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Abstract: Power system stability is managed through various control loops, including the
Automatic Voltage Regulator (AVR), which regulates the terminal voltage of synchronous
generators. This study integrated Fuzzy Logic Control (FLC) and a Proportional–Integral–
Derivative controller with Filtered derivative action (PIDF) to propose a hybrid Fuzzy
PIDF controller enhanced by Fractional-Order Proportional-Derivative (FOPD) for AVR
applications. For the first time, the newly introduced Sand Cat Swarm Optimization (SCSO)
algorithm was applied to the AVR system to tune the parameters of the proposed fuzzy
controller. The SCSO algorithm has been recognized as a powerful optimization tool and
has demonstrated success across various engineering applications. The well-known Particle
Swarm Optimization (PSO) algorithm was also utilized in this study to optimize the gains
of the proposed controller. The Fuzzy PIDF plus FOPD is a novel configuration that is
designed to be a robust control technique for AVR to achieve an excellent performance. In
this research, the Fuzzy PIDF + FOPD controller was optimized using the PSO and SCSO
algorithms by minimizing the Integral Time Absolute Error (ITAE) objective function to
enhance the overall performance of AVR systems. A comparative analysis was conducted
to evaluate the superiority of the proposed approach by benchmarking the results against
those of other controllers reported in the literature. Furthermore, the robustness of the
controller was assessed under parametric uncertainties and varying load disturbances.
Also, its robustness was examined against disturbances in the control signal. The results
demonstrate that the proposed Fuzzy PIDF + FOPD controller tuned by the PSO and
SCSO algorithms delivers exceptional performance as an AVR controller, outperforming
other controllers. Additionally, the findings confirm the robustness of the Fuzzy PIDF +
FOPD controller against parametric uncertainties, establishing its potential for a successful
implementation in real-time applications.

Keywords: AVR; PSO algorithm; SCSO algorithm; fuzzy PIDF + FOPD controller; ITAE

1. Introduction
1.1. General Overview

The Automatic Voltage Regulator (AVR) is one of the two critical controllers operating
within a Synchronous Generator (SG). According to power system theory, these controllers
include the centrally managed Load–Frequency Controller (LFC) and the locally controlled
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AVR. The AVR functions as a simple closed-loop control system, adjusting the voltage
output of the SG through an exciter signal [1].

Ensuring robust and consistent control is crucial for maintaining power system stability
and reliability. Voltage stability in power systems relies on balancing the reactive power
demanded by loads with the reactive power supplied by SGs. While modern power
systems utilize advanced methods such as shunt capacitors, shunt/series reactors, and
FACTS devices to maintain this equilibrium, the literature consistently identifies the AVR
as the most effective technique [2]. Moreover, power-generating units constantly strive
to minimize power losses, a critical challenge in control engineering, to enhance overall
efficiency and performance. One of the most effective strategies to address these losses is
the optimal design and implementation of AVR systems [3].

The primary function of an AVR system is to maintain the generator’s output voltage
at predetermined standard levels, ensuring stability and consistency in power generation.
These systems are integral to achieving a reliable and efficient operation by mitigating
voltage fluctuations and optimizing overall generator performance. A crucial aspect of
AVR systems is their ability to minimize power losses within the generator section through
precise voltage regulation. Operating within a closed-loop configuration, AVR systems
consist of five interdependent components: the regulator, amplifier, exciter, generator, and
sensor. These components work in unison to maintain voltage stability and ensure effective
control, highlighting the indispensable role of AVR systems in modern power generation
infrastructure [4,5].

1.2. Literature Review

Voltage variation remains a critical challenge in power systems, prompting the devel-
opment of various control techniques founded on diverse theoretical frameworks. Among
these, the Proportional–Integral–Derivative (PID) controller has emerged as a foundational
approach, extensively utilized not only for voltage regulation but also across a broad
spectrum of control applications [6]. It is reported that approximately 90% of industrial
control loops employ this conventional method, reflecting its reliability and widespread
acceptance [7]. Over time, the PID controller has been adapted into numerous config-
urations based on advanced theoretical principles and has been hybridized with other
control methodologies to enhance its performance. Furthermore, its integration with soft
computing techniques has enabled the optimization of gain parameters, thereby achieving
superior performance and improved operational efficiency.

A review of the recent literature highlights the development of a wide range of con-
trol strategies for AVR systems, including linear, optimal, and robust control approaches.
However, most studies consider the traditional PID as a good and easy solution. Table 1
provides a comprehensive overview of the existing AVR controllers from the literature. The
conventional PID controller has been widely employed in AVR systems due to its simplicity
and ease of implementation. However, achieving optimal performance requires precise
tuning of the controller’s parameters (Kp, Ki, Kd) to effectively manage load disturbances
and address uncertainties in system parameters. Traditional tuning methods, such as
Ziegler–Nichols (ZN), Trial-and-Error (TE), Cohen–Coon (CC), and root-locus techniques,
often fall short in delivering accurate results, particularly in complex systems. To overcome
these limitations, researchers have increasingly turned to soft computing based on heuristic
and metaheuristic optimization algorithms to determine the optimal PID parameters. Opti-
mization tools such as the Local Unimodal Sampling Optimization (LUSA) algorithm [8],
improved kidney-inspired (IKA) algorithm [9], Tree Seed Algorithm (TSA) [10], Improved
Whale Optimization Algorithm (IWOA) [11], Artificial Bee Colony (ABC) algorithm [12],
Stochastic Fractal Search (SFS) algorithm [13], Water Wave Optimization (WWO) [14],
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Cuckoo Search (CS) [15], Particle Swarm Optimization (PSO) [16], Grey Wolf Optimizer
(GWO) [17], Zebra Optimization Algorithm (ZOA) [18], Improved Variants of Reptile
Search Algorithm (RSA) [19], and Ant Colony Optimization and Nelder–Mead algorithm
(ACONM) [20] have been used to determine the optimal values of the PID controller in
order to achieve the best possible performance.

Table 1. Outline of the control methods and optimization tools of AVR systems in the literature.

Reference Control Method Optimization Tool

[8] PID Local Unimodal Sampling Optimization (LUSA)
algorithm

[9] PID Improved kidney-inspired (IKA) algorithm
[10] PID Tree Seed Algorithm (TSA)
[11] PID Improved Whale Optimization Algorithm (IWOA)
[12] PID Artificial Bee Colony (ABC) Algorithm
[13] PID Stochastic Fractal Search (SFS) algorithm
[14] PID Water Wave Optimization (WWO)
[15] PID Cuckoo Search (CS)
[16] PID Particle Swarm Optimization (PSO)
[17] PID Grey Wolf Optimizer (GWO)
[18] PID Zebra Optimization Algorithm (ZOA)
[19] PID Improved Variants of Reptile Search Algorithm (RSA)

[20] PID Ant Colony Optimization and Nelder–Mead algorithm
(ACONM)

[21] PIDA Whale Optimization Algorithm (WOA)

[22] FOPID and Filtered FOPID Hybrid simulated annealing (SA) and white shark
optimization (WSO) algorithm

[23] FOPID Chaotic Black Widow Optimization (ChBWO)
[24] FOPID Modified Smoothed Function Algorithm (MSFA)
[25] PIλDND2N2 Coyote Optimization Algorithm (COA)
[26] FVOPID Yellow Saddle Goatfish (YSG) algorithm
[27] FOPID Dumbo Octopus Algorithm (DOA)
[28] FOPID Automated Algorithm Design (AAD)
[29] TIλDND2N2 Equilibrium Optimizer (EO) Algorithm
[30] SMC Improved Particle Swarm Optimization (IPSO) algorithm
[31] MPC Arithmetic Optimization Algorithm (AOA)
[32] H infinity Manually tuned
[33] Adaptive Control Genetic algorithm (GA)
[34] LQR Manually tuned

[35] Adaptive Neuro-Fuzzy Inference
System (ANFIS) Self-tuned

[36] FLC Imperialistic Competitive Algorithm (ICA)
[37] FLC Manually tuned

While the classical PID controller is widely acknowledged for its effectiveness, numer-
ous variants have been proposed in the literature to enhance its flexibility and improve
performance in AVR systems. These advanced configurations aim to address the limitations
of the traditional PID approach, offering more robust and adaptive solutions to meet the
dynamic requirements of modern power systems. A PID with acceleration gain (PIDA)
tuned by the Whale Optimization Algorithm (WOA) is proposed in [21]. The proposed
PIDA achieved better performance than the classical PID. Fractional-Order PID (FOPID)
with two more parameters, λ and µ in addition to the main three Kp, Ki, Kd, where λ is the
order integration and µ is the order of differentiator is also considered for AVR applications.
It has been reported that the FOPID is likely to outperform the traditional PID. In [22], the
hybrid simulated annealing (SA) and white shark optimization (WSO) algorithm were used
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to optimally tune the parameters of PID, FOPID, and filtered FOPID, in which promising
results were obtained. Chaotic Black Widow Optimization (ChBWO) was used in [23] to
determine the optimal gains of FOPID for an AVR system using a new cost function. A
Modified Smoothed Function Algorithm (MSFA) is proposed in [24] to tune the parameters
of FOPID, and a fast and robust performance was secured. Different configurations and
hybridization were introduced to further enhance the reliability and overall performance of
the FOPID controller. A novel PIλDND2N2-based Coyote Optimization Algorithm (COA)
is introduced in [25] for AVR applications. This controller outperformed the classical PID,
FOPID, and PIDD2. A new Fractional-Variable-Order PID (FVOPID)-based Yellow Saddle
Goatfish (YSG) algorithm for AVR systems is presented in [26]. Other unique versions
of FOPID based on different optimization techniques for AVR applications are presented
in [27–29].

Notably, other modern control methodologies, including Sliding Mode Control
(SMC) [30], Model Predictive Control (MPC) [31], H infinity control [32], adaptive con-
trol [33], and Linear Quadratic Regulator (LQR) [34], have been relatively underutilized in
AVR applications. These strategies are known for their robust performance in handling
system uncertainties and disturbances, offering potential advantages over conventional ap-
proaches.

Sliding Mode Control (SMC) is highly valued for its ability to handle matched un-
certainties effectively, guaranteeing that system trajectories converge to and remain on a
specified sliding surface. This feature grants SMC a degree of immunity to specific dis-
turbances. While it has proven effective in fields such as power electronics, its real-world
application is frequently hindered by issues like the chattering effect and the intricacies
involved in its implementation.

Model Predictive Control (MPC) excels in managing multi-variable systems and
constraints by forecasting future system behavior and optimizing control inputs accordingly.
This advanced approach makes it well-suited for intricate and dynamic systems. However,
its reliance on precise system models and substantial computational resources can limit its
effectiveness in real-time applications.

H∞ control is tailored to manage systems with nonlinearities and uncertainties, de-
livering robust performance in varying conditions. By framing the control duty as a
mathematical optimization task, H∞ controllers achieve stabilization with guaranteed per-
formance bounds. However, their practical implementation can be limited by the intricate
design process and the requirement for very detailed system mathematical models.

Adaptive control continuously modifies controller parameters in real time to accom-
modate system changes, which, in turn, enhances the performance. This method has found
widespread use in areas like aerospace, where systems frequently encounter significant
uncertainties. Despite its potential, the complexity involved in designing and analyzing
adaptive controllers has constrained their broader adoption.

Linear Quadratic Regulator (LQR) offers an optimal control framework by minimizing
a quadratic cost function that balances state error and control effort. It provides a systematic
design methodology for linear systems, making it a popular choice in control applications.
However, LQR does not inherently address robustness to model uncertainties, which can
be a limitation in certain scenarios.

Despite the theoretical strengths of these advanced control strategies, their practical
application in AVR systems remains relatively rare. This can be attributed to challenges
such as implementation complexity, computational demands, and the need for accurate
system modeling. Addressing these challenges could facilitate broader adoption and unlock
their full potential in AVR applications.
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Fuzzy Logic Control (FLC) has demonstrated successful implementations across a
diverse range of applications owing to its notable advantages, including robustness, ease
of design, and reduced reliance on precise system modeling. Despite these merits, FLC has
received comparatively less attention in the context of AVR applications, representing a
potential area for further research. Although the utilization of FLC in AVR applications
has been limited [35–37], existing studies have yielded promising results, underscoring
the potential for further investigation into its capabilities and potential enhancements in
this domain.

1.3. Motivation and Contribution

In AVR systems, achieving an optimal equilibrium between rapid dynamic response
and system stability constitutes a fundamental challenge. A fast transient response, albeit
accompanied by overshoot, facilitates prompt voltage stabilization, which is particularly
critical in dynamic operational environments characterized by frequent and abrupt load
variations. This capability ensures the system can swiftly restore nominal voltage levels
following disturbances, thereby minimizing operational downtime and preserving system
continuity. However, such rapid responses may transiently exceed predefined voltage
thresholds, posing a risk of damage to sensitive equipment, particularly electronic devices
susceptible to voltage transients. Conversely, a slower response devoid of overshoot main-
tains voltage within stringent safety limits, thereby ensuring the protection of connected
equipment. Nevertheless, this approach may result in transient undervoltage or overvolt-
age conditions during load transitions, potentially undermining system performance and
reliability. Consequently, designing an ideal AVR controller requires balancing these com-
peting objectives—harmonizing rapid response with minimal overshoot—based on specific
application requirements and system constraints to ensure both performance and safety.

While various control strategies have been developed to address these challenges,
their practical implementation in AVR systems continues to face limitations. Traditional
controllers, such as PID controllers, remain the most commonly used due to their simplic-
ity, cost-effectiveness, and ease of implementation. These controllers, however, exhibit
inherent limitations in handling nonlinearities, parametric uncertainties, and high system
sensitivities—conditions increasingly common in modern applications.

For instance, PID controllers are often unable to provide robust performance in scenar-
ios where operating points vary significantly, leading to degraded voltage stability during
dynamic load changes.

Advanced control strategies, including adaptive control and SMC, offer enhanced
robustness and adaptability for AVR systems. Adaptive control, for example, dynamically
amends controller gains in real time to compensate for changing system dynamics. This
ability has been shown to significantly improve performance in environments with high
uncertainty or variable loads, as evidenced by its successful application in aerospace sys-
tems. However, adaptive controllers are often characterized by high design complexity and
require precise real-time tuning, which can hinder their widespread adoption in AVR sys-
tems. Similarly, SMC is well-regarded for its robustness against matched uncertainties and
its ability to maintain system trajectories within a sliding manifold, rendering it insensitive
to certain disturbances. Research has demonstrated its effectiveness in power electronics
and voltage regulation tasks. Nevertheless, SMC’s practical implementation is often limited
by the chattering phenomenon—a high-frequency oscillation that can compromise system
performance and even induce mechanical or electrical wear in certain applications.

FLCs have emerged as a promising alternative for AVR applications due to their ability
to handle system nonlinearities and uncertainties without requiring a precise mathematical
model. FLCs employ linguistic rules and expert knowledge to make control decisions, mak-
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ing them particularly suitable for complex systems with dynamic behaviors. Despite their
advantages, existing FLC designs often fail to address reliability considerations, which are
critical for ensuring consistent performance under varying operating conditions. For exam-
ple, while some fuzzy control approaches effectively improve voltage regulation, many lack
mechanisms to ensure robustness against parametric uncertainties and load disturbances.

In summary, while traditional PID controllers remain widely used due to their sim-
plicity and low cost, they often fall short in addressing the demands of modern AVR
applications. Advanced methods such as adaptive control and SMC, although theoretically
robust and effective, are hindered by their implementation complexity and computational
overhead. Similarly, fuzzy control methods show potential for AVR systems but require
further development to incorporate reliability and robustness into their design frameworks.
These limitations highlight the need for innovative control strategies that not only ad-
dress the challenges of voltage regulation but also provide enhanced reliability, robustness,
and ease of implementation for AVR systems in dynamic and uncertain environments.
This paper introduces a novel hybrid fuzzy controller that combines the adaptability of
Fuzzy Logic Control with the advantages of classical control techniques while explicitly
addressing performance reliability. The key contributions of this study are summarized
as follows:

1. Innovative Controller Design: A unique AVR configuration is proposed, integrating a
Fuzzy Proportional–Integral–Derivative with Filtered derivative action (PIDF) con-
troller with an FOPD (Fuzzy PIDF + FOPD) controller. This hybrid configuration
leverages the strengths of both fuzzy and classical control methodologies to enhance
system stability and performance.

2. Optimization via Sand Cat Swarm Optimization (SCSO) algorithm: The algorithm
is utilized for the first time in AVR applications to optimize the parameters of the
proposed controller. This metaheuristic algorithm is selected for successful implemen-
tation in handling complex optimization problems, ensuring the controller achieves
optimal performance. The widely and successfully implemented PSO algorithm is
also employed in this study to optimize the parameters of the proposed controller.

3. Comprehensive Comparative Analysis: A detailed comparative analysis is conducted
between the proposed controller and other controllers reported in the literature.

4. Robustness Assessment: The proposed Fuzzy PIDF + FOPD controller is rigorously
tested for robustness against parametric uncertainties and various load disturbances.
The results demonstrate the controller’s resilience and reliability in maintaining
voltage stability under challenging operating conditions.

By integrating advanced fuzzy control with fractional-order dynamics and employing
a novel optimization technique, this study offers a significant advancement in AVR con-
troller design. The findings underscore the potential of the proposed approach to address
the limitations of existing methods, ensuring reliable and robust voltage regulation in
dynamic and uncertain environments.

1.4. Paper Organization

This research paper has been categorized as follows: Section 2 describes the mathemat-
ical model of the AVR system and its step response with no controller equipped. Section 3
explains the structure of the introduced controller and provides a concise description of
the utilized optimization tool and objective function. Section 4 demonstrates and discusses
the obtained results. Section 5 provides a robustness analysis of the AVR system with the
controller. Finally, Section 6 provides a brief conclusion and proposes different directions
for future work.
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2. The AVR System
Figure 1 provides an overview of the mechanism of the AVR system. The AVR system

is primarily composed of four key components: the amplifier, exciter, sensor, and generator.
These components collectively ensure the regulation of the generator’s terminal voltage,
which is critical for maintaining consistent power quality.
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Figure 1. AVR system structure.

During power generation, the terminal voltage of an unregulated generator may
fluctuate due to varying load conditions. Such fluctuations can significantly degrade the
overall power quality. To address this issue, a closed-loop control system, such as the AVR,
is indispensable for ensuring stable and high-quality power output.

In the AVR system, the generator’s terminal voltage is continuously monitored by a
voltage feedback sensor. The amplifier processes the voltage error, defined as the difference
between the feedback voltage and the reference voltage. If the voltage error is positive, the
exciter increases the excitation current to boost the voltage gain, and conversely, it reduces
the excitation when the voltage error is negative. This feedback mechanism ensures that the
generator’s terminal voltage remains regulated, thereby maintaining optimal power quality.

As illustrated in Figure 1, the AVR system’s structure is defined by its four fundamental
components: the amplifier, exciter, sensor, and generator. The block diagram of the system
is presented in Figure 2, and the transfer functions of these components, which characterize
their dynamic behavior, are represented in Table 2 [10].
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Table 2. The range and implemented values of the AVR model.

AVR Component Transfer Function Implemented Value

Generator Kg
1 + s τg

Kg = 1, τg= 1

Excitor Ke
1 + s τe

Ke = 1, τe= 0.4
Sensor Ks

1 + s τs
Ks = 1, τs= 0.01

Amplifier Ka
1 + s τa

Kg = 10, τg= 0.1
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The transfer function of the AVR system is modeled using Laplace transform. Each
component of the model is linearized for analytical convenience. The closed-loop transfer
function of the model presented in Figure 2 based on the parameters given in Table 2 is
illustrated in Equation (1). The step response of the system is illustrated in Figure 3, with
the corresponding characteristics detailed in Table 3. The system’s model features a single
zero located at −100, two real poles positioned at −99.9712 + 0 i and −12.4892 + 0 i, and a
pair of conjugate poles at −0.5198 + 4.6642 i and −0.5198–4.6642 i, as depicted in the root
locus plot presented in Figure 4.

TFAVR =
0.1 s + 10

0.0004 s4 + 0.045 s3 + 0.555 s2 + 1.51 s + 11
(1)
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Table 3. The characteristics of the AVR model.

Characteristics Value

Peak Overshoot 1.5066 pu
Peak Time 0.7522 s

Settling Time 6.9865 s
Rise Time 0.2607
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Based on the aforementioned characteristics, it is evident that an appropriate control
design is essential to enhance the system’s overall performance. The development and
analysis of the controller are detailed in Section 3.

3. The Proposed Controller and Optimization Tool
3.1. Fuzzy PIDF Plus FOPD

Figure 5 illustrates the structural schematic of the proposed control strategy, which
integrates three core components: a fuzzy logic controller, a PIDF controller, and an FOPD
controller. The fuzzy logic controller is meticulously designed with two primary input
variables: the error signal and its derivative. These inputs are normalized using scaling
factors, denoted as K1 and K2, respectively. The controller produces a single output, which
is subsequently directed as an input to the PIDF controller. To maintain the computational
simplicity and efficiency of the fuzzy controller, the design incorporates five triangular
membership functions for both input and output variables, as depicted in Figure 6. These
membership functions are defined as Negative Big (NB), Negative Small (NS), Zero (Z),
Positive Small (PS), and Positive Big (PB). The output of the fuzzy controller is determined
through a rule base comprising 25 fuzzy rules, which are systematically outlined in Table 4.
These rules were formulated based on an in-depth analysis of the dynamic characteristics
of the testbed model. The Mamdani inference mechanism is employed for the fuzzification
process, facilitating the conversion of crisp input data into fuzzy sets. For defuzzification,
the centroid method is applied, converting the fuzzy output into a precise, real-valued
control signal. This methodological approach ensures both the computational efficiency
and robust performance of the fuzzy logic controller. The PIDF controller is another form
of the conventional PID controller, incorporating an additional gain parameter, referred
to as the filter action gain with the derivative (Kf). The transfer function of the PIDF
controller is presented in Equation (2), where Kp, Ki, Kd, and KF are the proportional,
integral, derivative, and filter gains, respectively.

PIDF Controllerc(S) = Kp +
Ki

S
+

KdKF

1+ KF
1
S

(2)
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Table 4. The rule base of the FLC part.

Error
Change of Error

NB NS Z PS PB

NB NB NB NB NS Z
NS NB NB NS Z PS
Z NB NS Z BS PB
PS NS Z PS PB PB
PB Z PS PB PB PB

Concurrently, the FOPD controller processes the error signal as its input. The transfer
function of the FOPD controller is presented in Equation (3); µ is the order of differentiator,
Kp1 is the proportional gain for the FOPD controller, and Kd1 is the derivative gain.

FOPD Controllerc(S)= (Kp1 + (Kd1Sµ) (3)

The final control signal is synthesized by integrating the output of the fuzzy-PIDF
controller with that of the FOPD controller. This unified control architecture markedly
enhances the overall performance of the proposed control strategy.

3.2. Sand Cat Swarm Optimization (SCSO), PSO Algorithm, and Objective Function

The Sand Cat Swarm Optimization (SCSO) algorithm is a nature-inspired metaheuris-
tic derived from the unique behaviors of sand cats in their natural habitat [38]. The SCSO
algorithm offers several advantages, making it highly effective for complex engineering
problems. It balances exploration and exploitation phases through adaptive sensitivity
control, which helps avoid local optima and improves convergence rates. With reduced
parameter dependency, SCSO simplifies implementation and requires less tuning. Its ro-
bust search capability ensures adaptability to dynamic environments, such as fluctuating
load conditions in power systems. The algorithm is computationally efficient with low
memory requirements, making it suitable for real-time applications. SCSO is versatile,
being applicable to both global optimization and real-world problems, including smart
grids, robotics, and bioinformatics. Its decentralized agent behavior allows for effective
scalability in high-dimensional problem spaces, mitigating the curse of dimensionality.
Additionally, SCSO’s flexibility enables it to handle nonlinear or discontinuous constraints,
making it suitable for multi-objective optimization and energy-efficient design tasks.

The algorithm emulates the sand cat’s specialized mechanisms for searching and
hunting prey. Sand cats possess distinctive characteristics compared to domestic cats, such
as the ability to detect low-frequency sounds, adapt to the harsh desert environment, and
employ specialized hunting strategies. While their physical appearance is similar to that of
domestic cats, sand cats are distinguished by a dense layer of fur on their palms and soles,
aiding in their survival in arid terrains.

A notable behavioral adaptation of sand cats is their extraordinary capacity to detect
low-frequency sounds, particularly those below 2 kHz, which they use to locate prey.
This unique foraging and hunting ability forms the foundation of the SCSO algorithm,
which is designed to identify solutions close to the global optimum. According to the
No Free Lunch (NFL) theorem [39,40], no single metaheuristic algorithm can guarantee
optimal performance for every optimization problem. Nevertheless, the SCSO algorithm
has demonstrated reliable performance across a wide range of optimization tasks, making
it a competitive choice among existing metaheuristic approaches.

The execution of the SCSO algorithm commences with the initialization of the pa-
rameter search space, a foundational step shared among population-based metaheuristic
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algorithms. The search space is randomly populated within specified lower and upper
bounds, which are defined by the constraints of the optimization problem. These bounds
establish the limits within which the search is conducted. The dimensionality of the search
space is dictated by the number of decision variables (represented as columns), while the
number of search agents corresponds to the rows. This randomly generated search space
comprises candidate solutions that are progressively refined through iterative processes,
enabling the algorithm to converge toward an optimal solution.

To evaluate the quality of candidate solutions, a well-defined fitness (or cost) function
tailored to the specific optimization problem is employed. Depending on the problem’s
objective—whether maximization or minimization—the algorithm steers the search process
toward the optimal solution. During each iteration, the SCSO algorithm ensures that all
candidate solutions remain within the specified boundaries of the search space.

The search agents then explore the search space continuously, updating their positions
and progressing toward regions where the optimal solution is likely to reside. This process
mimics the sand cat’s hunting mechanism, where it methodically approaches the prey’s
predicted location. The exploration and exploitation strategies employed by the SCSO
algorithm are designed to balance global exploration and local refinement, ensuring robust
convergence to solutions near the global optimum. The specific mechanisms governing the
search and hunting strategies differ among metaheuristic algorithms, contributing to their
unique strengths and applicability to various optimization challenges.

In the SCSO algorithm, the prey-searching mechanism is augmented by the unique
capability of each sand cat to detect and exploit low-frequency noise emissions. The
sensitivity range (R) for each search agent is predefined within the interval [2,0]. The
parameter

→
rG denotes the general sensitivity range, which systematically decreases from 2

to 0 over the course of iterations, as regulated by Equations (4)–(6).
In Equation (4), the parameter SM, which corresponds to the sand cat’s ability to

perceive low-frequency signals below 2 kHz, is assigned a value of 2. The iterative process
is characterized by iterc, representing the current iteration number, and itermax denoting the

maximum number of iterations. Additionally,
→
Xc refers to the current position of the search

agent,
→
Xb indicates the best position encountered so far, and

→
Xrand denotes a randomly

selected position within the search space, as defined in Equations (7), (8a) and (8b).
In the SCSO algorithm, search agents exhibit a circular motion to explore the search

space effectively and investigate potential global solutions. This circular movement facili-
tates diversification by enabling agents to explore different directions. The random angle
ϑ, uniformly distributed between 0 and 360 degrees, is incorporated as a cosine function
(cos(ϑ)) to model this behavior [40].

The primary structural equations governing the SCSO algorithm are presented in
Equation (9). These equations encapsulate the algorithm’s unique mechanisms for balancing
exploration and exploitation, enabling robust convergence toward the global optimum by
leveraging the sand cat’s biologically inspired hunting strategies.

→
rG = SM −

(
SM × iterc

itermax

)
(4)

R = 2 × →
rG × rand (0, 1)− →

rG (5)
→
r =

→
rG × rand (0, 1) (6)

→
X(t + 1) =

→
r .

(→
Xb(t)− rand (0, 1).

→
Xc (t)

)
(7)

→
Xrnd =

∣∣∣∣rand (0, 1).
→
Xb(t)−

→
Xc(t)

∣∣∣∣ (8a)
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→
X(t + 1) =

→
Xb(t)−

→
r .

→
Xrnd.cos(ϑ) (8b)

→
X(t + 1) =


→
r .

(→
Xb(t)− rand (0, 1).

→
Xc (t)

)
|R| > 1(→

Xb(t)−
→
r .

→
Xrnd .cos(ϑ)

)
|R| ≤ 1

(9)

The fundamental operational principle of the Sand Cat Swarm Optimization (SCSO)
method is to identify potential optimal solutions within a randomly initialized search
space, drawing inspiration from the sand cat’s behavior of seeking and attacking prey.
Depending on the problem at hand, the objective of the algorithm can be framed as either
the minimization or maximization of an appropriate cost function. Figure 7 illustrates the
flowchart of the SCSO algorithm. Based on this flowchart and the following procedural
steps, the optimal control parameters can be determined:
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Step 1: The initial phase entails configuring the parameters for the SCSO-based control
algorithm and establishing the lower and upper bounds for the unknown parameters
within the designated search space. In the context of the AVR system, these parameters
represent the gains of the proposed controller, encompassing a total of nine controller gains,
as illustrated in Figure 8. Furthermore, it is necessary to define the number of search agents
and the maximum number of iterations to guide the optimization process.
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Step 2: Each search agent evaluates the fitness value of its corresponding candidate
solution based on the problem’s defined cost function. This step facilitates the assessment
of solution quality in the context of the optimization objective.

Step 3: The SCSO algorithm is then executed to determine the optimal solution. Based
on the fitness function, the algorithm identifies the best score and the corresponding
optimal position within the search space. Subsequently, the positions of the search agents
are updated according to Equation (4). It is important to emphasize that selecting an
appropriate performance index for the metaheuristic algorithm is critical to achieving
effective optimization.

Step 4: A predefined stopping criterion is incorporated as part of the SCSO algorithm.
In this case, the stopping criterion is satisfied when the maximum number of iterations is
reached, signaling the algorithm to terminate.

PSO is a nature-inspired optimization algorithm that simulates the collective behavior
of birds or fish. It initializes a population of particles (candidate solutions) that move
within the search space, adjusting their positions based on personal experience and the best-
performing neighbor. Each particle updates its velocity and position using a combination of
its own best-known solution and the global best solution found by the swarm. This iterative
process enables PSO to efficiently explore and exploit the search space, making it effective
for solving complex optimization problems. More explanation about the mechanism of the
algorithm and how it can be implemented is well explained in [16,41]. The parameters of
the PSO used in this study are set as shown in Table 5.

Table 5. PSO parameters.

No.
Particles Wmax Wmin C1 C2 Vmax Vmin No.

Iterations

50 1.2 0.2 1.2 1.2 (ub − lb) × 0.2 −Vmax 50

Here are the definitions of the PSO parameters:

➢ No. Particles is the number of particles, the total number of particles (candidate
solutions) in the swarm. In this case, 50 particles are used.
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➢ No. Iteration is the maximum iterations, the maximum number of iterations the
algorithm will run before stopping, set to 50.

➢ Wmax is the maximum inertia weight, the upper limit of the inertia weight, which
controls the influence of a particle’s previous velocity on its current velocity. A larger
value encourages global exploration.

➢ Wmin is the minimum inertia weight, the lower limit of the inertia weight, promoting
local exploitation as the algorithm progresses.

➢ C1 is the cognitive coefficient, the acceleration coefficient that controls the influence of
a particle’s personal best solution on its velocity update.

➢ C2 is the social coefficient, the acceleration coefficient that controls the influence of
the global best solution (best solution found by any particle) on the particle’s velocity
update.

➢ Vmax is the maximum velocity, the upper limit of the particle’s velocity, prevent-
ing excessive movement. It is calculated as 20% of the search space range (upper
bounds−lower bounds).

➢ Vmin is the minimum velocity, the lower limit of the particle’s velocity, ensuring that
velocity does not drop below a certain threshold. It is set as −Vmax.

These parameters govern the exploration and exploitation balance in the PSO algo-
rithm, affecting its convergence speed and solution quality.

In this study, the gains of the proposed Fuzzy PIDF + FOPD used for AVR applications
were fine-tuned using the SCSO algorithm by minimizing the Integral Time Absolute Error
(ITAE) cost function, which is mathematically expressed as in Equation (10):

Objective function = ITAE =
∫ t

0
|e|.t.dt (10)

To ensure a sensible computational time for parameter tuning, the algorithm’s popula-
tion size and the number of iterations were both set to 50. Additionally, the sensitivity range
(rG) was defined from 0 to 2, while the phase control range (R) was set as [−2rG to 2rG]. The
convergence curves of the PSO algorithm- and SCSO algorithm-tuned proposed controller
are illustrated in Figure 9. The optimal parameters of the proposed AVR controller, obtained
using the SCSO and PSO algorithms by minimizing the Integral of Time-weighted Absolute
Error (ITAE), are summarized in Table 6.
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Table 6. The optimal values of the Fuzzy PIDF + FOPD controller tuned by the SCSO and PSO
algorithms.

Controller Parameters

Fuzzy PIDF +
FOPD

Fuzzy K1 K2

SCSO 1.998677 0.1283334

PSO 2 0.0069

PIDF Kp Ki Kd Kf

SCSO 1.999611 2 0.8082235 399.542

PSO 2 2 1.6369 329.902

FOPD Kp1 Kd1 µ

SCSO 1.253544 0.750269 0.9999161

PSO 2 0.261 2

4. Results and Discussion
This study was carried out using MATLAB 2024a, where the SCSO algorithm was

programmed in an .m file, while the AVR system and the proposed controller were modeled
and simulated within the MATLAB Simulink environment. A step response with an
amplitude of 1 pu was employed as the reference input. To evaluate the effectiveness of the
proposed control strategy, the results were compared with those of other methodologies
documented in the literature, specifically PID controllers tuned using IWOA [11] and
TSA [10]. The PID gains utilized in these comparative studies are detailed in Table 7.

Table 7. PID controller optimal gains based on different algorithms reported in the literature.

Controller
Parameters

KP KI KD

PID-TSA 1.1281 0.9567 0.5671

PID-IWOA 0.8167 0.6898 0.2799

The performance metrics of the system response, including peak overshoot (PO) in per
unit (pu), peak undershoot (PU) in pu, settling time (Ts) in seconds, rise time (Tr) in seconds,
and the ITAE cost function value, are summarized in Table 8. Figure 10 depicts the dynamic
response of the AVR system utilizing the proposed fuzzy-based control structure, alongside
comparative results from PID controllers optimized using various tuning algorithms, as
documented in prior studies.

Table 8. The features of the AVR model based on different control algorithms.

Controller
Characteristics

OS (pu) US (pu) Ts Tr ITAE

Proposed Fuzzy-SCSO 0.109 0.0095 0.24761 0.1054 0.013095
Proposed Fuzzy-PSO 0.024 0.17 0.2166 0.0173 0.0032

PID IWOA 0.069178 0.0088 0.6465 0.2258 0.07078
PID TSA 0.15593 0.09545 0.7568 0.1311 0.08791

As outlined in the design methodology, the proposed Fuzzy PIDF + FOPD controller
is engineered to achieve an optimal balance between rapid response and robust stability.
The results presented in Figure 9 and Table 8 demonstrate that the proposed AVR controller
delivers superior overall performance. It achieves the best settling time (0.1621 s), rise time
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(0.0173 s), overshoot (0.024 pu), and objective function value (0.0032) among the evaluated
methods. Additionally, it attains the second-lowest peak undershoot, further underscoring
its effectiveness. It is evident that the Fuzzy PIDF + FOPD controller, when optimized
using both the PSO and SCSO algorithms, exhibits comparable performance in terms of
overall system response. However, a nuanced distinction arises in the transient behavior
of the system: the PSO-tuned controller tends to produce a more pronounced undershoot,
while the SCSO-tuned controller results in a marginally higher overshoot.

 

Figure 10. The dynamic response of the AVR model based on different control techniques.

Figures 11–13 provide a detailed comparative analysis of the performance metrics
for AVR control systems developed using various methodologies, including the proposed
Fuzzy PIDF + FOPD approach. Figure 11 specifically compares the settling time and
rise time across different control strategies. Figure 12 presents a bar chart analysis of the
cost function values achieved by each method, while Figure 13 illustrates the maximum
overshoot and undershoot, expressed in per unit (pu), for the evaluated methodologies.
These figures collectively offer a comprehensive evaluation of the dynamic performance
and stability characteristics of the respective control strategies.
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Figure 11. Settling and rise times of different techniques.
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Figures 10–13 and Table 8 clearly demonstrate that the suggested controller exhibits
exceptional behavior as an AVR. It surpasses several techniques previously introduced in
the literature, showcasing a stable and fast response. These findings strongly support the
feasibility of implementing this controller in real-time applications.

5. Robustness Investigation
The system parameters, such as gains and time constants, are inherently prone to

fluctuations, which can substantially degrade the performance of closed-loop control sys-
tems. Although these variations are of critical importance, their impact on AVR systems
has received limited attention in the existing body of literature. This study undertook a
thorough investigation into the influence of parameter variations on the overall perfor-
mance of the AVR system, addressing this gap in research. To evaluate the influence of
parametric uncertainties, each parameter was varied by ±40% from its nominal value as
given in Table 9. Figure 14 illustrates the impact of these parametric uncertainties on the
AVR system in the absence of a controller.
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The subfigures presented in Figure 14 clearly demonstrate that parameter variations
result in a significant degradation of the model’s overall performance. In certain cases, the
system exhibited a slight oscillatory behavior. To further examine this aspect, a rigorous
scenario involving parametric uncertainty was analyzed, in which six key parameters
of the AVR system were subjected to variations of ±40% from their nominal values, as
outlined in Table 9. The proposed Fuzzy PIDF + FOPD controller was applied to the
system to evaluate its robustness under these extreme conditions and to assess its overall
response and performance. Importantly, the optimal gains identified under nominal
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operating conditions were retained without modification, underscoring the controller’s
capacity to accommodate dynamic system variations without necessitating re-tuning. This
demonstrates the controller’s robustness and effectiveness in maintaining stability and
performance under significant parametric uncertainties.

Table 9. Assumed cases for parametric uncertainty analysis.

Case Nominal Value Variation Range New Value

Generator Coefficient Kg = 1 +40% and −40% 1.4 and 0.6
Generator Time Constant τg= 1 +40% and −40% 1.4 and 0.6

Excitor Constant Ke = 1 +40% and −40% 1.4 and 0.6
Exciter Time Constant τe= 0.4 +40% and −40% 0.56 and 0.24

Sensor Constant Ks = 1 +40% and −40% 1.4 and 0.6
Sensor Time Constant τs= 0.01 +40% and −40% 0.014 and 0.006

Amplifier Constant Ka = 10 +40% and −40% 14 and 6
Amplifier Time Constant τa= 0.1 +40% and −40% 0.14 and 0.06

Random critical case

Kg = 1 −40% 0.6
Ke = 1 +40% 1.4
τe= 0.4 +40% 0.56
Ka = 10 +40% 14
τa= 0.1 −40% 0.06
τs= 0.01 −40% 0.006

Figure 15 illustrates the step response of the AVR model under parametric uncertainty.
Despite significant variations in system parameters, the system consistently operated
within an acceptable performance range. Notably, the response under uncertain conditions
exhibited a marginally reduced overshoot for the Fuzzy PIDF + FOPD controller tuned by
SCSO and an increased undershoot for the same controller tuned by PSO. This behavior
can be attributed to the cumulative effects of parameter deviations, which may alter the
system’s damping ratio, directly influencing the overshoot and undershoot characteristics.
Such a scenario represents a realistic random case that the system might encounter during
real-time operations. The robustness analysis results highlight the superior reliability and
robustness of the proposed fuzzy-based control system for AVR applications.
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To assess the effectiveness of the Fuzzy PIDF + FOPD controller, the system was
evaluated under varying load conditions, control signal disturbances, and parametric
uncertainties. Fluctuations in the connected electrical load can induce variations in the
generator’s output voltage, posing a significant challenge to maintaining system stability.
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Similarly, control signal disturbances in an AVR system may arise from various factors,
including noise, communication errors, sensor inaccuracies, faulty components, external
interference, and instability in the control loop [22]. Such disturbances can significantly
degrade system performance if not adequately addressed. Therefore, it is imperative
to design the AVR controller with robust mechanisms to mitigate the effects of these
disturbances. These testing scenarios represent some of the most demanding conditions the
system may encounter during real-time operation, providing a comprehensive evaluation
of the controller’s effectiveness. The block diagram of the AVR system under these two
disturbances is shown in Figure 16.
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An excellent aspect of the controller’s robustness is its ability to reject load disturbance
effects on the model under control. As noted in [42], disturbances amounting to up to 5%
of the generator’s output voltage are considered acceptable; however, controllers must be
capable of managing and mitigating disturbances that surpass this limit. In alignment with
previous research, this study introduced disturbances equivalent to 10% of the reference
voltage, directly applied to the generator’s output, to evaluate the system’s response and
control efficacy.

Figure 17 depicts the applied disturbances and the step response under both normal
operating conditions and a scenario involving parametric uncertainties. The proposed
controller exhibits a pronounced ability to effectively mitigate these disturbances, ensuring a
stable and reliable response across diverse operating conditions. These results substantiate
the controller’s robust performance and its capacity to handle demanding operational
challenges with high reliability.
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6. Conclusions and Future Work
This study introduced a novel AVR control design utilizing a Fuzzy PIDF + FOPD

controller optimized through the SCSO and PSO algorithms. The proposed methodology
demonstrated exceptional performance in achieving rapid response, stability, and robust-
ness across diverse operational conditions, surpassing existing approaches. key metrics
such as overshoot, settling time, rise time, and ITAE were improved from 0.15593 pu,
0.7568 s, 0.2258 s, and 0.08791 to 0.024 pu, 0.2166 s, 0.0173 s, and 0.0032, respectively. Com-
prehensive robustness evaluations further validated the system’s resilience to parametric
uncertainties, load disturbances, and variations in control signals, underscoring its suitabil-
ity for real-time implementation in dynamic and uncertain environments. Nevertheless, the
computational time associated with the SCSO algorithm for identifying optimal controller
gains remains a notable limitation, presenting a critical area for future refinements.

This study acknowledges the importance of incorporating nonlinear aspects, such
as exciter limiters, generator saturation, and mechanical constraints, into the AVR model
to better reflect real-world system dynamics, which have been underexplored in the lit-
erature. Additionally, the transient variations in voltage and frequency during dynamic
load fluctuations, along with their potential influence on the sensor’s transfer function,
represent critical considerations for accurate system modeling. Addressing these factors in
future research would significantly enhance the practical applicability and fidelity of the
proposed approach.

Further investigations could focus on refining the overshoot and undershoot, thereby
improving overall system performance. Exploring alternative optimization algorithms may
also yield enhanced controller behavior. Moreover, integrating the fuzzy controller with
advanced control strategies, such as Sliding Mode Control (SMC), could create a synergistic
effect, further improving dynamic response and control precision.
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