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Figure 1. Results of VTON 360. Our VTON 360 enables high-fidelity 3D Virtual Try-On (VTON) by seamlessly adapting E-commerce
garments onto a clothed 3D human model, supporting full 360◦ view rendering. The highlighted bounding boxes (dashed line) demon-
strate our method’s ability to preserve intricate clothing details and patterns (e.g., collar accessories, horizontal line patterns, logos, texts,
numbers) across diverse garment types.

Abstract
Virtual Try-On (VTON) is a transformative technology in
e-commerce and fashion design, enabling realistic digital
visualization of clothing on individuals. In this work, we
propose VTON 360, a novel 3D VTON method that ad-
dresses the open challenge of achieving high-fidelity VTON
that supports any-view rendering. Specifically, we leverage
the equivalence between a 3D model and its rendered multi-
view 2D images, and reformulate 3D VTON as an extension
of 2D VTON that ensures 3D consistent results across mul-
tiple views. To achieve this, we extend 2D VTON models to
include multi-view garments and clothing-agnostic human
body images as input, and propose several novel techniques
to enhance them, including: i) a pseudo-3D pose repre-
sentation using normal maps derived from the SMPL-X 3D
human model, ii) a multi-view spatial attention mechanism
that models the correlations between features from differ-
ent viewing angles, and iii) a multi-view CLIP embedding
that enhances the garment CLIP features used in 2D VTON
with camera information. Extensive experiments on large-
scale real datasets and clothing images from e-commerce
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platforms demonstrate the effectiveness of our approach.
Project page: https://scnuhealthy.github.io/
VTON360.

1. Introduction

Virtual Try-On (VTON) enables realistic digital visualiza-
tion of clothing on individuals and has emerged as a trans-
formative technology in e-commerce and fashion design.
While significant research efforts have been made on 2D
VTON solutions [8, 12, 19, 33, 39], these approaches are in-
herently limited in their representation of view-related fea-
tures. To overcome this limitation and enable high-fidelity
any-view rendering, 3D VTON methods were introduced.

3D VTON requires accurate garment transfer onto a 3D
human body while ensuring realistic garment fitting, texture
preservation, and 3D consistency. The two primary aims of
3D VTON are i) achieving high-fidelity and ii) supporting
any-view rendering. Leveraging the inherent capability of
3D models for any-view rendering, early 3D VTON meth-
ods [13, 15, 28] make clothing simulation on synthetic hu-
man bodies. Specifically, these methods utilized 3D scan-
ners to capture clothing meshes, followed by the develop-
ment of specialized dressing algorithms. Although effec-



tive, these methods rely on costly 3D scanning equipment
and the physical presence of the human body/clothing (i.e.,
not fully virtual), restricting their practicality in real-world
applications. As a byproduct, most early methods focused
on developing geometrically correct dressing algorithms us-
ing standard templates of human body and clothing mod-
els. Addressing this limitation, researchers extended 3D
VTON by introducing algorithms that reconstruct 3D cloth-
ing models from input images, enabling the use of image-
based clothing inputs [3, 32, 41, 42]. However, since in-
put clothing images (usually frontal) are inherently 2D and
lack multi-view information, this approach struggles to re-
construct high-fidelity clothing models that can be rendered
well from all viewing directions.

To complement this missing information, DreamV-
TON [50] introduces a novel approach that leverages Text-
to-Image (T2I) diffusion models to reconstruct both the hu-
man body and clothing from input images. Its key insight is
that T2I models learned view-agnostic “concepts” of both
bodies and garments during their training, and that the cor-
responding concepts for the input body and clothing images
can be obtained using LoRA [21]. By utilizing Score Dis-
tillation Sampling (SDS) [37], DreamVTON can generate
visual-pleasing 3D VTON results by ensuring consistency
between renderings from arbitrary viewpoints and the con-
cepts. Nonetheless, DreamVTON’s high flexibility comes
at the cost of low fidelity. This limitation stems from the
fact that the concepts learned by T2I models are semantic
in nature, thus lacking 3D geometric consistency and pixel-
level accuracy with respect to the input body and clothing
images. Recently, a concurrent work, namely Gaussian-
VTON [6], partially addressed this limitation by formulat-
ing 3D VTON as a 3D scene editing task, where a given 3D
human model is edited using multi-view images generated
by 2D VTON methods. While it significantly enhances the
fidelity of the human body, the fidelity and 3D consistency
of clothing remain problematic, as there are no 2D VTON
methods that can generate multi-view images with 3D con-
sistency. Therefore, to the best of our knowledge, achieving
high-fidelity 3D VTON that supports any-view rendering
remains an open challenge.

In this work, we address the above-mentioned challenge
via proposing VTON 360, a novel 3D VTON method that
achieves high-fidelity VTON from arbitrary viewing direc-
tions. Similar to GaussianVTON [6], our method edits a
given 3D human model by inpainting the rendered images
using a latent diffusion model. However, we set ourselves
apart through our novel garment fidelity preservation strat-
egy that can generate high-fidelity on-body garments in all
viewing directions. Specifically, we first extend both the
garment and clothing-agnostic human body inputs to typical
2D VTON models to leverage multi-view information, in-
cluding paired front and back view garment images as well

as a set of multi-view clothing-agnostic human body im-
ages sampled from random azimuth angles. Then, we pro-
pose several novel enhancements to bridge the gap between
typical 2D VTON methods and our multi-view 3D consis-
tency requirements: i) We propose a pseudo-3D pose repre-
sentation using normal maps derived from the SMPL-X 3D
human model, which captures fine-grained surface orienta-
tion details and provides more consistent geometry across
views compared to the 2D pose representations (semantic
segmentation maps) used in 2D VTON models. ii) We de-
sign a Multi-view Spatial Attention mechanism that mod-
els the correlations between features from different view-
ing angles, featuring a novel “correlation” matrix model-
ing the relationships among different input views. iii) We
propose a multi-view CLIP embedding that enhances the
garment CLIP embedding used in 2D VTON methods with
camera information, thereby facilitating network learning
of features relevant to a particular view. Together, these
innovations enable our 2D VTON model to generate high-
quality, multi-view and 3D-consistent virtual try-on results.
Extensive experiments on Thuman2.0 [55] and MVHuman-
Net [51] datasets demonstrate that our method achieves high
fidelity 3D VTON which supports any-view rendering. In
addition, we show the effectiveness and generalizability
of our methodology by testing it using garments from e-
commerce platforms. Our conclusions include:
• We propose a novel 3D Virtual Try-On (VTON) method,

namely VTON 360, which achieves high-fidelity VTON
from arbitrary viewing directions.

• Leveraging the equivalence between a 3D model and
its rendered multi-view 2D images, we reformulate 3D
VTON as an extension of 2D VTON that ensures con-
sistent results across multiple views. Specifically, we in-
troduce several novel techniques, including: (i) pseudo-
3D pose representation; (ii) multi-view spatial attention;
and (iii) multi-view CLIP embedding. These innovations
enhance traditional 2D VTON models to generate multi-
view and 3D-consistent results.

• Extensive experimental results on two large real datasets
as well as real clothing images from e-commerce plat-
forms demonstrate the effectiveness of our approach.

2. Related Work
2D Virtual Try-On. 2D Virtual Try-On (VTON) aims to
transfer a desired garment to the corresponding region of a
target human image while preserving the human pose and
identity. Early methods [2, 8, 10, 11, 16, 18, 29, 31, 38,
54, 56] use Generative Adversarial Networks (GANs) to de-
form the garments to match the target body shape, which a
critical step for achieving realistic VTON. However, accu-
rately adapting to diverse real-world conditions remains a
significant challenge. Addressing this issue, recent meth-
ods [12, 19, 33, 60] reframe 2D VTON as a conditioned in-



painting task, leveraging the strong priors provided by diffu-
sion models [20, 43, 45] to achieve promising results. This
strategy is further improved by [9, 26, 53], which introduce
a ReferenceNet to extract hierarchical garment features and
apply attention mechanisms to condition the Main UNet.

3D Virutal Try-On. For 3D Virtual Try-On (VTON), tra-
ditional methods [4, 13, 15, 28, 36] rely on 3D scanning or
cloth simulation to generate highly precise body and gar-
ment geometry. These methods were then extended by
learning-based methods [3, 32] that employ differentiable
rendering to dress the SMPL [30] model with a desired
garment mesh. Despite their effectiveness, such methods
rely on costly 3D scanning and the physical presence of
human body/clothing, limiting their application in the real
world. Addressing this limitation, M3D-VTON [59] pro-
poses a depth-based 3D VTON framework to reconstruct
3D clothed human models from 2D human and garment
images, but the results often suffer from explicit warp-
ing artifacts. To improve 3D VTON results, recent meth-
ods [23, 24, 50, 62] resort to text-to-image (T2I) diffusion
models and employ the Score Distillation Sampling (SDS)
loss [40] to ensure consistency among different viewing di-
rections. Specifically, TeCH [24] adapts the generative pri-
ors of T2I diffusion model to the specific person and clothes
by training descriptive text prompts with DreamBooth [40].
DreamWaltz [23] leverages Pose ControlNet [57] to attain
clothed human body models. DreamVTON [50] introduces
a multi-concept LoRA [21] to personalize the T2I diffusion
model, and uses a template-based optimization mechanism
that combines with SDS loss to better preserve patterns on
the garment. Although effective, these methods often pro-
duce results lacking in fidelity, as the concepts learned by
T2I models are semantic rather than at the pixel level. Con-
current to our work, GaussianVTON [6] proposes an alter-
native approach by combining Gaussian Splatting [25] with
pre-trained 2D VTON models and formulate it as an editing
task. However, since there are no 2D VTON methods that
can generate multi-view images with 3D consistency, the fi-
delity and 3D consistency of the clothing generated remain
problematic.

Radiance Field-based 3D Human or Scene Editing. Re-
cently, radiance field-based editing has attracted significant
interest due to its efficient differentiable rendering capabil-
ities, sparking substantial advancements in text-driven 3D
editing. For example, InstructN2N [17] employ an image-
based diffusion model InstructP2P [5] to modify the ren-
dered image by the user’s text description with a variant
of the score distillation sampling (SDS) [37] loss. Gaus-
sianEditor [7] applies Gaussian Splatting [25] as 3D rep-
resentation instead of NeRF, adopting Gaussian semantic
tracking to track target Gaussian values, significantly im-
proving editing speed and controllability. To enable accu-

rate location and appearance control, subsequent works [47,
61] specify the editing region using the attention score or
with a segmentation model. TIP-Editor [63] proposes a con-
tent personalization step dedicated to the reference image
based on LoRA, achieving the editing following a hybrid
text-image prompt. GaussCtrl [48] leverage depth condi-
tions and attention-based latent code alignment to achieve
3D-aware multi-view consistent editing instead of itera-
tively editing single views using SDS loss. However, these
works primarily focus on global appearance modifications
within a text-driven pipeline, while our approach empha-
sizes preserving fine textural details from different viewing
directions throughout the editing process.

3. Preliminary
Latent Diffusion Model. Latent Diffusion Model [39] is a
variant of diffusion models that performs denoising within
the latent space of a Variational Autoencoder (VAE) [27].
During training, given a fixed encoder E , an input image x
is transformed into its latent representation z0 = E(x). A
conditional diffusion model ϵ̂θ, typically implemented with
a UNet architecture, is then trained using a weighted de-
noising score matching objective:

LLDM = Ez,c,ϵ,t[ϵ− ∥ϵ̂θ(zt; c, t)∥22] (1)

where zt := αtx + σtϵ denotes the forward diffusion pro-
cess at timestep t; αt, σt are time-dependent functions de-
fined by the diffusion model formulation; c denotes the con-
ditional input and ϵ ∼ N (0,1) is Gaussian noise. Dur-
ing inference, data samples are generated by initiating from
Gaussian noise zT ∼ N (0,1) and iteratively refining it us-
ing a DDIM [44] sampler.

4. Method
Our method leverages the equivalence between a 3D model
and its rendered multi-view 2D images to achieve high-
fidelity, any-view 3D VTON. Specifically, as Fig. 2 shows,
given an input 3D human model and a garment image, our
method 1) renders the 3D model into multi-view 2D images
and 2) formulates 3D VTON as a consistent, unified 2D
VTON process across these rendered views; 3) By recon-
structing the edited images into a 3D model using existing
3D reconstruction methods, we ensure visual coherence and
precise garment alignment from any viewing angle. Among
them, the second step is crucial as existing 2D VTON meth-
ods [9, 26, 53] lack 3D knowledge, preventing them from
generating multi-view images with 3D consistency.

To address this challenge, we propose several novel tech-
niques (Sec. 4.2) that equip a typical 2D VTON network
(Sec. 4.1), which is built on a latent diffusion model [39],
with the capability to generate 3D-consistent results. We
use Gaussian Splatting [25] as our 3D representation.



Figure 2. Overview of VTON 360. Given an input 3D human model Gsrc and a pair of garment images (gf , gb), our method 1) renders
Gsrc into multi-view 2D images (left) and 2) edits the rendered multi-view 2D images (middle); 3) reconstructs the edited images into a 3D
model GVTON (right). In the crucial step 2), we propose three novel techniques to equip a typical 2D VTON network with the capability
to generate 3D-consistent results: 1) Pseudo-3D Pose Input, 2) Multi-view Spatial Attention, and 3) Multi-view CLIP Embedding.

Figure 3. DensePose (2D) vs. SMPL-X normal map (pseudo-
3D) representations. DensePose applies uniform labels per body
part, lacking 3D consistency across views and causing artifacts and
temporal inconsistencies (highlighted with red boxes). In contrast,
SMPL-X normal maps capture fine surface details, ensuring geo-
metric coherence and stable, realistic shading across views.

4.1. Recap of 2D VTON Framework

Following previous works [12, 26, 53], we formulate 2D
VTON as an exemplar-based inpainting problem, aiming to
fill an input clothing-agnostic image A with a given gar-
ment image g, where A is obtained following the method
used in [53]. As illustrated in Fig. 2 (middle), the network
architecture is based on the latent diffusion model [39] with

an encoder E and comprises two components:
• A GarmentNet [9, 53] that extracts features from E(g).
• A Main UNet that inpaints A according to i) detailed gar-

ment features extracted by the GarmentNet; ii) the 2D
pose of A represented by semantic labels using Dense-
Pose [14]; iii) CLIP embeddings of input garment g.
Among them, i) and ii) together with noise are input to
the self-attention layers, while iii) is input to the cross-
attention layers of the Main UNet.

Both the GarmentNet and the Main UNet share the same
network architecture.

4.2. Multi-view 2D VTON with 3D Consistency
To enable the aforementioned 2D VTON model to generate
multi-view and 3D-consistent results, we propose the fol-
lowing novel enhancements to its design:
Multi-view Inputs. We extend both inputs to the model:
• Multi-view Garment Inputs: We extend the input garment

representation from a single image g to paired front and
back view images gf , gb, providing comprehensive gar-
ment information across all viewing angles. Accordingly,
we use the encoder E to encode gf , gb into their latent rep-
resentations E(gf ), E(gb) and feed them into GarmentNet
to obtain their multi-layer features F lf and F lb at layer l,
respectively.

• Multi-view Clothing-agnostic Image Inputs: Based on



the equivalence between a 3D human model and its ren-
dered multi-view 2D images, we extend the input human
body representation from a single, clothing-agnostic im-
age, A, to a set of m multi-view images, denoted as
A1,A2, ...,Am. These images are sampled from ran-
dom azimuth angles, allowing the 2D VTON model to
access comprehensive, multi-view information from the
input 3D human model.

Pseudo-3D Pose Input. As shown in Fig. 3, the 2D Dense-
Pose representations [14] commonly used in state-of-the-art
2D VTON methods [9, 26] assign a uniform semantic label
to all pixels within each body part (e.g., thigh), inherently
lack 3D geometric consistency across multiple views, and
often introduce artifacts and temporal inconsistencies. To
address these limitations, we propose a novel pseudo-3D
pose representation: the normal maps N derived from the
SMPL-X [35] model of the input body. These normal maps
capture fine-grained surface orientation details, providing
a more consistent representation across views by preserv-
ing geometric structure in the 3D space. Furthermore, they
enable smoother, temporally stable transitions and realistic
shading effects across multi-view scenarios. In practice, we
employ a lightweight PoseEncoder E ′ [22] and feed E ′(N)
into the Main UNet. We obtain the SMPL-X model from the
multi-view images of the input body using EasyMoCap [1].

Accordingly, we concatenate three components as the
enhanced input to the Main UNet: i) a noise latent zt; ii) the
encoded pseudo-3D poses E ′(N1), E ′(N2), ..., E ′(Nm);
and iii) the encoded multi-view clothing-agnostic images
E(A1), E(A2), ..., E(Am). Let F l1, F

l
2, ..., F

l
m be the fea-

ture representations at layer l of the Main UNet, and recall
the garment features F lf and F lb defined above, we enhance
the self-attention layers of the Main UNet as:
Multi-view Spatial Attention. To cope with the aforemen-
tioned multi-view input features and ensure their consis-
tency, we draw insights from the temporal attention layer
commonly used in video generation and editing [49, 58] and
extend it to our multi-view spatial attention layer, denoted
as MVAttention. The key distinction of our MVAttention
is that its input multi-view features F l1, F

l
2, ..., F

l
m are from

images captured from non-uniform spatial intervals, with
the viewing angles varying randomly. Consequently, fea-
tures from similar views exhibit a higher correlation, while
those from distinct views are largely independent. To model
this relationship, we construct a “correlation” matrix C
based on the angular disparity obtained from camera rota-
tion matrices of the input multi-view images, and define our
MVAttention as follows:

Fl = [F l1 ⊕ F l2 . . .⊕ F lm], F̂l = [Fl ⊕ F lf ⊕ F lb ]

Q =WQ Fl, K =WK F̂l, V =WV F̂l

Ai = softmax(
Qi × (Ci ·KT )√

d
), Hl

i = Ai × Vi

(2)

where i ∈ {1, 2, ...,m} denotes i-th view; the Query
Q comes directly from Fl and the concatenation of
[Fl, F lf , F

l
b ] serves as the key K and the value V ; ⊕ indi-

cates matrix concatenation along the token axis; d denotes
the dimension;WQ,WK ,WV represent the linear transfor-
mation matrices; we omitted the l of the attention matrices
and parameters for simplicity; C ∈ Rm×m, Ci represents
i-th row in C, and its “correlation” value between i-th and
j-th features is Cij :

Cij = ((trace(RTi Rj)− 1)/2 + 1)/2 (3)

where Ri and Rj are the extrinsic rotation matrices of the
corresponding camera views, (trace(RTi Rj) − 1)/2 is the
cosine value of the angle between these camera views.
Multi-view CLIP Embedding. Camera viewpoints can
serve as an effective condition signal to enhance 3D con-
sistency in video content generation [52]. Building on this
insight, we incorporate camera condition within our try-on
network by encoding camera parameters as an additional to-
ken, enabling the generation of more consistent multi-view
images. Specifically, we define a world coordinate system
in which the camera faces the subject directly. For each in-
put image (view) Ai, 1 ≤ i ≤ m, we extract the rotation
matrix from the camera’s corresponding extrinsic matrix.
This rotation matrix is then reshaped into a 9-dimensional
tensor ri, which undergoes positional encoding to effec-
tively integrate the camera parameters into the feature rep-
resentation F ci .

F ci = (sin(20πri), cos(2
0πri), ...,

sin(2L−1πri), cos(2
L−1πri))

(4)

where L is the length of positional embedding. We then
project F ci to match the dimensionality of the garment CLIP
image embedding F g via an MLP and concatenate them
along the token axis to form Yi. This combined representa-
tion, Yi, is subsequently used in the key Kx and value Vx of
the cross-attention layers of the Main UNet:

Yi = F g⊕MLP(F ci )

Qx =WQ
x Hl

i, Kx =WK
x Yi, Vx =WV

x Yi

F
(l+1)
i = softmax(

QxK
T
x√

dx
)Vx,

(5)

where Hl is the output of the MVAttention of the l-th
layer; we omitted the l of the cross attention matrices and
parameters for simplicity.
Training. Our enhanced multi-view 2D VTON network
can be trained by minimizing the following latent diffusion
model loss function:

Lldm = Ezt,η,ψ,ϵ,t
[
∥ϵ− ϵθ(zt, t, η, ψ, ζ))∥22

]
, (6)



Figure 4. Illustration of the proposed Multi-view Spatial At-
tention. Query (Q): multi-view features Fl; Key (K) and Value
(V): concatenation of Fl and garment features F l

f and F l
b . The at-

tention score between viewpoints i and j is modulated by a weight
Cij , determined by the cosine of the angle between them.

where η = [E(gf ); E(gb); E(Ni)
m
i=1] represents the input

latent garment images and latent normal maps; ζ =

[E ′(Ai)
m
i=1] denotes the input latent clothing-agnoistic im-

ages; ψ = Y is the proposed multi-view CLIP embedding.

5. Experiments
5.1. Experimental Setup
Datasets. We conduct experiments on two public datasets:
Thuman2.0 [55] and MVHumanNet [51]. Thuman2.0 com-
prises 526 reconstructed clothed human scans, from which
we render multi-view input images. Of these samples, 426
are used for training, while the remaining 100 are set aside
for testing. To further evaluate the effectiveness and ro-
bustness of our method, we also perform experiments on
MVHumanNet, a large-scale dataset of multi-view human
images that encompasses a diverse range of subjects, daily
outfits and motion sequences. The images in MVHumanNet
are captured using a multi-view system with either 48 or 24
cameras. We use 4,990 subjects from this dataset, allocat-
ing 4,790 to training and 200 for tests. For each subject,
we randomly select two frames of multi-view images from
its entire motion sequence. While MVHumanNet provides
multi-view images directly for editing and reconstruction,
we render uniformly distributed views around each human
subject in Thuman2.0 to ensure consistent input.

Baselines. We primarily compare our method with three ex-
isting methods: DreamWaltz [23], GaussCtrl [48], and TIP-
Editor [63]. DreamWaltz is a method designed for directly
generating 3D human bodies based on textual descriptions,
while GaussCtrl and TIP-Editor are two radiance-based
editing methods. GaussCtrl is based on Stable Diffusion,
using a description-like prompt to edit the scene. TIP-Editor
accepts both text and image prompts. We configure it by

specifying the human body as the editing region and the de-
sired garment as the image prompt. We use ChatGPT to
generate the text prompts corresponding to the clothing im-
ages.
Evaluation Metrics. For quantitative evaluation, we assess
garment-to-person alignment between the edited person and
the reference image. Following [63], we calculate the aver-
age DINO similarity [34] between the reference image and
the rendered multi-view images of the edited 3D scene. Ad-
ditionally, to evaluate multi-view consistency, we compute
the CLIP Directional Consistency Score as outlined in [17].
Given the large scale of experiments (repeated 3DGS recon-
struction), we selected a subset of examples from the dataset
for metric evaluation. Specifically, from the test sets of Thu-
man and MVHumanNet, we randomly sampled 10 human
scans each, performing virtual try-on with 6 randomly cho-
sen garments per human scan.

We further conducted a user study involving 50 partici-
pants who rated the results of our method and three base-
line methods based on two criteria: overall “Quality” and
“Alignment” with the reference image. Each evaluation
consisted of two questions: (1) Which method produces the
highest quality of the edited 3D human? and (2) Which
method achieves the most consistent alignment with the tar-
get clothing? Participants viewed the VTON results as ro-
tating randomized video sequences.
Implementation Details. During pre-processing, we crop
the multi-view images to the bounding box around the per-
son and resize them to a resolution of 768 × 576. The
front view and the back view of garment images are ob-
tained from the corresponding clothed human images. After
editing, we pad the images back to their original size. The
data processing pipeline is the same for both Thuman2.0
and MVHumanNet datasets.

The Main UNet and the GarmentNet are initialized by
the Stable Diffusion V1.5 [39]. The training process is di-
vided into two stages. In the first stage, each view is trained
independently, during which we establish the feature extrac-
tion capabilities of both the PoseEncoder and GarmentNet,
as well as the generative capability of the Main UNet. The
second stage involves multi-view training, where we ran-
domly select M views for each human subject. This stage
is focused on training the proposed MVAttention module
to enhance the network’s ability to maintain consistency
across views. Due to memory constraints, we setM = 8 for
the training phase. During the testing phase, we uniformly
sampled 32 views from a 360-degree rotation around the
subject. The editing of these 32 views is conducted in two
batches, with each batch processing M = 16 views.

5.2. Comparisons with State-of-the-Art Methods
Qualitative Evaluation. Fig. 5 shows visual comparisons
between our method and the baselines. DreamWaltz [23]



Method Thuman2.0 [55] MVHumanNet [51]
CLIPcons ↑ DINOsim ↑ Votequality Votealign CLIPcons ↑ DINOsim ↑ Votequality Votealign

DreamWaltz [23] 0.887 0.556 0.46% 1.54% 0.935 0.495 0.46% 0.46%
TIP-Editor [63] 0.939 0.569 0.92% 0.62% 0.948 0.512 2.15% 1.38%
GaussCtrl [48] 0.931 0.577 1.08% 1.38% 0.938 0.521 1.69% 1.23%

Ours 0.923 0.633 97.54% 96.46% 0.933 0.623 95.69% 96.92%

Table 1. Quantitative comparisons. CLIPcons denotes the CLIP Direction Consistency Score. DINOsim is the DINO similarity.

Figure 5. Qualitative comparison. The first two rows show the results on Thuman2.0 dataset while the last two rows show the results
on MVHumaNet dataset. Our method achieves good texture preservation (highlighted by the blue boxes), while three baseline methods
mostly fail.

regenerates 3D clothed humans from text prompts but strug-
gles to accurately retain both body and clothing characteris-
tics. GaussCtrl [48], lacking support for image prompts,
fails to maintain detailed clothing textures. While Tip-
Editor [63] leverages Lora [21] for personalization, it en-
counters difficulties in consistently mapping clothing inputs
from two views into the 3D human because the personalized
concept are semantic in 2D space. In contrast, our method
effectively preserves intricate clothing details, such as text,
stripes, and logos.

Quantitative Evaluation. Tab. 1 shows the results for the
CLIP Directional Consistency Score and DINO similarity
on Thuman2.0 and MVHumanNet datasets. Our approach
surpasses other methodes on DINOsim, clearly illustrating

the superiority of our method in terms of garment texture
preservation. While our results on CLIPcons are compara-
ble to those of other methods, it is important to note that
these methods incorporate the SDS loss, which to some ex-
tent smooths the representation of humans in 3D space. Ad-
ditionally, the ”flatter” textures of other methods could also
result in artificially higher consistency scores. Furthermore,
user studies have shown that our method significantly ex-
ceeds baselines in terms of edited 3D human quality and
the alignment of clothing details.

5.3. Visual Results using E-commerce Garment

Fig. 6 showcases VTON results using garments from the
MVG dataset [46], whose images are from e-commerce



Original 3DGS
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Figure 6. Generalization to e-commerce garments (the MVG
dataset). Our method, trained on the THuman2.0 dataset, shows
strong generalizability when applied to e-commerce garments. For
clarity in visualization, we display garment images on human
models; however, in the actual VTON process, the garments are
segmented from the models using parse maps.

platforms like YOOX NET-A-PORTER, Taobao, and Tik-
Tok*, and a model trained on the Thuman2.0 dataset [55].
The results demonstrate that our method effectively pre-
serves intricate garment details and textures. For instance, it
accurately maintains the stripe patterns in the first row, the
cute tie in the second row, and the buttons in the third row,
highlighting the robustness of our approach in handling di-
verse and realistic clothing items.

5.4. Ablation Study

We conduct an ablation study on Thuman2.0 dataset in
Tab. 2 and Fig. 7 to evaluate the impact of our three pro-
posed modules in enhancing a typical 2D VTON network
with 3D-consistent generation capabilities. Starting with
the 2D VTON baseline [53] using DensePose, we progres-
sively replace DensePose with our pseudo-3D pose, incor-
porate multi-view CLIP embeddings, and ultimately inte-
grate MVAttention in the final configuration. Results in
Tab. 2 indicate that each module contributes to metric im-
provements. Fig. 7 visualizes an example of multi-view im-
age editing. The incorporation of pseudo-3D pose substan-
tially improves limb generation compared to the 2D VTON
baseline. Comparing rows 4 and 5, prior to the integration
of multi-view CLIP embedding, the model captures limited
spatial information, resulting in detail loss at specific angles
(columns 3, 4, and 6). Finally, the proposed MVAttention
achieves a more coherent generation across views.

*https://net-a-porter.com, www.taobao.com, www.douyin.com

Baseline:
2D VTON

+ Pseudo -3D 
Pose

+  Multi-view 
CLIP Embedding

+  Multi-view 
Spatial Attention

Garment

Original 
images

Figure 7. Visualization of the impact of the three proposed
techniques on multi-view consistent editing. The red boxes
highlight the artifacts. Starting from the 2D VTON baseline,
the pseudo-3D pose improves limb generation quality, multi-view
CLIP embedding enhances detail across different viewing direc-
tions, and finally, MVAttention further strengthens consistency
in the generated images.

Methods CLIPcons ↑ DINOsim ↑
2D-VTON 0.892 0.609
+ Pseudo-3D Pose 0.910 0.626
+ Multi-view CLIP Embedding 0.913 0.631
+ Multi-view Spatial Attention 0.923 0.633

Table 2. Ablation studies. We ablate the impact of the three pro-
posed techniques on Thuman2.0 dataset.

6. Conclusions

In this work, we proposed VTON 360, a novel 3D Virtual
Try-On (VTON) method that achieves high-fidelity VTON
with the ability to render clothing from arbitrary viewing
directions. Our method features a novel formulation of 3D
VTON as an extension of 2D VTON that ensures 3D con-
sistent results across multiple views. To bridge the gap be-
tween 2D VTON models and 3D consistency requirements,
we introduce several key innovations, including multi-view
inputs, pseudo-3D pose representation, multi-view spatial
attention, and multi-view CLIP embedding. Extensive ex-
periments demonstrate the effectiveness of our approach,
significantly outperforming prior 3D VTON techniques in
both fidelity and any-view rendering.
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[14] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos.
Densepose: Dense human pose estimation in the wild. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7297–7306, 2018. 4, 5

[15] Fabian Hahn, Bernhard Thomaszewski, Stelian Coros,
Robert W Sumner, Forrester Cole, Mark Meyer, Tony
DeRose, and Markus Gross. Subspace clothing simula-
tion using adaptive bases. ACM Transactions on Graphics
(TOG), 33(4):1–9, 2014. 1, 3

[16] Xintong Han, Zuxuan Wu, Zhe Wu, Ruichi Yu, and Larry S
Davis. Viton: An image-based virtual try-on network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7543–7552, 2018. 2

[17] Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander
Holynski, and Angjoo Kanazawa. Instruct-nerf2nerf: Edit-
ing 3d scenes with instructions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 19740–19750, 2023. 3, 6, 1

[18] Sen He, Yi-Zhe Song, and Tao Xiang. Style-based global
appearance flow for virtual try-on. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3470–3479, 2022. 2

[19] Zijian He, Peixin Chen, Guangrun Wang, Guanbin Li,
Philip HS Torr, and Liang Lin. Wildvidfit: Video virtual try-
on in the wild via image-based controlled diffusion models.
In European Conference on Computer Vision, pages 123–
139. Springer, 2024. 1, 2

[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 3

[21] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 2, 3, 7

[22] Li Hu, Xin Gao, Peng Zhang, Ke Sun, Bang Zhang, and
Liefeng Bo. Animate anyone: Consistent and controllable
image-to-video synthesis for character animation. arXiv
preprint arXiv:2311.17117, 2023. 5

[23] Yukun Huang, Jianan Wang, Ailing Zeng, He Cao, Xianbiao
Qi, Yukai Shi, Zheng-Jun Zha, and Lei Zhang. Dreamwaltz:
Make a scene with complex 3d animatable avatars. Advances
in Neural Information Processing Systems, 36, 2024. 3, 6, 7

[24] Yangyi Huang, Hongwei Yi, Yuliang Xiu, Tingting Liao, Ji-
axiang Tang, Deng Cai, and Justus Thies. Tech: Text-guided



reconstruction of lifelike clothed humans. In 2024 Interna-
tional Conference on 3D Vision (3DV), pages 1531–1542.
IEEE, 2024. 3

[25] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Trans. Graph., 42(4):139–1,
2023. 3, 1

[26] Jeongho Kim, Gyojung Gu, Minho Park, Sunghyun Park,
and Jaegul Choo. Stableviton: Learning semantic correspon-
dence with latent diffusion model for virtual try-on. arXiv
preprint arXiv:2312.01725, 2023. 3, 4, 5

[27] Diederik P Kingma. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013. 3

[28] Zorah Lahner, Daniel Cremers, and Tony Tung. Deepwrin-
kles: Accurate and realistic clothing modeling. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 667–684, 2018. 1, 3

[29] Sangyun Lee, Gyojung Gu, Sunghyun Park, Seunghwan
Choi, and Jaegul Choo. High-resolution virtual try-on with
misalignment and occlusion-handled conditions. In Proceed-
ings of the European conference on computer vision (ECCV),
2022. 2

[30] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. In Seminal Graphics Papers: Pushing
the Boundaries, Volume 2, pages 851–866. 2023. 3

[31] Yifang Men, Yiming Mao, Yuning Jiang, Wei-Ying Ma, and
Zhouhui Lian. Controllable person image synthesis with
attribute-decomposed gan. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 5084–5093, 2020. 2

[32] Aymen Mir, Thiemo Alldieck, and Gerard Pons-Moll. Learn-
ing to transfer texture from clothing images to 3d humans. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 7023–7034, 2020. 2,
3

[33] Davide Morelli, Alberto Baldrati, Giuseppe Cartella, Mar-
cella Cornia, Marco Bertini, and Rita Cucchiara. Ladi-vton:
Latent diffusion textual-inversion enhanced virtual try-on.
arXiv preprint arXiv:2305.13501, 2023. 1, 2

[34] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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Supplementary Material

Appendix A introduces the preliminaries of 3DGS. The
detailed formulations of the two quantitative metrics are
presented in Appendix B. Additionally, Appendix C out-
lines the post-processing techniques applied to ensure the
preservation of human characteristics in image editing. Ap-
pendix D elaborates on the failure cases and proposes a mit-
igation strategy to address it. Finally, Appendix E show-
cases additional VTON results, including those from a real
3D scene used in GaussianVTON [6].

A. 3D Representation: Gaussian Splatting
3D Gaussian Splatting (3DGS) [25] has emerged as a
prominent technique in 3D reconstruction due to its abil-
ity to render high-quality scenes in real-time. Unlike tradi-
tional point cloud based methods, which directly represent
scenes as discrete points, 3DGS models each point as a con-
tinuous Gaussian function gi:

gi(x ;µi,Σi) = e−
1
2 (x−µi)

⊤Σi(x−µi), (7)

where x is the position vector of gi, µi ∈ R3 and Σi ∈ R3×3

are gi’s mean and covariance matrix, respectively. Then, gi
is projected onto a 2D image plane to facilitate rendering.
This projection yields a new mean vector µi

′ ∈ R2 and an
updated covariance matrix Σ ′

i ∈ R2×2 defined as:

µi
′ = KT [µi

⊤, 1]⊤,Σ ′
i = JTΣiT

⊤J⊤, (8)

where J is the Jacobian matrix derived from the affine ap-
proximation of the perspective projection, T and K denote
the extrinsic and intrinsic matrices, respectively. Given the
color ci and opacity αi at the Gaussian center point, the ren-
dered color at a 2D pixel p is calculated as follows:

Cp =

N∑
i=1

αiciTigi(p;µ
′
i,Σ

′
i )

Ti =

i−1∏
j=1

(1− αjgj(p;µ
′
j ,Σ

′
j)),

(9)

where Ti denotes the cumulative transmission along the ray.

B. Metrics
In the quantitative evaluation, we employ two metrics:
• Average DINO Similarity [63], which measures the align-

ment between the garment image and the edited 3D hu-
man.

• CLIP Directional Consistency Score [17], which evalu-
ates multi-view consistency.

Specifically, given an edited 3D human (after VTON), 120
views are uniformly projected around its central axis. These
views are divided into three categories based on orientation:
Sf , Sb, and Ss, corresponding to 40 front views, 40 back
views, and 40 side views, respectively. Let D(·) represent
the normalized DINO embedding and C(·) denote the nor-
malized CLIP embedding. Using these, we formally define
the two metrics as follows:

DINOsim =
1

80
(
∑
i∈Sf

D(gf ) ·D(ei) +
∑
i∈Sb

D(gb) ·D(ei))

CLIPcons =
1

120

∑
i

(C(ei)− C(oi)) · (C(ei+1)− C(oi+1))

(10)
where ei, ei+1 and oi, oi+1 denotes the two consecutive
novel views from the edited 3DGS and the original 3DGS,
respectively.

C. Post-processing
The clothing-agnostic maps A often mask parts of the face
and hair, particularly for females. Due to the inherent prop-
erties of the diffusion model, it is unable to fully restore
the intricate details of these masked regions. To ensure
high-fidelity preservation of human characteristics, we ap-
ply a post-processing step where, after editing the rendered
views, we “copy” the face and hair from the original im-
age o onto the edited image e. Specifically, let m represent
the region corresponding to the face and hair, which can be
extracted from the parsed map during pre-processing, we
implement post-processing as:

e = (1−m) · e+m · o (11)

Figure 8. Our multi-view editing may fail in certain views with
complex poses (red box in pink background) but these views can
be automatically discarded to mitigate their impact on 3D VTON
(blue background).

D. Limitations
As shown in Fig. 8, our method may fail in certain views
with complex postures. To address this, we use Z-Score



Normalization to automatically identify and discard prob-
lematic views based on the view reconstruction loss during
the process of lifting multiple views to 3D space, mitigating
their adverse impact.

E. Additional Visualization Results
Fig. 9 illustrates additional VTON results. The first two
rows showcase results from the THuman2.0 dataset; the
middle two rows showcase results from the MVHuman-
Net dataset. To further demonstrate the effectiveness of
our method, we apply it on a real 3D scene used in Gaus-
sianVTON [6]. The last two rows in Fig. 9 illustrate
these VTON results with the model trained on Thuman2.0
dataset. Despite the data gap, including w/wo background
and unseen camera poses, our method exhibits robust per-
formance and preserves the details of the clothing well.



Figure 9. Additional visualization results. The first, middle, and last two rows show results on Thuman2.0, MVHumanNet, and a real 3D
scene used in GaussianVTON, respectively.


