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Abstract: There has been a growth of collaborative robots in Industry 5.0 due to the
research in automation involving human-centric workplace design. It has had a substantial
impact on industrial processes; however, physical exertion in human workers is still
an issue, requiring solutions that combine technological innovation with human-centric
development. By analysing real-world data, machine learning (ML) models can detect
physical fatigue. However, sensor-based data collection is frequently used, which is often
expensive and constrained. To overcome this gap, synthetic data generation (SDG) uses
methods such as tabular generative adversarial networks (GANs) to produce statistically
realistic datasets that improve machine learning model training while providing scalability
and cost-effectiveness. This study presents an innovative approach utilising conditional
GAN with auxiliary conditioning to generate synthetic datasets with essential features
for detecting human physical fatigue in industrial scenarios. This approach allows us
to enhance the SDG process by effectively handling the heterogeneous and imbalanced
nature of human fatigue data, which includes tabular, categorical, and time-series data
points. These generated datasets will be used to train specialised ML models, such as
ensemble models, to learn from the original dataset from the extracted feature and then
identify signs of physical fatigue. The trained ML model will undergo rigorous testing
using authentic, real-world data to evaluate its sensitivity and specificity in recognising
how closely generated data match with actual human physical fatigue within industrial
settings. This research aims to provide researchers with an innovative method to tackle
data-driven ML challenges of data scarcity and further enhance ML technology’s efficiency
through training on SD. This study not only provides an approach to create complex
realistic datasets but also helps in bridging the gap of Industry 5.0 data challenges for the
purpose of innovations and worker well-being by improving detection capabilities.

Keywords: synthetic data generation (SDG); conditional GAN; human physical fatigue
detection; machine learning (ML) models; Industry 5.0; industrial processes

1. Introduction
Over the decades, researchers have extensively studied fatigue, commonly described

as a decline in mental and physical body strength due to factors such as mental stress, phys-
ical exertion, circadian rhythm disruption, and illness [1]. However, even with extensive
research, no universally accepted definition of fatigue exists, and it varies according to
its application and the researcher’s understanding. The main obstacles to a single defini-
tion include its multidimensional nature, the interaction of numerous variables (including
confounding factors), and the often subjective nature of fatigue [2].
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The Industrial Revolution 5.0 (I5.0) has ushered in an era of advanced intelligent agent
systems, sensing devices, and automation. Increased automation has led to the widespread
adoption of robotic systems and virtual assistance in manufacturing and warehousing
operations. This new era emphasises the role of highly skilled individuals who benefit from
technological advancements [3]. Consequently, human-in-the-loop technology has evolved,
leading to the rapid development of collaborative robots (cobots). Although automation
has reached new heights in industries such as aeronautics, medical and pharmaceuticals,
and manufacturing, it still involves highly fatiguing tasks [4]. Workplace fatigue is a
multifaceted issue that significantly impacts worker productivity. Even though cobots are
designed to alleviate human workload and enhance performance, the repetitive physically
demanding daily tasks contribute to fatigue. Addressing occupational fatigue is vital to
overcome the consequences on health and safety which range from short to long term.

To address human fatigue, ML has emerged as one of the promising approaches by
researchers to comprehend physical fatigue’s development in an individual [5,6]. This
approach involves leveraging ML algorithms to discover and observe various patterns in
fatigue-related data. These patterns are derived from several physiological, behavioural
and demographic parameters of an individual.

ML provides the ability for intelligent systems to autonomously handle activities,
driving forward the industrial revolution. By leveraging high-performing computing,
modern modelling, and simulations, ML has become a crucial tool for managing and
analysing vast amounts of data [7]. However, it is crucial to acknowledge that machine
learning does not always solve problems or provide the best solutions [8]. Despite artificial
intelligence’s golden era, there are still many challenges in the development and application
of machine learning technology [9]. As the field continues to progress, overcoming the
challenges which are stated below will be vital to fully realise machine learning’s potential
and its transformative effects across various industries. ML models substantially depend
on the quality of data for training, validating, and testing models as it plays a crucial role
in determining the performance and effectiveness of the model [10]. However, obtaining
human physical and behavioural data in an occupational setting for machine learning
algorithms can have several challenges such as how intrusive are sensors, comfort, human
cooperation for the full length of the experiment, etc. The process of data collection and
annotation is both time-consuming and expensive [11], leading to several issues. Since ML
is significantly dependent on data, some of the primary issues it faces include:

Data Quality: Ensuring high-quality data is a significant challenge for machine learn-
ing professionals. Poor-quality data can result in incorrect predictions due to confusion
and misinterpretation [12]. Data Limitations: A significant part of the modern AI problem
is the lack of sufficient data: either there are too few available datasets or manual labelling
is prohibitively expensive [13,14]. Data Privacy and Equality: Many datasets cannot be
publicly released due to privacy and fairness concerns. In such cases, generating synthetic
data can be very beneficial [8,15].

Addressing these challenges will be critical to unlocking machine learning’s full poten-
tial and its transformative impact on various industries. This paper aims to investigate the
intricacy of fatigue-related data by considering its multidimensional nature and subjective
analysis. By emphasising the importance of synthetic data generation this research seeks to
better comprehend fatigue and to develop interventions.

In response, this paper explores the generation of synthetic tabular data and human
physical fatigue datasets, addressing inherent challenges. Generally, synthetic data are
defined as artificially interpreted information generated by computer algorithms or simula-
tions which replicate real-world data [15]. In many situations, SDG is unavoidable when
real-life data are either unobtainable or must be kept private due to privacy risks [16–18].
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This technology is widely used in several sectors, including healthcare, business, manufac-
turing, and agriculture, with demand increasing exponentially [14].

It acknowledges the advantages of synthetic data, emphasising cost-efficiency and
ethical considerations while recognising challenges such as complexity preservation and
the need for discipline-specific knowledge. In this paper, Methodology Section 3 introduces
a deep learning conditional generative model for synthetic tabular data generation, which
trains the data with the conditions applied, emphasising statistical likeliness and personal
data safeguarding. The section also sheds light on the steps involved in preprocessing for
compatibility, handling missing values, feature generation, and scaling. Keeping in mind
the issues with collecting real-world human physical fatigue data and the benefits of SDG,
this research explores the possibilities. Hence, related studies Section 2 examines notable
studies conducted for SDG in the medical and finance sectors.

2. Related Studies
The Introduction provides a glimpse into the challenges of human fatigue detection,

which relies on wearable sensors and ML to monitor physiological signs. It is important
to highlight that ML requires vast, high-quality datasets, which are costly and difficult
to obtain [19]. However, it is vital to consider the challenges that come along with it,
e.g., privacy concerns, limited data access, etc. Addressing these issues can improve the
reliability and effectiveness of fatigue detection. This is the stage at which SDG can be
employed to overcome these challenges [20].

Synthetic data generation (SDG) definitions and relevance: SDG is a promising substitute
for obtaining popularity. These techniques generate fictional datasets that replicate real-
world data statistics [21]. The development of synthetic data holds promise in overcoming
constraints linked to the conventional use of real data, providing avenues for the advance-
ment of approaches for detecting physical fatigue in humans. Synthetic data are defined as
data artificially generated by employing a model designed to replicate real data based on
their distributions, such as shape, variance, and structure, including correlations among
attributes [22]. Additionally, before being implemented, SDG techniques must be evalu-
ated for anonymity, similarities (quality of SD representation of real data), effectiveness
(practicality of statistical inferences from SD or results from SD-trained ML models), and
performance parameters (size, generation time, and computational resources) [23].

Different generative models: Regarding generating synthetic datasets, the generative
adversarial network (GAN) model has gained significant popularity among researchers,
emerging as an optimistic alternative technique to address the need. GANs are renowned
for their capability to produce diverse statistically realistic multimodal and multidimen-
sional datasets [15]. Recent studies, such as Al-Qerem et al. [24], have demonstrated the
effectiveness of combining GAN models with the recursive feature elimination (RFE) tech-
nique to enhance SDG for multidimensional imbalanced datasets. Furthermore, Saravana
Kumar’s investigative approach in 2017 meticulously examined several GAN models to
evaluate their performance. Empirical evidence from this comparative analysis highlighted
the superior efficacy of the PATECTGAN and CTGAN models [25].

SDG in the healthcare domain: The utilisation of SDG has primarily been undertaken
in the context of medical-related data [8,23,26,27]. This preference is driven by the inher-
ently multidimensional, discrete, and multimodal characteristics of medical data, which
frequently present significant imbalances as well as privacy preservation concerns. One of
the studies aimed at SDG through existing medical datasets for improving the prediction of
fluid consumed by patients in ICUs. In this study, four machine learning algorithms were
developed and trained using both original and synthetic datasets, leading to enhanced
model performance [28]. For example, the study addresses the challenges associated with
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applying machine learning to medical and cancer research by using the SMOTE algorithm
for SDG. SMOTE has limitations as it is not suitable for categorial data and fatigue data
are heterogeneous, including categorial data. Our approach attempts to overcome these
challenges. Furthermore, authors of another study systematically examined three cate-
gories of synthetic data generation techniques. They employ various metrics to evaluate
the quality of the datasets generated, which are derived from publicly accessible cancer
registry data [29]. The findings indicate that synthetic data can effectively mitigate common
obstacles in medical research, thus supporting the broader application of machine learning
in this field.

SDG in different occupational data: Addressing these challenges, synthetic data gener-
ation has the potential to advance medical research and significantly improve predictive
modelling in healthcare. However, minimal research has been focused on generating data
related to human physical fatigue. As aforementioned, they are inherently multidimen-
sional and highly subjective. One study conducted by Lacasa et al. [30] explored SDG
techniques for treating chronic fatigue through a questionnaire dataset. This research
highlighted the potential benefits of using synthetic data in this specific medical context,
and it created different questionnaires for subjective analysis. Researchers attempted to
apply synthetic data generation within an industrial setting in a more recent study. They
aimed to generate synthetic data through RGB image creation for human–object interaction
scenarios [31]. Despite these efforts, the limitations of synthetic data generation are evident.
Current research predominantly focuses on image generation, neglecting the challenges
associated with tabular, structured, and categorical datasets. Although an attempt was
made to investigate and predict lower limb kinetics and kinematics during gait, Mundt
et al. [32] combined experimentally recorded IMU data from a smaller subject cohort with
simulated archived IMU data from a MOCAP database. Although it did not improve
joint kinetics predictions, adding the simulated data to the training set decreased the root
mean square error in estimating joint kinematics. It demonstrates that the standalone
model is incapable of improving ML modelling. In our approach, we are using a diffusing
model. In recent years, researchers have tried to adapt an alternative approach with a
new principle of generative models, namely diffusion models [33]. They are mainly used
for image generation or handling computer-vision-type data points [34]. However, they
do have some limitations like computation burden and low speed due to the number of
steps involved. This gap illustrates the scarcity of available datasets and the absence of
comprehensive multimodal fatigue synthetic/fake datasets for industrial scenarios. Such
datasets are crucial for training data-intensive models, including deep learning models.

The lack of research in this area underscores the need for more comprehensive ap-
proaches to synthetic data generation that address structured, multimodal, and multidimen-
sional heterogeneous data challenges. Developing effective synthetic datasets for human
fatigue can support the creation of robust predictive models, thereby enhancing safety,
performance, and overall well-being in various industrial contexts. Expanding the scope
of synthetic data generation to include diverse and complex datasets will be essential for
advancing the application of machine learning in understanding and mitigating human
physical fatigue. This paper presents a comprehensive methodology that utilises deep
learning techniques to generate synthetic realistic tabular data, effectively addressing the
challenges. The proposed approach leverages advanced deep machine learning algorithms
to simulate data to closely mimic the individual characteristics and distributions of real
tabular data. By focusing on tabular data, which are often used in various applications
across industries, this methodology aims to overcome common obstacles such as data
scarcity, imbalance, and privacy concerns. The robust nature of this approach ensures that
the generated datasets are not only accurate and reliable but also versatile enough to be
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applied in diverse scenarios, enhancing the potential for research and development in fields
that require premium quality data for training ML models.

3. Methodology
This section is organised into subheadings that detail the methodology employed

for generating synthetic data using a deep learning model. It offers clear and precise
descriptions of the methodology, the preprocessing procedures, and the evaluation methods,
providing an overview of the entire process to be utilised.

3.1. Synthetic Data Generation Framework

Figure 1 demonstrates the general structure employed to generate human physical
synthetic fatigue datasets. This framework depicts GAN deep learning models utilised for
synthetic data generation (SDG). Central to our methodology is the generative adversarial
network (GAN) architecture, which consists of two main components, a generator model
for generating and a discriminator model for evaluating the generated data. The primary
GAN models used in this study are the conditional GAN and tabular LSTM GAN. These
adversarial networks were selected due to their ability to train generator GANs using
conditional vectors, effectively addressing challenges related to controlling generated
data and managing imbalanced, multimodal, and multidimensional tabular data [24]. The
generator model’s capability is enhanced to produce realistic statistical tabular data, thereby
stabilising ML model training and improving its accuracy. The training procedure involves
preprocessing raw data, feature generation and selection, hyperparameter optimisation,
regularisation techniques, and continuous convergence monitoring by utilising the models,
as depicted in Figure 1.
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The generator model uses a fixed-length random conditional and noise vector which
are drawn from multivariate normal distributions for generating samples within specified
conditions. This vector serves as the seed for the conditional vector provided to the
generative process, establishing a compressed representation and a latent space containing
latent variables critical for the domain. On the contrary, the discriminator evaluates how
authentic are generated examples, distinguishing between actual and generated data.
After training, the generator, having effectively developed feature selection capabilities,
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can repurpose its feature selection from the input data by updating weights from the
discriminator’s input.

Figure 2 presents the architecture utilised for producing the SDG with the tabular
LSTM GAN. As shown in Figure 2, it uses a similar principle as mentioned above in the
conditional GAN except for the changes found in the working. The tabular LSTM model
also uses a generator and discriminator model except it is inspired by the original LSTM
architecture which uses different layers to generate synthetic data. In this model approach
it uses an input layer which is fed with noise, a conditional vector, and real data to learn
from. This is then supplied to the input layers with different activation functions such as
‘ReLU’ and these hidden layers then produce the SD and then supply it to the discriminator.
The discriminator also contains similar layers which then assign weight and classify the
generated sample with the original data and then automatically update the weight until
a realistic SD is generated. Both the conditional GAN and LSTM GAN are trained and
evaluated on similar principles.
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We employed principal component analysis (PCA) scatter plots, field distribution
stability, and distribution density analysis to quantitatively evaluate the performance of
the generated synthetic data. These metrics include similar indices to assess the dataset
diversity and similarity between synthetic and original datasets. Additionally, various
classifiers, such as wrappers, filters, and ensemble models, were used to classify fatigue
and non-fatigue states through training on synthetic data and evaluating original data,
demonstrating improvements achieved through synthetic data. Therefore, this study
advocates using SDG to address ML model data challenges.

3.2. Model Training for Synthetic Data Generation
3.2.1. Data Gathering for Synthetic Data Generation (SDG)

The initial phase of our study involves the meticulous acquisition of relevant data
necessary for SDG. These data are vital for two purposes: (a) testing the generated synthetic
data; (b) training the machine learning model on a combination of real and synthetic
datasets. For this research, we sourced data from open-source repositories with a specific
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focus on detecting human physical fatigue [35]. The data collection involved multiple
modalities, including electromyography (EMG), inertial measurement units (IMUs), and
photoplethysmography (PPG). Additionally, self-reported assessments were conducted
using the Borg Rating of Perceived Exertion and the Karolinska Sleepiness Scale. These
were supplemented by demographic information, anthropometric measurements, and
maximum voluntary isometric contraction (MVIC) force measurements.

However, for the scope of this study, we concentrated on utilising EMG, IMU, and
Borg test data. EMG data provide insights into muscle activity, IMU data capture motion
and orientation, and Borg test data offer subjective assessments of exertion levels. This
multifaceted approach ensures a comprehensive understanding of physical fatigue.

The dataset includes six datasets for six different activities specifically chosen to
reflect various physical exertion scenarios. These activities comprise three internal (IR)
and three external (ER) shoulder and hand movements, performed at different flexion
levels: 30–40% (T1IR, T4ER), 40–50% (T2IR, T4ER), and 50–60% (T3IR, T6ER), where ‘T’
represents a task [20]. These particular movements were selected to mimic a wide range of
physical exertion activities, thereby representing a diverse industrial workforce [35]. The
data capture a broad spectrum of exertion levels by incorporating these specific activities,
ensuring their applicability to real-world industrial settings.

This thorough data collection process provided a robust foundation for training and
testing our machine learning models. The detailed raw data from EMG, IMU, and Borg
assessments allow for the creation of synthetic datasets that closely mimic real-world
conditions. Consequently, this enhances the reliability and validity of our models in
detecting and analysing human physical fatigue in various industrial contexts.

3.2.2. Data Preparations for SDG

SDG’s next step includes data preparation. In order to manage any errors within the
datasets, techniques such as handling missing values, normalisations, etc. are employed.
The general process for the data preparation is shown in Figure 3.
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Raw Sensor Data Preprocessing: The initial phase of our methodology involves the
meticulous cleaning and analysis of raw sensor data to ensure their accuracy and integrity.
Biomechanical and physiological sensor data undergo several essential cleaning steps.
Firstly, a low-pass filter is applied to the EMG and IMU data to remove noise. Subsequently,
the cleaned data are visualised to identify and rectify any additional erroneous data that
automated filtering might have missed, such as faulty sensor values that are excessively
high or low and participants who did not experience fatigue according to their subjective
fatigue ratings. The next step involves synchronising data from different sensors, ensuring
temporal alignment, and eliminating observations captured outside the experimental
window. Although the data in this study were already synchronised, this step is crucial
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for other researchers. Finally, the normalisation of EMG and IMU data is performed to
standardise the data, facilitating accurate analysis and comparison. This comprehensive
data preprocessing ensures the robustness and reliability of the datasets used in subsequent
study phases.

Feature Extraction: A critical step in sensor data analysis, as it allows for identifying
and utilising relevant data characteristics that enhance the performance of machine learning
models. The features extracted in this study are chosen based on their computational
efficiency and proven effectiveness in previous research. Table 1 gives a brief presentation
of the features extracted [36,37].

Table 1. The features extracted from EMG and IMU sensors.

Sensor Feature Type Features

EMG

Time Domain

Mean Absolute Value (MAV)
Root Mean Square (RMS)

Zero Crossing (ZC)
Slope Sign Changes (SSC)
Waveform Length (WL)

Variance
Integrated EMG (IEMG)

Frequency Domain
Fast Fourier Transform (FFT)

Mean Frequency (MNF)
Median Frequency (MDF)

IMU Statistical

Mean
Standard Deviation

Max–Min
Range
MAD
RMS

For electromyography (EMG) data, two types of features are extracted: time-domain
features and frequency-domain features. Time-domain features include the mean absolute
value (MAV), root mean square (RMS), zero crossing (ZC), slope sign changes (SSC),
waveform length (WL), variance, and integrated EMG (IEMG). These features provide
valuable insights into the signal’s amplitude and temporal characteristics. Frequency-
domain features are extracted using the fast Fourier transform (FFT) and include mean
frequency (MNF) and median frequency (MDF). These features capture the signal’s spectral
content, offering a perspective complementary to the time-domain features.

For inertial measurement unit (IMU) data, the extracted features include the mean,
standard deviation, maximum and minimum values, range, mean absolute deviation
(MAD), and root mean square (RMS). These features are selected for their ability to suc-
cinctly represent the distribution and variability of the IMU signals, which are critical for
assessing movement and orientation.

Feature Selection and Dimension Reduction: In this study, multiple features will
be extracted during the feature extraction steps, utilising features that summarise the
profiles based on non-overlapping time windows from 34 subjects. The selection of the
time window length should depend on (a) the task cycle length, (b) the impact of fatigue
on workers and production, and (c) balancing the trade-off between false alarms and early
detection [38]. The computational complexity of training an ML model rises when the
number of potential features is too many. Therefore, feature reduction becomes necessary
to decrease computational complexity and, thus, enhance prediction performance and
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improve generalisation capability. The ultimate aim of the proposed framework is to
diagnose fatigue and recommend appropriate interventions.

We employ a two-step approach based on Blum and Langley [39] for feature selection
and reduction. A correlation analysis is conducted to remove features that do not change
between fatigued and non-fatigued states. Subsequently, we apply various wrapper and
embedded methods to select the best-performing features. We use support vector machines
(SVM), logistic regression, and neural networks in the wrapper method. In the embedded
method, we utilise LASSO and random forest algorithms. Random forests provided the
most effective feature selection and dimension reduction among these. Preference was
given to techniques that yielded fewer, more interpretable features with high prediction
performance and low false alarm rates. This process led to the selection of 50 features across
six datasets, forming the basis for synthetic data generation (SDG) in a tabular format.

3.2.3. Model Training for SDG

Following data preparation, the subsequent step involves training the selected models,
specifically the conditional GAN. Although their training methodologies are similar, each
model has distinctive characteristics. For example, a 2-layer LSTM generator makes up
the framework of the conditional GAN, while a 4-layer perception (MLP) with various
optimisers and activation functions serves as the discriminator. To avoid overfitting,
dropout layers are introduced into both the generator model and the discriminator model
through multiple epoch training.

The GAN training process with conditions necessitates a more supervised environ-
ment beyond the standard training algorithm, as seen in Figure 4. This is achieved by
finding a random sample from the real dataset and looping through each epoch training.
Adversarial training is employed for both models to train various generator and discrimi-
nator models. Additionally, optimisation strategies are explored to enhance the efficiency
of the GAN process.
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The process of generating synthetic data using a deep learning conditional GAN
modelling technique involves several steps, as depicted in the provided diagram (Figure 1).
Initially, the procedure begins with the input to the generator, which includes three main
components: a noise vector, a conditional vector, and real data for training. The noise vector
is a randomly generated seed that initiates the generative process, providing the necessary
randomness for data generation. The conditional vector supplies additional information or
constraints to guide the generator, ensuring that the synthetic data meet specific require-
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ments or mimic certain characteristics of the real data. Training through real data involves
feeding actual data into the system to condition and improve the generator’s output.

The generator model is central to this methodology. It leverages noise and conditional
vectors to create synthetic data that closely duplicate real data. The generative model
processes these inputs and produces synthetic data intended to be indistinguishable from
actual data. In the conditioning process, the generator incorporates features and patterns
from the real data. In our case, two main condition constraints are used for the generator.
First, the number of rows of data created per participant should not diminish or shorten
in the case of target variables (e.g., subject, age, etc.). Second, for predictor variables,
which are features for classifying and predicting fatigue, the eigenvalues of the covariance
matrices for each subject are checked to ensure they are all positive. Positive eigenvalues are
necessary for generating synthetic data using the multivariate normal distribution, as they
ensure the covariance matrix is valid and the synthetic data will have realistic variability.

Once the generator produces synthetic data, they are evaluated by the discriminator
model. The discriminator also receives real data for comparison purposes. Its role is to
assess synthetic data and determine their authenticity, distinguishing between real and
generated data. The discriminator outputs a judgment on whether the data are real or
synthetic, and based on its accuracy, the weights of both the generator and discriminator
are updated. This feedback loop continues iteratively: the generator learns to produce
more realistic data, and the discriminator becomes better at detecting synthetic data.

In the final implementation, the dataset is loaded into a panda data frame for process-
ing, which is crucial for subsequent data manipulation and analysis. Next, the eigenvalues
of the covariance matrices for each subject are checked to ensure they are all positive.
Following this, synthetic data generation is performed using the mean and covariance
matrix of the features for each subject and fatigue condition. During this step, a small
regularisation factor is added to the covariance matrix to handle any potential numerical in-
stability, ensuring the robustness of the synthetic data by preventing the covariance matrix
from becoming ill-conditioned. Finally, all the generated synthetic data are combined into a
single data frame. This consolidated dataset is then saved as a CSV file, making it ready for
further analysis and use in training machine learning models. This detailed and methodical
approach ensures that the generated synthetic data maintain statistical properties similar
to the real data, facilitating effective training and evaluation of machine learning models.

In summary, the process of generating synthetic data using a GAN involves meticulous
preparation and conditioning of input data, iterative improvement of the generator and
discriminator models through feedback, and rigorous quality assessment to ensure the
synthetic data closely duplicate real data. This comprehensive approach ensures that the
generated synthetic data are both realistic and useful for various applications in machine
learning and data analysis.

3.2.4. Evaluation of GAN Algorithm for SDG

The conditional GAN model, an evolution of the well-established GAN framework,
introduces algorithmic enhancements that significantly improve efficiency, accuracy, and
capabilities of generating with given conditions. However, a pertinent question arising
from this exploration is how it would impact or affect the performance of ML algorithms
when using synthetic data.

Evaluating the synthetic data generated by the deep learning models involves a metic-
ulous comparison with the original training data to ensure their validity and effectiveness.
This evaluation process employs both quantitative and qualitative metrics. Quantitative
analysis includes statistical measures such as principal component analysis (PCA) scatter
plots, distribution density analysis, and field distribution stability. These metrics assess
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the diversity and distributional similarity between synthetic and real data, ensuring the
synthetic data retain the intrinsic properties of the original dataset. Furthermore, the syn-
thetic data must be evaluated for their capability to reflect fatigue accurately. This involves
training machine learning models on synthetic data and subsequently testing them with
actual data. This approach helps in evaluating fatigue and supports the generation of
synthetic data.

Similarity indices are also employed to gauge how closely the synthetic data mimic
the statistical characteristics of the real data. Qualitative evaluation involves a visual in-
spection of the synthetic data to identify any anomalies or inconsistencies that quantitative
metrics might not capture. The synthetic data are also tested with various machine learning
algorithms to evaluate their utility in predictive modelling. To address whether integrating
synthetic data in a study has an impact, we first need to evaluate different analytical mod-
elling classifiers based on their precision, recall, and accuracy. For this purpose, we selected
a diverse set of analytical models, including single, statistical, and ensemble models, to
assess the original six-task dataset using the aforementioned metrics. To comprehensively
represent the various analytical models employed in this evaluation, the models used in-
clude random forests, decision trees, gradient boosting, backpropagation neural networks,
k-nearest neighbours (KNN), logistic regression, support vector machines (SVM), and naïve
Bayes. These models were assessed based on their precision, recall, and F1-score for the met-
rics of Fatigue (‘1’) and Not Fatigue (‘0’), along with accuracy, macro average, and weighted
average. These metrics were used to evaluate and set a baseline on original data so they can
be compared and evaluated when trained on synthetic data and tested on original data. This
is shown in Table A1 in Appendix B. For the purposes of this study, the results are visualised
through box plots. Performance metrics such as accuracy, precision, recall, and F1-score
are compared between models trained on real data and those trained on synthetic data
to determine the synthetic data’s efficacy. Mathematically: precision—P = TP/(TP + FP),
recall—R = TP/(TP + FN) and F1 = 2 × (P × R)/(P + R), where TP is ‘true positive’, FP and
FN are false positive and negative, respectively. This comprehensive evaluation process
ensures that the generated synthetic data are robust, reliable, and capable of substituting
real data for training machine learning models, thereby confirming their potential for
broader applications in data analysis and predictive modelling.

4. Results and Discussion
To assess the effectiveness of the SDG for human fatigue detection by ML models, all

GAN models underwent meticulous training. Keeping in mind the recognised knowledge
of human fatigue’s subjective nature, capturing diverse conditions and patterns of fatigue
onset is essential. Given the complexity of human fatigue, a thorough and systematic
approach is required to make certain that the synthetic data produced accurately capture
the multifaceted aspects associated with fatigue. The implemented model’s performance
hierarchy was meticulously determined within our investigation’s scope. This approach
underscores the importance of generating synthetic data that can effectively replicate the
diverse and nuanced conditions under which human fatigue occurs, thereby enhancing the
reliability and applicability of fatigue detection models in real-world scenarios.

Each box plot illustrates the precision, recall, and F1-score distribution for the classifiers
employed in the respective tasks. The boxes depict the interquartile range (IQR), which
contains the middle 50% of the data points, with the line inside the box indicating the
median. The whiskers extend to the minimum and maximum values within 1.5 times
the IQR from the lower and upper quartiles, respectively. Outliers beyond this range are
represented as individual points. This visualisation aids in establishing a baseline threshold
for understanding and developing synthetic data generation (SDG) methods.
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The box plots presented in Figure 5 illustrate the evaluation of fatigue by classifying
different fatigue states. Among the models tested, random forest emerged as the best-
performing model, achieving an interquartile range (IQR) which means accuracy of over
80% when the train/test split was 80–20%. This performance was closely followed by
gradient boosting, which also approached an accuracy of 80%.
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4.1. Synthetic Data Generation Evaluation for Different Tasks

When replicating a multimodal, multidimensional, imbalanced dataset, synthetic data
production presents unique challenges, particularly in comprehending various patterns,
formulating conclusions for the generator, and replicating them similarly. Unambiguously
constructing an SDG of fatigue, one must comprehend the fatigue development pattern. To
distinguish between the actual and synthetic datasets, we used the aforementioned metrics
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from Section 3.2.4. These are compared against the baseline comparison from Figure 5C
which comprises box plots which demonstrate a comparison of different models when
used with specific features across the two datasets (real and SDG data). These box plots in
Figure 5 provide a baseline comparison for better analysis. They illustrate the performance
differences when training on synthetic data and evaluating on real data versus training
on real data. Each of these tools has a specific function in our comparative research. By
reducing the dataset’s dimensionality, PCA scatter plots make it possible to see the variance
and structure between the two primary components. This helps determine whether the
original data’s distribution and underlying patterns are replicated in the synthetic data [40].
By comparing the probability density functions of different attributes, distribution density
analysis sheds light on how closely the synthetic data resemble the statistical characteristics
of the original data. By analysing the overlap and deviations in these density plots, one
may determine how similar the feature distributions are between the two datasets [41].
Box plots are used to depict field distribution stability, which looks at the central tendency,
variability, and distribution of important features [42]. This method demonstrates how
consistently synthetic data keep the median, interquartile range, and potential outliers
compared to the real data.

4.1.1. Task 1—30–40% Internal Rotation

Task 1 consists of shoulder and hand movements, which are performed in a lateral
position and elbow flexion at 30–40%. The comparison is delineated across three main
sections: principal component analysis (PCA), density plots, and box plots.

Figure 6A features the PCA visualisations for both the original and synthetic datasets.
The PCA of the original dataset shows a compact distribution of data points, while the
PCA of the synthetic dataset displays a slightly more dispersed pattern along the principal
components. This indicates that synthetic data have a broader variance spread than the
original data, which may impact the model’s generalisation ability.

In Figure 6C, density plots for the top 5 features are illustrated to compare the distri-
butions between the original and synthetic datasets. The density plots for features such as
zero crossing of EMG signal obtained from anterior deltoid muscle (ant_del_ZC) and the
pectoralis major muscle sEMG feature (pec_maj_IEMG), as well as the mean frequency of
the same muscle (pec_maj_MDF) followed by infraspinatus muscle ‘infrasp_MNF’, show
that the synthetic data closely mimic the original data distribution, albeit with slight devia-
tions in density. These visualisations suggest that the synthetic data successfully capture
the general trends and characteristics of the original data, making them potentially useful
for model training.

The box plots for features like ‘ant_del_ZC’, ‘pec_maj_IEMG’, ‘pec_maj_MDF’, and
‘infrasp_MNF’ illustrate the median, quartiles, and outliers of the datasets. The comparison
shows that the central tendency and spread of the synthetic data are similar to the original
data. However, there are noticeable differences in the spread and presence of outliers.
This similarity in statistical properties reinforces the potential of synthetic data to be used
effectively in machine learning models.

Overall, the visualisations collectively demonstrate that the synthetic dataset is a close
approximation of the original dataset in terms of both distribution and statistical properties.
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4.1.2. Task 2—40–50% Internal Rotation

Task 2 synthetic and original data comparison is presented in Figure 7, which is a
detailed comparison between original and synthetic datasets for human physical fatigue
detection. In Figure 7A, the PCA plots show the distribution of data points for both
datasets, where the original dataset (blue) demonstrates a more compact distribution with
distinct clusters. In contrast, the synthetic dataset (orange) exhibits a broader spread,
indicating slight variations in data variance. Figure 7C presents density plots that compare
the distribution of various features between the original and synthetic datasets. The top
5 features, such as infraspinatus muscle median frequency (isp_trap_MDF), pectoralis
major muscle EMG signal feature (pec_del_MDF), and infraspinatus muscle ‘infrasp_MNF’,
followed by anterior deltoid muscle IMU feature ‘ant_del_acc’, are visualised, revealing
that the synthetic data closely follow the original data’s distribution with minor deviations,
suggesting a successful approximation of the original data’s characteristics. In Figure 7B,
features like ‘isp_trap_MDF’, ‘pec_del_MDF’, and ‘infrasp_MNF’ are examined, showing
that the central tendency and spread (median, quartiles) of the synthetic data are similar
to those of the original data, with some differences in outliers and spread. This indicates
that the synthetic data reasonably replicate the statistical properties of the original dataset.
Collectively, these sections demonstrate that the synthetic dataset approximates the original
dataset well, making it a viable alternative for training machine learning models in human
physical fatigue detection.

4.1.3. Task 3—50–60% Internal Rotation

For Task 3 comparison, as shown in Figure 8A, the PCA plots show the original
dataset (blue) with distinct clusters and a compact distribution, while the synthetic dataset
(orange) displays a more dispersed distribution, indicating some variance differences.
Figure 8C features density plots for various features, such as the infraspinatus muscle
median frequency from EMG signal (isp_trap_MDF), IMU acceleration (acc_forearm), and
variance of the pectoralis major muscle EMG signal feature (pec_maj_VAR), followed
by zero crossing (pec_del_ZC and usp_trap_ZC). These plots reveal that the synthetic
data closely mirror the original data’s distribution with minor deviations, suggesting they
successfully capture the original data’s characteristics. Figure 8B includes comparing the
field distribution stability of the original and synthetic data for features like ‘isp_trap_MDF’,
‘pec_del_ZC’, and ‘acc_forearm’. The box plots show similar central tendencies and spreads,
with some differences in outliers, indicating that the synthetic data reasonably replicate
the statistical properties of the original dataset. Overall, the synthetic dataset appears to
approximate the original dataset well, making it suitable for training machine learning
models in human physical fatigue detection. This advocates for synthetic data to be a viable
alternative for training machine learning models in human physical fatigue detection,
especially in scenarios where the original data are scarce or sensitive.

4.1.4. Task 4—30–40% External Rotation

Task 4, Figure 9, PCA plots (Figure 9A) show the original data (blue) are compact,
while the synthetic data (orange) are more spread out. Density plots (Figure 9C) for various
features indicate that synthetic data closely follow the original data’s distribution. Box plots
(Figure 9B) show similar central tendencies and spreads, with some differences in outliers.
The synthetic data effectively approximate the original dataset, making them suitable for
model training when compared with other internal rotation tasks. This has demonstrated
that both models have worked equally well on external rotation tasks.
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4.1.5. Task 5—40–50% External Rotation

Task 5 consists of external rotations. Figure A1A, shows PCA plots where the original
dataset (blue) has a compact and clustered distribution, while the synthetic dataset (orange)
is more dispersed, indicating differences in variance. Figure A1C features density plots for
features such as variance of the EMG signal for anterior deltoid muscle (ant_del_VAR), then
the infraspinatus muscle EMG signal (infrasp_MDF), then ‘ant_del_IEMG’, ‘ant_del_RMS’,
and ‘ant_del_MAV’. These plots demonstrate that the synthetic data closely follow the orig-
inal data’s distribution with the allowed amount of deviations. Figure A1B shows the field
distribution stability for features like ‘ant_del_VAR’, ‘infrasp_MDF’, and ‘ant_del_IEMG’.
The box plots reveal similar central tendencies and spreads between the datasets, with
some differences in outliers, suggesting that the synthetic data reasonably replicate the
original dataset’s statistical properties. Overall, the synthetic dataset approximates the
original dataset well, making it a viable option for training machine learning models in
human physical fatigue detection.

4.1.6. Task 6—50–60% External Rotation

For Task 6, in Figure A2A, PCA plots illustrate the original dataset (blue) with a
compact and clustered distribution, while the synthetic dataset (orange) shows a more
dispersed pattern. Figure A2C features density plots for various features, including ‘in-
frasp_ZC’, ‘infrasp_SSC’, ‘ant_del_RMS’, ‘ant_del_SSC’, and ‘infrasp_MNF’. These plots
reveal that the synthetic data closely mirror the original data’s distribution with minor de-
viations, suggesting they effectively capture the original data’s characteristics. Figure A2B
presents box plots comparing the field distribution stability of features such as ‘infrasp_ZC’,
‘infrasp_SSC’, ‘ant_del_RMS’, ‘ant_del_SSC’, and ‘infrasp_MNF’. The box plots indicate
similar central tendencies and spread between the datasets, with some variations in outliers.
Overall, the synthetic dataset approximates the original dataset well, making it a viable
option for training machine learning models in human physical fatigue detection.

4.2. Evaluating Synthetic Data Model Training

The ML models were trained on the synthetic data generated and then tested on
the original dataset to compare the results of classifying fatigue states and whether they
have improved or no substantial change occurred. In our approach, these, as mentioned
earlier in Section 4.1, were compared against the box plots for the baseline comparison from
Figure 5C. A comparison of different models when used with specific features across the
two datasets (real and SDG data) was carried out. Figure 5 shows box plots that provide a
baseline comparison for better analysis. These, when compared with Table 2, illustrated that
the performance has improved when training on synthetic data and predicting fatigue from
real data versus training on real data. Furthermore, accuracy is often employed to gauge
classifier performance; however, it becomes inadequate with imbalanced datasets as it
favours more prevalent classes [43]. To address this issue, we utilise precision and recall for
each class and compute their weighted mean across all classes, known as the F1-score [44].
Precision indicates the proportion of correct predictions for a class, while recall reflects the
proportion of correctly identified actual class instances [45]. We calculated and compared
the results of two top-performing classifiers with the highest margins: random forest and
gradient boosting. These classifiers were chosen to evaluate their impact on classifying
fatigue states. We then compared the results presented in Figure 3 with these classifiers.
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Table 2. Evaluation between classifiers when trained on synthetic data and tested on original data.

RF GB

Precision Recall F1-Score Precision Recall F1-Score

0 0.97 0.87 0.92 0.95 0.76 0.84
1 0.87 0.97 0.92 0.78 0.96 0.86

accuracy 0.92 0.92 0.92 0.85 0.85 0.85
macro avg 0.92 0.92 0.92 0.87 0.86 0.85

weighted avg 0.92 0.92 0.92 0.87 0.85 0.85

The performance evaluation of two classifiers, random forest (RF) and gradient boost-
ing (GB), was conducted with respect to their precision, recall, and F1-scores for two classes.
For class 0, the RF classifier achieved a precision of 0.97, recall of 0.87, and an F1-score of
0.92, whereas the GB classifier recorded a precision of 0.95, recall of 0.76, and an F1-score
of 0.84. For class 1, RF attained a precision of 0.87, a recall of 0.97, and an F1-score of
0.92, while GB achieved a precision of 0.78, a recall of 0.96, and an F1-score of 0.86. Both
classifiers demonstrated an overall accuracy of 0.92 for RF and 0.85 for GB. The macro
average and weighted average metrics for RF were consistently 0.92 across precision, recall,
and F1-score, indicating balanced performance across classes. In contrast, GB displayed
macro averages of 0.87 for precision, 0.86 for recall, and 0.85 for F1-score, with weighted
averages mirroring these values. This analysis underscores the superior performance of the
random forest and gradient boosting classifier in classifying states of fatigue when trained
on synthetic data and tested on original data. Overall, this presents that the SDG gaps are
the bridge for the problem that occurred due to data challenges and the improvement of
the machine learning model.

Furthermore, tuning hyperparameters for ML model RF and GB such as n-estimators,
min-samples-split, max-features, and max-depth is vital for enhancing ML performance.
Increasing n-estimators enhances accuracy and is ideally set from 100–1000 for both models.
Adjusting min-sample-split prevents overfitting on small patterns and the recommended
range is 2–10. Using ‘sqrt’ or ‘log2’ should be considered while choosing max features which
control the no. of features considered at each split, helping to balance bias and variance, and
is often effective. Meanwhile, setting max-depth properly also helps in reducing overfitting
while maintaining predictive power. Alternatively, vital hyperparameters like the learning
rate in GB regulate model updates. Properly tuning these parameters thoroughly can
further enhance the ML model’s prediction.

5. Conclusions
In this paper, we explored the process of synthetic data generation for the detection of

human physical fatigue using a deep learning conditional generative model. The method-
ology employed a generator to produce synthetic samples and a discriminator to evaluate
their accuracy, updating weights accordingly. A conditioning vector, noise, and real data
were supplied to the generator to train these models. Given the fatigued dataset’s multidi-
mensional, multimodal, and imbalanced nature, the initial stages involved data preparation,
feature extraction, and selection, making the dataset ready for synthesis. Subsequently,
various classifiers were employed to understand their performance on the original data,
and the same classifiers were trained on the synthetic data. The results demonstrated that
the use of synthetic data improved the precision, recall, and F1-scores for both random
forest and gradient boosting classifiers. The dataset was further evaluated through PCA
scatter plots, distribution density analysis plots, and field distribution stability plots, all of
which indicated that the synthetic data closely produced the data when compared with the
original datasets.
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Future research endeavours will broaden the potential to examine and explore more
cutting-edge techniques involving deep learning conditional GANs for data augmentation
and feature selection. Although the study advocates for SDG, it does have some limitations
to be noted. They are: both the models possess a mode collapse limitation in sequential
data and data label dependency. Additionally, SDG overall lacks real-world variability.
To overcome these, exploring state-of-the-art approaches and further experimentation
with hyperparameters could lead to further enhancement of the classifier’s performance.
Additionally, extending investigations that encompass a wide variety of variables, indus-
trial scenarios, and powerful classifiers would contribute meaningful perspectives on the
generalisability and versatility of these SDG techniques across various contexts.
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Appendix B

Table A1. Result table of classifiers training on real data.

Dataset Model Metric Precision Recall F1-Score

T1

Random Forest

0 0.846 0.957 0.898
1 0.938 0.789 0.857

accuracy 0.881 0.881 0.881
macro avg 0.892 0.873 0.878

weighted avg 0.887 0.881 0.879

Decision Tree

0 0.792 0.826 0.809
1 0.778 0.737 0.757

accuracy 0.786 0.786 0.786
macro avg 0.785 0.781 0.783

weighted avg 0.785 0.786 0.785

Gradient
Boosting

0 0.808 0.913 0.857
1 0.875 0.737 0.8

accuracy 0.833 0.833 0.833
macro avg 0.841 0.825 0.829

weighted avg 0.838 0.833 0.831

Neural Network

0 0.583 0.304 0.4
1 0.467 0.737 0.571

accuracy 0.5 0.5 0.5
macro avg 0.525 0.521 0.486

weighted avg 0.531 0.5 0.478

K-Nearest
Neighbours

0 0.714 0.652 0.682
1 0.619 0.684 0.65

accuracy 0.667 0.667 0.667
macro avg 0.667 0.668 0.666

weighted avg 0.671 0.667 0.667
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Table A1. Cont.

Dataset Model Metric Precision Recall F1-Score

T1

Logistic
Regression

0 0.63 0.739 0.68
1 0.6 0.474 0.529

accuracy 0.619 0.619 0.619
macro avg 0.615 0.606 0.605

weighted avg 0.616 0.619 0.612

Support Vector
Machine

0 0.567 0.739 0.642
1 0.5 0.316 0.387

accuracy 0.548 0.548 0.548
macro avg 0.533 0.527 0.514

weighted avg 0.537 0.548 0.526

Naïve Bayes

0 0.561 1 0.719
1 1 0.053 0.1

accuracy 0.571 0.571 0.571
macro avg 0.78 0.526 0.409

weighted avg 0.76 0.571 0.439
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