning
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have shown promising results for hydrological and hydraulic prediction and forecasting in
natural environments at a large geographical scale [43]. Emerging deep learning techniques
have proved useful in identifying stage–discharge relationships, rainfall–runoff, sediment
transport, flood prediction [44], and sustainable solutions [45]. With the availability of such
technologies, it becomes easier to increase the efficiency of the flood prediction processes
by minimising human involvement [46].Sustainability 2025, 17, 2019 9 of 20 
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Urban systems are highly complex and current approaches use features such as eleva-
tion, slope, aspect, curvatures, topographic wetness index, and hourly rainfall, however,
they do not currently incorporate features that are closely related to fooding in the urban
environment, e.g., fluvial infrastructure and impervious location within the contributing
area [47]. Leveraging data-driven approaches alongside geographic and urban features
would significantly mitigate the complexities of urban flooding, providing a more practical
and cost-effective method for flood quantification while reducing the need for extensive
computational resources.

4.4. Local-Scale Weather Forecasts

Current AI models for weather forecasting, such as GraphCast [48], Pangu-Weather [49],
and FourCastNet [50], significantly reduce computation time compared to traditional
physical models. However, despite being faster and more efficient, these AI models have
not surpassed the comprehensive functionality that is available when using traditional
models, which remain essential for capturing the full range of atmospheric processes and
long-term climate dynamics. In addition, most of the training data for the AI models are the
outputs from physical models, which means that functionally they act as surrogates of the
physical models. This limits their training domain within the physics and processes that
have been prescribed into the model code that can potentially lead to misrepresentation of
spatio-temporal patterns in local environments as physical models deliberately simplify or
neglect secondary processes in order to reduce the computational burden [51]. Although
these simplifications may not have a significant impact on simulation results for global-
or continental-scale dynamics, they can lead to inaccuracies when the interest is in highly
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localised effects. In addition, there is often a lack of data with which to parameterise
these additional processes. Though computation is no longer a major concern with AI
approaches, this issue prevents current AI approaches from becoming truly revolutionary
successors to traditional methods.

Moving on from the current approach of surrogate modelling, the next generation
of AI models represent a more integrative approach, blending AI’s ability to learn from
complex, real-world, real-time observational datasets with the physical laws governing
large-scale weather dynamics [52]. This structured hybrid approach aims to close the gaps
in local simulations by prioritising microprocesses and real-world data, directly addressing
the two major challenges mentioned above. One focus of this approach is to integrate more
observational datasets into the modelling framework through advanced data acquisition
methods for detailed geospatial and environmental variables. Examples include, but are
not limited to, the use of low-orbit CubeSats for land surface monitoring high-precision
light detection and ranging (LiDAR) for accurate urban morphology [52], surveillance
cameras for traffic intensity [53,54], crowdsourced weather conditions from citizen weather
stations, and IoT-based sensor networks [55]. These measurements generate massive data
streams, providing firsthand climate information at microscales. AI plays a twofold role:
extracting complex patterns from noisy observational data [56,57] and, more importantly,
training on a diverse suite of climate data to learn how geospatial features drive specific
environmental outcomes [58].

Intra-urban environmental variabilities lead to disparities in the magnitude of potential
hazards and thus vulnerabilities within different areas of urban environments, highlighting
the need for detailed weather simulations down to the neighbourhood scale. The next
generation of climate models is envisioned to be fully scalable in both space and time
and capable of operating at much higher resolutions in near real time [59,60]. These
advancements are anticipated to provide special focus on the most vulnerable regions, such
as populous urban areas, where two-thirds of the global population is expected to reside in
the near future [45].

The ability of AI models to identify critical processes governing hyperlocal environ-
mental dynamics, which ultimately contribute to intra-urban variability, will be revolu-
tionary in this regard. At this fine granularity, diverse human activities and localised
urban features, such as transportation patterns, building densities, and green spaces, play a
significant role in shaping the environment. These factors influence not only perceptible
dynamics like sunshine, temperature, precipitation, wind, and air quality, but also visible
yet crucial elements such as GHG emissions. However, emission processes are intricately
tied to both human activities and environmental factors [61], making them highly complex
and difficult to model through purely process-based approaches [62]. Collectively, the
two key challenges, lack of detailed physics and insufficient data to parameterise existing
processes, are magnified at this scale, driving the recent emergence of a new genre of
climate AI endeavours.

5. Net Zero and the Built Environment
If countries are to meet their Net Zero targets, one of the most important require-

ments will be to develop a low-carbon built environment. The UK’s built environment
is responsible for 25% of total UK GHG emissions, with the 29 million homes in the UK
accounting for approximately 14%. The UK Green Building Council have indicated that
most reductions in operational emissions achieved in the past two decades are a result of
the decarbonisation of the electricity grid rather than improvements in the energy efficiency
of buildings. All stages of delivering a low-carbon built environment need to be informed
as much as possible by data that are as accurate as possible within the financial, skill set,
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and time constraints that exist. However, data are often treated poorly in the process,
without careful consideration and identification of issues such as bias and ethics, from data
cleaning to interpretation. These issues are often dismissed as trivial, when in fact they
are essential to generate data that are of real value and that can lead to the high-quality
outcomes that we need.

5.1. Retrofitting Buildings

Retrofitting buildings will be essential to ensure they are energy efficient and provide
healthy environments for residents to live and work. A well-designed whole-building
energy-systems-based retrofit approach can make a building more energy efficient, reduce
carbon emissions and energy bills, and improve living conditions. An example of how
principled data collection has been used to inform retrofitting buildings can be found in
Swansea where, working with the Welsh School of Architecture (WSA), the city council have
changed the way that they retrofit and build their new homes as a result of the evidence
gained through large-scale data collection from residents, the individual technologies, and
the system as a whole in homes that have been retrofitted along with new builds [63].

In developing approaches to Net Zero, including low-carbon built environments and
energy-efficient buildings, it is crucial that changes to buildings are fit not just for today
but for the future climate. The UK Climate Projections (UKCP) indicate a greater chance of
warmer, wetter winters and hotter, drier summers, along with an increase in the frequency
and intensity of extremes. Bringing together information from climate projections such as
UKCP and detailed data and modelling on energy use within buildings using AI will be a
key tool in developing ‘virtual scenarios’ to be run, thus supporting decision making at the
design stage and providing the evidence to demonstrate the benefits of implementing low-
carbon solutions into the built environment which go beyond energy savings and include
improvements in the quality of the built environment, health and wellbeing, and comfort.

5.2. Digital Twins for Energy Management

Another example of the use of data and digital technologies in addressing the energy
efficiency of buildings is the Computational Urban Sustainability Platform (CUSP), a
digital twin platform that delivers advanced predictive and (near) real-time reactive control
for energy optimisation in buildings and connects with a building energy management
system. CUSP can provide power and thermal demand simulations, as well as estimate
renewable energy generation potential (e.g., using locally hosted photovoltaic panels) to
deliver a better understanding of the impact and interactions across different climatic,
socio-economic, and technological drivers of power or/and thermal energy demand. An
example of the outputs of CUSP and the user interface can be seen in Figure 3. CUSP
makes use of a range of data across the building, district, and city energy networks. The
gathered information sources take the form of dynamic energy network models, generated
from existing ‘as-built’ information conveyed through building information modelling
(BIM), together with current and historical data originating from smart sensor networks.
CUSP makes use of a variety of AI algorithms, combined with a semantics-based energy
optimisation capability, utilising transfer learning [64].

CUSP aims to achieve long-term sustainability by proposing a paradigm shift in the
way buildings are managed—from ‘passive’ to ‘active’ assets which can be actively operated
and which respond to various stimuli. This transformation requires the consideration
of a wide range of factors, including environmental conditions, behavioural changes,
economic considerations, and technical advancements. Potential end users and adopters of
CUSP include engineers, architects, facilities management companies, contractors, digital
twin/BIM technology providers, energy assessors, and building energy management
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system providers. CUSP has generated savings of 15–45% in previous projects and case
studies [65].
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Buildings are unique ecosystems that require customised interventions, making it
challenging to apply general-purpose AI models to manage buildings effectively. CUSP
leverages Transformers as a means of understanding patterns in sensor data reading,
based on the concept of neural networks where context is inferred from the sensed data
analysed within the platform, informed by the semantics of the domain, and interpreted by
generative AI algorithms. CUSP has been trialled in stadiums (such as those used to host
the Qatar football world cup in Doha), sports facilities, cargo seaports, and rail stations (a
digital twin has been developed of Reading railway station in the UK).

6. Discussion
The aim of this paper was to explore the enormous potential for data science and AI

technologies to develop sustainable solutions to the challenges associated with environ-
mental and climatic change. Through a series of case studies, we have considered some
of the opportunities and challenges associated with a selection of important areas related
to sustainability.

In addition to identifying potential AI applications, it is essential to consider the sup-
porting processes, governance, and digital infrastructure on which the ultimate success of
any implementation strategy and technology rests. We now consider a number of wider
issues related to data science and AI reaching their full potential in this area. This includes
issues including data access and provenance of any AI-enabled decisions made but also those
related to ensuring sustainable use of technologies and appropriate access to a wide range of
stakeholders. Also, with the increased use of AI in addressing climatic and environmental
challenges, it will become increasingly important to account for its energy footprint [66].
The significant resources required in AI development, particularly in the development of
foundational models and ‘flagship’ frameworks, is well documented [67–70].

One of the common themes throughout this paper, as mentioned in many of the exam-
ples, is that access (or lack of access) to large datasets that accurately represent a specific
application on which to train AI models is often a barrier to the use of AI technologies in
specific use cases. There has been considerable progress in making data openly accessible,
largely driven by mandates that require publicly funded research data to be made open
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access after a specified embargo period. While this practice is not guaranteed for data from
privately managed networks, there has been a noticeable cultural shift toward embracing
open science. This shift includes the development of open-source software and the release of
open data, supported by various licensing options. The FAIR data principles—findability,
accessibility, interoperability, and reusability—have been established to guide these efforts,
with similar principles proposed for software [71]. These initiatives are not only pivotal
for fostering open collaboration but also crucial for building trust in the use of data and
software. Making data and software openly accessible is a crucial first step toward aligning
with emerging AI standards and regulations. The field of AI has faced a ’reproducibility
crisis’, partly due to insufficient data and software sharing [72]. However, simply provid-
ing open data and software does not ensure that they are easily discoverable or usable by
others [73].

Another aspect of data availability is cases where it is too expensive and/or simply
too difficult to obtain robust controlled datasets with which to build new models. A specific
example is the ability to accurately identify ice crystal habits in high-altitude conditions,
an important feature that affects the radiative properties of clouds and thus the Earth’s
radiative budget [74]. Replicating environmentally relevant conditions in a controlled
laboratory setting to build a robust training dataset is likely to remain a challenge, but
transfer learning, a process by which industry standard algorithms can be fine-tuned to
the limited data available, presents a sustainable and scalable solution [75]. This presents
an opportunity for research and technology partnerships to identify opportunities for
knowledge exchange, replicating success across multiple domains.

One of the key aspects of data science and AI is the ability to integrate data from
multiple sources to provide new information and insights. However, this means that data
are increasingly being used for decision making in areas other than that for which they were
collected. The differences between using data that have been collected as part of a carefully
controlled experiment, such as a randomised controlled trial, requires a fundamentally
different approach that acknowledges all aspects of the ‘data journey’, including methods
of collection, biases, governance, and the use of derived datasets. However, methods for
performing inference and decision making have not kept up with the rapid development
of AI methods and the growth in the quantity and variety of data sources together with
the quality of the data that they produce. The effects that this can have on interpretation,
communication, and ultimately decision making will be one of the most important aspects
of using AI and data science in applied settings and will require the development of
methodological approaches that acknowledge the challenges of bringing together data
from multiple sources and allow for uncertainty to be propagated between different models.
Another challenge is the ability to identify where errors matter the most. In tasks where
mistakes are more tolerable, such as web searches and presenting advertisements, decisions
are based upon global error rates, but in ‘high-stakes’ applications, such as those related to
early warning systems or linking environmental stressors to personalised health outcomes,
every prediction matters, and more sophisticated measures of success need to be developed
and adopted. As we move towards the large-scale use of AI in decision making, there is an
urgent need for a deeper understanding of the potential effects of these to ensure that we
can build trust across a wide variety of stakeholders.

This highlights the need for well-maintained data platforms and comprehensive
metadata to help users understand the scope and utility of the available resources. As an
example, consider data on climate projections which are core to many of the applications in
this paper, for example, retrofitting buildings in Section 5.1, and are crucial for all aspects
of climate adaptation, mitigation, and planning for Net Zero. This information is available
from many sources, including, for example, the UK Climate Projections (UKCP) from the
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UK Met Office. UKCP provide valuable information on the UK’s climate change, but
it requires technical expertise to download, manage, and process. This is particularly
important for stakeholders like local councils and public health officials who may not
have the necessary technical expertise. Bias correction, or recalibration, is a crucial step
in adjusting climate projections at local levels to align with actual weather measurements.
However, this process is typically performed ad hoc by climate scientists for specific areas
and time periods, rather than at scale due to the computational requirements and domain
expertise needed. Outputs might also be required in different forms, such as spatial
formats and coordinate reference systems. For example, data for decision processes may
not naturally align with the gridded output and may be required in different forms. This is
an example of where data science and AI can democratise climate data by developing and
implementing data and analysis pipelines. The CLIM_RECAL project [76] is an example of
this, providing a resource designed to tackle systematic errors or biases in regional climate
models (RCMs). The project includes custom scripts for downloading data, pre-processing,
applying bias correction, and assessing debiased data. This results in accessible information
on bias adjustment methods for non-climate scientists and lay-audience stakeholders,
including details of different correction methods and resources for technically applying
them and producing data in easily usable formats.

In response to the need to increase the accessibility and utility of environmental data,
the UK’s Natural Environment Research Council (NERC) has invested GBP £8M in build-
ing a new digital platform to provide improved access to the NERC’s environmental data
holdings, archived across five different data centres straddling subsurface to atmospheric
domains [77]. As part of this investment, user research was commissioned that delved into
the processes, workflows, and workarounds of people as they tried to use environmental
data and sought to understand the concerns, challenges, and barriers that they faced. Cov-
ering workshops across the UK, this included engaging with a wide range of public sector
organisations. Analysis revealed several common behaviours and traits and these were
distilled into multiple user archetypes. The archetypes then revealed a set of attributable
stories that map out a journey to achieving end user goals when using environmental data.
As distilled in the report [78], several common challenges emerged, including:

• A lack of suitable data to satisfy the task in hand, with many datasets being inaccessible
due to lack of discoverability, paywalls, the proliferation and confusing nature of
different platforms that required bespoke access approaches, inchoate data formats
and methods of retrieval, and unclear provenance.

• Having to work with locked down systems due to security or data protection requirements.
• A lack of locally available high-performance computing resources to undertake com-

putationally intensive processes.
• A lack of a coherent and centralised data management infrastructure, prevalence of

legacy datasets, and difficulty in getting people to openly share data.

Whilst the public narrative, and perhaps investment, tend to focus on AI algorithm
development and deployment, these issues clearly need addressing through targeted
investment and cultural shifts. In addition, in discussing sustainable futures we often focus
the impacts on human health. Health data are, of course, sensitive and require the use of
secure/trusted environments. There is a broader national movement in the UK towards
the standardisation of trusted research environments (TREs), exemplified by initiatives like
SATRE [79], which focus on establishing open standards to assess whether a system qualifies
as a TRE. Within a TRE, health data must remain securely contained, and any ancillary
data must be integrated into the TRE for further analysis. For instance, environmental data
might be incorporated into a TRE to evaluate the impact of residential postcodes on health
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outcomes. While environmental data alone do not typically require a TRE, future scenarios
could arise where environmental data can be used to infer human behaviour.

Moving beyond data access and discoverability, the regulation of AI, and consequently
the implementation of ML, is an evolving field both on a national and global scale. In
November 2023, the UK hosted an AI Safety Summit, bringing together international gov-
ernments, AI companies, academics, and civil organisations to discuss the risks associated
with AI and strategies for mitigation. In parallel, the dialogue around AI safety and regula-
tion is gaining momentum. The AI Council has emphasised that the UK can fully benefit
from AI only if there is widespread public confidence in the underlying science, technolo-
gies, and the governance that supports them. While discussions around regulation often
raise concerns about stifling innovation, there is an increasing recognition that regulation
and innovation can coexist [80]. There is benefit in organisations in joining conversations
related to regulation for internal and external use, even if the responsibility for setting
regulatory procedures lies at higher levels of government and is based within different
contributors to the data lifecycle (e.g., instrument vendors, research modellers, private
networks, satellite consortia, etc.). Alongside future regulations that will set mandatory
requirements related to the use of AI, such as the EU AI Act [81], and technological stan-
dards covering areas such as data interoperability, model evaluations and other aspects
will be increasingly important. In addition, non-technical standards are equally important
if somewhat less obvious when planning implementation of technical solutions (e.g., IEEE
P7000 Series (Ethical Considerations in Autonomous and Intelligent Systems [82]); ISO
37101, Sustainable Development in Communities [83]). This includes both ethical and
social–cultural standards [84] to ensure the benefits of AI respect cultural nuances and
ensure that potential benefits can be realised, regardless of socio-economic status and
cultural backgrounds.

7. Conclusions
In summary, while data science and AI allow us to gain information and insights

that are predicated on much wider evidence bases than has traditionally been possible,
there are of course barriers associated with widespread implementation: creating coherent
and reproducible methods for sourcing and integrating data from multiple sources [85];
developing the accessible, scalable infrastructure that will be required to facilitate criti-
cal workflows, data management, and the simplification of extracting knowledge from
data [86]; meeting the operational needs of end users, including accessible computational
facilities, suitable time lags between data retrieval and processing, and the production
of user-defined information outputs that integrate with existing business processes [87].
There are also often disconnects between the communities with domain expertise and those
who generate data, those with the skills to implement AI, and those who are making deci-
sions. Addressing these challenges and unlocking the full power of data and AI will have
far-reaching impact across a wide spectrum of environmental areas, will raise the bar in
data-driven environment research, and will contribute to wider technology developments,
applications, and economic benefits. Building upon this, AI has huge potential in enhanc-
ing and guiding effective environmental governance by fostering culturally appropriate
practices and organisational processes [88]. As such, the true value of AI may be its capacity
to drive systemic and impactful environmental [89,90]. Current paradigms that integrate
training, education, policies, and cultural factors often lead to decision making dominated
by short-term self-interest, which inadequately addresses the complexity of environmental
issues such as water, energy, and food supply. As a result, the prevalent reductionist ap-
proach tends to produce oversimplified and suboptimal solutions, despite their appearance
of rationality, failing to address the intricate trade-offs and long-term sustainability.
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Finally, it needs to be recognised that regions most affected by climate change, thus
where research could have significant benefits, are less likely to have access to significant
computational resources [90,91]. In addition, the global adoption of solutions hinges on
culturally specific ethical frameworks: differing views on privacy, equity, and communal
vs. individual wellbeing will likely influence acceptance. For example, meaningful, inclu-
sive stakeholder engagement, especially in communities wary of ‘digital colonialism’, is
essential to align AI deployments with local values and ensure fair, effective, and globally
sustainable outcomes.
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