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Predicting stable structures of nanoclusters is crucial yet computationally demanding. This study presents a
machine learning-based methodology designed to accelerate the prediction of stable structures in nanoclusters.
By integrating local environment descriptors, with dimensionality reduction, kernel-based similarity measure,
and outlier detection, we efficiently screen and select promising configurations, thus accelerating identification
of global and local minimum structures. The approach is validated through rigorous optimization, demonstrating
its capability to identify low-energy structures while significantly reducing computational costs. This method
offers a robust framework for structural screening.
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I. INTRODUCTION

Structure prediction is critically important in materials sci-
ence, particularly for supported metal nanocluster systems,
which have been identified as promising candidates for ma-
terials with tailored properties for applications ranging from
catalysis, to electronics, to nanotechnology. Due to their small
size and large surface area, isolated metal nanoclusters exhibit
chemical and physical properties that differ significantly from
those of their corresponding bulk materials [1,2]. Further-
more, in practice, metal nanoclusters are almost invariably
prepared as adsorbed clusters on some support material; while
the support may be considered merely an inert substrate
to prevent sintering or nanocluster agglomeration, and thus
preserving the high surface area and low coordination en-
vironments of the small nanoclusters, it is well established
that strong metal-support interactions can result in synergistic
effects at metal-support interfaces, which may enhance or
inhibit the properties of the material [3–7]. As such, there
is much interest in accurately predicting the structure of low
energy structures for supported metal nanoclusters. How-
ever, obtaining structural information for small nanoclusters
through experiments is challenging, making computational
screening a vital tool for predicting these structures. Accurate
predictions of nanocluster structures enable the optimization
of material performance, providing crucial insights for the de-
sign of materials in applications such as catalysis, electronics,
and optics.
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Traditional structure prediction methods, such as Monte
Carlo simulations [8–10], random quenching [11–13], simu-
lated annealing [14–17], genetic algorithms [18–20], particle
swarm algorithms [21–23], and other methods, have been
the cornerstone of global optimization techniques for ex-
ploring energy landscapes. These studies have predominantly
focused on exploring energy landscapes by applying specific
global optimization techniques to particular systems [2,24–
27]. While effective, these methods are often computation-
ally intensive, especially when applied to complex systems
with large numbers of atoms. The vast configurational space,
even for relatively small nanoclusters (i.e. 2–4 nm in diam-
eter), makes exhaustive searches computationally expensive
and time-consuming. The high computational cost and the
need for extensive sampling to ensure accurate predictions
make these techniques less practical for large-scale or high-
throughput studies, highlighting the need for more efficient
alternatives.

In recent years, machine learning approaches have
emerged as promising tools to enhance computational effi-
ciency and reduce the overall cost of structure prediction
for complex systems like nanoclusters. For example, McCan-
dler et al. developed a machine-learned interatomic potential
to study gold–thiolate nanocluster dynamics, significantly
accelerating simulations while maintaining accuracy [28].
Ko et al. introduced a fourth-generation high-dimensional
neural network potential that incorporates accurate elec-
trostatics, enabling more realistic simulations of charge-
transfer phenomena in metal clusters [29]. Behler and
Parrinello further demonstrated the effectiveness of neural
network potentials in describing high-dimensional poten-
tial energy surfaces, transforming how molecular dynamics
simulations are performed for bulk materials and nanostruc-
tures alike [30]. Such advances demonstrate the potential
of machine learning approaches in structural prediction
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and dynamic studies of nanoclusters, effectively addressing
some computational challenges associated with traditional
methods.

However, despite these developments, challenges remain
in applying machine learning methods to a broader range of
complex systems, particularly where training data are scarce,
computational costs are still significant, or dealing with com-
plex interactions in heterogeneous systems. Therefore, there
is still a need for innovative strategies that can further stream-
line and accelerate the prediction process while maintaining
accuracy.

To address this critical challenge, this study introduces a
machine learning-based approach that significantly acceler-
ates the structure prediction process while maintaining high
accuracy. We propose a methodology that integrates the Reg-
ularized Entropy Match (REMatch) kernel and Stochastic
Outlier Selection (SOS) with traditional structural descriptors
like Smooth Overlap of Atomic Positions (SOAP). The RE-
Match kernel offers a robust similarity measure that captures
both local and global structural characteristics, allowing for
precise comparison of nanocluster configurations. SOS, on the
other hand, efficiently filters out irrelevant or less promising
configurations, focusing computational resources on the most
likely candidates for global minima.

By combining these machine learning techniques, we pro-
vide a framework that not only accelerates the prediction of
stable structures in nanoclusters but also reduces the overall
computational cost. This approach is applied to the study
of Cu clusters on various reconstructed polar ZnO surfaces,
demonstrating its efficacy in navigating the complex configu-
rational space of these systems.

To validate this framework, we applied it to the study
of Cu clusters on various reconstructed polar ZnO surfaces,
following the work of Higham et al. [31], which provided
a comprehensive analysis of the morphology of Cu clusters
on ZnO (0001) and (0001̄) surfaces, and thus serves as an
ideal case study for verifying our approach. This case study
allows us to evaluate the performance of our framework in
navigating the complex configurational space and predicting
stable structures for Cu/ZnO systems.

This article is structured as follows: in the Methodol-
ogy section, we detail the machine learning techniques and
computational approaches employed in our framework, in-
cluding the REMatch kernel and SOS. In the Results section,
we apply our framework to the Cu/ZnO system, conduct-
ing comparative analysis, sensitivity analysis, and divergence
analysis. Finally, in the Conclusions section, we summarize
our findings, discuss the broader implications of our work, and
suggest potential directions for future research in the field of
machine learning-assisted structure prediction.

II. METHODOLOGY

A. Data collection

We used the Knowledge-Led Master Code (KLMC) to gen-
erate a comprehensive dataset for analyzing the morphology
of Cu clusters on various reconstructed polar ZnO (0001)
and (0001̄) facets. KLMC is a robust and versatile tool for
performing unbiased Monte Carlo (MC) simulations to ex-

plore the energy landscape of complex systems [1,32–34].
The dataset includes configurations of Cu clusters on four
distinct ZnO surfaces: Zn-rich O-terminated surface, O-poor
O-terminated surface, O-rich Zn-terminated surface, and Zn-
poor Zn-terminated surface; these were determined to be the
most stable under typical conditions as revealed by the grand
canonical ensemble studies performed previously, as reported
by Mora-Fonz et al. [35].

For each ZnO surface, we considered Cun clusters of
a range of sizes (n = 4–8, 16, 24, 36). For each cluster
size and surface combination, KLMC generated 10 000 ini-
tial Cun/ZnO random configurations, resulting in a total of
320 000 configurations. This methodology involved the per-
mutation of n Cu atoms across a mesh of 147 sites (distributed
across three layers of 49 sites each) atop the two most stable
reconstructed polar ZnO surfaces identified from preceding
research efforts [35].

Each configuration is stored in a ".gin" file format, which
is the input format for the General Utility Lattice Pro-
gram (GULP). The ".gin" file contains critical structural
information for each configuration, including Atomic Types,
specifying the element types of the atoms in the structure (e.g.,
Cu, Zn, O), and Atomic Coordinates, providing the Cartesian
coordinates (x, y, z) of each atom within the structure. This
format ensures that all necessary atomic and spatial data are
accurately preserved for subsequent computational analysis.

B. Assumptions

Our proposed scheme for reduced sampling of the configu-
rational space is based on several assumptions about the shape
of the potential energy surface. We now describe and justify
these assumptions.

1. Structurally similar initial configurations have a higher
probability of converging to similar local minima

We assume that, in most cases, Cu clusters on different
polar ZnO surfaces with structurally similar initial config-
urations have a higher probability of converging to similar
local minima after geometry relaxation. This assumption is
based on principles from energy landscape theory, acknowl-
edging the probabilistic nature of structural evolution during
relaxation processes [36]. Systems that start from similar
configurations are more likely to follow similar paths on the
potential energy surface, leading to analogous final structures,
although this relationship is not strictly deterministic. Our
preliminary simulations also indicate that Cu clusters with
similar initial configurations on ZnO surfaces frequently relax
to similar local minima, supporting this assumption.

This assumption is crucial in the context of our study,
where efficient prediction of Cu cluster morphologies on ZnO
surfaces relies on capturing the relationship between initial
and final configurations. Based on this assumption, we per-
form our sampling using the initial suggested configurations
before any expensive geometry relaxation, enabling us to re-
duce computational redundancy by filtering out structurally
similar initial configurations.

Given the probabilistic relationship between initial and
final structures, we utilize Smooth Overlap of Atomic Po-
sitions (SOAP) descriptors, which are specifically designed
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to capture the spatial distribution and environment of atoms
[37]. These descriptors are ideal for representing the initial
configurations of Cu clusters on ZnO surfaces, providing a
high-dimensional representation that effectively encodes the
local atomic environment and allows us to quantitatively com-
pare and analyse structural similarities.

By representing the initial configurations using SOAP
descriptors and computing structural similarities with the
Regularized Entropy Match (REMatch) kernel, we can iden-
tify and exclude structurally similar initial configurations
before performing computationally expensive geometry op-
timizations. This strategy enables us to focus computational
resources on a more diverse set of configurations, enhancing
the efficiency of our study without significantly compromising
structural diversity. The effectiveness of combining SOAP
descriptors with the REMatch kernel in capturing structural
similarities has been demonstrated in previous research, [38]
further supporting our methodology.

2. Global minimum energy structures are typically surrounded
by structurally and energetically similar local minima

We assume that global minimum energy structures are
typically surrounded by structurally and energetically similar
local minima. This assumption is grounded in the well-
established concept of energy landscapes in materials science
and chemistry, where the global minimum represents the most
stable configuration [36]. Typically, this global minimum is
embedded within a basin of attraction, consisting of several
nearby local minima that share similar structural character-
istics and are separated by relatively small energy barriers.
These barriers are often low enough to allow transitions be-
tween these minima through minor perturbations of atomic
positions [39].

This clustering of similar structures around the global
minimum is a well-documented phenomenon in the study
of atomic clusters and condensed matter systems [40]. En-
ergy landscapes are often funnel-shaped, guiding the system
toward the most stable configurations during relaxation pro-
cesses. As a result, global minima are seldom isolated points
but rather central hubs within a network of structurally related
local minima.

Empirical evidence supporting this hypothesis includes ex-
tensive studies on the structural distribution of metal clusters,
where global minima are observed to be at the core of a
network of similar configurations [8,41]. This behavior has
been demonstrated through computational simulations and ex-
perimental studies of various atomic and molecular systems.
By assuming the presence of structurally and energetically
similar structures around global minima, we can effectively
employ clustering analysis to identify and categorize these
configurations, thereby improving the efficiency and accuracy
of our structure prediction methods.

3. As the cluster size increases, the proportion
of low-energy structures decreases

We assume that as the size of Cu clusters increases,
the complexity of the energy landscape grows, leading to
a relative decrease in the number of distinct low-energy
structures. This assumption is based on the principles

of cluster chemistry, where larger systems exhibit more
intricate energy landscapes characterized by a higher density
of local minima, but a lower proportion of distinct low-energy
structures [36].

As the size of a cluster increases, the number of possi-
ble atomic configurations increases exponentially, resulting
in a more complex energy landscape. This complexity arises
from the increased degrees of freedom and the multiple ways
atoms can arrange themselves to minimize energy. In smaller
clusters, the energy landscape is simpler with fewer configu-
rations, making it easier to identify distinct global minima.
However, in larger clusters, the landscape becomes more
rugged, with many near-degenerate configurations, making
distinct low-energy structures relatively rarer.

Empirical evidence supporting this assumption is found
in studies of atomic and molecular clusters that investigate
the relationship between cluster size and the number of sta-
ble configurations. For instance, in metal clusters, smaller
clusters often exhibit well-defined global minima, whereas
larger clusters display a greater variety of nearly degenerate
configurations [25,42]. This trend is consistent across various
types of clusters and materials, underscoring a fundamental
aspect of energy landscape theory.

The decrease in the number of distinct low-energy struc-
tures as the cluster size increases has significant implications
for the stability and properties of these clusters. Smaller
clusters, with fewer distinct global minima, tend to have well-
defined stable structures, and exhibit less structural diversity.
In contrast, larger clusters, with their more complex energy
landscapes, are prone to structural fluctuations and a higher
degree of polymorphism. This behavior directly influences
their chemical reactivity, catalytic properties, and overall sta-
bility.

C. Smooth Overlap of Atomic Positions (SOAP)
with feature compression

In this study, we employ the Smooth Ooverlap of Aatomic
Positions (SOAP) descriptor to represent the local atomic
environments of Cu clusters on ZnO surfaces. SOAP char-
acterizes atomic environments by comparing the overlap of
Gaussian-smeared atomic densities centered on each atom,
effectively capturing both radial and angular structural infor-
mation. [38,43]

We choose SOAP because it provides a continuous and
differentiable representation of atomic structures, which is
particularly suited for quantifying similarities and differences
between complex configurations [44]. This high-dimensional
descriptor encodes detailed information about the spatial dis-
tribution of atoms, enabling precise comparison and analysis
of various cluster configurations. Its robustness and accu-
racy make it ideal for identifying subtle variations in atomic
arrangements, which is essential for our study’s focus on
structural prediction.

However, transforming configurations into SOAP de-
scriptors often results in extremely high-dimensional data,
potentially involving tens of thousands of features. Such
high dimensionality can lead to computational inefficiencies
and challenges in discerning meaningful similarities due to
the curse of dimensionality. To address this, we apply a
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feature compression scheme known as the μ = 1, ν = 1 fea-
ture compression scheme, as introduced by Darby et al. [45].

By implementing feature compression within the SOAP
framework, we significantly reduce the dimensionality of the
feature vectors while preserving essential structural informa-
tion. Specifically, this compression combines the coefficients
associated with each atomic species, resulting in a more man-
ageable number of features. In our case, we set the target
element to Cu, focusing on the Cu atoms within the clusters.
After compression, each structure is represented as an n × 36
matrix, where n is the number of Cu atoms in the cluster. This
compressed representation scales linearly with the number of
atoms, enhancing computational efficiency without compro-
mising the descriptor’s ability to capture critical structural
characteristics.

By employing the SOAP descriptor with feature com-
pression, we achieve a balance between retaining detailed
structural information and reducing computational complex-
ity. This approach enables us to effectively compare and
cluster configurations of Cu clusters on ZnO surfaces, facil-
itating the identification of structurally similar configurations.
It aligns with our study’s objectives to streamline the structure
prediction process while maintaining high accuracy.

D. Regularized Entropy Match kernel (REMatch kernel)

After obtaining the compressed SOAP descriptors, where
each structure is represented as an n × 36 matrix, we need a
method to assess the similarity between different structures ef-
fectively. To achieve this, we employ the Regularized Entropy
Match (REMatch) kernel.

The REMatch kernel computes the similarity between two
structures by optimally matching their local atomic envi-
ronments, as described by their SOAP descriptors [38]. It
compares the sets of atomic environments in each structure,
balancing the influence of the best-matching environments
with the overall distribution of similarities. This approach
makes the REMatch kernel particularly robust against outliers
and variations in atomic configurations.

We use the REMatch kernel because it provides a flexible
and accurate measure of structural similarity that can handle
the complexity of our dataset. By adjusting a parameter α

within the kernel, we can control the emphasis between focus-
ing on the most similar local environments and considering
the average similarity across all environments. This flexibil-
ity allows us to capture meaningful similarities even when
structures exhibit minor differences or distortions, which is
essential for clustering and analyzing a large set of configura-
tions.

Using the REMatch kernel, we compute the similarity be-
tween each pair of structures in our dataset. Given that we
have 10 000 structures in each case, this involves pairwise
comparisons resulting in a 10 000 × 10 000 similarity matrix.
Each element of this matrix represents the similarity score
between a pair of structures, ranging from 0 to 1, where 0 in-
dicates no similarity and 1 indicates identical structures. This
provides a comprehensive map of the structural relationships
within our dataset.

This similarity matrix serves as the foundation for subse-
quent clustering and analysis. By quantifying the structural

similarities between configurations, we can efficiently identify
and group structurally similar configurations. This enables us
to reduce computational redundancy by focusing resources on
a diverse set of configurations, aligning with our objective to
streamline the structure prediction process while maintaining
high accuracy.

E. Approximation algorithm

As previously discussed, computing the REMatch kernel
for all pairs of structures in our dataset would result in a
10 000 × 10 000 similarity matrix. While this exhaustive com-
putation provides comprehensive similarity information, it is
computationally intensive and impractical for large datasets.
To address this challenge and accelerate the computation,
we designed an approximation algorithm that significantly
reduces the computational load while maintaining acceptable
accuracy.

The primary objective of this approximation algorithm is to
reduce the number of pairwise comparisons required, thereby
expediting the overall computation without substantially com-
promising the quality of the similarity measurements. The
algorithm operates as follows:

(1) Grouping structures: The initial set of 10 000 struc-
tures is divided into 10 groups, each containing 1000
structures. This segmentation simplifies the subsequent com-
putations by enabling pairwise comparisons within and
between smaller subsets of structures.

(2) Intragroup REMatch kernel calculation: For each
group, the REMatch kernel is calculated within the group,
producing a 1000 × 1000 similarity matrix. This step
is relatively efficient due to the smaller size of each
group.

(3) Intergroup REMatch kernel calculation: REMatch ker-
nel calculations are performed between pairs of consecutive
groups (e.g., between group 1 and group 2, group 2 and group
3, etc.). This results in nine additional 1000 × 1000 similarity
matrices for the adjacent group pairs.

(4) Constructing the approximate similarity matrix: A
10 000 × 10 000 matrix S is initialized to store the computed
similarities. The intragroup and intergroup similarity matri-
ces are placed into the appropriate sections of S, filling in
the corresponding entries. At this stage, the similarity ma-
trix S contains computed similarity values within groups and
between adjacent groups, while the remaining entries are un-
computed (initially set to zero).

(5) Iterative approximation to fill the matrix: To estimate
the uncomputed similarities, we apply an iterative process
that leverages the known similarities. For each structure i we
identify its most similar structure j in the adjacent group using
the intergroup similarity matrices. If structure i in group k is
most similar to structure j in group k + 1, we consider them
closely related. We then approximate the similarities between
structure j and other structures in Group k by using the similar-
ities between structure i and those structures. This process is
repeated iteratively across all groups, effectively propagating
similarity information and filling in the uncomputed entries of
the similarity matrix S.

(6) Converting similarity to distance: After completing the
similarity matrix S, where each element ranges from 0 (no
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similarity) to 1 (identical structures), we convert it into a
distance matrix D using the relation D = 1−S. This distance
matrix is suitable for subsequent analyses, such as outlier
detection.

By grouping structures and focusing computations on in-
tragroup and adjacent intergroup similarities, we capture the
most relevant similarity information while avoiding unnec-
essary computations between structures that are likely to be
less similar. The iterative approximation effectively propa-
gates similarity information throughout the matrix, enabling
us to construct a sufficiently accurate distance matrix for our
purposes.

The pseudocode and computational complexity of this
algorithm are shown in Secs. S1 and S2 in the Supple-
mental Material [46]. Through computational complexity
analysis, the computational complexity of this algorithm is
O(14 × 106 × n2), and if the algorithm is not applied, the
computational complexity would be O(5 × 107 × n2). There-
fore, the ratio of complexity reduction achieved by applying
this algorithm is 5×107×n2

14×106×n2 ≈ 3.57. This algorithm signifi-
cantly reduces the computational load compared to a full
pairwise comparison while maintaining a sufficiently accurate
distance matrix for subsequent outlier detection and structural
characterization.

F. Stochastic outlier selection (SOS)

After constructing the approximate distance matrix using
the REMatch kernel and our approximation algorithm, the
next step is to strategically screen the structures to identify and
filter out configurations based on their outlier probabilities.
This process is crucial for reducing computational redundancy
and focusing on structurally significant variants within our
dataset of Cu clusters on ZnO surfaces.

To achieve this, we employ the Stochastic Outlier Selection
(SOS) algorithm, an unsupervised method designed to com-
pute an outlier probability for each data point based on its
dissimilarity (distance) to others [47]. The core idea of SOS
is that a data point is considered an outlier if other data points
have insufficient affinity with it. This approach allows us to
quantify how atypical each structure is within the context of
the entire dataset.

The SOS algorithm begins by converting the distance ma-
trix into an affinity matrix. The affinity between two data
points decreases in a Gaussian-like manner relative to their
dissimilarity. Each data point has an associated variance that
depends on the density of its neighborhood, controlled by a
parameter known as perplexity. This ensures that each data
point effectively has the same number of neighbors, allowing
for consistent comparisons across the dataset. The affinity
matrix represents how strongly each structure is connected to
others based on structural similarity.

Once the affinity matrix is computed, it is normalized to
create a binding probability matrix where each row sums to
one. This normalization transforms the affinities into prob-
abilities that reflect the likelihood of each structure being
similar to others. The outlier probability for each structure is
then calculated as the joint probability that other structures
will not bind to it. A high outlier probability indicates that a

structure is not closely related to any other structures and is
thus considered an outlier.

Based on the computed outlier probabilities, we catego-
rize the structures to strategically select or discard them.
Structures with high outlier probabilities (e.g., greater than
75%) are considered super outliers and are removed, as they
represent extreme configurations unlikely to contribute mean-
ingful insights. Structures with low outlier probabilities (e.g.,
less than 30%) reside at the centers of dense clusters and
are also discarded, as they represent redundant information
due to high structural similarity with many other configu-
rations. Structures with medium outlier probabilities (e.g.,
between 55% and 75%) are retained selectively, as they may
represent unique structural variants or potential alternative
configurations. The specific thresholds for these categories are
informed by sensitivity analyses and can be adjusted based
on the desired balance between dataset size and structural
diversity.

The specific thresholds of 30%, 55%, and 75% were deter-
mined based on sensitivity analyses conducted in subsequent
sections of our study. Through these analyses, we empiri-
cally established thresholds that balance the need to reduce
computational redundancy while retaining sufficient structural
diversity. The thresholds are not universally fixed and can be
adjusted depending on the characteristics of the dataset and
the desired balance between dataset size and diversity. By
fine-tuning these parameters, we ensure that the selection pro-
cess aligns with our goals of retaining structurally significant
variants and excluding redundant or extreme configurations.

By employing the SOS algorithm in this manner, we strate-
gically filter the dataset to focus on structurally significant
variants. This approach ensures that we retain configurations
that are likely to contribute valuable insights into the structural
landscape of Cu clusters on ZnO surfaces. It aligns with our
overarching objective to efficiently explore and predict the
morphology of these clusters by emphasizing the most diverse
and relevant configurations.

This methodology builds upon the distance matrix derived
from the REMatch kernel and our approximation algorithm.
By first efficiently computing structural similarities and then
strategically filtering the dataset based on outlier probabilities,
we create a streamlined and focused set of configurations for
further analysis and geometry optimization. This integrated
approach enhances computational efficiency without signif-
icantly compromising accuracy, allowing us to concentrate
computational resources on analyzing structures that are both
significant and representative of the potential configurational
space.

G. Verification

The flow chart of our methodology is shown in Fig. 1.
The goal of our methodology is to efficiently identify a sub-
set of initial configurations that is highly likely to include
the global minimum energy structure and other low-energy
structures, thereby significantly reducing the computational
effort required for full optimization. By focusing on approxi-
mately 30% of the initial configurations (around 3000 out of
10 000), we aim to capture low-energy structures while con-
serving both time and computational resources. To assess the
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FIG. 1. Flow chart of our methodology workflow.

effectiveness of our approach, we performed a series of veri-
fication steps:

(1) Full optimization of initial configurations: To deter-
mine the final structures and energies of the 10 000 initial
configurations, we performed a comprehensive optimization
using the General Utility Lattice Program (GULP). This
process involved applying a polarizable shell model poten-
tial to the oxygen atoms in ZnO, with interaction potentials
for Cu-ZnO derived from Buckingham and Morse potentials
for Cu-O and Cu-Zn interactions, respectively. Cu-Cu in-
teractions were modeled using many-body Gupta potentials
[48,49]. The potentials applied in the present work were
robustly devised in the previous studies by fitting the IP pa-
rameters representing the Cu-O and Cu-Zn interactions to a
set of data comprising a series of geometries and energies
obtained with periodic single-point (SP) DFT [48]. For the
ZnO potentials, fitting was performed with reference to a
large number of experimentally measured parameters [50],
with a similar approach being applied to obtain the Cu-Cu
potentials [49]. These potentials have been previously applied
to investigate Cu clusters supported on nonpolar and recon-
structed polar ZnO surfaces, using unbiased Monte Carlo
global optimization techniques to identify low-energy struc-

tures [31,48]; DFT refinement of the IP-obtained structures
in both studies showed that the IP structures and their energy
rankings are well reproduced upon DFT refinement. Hence, in
the present work, the objective is to apply machine learning
techniques to expedite the structural search process, rather
than to validate the potentials themselves, which has already
been demonstrated by the aforementioned previous studies.
During optimization, all Cu atoms and the top three layers
of ZnO were fully relaxed. The optimization was conducted
using a 2D periodic surface model, with charge compenza-
tion applied to account for surface reconstruction effects. The
BFGS algorithm was used to minimize iteratively the energy
of each configuration, yielding the final relaxed structures and
their corresponding energies. These optimized results serve as
the basic data for evaluating the effectiveness of our structural
screening methodology [31,35].

(2) Identification of global minima and low-energy struc-
tures: After optimization, we ranked all structures based on
their final energies to identify the global minimum energy
structure as well as low-energy structures. These low-energy
structures are of particular interest as they provide insights
into the stability and diversity of the energy landscape.
We compared the global minima and low-energy structures
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identified in the full set of 10 000 configurations with those
present in our selected subset of approximately 3000 struc-
tures. Our methodology is considered successful if the subset
includes the global minimum or at least one of the low-energy
structures, ensuring that configurations of significant interest
are captured.

(3) Comparison with random baseline: To evaluate the
performance of our method relative to random sampling, we
conducted comparisons across several aspects:

(a) Success Index: We defined a success index that varies
according to the size of the Cu clusters, reflecting our third as-
sumption that larger clusters generally have fewer low-energy
structures due to increased energy landscape complexity. We
compared the success rates of our method and random sam-
pling to assess the effectiveness of our approach in capturing
critical low-energy structures.

(b) Local minima capture: We calculated the total number
of distinct local minima, the number of distinct local minima
captured by our method, and the number of distinct local
minima captured by random sampling. By comparing the
differences between the total and our method versus the total
and random sampling, we assessed our method’s ability to
capture a broader range of local minima. This comparison
demonstrates that our method captures more local minima
than random sampling, highlighting its effectiveness in ex-
ploring the energy landscape.

(c) Global minima capture: We evaluated whether our
method and random sampling could capture the global min-
imum under different conditions and cluster sizes. This
analysis provides insight into the robustness and reliability of
our method compared to random sampling.

(4) Distribution consistency evaluation: To assess whether
the distribution of the selected subset is consistent with that of
the full set of configurations, we calculated Kullback-Leibler
(KL) divergence [51] and Jensen-Shannon (JS) divergence
[52] between them [53,54]. These measures quantify the
differences between the probability distributions of the full
dataset and the selected subset. A lower divergence indi-
cates that the subset’s distribution closely matches the overall
distribution, ensuring that structural diversity is preserved.
This evaluation verifies that our method retains the essential
characteristics of the original dataset while reducing compu-
tational effort.

This verification process allows us to assess rigorously
the effectiveness of our methodology. Such validation is es-
sential to ensure that our machine learning-based structural
screening method reliably captures the key structural fea-
tures and stability characteristics of Cu clusters on ZnO
surfaces.

III. RESULTS

To validate the effectiveness of our machine learning-based
methodology, we applied it to the Cu/ZnO system, which
serves as a representative example of complex supported
nanocluster systems. By comparing the performance of our
method against the results obtained from full optimization
of all configurations, we assessed both the accuracy and ef-
ficiency of our approach. Specifically, we evaluated whether
our selected subset consistently includes the global minimum

energy structures and how well it represents the overall energy
landscape of the system.

In this section, we provide a detailed account of the results
obtained from applying our methodology. We present compar-
ative evaluations with the full population and with a random
baseline, conduct a sensitivity analysis, and perform a diver-
gence evaluation. These analyses demonstrate the robustness
and reliability of our approach in efficiently identifying low-
energy configurations while preserving structural diversity.

A. Comparative evaluation with the population

In this section, we compare the global minimum structures
identified from the original full set of 10 000 configurations
with those predicted from the subset of 3000 configura-
tions selected by our method. The goal of this comparative
analysis is to assess the accuracy and reliability of our screen-
ing approach in predicting the most stable configurations,
particularly focusing on adsorption energies and structural
characteristics.

Adsorption energy is commonly used to measure the stabil-
ity and interaction strength of Cu clusters on specific surfaces.
It is defined as

Eadsorption = Ecluster_min − Eclean_slab − n Ebulk_Cu, (1)

where Ecluster_min is the energy of the lowest energy structure
of the Cun cluster, Eclean_slab is the energy of the clean slab (the
surface energy without Cu clusters), n is the number of Cu
atoms adsorbed on ZnO, and Ebulk_Cu is the bulk Cu energy
per formula unit.

Negative adsorption energy indicates that the adsorption
process is exothermic, implying that the presence of Cu clus-
ters adsorbed on the surface is more stable than the isolated
components of the same number of Cu atoms in the bulk phase
and the clean ZnO surface. Conversely, positive adsorption
energy suggests a nonspontaneous adsorption process. In our
study, adsorption energy serves as a crucial metric to evaluate
whether the predicted global minima from the subset align
with those identified from the full set of configurations.

To ensure an accurate comparison between the original
global minima obtained from full optimization and the pre-
dicted global minima identified by our methodology, we
establish size-dependent energy tolerances based on the Rank
2 relative energies reported by Higham et al. [31]. Specifi-
cally, we use the energy difference between the second lowest
energy structure (Rank 2) and the global minimum energy
structure as the tolerance for each cluster size and ZnO
surface. This approach accounts for the inherent structural
complexity and energy variability associated with different
cluster sizes and surfaces. We include a table (Table I)
summarizing the Rank 2 relative energies for various Cu
cluster sizes on different ZnO surfaces, adapted from Higham
et al. [31].

The following comparative tables present the structural vi-
sualizations of both the original and predicted global minima
for each ZnO surface type, along with their corresponding
adsorption energies: Table II for O-poor O-terminated sur-
face, Table III for Zn-rich O-terminated surface, Table IV
for Zn-poor Zn-terminated surface, and Table V for O-rich
Zn-terminated surface. To simplify notations, we use O-p-O
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TABLE I. Rank 2 relative energies (in eV, tolerance in our case)
for adsorbed Cu clusters of various sizes on different ZnO surfaces,
where O-p-O represents O-poor O-terminated surfaces, Zn-r-O rep-
resents Zn-rich O-terminated surfaces, Zn-p-Zn represents Zn-poor
Zn-terminated surfaces, and O-r-Zn represents O-rich Zn-terminated
surfaces.

No. Cu

Surface type 4 5 6 7 8 16 24 36

O-p-O 0.110 0.072 0.306 0.299 0.206 0.086 0.151 0.194
Zn-r-O 0.446 0.060 0.070 0.068 0.074 0.199 0.142 0.127
Zn-p-Zn 0.357 0.329 0.174 0.078 0.048 0.007 0.049 0.128
O-r-Zn 0.153 0.266 0.353 0.119 0.054 0.463 0.287 0.410

for O-poor O-terminated, Zn-r-O for Zn-rich O-terminated,
Zn-p-Zn for Zn-poor Zn-terminated, O-r-Zn for O-rich Zn-
terminated.

The comparative evaluation of the original and predicted
global minimum structures across different ZnO surfaces re-
veals that, in most cases, the structures identified by our subset
screening approach are either identical to the original ones or
differ only by rotations or reflections (symmetry operations)
and are thus equivalent and degenerate. This demonstrates
the robustness of our methodology in identifying the global
minimum energy structures of Cu clusters on ZnO surfaces.

Specifically, we observed that the adsorption energy dif-
ferences between the original and predicted structures all fall
within the predefined tolerance ranges, supporting the validity
of the selected tolerances for different cluster sizes. The cases
where the predicted structures were merely rotated or reflected
versions of the originals include O-p-O-7, Zn-r-O-8, Zn-r-O-
16, Zn-p-Zn-4, Zn-p-Zn-5, and Zn-p-Zn-8.

For cases where the predicted structures differ from the
originals but still fall within the acceptable adsorption energy
tolerance, such as the following:

(i) O-r-Zn-8: The predicted structure differs from the orig-
inal but has an adsorption energy difference of only 0.012 eV,
well within the 0.054 eV tolerance, indicating it is still a valid
low-energy configuration.

(ii) O-r-Zn-24: Although the predicted configuration does
not visually match the original, the adsorption energy differ-
ence is 0.269 eV, within the 0.287 eV tolerance, demonstrating
that the method captures relevant structural variants.

Overall, these findings confirm that our method effectively
retains essential structural characteristics, even when minor
variations in orientation or configuration occur in some cases.
The alignment of adsorption energies within the defined tol-
erances reinforces the conclusion that our subset screening
approach is capable of accurately identifying the most sta-
ble configurations while significantly reducing computational
resources. This evaluation highlights the robustness of our
methodology, validating its application in the accelerated pre-
diction of stable structures in nanocluster systems.

B. Comparative evaluation with random baseline

1. Success Index and global minima capture

The Success Index is defined here as a measure of how
effectively our method recovers known low-energy structures,

including the global minimum. It is conceptually similar
to success probabilities or hit rates commonly employed in
studies evaluating the performance of global optimization
algorithms and structure prediction methodologies [25,36].
While the exact term “Success Index” may not be widely
used in the literature, analogous metrics are often reported in
terms of how frequently a given approach identifies known
global minima or near-global minima in repeated runs or in
subsets of selected structures. These benchmarks help assess
the method’s reliability in capturing the most physically sig-
nificant configurations, which is central to understanding the
potential energy landscape of a system.

In our implementation, the Success Index is presented as a
fraction, for example, “6/20” indicating that out of the top 20
low-energy structures (identified via exhaustive optimization),
six were included in our retained subset after screening. This
fraction offers a direct, transparent way to convey perfor-
mance. Even if only one of the top 20 structures is captured
(i.e., “1/20”), we consider the prediction a success. By setting
the reference set of low-energy structures and quantifying how
many are successfully recovered, we impose a stringent test of
our method’s capability. The fraction format underscores that
we do not merely calculate a ratio as a numerical value but
instead highlight how many target structures are found out of
how many were sought.

The chosen thresholds for the Success Index (e.g., 20 for
Cu4) represent a stringent criterion. Typically, a cluster of size
4 might have around 100 low-energy structures that could
be considered global minima due to their close energy and
structural similarity. However, by setting a more stringent
Success Index, we ensure that our method is robust and reli-
able in identifying the most stable configurations, even under
challenging conditions.

We further validate our method by comparing these frac-
tions against a random baseline of equal sample size. As
shown in Table VI and Table VII, for example, random se-
lection typically results in only “3/20” while our method
obtains “6/20” for the O-p-O-4 case, which demonstrates a
significant improvement and justifies the computational effort
and complexity of our approach. Through multiple cases in-
volving different Cu cluster sizes and ZnO surface types, we
consistently find that our methodology outperforms random
baselines in capturing global minima or near-global minima.
This consistent advantage reinforces the notion that integrat-
ing structural descriptors, similarity measures, and machine
learning-assisted selection leads to a more informed explo-
ration of the configuration space.

By comparison, we find that our approach outperforms
random baselines in general, both in terms of validity and
robustness, and especially in the performance of obtaining
global minima. The Success Index results indicate that our
method is generally effective across various cluster sizes and
surface types. Although the Success Index varies depending
on the specific case, the retained sample sizes are consis-
tently around 3000, demonstrating that our method efficiently
reduces the configuration space while still capturing a sig-
nificant portion of the low-energy structures. This balance
between efficiency and accuracy underscores the potential of
our approach for large-scale structural screening in materials
science.
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TABLE II. Comparison of the original and predicted graphics for the lowest energy structures obtained for adsorbed Cu clusters of various
sizes on O-poor O-terminated surface. Blue spheres represent Cu, and red and gray spheres represent O and Zn, respectively. The top ZnO
layer (i.e., involved in the reconstruction) atoms are highlighted with darker spheres, and the subsurface ZnO atoms are represented by faded
spheres. Thin green lines indicate cell boundaries.

No. Cu
4 5 6 7 

Original Predicted Original Predicted Original Predicted Original Predicted 

Adsorption energy w.r.t. bulk Cu/eV
-2.930 -2.930 -3.902 -3.902 -4.808 -4.808 -5.450 -5.333 

No. Cu
8 16 24 36 

Original Predicted Original Predicted Original Predicted Original Predicted 

Adsorption energy w.r.t. bulk Cu/eV
-6.133 -6.133 -9.193 -9.193 -9.852 -9.852 -10.655 -10.655 

TABLE III. Comparison of the original and predicted graphics for the lowest energy structures obtained for adsorbed Cu clusters of various
sizes on Zn-rich O-terminated surface. Blue spheres represent Cu, and red and gray spheres represent O and Zn, respectively. The top ZnO
layer (i.e., involved in the reconstruction) atoms are highlighted with darker spheres, and the subsurface ZnO atoms are represented by faded
spheres. Thin green lines indicate cell boundaries.

No. Cu
4 5 6 7 

Original Predicted Original Predicted Original Predicted Original Predicted 

Adsorption energy w.r.t. bulk Cu/eV
1.352 1.352 1.515 1.515 1.709 1.709 1.630 1.630 

No. Cu
8 16 24 36 

Original Predicted Original Predicted Original Predicted Original Predicted 

Adsorption energy w.r.t. bulk Cu/eV
1.414 1.414 1.113 1.397 -0.981 -0.981 -0.547 -0.547 
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TABLE IV. Comparison of the original and predicted graphics for the lowest energy structures obtained for adsorbed Cu clusters of various
sizes on Zn-poor Zn-terminated surface. Blue spheres represent Cu, and red and gray spheres represent O and Zn, respectively. The top ZnO
layer (i.e., involved in the reconstruction) atoms are highlighted with darker spheres, and the subsurface ZnO atoms are represented by faded
spheres. Thin green lines indicate cell boundaries.

No. Cu
4 5 6 7 

Original Predicted Original Predicted Original Predicted Original Predicted 

Adsorption energy w.r.t. bulk Cu/eV
0.209 0.209 -0.111 -0.111 -0.366 -0.366 -0.465 -0.465 

No. Cu
8 16 24 36 

Original Predicted Original Predicted Original Predicted Original Predicted 

Adsorption energy w.r.t. bulk Cu/eV
-0.354 -0.352 -0.366 -0.366 -1.070 -1.070 -2.943 -2.943 

TABLE V. Comparison of the original and predicted graphics for the lowest energy structures obtained for adsorbed Cu clusters of various
sizes on O-rich Zn-terminated surface. Blue spheres represent Cu, and red and gray spheres represent O and Zn, respectively. The top ZnO
layer (i.e., involved in the reconstruction) atoms are highlighted with darker spheres, and the subsurface ZnO atoms are represented by faded
spheres. Thin green lines indicate cell boundaries.

No. Cu
4 5 6 7 

Original Predicted Original Predicted Original Predicted Original Predicted 

Adsorption energy w.r.t. bulk Cu/eV
-1.459 -1.459 -1.926 -1.926 -2.307 -2.307 -2.460 -2.460 

No. Cu
8 16 24 36 

Original Predicted Original Predicted Original Predicted Original Predicted 

Adsorption energy w.r.t. bulk Cu/eV
-2.728 -2.716 -5.828 -5.828 -8.402 -8.133 -12.307 -12.307 
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TABLE VI. Evaluation results where O-p-O represents O-poor O-terminated surfaces, Zn-r-O represents Zn-rich O-terminated surfaces,
Zn-p-Zn represents Zn-poor Zn-terminated surfaces, and O-r-Zn represents O-rich Zn-terminated surfaces.

Case O-p-O-4 O-p-O-5 O-p-O-6 O-p-O-7 O-p-O-8 O-p-O-16 O-p-O-24 O-p-O-36

Success Index 6/20 6/18 5/15 6/12 4/10 3/8 3/7 3/5
Sample size 2866 3021 3053 3276 3234 3554 3481 3533
Global minima � � � � � � � �
Case Zn-r-O-4 Zn-r-O-5 Zn-r-O-6 Zn-r-O-7 Zn-r-O-8 Zn-r-O-16 Zn-r-O-24 Zn-r-O-36
Success Index 6/20 7/18 4/15 3/12 4/10 3/8 4/7 1/5
Sample size 3108 3086 3213 3614 3464 3597 3708 3753
Global minima � � � � � � � �
Case Zn-p-Zn-4 Zn-p-Zn-5 Zn-p-Zn-6 Zn-p-Zn-7 Zn-p-Zn-8 Zn-p-Zn-16 Zn-p-Zn-24 Zn-p-Zn-36
Success Index 4/20 7/18 2/15 3/12 4/10 4/8 5/7 3/5
Sample size 2759 2864 3179 3388 3481 3657 3592 3665
Global minima � � � � � � � �
Case O-r-Zn-4 O-r-Zn-5 O-r-Zn-6 O-r-Zn-7 O-r-Zn-8 O-r-Zn-16 O-r-Zn-24 O-r-Zn-36
Success Index 3/20 5/18 5/15 1/12 2/10 1/8 2/7 3/5
Sample size 2678 2988 3114 3205 3340 3556 3662 3676
Global minima � � � � × � × �

2. Local minima capture

In addition to evaluating our method’s ability to identify
global minima and related low-energy structures, it is also
critical to assess how effectively it captures the broader land-
scape of local minima. Local minima represent configurations
that are stable at the local level, often differing subtly in
structure and slightly in energy from the global minimum.
While these minima may not be the most energetically fa-
vorable overall, their presence provides valuable insights into
the complexity and richness of the potential energy surface.
Moreover, different local minimum structures can exhibit dif-
ferent local structural environments that may be of practical
importance (for example, as active catalyst sites). In a real
sample, it would be expected that structures resemble not
just the predicted global minimum, but also potentially those
corresponding to close local minima, especially if there are
large kinetic barriers for transitions from one local minimum

to another. Hence, by understanding how well our method
recovers these local minima compared to a purely random
selection of configurations, we can gauge its ability to map
out a more complete and nuanced picture of the structural
landscape.

The rationale behind this evaluation is twofold. First, the
presence of numerous local minima can make it challenging
to rely solely on global minima or a few low-energy structures
for a comprehensive understanding of a system’s stability
and morphological variety. By ensuring that our method ef-
fectively captures a significant portion of the local minima,
we increase the likelihood that we are not missing important
structural variants that could influence properties like catalytic
activity, surface reactivity, or thermodynamic stability. Sec-
ond, comparing our results against a random baseline helps
illustrate the added value and guidance that our methodology
provides. If our approach consistently outperforms random
sampling in capturing local minima, it affirms that the struc-

TABLE VII. Random baseline where O-p-O represents O-poor O-terminated surfaces, Zn-r-O represents Zn-rich O-terminated surfaces,
Zn-p-Zn represents Zn-poor Zn-terminated surfaces, and O-r-Zn represents O-rich Zn-terminated surfaces.

Case O-p-O-4 O-p-O-5 O-p-O-6 O-p-O-7 O-p-O-8 O-p-O-16 O-p-O-24 O-p-O-36

Success Index 3/20 5/18 1/15 1/12 3/10 1/8 1/7 3/5
Sample size 2866 3021 3053 3276 3234 3554 3481 3533
Global minima × × × × × × � �
Case Zn-r-O-4 Zn-r-O-5 Zn-r-O-6 Zn-r-O-7 Zn-r-O-8 Zn-r-O-16 Zn-r-O-24 Zn-r-O-36
Success Index 8/20 6/18 4/15 3/12 3/10 3/8 1/7 0/5
Sample size 3108 3086 3213 3614 3464 3597 3708 3753
Global minima × � × × � × � ×
Case Zn-p-Zn-4 Zn-p-Zn-5 Zn-p-Zn-6 Zn-p-Zn-7 Zn-p-Zn-8 Zn-p-Zn-16 Zn-p-Zn-24 Zn-p-Zn-36
Success Index 6/20 5/18 2/15 4/12 2/10 0/8 2/7 1/5
Sample size 2759 2864 3179 3388 3481 3657 3592 3665
Global minima × × � × × × � �
Case O-r-Zn-4 O-r-Zn-5 O-r-Zn-6 O-r-Zn-7 O-r-Zn-8 O-r-Zn-16 O-r-Zn-24 O-r-Zn-36
Success Index 5/20 6/18 7/15 3/12 1/10 0/8 1/7 2/5
Sample size 2678 2988 3114 3205 3340 3556 3662 3676
Global minima � × × × � × × �
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TABLE VIII. Proportions of total local minima captured by our method and random sampling for different Cu cluster sizes on various ZnO
surfaces, using 30% of the data points from 10 000 initial structures, where O-p-O represents O-poor O-terminated surfaces, Zn-r-O represents
Zn-rich O-terminated surfaces, Zn-p-Zn represents Zn-poor Zn-terminated surfaces, O-r-Zn represents O-rich Zn-terminated surfaces, Method
represents our methodology, and Random represents random sampling.

No. Cu

Surface type Comparison 4 5 6 7 8 16 24 36

O-p-O Method 40.98% 41.88% 40.17% 41.63% 40.23% 40.79% 39.08% 38.98%
Random 22.77% 43.16% 40.10% 38.96% 37.86% 33.20% 33.87% 33.29%

Zn-r-O Method 40.86% 43.07% 43.51% 46.40% 44.31% 41.22% 42.01% 41.76%
Random 42.19% 43.04% 42.13% 40.98% 39.35% 35.25% 34.57% 33.75%

Zn-p-Zn Method 39.83% 41.84% 42.29% 42.89% 43.07% 41.08% 39.97% 40.29%
Random 44.74% 44.38% 41.18% 39.38% 38.43% 34.24% 33.72% 33.30%

O-r-Zn Method 38.52% 41.67% 41.00% 41.25% 41.49% 41.26% 40.90% 40.74%
Random 45.15% 42.82% 40.90% 39.67% 38.47% 35.60% 34.11% 33.46%

tural descriptors, similarity measures, and selection strategies
we employ genuinely enhance exploration of the energy land-
scape, rather than simply adding computational overhead.

The data shown in Table VIII, aggregated over various sur-
faces and cluster sizes, show clear trends. For small clusters,
differences between our method and random sampling may
appear modest, with occasional instances where random se-
lection performs comparably or even slightly better. However,
as cluster size increases, our method’s advantage becomes
more pronounced. Across multiple surfaces, our method con-
sistently outperforms random sampling in capturing a larger
proportion of the local minima. This pattern suggests that
the structural features and informed selection strategies at the
core of our methodology scale effectively with complexity,
enabling it to navigate the energy landscape more intelligently
than an unguided approach.

In essence, while random sampling may occasionally
stumble onto local minima in simpler scenarios, our method’s
more systematic, data-driven selection process ensures that
as the system grows in size and complexity, it continues to
identify a broader and richer array of local minima. This su-
periority in capturing local minima reinforces the notion that
our approach is not just about finding the very best structures
but also about preserving the intrinsic diversity of the energy
landscape. Ultimately, this leads to a more comprehensive and
meaningful understanding of the supported Cu/ZnO nanoclus-
ter systems under study.

C. Sensitivity analysis

To further validate the robustness of our methodology, we
conducted a sensitivity analysis by adjusting the boundary
points’ SOS threshold ranges. The Success Index, global min-
ima, and sample size were evaluated as we varied the lower
and upper limits of the SOS range to examine how different
selections of boundary points affect the performance of our
method. This analysis helps demonstrate the impact of the
SOS thresholds on our results, guiding us to select the most
efficient balance between accuracy and computational cost.

a. Success Index sensitivity analysis. The Success Index is
a broader standard that measures the proportion of low-energy
structures captured by our method. By adjusting the SOS
threshold (both lower and upper bounds), we evaluate how

the Success Index changes as we alter the range of retained
boundary points.

As shown in Table IX, the results show that by adjusting
the SOS threshold ranges, the Success Index remains high
across most selections. This demonstrates the robustness of
our method and suggests that our SOS threshold selection
provides flexibility without sacrificing accuracy.

b. Global minima sensitivity analysis. The global minima
metric is more stringent than the Success Index, as it focuses
on identifying the actual lowest-energy structures from the full
set. We analyse how changes in the SOS threshold affect the
ability of our method to capture these critical configurations.

As shown in Table X, for the global minima, a lower
threshold around 55% ensures that we capture 100% of the
true global minima, and increasing the upper bound to 75%
further strengthens this capture. Selecting 55% as the lower
bound and 75% as the upper bound provides the optimal
balance between accurately capturing the global minima and
limiting the computational cost. This is why we chose these
particular values for our methodology, as they strike the best
trade-off between efficiency and performance.

c. Sample size sensitivity analysis. We also examine the
impact of varying the SOS thresholds on the average sample
size selected from the initial set. This is crucial for understand-
ing the computational savings our method provides.

As shown in Table XI, the sample size grows significantly
as the lower bound of the SOS range decreases, with a lower

TABLE IX. Success index sensitivity analysis: The vertical val-
ues of 45%–65% represent the lower limit (lower boundary point)
of the threshold. The horizontal values of 65%-85% represent the
upper limit (upper boundary point) of the threshold. The success
index inside represents the success index when the thresholds take
specific values.

Success Index 65% 70% 75% 80% 85%

65% 0% 75% 100% 100% 100%
60% 87.5% 100% 100% 100% 100%
55% 100% 100% 100% 100% 100%
50% 100% 100% 100% 100% 100%
45% 100% 100% 100% 100% 100%
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TABLE X. Global minima sensitivity analysis: The vertical val-
ues of 45%–65% represent the lower limit (lower boundary point) of
the threshold. The horizontal values of 65%–85% represent the upper
limit (upper boundary point) of the threshold. The percentage inside
represents the probability that the subset contains the global minima
when the thresholds take specific values.

Global minima 65% 70% 75% 80% 85%

65% 0% 25% 37.5% 37.5% 37.5%
60% 37.5% 62.5% 75% 75% 75%
55% 62.5% 87.5% 100% 100% 100%
50% 62.5% 87.5% 100% 100% 100%
45% 62.5% 87.5% 100% 100% 100%

threshold of 55% yielding approximately 3252 structures on
average when combined with an upper bound of 75%. This
sample size aligns well with the desired goal of reducing the
computational load while maintaining accuracy in capturing
global minima and structural diversity.

By performing this sensitivity analysis, we demonstrate
that the method is robust and flexible across different parame-
ter ranges. The selection of 55% as the lower bound and 75%
as the upper bound strikes the optimal balance, ensuring the
identification of critical structures while keeping the sample
size manageable and the computational load reasonable.

D. Divergence evaluation

In addition to evaluating how well our method captures
low-energy structures, it is equally important to determine
whether the selected subset of configurations adequately
represents the overall energy landscape. To address this,
we employ Kullback-Leibler (KL) divergence and Jensen-
Shannon (JS) divergence as distributional similarity metrics.
Both KL and JS divergences measure how closely the prob-
ability distribution of the selected subset’s energy levels
matches that of the full configuration set. Lower values of
these metrics indicate a closer match, implying that our
method preserves not just the stability characteristics (i.e.,
identifying global and near-global minima) but also the
broader structural diversity of the system.

While there are no universally fixed “acceptable” diver-
gence thresholds specific to nanocluster energy landscapes,

TABLE XI. Sample size sensitivity analysis: The vertical values
of 45%–65% represent the lower limit (lower boundary point) of the
threshold. The horizontal values of 65%–85% represent the upper
limit (upper boundary point) of the threshold. The number inside
represents the average sample size when the thresholds take specific
values.

Average sample size 65% 70% 75% 80% 85%

65% 0.00 758.13 1317.38 1692.13 1916.75
60% 924.75 1682.88 2242.13 2616.88 2841.50
55% 1934.88 2693.00 3252.25 3627.00 3851.63
50% 2956.50 3714.63 4273.88 4648.63 4873.25
45% 3840.38 4598.50 5157.75 5532.50 5757.13

comparative benchmarks can be gleaned from related fields
where distributional similarity measures have been employed.
In information theory, the JS divergence ranges between 0
(identical distributions) and 1 (completely disjoint distribu-
tions), and values below 0.4 often indicate reasonably similar
distributions [55]. Within computational chemistry and mate-
rials science, studies have seldom defined strict cutoffs, but a
JS divergence near or below this range is typically viewed as
reflecting a representative sampling of the underlying distribu-
tion [36,56]. Similarly, KL divergence, which can range from
0 to infinity, does not have a universally accepted threshold;
however, smaller values (e.g., below five) suggest that the
selected distribution does not drastically deviate from the orig-
inal, especially given the complexity and high dimensionality
of energy landscapes in nanocluster systems [57].

As shown in Table XII, KL divergence values range from
approximately 1.0 to 5.6, and JS divergence values generally
fall between 0.2 and 0.5. Although the upper end of the JS
divergence extends slightly beyond the 0.4, most cases remain
at or near levels consistent with relatively close resemblance
to the full energy landscape distribution. Given the inherent
complexity and variability of supported nanocluster systems,
these values are indicative of a reasonably faithful repre-
sentation. In other words, while we aggressively reduce the
original 10 000 configurations to about 3000, we still maintain
a distribution of energy states that does not heavily skew away
from the full set’s profile. The relatively low JS divergence
across many scenarios implies that the subset includes a broad
spectrum of low- and moderate-energy configurations, rather
than focusing solely on the absolute lowest energy states.

These observations suggest that our method strikes a prac-
tical balance: it efficiently narrows down the configuration
space while retaining a structurally and energetically rep-
resentative subset. By not diverging significantly from the
original distribution, the methodology ensures that impor-
tant structural variations and potential intermediate states
are not entirely lost. This, in turn, enhances the value of
the screened subset for further analyses, such as electronic
structure calculations, dynamical simulations, or catalytic re-
activity assessments.

Overall, the low divergence values support the conclusion
that our methodology is robust, capturing not only the key
stable configurations but also preserving a representative cross
section of the energy landscape. Thus, the approach maintains
its utility for a wide array of applications requiring a compre-
hensive understanding of complex nanocluster systems.

IV. CONCLUSIONS

We have developed and validated a machine learning-
based methodology for accelerating the prediction of stable
structures in nanoclusters, with a specific application to Cu
clusters on various polar ZnO surfaces. By integrating SOAP
descriptors, feature compression, REMatch kernel similarity
measurement, and Stochastic Outlier Selection (SOS), we ef-
fectively reduced the computational burden associated with
global optimization techniques while maintaining a high level
of accuracy in identifying low-energy structures.

Our approach demonstrated significant efficiency gains by
focusing on approximately 30% of the initial configurations,
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TABLE XII. KL&JS divergence results where O-p-O represents O-poor O-terminated surfaces, Zn-r-O represents Zn-rich O-terminated
surfaces, Zn-p-Zn represents Zn-poor Zn-terminated surfaces, and O-r-Zn represents O-rich Zn-terminated surfaces.

Case O-p-O-4 O-p-O-5 O-p-O-6 O-p-O-7 O-p-O-8 O-p-O-16 O-p-O-24 O-p-O-36

KL divergence 4.3711 3.5466 2.4759 1.3512 2.0751 1.6046 1.7458 1.5762
JS divergence 0.4399 0.4163 0.3365 0.2264 0.3202 0.3954 0.2955 0.2826
Case Zn-r-O-4 Zn-r-O-5 Zn-r-O-6 Zn-r-O-7 Zn-r-O-8 Zn-r-O-16 Zn-r-O-24 Zn-r-O-36
KL divergence 1.1165 5.6184 2.3643 2.2178 1.9296 1.1920 1.7201 3.2653
JS divergence 0.2144 0.5127 0.3731 0.2958 0.2893 0.3161 0.2993 0.4755
Case Zn-p-Zn-4 Zn-p-Zn-5 Zn-p-Zn-6 Zn-p-Zn-7 Zn-p-Zn-8 Zn-p-Zn-16 Zn-p-Zn-24 Zn-p-Zn-36
KL divergence 1.4935 2.4711 2.6437 3.0683 2.0300 1.9037 1.6362 2.2937
JS divergence 0.2251 0.3506 0.3662 0.4204 0.3292 0.3042 0.3343 0.4017
Case O-r-Zn-4 O-r-Zn-5 O-r-Zn-6 O-r-Zn-7 O-r-Zn-8 O-r-Zn-16 O-r-Zn-24 O-r-Zn-36
KL divergence 4.2210 2.2109 4.4510 1.8765 2.8953 1.7315 2.1357 1.0093
JS divergence 0.4626 0.3026 0.4451 0.2784 0.3798 0.3553 0.3358 0.2147

successfully capturing the essential low-energy structures
that are of primary interest. The success of our methodol-
ogy was confirmed through a rigorous evaluation process,
where the selected subsets consistently included the global
minimum energy structures across different cluster sizes.
This validation underscores the potential of our method to
streamline computationally intensive structural screening pro-
cesses in materials science. Furthermore, the use of KL
and JS divergences provided additional evidence that the
distribution of the retained structures closely matches that
of the original dataset, reinforcing the robustness of our
approach.

Looking ahead, there is substantial potential to further
enhance this methodology. One promising direction is the
incorporation of supervised learning techniques to refine the
selection process. By training models on known datasets, it
may be possible to predict the likelihood of specific configura-
tions being low-energy structures with even greater accuracy.
This could further reduce the computational demands of struc-
tural optimization, making the process more efficient and
scalable.

In summary, our work represents a significant step forward
in the application of machine learning to structural prediction
in nanoclusters. The framework we have developed not only
improves the efficiency of identifying stable configurations
but also opens avenues for the integration of advanced ma-
chine learning techniques in the future.
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