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 A B S T R A C T

Industrial Control Systems (ICSs), widely employed in many critical infrastructure sectors that manage and 
control physical processes (e.g., energy, water, transportation), face heightened security risks due to increased 
digitization and connectivity. Monitoring Indicators of Compromise (IoCs), observable signs of intrusion, such 
as unusual network activity or unauthorized system changes, are crucial for early detection and response to 
malicious activities, including data breaches and insider threats. While IoCs have been extensively studied in 
traditional Information Technology (IT), their effectiveness and suitability for the unique challenges of ICS 
environments, which directly control physical processes, remain unclear. Moreover, the influence of human 
factors (e.g., sociotechnical factors, usability) on the utilization and interpretation of IoCs for attack prevention 
in ICSs is not well understood.

To address this gap, we conducted two studies involving 52 ICS security professionals. In an IoC 
Applicability study (n=32), we explore the relevance of existing IoCs within ICS environments and investigate 
factors contributing to potential ambiguities in their interpretation. We examine the perceived value, effort 
required for the collection, and volatility of various data sources used for IoC identification. Participants in the 
IoC Applicability Study emphasized the significant role of human factors in recognizing and interpreting IoCs 
for threat mitigation within ICS ecosystems. Based on this insight, we conducted a Socio-technical Factors in 
Recognition and Detection study (n=20) to investigate the impact of human factors on threat detection and 
explore the sociotechnical factors that influence the effective utilization of IoCs. Our results show significant 
discrepancies between conventional IT-based IoCs and their applicability to ICS environments, along with 
various socio-technical challenges (e.g., alert overload and desensitization). Our study provides pointers to 
rethinking the specific operational, technological, and human aspects of IoCs within the ICS context. Our 
findings provide insights for the development of ICS-specific IoC to enable security analysts to better respond 
to potential threats in industrial environments.
1. Introduction

Industrial Control Systems (ICS) refer to electronic systems that 
play a key role in monitoring, controlling, and automating critical 
industrial infrastructure, such as electrical networks, gas pipelines, and 
water treatment facilities. The advent of Industry 4.0 and the Industrial 
Internet has precipitated rapid digitalization and cross-integration of 
these systems, wherein multiple ICSs coordinate their operations.

While these advancements have significantly improved the perfor-
mance and efficiency of ICSs, their interconnected nature also intro-
duces new security challenges, as an attack on one sector can trigger 
widespread disruption across multiple sectors (Marder et al., 2023; Ike 
et al., 2023). These advancements have expanded the attack surface 
and introduced more sophisticated attack vectors, potentially causing 
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disruptions ranging from minor disturbances to national-scale outages. 
Although publicly confirmed attacks against ICS remain relatively in-
frequent when compared to traditional IT systems, incidents such as 
PIPEDREAM and Industroyer 2 have drawn increased attention to 
the potential severity of ICS-specific threats. According to a SANS 
report (Parsons, 2023), the perception of ICS threats as ‘high’ among 
respondents has steadily increased over recent years, rising from 38% 
in 2019 to 44% in 2023, highlighting a growing concern about ICS 
security and the need for robust defense strategies.

After a security incident (ICS exposure to a threat), security experts 
in these facilities analyze the situation to determine if an intrusion has 
occurred, the extent of the system compromise, the functional opera-
tions and assets affected, and how the intrusion or attack occurred (Ali 
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and Angelov, 2017). This process involves identifying potential Indi-
cators of Compromise (IoCs) among system events. IoCs refer to data 
points that indicate a system is, or has been, under adversarial control. 
For example, IoCs might include unexpected changes in control sys-
tem configurations, anomalies in industrial protocol traffic, or unusual 
patterns in sensor data.

However, the convergence of Information Technology (IT) and Op-
erational Technology (OT) networks in ICS introduces complexity in 
identifying IoCs,  given the distinct operational requirements and char-
acteristics of ICS compared to traditional IT environments IT-based IoCs 
typically involve clear indicators such as unusual login attempts or 
malware signatures. In contrast, ICS-based IoCs often manifest as minor 
anomalies in sensor readings or slight deviations in control parameters. 
These IoCs are often subtle and difficult to distinguish from normal 
operational data, complicating timely threat detection and response. 
For instance, a slight change in a sensor reading might indicate an 
attack, but it could also be due to normal operational fluctuations or 
equipment failure, making it challenging to discern genuine threats 
from false positives. Factors such as legacy protocols, diverse configura-
tions, and human interaction with automated processes also make IoC 
identification challenging. Furthermore, ICS latency sensitivity compli-
cates the use of IoCs within ICS environments. Misinterpreting IoCs can 
result in the disruption of operational continuity. To illustrate, false 
positives triggered by IT-focused Intrusion Detection and Prevention 
Systems (IDPS) that misinterpret ICS protocols can lead to unnecessary 
emergency shutdown procedures and production disruptions. This com-
plexity leads to ambiguity in IoC identification within the ICS context, 
leaving frontline responders1 struggling to identify and respond to the 
evolving threat landscape.

Prior research has explored various aspects of ICS security, includ-
ing investigations into the threat landscape and attack surface (Li et al., 
2021; Mohammed et al., 2023; Green et al., 2017; Formby et al., 
2016). Other works have focused on developing methods for attack 
detection and forensic analysis (Tychalas et al., 2021; Ike et al., 2023; 
Rajput et al., 2021), and understanding the security requirements in 
ICS supply chains (Hou et al., 2019). However, there is a notable 
gap in investigating IoCs within ICS environments. While extensive 
research has focused on IoCs for IT environments (Satvat et al., 2021; 
Catakoglu et al., 2016; Zhao et al., 2020), IoCs in ICS remain largely 
unexplored. Furthermore, research examining the interplay between 
human analysts and automated systems in detecting IoCs, and the 
socio-technical barriers that impede effective threat identification and 
response in ICS, is largely absent.

In this work, we define ‘‘socio-technical’’ as the combination of 
human, organizational, and technological elements within ICS environ-
ments (Baxter and Sommerville, 2011; Rashid et al., 2020). These ele-
ments jointly shape the detection, interpretation, and response to IoCs. 
This perspective emphasizes that analysts’ decision-making processes, 
team coordination, communication patterns, organizational structures, 
and the technical configuration of ICS components collectively influ-
ence how IoCs are identified, understood, and acted upon within these 
critical and often time-sensitive environments.

Recognizing the limitations of adapting IT-based IoCs to ICS envi-
ronments, our research investigates how these IoC concepts are per-
ceived and adapted by ICS security practitioners, aiming to identify 
gaps and inform the development of ICS-specific IoCs. By studying 
documented ICS-targeted attacks and gathering insights from ICS se-
curity practitioners, we seek to identify characteristic anomalies that 
could serve as potential ICS-specific IoCs. This exploration endeavors to 
inform on the challenges faced by practitioners and sets the stage for 
developing and validating IoCs specifically designed for ICS environ-
ments. In this paper, we first aimed to answer the following research 
questions:

1 Frontline responders is a metaphor we used to refer to the profession-
als who deal with emerging security issues or obstacles resulting from the 
convergence.
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RQ1: How do practitioners perceive current IoCs’ applicability in 
detecting cyber-attacks within ICS?
RQ2: How do ICS security practitioners perceive different data 
sources for IoC gathering in terms of their usefulness, effort required 
for collection and analysis, and volatility?

To answer these questions, we first conduct a preliminary study 
design exploration, where we determine the most suitable data collec-
tion method for these research questions. Following our exploration, 
we conducted a survey-based study with (n = 32) participants. This 
survey was distributed to a diverse sample of ICS security professionals, 
and focuses on identifying IoCs that they find most relevant in detect-
ing sophisticated cyberattacks, such as Stuxnet, Ukraine Power Grid, 
Distributed Denial-of-Service (DDoS), and Man-in-the-Middle (MITM) 
attacks. We explore different data sources and metrics that contribute 
in the subsequent investigation. We discover that the applicability of 
IoCs varies significantly across different attack scenarios. For example, 
abnormal outbound network traffic and control logic modification are 
particularly effective for detecting Stuxnet-type attacks, while indica-
tors of anomalous usage of Virtual Private Networks (VPNs) can detect 
Ukraine power grid attacks. In the case of the DDoS attack, unexpected 
resource usage and response size serve as primary indicators. For 
the MITM attack, we find that inconsistency in packet payloads and 
unusual outbound network traffic are critical indicators. Regarding 
data sources, we observe that network traffic analysis is universally 
considered the most valuable, with 100% of participants rating it highly 
important. In contrast, we observe that field device data, despite its 
potential value, presents significant challenges in terms of volatility and 
the effort required for integration.

Notably, through open-ended questions in our survey, participants 
stressed the importance of human factors in ICS environments. They 
noted how human factors impact the ability to detect IoCs and handle 
security incidents. Thus, we formulated two additional research ques-
tions to further explore the human factors and socio-technical aspects 
of IoC implementation in ICS environments, listed below:

RQ3: How do we evaluate the roles and effectiveness of human ana-
lysts versus automated systems in monitoring and detecting potential 
IoCs within the OT context?
RQ4: What are the key socio-technical factors that hinder effective 
identification and response to IoCs in ICS systems?

To answer RQ3 and RQ4, we designed an additional survey, gath-
ering insights from (n = 20) ICS security professionals. We found 
that human analysts play a crucial role, with 100% of experts empha-
sizing the necessity of continuous situational awareness in network 
security monitoring. 60% of experts consider human analysts more 
effective than automated systems in detecting anomalies, and 95% 
support a ‘‘human-in-the-loop’’ approach for IoC detection. Yet, we 
also uncovered significant socio-technical challenges impeding effective 
IoC management. These include organizational and legal constraints, 
inadequate security logging in ICS components, communication gaps 
between security and manufacturing teams, and alert fatigue leading 
to potential oversight of critical indicators. Our findings highlight the 
need for holistic security approaches that balance human expertise 
with automated detection systems and advanced analytics tools in ICS 
systems.

Our study sheds light on the necessity to recalibrate IoCs to align 
with the technological, operational, and human factors inherent to ICSs. 
Our insights also provide takeaways to develop effective IoCs attuned 
to specific ICS threats for improved threat detection and enhanced 
incident response capabilities. In summary, we make the following 
contributions:

• We designed a two-stage study to understand the relevance of exist-
ing IoCs in detecting ICS-specific attacks. This involved evaluating 
current IoCs through expert analysis and identifying additional 
detection signals from expert insights.
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• We identified key data sources for IoC collection, such as net-
work traffic, endpoint logs, and Intrusion Detection System (IDS)/
firewall logs. This helps security teams make more informed de-
cisions about which artifact sources to prioritize and the efforts 
required to enhance forensic readiness.

• We analyzed the human-centric tasks and automated systems in 
recognizing malicious activity and the potential impact of their 
interaction on decision-making.

• We identified key challenges hindering effective IoC detection, in-
cluding organizational constraints, inadequate security logs, team 
gaps, and alert fatigue. Addressing these challenges can improve 
the incident response process and enhance IoC identification in ICS 
systems.

2. Background and related work

IoCs Extraction and Detection. Research on IoCs in IT systems within 
the ICS domain has been limited, but interest in ICS security and 
forensics increased significantly after the Stuxnet incident in 2010. 
Studies have mainly focused on defining and modeling cyberattacks, 
with some examining threat data in public reports and Open Source 
Intelligence (OSINT).  Sibiga (2017) proposed a methodology to extract 
attack behaviors from comprehensive malware reports to improve sit-
uational awareness of potential attacks on the ICS network. Using the 
ICS Kill Chain, this approach maps IoCs detectable before the Attack 
Stage, although it is primarily limited to IT systems. Zhao et al. (2020) 
developed an automated process for IoC extraction, implementing a 
Convolutional Neural Network (CNN) to classify threat data accurately 
in different cyber threat intelligence domains.

Babun et al. (2019) designed a framework to detect compromised 
devices in Cyber–Physical System (CPS) smart grids. This framework 
uses system and function-level call tracing to analyze device activities, 
identifying malicious activities through discrepancies in system and 
function calls.  Hadi Sultani and Han (2019) applied an anomaly-based 
IDS in the context of vehicular systems to identify potential IoCs. This 
method monitors behavioral changes due to attacks, mapping IoCs to 
different layers in a vehicle’s architecture. Yet, the approach is limited 
by the variability in user behavior.
Forensic Analysis. Forensic data acquisition from Programmable Logic 
Controllers (PLCs) has been explored by other researchers.  Rad-
vanovsky and Brodsky (2013) highlighted the importance of obtaining 
hexadecimal dumps from PLC memory in forensic investigations, par-
ticularly in assessing changes in the file system. Wu and Nurse (2015) 
discussed the potential of analyzing program codes of PLCs to dis-
cern the attacker’s intentions, noting the increased traffic overhead 
due to the use of a logger tool. Ahmed et al. (2012) reviewed the 
Supervisory Control and Data Acquisition (SCADA) forensic process and 
suggested a method for live data acquisition to extract both volatile 
and non-volatile data. They, however, noted inherent risks, such as 
the possibility of overwriting essential volatile data and disrupting 
real-time systems. Moreover, research has been directed towards de-
veloping live acquisition frameworks using agents (Kilpatrick et al., 
2006; Pedro Taveras and Scada, 2013) for IoC data collection. These 
frameworks, primarily in the conceptual stage, vary in their focus, with 
some targeting the supervisory layer while others explore device-level 
techniques.

Physical-Based Attack Detection. Recent research demonstrates the 
value of physical-based IDS in identifying cyber–physical attacks in 
ICS. Liu and Liu (2018) utilized voltage signal analysis in RS485 
communication lines to detect intrusions caused by external devices, 
demonstrating the viability of leveraging physical properties for
anomaly detection. Similarly, Sun et al. (2023) integrated deep learning 
with rule-based systems to classify physical attack patterns, improving 
detection precision. Kang et al. (2016) proposed hybrid models address-
ing both logical and physical anomalies, but their approaches primarily 
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focus on physical properties. While these approaches highlight the 
potential of physical anomaly detection, they often fail to address multi-
stage attacks that exploit both IT and physical layers, leaving gaps in 
synthesizing IT-centric IoCs with physical behaviors.

In contrast, process anomaly detection techniques such as observer-
based estimators (Miao et al., 2020), adaptive algorithms (Ao, 2020), 
and predictive-based safety techniques (Azzam et al., 2023) emphasize 
stealthy attack detection through deviations in process states. Despite 
their effectiveness in capturing physical irregularities, these approaches 
often lack robustness against IT-layer attacks, which are equally preva-
lent in ICS environments. Sensor-based approaches have also emerged 
as key solutions, with Myers et al. (2018) and Varghese et al. (2022) 
isolating compromised PLCs through modular IDS and digital twins, 
respectively. These methods demonstrate resilience against physical 
attacks but highlight the need for hybrid systems that also integrate IT-
layer indicators, as emphasized by Zhang et al. (2021) and Asiri (2024).
Human Factors in Security & Privacy Industry. In addition to tech-
nical work, some efforts have explored usability and personal behavior 
aspects. For instance, the study by Ani et al. (2019) on human factor se-
curity evaluated the cyber-security acumen of the industrial workforce, 
uncovering potential security weak points and proposing relevant con-
trol measures. This research highlights how human factors can impact 
the effectiveness of security measures in industrial settings. Pottebaum 
et al. (2023) discussed the reimagining of ICS security by making 
human factors a core part of comprehensive defense strategies. They 
explained the different roles in ICS lifecycles and the potential attacks 
they enabled. Furthermore, it emphasized the importance of monitoring 
IoCs to detect triggers of malicious activity and respond quickly to 
intrusions into ICS systems (Asiri et al., 2023b). This underscores the 
critical role of IoCs in improving the security posture of ICS and the 
need to understand their effectiveness in mitigating attacks.

Additionally, the investigation by Kokulu et al. (2019) into Security 
Operations Centers (SOCs) in various sectors reveals a mix of technolog-
ical, human, and operational challenges, particularly regarding security 
metrics and analysts’ perception of false positives. In improving false 
alarms in SOC, Alahmadi et al. (2022) investigated the prevalence of 
such alarms in security tools and the perceptions of SOC practitioners 
regarding their quality. These insights collectively stress the complex-
ities faced by security operators, underscoring the need for refined 
security metrics and an understanding of human factors in SOCs.

3. Methodology

Building on the existing literature in Section 2, our work aims to 
examine how IoCs can be effectively utilized in the context of ICS. 
While previous research has focused primarily on IoCs in traditional 
IT domains, their relevance in detecting cyber threats in ICS systems 
remains underexplored. Thus, we seek to analyze how people interact 
with and interpret various signals, including alerts and anomalies, 
within socio-technical infrastructures. We investigate the usability of 
IoCs in detecting ICS cyber-attacks, exploring their ability to identify 
these attacks. Additionally, we examine how human and technical 
factors impact the use and interpretation of IoCs in ICS systems to 
understand practical challenges in implementing these indicators.

To this end, we designed a two-phase data collection approach. We 
initially aimed to answer RQ1 and RQ2 with a single IoC Applicability 
Survey (S1).  However, feedback from open-ended questions stressed 
the importance of socio-technical factors in the ICS ecosystem for both 
recognition and detection. This motivated us to introduce two new 
research questions (RQ3 and RQ4). To address these new questions, 
we conducted an additional user survey (S2) to scope human-in-the-
loop and socio-technical factors within the ICS ecosystem. We present 
the full list of questions for both studies in Asiri (2024).
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3.1. Study design exploration

To achieve an in-depth exploration of research questions
(RQ1–RQ4), we required careful study design considerations. We ini-
tially considered using focus groups and semi-structured interviews. 
Yet, we encountered significant challenges that led us to select surveys 
as our primary methodological approach.
Aversion to In-Person Methods. When we reached out to 10 experts 
to participate in interviews or focus groups, all 10 declined. Experts 
attributed their refusal to one of several reasons pertaining to in-
person user collection methods (focus groups and interviews). First, 
they mentioned that their companies’ privacy policies prevented them 
from sharing detailed information about their cybersecurity practices 
and experiences in in-person settings. Second, experts were hesitant to 
participate in in-person research methods given that it might involve 
disclosing details about potential vulnerabilities, attacks, or propri-
etary security measures. Additionally, concerns related to the General 
Data Protection Regulation (GDPR) made industry professionals reluc-
tant to join focus groups or interviews, as they feared potential legal 
repercussions for sharing sensitive information.
Surveys as the Adopted Method. To address these challenges, we 
opted for online surveys, where experts are able to participate anony-
mously. We designed our surveys to include open-ended questions. 
This allowed us to obtain insights that a purely multiple-choice survey 
would be unable to capture while still respecting potential participants’ 
desired participation methods. Open-ended questions targeted specific 
aspects, allowing participants to provide relevant responses without 
follow-ups, as would be required in an interview format. In Section 3.3, 
we detail how the discussions with academics and workshop partici-
pants aided in our design of these open-ended questions. The following 
sections provide more details on the sampling and recruitment process, 
survey design, and data analysis.

3.2. Recruitment and demographics

We conducted both surveys, S1 and S2, over the course of one 
year. For S1, our recruitment strategy was twofold. We started by 
recruiting academic researchers with more than five years of research 
experience in ICS/OT security and threat detection. Next, we leveraged 
LinkedIn to identify industry experts with substantial cybersecurity 
experience. These professionals needed to meet two criteria: (1) at least 
three years of experience in roles related to ICS protection, analysis, 
or management, such as system operators, engineers, security analysts, 
and IT/OT integration specialists, and (2) validated expertise through 
LinkedIn endorsements and recommendations in skills pertinent to 
threat analysis and incident response in ICS settings. We invited 76
potential participants for the first survey, but 44 declined (e.g., due 
to deeming survey content sensitive). The remaining 32 accepted and 
completed the survey.

For the second survey, we targeted professionals with specific exper-
tise in ICS. We applied the same recruitment criteria used for industrial 
professionals in S1. We utilized LinkedIn’s advanced search to find 
participants with practical ICS operations knowledge.

Additionally, we advertised recruitment through the Cyber Innova-
tion Hub, a well-respected organization with a strong network within 
the UK ICS cybersecurity sector. This allowed us to access industry prac-
titioners with significant applied experience. This targeted recruitment 
strategy ensured that the collected data was valid and contextually 
specific to the survey’s focus. We invited 55 potential participants for 
the second survey, and 20 accepted and completed it. The majority of 
participants (≈65%) were based in the UK, which reflects our targeted 
recruitment through the Cyber Innovation Hub. An additional 20% of 
participants were from the USA, while the remaining 15% were from 
other EU countries.

In this niche field of ICS security, where the pool of experts is 
relatively small, our sample sizes (n= 32 and n= 20) provide valuable 
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insights into IoC perceptions, usability, and socio-technical factors 
influencing their use in ICS environments. The diverse expertise of 
our participants, comprising experienced practitioners and researchers, 
allows us to define potential indicators and synthesize key takeaways. 
The full demographics of our recruited participants are presented in 
Appendix, Table  A.3 and Table  A.4.

3.3. Survey design and data collection

Fig.  1 presents an overview of our study design, which we detail in 
the subsequent section.

3.3.1. Survey 1 - IoC applicability (S1)
For our first survey, we aim to answer the research questions:

RQ1, the applicability of current IoCs, and RQ2, the value of diverse 
data sources. By examining experts’ perspectives on specific IoCs used 
against targeted attacks like Stuxnet and the Ukraine power grid at-
tack, we assessed their perceived usefulness in practical settings. This 
analysis has the potential to validate or challenge existing theories 
on IoC effectiveness (Falliere et al., 2011; Case, 2016) . Similarly, 
we explored how various data sources are leveraged, from network 
traffic to endpoint data and open threat feeds, to uncover threats in 
ICS systems. This sheds light on the resource allocation patterns and 
data prioritization strategies employed by practitioners for robust cyber 
defense.

The survey began with demographic questions to understand the 
professional roles and sectors of the respondents. This initial segment 
was crucial in setting the stage for contextualizing subsequent re-
sponses. The survey was then divided into several distinct sections, each 
focusing on a specific aspect of IoC in the ICS context:

This first main section scrutinized the applicability of IoCs for 
different cyber-attacks ( 2 - a ). This segment investigated participants’ 
perceived efficacy of IoCs in detecting specific attack types by pre-
senting them with four representative attack scenarios within the ICS 
ecosystem (Stuxnet, Ukraine Power Grid, DDoS, and MITM attacks). 
These scenarios were chosen to represent a diverse range of attack types 
and sophistication levels. To illustrate, Stuxnet and the Ukraine Power 
Grid attacks reflect well-documented, high-impact incidents that tar-
geted ICS specifically. These attacks show the potential consequences 
of targeted and sophisticated threats. On the other hand, DDoS and 
MITM attacks were included to represent more widely-applicable attack 
types that can affect various systems, including ICS. By incorporat-
ing both specific and generic attack scenarios, we aimed to assess 
the applicability of IoCs across a spectrum of threats relevant to ICS 
environments.

The objective was to gather insights on how practitioners under-
stand and apply IoCs in real-world ICS environments. We detailed 
attack descriptions and provided a list of applicable IoCs relevant to 
each attack, along with an ‘Other’ option to capture unanticipated IoCs. 
The selection of attack scenarios and predefined IoCs stemmed from a 
comprehensive review of relevant literature and case studies. This ap-
proach ensured both the relevance of the scenarios and predefined IoCs, 
facilitating a realistic assessment of the challenges in identifying these 
cyber threats. Therefore, it enables an evaluation of IoC effectiveness 
beyond theoretical models.

We recognize that physical-based indicators, such as deviations in 
sensor readings, pressure variations, or temperature anomalies, rep-
resent an important dimension of ICS attack detection. However, the 
current study was scoped to evaluate IT-centric IoCs as a founda-
tional step towards integrating more domain-specific physical indica-
tors in future work. This approach allows us to first evaluate how 
well-established IT indicators translate into ICS contexts. The quali-
tative feedback collected from open-ended survey questions has al-
ready highlighted physical-based indicators as an area requiring further 
exploration, which we plan to address in follow-up studies through 
experimental validation.
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Fig. 1. Design overview of our survey.
We then probed participants on additional IoCs and risk assessment 
( 2 - b ). Here, we understand the broader context of IoC effectiveness 
and the perceived readiness of organizations in handling early-stage 
cyber threats. First, we uncovered potential IoCs not previously men-
tioned, offering respondents the opportunity to contribute new insights 
based on their experiences. Second, we investigated perceptions of 
risk to OT systems and the effectiveness of early IoC identification in 
predicting attacks, respectively.

Our investigation subsequently focused on identifying security gaps 
that hinder IoC detection ( 2 - c ). We explored the practical difficulties 
professionals face when differentiating between benign and malicious 
activities within ICS environments. In this section, the aim was to iden-
tify existing gaps in IoC identification processes and methodologies, 
highlighting security vulnerabilities that impede IoC detection.

Finally, we addressed the prioritization of skills and data sources 
for IoC detection ( 2 - d ). This section of our survey explored two key 
aspects: first, the skill sets deemed invaluable for operators tasked with 
IoC handling in the OT domain, and the criticality of various data 
sources for gathering IoCs. We evaluated these data sources based on 
three criteria: their perceived value, the effort required to collect them, 
and their volatility. In our study, ‘‘volatility’’ refers to how easily or 
quickly the data might be lost, overwritten, or become unavailable 
if not captured in a timely manner. This aimed to understand the 
dynamics of resource allocation in IoC management.
Survey Refinement. To refine our survey and ensure the relevance 
of our survey questions, we employed a two-step approach before 
distributing the questionnaire to a larger audience. First, we invited 
eight experienced professionals in the field of CPS security to review 
and provide feedback on our initial set of questions. These experts were 
selected based on their extensive knowledge and practical experience 
in securing ICS systems. Their insights helped us refine the wording, 
ordering, and potential biases in our survey. They also confirmed the 
representativeness of selected cyber attacks, corresponding IoCs, and 
data source options.

Following this expert review, we leveraged insights from industry 
practitioners via a CPS security workshop. During this workshop, we 
engaged with 12 participants who had hands-on experience in deal-
ing with cyber threats in ICS environments. We reviewed our survey 
questions with these participants to validate whether the questions 
effectively addressed our research objectives. The valuable feedback 
received from both the expert review and the workshop participants 
allowed us to iteratively improve the survey questionnaire. We modi-
fied the wording of several questions, added new questions to capture 
additional insights, and optimized the survey flow to enhance clarity 
and reduce potential biases. To maintain the integrity of the survey 
results, participants from the review stage were excluded from the full 
survey.

3.3.2. Survey 2 - Socio-technical factors in recognition and detection (S2)
We designed S2 to explore the results and observations of S1. To 

gain detailed insights into RQ3 and RQ4, we followed practition-
ers’ suggestions to further investigate the challenges faced by human 
5 
analysts in recognizing indicators of threats. Our focus was on the 
human-in-the-loop aspect, exploring the role of human analysts, their 
ability to detect anomalies missed by automated systems, and the 
challenges they face due to technological and human factors. Similar 
to S1, we started with demographic questions, including job titles and 
years of experience. This provided context for the subsequent technical 
responses. S2 then comprised the following sections:

First, our intention was to understand the human role in threat 
detection ( 5 - a ). To achieve this, we formulated a question to gauge 
the reliance on human analysts versus automated systems. This sec-
tion aimed to explore the interaction between human intuition and 
machine-based analysis in detecting and preliminarily analyzing poten-
tial security events.

The second section focused on challenges in threat recognition 
( 5 - b ). In this section, we wanted to identify the unique challenges 
and problems in recognizing or missing threat indicators, both from a 
technological and human perspective. This exploration helps pinpoint 
barriers to effectively identifying and developing OT-based indicators 
for industrial environments.

3.4. Data analysis

Quantitative Analysis. We quantitatively analyzed structured
responses from the questionnaires. This analysis aimed to identify rel-
ative IoC effectiveness, OT system risk levels, and preferences for data 
sources and professional skills. We report descriptive statistics, such 
as counts, percentages, measures of central tendency (mean, median, 
mode), and measures of spread. Here, we note that our quantitative 
analysis does not claim to test for significance. Rather, our objective 
is to quantitatively characterize participants’ perceptions to determine 
predominant patterns (e.g., which IoCs are  perceived as less applicable 
or relevant).

Additionally, we used a Likert scale analysis. Due to varying in-
terpretations of how to analyze Likert-scale data within the research 
community (Jamieson, 2004; Robertson, 2012), we used three mea-
sures to analyze survey questions that measured levels of agreement. 
These methods included calculating the mode, median, and the Com-
parison of Non-Neutral Scores (CNNS). The CNNS measure evaluates 
the balance of responses, comparing those below and above the neutral
midpoint.

Qualitative Analysis. To complement our quantitative analysis, the 
qualitative aspect focused on thematic analysis of open-ended responses 
crucial to capturing diverse perspectives and insights into human fac-
tors that influence ICS security. We opted for thematic analysis fol-
lowing the recommendations outlined by Braun and Clarke (2006) and 
Ryan and Bernard (2003), who provide a framework to identify themes 
and develop theories.

Our analysis includes data coding, theme and pattern identifica-
tion, and the interpretation of their underlying meanings and implica-
tions (Braun and Clarke, 2006). This approach uses both inductive and 
deductive reasoning; we explored potential explanations, informed by 
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Fig. 2. Comparative analysis of participants’ selections of potential indicators for detecting four attack scenarios. Each radar chart represents the perceived relevance of predefined 
IoCs for each scenario. The 𝑦-axis indicates the number of participants who selected a specific IoC as relevant. IoCs are labeled as IoC1-IoC16, corresponding to their detailed 
descriptions in the legend.
relevant literature, while also identifying data patterns that informed 
and refined our initial findings. Two independent coders reviewed the 
responses separately to ensure reliability and reconciled discrepancies 
at designated intervals. We achieved high agreement at these intervals 
(Cohen’s Kappa, 𝜅 > 0.80).  The coding process involved three phases: 
initial independent coding, scheduled reconciliation meetings, and final 
consensus coding. Reconciliation meetings were held after every 25% 
of the data was coded. During these meetings, the coders systematically 
discussed each discrepancy, examined the full context of responses, and 
consulted the established coding framework to reach a consensus. In 
cases where the initial discussion did not resolve the differences, a third 
researcher arbitrated the final decision.

3.5. Ethics

Ethical approval for this study was granted by our institution’s 
ethics review board, ensuring adherence to the highest standards of 
research integrity and participant welfare. In both surveys, partici-
pants received a link to an information sheet that outlined the study’s 
purposes, data handling protocols, anonymization of responses, and 
the withdrawal process from the study. Additionally, a consent form 
was included in the Microsoft Forms survey. Participants indicated 
their informed consent by submitting their survey responses, thereby 
acknowledging their understanding and agreement to participate in 
the study. This procedure was meticulously followed to ensure that all 
participants were well-informed about the nature of the study and their 
role in it.

4. IoC usability and socio-technical factors

Our mixed-methods approach combines quantitative and qualitative 
analysis to provide insights into the effectiveness of existing IoCs, risks, 
security gaps, and data sources in ICS environments, as well as the 
human and socio-technical factors in threat detection.

4.1. RQ1: Usability of current IoCs in countering ICS-based cyber-attacks

Varying Applicability of IoCs. Fig.  2 reveals participants’ per-
ceived relevance and applicability of IoCs within the OT domain. Our 
analysis revealed insights into the perceived effectiveness of various 
IoCs for detecting cyber-attacks in ICS systems. Participants demon-
strated an understanding of how different IoCs apply to specific attack 
vectors and target systems. Notably, it was shown that unusual out-
bound network traffic was a consistently relevant indicator across all 
four scenarios, indicating its broad applicability in ICS threat detection. 
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However, our results also stressed that most IoCs are highly context-
dependent, and their perceived importance shifts based on the specific 
attack scenario. For example, participants highlighted control logic 
modification activities for the Stuxnet scenario, while anomalies in VPN 
activity were noted for scenarios resembling the Ukraine Power Grid 
attack. As with the DDoS scenario, resource usage and response size 
anomalies were prominent, while the MITM attack scenario emphasized 
packet payload inconsistencies and alarm data point anomalies. As a 
result of this variability, one-size-fits-all approaches to IoC implemen-
tation are unlikely to be effective due to the complexity of ICS threat 
landscapes. Within ICS environments, even indicators common in IT 
environments assume greater significance due to proprietary control 
protocols, safety-critical processes, and strict uptime requirements. Out-
bound traffic anomalies, for example, may not just indicate malicious 
activity; they can directly threaten the stability of physical opera-
tions. This contrasts with IT systems, where network traffic patterns 
exhibit greater variability. Therefore, seemingly familiar IoCs require 
more careful interpretation and scenario-specific application within ICS 
environments.

Stuxnet IoCs.  The Stuxnet attack demonstrates the risks of con-
trol system manipulation. When asked about relevant Stuxnet IoCs, 
unusual outbound network traffic was widely identified by 
28 participants, indicating the perceived importance of scrutinizing 
network connections for signs of Stuxnet-style C&C communications 
to adversarial infrastructure.  Control logic modification and 
communication with malicious C&C servers were frequently 
noted, with 25 participants each pointing out these indicators.

Such indicators correspond to core techniques associated with the 
Stuxnet attack. We discovered that such indicators align with 𝑆𝑢𝑟𝑣𝑒𝑦1−
𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡4 observation that ‘‘detecting potential malicious interaction 
with control devices (e.g., firmware or logic uploads)’’ is crucial. Beyond 
these commonly identified IoCs, participants also recognized the rele-
vance of other indicators. Anomalies in Removable media scanning 
logs and  privileged user account activity were identified by 
17 and 16 participants, respectively. This reflects that the use of re-
movable media is more common in ICS environments for tasks like PLC 
programming or firmware updates, making this vector more significant 
than in IT contexts. A similar situation exists in ICS, where privileged 
users have greater access to critical systems, making anomalous activity 
a more pertinent indicator.

In addition, participants reported several behaviors consistent with 
Stuxnet. Examples of this include  network scanning of
industrial networks,  presence of unsigned libraries,
scanning for critical services, and  unexpected
Peer-to-Peer communication. These behaviors are particularly 
noteworthy in ICS, where network scanning and unsigned software are 
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less common and often indicate malicious activity, unlike in IT environ-
ments where these behaviors may be more routine. The identification 
of these IoCs points to the perceived need to account for the unique 
characteristics of ICSs. By integrating these indicators into existing 
monitoring systems, we can improve the ability to construct a more 
proactive and effective defense strategy against threats such as Stuxnet.

Ukraine Grid IoCs.  The Ukraine grid attack further illustrated 
ICS vulnerabilities, particularly through the exploitation of VPNs and 
spear-phishing for initial access. For this attack, unusual VPN usage, 
such as  lengthy sessions or abnormal frequencies, emerged 
as the most recognized indicator, with 28 participants highlighting its 
relevance. This is because VPNs are frequently used for remote main-
tenance and control of ICS systems, which often operate on highly seg-
mented networks with restricted remote access. Closely following, 27
respondents identified the  high frequency of command execution 
within notably short timeframes as another key indicator. This 
indicator is perceived as crucial for identifying control system ma-
nipulation inconsistent with normal operational patterns (Asiri et al., 
2023b). Notably,  unusual outbound network traffic was rec-
ognized by 19 participants, while  anomalies in privileged user 
account activity were identified by 18 participants. These IoCs 
reflect initial compromise and subsequent actions within the network, 
such as malware communication with external C&C servers and the 
misuse of stolen credentials. Given these findings, advanced monitoring 
techniques become crucial. To illustrate, 𝑆1 − 𝑃11 points out that
detecting lateral movement using behavioral analytics is critical, stressing 
the importance of methods such as endpoint auditing to distinguish 
between legitimate and adversarial actions.

Participants also noted additional indicators that could enhance 
detection capabilities against attacks similar to the Ukraine attack. 
They emphasized monitoring for  suspicious email signs, par-
ticularly those associated with spear-phishing campaigns, and stressed 
the importance of user-driven reporting mechanisms for such phish-
ing attempts. Participants also noted the significance of indicators 
related to  macro activity in Microsoft documents, given the at-
tack’s use of malware-laden files. While these vectors are also used 
in IT environments, the targeting of ICS personnel and systems makes 
them particularly dangerous in this context, as the consequences of a 
successful breach can extend beyond data loss to physical disruption.

DDoS & MITM IoCs.  DDoS and MITM attacks pose significant 
availability and integrity risks in ICS. For the DDoS scenario,
unexpected resource usage and  response size were notably 
identified by 30 participants each as primary indicators. This percep-
tion seemingly stems from the fact that many ICS systems operate 
under strict resource limitations and require immediate responsive-
ness, making them highly susceptible to DDoS attacks (Zahid et al., 
2024). Monitoring abnormal traffic patterns is considered vital, as evi-
denced by 18 participants recognizing  unusual outbound network 
traffic as a potentially effective indicator for detecting such an 
attack. Additionally,  port scanning of control devices, was 
selected by 11 participants, which could indicate impending attacks. 
While less frequently mentioned, participants also acknowledged indi-
cators such as  packet flooding and  slow response time, further 
emphasizing the perceived need for full network analysis.

In the context of the MITM attack,  inconsistency in packet 
payloads and  alarm unusual data points were frequently iden-
tified, with 21 and 19 responses, respectively. These findings indicate 
that participants perceive the integrity and consistency of sensor data 
and control commands as critical for maintaining safe and reliable oper-
ations.  Unusual outbound network traffic has also been seen as 
an effective indicator by 16 participants. In addition to these primary 
indicators, our analysis exposed several less common but noteworthy 
indicators. For instance,  anomalies in privileged user account 
activity were flagged by 7 participants, while  geographical 
irregularities and  surges in database read volume were 
suggested by 3 participants.

In addition, our findings revealed that participants identified spe-
cific indicators for detecting MITM attacks, including  ARP protocol 
anomalies,  unexpected traffic routes, and  network traffic
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delays. The variance in perceptions among participants suggests that 
MITM attack in ICS contexts might be more stealthy compared to 
IT systems. As a result, it is crucial to compare real-time data with 
historical records for more effective detection against such an attack. 
As 𝑆1 − 𝑃18: remarked,‘‘Sometimes it might be useful if the process can 
generate secondary logs, which can be directly compared to the historian’’.
Participants’ Recommended IoCs. Further analysis revealed a breadth
of perspectives on additional IoCs, offering deeper insights into detect-
ing cyber threats within ICS contexts. These indicators, while seemingly 
generic, gains specific significance when viewed through the lens of 
ICS vulnerabilities and operational domain. 𝑆1 − 𝑃1’s emphasis on 
firewall logging indicates the need to monitor and analyze firewall 
activity, where unusual patterns could signal breach attempts or re-
connaissance efforts. This specific focus on firewall behavior may help 
uncover subtle signs of intrusion that might be overlooked by broader 
network monitoring. Traditionally, ICS systems were isolated, but the 
integration of IT and OT has introduced new attack vectors. Moreover, 
the evolution of ICS to include network connectivity has exposed 
these systems to threats for which they were unprepared, making 
robust logging essential for detecting anomalies that could indicate 
an attack (Jadidi et al., 2022). Another participant 𝑆1 − 𝑃3 identified 
unusual protocol usage as a key IoC, a vital consideration in ICS 
environments where deviations from established protocol behaviors 
can indicate unauthorized access or control system manipulation. Such 
nuances in protocol usage, particularly with industrial protocols such 
as Modbus or Distributed Network Protocol 3 (DNP3), offer a focused 
lens to detect anomalies (Asiri et al., 2023b).

The insights from 𝑆1 − 𝑃5 regarding  unusual remote access 
patterns and  suspicious device connections highlight the 
importance of vigilance against internal threats and unauthorized de-
vice use. Participants noted that reliance on remote access technologies 
has made ICS environments attractive targets for adversaries, lead-
ing to vulnerabilities that are exploited through remote access. These 
indicators are perceived as especially crucial in ICS, where system 
integrity is often tightly controlled and monitored. 𝑆1 − 𝑃6’s point on 
the significance of  events or alarms generated by security 
tools and monitoring  inbound traffic adds another layer to the 
detection framework. In an ICS setting, an increase in security alerts or 
unexpected inbound traffic could indicate external entities attempting 
to manipulate the system.

Lastly, the concern raised by Participant 𝑆1 − 𝑃8 about
spear-phishing emails targeting operator systems illumi-
nates the often-overlooked human element in cybersecurity. Although 
spear-phishing is a common attack vector across various industries, the 
specialized nature of ICS and the potential impact of a compromised 
operator system make it a significant indicator in this context. The 
relevance of this indicator is further evidenced by the tactics employed 
by threat groups like TALONITE, ALLANITE, and STIBNITE (MITRE 
Corporation, 2024; Dragos Inc., 2020). These adversaries increasingly 
target engineering staff and personnel, attempting to pivot from IT to 
OT networks through focused phishing lures. The rise in targeted phish-
ing attempts against ICS operators could provide early warning signs 
of an impending attack, emphasizing the need for security awareness 
training.

OT Risk. A SOC refers to a combination of people, processes, and tech-
nology that proactively searches for potential indicators in the environ-
ment to identify and respond to security incidents. When participants 
were asked which ICS components present the greatest risk for compro-
mise, 97% of participants agreed that people present the greatest risk 
for compromise. This aligns with the prevalence of social engineering 
tactics in attacks like the Ukraine grid attack, where spear-phishing 
emails were a key entry point. The ‘Network’ component was deemed 
‘Most likely’ to be compromised by 51% of participants, reinforcing 
the significance of network-centric IoCs such as  unusual outbound 
network traffic and  communication with malicious C&C 
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servers identified in the context of Stuxnet, DDoS, and MITM attacks. 
Furthermore, the ‘Technology’ aspect, encompassing hardware and 
software, was considered ‘Likely’ at risk by 93% of participants.

This perspective is consistent with the technical vulnerabilities ex-
ploited in attacks like Stuxnet and the Ukraine grid attack, such as 
control logic modification and unusual VPN usage. Conversely, the 
‘Process’ category, related to operational procedures and controls, re-
ceived mixed perceptions, with only 3% viewing it as ‘Most likely’ 
at risk for compromise. This perception divide may reflect a different 
understanding of process-related risks compared to direct technological 
and network threats.
Effectiveness of Early Identification. However, early IoC identifica-
tion was met with mixed reviews on prevention efficacy. While 36% 
asserted it could enable timely threat interception, 52% believed its 
effectiveness depended on factors such as attack sophistication, zero-
days, and lateral movement evasion. As 𝑆1−𝑃13 summarized, ‘‘IoCs are 
often retrospective...early IoC detection might not be sufficient to prevent 
an attack.’’ This suggests that IoCs can provide signals for prepared 
defenders but must constantly evolve against novel intrusion behaviors. 
They are most effective as part of a layered security strategy, not a 
singular solution.
Perceived Security Gaps in Detection. To bridge the gap between 
theoretical knowledge of IoCs and their real-world application in com-
plex OT environments, we need to understand the security gaps that 
could impede the successful detection and response to such indicators. 
The survey results indicate that the inability to distinguish between 
legitimate activities and malicious behaviors is a significant security 
gap concerning the identification of IoCs within systems. With 30
participants selecting this option, it emerges as the most prevalent 
challenge faced by the participants. This issue highlights the complexity 
of differentiating between normal system operations and malicious 
actions, hindering IoC detection.

Furthermore, a shortage of exhaustive knowledge of how systems 
work was identified as another substantial security gap by 27 respon-
dents. A comprehensive understanding of system architecture, compo-
nents, and their interdependencies is crucial to effectively identify IoCs. 
Gaps in this knowledge can hinder the ability to recognize and respond 
to potential threats effectively.

Notably, 24 participants cited a lack of understanding of where 
crucial evidence can be found as a security gap. Identifying the ap-
propriate sources of evidence and logs is essential for detecting and 
analyzing IoCs. A deficiency in this area can lead to overlooked or 
missed indicators, compromising the overall security posture.

Takeaway:

Participants indicate that the applicability of IoCs in ICS environ-
ments is highly context-dependent, with different scenarios requiring 
specific IoCs. While certain indicators are broadly recognized, many 
are specific to particular attack types. Although early identification 
of IoCs is considered important, significant security gaps remain, and 
perceptions about their ability to prevent sophisticated attacks vary.

4.2. RQ2: Essential data sources in ICS context

Gathering preliminary information is a critical first step in inves-
tigating an incident. Developing a comprehensive evidence collection 
strategy, as emphasized in recent studies (Chockalingam and Maathuis, 
2022; Kebande et al., 2020), is essential for this process. An integral 
part of formulating this strategy is to consider the perspectives and 
feedback from various respondents. These insights contribute signifi-
cantly to identifying potential sources of digital forensic artifacts and 
other indicators. To contextualize these insights, Table  1 compares 
data sources, categorizing them based on value, required effort, and 
volatility as perceived by participants.
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Network traffic analysis was universally considered highly valuable, 
with 100% high importance ratings. This was corroborated by the 
industrial experts from the second study reflecting its foundational 
visibility in revealing malicious connections and anomalies. They ex-
plained that in ICS, network traffic is not just data— it is real-time 
control. A single anomalous packet could mean the difference between 
safe operation and catastrophic failure. The high importance of network 
traffic analysis is balanced by the effort required, with 84.4% ranking 
it as medium. This observation of a higher effort level reflects the 
unique challenges of ICS environments compared to those typically 
found in IT systems. As 𝑆1 − 𝑃26 noted, ‘‘analysis of industrial networks 
is highly dependent on the knowledge you have of proprietary protocols and 
normal traffic patterns. It is not only about detecting malware but also about 
detecting slight deviation.’’ Despite the moderate effort required, network 
traffic analysis was perceived as having low volatility by 53.1% of 
participants, medium volatility by 40.6%, and high volatility by 6.3%. 
Participants who scored medium and high volatility noted that network 
traffic presents unique challenges. While traffic patterns are persistent, 
the underlying packet data is highly volatile – packets must be captured 
in real-time or are permanently lost, as evidenced by 𝑆2 −𝑃17:‘‘The real 
problem is that these systems can easily miss short-lived, one-off events that 
could indicate an actual attack. I mean if something happens fast and does 
not fit the normal pattern, it gets lost in all the noise’’. 

Endpoint monitoring provides complementary visibility with 93.7% 
citing a high value for tracking internal actions. In OT systems, this 
perception of high value is due to the direct link between endpoints 
and physical processes. 𝑆1 − 𝑃23 asserted that ‘‘ monitoring connec-
tions between engineering workstations and controllers is indispensable in 
identifying unauthorized activities’’. With 58.1% citing medium volatil-
ity, endpoint logs enable continuous behavioral monitoring. Similarly, 
87.5% assigned a medium effort rating, reflecting the challenges of col-
lecting and normalizing data among heterogeneous assets. Participants 
believed that the reason behind the high effort is due to the many 
assets in ICS not running traditional operating systems. This can make 
obtaining the right data sources challenging.

Supplementary data sources, such as Open Sources/Threat Intelli-
gence Feeds, offer contextual breadth to the security framework. They 
were noted as medium value by 62.5% of the participants. Effort for 
these sources is considered moderate, and they exhibit low volatility, 
with 59.4% of participants recognizing this stability, suggesting that 
they are less demanding but provide essential insight into potential 
vulnerabilities and emerging ICS threats.

IDS and firewalls add detection depth via signature and heuristic 
analysis to identify known and suspicious events. Reinforcing their 
detection value, survey results showed that over 84.4% of participants 
rated these logs as highly valuable. In terms of effort, 65.6% ranked this 
data source at medium effort levels, while only 3.1% viewed it as high 
effort. This likely reflects some tuning complexity for ICS deployments.
𝑆2 − 𝑃16 explained,‘‘one day I am tweaking IDS rules and the next day 
I am discussing pressure tolerances with process engineers. You cannot 
protect what you do not know, and in ICS, that means knowing the cyber 
and the physical’’ . However, with 90.6% citing low volatility, IDS and 
firewall logs provide reliable visibility. As a result, careful configuration 
is needed to optimize fidelity while managing data volumes over an 
extended monitoring period.

Our findings revealed that vulnerability information varied more 
among the participants. While 18.8% of participants see it as providing 
high value, potentially offering insights into system vulnerabilities, 
another 18.8% rated it as low value, with the majority, 62.4%, con-
sidering it of medium value. This spectrum of opinions reflects a more 
diverse view of its utility, suggesting that while it can offer valuable 
insights, its impact may not be uniformly agreed upon as essential.

Field devices, including PLCs, Remote Terminal Units (RTUs), and 
Intelligent Electronic Devices (IEDs), present unique challenges. The 
extreme volatility of data from such devices, rated at 96.9%, makes cap-
turing time-sensitive IoCs before their disappearance a key challenge. 
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Table 1
Comparison of data sources based on Value, Effort, and Volatility metrics. 
 Data source Value (%) Effort (%) Volatility (%) IoCs  
 H M L H M L H M L  
 Network traffic Analysis 100.0 0.0 0.0 6.3 84.4 9.3 6.3 40.6 53.1 IoC1, IoC4, IoC6, IoC7, IoC11, IoC13, IoC16 
 Endpoint security data 93.7 6.3 0.0 6.3 87.5 6.2 3.2 58.1 38.7 IoC2, IoC3, IoC5, IoC8, IoC15  
 Open sources/threat intelligence 25.0 62.5 12.5 6.3 59.4 34.3 0.0 40.6 59.4 IoC7  
 IDS/firewall 84.4 15.6 0.0 3.1 65.6 31.3 3.1 6.3 90.6 IoC9  
 Vulnerability information 18.8 62.4 18.8 6.3 34.4 59.3 0.0 3.1 96.9 –  
 Field devices (PLC, RTU, IED) 15.6 65.6 18.8 75.0 25.0 0.0 96.9 3.1 0.0 IoC10, IoC12, IoC14  
Note: The numbers in the table represent the percentage of survey respondents who rated each data source according to a three-tier scale: High (H), Medium (M), and Low (L). 
These ratings reflect the respondents’ perceived importance, required effort, and expected volatility of each data source.
Similarly, 75% rated the effort level associated with field device data 
integration as high, reflecting significant barriers. Selective capture 
capabilities integrated with protocol analysis merit investment here, 
though this space demands custom ICS-centric solutions to extract value 
while avoiding overwhelming analysts. Despite current limitations, 
15.6% still viewed field device data as highly valuable, indicating that 
surmounting these hurdles can provide indispensable process visibility.

Takeaway:

Network traffic analysis is universally valued for IoC gathering in 
ICS systems, complemented by endpoint monitoring and IDS/firewall 
logs. Open-source intelligence and vulnerability information offer 
contextual insights but with varied perceived value. Field devices 
present significant potential but face challenges due to data volatility
and integration difficulties.

4.3. RQ3: Human perception in threat detection

Table  2 presents participants’ responses to the six assertions we 
used to assess RQ3 (human analysts’ roles in IoC detection). All experts 
affirm the critical necessity of continuous situational awareness when 
monitoring network security (A-1). This reflects a broad consensus 
on the importance of human vigilance, which is essential for under-
standing the complex interdependencies within ICS systems. Through 
continuous human engagement, analysts are able to identify and inter-
pret potential IoCs within the context of routine operations. Moreover, 
60% of experts reported that human analysts are more effective than 
automated systems at detecting anomalies in both physical and network 
processes (A-3). This suggests that human intuition is adept at detecting 
subtle deviations that elude automatic, signature-based detection sys-
tems, thereby improving IoC discovery. While automated security tools 
are valuable for generating alerts based on predefined IoCs, our results 
highlight their reliability limitations. 90% of respondents indicated that 
manual validation of these alerts is necessary before considering further 
action (A-4). This points to the critical role of human expertise in 
assessing the veracity of alerts and distinguishing genuine IoCs from 
false positives. The agreement of 95% of experts on the necessity for a 
‘‘human-in-the-loop’’ approach to IoC detection and preliminary analy-
sis (A-2) further supports the view that reliance solely on automation 
is insufficient for comprehensive security in OT environments.

Our analysis also revealed challenges related to data consistency 
and completeness that affect both human analysts and automated sys-
tems. Specifically, 75% of experts noted that issues such as fragmented 
visibility across devices and timestamp inconsistencies pose hurdles (A-
6). As a result of such data quality issues, analysts may face difficulties 
in accurately interpreting security data, potentially resulting in the 
oversight of important IoCs. Incomplete data similarly reduces the 
effectiveness of automated systems in detecting anomalies that deviate 
from established patterns. However, the impact of these challenges 
appears to be less severe than initially reported, with 45% of experts 
finding it hard to identify when and what changes occur in the system 
(A-5).
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Takeaway:

The importance of continuous situational awareness is widely em-
phasized by experts within ICS environments. Automated systems 
are valuable, but they often require human validation, particularly 
given the complex interplay between cyber and physical processes 
in industrial settings. However, both human and automated analysis 
face challenges due to data quality issues, which could potentially 
impact the accurate interpretation of security data and IoC detection.

4.4. RQ4: Socio-technical factors and challenges

We discovered several main themes that pertain to human factors 
and challenges in identifying IoCs within the OT context.
Theme A: Organizational and Legal Constraints Impacting Security Imple-
mentations Analysis— While SOC analysts often struggle with limited 
access to third-party devices across different environments, this issue is 
even more challenging in ICS environments due to unique vendor rela-
tionships and the critical nature of these systems. Participants expressed 
that a prominent challenge in the domain of OT security is navigating 
organizational and legal barriers, especially when dealing with third-
party systems. 𝑆2 − 𝑃1 emphasized how these constraints severely 
limit the ability to perform essential investigation processes, such as 
installing monitoring tools or accessing critical system components. 
The participant explained that the issue is not just a technological 
hindrance; it also involves broader challenges at the organizational and 
policy levels. As one participant noted:

‘‘My main challenge is more organizational/legal: You are not 
authorized to log on to devices owned by third parties, such as 
Schneider/Siemens. You cannot install security tools on them 

without their approval.’’
The lack of monitoring and access to such devices creates blind spots 
in threat detection, leading to missed IoCs. Compared to traditional 
IT systems, the primary organizational barrier is exacerbated within 
industrial systems due to the inherent complexity and diversity of ICS 
architecture, which often integrates components from multiple vendors. 
As participants reported, such diversity complicates the investigation 
process, as different systems may utilize proprietary protocols and data 
formats that are not easily accessible or interpretable by existing tools.

‘‘Without access to logs which are inconsistent across vendors/ the 
ability to install tools on a Siemens PLC, you cannot identify 

activities as unusual command sequences or unauthorized firmware 
changes—both of which are signs of malicious intentions [...] it 

depends on who has the right to access data.’’ 𝑆2 − 𝑃17
Moreover, legal barriers such as data ownership play a crucial role 
in hindering threat data collection. We observed that such issues can 
lead to ‘ownership uncertainty’, where potential indicators or artifacts 
are inaccessible. As 𝑆2 − 𝑃13, 𝑆2 − 𝑃15, and 𝑆2 − 𝑃17 reported, this 
might cause threat analysts to inadvertently violate legal boundaries. 
In IT environments, while legal considerations are also present, they 
may not be as intricate due to the more straightforward nature of 
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data ownership and access rights, as defined in the ISO/IEC 27001 and 
27002 standards (Disterer, 2013).
Theme B: Inadequacy of Security Logs in Threat Detection— Another 
technological challenge identified by participants is related to the 
limitations in the log capabilities of key ICS components, specifically 
field devices, such as PLCs and RTUs. Participants noted how these 
devices are often not designed with security professionals in mind. 
Specifically, security-oriented logging that allows for security profes-
sionals to conduct threat detection is lacking, despite being integral to 
the operation of industrial systems. Their primary focus is on safety 
diagnostics and process troubleshooting, which leaves a significant 
gap in security monitoring. The absence of security-oriented logging 
data, such as detailed access attempts, user actions, or booting activity, 
severely hampers forensic investigations and threat data extraction. As
𝑆2 − 𝑃3 stated, without these crucial logs, security professionals are 
left without the necessary data to effectively trace system activities and 
identify potential IoCs that can indicate malicious activities.

‘‘Level 1 and 0 devices do not have any meaningful logs for security 
purposes... they miss to include relevant information such as source 

IP addresses, hashes of the firmware, booting logs.’’
The challenge extends beyond a simple lack of security logging. As 
observed in Theme A, it is exacerbated by the sheer diversity of devices 
and log formats across components in OT environments. This explains 
why many common enterprise security monitoring tools, such as Secu-
rity Information and Event Management systems (SIEMs) and Endpoint 
Detection and Response tools (EDRs), have limited applicability in OT.
𝑆2−𝑃5 highlighted that some of these tools are ‘‘plug-and-play ’’, but lack 
proper tuning and baselines. Therefore, security teams are forced to rely 
on manual efforts to extract and harmonize the log data that does exist. 
Although similar logging shortcomings may exist in IT devices and 
legacy systems, they generally benefit from more standardized logging 
practices and security tooling compared to OT environments.
Theme C: Cross-Domain Knowledge Gaps— The knowledge disparity 
between IT security and OT teams poses a significant obstacle to 
the ability to identify and respond to ICS-specific IoCs. While similar 
knowledge gaps appear in other environments, the mismatch between 
IT-centric security expertise and the specialized processes, protocols, 
and engineering principles in ICS is especially consequential. As stated 
by 𝑆2 − 𝑃6, ‘‘ SOC operators are not OT Asset specialists, they sometimes 
fail to see how IoCs behave abnormally in these environments’’. IT security 
personnel may fail to recognize the importance of alterations in a PLC’s 
ladder logic, such as changes in pump operation setpoints or PLC timer 
values. 𝑆2−𝑃11 expressed that these might appear as routine operational 
adjustments to IT teams, but they could indicate malicious manipu-
lation recognizable only to OT engineers. In contrast, OT personnel 
may detect mechanical anomalies or unusual sensor readings but not 
comprehend that unexpected outbound connections from an HMI could 
potentially indicate command-and-control operations. These misinter-
pretations allow potential compromises to remain undetected, as the 
significance of these ICS-specific anomalies is not acknowledged across 
different domains. Moreover, security analysts in our study asserted 
that the process of investigating incidents is often restricted by the 
limited visibility of information from various parts of the organization 
and teams. Thus, the lack of communication commitment between the 
security and engineering teams exacerbates the problem, as 𝑆2 − 𝑃8
noted:

‘‘Lack of communication between security and teams in the field, 
they do not understand each other, they don’t exchange enough.’’

Theme D: Temporal Volatility of IoCs Analysis— The time-sensitive 
nature of certain IoCs in ICS environments poses a unique challenge 
to the collection of data as it can be lost or overwritten if not captured 
promptly.- 𝑆2 − 𝑃17 observed: ‘‘ These systems can easily miss short-lived, 
one-off events [...] SPAN technologies on OT environment switches drop 
SPAN packets when switch loads increase, this does cause a data collection 
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anomaly’’. This volatility directly results in missed threat indicators. For 
example, a brief spike in network traffic that could indicate a malware 
upload to a PLC might be missed if it occurs during a period of dropped 
packets. Similarly, transient changes in control system parameters that 
could signal an attack in progress might not be captured if monitoring 
systems are not continuously sampling at high frequencies.

Constraints specific to ICS nature make this issue even harder to 
address. To illustrate, operational and regulatory requirements often 
restrict network monitoring and real-time data collection. ICS systems, 
compared to IT networks, cannot be paused or reconfigured without 
risking downtime or violating safety protocols. Because of these limita-
tions, short bursts of malicious activity, such as momentary exfiltration 
traffic, often go undetected during packet drops or logging gaps.
Theme E: Cyber–Physical Interdependencies and Micro-Anomalies— The 
interconnected nature of cyber and physical processes in ICS environ-
ments complicates the interpretation of potential IoCs. This interdepen-
dency often leads to missed threat indicators when physical changes 
serve as cyber IoCs. For instance, a slight increase in network traffic 
between a PLC and an Human Machine Interface (HMI) might be 
dismissed as normal variation when it actually indicates an attacker ex-
filtrating sensitive process data. On the other hand, minor fluctuations 
in a physical process might be attributed to equipment issues rather 
than recognized as potential signs of cyber manipulation.

‘‘In our ICS, seemingly benign traffic patterns can indicate serious 
issues. A slight change in polling frequency could mean a 

compromised PLC.’’ 𝑆2 − 𝑃13

Theme F: Operational Pressure vs. Decision Making— In OT environ-
ments, personnel often prioritize maintaining continuous operation and 
ensuring safety over security monitoring. In some cases, operational 
pressure can cause security alerts to be deprioritized, particularly if 
they conflict with the immediate need to maintain critical processes. 
We found that when faced with a potential conflict between respond-
ing to a security alert and maintaining the operation of a critical 
system, personnel often prioritize the latter, leading to overlooked or 
disregarded IoCs.

‘‘There’s the pressure to keep things moving. Especially in 
quick-paced environments, people might be hesitant to flag something 

suspicious if it means slowing things down or looking too 
cautious.’’𝑆2 − 𝑃15

Theme G: Cognitive Strain from Dual-Responsibility— To fulfill oper-
ational demands, which can vary in complexity, individuals in ICS 
sectors need to manage both physical processes and cyber systems. 
Operators and engineers in OT environments face significant cognitive 
strain due to their dual responsibilities. Unlike IT environments, where 
the focus is primarily on digital data, OT personnel must continuously 
monitor and respond to both the physical and digital aspects of op-
erations. This dual focus requires the integration and prioritization 
of diverse data types—from sensor readings to network alerts—often 
under time-sensitive conditions. The complexity and high demands of 
these environments exacerbate cognitive strain, increasing the likeli-
hood of missing or misinterpreting IoCs that occur at the intersection 
of physical and cyber domains. 𝑆2 − 𝑃16 explained:

‘‘The complexity of OT environments coupled with high operational 
demands also results in cognitive overload where the personnel are 
swamped with data and alerts and it becomes difficult to distinguish 

between real threats and noise.’’
Theme H: Cognitive and Familiarity Biases—  Our participants also 
raised concerns about the unique cognitive and familiarity biases that 
significantly impact the detection and understanding of IoCs. These 
biases are particularly influenced by the long-term stability of OT 
systems and the unfamiliarity of IT-trained personnel with OT-specific 
behaviors. Participants noted that the consistent operational state of 
industrial control systems over extended periods can lead to decreased 
vigilance.
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Table 2
Overview of participants’ perceptions to assertions.

Assertion Responses Mode Median CNNS Plot(%)

1 2 3 4 5

A-1: For monitoring work, it is important that I 
maintain a continuous awareness of the network 
security state.

0 0 0 3 17 5.0 5.0 0:20

A-2: It is important to have a ‘‘human in the loop" 
for the detection and preliminary analysis of poten-
tial security events—this process cannot be carried 
out by automated systems alone.

0 0 1 4 15 5.0 5.0 0:19

A-3: Human analysts monitoring the system are ca-
pable of detecting network/physical process anoma-
lies that are missed by automated systems.

0 4 4 6 6 4.0 4.0 4:12

A-4: I am often required to make decisions on 
the accuracy of the alerts produced by automated 
systems.

0 0 2 12 6 4.0 4.0 0:18

A-5: It is hard to identify when any changes to the 
system occur, what they are. 0 4 7 4 5 3.0 3.3 4:9

A-6: Devices may generate logs that are either in-
complete or inconsistent (e.g., different time-stamps) 
making analysis more challenging.

0 2 3 7 8 5.0 4.0 2:15

Note: Responses refer to the agreement scale ordered from  ‘‘Strongly Disagree’’(=1),  ‘‘Disagree’’(=2),  ‘‘Neutral’’(=3), 
 ‘‘Agree’’(=4), and  ‘‘Strongly Agree’’(=5).
‘‘Familiarity can also be a sneaky villain. If you see the same kind of 
thing happen over and over with no problems, it’s easy to get numb 
to it and miss a small change that could be a big deal.’’ 𝑆2 − 𝑃15
This observation points to a form of familiarity bias worsened in 

OT environments due to the typically stable nature of ICS. Unlike 
IT environments where frequent updates are normal, the long-term 
consistency of OT systems can lead to a false sense of security. In 
contrast, the study showed that IT-trained personnel often struggle with 
unfamiliarity biases when dealing with OT systems.

‘‘SOC operators, unfamiliar with the intricacies of OT environments, 
often fail to recognize abnormal IoC behavior.’’𝑆2 − 𝑃6

Takeaway:

Effective identification and response to IoCs in ICS face several 
socio-technical challenges. Organizational and legal barriers restrict 
access to third-party devices, creating blind spots in IoC detec-
tion. Inadequate security logging in field devices, such as PLCs and 
RTUs, hampers forensic investigations and threat data extraction. 
The knowledge disparity and communication gaps between IT security 
and OT teams lead to misinterpretation of potential threats and 
restricted information visibility. The temporal volatility of certain IoCs 
and the intricate Cyber–Physical interdependencies in ICS environ-
ments further complicate indicator detection. Human factors play a 
crucial role, with operational pressures often prioritized over security 
concerns, cognitive strain from managing both physical and cyber 
systems, and biases stemming from long-term system stability and 
unfamiliarity with OT-specific behaviors. These factors collectively 
contribute to an environment where potential IoCs in ICS systems 
are often ignored or misinterpreted.

5. Discussion and limitations

5.1. Technological roadblocks to effective detection and response

Our observation unveils several technological roadblocks that sig-
nificantly hinder the ability of security analysts and operators in OT 
environments to recognize and respond to IoCs and suspicious patterns 
effectively. We group them into three categories: limited logging, data 
source quality, and false positive prevalence.
Limited Logging. A primary obstacle lies in the limited logging capa-
bilities of many critical OT systems. Unlike their IT counterparts, these 
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systems often prioritize operational diagnostics and safety data over 
security-oriented logging (Asiri et al., 2021, 2023b). This prioritization 
stems from the real-time performance requirements and safety-critical 
nature of OT environments, where even minor latencies could have 
significant consequences (Asiri et al., 2023b). As a result, the focus 
on operational data, combined with the constrained resources of field 
devices often employing volatile memory, creates significant challenges 
for collecting potential indicators. Prior studies have shown that the 
process and operational data logged in ICS often fall short in supporting 
forensic investigations (Yau et al., 2018; Azzam et al., 2023).

Our analysis confirms and extends these findings, revealing that the 
use of volatile memory in these devices further exacerbates the issue. 
This is especially true for field devices such as PLCs, RTUs, and IEDs, 
where data volatility was rated extremely high by our respondents. This 
means that the value of evidential data stored within these devices will 
be at its apex immediately after an incident. Moreover, as described 
in Section 4.4, transient or ‘‘short-lived’’ IoCs may never be captured 
if logging and monitoring tools cannot handle real-time demands. To 
address this, there is an increasing shift towards integrating cloud-based 
logging architectures. These hybrid approaches offer persistent storage 
for OT systems, potentially resolving the volatility problem (Biswas and 
Giaffreda, 2014). However, they introduce new challenges in terms of 
data privacy, network latency, and potential points of failure.

In order to enhance detection capabilities, our findings indicate that 
integrating traditional IT-derived indicators with ICS-specific monitor-
ing is essential for providing broader visibility into potential attack 
paths. This layered approach can combine network activity analysis 
with endpoint and field device monitoring (e.g., firewall logging and 
suspicious device connections) to offer a more comprehensive view 
of attacks. Field devices like PLCs, RTUs, and IEDs are particularly 
challenging due to their data volatility, requiring specialized capture 
capabilities and careful protocol analysis to avoid losing valuable IoCs 
before detection.

Despite these challenges, existing logging mechanisms should not 
be completely dismissed. We observed that even basic operational 
logs, such as a PLC’s status mode changes, can potentially indicate 
unauthorized activities. This suggests that current logs may provide 
greater signs for attack detection. To illustrate, while these logs may be 
insufficient for comprehensive forensics, they may still provide valuable 
indicators for real-time attack detection.

To improve logging capabilities for IoCs gathering, we propose 
several strategies. The OT industry can establish standardized logging 
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practices that mandate security-relevant data collection in devices. 
Additionally, manufacturers can prioritize field devices with enhanced 
logging capabilities that go beyond operational data, potentially includ-
ing persistent storage or mechanisms for transmitting logs to central 
repositories. Finally, security teams can leverage advancements in in-
memory forensics techniques to capture critical data from RAM before 
it is overwritten. One suggested method is to switch to programming 
mode in the PLC to preserve the possible evidence (van der Knijff, 
2014). However, this often requires specific vendor software, which 
may not always be readily available. In cases where switching to 
programming mode is not feasible, alternative methods can be con-
sidered. These include using debugging tools connected via the Joint 
Test Action Group (JTAG) interface or, in extreme cases, physically 
removing the chips for analysis (Asiri et al., 2023b). Although some 
of these techniques are invasive, they might extract usable indicators 
before the data is overwritten.
Data Source Quality. Beyond limited logging, data fragmentation and 
inconsistencies further complicate IoC identification. We have found 
that this issue is primarily divided into two aspects: fragmented visibility
and inconsistent data formats. In typical ICS environments, fragmented 
visibility occurs when data from various sensors, controllers, and logs is 
often siloed. This lack of a unified view makes it difficult to correlate 
events and spot attack patterns across systems (Botega et al., 2017). 
Inconsistent data formats, on the other hand, arise when different 
ICS components use incompatible formats, significantly delaying threat 
detection as analysts waste time on data normalization.

While data fragmentation affects both IT and OT environments, our 
research shows that ICS environments face greater challenges due to 
their reliance on numerous vendor-specific protocols and proprietary 
formats. In contrast, IT SOCs typically benefit from standardized data 
formats and consolidated monitoring solutions. Recent research into 
knowledge graphs has shown promise in resolving data fragmentation 
in threat data (Kurniawan et al., 2022; Hossain et al., 2020). It enables 
analysts to make informed decisions from a broader, unified data con-
text. By adopting knowledge graphs and deep learning techniques, we 
can significantly enhance our ability to process and analyze complex, 
interconnected data. This improvement will result in better fusion of 
threat data and more effective reconstruction of attacks (Asiri et al., 
2023b).

False Positive Prevalence. Adding to the confusion is the prevalence 
of false positives generated by over-sensitive or poorly configured 
detection systems (Alahmadi et al., 2022; Kokulu et al., 2019). This is 
particularly problematic in ICS, where systems are often integrated with 
legacy components and diverse vendor tools. Such integration complex-
ity can lead to significant variations in detection system configuration 
and, consequently, inconsistent performance. Based on our findings, we 
noticed that the complex interdependencies between cyber and phys-
ical processes often lead to misinterpretations of normal operational 
variations as potential security threats. These red flags, triggered by 
harmless system activities or misinterpretations of data, inundate secu-
rity personnel with a constant barrage of noise, distracting them from 
genuine threats. In the OT context, this issue is exacerbated by the need 
to distinguish between cyber threats and physical process anomalies. 
For instance, deviations in sensor readings or control logic adjustments 
appear normal to OT operators but trigger alarms in IT-driven monitor-
ing tools. These variations, often dismissed as operational noise in OT, 
require deeper contextual analysis than their IT counterparts (Berardi 
et al., 2023). Like the boy who cried wolf, the frequent occurrence of 
false alarms erodes trust in automated systems and can lead analysts to 
overlook genuine alerts in an attempt to avoid chasing shadows.

This desensitization poses a significant risk in ICS systems, where 
overlooking an alert could have severe consequences for both cyber and 
operational safety (Mohammed et al., 2023; Babun et al., 2019). Exist-
ing efforts to reduce false positives often focus on alarm volume rather 
than quality (Arnes et al., 2006; Haghighi et al., 2020; Julisch and 
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Dacier, 2002). They employ techniques like alarm mining, correlation, 
and filtering to eliminate non-relevant alerts, assuming the remaining 
alarms are inherently accurate. However, this approach overlooks the 
shortcomings of many alerts themselves, which may lack actionable 
context or interpretability. Improving alert quality through better al-
gorithm design and data analysis could significantly reduce analysts’ 
burden and enable efficient use of automated filtering methods.

5.2. Beyond the static: Evolving IoCs for a dynamic OT threat landscape

Moving Beyond One-Size-Fits All. Our findings suggest that while 
certain IoCs are instrumental in identifying threats, their relevance 
and applicability vary across attack scenarios. For instance,  control 
logic modification is highly relevant for Stuxnet-like attacks, 
while  unusual VPN usage is more applicable in attacks like the 
Ukraine Power Grid scenario. However, unusual  outbound network 
traffic remained a consistent indicator across all four scenarios 
examined. This variability in IoC indicates the need for a context-
specific approach to IoC development and implementation in ICS 
environments. Instead of relying on a single set of IoCs, we suggest that 
organizations develop multiple sets, specifically designed for different 
types of attacks and operational settings. While this may introduce 
complexity, it significantly enhances detection accuracy by aligning the 
IoCs with the relevant threats in each case.

One effective method for developing tailored IoCs is attack tree 
analysis, which systematically maps known vulnerabilities to observ-
able indicators. A Denial-of-Service (DoS) attack targeting SCADA sys-
tems may involve a sudden surge in login attempts as a detectable 
indicator. By analyzing all possible attack paths, we can identify a 
comprehensive set of IoCs to cover various DoS scenarios. Thus, this ap-
proach allows for the development of a more dynamic detection frame-
work tailored to the evolving threat landscape of OT environments. 
However, implementing this strategy requires a deep understanding of 
the ICS environment and potential threats, which can be challenging 
for organizations with limited resources (Asiri et al., 2023b; Parsons, 
2023).

Acknowledging IoC Limitations and Addressing Them. Our study 
found that network-based IoCs are important in detecting attacks 
such as DDoS and MITM. However, they have inherent limitations 
when facing sophisticated, evasive threats. Existing detection methods, 
whether rule-based, specification-based, or statistical—focus on rec-
ognizing static indicators. However, as adversaries adopt increasingly 
dynamic and evasive tactics, these static methods can quickly become 
ineffective. Behavioral indicators, which reflect deviations from normal 
processes, offer a more promising approach but require extensive 
domain knowledge and continuous updates to remain effective (Inoue 
et al., 2017; Awotunde et al., 2021; Azzam et al., 2023).

To enhance the adaptability of IoCs, we recommend that organi-
zations leverage frameworks such as MITRE ATT&CK for ICS. This 
knowledge base helps classify adversary tactics and techniques, allow-
ing IoCs to be mapped to specific attack steps, ensuring the continuous 
evolution of detection capabilities (Abbas et al., 2024). Additionally, 
emerging approaches such as moving target defense strategies, which 
focus on detecting dynamic attack behaviors, offer promising avenues 
for future IoC development. These strategies introduce variability into 
the system to confuse or delay attackers, leading to more adaptive and 
robust IoCs—particularly in OT environments where static defenses are 
increasingly inadequate (Gao et al., 2021; Eden et al., 2017).
Timing and Efficacy of Early IoC Detection. Another important ob-
servation relates to the timing and efficacy of IoCs in early threat detec-
tion. While early identification of indicators, such as unusual outbound 
traffic or network inconsistencies, showed promise for timely threat 
interception, we found differing opinions. Some informants viewed 
early IoC detection as enabling pre-emptive action. However, others 
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pointed out the limitations, particularly against sophisticated adver-
saries using zero-day exploits or adept lateral movement techniques. As 
one respondent stated, ‘‘IoCs are often retrospective...early IoC detection 
might not be sufficient to prevent an attack’’. This indicates that while 
IoCs are valuable for early threat detection, their effectiveness depends 
on attacker tactics and the evolving threat landscape. This variability 
highlights that early detection alone will not suffice to protect against 
cyber adversaries. Adaptive security measures must be implemented to 
remain effective against sophisticated adversaries.

To maintain the efficacy of IoCs, it is crucial to regularly update 
them based on the latest cyber threat intelligence and incident anal-
ysis. This continuous adaptation should include developing new IoCs 
for emerging threats and refining existing indicators to enhance their 
predictive accuracy. Furthermore, incorporating feedback loops within 
detection systems can facilitate dynamic updates to IoC databases as 
new threat behaviors are observed, ensuring that security measures 
evolve in tandem with threat actors.

5.3. Human factors in ICS threat detection

Supporting Human Cognition in ICSs. Human cognition plays a criti-
cal role in threat detection within ICS environments. It surpasses purely 
algorithmic approaches, particularly in identifying subtle anomalies 
that automated systems may miss. While security tools are adept at 
identifying and triggering alerts, human cognition provides situational 
awareness that allows individuals to interpret and connect disparate 
indicators into broader threat narratives. For instance, if an alert flags 
unusual network traffic from an HMI, an analyst, leveraging their 
domain knowledge and context, might recognize a similar anomaly 
that occurred earlier in the day at a different workstation. This ability 
to ‘‘connect the dots’’ across seemingly unrelated data points allows 
them to discern subtle patterns and identify anomalies that automated 
systems might miss.

However, we found that interpreting the interdependencies between 
cyber and physical components in ICS presents a unique challenge 
for analysts. Minor fluctuations in physical processes, such as slight 
changes in sensor readings or control signals, could be indicative 
of underlying cyber manipulation (Jimada-Ojuolape and Teh, 2020). 
These small anomalies often resemble normal operational variations, 
posing difficulties for both humans and automated systems when it 
comes to detecting hidden threats. Several efforts (Guarino et al., 2023; 
Singh and Govindarasu, 2021) have suggested that the use of machine 
learning and data-driven techniques for anomaly detection is promis-
ing, but it requires high-quality, consistent data from both domains to 
be effective. In this direction, we suggest promising techniques such as 
Isolation Forest-based models and dynamic data abstraction to reduce 
noise and improve the accuracy of detecting malicious activities.

Our study also revealed that human cognition is often impaired 
by cognitive strain, especially when analysts are tasked with manag-
ing both cyber and physical processes. This strain can result in alert 
fatigue, causing analysts to become desensitized to the overwhelm-
ing number of alerts and potentially overlook critical indicators. By 
employing enhanced user-centric interface designs, informed by cog-
nition studies, we can structure complex security data more effectively 
and alleviate this cognitive overload (Grobler et al., 2021). Moreover, 
using simulation scenarios can further develop and leverage these 
human strengths. By incorporating scenarios that mimic real-world 
attacks, security analysts can hone their decision-making skills and 
practice integrating human insights into the security process (Asiri 
et al., 2023a).

There is another mechanism, feedback loops, that will also reduce 
cognitive overload and improve detection accuracy. By allowing an-
alysts to provide feedback on alert accuracy and relevance, feedback 
loops can refine the detection process, helping to reduce the volume of 
false alerts that contribute to fatigue. Cross-disciplinary collaboration 
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within security teams, where OT operators and security analysts with 
different expertise share their insights to identify attack behaviors, 
either from the cyber or physical domain, is critical. A culture of 
continuous learning and collaboration can enhance the detection of 
threats by effectively leveraging human strengths (Evripidou et al., 
2023).

Limitations Resulting from Human Factors. While human cognition 
provides advantages in ICS threat detection, human factors can con-
tribute to several limitations. One of the most critical is the knowledge 
gap between IT and OT environments. Analysts, particularly those 
from IT backgrounds, often lack specialized knowledge of specific 
OT systems and protocols. As a result, they may fail to to recognize 
indicators unique to these environments, as reported by participants 
in Section 4. For example, missing the nuances of PLC behaviors or 
understanding obscure communication protocols can render sophisti-
cated attacks invisible. As a result, when abnormal activities occur, 
analysts rely on the tacit knowledge and experience they have from 
the IT system (Evripidou et al., 2023).

Some participants made clear references to challenges stemming 
from cognitive and familiarity biases within ICS environments. The 
long-term stability of many ICS processes can lead to familiarity bias, 
where operators become desensitized to routine variations in system 
behavior. Prior work has identified that the availability ‘‘heuristic’’
can further compound this problem, as operators may rely on re-
cent experiences rather than evaluating the system holistically (Chen 
and Doukas, 2022). Similarly, cognitive biases arise when analysts 
rely too heavily on past experiences, focusing on familiar attack pat-
terns while disregarding new or evolving threats. Ferguson-Walter 
et al. (2021) expressed that this process is closely tied to confirma-
tion bias. To illustrate, SOC teams may selectively interpret behaviors 
that support their existing beliefs about system safety or reliability, 
potentially ignoring critical warning signs. A security leader in our 
study suggested that organizations can implement structured decision-
making frameworks that encourage critical thinking and the consid-
eration of diverse perspectives. We further suggest that training pro-
grams focused on cognitive bias awareness can help operators identify 
and mitigate their biases, leading to more rational decision-making 
processes.

While communication barriers are a common issue in security, they 
take on a distinct form within ICS systems. Vielberth et al. (2020) 
explained how the lack of standardized communication protocols in 
SOCs leads to inconsistent reporting and delays in threat mitigation. 
Our findings indicate that inadequate communication between security 
and operational teams can create ‘‘silos of knowledge’’, delaying response 
time and hindering the identification of cross-domain attack patterns. 
In the ICS context, this miscommunication might happen when the 
operator, who may not understand threat information but needs to deal 
with the system under attack, ends up making operational mistakes. 
Organizations should aim to close this communication gap by fostering 
a culture of continuous learning and collaboration across security and 
operations teams. By integrating continuous training, cross-disciplinary 
teamwork, and clear communication protocols, they can enhance their 
capacity for timely and efficient threat detection and response, thereby 
reducing communication gaps and knowledge silos.

5.4. Limitations

Our study has several limitations. First, we leveraged a targeted 
recruitment strategy, which may introduce selection bias. The selected 
individuals actively engage within specific academic and industry net-
works. Thus, their viewpoints may not be representative of the broader 
ICS cybersecurity landscape. Our recruitment through a UK-based orga-
nization may have led to a geographical concentration of participants 
from the UK or Europe. Since practices, standards, and compliance 
frameworks vary by region, the insights from this study may have 
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limited applicability to other geographical contexts with different regu-
latory environments. This limitation related to selection bias could also 
affect the generalizability of our findings due to potential imbalances 
in the distribution of roles/jobs, sectors, years of experience, and pro-
fessional backgrounds (academia vs. industry) of the participants. For 
example, the sample for S1 included a higher proportion of industrial 
professionals (≈72%) compared to academics (≈28%). Although this fo-
cus aligns with the study’s goal of assessing practical IoC applicability, 
it may limit broader theoretical insights. In the same way, most S2 
participants had over 10 years of experience. While their expertise is 
highly valuable, it may overlook perspectives from less-experienced 
individuals who encounter different challenges. To mitigate these ef-
fects, we recruited participants from diverse sectors, such as oil and 
gas, power, water treatment, and manufacturing, with roles ranging 
from analysts and engineers to senior managers. Thus, targeted re-
cruitment was suitable as we aimed to gain insights from experienced 
professionals, and the inclusion of participants across diverse sectors 
and roles helped mitigate potential biases. Future research will address 
these limitations by employing a more diverse sampling strategy and 
conducting comparative studies across different regions to explore the 
influence of regional factors.

Second, our sample study included responses from (n = 52) par-
ticipants with expertise in ICS cybersecurity, a relatively small sam-
ple. However, this is sufficient for an exploratory qualitative study, 
providing meaningful insights from perspectives within this special-
ized population (Mason et al., 2010). Comparable studies utilizing 
interviews or focus groups on focused research questions have been 
productively conducted with groups of this size (Kersten et al., 2023; 
Alahmadi et al., 2022; Shadow, 2017; Gallardo et al., 2024; Kokulu 
et al., 2019). Additionally, the depth of professional experience rep-
resented within this sample allows for the collection of high-quality, 
accurate data.

Finally, attack scenarios were selected based on being well-
documented and extensively analyzed in the security community. Our 
goal was to cover a wide range of attack types, ranging from network-
based attempts to physical process manipulations. While this choice 
ensured relevance and widespread recognition, it may also have intro-
duced a familiarity bias, where participants’ prior knowledge of these 
incidents could have influenced their responses. Participants’ prior 
knowledge of well-publicized incidents, such as Stuxnet or the Ukraine 
Power Grid, may have influenced their perception of specific indicators 
and potentially narrowed the range of indicators they considered. 
Future research could explore less well-known or emerging threats to 
assess whether the identified indicators generalize to a broader range 
of attack scenarios.

6. Conclusions

In this paper, we explored the applicability of IoCs against attacks 
within ICS systems from the security experts’ viewpoints. We find 
that their relevance is highly context-dependent. Indicators like un-
usual outbound network traffic were broadly applicable, while others, 
such as control logic modifications, were useful in specific scenarios 
like Stuxnet. Thus, the majority of experts highlighted the inability 
of automation alone to reliably discern anomalies, especially given 
the intricate cyber–physical interactions in ICS that automated sys-
tems struggle to comprehend fully. Numerous socio-technical barriers 
obstruct IoC implementation, ranging from limited logging in field 
devices to data fragmentation and the volatility of certain indicators. 
Organizational barriers and cognitive strain further hinder the practical 
usage of IoCs, particularly in high-pressure ICS environments. Although 
no singular solution suffices, implementing layered monitoring and 
defense across networks, endpoints, and field devices provides vital 
risk reduction. As threats continue to evolve, the key insight is that 
integrated human–machine capabilities surpass the effectiveness of 
either in isolation. By focusing on maximizing this symbiosis, organi-
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zations can enhance their readiness against emerging cyber–physical 
threats.
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Appendix. Participants demographics details

Table A.3
Demographics of participants for S1.
 ID Role/Job title Sector Profession 
 S1  
 S1-P1 Security analyst Oil and gas Industrial  
 S1-P2 Scholar University Academic  
 S1-P3 Scholar University Academic  
 S1-P4 Incident responder Oil and gas Industrial  
 S1-P5 Threat analyst Power Industrial  
 S1-P6 Scholar University Academic  
 S1-P7 Security manager or Director Oil and gas Industrial  
 S1-P8 Security analyst Manufacturing Industrial  
 S1-P9 Security manager or Director Industrial cybersecurity Industrial  
 S1-P10 Security analyst Manufacturing Industrial  
 S1-P11 Security analyst Power Industrial  
 S1-P12 Incident responder Water treatment Industrial  
 S1-P13 Threat analyst Oil and gas Industrial  
 S1-P14 Engineer Manufacturing Industrial  
 S1-P15 Scholar University Academic  
 S1-P16 Threat analyst Water treatment Industrial  
 S1-P17 Incident responder Power Industrial  
 S1-P18 Security Vendor Manufacturing Industrial  
 S1-P19 Scholar University Academic  
 S1-P20 Threat analyst Oil and gas Industrial  
 S1-P21 Scholar University Academic  
 S1-P22 Security analyst Water treatment Industrial  
 S1-P23 Engineer Transport Industrial  
 S1-P24 Scholar University Academic  
 S1-P25 Incident responder Water treatment Industrial  
 S1-P26 Threat analyst Power Industrial  
 S1-P27 Engineer Oil and gas Industrial  
 S1-P28 Security Vendor Various sectors Industrial  
 S1-P29 Security manager or Director Pharmaceutical Industrial  
 S1-P30 Incident responder Power Industrial  
 S1-P31 Scholar University Academic  
 S1-P32 Engineer Pharmaceutical Industrial  
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Table A.4
Demographics of participants for S2.
 ID Role/Job title Years of Exp. 
 S2  
 S2-P1 Incident response lead 10−15  
 S2-P2 Security manager or Director 5−7  
 S2-P3 Security manager or Director 5−7  
 S2-P4 Security engineer 3−5  
 S2-P5 Incident response lead 10−15  
 S2-P6 SOC team 3−5  
 S2-P7 OT cyber security engineer II 3−5  
 S2-P8 Industrial cyber security specialist 10−15  
 S2-P9 Lead OT security consultant 7−10  
 S2-P10 Senior key expert R&D Cyber security +15  
 S2-P11 IT/OT cybersecurity & Physical security Expert 10−15  
 S2-P12 Director - ICS/OT Cyber security 10−15  
 S2-P13 Principle critical infrastructure threat analyst 10−15  
 S2-P14 Manager ICS Security, Threat Detection & Response +15  
 S2-P15 Cyber security OT senior analyst 7−10  
 S2-P16 IT/OT cyber security SME 10−15  
 S2-P17 Threat hunter 5−7  
 S2-P18 OT/ICS cybersecurity consultant 10−15  
 S2-P19 OT/cyber security engineer 5−7  
 S2-P20 IT/OT cyber consultant +15  
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