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Real-time inference for binary neutron star 
mergers using machine learning

Maximilian Dax1,2,3 ✉, Stephen R. Green4, Jonathan Gair5, Nihar Gupte5,6, Michael Pürrer7,8, 
Vivien Raymond9, Jonas Wildberger3, Jakob H. Macke1,10, Alessandra Buonanno5,6 & 
Bernhard Schölkopf1,2,3

Mergers of binary neutron stars emit signals in both the gravitational-wave (GW)  
and electromagnetic spectra. Famously, the 2017 multi-messenger observation of 
GW170817 (refs. 1,2) led to scientific discoveries across cosmology3, nuclear physics4–6 
and gravity7. Central to these results were the sky localization and distance obtained 
from the GW data, which, in the case of GW170817, helped to identify the associated 
electromagnetic transient, AT 2017gfo (ref. 8), 11 h after the GW signal. Fast analysis  
of GW data is critical for directing time-sensitive electromagnetic observations. 
However, owing to challenges arising from the length and complexity of signals, it is 
often necessary to make approximations that sacrifice accuracy. Here we present a 
machine-learning framework that performs complete binary neutron star inference 
in just 1 s without making any such approximations. Our approach enhances multi- 
messenger observations by providing: (1) accurate localization even before the 
merger; (2) improved localization precision by around 30% compared to approximate 
low-latency methods; and (3) detailed information on luminosity distance, inclination 
and masses, which can be used to prioritize expensive telescope time. Additionally, 
the flexibility and reduced cost of our method open new opportunities for equation-of- 
state studies. Finally, we demonstrate that our method scales to long signals, up to  
an hour in length, thus serving as a blueprint for data analysis for next-generation 
ground- and space-based detectors.

The fast and accurate inference of binary neutron stars (BNSs) from 
gravitational-wave (GW) data is a critical challenge facing multi- 
messenger astronomy. For a BNS, the GW signal is visible by the Laser 
Interferometer GW Observatory (LIGO)–Virgo GW Interferometer 
(Virgo)–Kamioka GW Detector (KAGRA) (collectively, LVK)9–11 obser-
vatories minutes before any electromagnetic counterpart. The GW 
encodes information on the source characterization, distance, sky 
location and orientation necessary for pointing and prioritizing opti-
cal telescopes. However, the length of BNS signals makes conventional 
Bayesian inference techniques12,13 too slow to be useful in low-latency 
applications. Instead, once a GW signal is identified by detection pipe-
lines14,15, approximate algorithms are used for providing initial alerts 
(for example, BAYESTAR16, which uses the signal-to-noise ratio (SNR) 
time series rather than the complete strain data and gives localization in 
seconds). Other methods focus on accelerating likelihood evaluations 
without incurring loss of precision (for example, using reduced-order 
quadratures), with the state-of-the-art delivering localization in 6 min 
and full inference in 2 h (ref. 17).

Simulation-based machine learning offers a powerful alternative for 
GW inference (see Methods for related work). With simulation-based 
inference (SBI)18, neural networks are trained to encode probabilistic 
estimates of astrophysical source parameters conditional on data. 

Trained networks then enable extremely fast analysis for new data-
sets, amortizing upfront training costs across observations. In past 
work, we developed the deep inference for GW observations (DINGO) 
framework for binary black holes (BBHs)19,20, which performs accu-
rate inference in seconds, including strong accuracy guarantees 
when coupled with importance sampling. However, when applied 
to BNSs, machine-learning approaches, such as DINGO, are beset by 
the same challenges facing traditional methods because of long sig-
nal durations. Indeed, DINGO becomes unreliable even for low-mass 
BBHs (chirp masses ≲15 M⊙) with signals longer than roughly 16 s.  
A BNS lasts for hundreds of seconds for the LVK and will reach hours 
for next-generation detectors (for example, Cosmic Explorer21 and 
Einstein Telescope22). From the neural-network perspective, this cor-
responds to time or frequency series input with up to tens of millions 
of dimensions—a thousand-fold increase over BBH.

In this study, we overcome these challenges by leveraging perturba-
tive BNS physics information to simplify and compress the data. How-
ever, this simplification requires approximate knowledge of the source 
itself and is hence valid only over a small portion of the parameter space. 
We solve this problem using a new algorithm, called prior conditioning, 
which enables us to construct networks that can be adapted at infer-
ence time to subsets of the prior volume. Our new framework, called 
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DINGO-BNS, makes no (practically relevant) approximation and takes 
just 1 s for accurate inference of all 17 BNS parameters (Fig. 1). Using 
DINGO-BNS, we can also infer all of these parameters minutes before 
the merger based on partial inspiral-only information—estimates that 
can be continuously updated as more data become available (Fig. 2a). 
Near-real-time or pre-merger alerts can then be provided to astrono-
mers, facilitating potential discoveries of precursor and prompt elec-
tromagnetic counterparts23–25.

Our results are faster and more complete than any existing low- 
latency algorithm, with the accuracy of offline parameter estimation 
codes. Compared to BAYESTAR, we achieve median reductions in the 
size of the 90% credible sky region of 30% (Fig. 2b). Finally, DINGO-BNS 
exhibits excellent scaling to longer signals (Methods), and we demon-
strate next-generation detector pre-merger inference for signals up to 
an hour in length (Fig. 2c).

DINGO-BNS
For given GW data, d, we characterize the source in terms of the poste-
rior probability distribution, p(θ|d), over BNS parameters, θ. Param-
eters include component masses (two), spins (six), orientation, sky 
position (two), luminosity distance, polarization, time and phase of coa-
lescence and (in contrast to black holes) tidal deformabilities (two). Fol-
lowing our past work19, we use simulated GW datasets to train a density 
estimation neural network, q(θ|d) (a normalizing flow), to approximate 
p(θ|d). Once trained, the inference for new d simply requires sampling 
θ ~ q(θ|d). We obtain asymptotically exact results by augmenting sam-
ples with importance weights using the GW likelihood function26. This 
framework, called DINGO-IS20, has been successfully applied to black 
hole mergers. However, the length of BNS signals renders the naïve 
transfer of machine-learning methods impossible.

To tackle this challenge, DINGO-BNS makes several innovations 
(Fig. 3d), including using knowledge of specific BNS signal morphology 
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Fig. 1 | Real-time inference of GW170817. DINGO-BNS estimates all BNS 
parameters in just 1 s (orange, 10.8% sample efficiency), reproducing LVK 
results5 (black, 0.1% typical efficiency) three orders of magnitude faster than 
existing methods17,33,39. DINGO-BNS can also analyse partial data before the 
merger occurs (teal, 78.9% efficiency). Fast analysis results are crucial for 
directing electromagnetic searches for prompt, or even precursor, signals. 
Note that GW170817 overlapped with a loud glitch, which could explain why  
the true sky position lies in the tail of the pre-merger distribution.
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Fig. 2 | Pre-merger inference with DINGO-BNS. a, Evolution of pre-merger 
estimates for GW170817 (black) and GW170817-like simulations injected into 
different noise levels (colours). We display the 90% credible sky area, the 
standard deviation of the chirp mass, the accumulated signal-to-noise and  
the log(Bayes factor) in the natural unit of information (nat) comparing the 
signal and noise models. All of these quantities are inferred with a latency of 
around 1 s. Dotted lines represent the 10th/90th percentiles. We impose a 

minimum SNR17 of 12. b, Sky localization area at 90% credible level for various 
pre-merger times compared against BAYESTAR. The boxplots display the 
medians (percentage changes indicated), quartiles and 10th/90th percentiles. 
DINGO-BNS localization is consistently more precise. c, Pre-merger sky 
localization for a GW170817-like event injected into Cosmic Explorer noise, 
using a minimum frequency of 6 Hz. The black marker indicates the injection 
coordinates and the grey outline is the 90% credible area.
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to compress data in a non-lossy way, conditioning the network on the 
compressor using prior conditioning, frequency masking based on 
the pre-merger time and chirp mass, and conditioning on parameter 
subsets for incorporating multi-messenger information or expecta-
tions from nuclear models. The philosophy underlying our approach is 
that the full BNS problem is too hard for existing neural architectures, 
so we divide the parameter and data spaces into manageable portions 
based on known physical information. We then combine all of these 
variable design choices into a single network. By passing relevant con-
trol parameters at inference time, the network can be tuned to the 
context at hand.

Data compression and prior conditioning
We adapted two GW analysis techniques to the SBI context—hetero-
dyning27 to simplify the data and multibanding28,29 to reduce the data 
dimension without loss of information. During the long inspiral period, 
a BNS signal exhibits a ‘chirp’, with phase evolution (to leading order 
in the post-Newtonian expansion30),
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where f is the frequency, c is the speed of light in vacuum and 
M = (m1m2)3/5/(m1 + m2)1/5 is the chirp mass of the system, with m1 and 
m2 being the component masses. Given an approximation, M, to the 
chirp mass, we heterodyne the (frequency-domain) data by multiplying 
by φ f ei ( ; )M , reducing the number of oscillations in the signal by several 
orders of magnitude (Fig. 4a). Given the heterodyned data, we apply 
multibanding by partitioning the domain into (empirically determined) 

frequency bands and coarsening the resolution in higher bands, such 
that the (heterodyned) signal is preserved.

Because the compression described requires M to approximate  
the chirp mass, it cannot be done across the entire BNS prior volume 
using a single M value. Therefore, DINGO-BNS uses prior conditioning 
to restrict to an event-specific prior over which data are compressed. 
The restricted volume additionally simplifies the density estimation 
task. By conditioning on the choice of restriction, prior conditioning 
trains a network that is tunable to this choice, but otherwise applicable 
over the whole volume (Fig. 3a). Inference requires an estimate, M, of 
the chirp mass, M, which can be determined quickly by sweeping across 
the prior (Methods).

Frequency masking
In contrast to past work, DINGO-BNS also allows strain frequency series 
with varying minimum and maximum frequencies (fmin and fmax, res
pectively). For a given analysis, fmin is chosen based on M  and the  
segment duration as the minimum frequency present in the signal in 
a given GW-detector network. This masking is necessary for consis
tency with frequency-domain waveform models, which assume infi
nite duration. Choosing fmax, by contrast, determines the end time  
of the data stream analysed to enable pre-merger inference (Fig. 4b 
and Methods).

Conditioning on parameter subsets
The DINGO-BNS framework (and SBI in general) allows considerable 
flexibility in terms of quickly marginalizing over, and conditioning on, 
parameters. Conditioning on a parameter allows us to set it to a fixed 
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Fig. 3 | Prior conditioning and method flowchart. a, For a typical event,  
the chirp mass posterior (black) is tightly constrained compared to the prior 
(blue), so a tighter prior (orange) that still covers the posterior is sufficient for 
inference. In addition, the narrow prior can simplify the analysis. Our prior- 
conditioning technique therefore trains a single neural network that can be 
tuned at inference time to an event-specific prior. b, Training is accomplished 
by simulating data from randomly chosen narrow priors, MMp ( ), each 
parametrized by a reference chirp mass, M, on which the network is also 

conditioned. Prior conditioning enables prior-specific heterodyning based on 
M, followed by multibanding compression (Fig. 4a), effectively simplifying the 
data distribution that the model must learn and reducing its dimensionality.  
c, At inference time, an initial chirp mass estimate, M, determines the event- 
specific prior and compression. d, Prior conditioning and the other technical 
innovations are integrated into a single neural network that can be trained 
end-to-end and produce 105 weighted samples per second, with typical 
sampling efficiencies of 50%.
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value—for example, to incorporate knowledge of that parameter from 
other sources. In our study, we trained DINGO-BNS networks condi-
tioned on the sky position—that is, we learned p(θ\{α,δ}|d,α,δ), where 
α and δ denote the right ascension and declination, respectively. Such 
a network allows us to incorporate precise multi-messenger locali-
zation to obtain tighter constraints on the remaining parameters, 
potentially enabling real-time feedback on whether optical candi-
dates should be prioritized for detailed spectroscopy31. In this way, 
DINGO-BNS can enable new modes of interaction between GW and 
electromagnetic observers, potentially transforming how we prior-
itize and respond to multi-messenger events. We have also explored 
parameter-conditioning to accelerate offline nuclear equation-of-state 
(EOS) analyses (Methods).

Experiments
We generated training data using simulated BNS waveforms (including 
spin-precession and tidal contributions, but without higher angu-
lar multipoles32) with additive stationary Gaussian detector noise. 
When relevant, networks are also trained with power spectral den-
sity (PSD)-conditioning to enable instant tuning to noise levels at the 
time of an event. At inference time, we validate and correct results 
using importance sampling, thus guaranteeing their accuracy, pro-
vided a sufficient effective sample size is obtained20. We accelerate 
the importance sampling step using JAX waveform and likelihood 
implementations33–35.

We performed four studies using DINGO-BNS: (1) a pre-merger 
analysis of the first BNS detected—GW170817—as well as equivalent 
injections (simulated datasets) at varying noise levels; (2) a pre-merger 
analysis of a range of injections in LVK design sensitivity noise; (3) an 
after-merger analysis of the two detected BNS events—GW170817 and 

GW190425—reproducing published LVK results; and (4) a pre-merger 
analysis of injections in Cosmic Explorer noise (with a minimum fre-
quency of 6 Hz, corresponding to an hour-long signal). We use the 
importance sampling efficiency as a primary performance metric, 
finding average values of 63.3%, 47.0%, 31.0% and 35.6% in experiments 
(1), (2), (3) and (4), respectively. With these high efficiencies, inference 
for 104 effective samples takes roughly 1 s on an H100 GPU (Methods). 
Efficiencies are generally higher for pre-merger, probably because the 
waveform morphology is simplest in the early inspiral.

Discussion
Prior conditioning works well for BNS inference, and it could be 
extended to address further challenges in GW astronomy (for example, 
the isolation of events from overlapping backgound signals in next- 
generation detectors) and other scientific domains. In the future, we 
would like to explore our prior-conditioning approach to data com-
pression for black hole–neutron star systems and low-mass BBHs. This 
is non-trivial because such systems can emit GWs in higher angular 
radiation multipoles (that is, beyond the (l,m) = (2,2) mode that we 
assume here), which evolve according to integer multiples of (1), and 
so would require an improved heterodyning algorithm to factor out 
the chirp. Higher modes are not present in BNS signals, because the 
stars are very nearly equal in mass.

Another exciting prospect for SBI is a more realistic treatment of 
detector noise. Indeed, because BNS inspirals have long durations, 
noise non-stationarities and non-Gaussianities are more likely to mani-
fest. Currently, DINGO-BNS assumes stationary Gaussian noise and is 
supplied with an estimate of the PSD (possibly resulting in additional 
latency for data preparation, see Methods). However, by training on 
realistic detector noise, our approach can, in principle, learn to fully 
characterize the noise jointly with the signal, including any deviations 
from stationarity and Gaussianity. This approach is akin to on-source 
PSD and glitch modelling36, but allows more general noise and auto-
matically marginalizes over uncertainties. Initial steps in this direc-
tion have already been taken for intermediate-mass BBHs37. Improved 
noise treatments, such as those afforded by SBI, will become crucial 
for reducing systematic error as detectors become more sensitive38.

Finally, although DINGO-BNS is intended to be used for parameter 
estimation following a trigger by dedicated search pipelines, its speed 
opens up the possibility of being run continuously on all data as they 
are taken. Either the SNR or Bayesian evidence time series generated 
by DINGO-BNS could then be used as a detection statistic, forming an 
end-to-end detection and parameter estimation pipeline. To imple-
ment this would require calibrating these statistics to determine false 
alarm rates, as well as careful comparisons against existing algorithms 
to establish efficacy.

Online content
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ries, source data, extended data, supplementary information, acknowl-
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Methods

Machine-learning framework
The Bayesian posterior, p(θ|d) = p(d|θ)p(θ)/p(d), is defined in terms of 
a prior p(θ) and a likelihood p(d|θ). For GW inference, the likelihood is 
constructed by combining models for waveforms and detector noise. 
The Bayesian evidence, p(d), corresponds to the normalization of the 
posterior and can be used for model comparison.

Our framework is based on neural posterior estimation (NPE)40–42, 
which trains a density estimation neural network, q(θ|d), to estimate 
p(θ|d). We parameterize q(θ|d) with a conditional normalizing flow43,44. 
Training minimizes the loss L = Ep(θ,d)[−log q(θ|d)], where the expecta-
tion value is computed across a dataset (θi,di) of parameters, θi ~ p(θ), 
paired with corresponding likelihood simulations, di ~ p(d|θi). After 
training, q(θ|d) serves as a surrogate for p(θ|d) and inference for any 
observed data, do, can be performed by sampling θ ~ q(θ|do). With 
DINGO19,20 using a group-equivariant formulation of NPE (GNPE19,45), 
the GW data are simplified by aligning coalescence times in the dif-
ferent detectors. However, this comes at the cost of longer inference 
times, so we do not use GNPE for DINGO-BNS.

At inference, we correct for potential inaccuracies of q(θ|d) using 
importance sampling20, by assigning weight, wi = p(d|θi)p(θi)/q(θi|d), 
to each sample, θi ~ q(θi|d). A set of n weighted samples (wi,θi) corre-
sponds to n w w= (∑ ) /(∑ )i i i ieff

2 2  effective samples from the posterior, 
p(θ|d). This reweighting enables asymptotically exact results and the 
sample efficiency, ϵ = neff/n, serves as a performance metric. The nor-
malization of the weights further provides an unbiased estimate of the 
Bayesian evidence, d ∑p w n( ) = ( )/i i .

Below, we describe in more detail the technical innovations of 
DINGO-BNS that enable scaling of this framework to BNS signals.

Prior conditioning. An NPE model, q(θ|d), estimates the posterior, 
p(θ|d), for a fixed prior, p(θ). Choosing a broad prior enhances the 
general applicability of the NPE model, but it also implies worse tuning 
to specific events (for which smaller priors may be sufficient). This is 
a general trade-off in NPE, but it is particularly notable for BNS infer-
ence, where typical events constrain the chirp mass to around 10−3 of 
the prior volume. Thus, for an individual BNS event, a tight chirp mass 
prior would have been sufficient (Extended Data Fig. 1b) and moreover 
would have enabled effective heterodyning27,46,47. However, to cover 
generic BNS events, we need to train the NPE network with a large prior 
(Extended Data Table 2).

We resolve this trade-off with a new technique called prior condi-
tioning. The key idea is to train an NPE model with multiple different 
(restricted) priors simultaneously. Training a prior-conditioned model 
requires hierarchical sampling:

̂θ θ ρ ρρp p~ ( ), ~ ( ), (2)

where pρ(θ) is a prior family parameterized by ρ and ̂ ρp( ) is a corre-
sponding hyperprior. We additionally condition the NPE model, 
q(θ|d,ρ), on ρ. This model can then perform inference for any desired 
prior, pρ(θ), by simply providing the corresponding ρ. This effectively 
amortizes the training cost over different choices of the prior. On each 
of the restricted priors, we are furthermore allowed to transform the 
data in a ρ-dependent way. This is because, having been conditioned 
on the prior choice, the network has all the information necessary to 
properly interpret the transformed data. We use this freedom to hetero
dyne the GW strain with respect to the approximate chirp mass.

To apply prior conditioning for the chirp mass, M, we use a set of 
priors, M M M M MMp U( ) = ( − ∆ , + ∆ )m m,1 2

 



. Here, Um1,m2(Mmin, Mmax) 
denotes a distribution over M with support, [Mmin, Mmax], within which 
component masses, m1, m2, are uniformly distributed. We use a fixed 
∆M = 0.005 M⊙ and choose a hyperprior, Mp̂( ), covering the expec
ted range of M for LVK detections of BNS (Extended Data Table 2).  

Because ∆M is small, M is a good approximation for any M within  
the restricted prior, 



MMp ( ), and we can thus use M for heterodyning. 
The resulting model, θ d MM∣ 



q( , ) , can then perform inference with 
event-optimized heterodyning and priors (via the choice of appro
priate M), but is nevertheless applicable to the entire range of the  
hyperprior.

Inference results are independent of M as long as the posterior,  
p(M|d), is fully covered by [M − ∆M, M + ∆M]. For BNS, p(M|d) is typ
ically tightly constrained and we can use a coarse estimate of M for M. 
This can either be taken from a GW search pipeline or rapidly computed 
from MM





∣q( , )θ d  itself by sweeping the hyperprior (see below). Note 
that, for shorter GW signals from black hole mergers, p(M|d) is gener-
ally less well constrained. The transfer of prior conditioning would 
thus require larger (and potentially flexible) values of ∆M. Alterna-
tively, the prior range can be extended at inference time by iterative 
Gibbs sampling of M and M, similar to the GNPE algorithm19,45.

Prior conditioning is a general SBI technique that enables a choice 
of prior at inference time. This can also be achieved with sequential 
NPE40–42,48. However, in contrast to prior conditioning, these techniques 
require simulations and retraining for each observation, resulting in 
more expensive and slower inference. We here use prior conditioning 
with priors of fixed width for the chirp mass, and optional additional 
conditioning on fixed values for other parameters (corresponding to 
Dirac delta priors). Extension to more complicated priors and hyper-
priors is straightforward.

Independent estimation of chirp mass and merger times. Running 
DINGO-BNS requires an initial estimate of the chirp mass, M (to deter-
mine M for the network), and the merger time, tc (to trigger the ana
lysis). Matched filter searches can identify the presence of a compact 
binary signal and its chirp mass and merger time in low latency14,15,49–51. 
Specialized early warning searches are designed to produce output 
before the coalescence can further provide a rough indication of sky 
position and distance52–54. When available, the output of such pipelines 
can be used to trigger a DINGO analysis and provide estimates for M 
and tc.

We here describe an alternative independent approach of obtaining 
these parameters, using only the trained DINGO-BNS model. We com-
pute M by sweeping the entire hyperprior, M M M  p Uˆ( ) = ( , )m m, min max1 2

. 
Specifically, we run DINGO-BNS with a set of prior centres,

M M Mi= + ∆ , (3)i min
 

where i takes integer values between 0 and (Mmax − Mmin)/∆M. The 
inference models in this study were trained with hyperprior ranges of 
up to [1.0,2.2] M⊙. For ∆M = 0.005 M⊙, we can thus cover the entire 
global chirp mass range using 241 (overlapping) local priors. We run 
DINGO-BNS for all local priors, iM , in parallel, with 10 samples per iM . 
This requires a DINGO-BNS inference of only a few thousand samples, 
which takes less than 1 s. We use the chirp mass, M, of the maximum 
likelihood sample as the prior centre, M, for the analysis (Extended 
Data Fig. 1a). Note that the exact choice of M  does not matter, as  
long as the inferred posterior is fully covered by [M − ∆M, M + ∆M] 
(Extended Data Fig. 1b).

The merger time, tc, can be inferred by continuously running this M 
scan on the input data stream, sliding the tc prior in real time over the 
incoming data. With inference times of 1 s, continuous analysis can be 
achieved on just a few parallel computational nodes (or even a single 
node when also parallelizing over the tc grid), constantly running on 
the input data stream. Event candidates can then be identified by ana-
lysing the SNR, triggering upon exceeding some defined threshold 
(Extended Data Fig. 1c). This scan can be performed at an arbitrary (but 
fixed) time before the merger.

This scan successfully estimates M and tc for both real BNS events 
(Extended Data Fig. 1). However, we have not tested this at a large scale 



on detector noise to compute false alarm rates because DINGO-BNS is 
primarily intended for parameter estimation. Existing search and early 
warning pipelines are probably more robust for event identification, 
particularly in the presence of non-stationary detector noise.

Frequency multibanding. Although the native resolution of a fre-
quency series is determined by the duration, T, of the corresponding 
time series, (∆f = 1/T), we can average adjacent frequency bins wher-
ever the signal is roughly constant. This enables data compression with 
only negligible loss of information. Here we use frequency multiband-
ing, which divides the frequency range, [fmin, fmax], into N bands of dec
reasing resolution. Frequency band i covers the range f f[ ˆ, ˆ ]i i+1  with 
∆fi = 2i∆f0, where f fˆ =0 min, f fˆ =N max  and ∆f0 is the native resolution of 
the frequency series. Within band i, the multibanded domain thus 
compresses the data by a factor of 2i (Extended Data Fig. 2), which is 
achieved by averaging 2i sequential bins from the original frequency 
series (called decimation). To achieve optimal compression, we empi
rically choose the smallest possible nodes, f̂i , for which GW signals are 
still fully resolved. Specifically, we simulate a set of 103 heterodyned 
GW signals and demand that every period of these signals is covered 
by at least 32 bins in the resulting multibanded frequency domain. This 
is done before generating the training dataset, and the multibanded 
domain then remains fixed during dataset generation and training. 
The optimized resolution achieves compression factors between 60 
and 650 (Extended Data Fig. 2c).

Traditionally, multibanding has been used without additional  
heterodyning—an approach we could also apply to DINGO-BNS. How-
ever, this would lead to lower compression factors, ranging from 14 
to 56. More importantly, using multibanding alone would result in 
substantially more complicated input data to the DINGO-BNS network. 
Indeed, heterodyning enables additional truncation of the waveform 
singular value decomposition used in initializing the first network 
layer19. For LVK data, this results in a reduction from roughly 1,800 to 
200 basis elements, thereby simplifying the learning task.

Care needs to be taken that the approximations are valid in the pres-
ence of detector noise. We now investigate how multibanding affects 
data simulation (for training) and the likelihood (for importance  
sampling).
Data simulation. The GW data are simulated as the sum of a signal 
and detector noise, d = h(θ) + n. The detector noise in frequency bin 
j is given by

Nn σ S σ
w

f
(0, ), =

4∆
, (4)j j

where S denotes the detector noise PSD, and σ takes into account the 
frequency resolution and the Tukey window factor, w. Note that n is 
a complex frequency series, which we ignore in our notation, as the 
considerations here hold for real and imaginary parts individually. It 
is conventional to work with whitened data,

d h n
h n

S
= ( ) + =

( ) +
, (5)j j j

j j

j

w w wθ
θ

in which case Nn σ(0, )j
w .

We convert to the multibanded frequency domain by averaging sets 
of Ni = 2i bins,

∑d
N

h n h n=
1

( + ) = + , (6)j
i k m

m N

k k j j
w

=

+ −1
w w w w

j

j i

where j denotes the bin in the multibanded domain, mj denotes the 
starting index of the decimation window for j in the native domain and 
i indexes the frequency band associated with j. Because nj

w is an average 
of Ni Gaussian random variables with standard deviation σ, it follows 
that nj

w is also Gaussian with standard deviation,

σ σ N
w

fN
w

f
= / =

4∆
=

4∆
. (7)i i

i i

We can thus simulate the detector noise directly in the multibanded 
domain by updating σ → σi, corresponding to ∆f → ∆fi . For the whitened 
signal we find

∑ ∑h
N

h
S

h
S

=
1

≈
1

, (8)j
i k m

m N
k

k
j

k m

m N

k

w

=

+ −1

=

+ −1

j

j i

j

j i

assuming an approximately constant signal, h, within the decimation 
window, hj ≈ hk,∀k ∈ [mj,mj + Ni − 1]. For frequency-domain waveform 
models, we can thus directly compute the signal hj in the multibanded 
domain by simply evaluating the model at frequencies fj

.
In summary, we can directly generate BNS data in the multibanded 

frequency domain by: (1) updating the noise standard deviation 
according to the multibanded resolution; (2) appropriately decimat-
ing noise PSDs; and (3) computating signals and noise realizations 
in the compressed domain. These operations are carefully designed 
to be consistent with the data processing of real BNS observations, 
which for DINGO-BNS are first whitened in the native domain and 
then decimated to the multibanded domain. This process relies on 
the assumption that signals are constant within decimation windows, 
and we ensure that this is (approximately) fulfilled when determining 
the multibanded resolution. Indeed, for signals generated directly 
in the multibanded domain, we find mismatches of at most around 
10−7 when comparing to signals that are properly decimated from the 
native domain.
Likelihood evaluations. We also use frequency multibanding to evalu-
ate the likelihood for importance sampling. The standard Whittle likeli-
hood used in GW astronomy26 reads:

∣
∣ ∣

d θ
θ∑p

d h
σ

log ( ) = −
1
2

− ( )
, (9)

k

k k
w w 2

2

up to a normalization constant. The sum extends over all bins, k, in 
the native frequency domain. Assuming a constant signal (as above) 
and PSD within each decimation window, we can directly compute the 
likelihood in the multibanded domain,

∣
∣ ∣

d θ
θ

∑p
d h

σ
log ( ) ≈ −

1
2

− ( )
. (10)

j

j j

i j

w w 2

( )
2

The assumptions are not exactly fulfilled in practice—for additional 
corrections, see ref. 29. For importance sampling, we can always evalu-
ate the exact likelihood in the native frequency domain instead. In this 
case, the result is no longer subject to any approximations, even if the 
DINGO-BNS proposal is generated with a network using multibanded 
data. With the full likelihood for GW170817, we found a sample effi-
ciency of 11.0% with an inference time of 13 s for 50,000 samples. The 
deviation from the result obtained with the multibanded likelihood is 
negligible ( Jensen–Shannon divergence of less than 5 × 10−4  nat for all 
parameters). This demonstrates that use of the multibanded resolution 
has no practically relevant impact on the results.

Frequency masking. Because the GW likelihood (and our framework) 
uses the frequency domain, but data are taken in the time domain,  
it is necessary to convert data by windowing and Fourier transform
ing. However, frequency domain waveform models assume infinite 
time duration, leading to inconsistencies with finite time segments, 
[tmin, tmax]. Because the frequency evolution of the inspiral is tightly 
constrained by the chirp mass, M, we can compute boundaries,  
fmin(tmin, M) and fmax(tmax, M), such that the signals are not corrupted 
by the finite-duration effects within [fmin, fmax] and are negligibly small 
outside of that range (Extended Data Fig. 3).
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We approximate the lower bound, fmin(tmin, M), using the leading 

order in the post-Newtonian relationship between time and frequency,

f t
t G

c
( , ) =

1
8π

−
5

. (11)
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For a network designed for fixed data duration, T, we set fmin(T, M) =  
f0PN(−T, M) + fbuffer (we use fbuffer = 1 Hz for LVK and fbuffer = 0.5 Hz for 
next-generation detector setups).

For the upper bound, we found that f0PN(t, M) is not sufficiently accu-
rate. Instead, we determined fmax(t, M) empirically by simulating a set 
of signals (with parameters θ ~ p(θ)) and computing mismatches 
between signals with and without truncation at t > tmax . For a given set 
of simulations, we choose fmax(t, M) as the highest frequency at which 
all mismatches are at the most 10−3. To avoid additional computation 
at inference time, we cache the results in a lookup table for fmax(t, M). 
The lookup table used here was generated with 20 waveforms per ele-
ment. We verified for random elements that this matches the result 
obtained using 1,000 waveforms with an accuracy of approximately 
0.1 Hz. For production use, the lookup table may need to be generated 
with more waveforms.

Both bounds depend on the chirp mass, M, with the upper bound 
additionally depending on the pre-merger time. To enable inference 
for arbitrary configurations, we trained a single network with variable 
frequency bounds. During training, we computed fmin(T, M) with the 
centre M of the local chirp mass prior. The upper frequency bound, 
fmax, is sampled randomly (uniform in frequency bins of the multibanded 
frequency domain) to allow arbitrary pre-merger times. Data outside 
of [fmin, fmax] are zero-masked.

Such masked networks can perform pre-merger inference. Given an 
alert (for example, from a detection pipeline) predicting a merger at 
time ∼tc (in the future) with chirp mass M, DINGO-BNS uses the fre-
quency range [fmin(T, M), fmax(−∼tc, M)]. The frequency domain data are 
further shifted by tc

∼ , such that the prior p(tc) is centred around ∼tc. The 
resulting pre-merger posterior can then be used to update the alert 
predictions (M, tc

∼ ) (for example, as the centre of the inferred posterior 
marginals) and to trigger a new DINGO-BNS analysis with the new strain 
data that became available in the meantime. Such iterative posterior 
updates allow continuous optimization of the prior centres (M, tc

∼ ).  
As a result, the tc prior for the after-merger analysis (Extended Data 
Table 2) does not need to account for large trigger uncertainties and 
only needs to be large enough to capture expected posteriors, p(tc|d).

In the absence of external alerts, the independent DINGO-BNS search 
described earlier (Extended Data Fig. 1) can also be run as a pre-merger 
scan, searching for mergers around a freely chosen (but fixed) time, tc

∼ ,  
in the future. By continuously running this scan over the incoming data 
stream, alerts are triggered at roughly time ∼tc before potential BNS 
mergers. Note that, in the absence of chirp mass predictions, we need 
to apply a conservative frequency range, [fmin(T, Mmax), fmax(−t∼c, Mmin)], 
where Mmin/max are the prior bounds for M.

EOS likelihood. A nuclear EOS implies a functional relationship bet
ween neutron star masses, mi , and tidal deformabilities, λi. The likeli-
hood, p(d|E), for a given EOS, E, and data, d, can be computed by inte-
grating the GW likelihood along the hyperplane defined by the EOS 
constraint, Eλ λ m= ( )i i i ,

∣ ∣

∣

d d θ θ θ

d

E E

E E

∫
∫ ∫

p p p δ λ λ m

p m m λ m λ m m m

( ) = ( ) ( ) ( − ( ))d

= ( , , ( ), ( ))d d
(12)

i i i

i i2 1 2 2 1 2

Here p(d|m1,m2,λ1,λ2) is the Bayesian evidence of d conditional on  
(m1, m2, λ1, λ2). To calculate equation (12) using Monte Carlo integration, 
it is necessary to repeatedly evaluate the integrand, which is extremely 
expensive using traditional methods (for example, nested sampling).

With DINGO-BNS, there are two fast ways to evaluate the integrand, 
using either a conditional or a marginal network: (1) a marginal network, 
q(m1,m2,λ1,λ2|d), directly provides an unnormalized estimate of the 
conditional evidence, p(d|m1,m2,λ1,λ2) (sufficient for model compari-
son, but not subject to our usual accuracy guarantees); or (2) a condi-
tional network, q(θ|d;m1,m2,λ1,λ2), provides the normalized conditional 
evidence via importance sampling (including accuracy guarantees). 
Option (1) allows 105 evaluations per second, whereas option (2) only 
allows 103, assuming 102 weighted samples per evaluation.

By combining (1) and (2), we can achieve speed and accuracy, using 
the marginal network (1) to define a proposal distribution for Monte 
Carlo integration with the integrand from (2). Specifically, the density 
of the marginal network, q(m1,m2,λ1,λ2|d), is evaluated on an (m1,m2) 
grid with λ λ m= ( )i i i

E . This provides a discretized estimate of the inte-
grand, p(d|m1, m2, λ1

E(m1), λ1
E(m2)), which we use as a proposal distri

bution for the integration in equation (12) when computing the 
integrand with the more accurate method (2). We tested this on 
GW170817 data using two polynomial EOS constraints, Eλ λ m= ( )  
(Extended Data Fig. 4), finding good sample efficiencies of around 50%, 
small uncertainties, σ ≈ 0.01plog ( | )Ed , and computation times of 1−3 s  
for the integral equation (12). Alternatively, the proposal could also  
be generated using a network, q(m1,m2|d), which additionally margin-
alizes over λi. Finally, for a parametric EOS, a DINGO-BNS network could 
be conditioned on EOS parameters, allowing for direct EOS inference. 
This variety of approaches emphasizes the flexibility of SBI for EOS 
inference.

Related work. Machine learning for GW astronomy is an active area 
of research55. Several studies have explored machine-learning infer-
ence for black hole mergers19,20,56–65. There have also been applications 
specific to BNS inference (Extended Data Table 1). The GW-SkyLocator 
algorithm66 estimates the sky position using the SNR time series (simi-
lar to BAYESTAR), whereas Jim33,35 uses hardware acceleration and 
machine learning to speed up conventional samplers and achieve 
full inference in 21–33 min. The i-nessai framework39 achieves BNS 
inference in 24 min by combining normalizing flows using impor-
tance nested sampling. Ref. 67 explores pre-merger BNS detection 
and parameter estimation with normalizing flows, also reporting 1-s 
analysis times. However, it has not demonstrated accurate results 
on real data, and is subject to several other limitations. SBI has also 
been used for neutron star EOS inference from GWs68 and electromag-
netic data69. Pre-merger localization with conventional techniques has  
been explored for ground-based third-generation detectors70–72 and 
for space-based detectors73,74.

Experimental details
For our experiments, we trained DINGO-BNS networks using the 
hyperparameters and neural architecture44,75 from ref. 19, with a few 
modifications. The embedding network consisted of a sequence of 
34 two-layer, fully-connected residual blocks with hidden dimensions 
of 2,048 (×8), 1,024 (×8), 512 (×6), 256 (×6) and 128 (×6) after the initial 
projection layer. Compared with ref. 19, this added ten new blocks, 
increasing the number of trainable parameters in this part of the embed-
ding network from 17 million to 91 million. For the LVK experiments, 
we used a dataset with 3 × 107 training samples and trained it for 200 
epochs. For the Cosmic Explorer experiments, we used 6 × 107 training 
samples and trained it for 100 epochs. Training took between 5 and  
7 days on one H100 GPU. We used three detectors for LVK (LIGO-Hanford, 
LIGO-Livingston and Virgo) and two detectors for Cosmic Explorer  
(primary detector at the location of LIGO-Hanford, secondary detector 
at the location of LIGO-Livingston). The networks were trained with the 
priors displayed in Extended Data Table 2. The DINGO-BNS network 
marginalized over the phase of coalescence, ϕc. During importance 
sampling, we reconstructed ϕc (ref. 20) (Extended Data Figs. 6a and 8) 
or used a phase-marginalized likelihood76,77 (in all other experiments). 



The phase reconstruction used here made the same assumptions as 
conventional phase marginalization76,77.

In the first experiment, we evaluated DINGO-BNS models on 200 
simulated GW datasets, generated using a fixed GW signal with 
GW170817-like parameters and simulated LVK detector noise. We used 
noise PSDs from the second (O2) and third (O3) LVK, observing runs 
as well as LVK design sensitivity. For each noise level, we trained one 
pre-merger network (f ∈ [23,200] Hz) and one network for inference 
with the full signal, including the merger (f ∈ [23,1024]). The latter 
network was only used for after-merger inference because we found 
that separation into two networks improved the performance. The 
pre-merger network was trained with frequency masking, the masking 
bound, fmax, being sampled in the range [28,200] Hz, enabling inference 
up to 60 s before the merger.

In the second experiment, we analysed 104 simulated GW datasets, 
with GW signal parameters randomly sampled from the prior (Extended 
Data Table 2), the M prior reduced to the range [1.0,1.5] M⊙ and the dL 
prior reweighted to a uniform distribution in the comoving volume, 
with design sensitivity noise PSDs. We again trained one pre-merger 
network (f ∈ [19.4,200] Hz) and one after-merger network (f ∈ [19.4, 
1,024] Hz). The pre-merger network was trained with frequency mask-
ing with the masking bound, fmax, sampled in the range [25,200] Hz, 
enabling inference up to 60 s before the merger for M ≤ 1.5 M⊙. Both 
networks were additionally trained with lower-frequency masking, 
with fmin(M) determined as explained above, ensuring an optimal fre-
quency range for any chirp mass. Following ref. 17, we only considered 
events with SNR ≥ 12. Before each analysis, we performed a tc scan by 
generating 2,500 samples for four time-shifted copies of the strain, 
followed by joint importance sampling of the combined results. Spe-
cifically, for a network with a tc prior U(−τ, τ), we applied the time shifts 
(−3τ, −τ, τ, 3τ), effectively increasing the prior to U(−4τ, 4τ). For the 
subsequent analysis, we time shifted the data such that the tc posterior 
was fully covered by the prior.

For each DINGO-BNS result, we generated a skymap using a kernel 
density estimator implemented by ligo.skymap78. For the sky localiza-
tion comparison between DINGO-BNS and BAYESTAR, we ran BAYESTAR  
based on the GW signal template generated with the maximum like-
lihood parameters from the DINGO-BNS analysis. We noted that 
BAYESTAR was designed as a low-latency pipeline and typically run 
with (coarser) parameter estimates from search templates. Therefore, 
the reported BAYESTAR runs may deviate slightly from the realistic 
LVK setup. However, our results are consistent with those of ref. 17, 
which also had an approximately 30% precision improvement over 
BAYESTAR localization (using LVK search triggers). Both DINGO-BNS 
and ref. 17 performed full Bayesian BNS inference and should there-
fore have had identical localization improvements over BAYESTAR 
(assuming ideal accuracy, which for DINGO-BNS was validated with 
consistently high importance sampling efficiency). Differences to 
the localization comparison in ref. 17 are thus primarily attributed to 
different configurations for BAYESTAR and slightly different injection 
priors. Additional results for the localization comparison are shown 
in Extended Data Fig. 5. A probability–probability (P–P) plot for the 
after-merger analysis is shown in Extended Data Fig. 6a, which shows 
no significant bias for any parameter.

In the third experiment, we reproduced the public LVK results for 
GW170817 (refs. 1,5) and GW190425 (ref. 79) with DINGO-BNS. We used 
the same priors and data settings as the LVK, but we did not marginalize 
over calibration uncertainty. The GW170817 after-merger analysis (see 
also Extended Data Fig. 7) was performed with a DINGO-BNS model 
conditioned on the sky position, {α,β}. Following the LVK analysis5, 
we used the localization α = 3.44616 rad and δ = −0.408084 rad from 
the electromagnetic counterpart AT 2017gfo (ref. 8) at inference. Note 
that the localization uncertainty (σα = 10−6 rad, σδ = 10−6 rad (ref. 8)) 
was negligible for GW parameter estimation, but such effects could, 
in principle, be integrated by convolving the conditional DINGO-BNS 

network with a distribution over {α,β}. We found good sample efficien-
cies for both events (10.8% for GW170817 and 51.3% for GW190425) and 
good agreement with the LVK results (Extended Data Fig. 6b). The LVK 
results used detector noise PSDs generated with BayesWave36, which 
were not available before the merger. For our pre-merger analysis of 
GW170817 in the main part (sample efficiency 78.9%), we thus used a 
PSD generated using the Welch method. The GW170817 signal over-
lapped with a loud glitch in the LIGO-Livingston detector1, and we used 
the glitch-subtracted data provided by the LVK in our analyses. Because 
such data would not be available before the merger, the pre-merger 
inference of BNS events overlapping with glitches would, in practice, 
also require fast glitch mitigation methods.

In the fourth experiment, we analysed simulated Cosmic Explorer 
data using the anticipated noise PSDs for the primary and secondary 
detectors. We trained a DINGO-BNS network for pre-merger inference 
using  f ∈ [6,11] Hz, with the upper frequency masking bound, fmax, sam-
pled in the range [7,11] Hz. This supported a signal length of 4,096 s, with 
a pre-merger inference between 45 and 15 min before the merger. We 
injected signals with GW170817-like parameters for distance, masses 
and inclination to investigate how well a GW170817-like event could be 
localized in the Cosmic Explorer detector. We also trained a network on 
the full frequency range, [6, 1,024] Hz, for after-merger inference, with 
a reduced distance prior to control the SNR (Extended Data Table 2).

Sample efficiencies. We report sample efficiencies for all injection 
studies in Extended Data Fig. 6. The importance-sampled DINGO-BNS 
results are accurate, even with low efficiency, provided that a sufficient 
absolute number of effective samples can be generated. The efficiency 
nevertheless is a valuable diagnostic for assessing the performance of 
the trained inference networks.

In the LVK experiments, we found consistently high efficiencies, 
comparable to or greater than those reported for BBHs20. As a general 
trend, we observed that higher noise levels (Extended Data Fig. 6c) 
and earlier pre-merger times (Extended Data Fig. 6d) led to higher 
efficiencies. This is because low SNR events generally have broader 
posteriors, which are simpler to model for DINGO-BNS density estima-
tors. Furthermore, the GW signal morphology is most complicated 
around the merger, making pre-merger inference much simpler than 
inference based on the full signal.

For Cosmic Explorer injections with GW170817-like parameters 
(Extended Data Fig. 6e), DINGO-BNS achieved extremely high efficiency 
for early pre-merger analyses, but the performance decreased substan-
tially for later analysis times. This effect can again be attributed to the 
increase in SNR, which was O(103) 15 min before the merger. Improving 
DINGO-BNS for such high SNR events will probably require improved 
density estimators64 that can better deal with tighter posteriors. When 
limiting the SNR by increasing the distance prior (Extended Data 
Table 2), we found good sample efficiencies for an after-merger Cosmic  
Explorer analysis that used the full 4,096-s-long signal (Extended Data 
Fig. 6e).

Inference times. The computational cost of inference with DINGO-BNS 
is dominated by: (1) neural-network forward passes to sample from  
the approximate posterior, ∣ MMθ θ dq~ ( , )



; and (2) likelihood evalu
ations, p(θ|d), used for importance sampling. For 50,000 samples on 
an H100 GPU, (1) takes around 0.370 s and (2) takes around 0.190 s, 
resulting in an inference time of less than 0.6 s. The speed of the likeli-
hood evaluations is enabled by using JAX waveform and likelihood 
implementations33–35, combined with the heterodyning and multiband-
ing step that we also used to compress the data for the DINGO-BNS 
network. We extend the open-source implementations34,35 by combin-
ing NRTidalv1 (refs. 32,80) with IMRPhenomPv2 (refs. 81–83), as well 
as re-implementing the DINGO likelihood functions in JAX. The JAX 
functions are usually just-in-time compiled to run efficiently. The input 
dimension of the likelihood (determined by likelihood batch size and 
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number of frequency bins) is fixed, enabling compilation ahead of time 
on random data of the correct input dimension. After compilation, a 
running DINGO-BNS script can perform any number of analyses with-
out recompiling. Thus, we can leave the compilation time (18 s) out of 
the timing estimate for importance sampling. Compilation could fur-
ther be transferred between separate DINGO-BNS runs using the per-
sistent compilation cache in JAX, although we have not implemented 
this option. Likelihood evaluations can also be done without JAX, which 
takes less than 10 s on a single node with 64 CPUs for 50,000 samples. 
For the vast majority of DINGO-BNS analyses in this study, the sample 
efficiency was sufficiently high such that 50,000 samples correspon
ded to several thousands of effective samples after importance sam-
pling, enabling full importance sampling inference in less than 1 s.

Additional sources of latency. The inference times quoted above 
assume that the data have already been provided to DINGO-BNS. In 
practice, there are various additional sources of latency.

First, PSD estimation typically uses strain data taken during or after 
the merger. Obtaining low-latency PSDs represents a general chal-
lenge for low-latency analyses, encountered also in the field of GW 
searches14,53. Indeed, most PSDs used in this work would not be available 
in very low latency—the GW170817 and GW190425 PSDs from the LVK 
analyses5,79 use on-source noise estimation36 based on data during the 
merger, whereas LVK design sensitivity and Cosmic Explorer PSDs are 
not based on real detector noise, but rather reflect anticipated future 
configurations. These PSDs were chosen for comparability with existing 
studies. To test DINGO-BNS in a more realistic low-latency setting, we 
performed inference with PSDs estimated using Welch’s method84 and 
only data from before the merger (Extended Data Fig. 8). The result-
ing posterior for GW170817 only deviated slightly from the posterior 
obtained from the on-source PSDs. However, we note that, in general, 
such pre-merger Welch PSDs may be less reliable in the presence of 
non-stationary detector noise, which could lead to larger biases for 
parameter estimation.

Strain data can also be contaminated with instrumental or environ-
mental glitches, which need to be removed for parameter estimation85. 
This adds additional latency for events that overlap with glitches, as 
noted above in the case of GW170817. Finally, data transfer between 
detectors and computing facilities add some additional latency. Using 
DINGO-BNS to its full potential will therefore require careful integra-
tion with low-latency pipelines23 and further acceleration of existing 
components.

PSD tuning. Although most of the networks used in this study were 
trained with only a single PSD per detector, in practice we would gen-
erally train DINGO-BNS with an entire distribution of PSDs to enable 
instant tuning to drifting detector noise19. (This is not relevant to 
tests involving, for example, design sensitivity noise.) Of the experi-
ments in this study, only the pre-merger result of GW170817 and the 
result for the Welch PSD (Extended Data Fig. 8) were generated with a 
PSD-conditioned DINGO-BNS network. This network was trained with 
a PSD distribution covering the entire second LVK observing run (O2). 
Conditioning on the PSD makes the inference task more complicated 
and therefore leads to slightly reduced performance. For example, 
when repeating the first injection experiment (Extended Data Fig. 6c) 
with the PSD-conditioned DINGO-BNS network from above, the mean 
efficiency was reduced from 71% to 22%. Such networks can, in principle, 
also be trained before the start of an observing run, by training with a 
synthetic dataset designed to reflect the expected noise PSDs86.

Data availability
Public LVK data is available at https://gwosc.org/events/GW170817/ 
for GW170817 and at https://dcc.ligo.org/LIGO-T1900685/public for 
GW190425.

Code availability
The code for DINGO-BNS is publicly available as an extension of 
the DINGO python package at https://github.com/dingo-gw/dingo.  
We provide a demo at https://github.com/dingo-gw/binary-neutron- 
star-demo and a trained network via Zenodo at https://zenodo.org/
records/13321251 (ref. 88).
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Extended Data Fig. 1 | DINGO-BNS scan estimates the chirp mass and 
merger time. (a) Log likelihoods generated from a scan over different values of 
M with a DINGO-BNS network. The final M is chosen as the maximum likelihood 
M (red line; M = 1.1975 M⊙ for GW170817, M = 1.4868 M⊙ for GW190425).  

(b) Posterior marginal p(M|d). The prior (dashed lines) determined by the  
scan from (a) fully covers the marginal. (c) A combined scan over M and tc 
successfully identifies GW170817 (with t̂c = 1187008882.43) and GW190425 
(with t̂c = 1240215503.04).



Extended Data Fig. 2 | Frequency multibanding. (a) The period of 
(heterodyned) GW signals decreases with increasing frequency. The native 
frequency resolution (blue) thus oversamples the signal at high frequencies. 
Frequency multibanding (band boundaries indicated by dotted red lines) 
adapts to the signal variation, decreasing the resolution at higher frequencies 
(orange). (b) The multibanded domain therefore requires fewer frequency bins, 
and the signal variation is more homogeneous across bins. (c) Multibanded 

frequency domain partitions for LVK ( fmin = 19.4 Hz, compression factor ≈60) 
and CE ( fmin = 5 Hz, compression factor ≈650) experiments. We use a smaller 
chirp mass prior for the CE experiments (Extended Data Table 2), which allows a 
slightly coarser resolution compared to LVK (corresponding to lower f̂i). The 
first two bands for CE are skipped entirely, which is a consequence of the 
reduced signal variation with heterodyning.
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Extended Data Fig. 3 | Time-domain truncation of BNS signals. Truncation at 
time tmax (red dashed line) before the merger can be approximated by truncation 
at a corresponding maximum frequency (red solid line) in frequency domain. 
Below frequency fmax(t, M), the truncated signal (blue in center panel) matches 
the original signal (gray). Above fmax(t, M), the amplitude of the truncated  
signal quickly approaches zero. We determine fmax(t, M) empirically, by allowing 
mismatches between truncated and original signals of at most 10−3 (lower 
panel). Analogously, truncation for t < tmin can be achieved by imposing a 
minimum frequency cutoff fmin(t, M).



Extended Data Fig. 4 | Neutron-star equation-of-state likelihood. 
Neutron-star EOS imply a functional relation λi = λi(mi) between tidal 
parameters λi and component masses mi. The likelihood p(d|E) for an EOS  
E  given the GW data d requires integrating the posterior p(θ|d) along the 
corresponding hyperplane. No posterior samples (gray) will be exactly on  
such hyperplanes (coloured lines), hence the standard Bayesian inference 
techniques are not directly applicable87. DINGO-BNS provides various 
possibilities to directly compute this quantity, enabling comparison of 
different EOS in terms of the Bayes factors B.
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Extended Data Fig. 5 | Localization comparison between BAYESTAR and 
DINGO-BNS. We evaluate the 90% credible area and the searched area. The 
boxplots display the medians (percentage changes indicated), quartiles and 

10th/90th percentiles. The comparisons according to SNR are based only on 
results after the merger.



Extended Data Fig. 6 | DINGO-BNS performance tests. (a) P-P plot for  
1000 simulated GW datasets. For each simulation and parameter, we compute 
the percentile p of the injected parameter under the corresponding one- 
dimensional marginal posterior inferred with DINGO-BNS. The plot shows the 
cumulative distribution function (CDF) of p. For an unbiased sampler we expect 
CDF(p) = p within statistical uncertainties. Gray bands indicate confidence 
intervals corresponding to one, two and three standard deviations. The legend 
displays the p-value for each parameter, the combined p-value is 0.37. The GW 
datasets for this plot are generated with the settings from the after-merger 
analysis of the second experiment, except for the luminosity distance prior, 

which for this statistical test needs to be set to follow the uniform training  
prior (Extended Data Table 2). (b) Posterior for GW190425. 2D marginals are 
displayed in terms of 50% and 90% credible regions. For the 1D marginals, the 
deviation between the two results is quantified in terms of the Jensen–Shannon 
divergence (numbers on the diagonal). DINGO-BNS shows good agreement 
with the public LVK result79. (c)–(e) Sample efficiencies for DINGO-BNS, for (c) 
GW170817-like injections using different detector noise levels, (d) injections 
using LVK design sensitivity PSDs and (e) injections using CE PSDs. Panel b 
adapted from ref. 79 under a Creative Commons licence CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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Extended Data Fig. 7 | Extended posterior for GW170817. The corner plot 
compares the DINGO-BNS result from the main text (orange) with the LVK result 
(black)5. 2D marginals are displayed in terms of 50% and 90% credible regions. 
For the 1D marginals, the deviation between the two results is quantified in 
terms of the Jensen–Shannon divergence (numbers on the diagonal). For the 

definition of the parameters see Extended Data Table 2. The small deviations 
between the results could be a consequence of the marignalization over 
detector calibration uncertainties in the LVK result, which is not applied with 
DINGO-BNS.



Extended Data Fig. 8 | GW170817 posterior with different PSDs. The corner 
plot displays DINGO-BNS inference results using the BayesWave PSD (orange) 
from the LVK analysis and a Welch PSD (blue). 2D marginals are displayed in 
terms of 50% and 90% credible regions. For the 1D marginals, the deviation 
between the two results is quantified in terms of the Jensen–Shannon 
divergence (numbers on the diagonal). For the definition of the parameters  
see Extended Data Table 2. The Welch PSD is estimated based on strain data 

taken 1184 to 160 s before the BNS merger (using 128 segments of length eight 
seconds and subsequent upsampling to the desired resolution ∆f = 1/128 Hz), 
and is thus available in low latency for pre-merger analysis. The DINGO-BNS 
network for the Welch analysis is trained with a distribution of Welch PSDs 
covering the entire second LVK observing run, and tuned to the GW170817 
PSDs via network conditioning19.
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Extended Data Table 1 | Comparison of fast methods for BNS inference

The four methods in the lower block all perform full parameter estimation and their accuracy on real data has been validated by comparison against established samplers.



Extended Data Table 2 | Training priors

Parameters include chirp mass M, component masses m1,2, spin magnitudes a1,2, tidal 
deformabilities λ1,2, luminosity distance dL and merger time tc. All priors are uniform, except  
for chirp mass, which is sampled uniform in component masses. At inference, dL can be 
reweighted to the standard prior (uniform in comoving volume). For tc we use a broader prior 
for pre-merger inference than for full inference (separated by “/” symbol) to account for higher 
uncertainties. We have verified that the tc priors are sufficiently broad for the data analyzed 
here, although broader priors may be required for analyzing events with lower SNR or earlier 
pre-merger times. LVK priors are chosen to cover expected LVK BNS detections. CE priors for 
M and dL are reduced compared to LVK to decrease the computational cost of training. Priors 
for parameters not displayed here (sky position (α,δ), spin angles (θ1,θ2,Φ12,ΦJL), inclination θJN, 
polarization angle ψ and reference phase Φc) are standard. The prior for mass ratio q is 
determined via the priors for M and m1,2.
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