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Police forensic investigations are not immune to our society’s ubiquitous search for better predictive
ability. In the particular and very topical case of Traumatic Brain Injury (TBI), police forensic
investigations aim at evaluating whether a given impact or assault scenario led to the clinically
observed TBI. This question is traditionally answered by means of forensic biomechanics and
neurosurgical expertise which cannot provide a fully objective probabilistic measure. To this end, we
propose here a numerical framework-based solution coupling biomechanical simulations of a variety
of injurious impacts tomachine learning training of police reports provided by the UK’s Thames Valley
Police and theNational CrimeAgency’s National Injury Database. In this approach, the biomechanical
predictions of mechanical metrics such as strain and stress distributions are interpreted by the
machine learning model by additionally considering assault specific metadata to predict brain injury
outcomes. The framework, only taking as input information typically available in police reports,
reaches prediction accuracies exceeding 94% for skull fracture, 79% for loss of consciousness and
intracranial haemorrhage, and is able to identify the best predictive features for each targeted injury.
Overall, the proposed framework offers new avenues for the prediction, directly frompolice reports, of
any TBI related symptom as required by forensic law enforcement investigations.

Traumatic Brain Injury (TBI) is a pressing public health concernwithmajor
social, economic, and medical implications1–3. The incidence of TBI con-
tinues to rise, affecting millions of individuals worldwide and resulting in
substantial mortality and long-termmorbidity4–7. In particular, mild TBI is
underreported, challenging to diagnose and linked to long-term neurode-
generative processes8–12. As a result, there is an urgent need for accurate
assessment tools to predict TBI risk13–16. In the particular context of law
enforcement forensic investigations, this challenge is further complicated by
its judicial implications. Traditionally, this additional dimension is tackled
by the involvement of forensic and clinical experts, asked to evaluate whe-
ther an injurious scenario may or may not have caused a TBI, a task that is,
by definition, not only dependent on the personal assessment of the expert
but also on the difficult, if not impossible, quantitative evaluation of saidTBI

in probabilistic terms. The development of a reliable and validated simu-
lation environment that can predict the risk of TBI in various assault sce-
narios is thus of crucial relevance for improving forensic investigations,
supporting law enforcement agencies and enhancing public safety17–21.

Recent studies have approached this challenge by coupling finite ele-
ment (FE) models to machine learning. Anderson et al.22 combined FE
modelling with network analysis to predict concussion outcomes, high-
lighting the value of merging biomechanical models with advanced com-
putational methods. Similarly, Cai et al.23 used deep learning models on
brain strain data to classify concussions, showinghowmachine learning can
enhance FEmodels for predicting TBI severity. Here, we propose a different
approach making use of a two-layered machine learning framework to
process FE simulation outputs. The work leverages a range of
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interdisciplinary expertise in biomechanics, computational mechanics,
neurosurgery, neuroimaging and artificial intelligence to predict a set of
TBI-related outcomes from a set of inputs, typically provided by a police
report for a range of injurious assaults. The resulting framework is struc-
tured into two machine learning layers, see Fig. 1. The first layer is a Mul-
tilayer Perceptron (MLP) neural network trained against 200 finite element
simulations of a range of injurious head impacts. This layer is able to
accurately predict a set of maximum strain- and stress-based mechanical
quantities in different regions of an idealised head-neck model, without the
need to run additional computationally expensive finite element simula-
tions, see Fig. 1b. A second layer, making use of an Extreme Gradient
Boosting (XGBoost) algorithm24, is trained with 53 police reports provided
by the UK’s Thames Valley Police and the UK’s National Crime Agency’s
National Injury Database, see Fig. 1a. Each report was manually post-
processed to establish: (i) a kinematic description of the injurious impact
and its corresponding boundary conditions, (ii) any relevant additional
metadata pertaining to both the victim and the assailant. While both were
used as the second layer’s inputs, the former was also used by the first layer
whose outputs were then additionally fed into the second layer, see Fig. 1c.
Following calibration and validation of both layers, the resulting framework
achieves high accuracy for key injury types, such as skull fractures, loss of
consciousness and intracranial haemorrhages.

The proposed approach also includes a classifier, which allows the
identification of the inputs of the framework most relevant for each injury
prediction target.Doing so, the framework also identifieswhichmechanistic
quantities, forwhichhead region, has themost injury predictive power. This
finding feeds directly into other studies, aimed at identifying the cause and
mechanismof head injuries. Finally, it is demonstrated that it is the coupling
between these two layers, along with the inclusion of mechanical con-
siderations in the machine learning framework, that enable the high pre-
dictive power. By accurately predicting the risk of TBI for different assault
scenarios, the research results and findings can help identify high-risk
situations, improve risk assessment practices and develop preventive

strategies to mitigate the occurrence and severity of head injuries19. In the
particular case of law enforcement forensic investigation, the proposed
simulation-based tool provides law enforcement agencies and forensic
medical practitioners with an unprecedented resource for objectively
assessing head injuries. Leveraging this tool, investigators can make
evidence-based decisions, identify potential suspects and support any sub-
sequent legal process. Furthermore, the findings have important implica-
tions for violence prevention efforts, as accurate prediction of TBI risk can
inform risk assessment practices and guide the development of targeted
preventive strategies.

Results
Biomechanical impact prediction
An FE head-neck model, incorporating a viscoelastic neck support was
developed and validated as the mechanical layer of the numerical frame-
work, see Fig. 1b. The FE head model was adapted from a previous version
proposed by Schroder et al.25 already validated for head impacts. The vis-
coelastic neck was modelled with nine pairs of springs and dashpots, con-
necting the head model to a circular plate. The stiffness of the springs was
calibrated against in vivo experimental results from the literature to accu-
rately represent the natural impedance of the human neck. A detailed
description of the development and optimisation of the numerical head-
neck model can be found in the supplementary material. Note that we
purposefully avoid the need for subject-specific models and injury thresh-
olding by relying instead on machine learning to “correct” the generic head
model mechanical prediction with metadata26, such as age and gender, to
account for individual and situational variations. Taken together, the layer
evaluates whether the correspondingmechanical assault leads or not to one
of the studied injurious outcomes. Similarly, while impact scenarios invol-
ving rigid or elastic objects can be simulated with relative ease, simulating
hand-to-head impacts requires a detailed handmodel. Themodel used here
was previously developed and validated27 and includes the bone skeleton,
subcutaneous tissue and skin, see Fig. S1. To achieve an accurate simulation

Fig. 1 | Overall framework. a Existing police reports are analysed and three sets of
information are extracted: impact kinematic (black), assault metadata (green) and
clinical outcomes (ochre); (b) the existing impact kinematic is used to guide a large
set of finite element (FE) simulations from which relevant mechanical quantities
(blue) are retrieved in different head regions; these inputs and outputs are used to
train MLP networks; (c) police report data with clinical outcomes along with MLP

outputs for corresponding impact kinematic information are used to train an
XGBoost layer. The final fully trained framework takes as inputs assault metadata,
impact kinematic information, and their processing through the MLPs, i.e. the
mechanistic “hidden” information, and predicts the risk of TBI injuries (here, the
focus is on skull fracture, intracranial haemorrhage and loss of consciousness). A
classifier allows the identification of the most relevant inputs for each case.
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of the specificfist-to-head assaults, the kinematics of thehandwas calibrated
against previously published experimental measurements conducted on a
junior boxer executing a hook punch28, as a good first approximation of
what is typically expected from punching occurring inmost of our criminal
cases. As shown in Fig. 2a, c, a fist velocity of 8.9 m/s, with a predefined
deceleration extracted from in vivo experiments29, was applied to the right
hand around the rotational centre of the left shoulder. Contact force and
durationwereused to validate thepunching simulation.As shown inFig. 2b,
the measured contact force ranged from 3550 to 5200N28, and the contact
duration from14 to 28ms29–31. The predicted contact force and duration fell
within the range of the experimental results.

Along with the punch, other assault conditions including slapping and
a range of rigid contact impacts were considered for different impact
locations and impact angles, see Fig. 3 and Methods. For each case, impact
velocitieswere variedbetween5and15m/s for all impactors. This rangewas
chosen as a first approximation for all impactors and corresponds to the
normal punching velocity measured during experiments28,30. Taken alto-
gether, 200 impact simulations were run on the University of Oxford’s
Advanced Research Computing service, following a Sobol sequence meth-
odology to sample efficiently the trainingdata of thefirstmachine layer32, see
supplementary information on kinematic definitions of assaults, impact
scenarios ofMLPs and computing platforms and resources formore details.
Each simulation provides a set of mechanical outputs for the scalp, skull,
grey matter (frontal, occipital, parietal and temporal lobes), thalamus/
hypothalamus, white matter as a whole, the white matter of the corpus
callosum and the brainstem. The outputs were the maximum von Mises
stress, strain rate, pressure, shear energy rate and axonal shear energy rate
(only for white matter). These simulations were then used to train theMLP
neural networks33, see Fig. 4a, for eachmechanical quantity, i.e. oneMLP for
the maximum von Mises stress for a subset of the organs, one for the
maximum strain rate, etc. Operating as the bridge between raw data and
mechanical insights, the MLPs process multifaceted inputs, including the

nature of the assault, impact coordinates, velocity and angle through its
hidden layers and output a set of biomechanical quantities to the second
machine learning layer to accurately predict different head injuries, see
Fig. 4b. The calibration parameters of the MLPs, including learning rates,
number of hidden layers and number of neurons on each layer, were
optimised to minimise the mean square error between the predicted and
original FE simulation results for each mechanical quantity of interest. The
full optimisation procedure is detailed inMethods with the final parameters
available in Table S1.

FE simulations, while accurate, are computationally intensive and
time-consuming, particularly when exploring a wide range of impact sce-
narios. The MLP neural network, trained on outputs from 200 FE simula-
tions, offers key advantages. First, it substantially reduces computational
cost by eliminating the need for rerunning simulations for each new sce-
nario. Once trained, the MLP can quickly predict mechanical quantities,
such as strain, stress and their derivatives, for various impact conditions.
Second, the MLP can handle a wide range of scenarios, including combi-
nations of impact velocity, angles, and locations that were not part of the
training FE simulations data, making it highly scalable.

Injury prediction
The XGBoost algorithm24 is used here to predict head injuries, see Fig. 4b.
While it is not limited to these, this secondmachine learning layer estimates
the probability of skull fracture, loss of consciousness and intracranial
haemorrhages as the most relevant types of injuries identified in the police
reports considered in this work. The algorithm takes as input the kinematic
impact description (also used by the MLPs), the outputs of the corre-
spondingMLPs’ predictions and themetadata to predict these specific head
injuries. An ensemble of decision trees is constructed, progressively refining
their predictive accuracy to evaluate the injury risks associated with each
criminal case. The training dataset consists of 53 criminal cases selected
from the Thames Valley Police and National Crime Agency’s National
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Fig. 2 | Validation of punch simulation using FE head and handmodel. a Typical
hook punchwith the rightfist rotating around the left shoulder; (b) predicted contact
force during punching is shown, with the range of contact forces measured during

in vivo experiments29 highlighted by the purple bar, and the average valuemarked by
the dashed line. The contact duration can be observed through the variation of
contact force over time; (c) simulation before and after impact.
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Injury databases. The hyperparameters of XGBoost were optimised using
a fivefold algorithm over these 53 cases. To evaluate the accuracy of the
second machine learning layer, an additional fivefold cross validation
algorithm was used over the 53 cases and the prediction accuracy was
calculated across all five folds.

The confusion matrices, combining the test data of all folds, are
presented in Fig. 5. The model achieved a very high accuracy of 94%
accuracy for skull fracture prediction, a sensitivity of 93% and a specificity
of 95%, see Fig. 5a. In total, 14 skull fractures and 36 non-fracture cases
were successfully predicted. Feature importance analysis, allowing the
identification of which input parameters carry the most predictive value,
was also carried out. Skull fracture prediction is provided by averaging the
feature importance across all folds. In our framework, feature importance
was determined using ensemble tree-based models in Gradient Boosting,
which rank input features based on their contribution to predictive per-
formance. The feature importance score is computed by averaging the
impurity decrease over all the decision trees within the ensemble34. Fea-
tures that consistently lead to substantial impurity reduction across
multiple trees receive higher importance scores, indicating their strong

influence on model predictions. Figure 5a and Table 2 show that max-
imum vonMises stress extracted from the scalp played a dominant role in
the layer’s performance. Other mechanical parameters evaluated by
MLPs, aswell as somepolicemetadata, also contributed to thepredictions,
see Discussion below. The simulation framework achieved a prediction
accuracy of 79% for loss of consciousness, with a sensitivity of 65% and a
specificity of 88%, see Fig. 5b. In other terms, 13 losses of consciousness
and 29 non-losses of consciousness cases were successfully predicted
when aggregating the folds’ tests. The most relevant feature is the max-
imum pressure in the brainstem, followed by the maximum pressure in
the grey matter. Finally, a predicting accuracy of 79% was reached for
intracranial haemorrhage, with a sensitivity of 72% and a specificity of
83%, see Fig. 5c. Themaximumpressure onbrainstemandgreymatter are
the most important features followed by the equivalent strain on corpus
callosum and age of the offender.

Overall, while the accuracy and specificity are quite remarkable, the
machine learning feature importance remains unclear without further dis-
cussion. It must also be noted that, while both first and second machine
learning layers have the capability to deal with a very wide range of inputs,
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Fig. 3 | Range of impacts considered by themechanistic layer. aCross-section view
of head model for the three different impact angles considered here; (b) cylinder
impact; (c) blunt corner impact; (d) slapping; (e) punching; (f) flat plate impact; (g)

sharp corner impact; (h) the four different impact orientations considered here; (i)
the five impact locations considered.
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the 53 police reports used here do not necessarily (and are unlikely to)
encompass all possibilities. In fact, the cases include 33 punches, 1 slap, 3
rigid plate impacts, 5 rigid round impacts, 10 rigid blunt impacts, and 1 rigid
sharp impact (see Table S2 for full list). This means that a strong under
sampling ofmany of the inputs is expected, potentially further complicating
the analysis of the feature importance at this stage.

Discussion
Framework general performance
The present study integrates advanced FE simulations, machine learning
algorithms, and real-casemetadata within an interdisciplinary framework
to predict the risk of TBI in various assault scenarios within a forensic
context. The proposed approach is a major departure from traditional
methodologies in criminal investigations35. The results of this study
underscore the effectiveness of the simulation platform at predicting TBI-
related clinical outcomes with accuracy as high as 94% for skull fracture,
79% for loss of consciousness and traumatic intracranial haemorrhages. In
all three cases, both high sensitivities (93%, 65%, and 72%, respectively)
and specificities (95%, 88% and 83%, respectively) are observed, albeit

with a markedly lower sensitivity for loss of consciousness. From a law
enforcement and forensic medical practitioner perspective, this frame-
work offers new avenues to assess the likelihood of a head injury being
sustained under specific circumstances. While this approach does not
replace the need for forensic expertise, it offers an objective quantitative
contribution to their considerations. Accuracy was assessed using an
additional fivefold approach due the relatively small number of cases (53),
with all three test datasets used to determine different accuracies, sensi-
tivities and specificities.

Mechanistic contribution to machine learning
One of the key strengths of this framework is the integration of bio-
mechanical simulationswithin the proposedmachine learning algorithms36.
This multi-layered approach enhances the accuracy and objectivity of head
injury assessments by considering both biomechanical parameters and real-
casemetadata.Usingdirect FE simulations alonewouldnot bepractical, due
to the associated computing costs, including pre-processing, run time and
post-processing. Instead, MLPs are employed as surrogates to uncover
hidden characteristics not readily available to the overall framework, such as

Fig. 4 | First and second machine leaning layers.
a A set of multilayer perceptron (MLP) models, the
first machine learning layer (FE surrogate), are used
to predict the biomechanical outputs of the FE
simulations. The inputs include the type of assault,
the location, velocity and angle of the impact, among
others. The outputs consist of maximum quantities
in different head regions, with each MLP focussing
on one mechanical metrics, i.e. von Mises stress,
strain rate, pressure and shear energy rate. b The
eXtreme Gradient Boosting (XGBoost) algorithm,
the second machine learning layer, is taking as
inputs the kinematic impact description (also used
by the MLPs), the outputs of the corresponding
MLPs’ predictions, and the metadata to predict
different head injuries.
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mechanical predictions within the brain. The chosen quantities (maximum
von Mises stress, pressure, energy quantities, etc.) span many regions in
the head.

Traditionally, criteria based on thresholds at which injuries develop
have been proposed18,37,38. However, despite the large body of literature
related to the search of amechanical “silver bullet” threshold for TBI injury,
no viable criterion has been, to date, firmly established. This does not imply
that additional information related to the mechanical deformation within
the brain for a given impact lacks value. In fact, rerunning the XGBoost
predictions but without the use of the MLPs (and thus using only the
metadata and the impact kinematics as input variables to XGBoost) leads to
accuracies of 65%, 52%, 58%, sensitivities of 52%, 49%, 54%and specificities
of 77%, 55%, 62% for skull fracture, loss of consciousness and intracranial
haemorrhage, respectively, see Table 1. This clearly illustrates that a deeper
understanding of mechanics plays a crucial role in the success of the pro-
posed approach. Without this information, accuracy, sensitivity and spe-
cificity all suffer, with the sensitivity suffering most. Similarly, not
considering metadata in the machine learning also leads to lower metrics,
see Table 1. Said otherwise, and with the caveat that other methods could
have been used instead of XGBoost, either a pure machine learning layer or

the sole consideration of the FE simulations withoutmetadata are not likely
to reach the high accuracy of the full framework proposed here when pre-
dicting these injuries. In particular, machine learning alone may lead to a
notable number of false negatives, i.e. the lack ofmechanical understanding
in thepredictive layer leads tomistakenlypredicting anabsence of injury in a
few cases.

Machine learning contribution to mechanics
The model achieved an excellent prediction accuracy of 94% for skull
fracture, consistently demonstrating high sensitivity and specificity. This
remarkable performance can be attributable to the strong correlation
between mechanical quantities, derived from biomechanical simulations
and the likelihood of a skull fracture occurring39. Paradoxically, the simu-
lation framework identifies the scalp’s vonMises stress as the best predictive
feature for this, while one would have expected the skull to be selected. To
understand this apparent contradiction, the Pearson correlation
coefficients40 are calculated here for the 200 simulation FE inputs and
outputs generated for the training of theMLPs. These coefficients provide a
statistical measure, quantifying linear relationships between two variables: a
value close to 1 implies a strong positive linear correlation, while a value of 0
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Fig. 5 | Injury prediction results of the numerical pipeline. Confusion matrix and feature importance histogram for (a) skull fractures with 94% accuracy, (b) loss of
consciousness with 79% accuracy and (c) for traumatic haemorrhage with 79% accuracy, see Table 2 for feature numbers.
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implies no correlation. The list of variables considered here, including
kinematics data and all the corresponding mechanical data outputted by
the MLPs, i.e. the inputs to XGBoost, is provided in Table 2, and the
resulting correlationheatmap is shown inFig. 6a.Onenotable observation is

that all mechanical quantities (features <42) exhibit relatively strong cor-
relations with each other and with the impact velocity (feature 52).
Regarding skull fracture specifically, von Mises stress of both the scalp
(feature 1) and skull (feature 2) are highly correlated for each respective

Table 1 | Comparisons of accuracy, area under the curve (AUC), sensitivity and specificity with and without Multilayer
Perceptron (MLP) neural networks or metadata for prediction of skull fracture, loss of consciousness and intracranial
haemorrhage

Injury Accuracy AUC Sensitivity Specificity

Skull fracture with MLP 94% 94% 93% 95%

Skull fracture without MLP 65% 68% 52% 77%

Skull fracture without metadata 83% 86% 71% 89%

Loss of consciousness with MLP 79% 78% 65% 88%

Loss of consciousness without MLP 52% 58% 49% 55%

Loss of consciousness without metadata 66% 67% 50% 76%

Intracranial haemorrhage with MLP 79% 80% 72% 83%

Intracranial haemorrhage without MLP 58% 70% 54% 62%

Intracranial haemorrhage without metadata 68% 76% 63% 71%

Table 2 | List of inputs for second machine learning layer (XGBoost); mechanical inputs (outputs of the Multilayer Perceptron
(MLP) neural networks: maximum value), impact kinematic, police metadata

Feature number Inputs Feature number Inputs

1 Scalp, von Mises Stress 32 Grey matter (parietal lobe), pressure

2 Skull, von Mises Stress 33 Grey matter (temporal lobe), pressure

3 Grey matter (frontal lobe), von Mises Stress 34 Thalamus/hypothalamus, pressure

4 Grey matter (occipital lobe), von Mises Stress 35 White matter, pressure

5 Grey matter (parietal lobe), von Mises Stress 36 Brainstem, pressure

6 Grey matter (temporal lobe), von Mises Stress 37 Corpus callosum, pressure

7 Thalamus/hypothalamus, von Mises Stress 38 Thalamus/hypothalamus, axonal shear energy rate

8 White matter, von Mises Stress 39 White matter, axonal shear energy rate

9 Brainstem, von Mises Stress 40 Brainstem, axonal shear energy rate

10 Corpus callosum, von Mises Stress 41 Corpus callosum, axonal shear energy rate

11 Grey matter (frontal lobe), equivalent strain 42 Punching

12 Grey matter (occipital lobe), equivalent strain 43 Slapping

13 Grey matter (parietal lobe) equivalent strain 44 Impact from a plate

14 Grey matter (temporal lobe), equivalent strain 45 Impact from a round object

15 Thalamus/hypothalamus, equivalent strain 46 Impact from a blunt object

16 White matter, equivalent strain 47 Impact from a sharp object

17 Brainstem, equivalent strain 48 Impact location (factor 1)

18 Corpus Callosum, equivalent strain 49 Impact location (factor 2)

19 Grey matter (frontal lobe), shear energy rate 50 Impact angles

20 Grey matter (occipital lobe), shear energy rate 51 Impact orientations

21 Grey matter (parietal lobe), shear energy rate 52 Impact velocity

22 Grey matter (temporal lobe), shear energy rate 53 Gender (Victim)

23 Thalamus/Hypothalamus, shear energy rate 54 Body built (Victim)

24 White matter, shear energy rate 55 Height (Victim)

25 Brainstem, shear energy rate 56 Age (Victim)

26 Corpus callosum, shear energy rate 57 Previous TBI (Victim)

27 Scalp, pressure 58 Gender (Offender)

28 Skull, pressure 59 Body built (Offender)

29 Corpus Callosum, pressure 60 Height (Offender)

30 Grey matter (frontal lobe), pressure 61 Age (Offender)

31 Grey matter (occipital lobe), pressure
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quantity, and they are strongly correlated across different regions of the
head. This indicates that while the proposed layer selected the scalp, it
equally correlates with the skull. This can be rationalised as follows: scalp
stress reflects themechanical forces absorbedanddistributed by the scalp, in
turn transferred to the underlying skull. This correlation suggests that scalp
stress can thus serve as an early indicator of forces likely to cause skull
fractures. In the training of the XGBoost model, feature importances are
derived from the ensemble of decision trees used tomakepredictions.While
scalp vonMises stresswas rankedhigher in importance than skull vonMises
stress across a range of impact scenarios, the close proximity of both feature
and the consistent correlation of stress in both regions for the loading
conditions consideredhere rationalise the inability of the tree to differentiate
between them. As such, while XGBoost is particularly effective at handling
correlated variables by selecting themost relevant features for the prediction
task while accounting for their interdependence, correlation study between
features remains a required step to infer causation from correlations. This
finding aligns with biomechanical observations, indicating that bone frac-
tures will occur when the stress exceeds a given threshold. That threshold
can go as low as 25MPa in children41 and has been previously reported as
highas 92.71MPa42. The advantage of theproposed framework is that,while
the proposed FE simulations and resultingMLP layers are done for a generic
head not necessarily representative of the victim of interest, the predicted
values of maximum von Mises stress for the skull can be incorporated in
XGBoost and their meaning (in terms of risk of fracture) can then be
“decided” by XGBoost by accounting for additional metadata information,
such as the age of the victim.Obviously, this additional distinction requires a
larger training dataset if onewants to account for all possible age groups (we
only had adult victims in our dataset).

The model accuracy for predicting loss of consciousness reaches 79%.
According to the feature importance analysis, the maximum pressure in all
four lobes (features 30–33 in Table 2) is strongly correlated with each other
and with the pressure in the brainstem (feature 36 in Table 2), which
emerged as themostpredictive feature.Thiswas followedby thepressures in
all the grey matter lobes. The strongest candidates for predicting loss of
consciousness are the mechanical parameters in the brainstem, which is
consistent with medical findings that attribute loss of consciousness pri-
marily to brainstemdysfunction.This alignswith theunderstanding that the
brainstem, playing a crucial role inmaintaining consciousness by regulating
wakefulness and attention, as well as maintaining homeostasis, is particu-
larly vulnerable to increased pressure during traumatic impacts. Elevated
brainstem pressure can disrupt the reticular activating system, resulting in
temporary orprolonged loss of consciousness dependingon the severity and
location of the impact43–46. While the accuracy for predicting loss of con-
sciousness is still considerable, it is notably lower than that achieved for skull
fractures. This disparity highlights the intricate nature associated with this
injury, which can be influenced by various factors, such as the location and
angle of impact, as well as individual variations in response to trauma,
including factors such as the neck’s width of the victim or the victim’s state,
e.g. during alcohol intoxication26,47,48. Based on our analysis of criminal
reports from Thames Valley Police and the National Crime Agency, it was
found that cases of loss of consciousness weremore likely to occur when the
victimswere under the influence of alcohol or drugs. To further enhance the
accuracy of predicting this outcome, future research may consider refining
variables, such as the victim’s health status andpriormedical conditions. For
this research, it was assumed that all victims had no previous TBI unless
clarified in the criminal reports. While the mechanistic rationale remains
arguably unclear, it is, however, remarkable that the brainstem (and
immediate neighbouring regions) mechanical metrics are consistently
involved in the prediction, either directly or through correlative effects, to
loss of consciousness, in agreement with the current clinical understanding
of the role of brainstem in such outcome49. XGBoost naturally handles
multicollinearity through its decision tree structure, which selects features
based on impurity reduction. However, multicollinearity can still influence
feature importance rankings, as correlated features may share predictive
power. To address this, the Pearson correlation analysis (Fig. 6a) grouped

highly correlated features, such as brainstem pressure (Feature 36) with
nearbymechanical features contributing to similar outcomes. XGBoost’s L1
and L2 regularisation helped manage model complexity and prevent
overfitting, ensuring that no single feature dominated the rankings. While
multicollinearity affects individual rankings, the collective contribution of
related features is reflected, with brainstem pressure emerging as a key
predictor for loss of consciousness.

The proposed machine learning framework demonstrates substantial
promises in predicting various head injury outcomes resulting from
assaults50. While impressive accuracy was achieved in certain scenarios, the
complexity of head injuries and the influence of individual variations
requires continued research and model refinement to fully unlock the
potential of this approach in aiding criminal investigations. These findings
prompt several conjectures. Firstly, the accuracy achieved in predicting skull
fractures suggests that the force and velocity parameters employed in the
biomechanical simulations play a pivotal role in determining the severity of
head injuries. This correlation between impact severity and injury outcome
is a key takeaway from the study. However, the relatively lower accuracy in
predicting loss of consciousness underscores the complexity of this out-
come, though themodel demonstrated its ability at linking it tomechanical
stress at and around the brainstem. Lastly, the accuracy achieved in pre-
dicting intracranial haemorrhages highlights the model’s sensitivity to fac-
tors related to bleeding within the brain. This research stands as a
remarkable collaboration between academia, law enforcement and medical
experts. Through dynamic partnerships with forensic specialists and
investigators, we have ensured the tool’s real-world viability and transfor-
mative potential. The collaboration with law enforcement agencies, such as
the Thames Valley Violence Reduction Unit and the National Crime
Agency-National Injury Database, is instrumental in validating the simu-
lation tool with real case scenarios. This integration of real-world data adds
practical relevance to the findings and ensures the tool’s applicability in
criminal investigations, potentially aiding in the identification of suspects
and supporting the prosecution of perpetrators.

In this study, direct mechanical inputs from FE simulations, such as
pressure and axonal shear energy rate, were used instead of composite
postprocessed metrics like the Brain Injury Criterion or the Head Injury
Criterion51. Doing so, we aim at using direct FE outputs and let themachine
learning layer interpret their significances based on additional metadata.
Using direct mechanical quantities allows the model to better capture the
brain’s response to impacts in real-time. This approach avoids the limita-
tions of predefined thresholds and enables the machine learning model to
autonomously learn from the data, improving its ability to generalise and
predict traumatic brain injuries more effectively.

Linking mechanics and injury
The complexity related to the many mechanical quantities and their
correlations can be alleviated—at least from an analysis perspective—by
using the DALEX library52. This library provides a framework for
understanding variable importance in machine learning models. It cal-
culates variable single or group importance by systematically perturbing
feature values, while keeping all other factors constant, and observing the
resultant change in model performance. By permuting these grouped
features and measuring the corresponding drop in predictive accuracy,
their collective importance can be quantified. Features with higher scores
indicate a more substantial impact on the model’s predictions, while
featureswith lower scores contribute less to the overall predictive power of
the model.

By categorising variable importance into groups based on Pearson
correlation coefficients and feature importance analysis, we identified the
potential candidates for predicting the three injuries according to the results
shown above: (i) pressure on the brainstem, (ii) pressure on the greymatter
regions, (iii) von Mises stress on the skull, and (iv) metadata (ages and
genders of offenders and victims). As depicted in Fig. 6b–d, insights into the
model’s dynamics were gained by examining grouped variable importance,
where higher scores indicate a greater influence on the model’s predictions.
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Specifically, themechanical values associatedwith the skull play a dominant
role in achieving high prediction accuracy for skull fractures. Conversely,
pressure on the brainstem is themost relevant parameter for predicting loss
of consciousness. For predicting traumatic haemorrhage, pressure on the
grey matter is the most important factor. This analysis reaffirms the earlier
findings, emphasising the strong dependence of skull fractures on
mechanical metrics related to the skull, while loss of consciousness is pre-
dominantly influenced bymetrics associated with the brainstem.Moreover,
traumatic haemorrhages are affected by metrics from both grey matter and
surrounding regions, aligning with the expected injury locations, e.g.
bridging veins.

Methods
Impact FE simulations
Each FE simulation is run as a dynamic explicit simulation on Abaqus
2022 software (see supplementary informationoncomputingplatformsand
resources), allowing for the tracking of the time evolution of various
mechanical metrics within the different regions of the head. Simulations
were defined by different inputs, as are shown in Table 2, including the
different types of assaults, impact velocity, angle, location of incidence and
the impactor geometry. Except for the hand-to-head impacts, all impactors
within the simulations were represented as rigid bodies and a friction
coefficient of 0.4 was applied, consistent with previous research25. Four
distinct rigid impactor geometries were employed to encompass a wide
range of possible impact scenarios. The first, referred to as the round
impactor, assumed a cylindrical shape with a radius of curvature of 3.6 cm.
The second, a blunt impactor, featured a right-angled analytical surface
smoothed along the edge, incorporating a quarter of a cylinder with a 1 cm
radius of curvature; the sharp impactor was modelled as a right angle
smoothed with an edge of 0.3 cm; lastly, a flat plate was also considered.
Additional information is provided as supplementary information on the
kinematic definitions of assaults.

Mechanistic machine learning layer: MLPs
MLP networks are used here to predict specific mechanistic quantities (as a
set ofmaximumvalues for each region) calculated otherwise bymeans of FE
simulations at a much larger computational cost. Each takes as inputs
specific boundary conditions pertaining to an impact of interest (see
Table S3) and outputs the set of regional quantities for the metric it is
responsible for (e.g. von Mises stress, pressure, etc.). Each MLP is made of
multiple neuron layers; the first one of which consists of an array of input
parameters characterising the assault scenario, such as assault type, location,
velocity and impact angle. TheMLPs can then have multiple hidden layers,
each composed of interconnected neurons designed to learn and transform
input information effectively. These hidden layers introduce nonlinearity
through activation functions53. The output layer finally provides a final
prediction of the injury that the MLP is being trained for. Following the
general form of the forward pass of the MLP, each jth neuron of the i+1th
layer receives a valueYi

jþ1 calculated from the values carried by the previous
layer’s neurons.

Yj
iþ1 ¼ f ðWi � Xi þ bjiþ1Þ ð1Þ

where the input Xi is the vector of values carried by the previous layer’s
neurons, Wi is the vector of corresponding weights and whose product is
passed through the activation function f after the incorporation of a bias
bjiþ1. The MLP’s learning process adjusts all weights and biases during
training to minimise the prediction error and improve the accuracy of TBI
risk assessment. It is done here by backpropagation, implemented through
Stochastic Gradient Descent54.

The MLP model was chosen for its computational advantages over
traditional FE simulations. Specifically, the MLP substantially reduces
computational cost and time by predicting mechanical quantities such as
strain and stress, without the need for rerunning extensive FE simulations
for each new scenario. Although a trade-off between computational

Fig. 6 | Feature analysis. a Pearson coefficients among all pairs of non-metadata of
inputs for eXtreme Gradient Boosting (XGBoost), see Table 2 for feature numbers;
variable importance for skull fracture (b), loss of consciousness (c) and traumatic
intracranial haemorrhage (d). The x-axes in (b), (c), and (d) represents the variable

importance calculated with the DALEX package by finding the top N data points
closest to the explained instance (variable drop-out), performing permutation
variable importance and using 1-AUC as loss function.
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efficiency and prediction accuracy can be predicted, the MLP achieved c.
90% of prediction accuracy with an optimised set of hyperparameters. This
was achieved with a grid search technique over fivefold. This exploration
allows for tuning of the learning rate (0.001, 0.01 and 0.1), determining the
number of hidden layers (ranging from 1 to 5) and configuring the number
of neurons on each layer (ranging from 2 to 36). The process seeks to
minimise the mean square error between predicted and actual values.
Table S1 shows the final combinations of hyperparameters for each MLP
along with the errors associated to them.

Note finally that various algorithms were tested to assess their effec-
tiveness in predicting mechanical properties from the FE simulation data.
The tested algorithms included MLP, Bayesian Neural Networks (BNN),
Deep Neural Networks (DNN), Support Vector Machines (SVM), and
k-Nearest Neighbours (KNN). Among these, MLP demonstrated the best
performance, achieving the lowest relative error between the predicted and
real data, making it the optimal choice for this layer, see Table S4. The
optimised hyperparameters for all these different algorithms are presented
in Tables S5–8. Additional information is provided in the supplementary
information on impact scenarios of MLPs.

Injury machine learning layer: XGBoost
The second machine learning layer in the framework leverages XGBoost, a
gradient-boosting algorithm known for its efficiency and predictive
performance24. In this layer, the inputs include the mechanical predictions,
such asmaximumregional stresses andpowers predicted by theMLPs along
with the MLPs’ inputs that led to those, as well as the metadata collected
from the 53 police reports, containing information such as the sex, age,
height and weight of the offender or victim, among other factors. These
reports were postprocessed for use in the pipeline, including identification,
data cleaning, outlier detection, handling of missing values, anonymisation.
XGBoost sequentially constructs an ensemble of decision trees, with each
tree trained to correct the errors of its predecessor. It thenaims tominimise a
loss function, typicallymean squared error for regression tasks or log loss for
classification by iteratively adding decision trees24. The final prediction is
obtained as the weighted sum of these individual tree predictions:

yi ¼ ϕ xi
� � ¼

XK

j¼1

f jðxiÞ ð2Þ

Here, yi represents the predicted TBI injury for individual xi, K is the total
number of trees in the ensemble and fj denotes the prediction contribution
of the jth tree. By making use of a grid search approach, a range of hyper-
parameter configurations to identify the optimal settings for our specific
biomedical dataset was systematically explored, see final set of hyperpara-
meters in Table S9. To evaluate the model’s performance, a k-fold cross-
validation strategy was employed. This means dividing the 53 cases in
k = 5 subsets, training the XGBoost model on k-1 folds and validating it on
the remaining fold. This processwas repeated k times,with each fold serving
as the validation set exactly once. The cross-validation results provided a
robust estimate of the model’s generalisation performance and aided at
identifying potential issues such as overfitting.

In assessing the predictive capabilities of the present XGBoostmodel, a
battery of performance metrics was considered. These included classifica-
tion accuracy, precision, recall, F1-score and area under the receiver oper-
ating characteristic curve. The choice of thesemetrics was deliberate, as they
collectively offered a comprehensive view of the model’s strengths and
limitations, especially concerning its ability to handle class imbalances—a
frequent challenge in biomedical datasets. Note that other algorithms were
also evaluated, including BNN, DNN, Random Forest, XGBoost, SVM,
KNN, and Logistic Regression. XGBoost was selected as the best-
performing model, as it achieved the highest prediction accuracy across
the three injuries being studied, see Tables S10–12. The optimised hyper-
parameters for all these different algorithms are presented in Tables S13–16.

The dataset consists of 53 criminal cases, which is not a large number
due to the difficulty in obtaining reliable witness recordings and medical
assessments. Consequently, an independent dataset was not used to
objectively evaluate the machine learning model. However, K-fold cross-
validationwithK = 5was employed to rigorously test themodel on data not
usedduring training, enhancing its robustness bypreventing contamination
between training and validation sets. As such, each subset of data serves as
validation at least once, ensuring themodel is evaluated on diverse portions.
This approach provides a fair and reliable measure of performance and
substantially reduces overfitting, compensating for the lack of a completely
independent dataset.

Processing of the police reports
The dataset was compiled from detailed police reports, which were post-
processed andcuratedby apolice officer to ensure accuracy andconsistency.
All reports and data were anonymised by Thames Valley Police and the
National Crime Agency before aggregation for analysis. Each case was
described based on multiple sources, including CCTV footage and witness
testimonies. The impact severity was classified into three levels: low, med-
ium, and heavy, determined by the evidence provided. Additionally, the
impact speed was estimated using the offender’s height, weight, and the
assigned impact level. Further details on these criteria can be found in the
supplementary information. To protect privacy, all the personal informa-
tion, such asnames or any identifiable characteristic,was anonymised,while
key demographic data (age and gender) were retained for analysis. Any
inconsistencies in the reports, such as conflicting witness accounts or
unclear footage,were addressed through further reviewby the police officers
to reducenoise in thedataset and ensuredata accuracy. This approach aligns
with recent forensic methodologies, such as the use of subject-specific FE
headmodels for skull fracture evaluation in forensic pathology, as discussed
byHenningsen et al.55. Inclusion and exclusion criteriawere applied to select
cases with sufficient detail for analysis, with incomplete cases excluded.

Detailed information about specific injuries and related impact sce-
narios was not provided to further avoid attempts at identifying each case.
However, a detailed breakdown of impact types, angles, and the distribution
of male and female victims and offenders is available in the dataset
(Tables S2 and S3).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analysed during the current study are
not publicly available, tomaximise patients/victims’ confidentiality; instead,
a dummy dataset is provided for illustration.

Code availability
The Python codes for the machine learning layers, along with the related
dummy metadata, are available on OSF with the https://doi.org/10.17605/
OSF.IO/6XB2P.
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