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STRONG 1-BOUNDEDNESS, L2-BETTI NUMBERS, ALGEBRAIC

SOFICITY, AND GRAPH PRODUCTS

IAN CHARLESWORTH, ROLANDO DE SANTIAGO, BEN HAYES, DAVID JEKEL,
SRIVATSAV KUNNAWALKAM ELAYAVALLI, AND BRENT NELSON

Abstract. We show that graph products of non trivial finite dimensional von Neumann alge-
bras are strongly 1-bounded when the underlying ∗-algebra has vanishing first L2-Betti num-
ber. The proof uses a combination of the following two key ideas to obtain lower bounds on
the Fuglede–Kadison determinant of matrix polynomials in a generating set: a notion called
“algebraic soficity” for ∗-algebras allowing for the existence of Galois bounded microstates with
asymptotically constant diagonals; a probabilistic construction of the authors of permutation
models for graph independence over the diagonal.
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1. Introduction

Finite dimensional approximations of infinite dimensional objects are a common theme in
analysis, dynamics, and operator algebras. In the context of groups, they arise in both soficity
and Connes embeddability of the group von Neumann algebra (sometimes referred to as hyper-
linearity), which are the ability to be approximated by permutations or finite dimensional uni-
tary matrices, respectively. Connes-embeddable tracial von Neumann algebras are those which
admit matrix approximations in a weak sense. The quantum complexity result announced
in [JNV+20] implies that not all tracial von Neumann algebras have this property; among
Connes-embeddable von Neumann algebras, some—such as free products—have an abundance
of matrix approximations which can be constructed probabilistically through random matrix
theory, while others—such as amenable von Neumann algebras, property (T) von Neumann
algebras, or von Neumann algebras with Cartan subalgebras—have very few matrix approxima-
tions. More precisely, the latter are strongly 1-bounded in the sense of Jung, or have 1-bounded
entropy h(M) < ∞ in the sense of Hayes [Hay18]. Von Neumann algebras with h(M) = ∞
enjoy strong indecomposability properties: for instance, they are unable to be decomposed non-
trivially as a tensor product, a crossed product, or a join of amenable subalgebras with diffuse
intersection; more generally, they cannot be decomposed as a join of subalgebras with finite
1-bounded entropy. Using 1-bounded entropy techniques to study the structure of II1 factors
(especially, free group factors) has recently been quite fruitful to approach open problems (see
for instance [Hay22, BC22, BC23, CIKE22]).

Graph products of groups, defined by Green in [Gre90], are free products of groups indexed
by the vertices of a graph, modulo the relations that Γv and Γw commute when v and w are
adjacent vertices in the graph. Graph products of von Neumann algebras were introduced by
M lotkowski in [M lo04] under a different name, then reintroduced and further studied by Caspers
and Fima in [CF17]. From a probabilistic viewpoint, graph products give rise to a notion of
“graph independence”, which is a natural way to mix together classical independence and free
independence [M lo04, SW16].

Preservation of Connes-embeddability by graph products was proved by Caspers [Cas16].
Collins and Charlesworth described how to construct random matrix approximations for a graph
product out of given random matrix approximations for the individual algebras Mv [CC21]. But
despite the matrix approximations being defined by similar techniques as for free products, it
was not clear when graph products would have abundant matrix approximations in the sense
that h(M) = ∞, because the matrix approximations were constructed in a subspace of MNk(C)
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with much lower dimension than the ambient space. In this paper we make progress toward
classifying when a graph product has h(M) < ∞, which can be summarized in the following
theorem. Here items 2 and 3 give a complete characterization of when h(M) < ∞ for the case
when Mv is diffuse for every v, whereas item 1 applies in the much more subtle case when each
Mv is finite dimensional.

Theorem A (Section 5.1). Let G = (V, E) be a graph with #V > 1, and for each v ∈ V, let
(Mv, τv) be a tracial ∗-algebra. Let (M, τ) =

v∈G(Mv, τv) be their graph product over G.
(1) Suppose each Mv is finite dimensional, and the trace of every central projection in Mv is a

rational number. Let A be the ∗-subalgebra of M generated by
⋃

v∈V Mv. If β1(2)(A, τ) = 0,

then M is strongly 1-bounded.
(2) If eachMv is diffuse and G is connected, thenM is strongly 1-bounded (in fact has 1-bounded

entropy at most zero).
(3) If each Mv is diffuse and Connes embeddable, and G is disconnected, then M is not strongly

1-bounded.

We remark that in (3) we show something stronger: there is a (potentially infinite) tuple x
of self-adjoint elements of M so that W ∗(x) = M and δ0(x) > 1. As we show in Theorem 5.1,
the second two items in the above theorem can be deduced quickly from the known robust
properties of 1-bounded entropy. We turn our attention, instead, to the question of strongly 1-
boundedness for graph products of finite dimensional algebras. This focus motivates the results
in part (1), which is more subtle; developing the tools for its proof occupies the bulk of this
paper, and in the end we are able to prove a more general statement in 5.4.

The final step in our proof is to invoke results of Jung [Jun03, Theorem 6.9] and Shlyakhtenko
[Shl21, Theorem 3.2], which apply when an operator naturally arising from “generators and
relations” has positive Fuglede–Kadison pseudo-determinant. If each (Mv, τv) were a group
algebra, it would suffice to note that the graph product is sofic by [CHR14]: the relation matrix
in question is a matrix over the rational group ring, and such matrices have positive Fuglede–
Kadison pseudo-determinant by [ES05]. However, extending this to arbitrary ∗-algebras not
arising from groups presents substantial challenges.

Our approach is to introduce a notion of algebraic soficity for tracial ∗-algebras inspired by
soficity of groups. This notion of algebraic soficity ensures that if y ∈Mn(A) can be expressed
as a matrix of polynomials in x with “nice” coefficients (e.g. rational, algebraic, etc.), then y
has positive Fuglede–Kadison pseudo-determinant. Crucially, we establish that this notion of
algebraic soficity is closed under graph products.

In order to prove positivity of these Fuglede–Kadison determinants we use our notion of
algebraic soficity which, while akin to that of soficity of groups, is not a simple translation
of the group case. One näıve approach, sufficient to force the appropriate determinants to
be positive, would be to require matrix approximations for our generating tuple x with integer
entries, chosen so that polynomials in these matrix approximations asymptotically have constant
diagonals. However, this is impossible even for matrix algebras with matrix units as generators:
there are very few projections with integral entries, and such projections do not have constant
diagonals unless they are scalars. For similar reasons, it is too much to ask for tracial ∗-algebras
which are only slight modifications of group algebras, such as group algebras twisted by an
S1-valued 2-cocycle or group measure-space constructions.

We relax this näıve approach by only requiring our matrix approximations to have algebraic
integer entries. In order to obtain a lower bound on the pseudo-determinant of these approxi-
mations (and thus a lower bound on the Fuglede–Kadison pseudo-determinant of the limiting
operator), we use an algebraic number theory argument analogous to [Tho08b, Theorem 4.3]
which considers the Galois conjugates of a matrix with algebraic integer entries and converts
upper bounds on the number of such Galois conjugates and of the operator norm of these con-
jugates into lower bounds on the pseudo-determinant. We call matrix approximations Galois
bounded microstates when they have algebraic integer entries, a uniform bound on the number
of their Galois conjugates, and a uniform bound on the operator norm of these Galois conju-
gates (see Definition 3.2 for the precise definition). These are the key to our notion of algebraic
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soficity: a tracial ∗-algebra (A, τ) is algebraically sofic when it has a generating tuple x which
admits Galois bounded microstates with asymptotically constant diagonals. It turns out that
all finite dimensional tracial *-algebras are algebraically sofic (see Theorem 3.11). From the
above discussion, we realize that our proof of Theorem A1 reduces to the following two results.

Theorem B (Theorem 3.4). If (M, τ) is a tracial von Neumann algebra, and x is a generating
tuple for M with a Galois bounded sequence of microstates, then for any matrix polynomial in
x with algebraic coefficients, the Fuglede–Kadison pseudo-determinant is positive.

The proof of Theorem B follows by adapting methods of Thom [Tho08b, Theorem 4.3]. In or-
der to prove that graph products of finite dimensional algebras have Galois bounded microstates,
we prove the following.

Theorem C (Theorem 4.2). Algebraic soficity is preserved by graph products.

Theorem C is just a restatement of Theorem 4.2, which is proved in Section 4. As a con-
sequence of Theorems C and B, we can replace “finite dimensional” in Theorem A (1) with
“algebraically sofic,” under a technical condition on traces (see Theorem 5.4 for more details).

Sofic groups themselves have seen numerous applications in recent years: their Bernoulli shift
actions can be completely classified (by [Bow10, Bow12, Sew22]); they are known to satisfy the
determinant conjecture [ES05](a conjecture arising in the theory of L2-invariants) and conse-
quently their L2-torsion is well-defined [Lüc02]; they are known to admit a version of Lück
approximation [ES05]; they satisfy Gottschalk’s surjunctivity conjecture [Gro99]; and they are
known to satisfy Kaplansky’s direct finiteness conjecture [ES04]. In fact, any group for which
one of these properties is known is also known to be sofic; it is a large open question whether or
not every group is sofic. We refer the reader to [Bow18] for further applications of sofic groups,
particularly to ergodic theory.

We expect that our new notion of algebraic soficity will have many similar applications in the
theory of von Neumann algebras. Motivated by our work, and using our new notion of algebraic
soficity, we make the following conjecture.

Conjecture D. Let (M, τ) be a tracial von Neumann algebra. Assume that M has a weak∗-
dense, finitely presented, algebraically sofic, unital ∗-subalgebra A. Then (M, τ) is strongly
1-bounded if and only if β1(2)(A, τ) = 0.

The fact that if β1(2)(A, τ) = 0 and (A, τ) is algebraically sofic, then (M, τ) is strongly 1-

bounded is a consequence of [Shl21, Theorem 2.5] (see e.g. the proof of Theorem A (1) in
Section 5.1). So the difficulty is in establishing the converse. Partial progress on this has
already been made in [Shl09], and as discussed there an inherent part of the difficulty is in
exponentiating a derivation to get a one-parameter family of deformations of M which “move
in a free direction”. This conjecture is already interesting to investigate when (M, τ) is the graph
product of finite dimensional tracial von Neumann algebras, and A is the ∗-algebra generated
by the vertex algebras.

Remark 1.1. The problem of studying the first L2-Betti numbers for graph products of finite
groups has been studied extensively in [DDJO07, DO01, DO12]. In particular the authors spec-
ify that there are algorithms to compute the first L2 Betti numbers for certain graph products
of finite groups. Combining this with [Shl21] should give examples of strongly 1-bounded group
von Neumann algebras. One would expect that these algorithms would generalize to the setting
of finite dimensional ∗-algebras, in which case one could use them in combination with Theo-
rem A(1) to obtain examples of strongly 1-bounded von Neumann algebras not coming from
groups.

One special case of Conjecture D that is worth studying is the case where M = L(Γ) is the
von Neumann algebra of a group Γ. In this case, we would expect that if Γ is sofic, then L(Γ) is
strongly 1-bounded if and only if β1(2)(Γ) = 0. This is of particular interest for graph products of

groups, because of the aforementioned results that give an algorithmic approach to computing
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their first L2-Betti number. For the special setting of group von Neumann algebras, Conjecture
D would follow immediately if the following problem has an affirmative answer.

Problem 1.2. Suppose that Γ is a group with positive first L2-Betti number. Is it true that
L(Γ) has a finite index subalgebra which decomposes as a free product of two tracial von
Neumann algebras M1,M2?

Note that if a tracial von Neumann algebra is a nontrivial free product up to finite index, then
it has no Cartan subalgebras ([Jun07], [Ioa15]). Note also that absence of Cartan for various
subfamilies of groups with positive first L2-Betti number has been obtained in the literature (see
for instance [CS13, CSU13, Ioa12, PV14a, PV14b, Sin11]), using deformation/rigidity theory.
An affirmative answer to Problem 1.2 would of course be a surprising structural property of
group von Neumann algebras with positive first L2-Betti number. However it is not a possibility
that should be ruled out.
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2. Preliminaries

Definition 2.1. A (simple undirected) graph is a pair G = (V, E) where V is a finite set
consisting of vertices, and E ⊂ V × V is a set of edges. We insist that E is symmetric (i.e.,
(x, y) ∈ E if and only if (y, x) ∈ E) and non-reflexive (i.e., (x, x) /∈ E for any x ∈ V; that is, we
do not allow self-loops).

An (undirected) multigraph is the same except E is a multiset, allowing parallel edges.

2.1. Graph products. We will now define the graph product of von Neumann algebras, and
some important related notions. Given a graph G = (V, E) and a collection of finite tracial von
Neumann algebras (Mv, τv) for each v ∈ V, the graph product will be constructed as finite von
Neumann algebra containing a copy of each Mv in such a way that Mv and Mv′ are in tensor
product position if (v, v′) ∈ E , and in free position otherwise.
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Definition 2.2. Let G = (V, E) be a graph. We say that a word (v1, . . . , vn) ∈ Vn is G-reduced
provided that whenever i < k are such that vi = vk, there is some j with i < j < k so that
(vi, vj) /∈ E .

If (v1, . . . , vn) ∈ Vn is such a word and xi ∈ Mvi , then saying the word is not G-reduced is
exactly saying that two xi’s from the same algebra could be permuted next to each other and
multiplied, giving a shorter word.

Definition 2.3. Let G = (V, E) be a graph, (M, τ) be a tracial von Neumann algebra, and for
each v ∈ V let Mv ⊆ M be a von Neumann sub-algebra. Then the algebras (Mv)v∈V are said
to be G-independent if: Mv and Mw commute whenever (v, w) ∈ E ; and whenever (v1, . . . , vn)
is a G-reduced word and x1, . . . , xn ∈ M are such that xi ∈ Mvi and τ(xi) = 0, we have
τ(x1 · · ·xn) = 0.

Conversely, given a collection (Mv, τv) of tracial von Neumann algebras, their graph product
(M, τ) =

v∈G(Mv, τv) is the von Neumann algebra generated by copies of each Mv which are

G-independent, so that τ |Mv = τv. (That the graph product exists and is unique was shown in
[M lo04]). When the trace is clear from context, we may write simply M =

v∈G Mv.

Notice that if G = (V, ∅) then
v∈G Mv = ˚v∈VMv; on the other hand, if G is a complete

graph, then
v∈G Mv =

⊗
v∈V Mv.

2.2. Laws in tracial von Neumann algebras. A tracial von Neumann algebra is a pair
(M, τ) where M is a von Neumann algebra and τ : M → C is a faithful, normal, tracial state.
If a ∈ M is a normal element, we let µa be the Borel probability measure supported on the
spectrum of a defined by

µa(E) = τ(1E(a)) for all Borel E ⊆ C.
We then necessarily have that

τ(f(a)) =

∫
f dµa

for all complex-valued, bounded Borel functions f defined on the spectrum of a.
Given an integer r ≥ 1, we let C ⟨T1, T ∗

1 , T2, · · · , Tr, T ∗
r ⟩ be the algebra of noncommutative

∗-polynomials in r-variables (i.e. the universal ∗-algebra in r-variables). Given a ∗-algebra A
and a tuple a = (a1, · · · , ar) ∈ Ar, and P ∈ C ⟨T1, T ∗

1 , T2, · · · , Tr, T ∗
r ⟩, we use P (a) for the image

of P under the unique ∗-homomorphism C ⟨T1, T ∗
1 , T2, · · · , Tr, T ∗

r ⟩ → A which sends Tj to aj .
For later use, if

P = (Pij)1≤i≤m,1≤j≤n ∈Mm,n(C ⟨T1, T ∗
1 , T2, T

∗
2 , · · · , Tr, T ∗

r ⟩)
we define P (x) ∈Mm,n(A) by

(P (x))ij = Pij(x).

If (M, τ) is a tracial von Neumann algebra, and x ∈M r is a tuple, we define its law ℓx to be
the linear functional

ℓx : C ⟨T1, T ∗
1 , T2, · · · , Tr, T ∗

r ⟩ → C
P 7→ τ(P (x)).

If n ∈ N and A ∈Mn(C) then we let ℓA be the law of A with respect to the normalized tracial
state trn on Mn(C), namely

trn(A) =
1

n

n∑
j=1

Ajj .

Suppose we are given a sequence (Mn, τn) of tracial von Neumann algebras, and an ∈ M r
n. If

(M, τ) is a tracial von Neumann algebra and a ∈ M r we say that ℓan → ℓa if for all P ∈
C ⟨T1, T ∗

1 , T2, · · · , Tr, T ∗
r ⟩ we have

ℓa(P ) = lim
n→∞

ℓan(P ).

Laws are spectral measures are related by the following fact: suppose we are given
5



• (Mn, τn) are tracial von Neumann algebras,
• a C > 0 and an integer r ≥ 1
• a sequence an ∈ (Mn)rs.a. with ∥an∥ ≤ C.
• a tracial von Neumann algebra (M, τ) and a ∈M r

s.a.

Then ℓan →n→∞ ℓa in law if and only if for every self-adjoint P = P ∗ ∈ C ⟨T1, T ∗
1 , · · · , Tr, T ∗

r ⟩
we have µP (an) → µP (a) weak∗. Moreover, if r = 1 these conditions are equivalent to saying
that µan → µa weak∗. The proof of this fact is an exercise in applying the Stone-Weierstrass
theorem.

If (M, τ) is a tracial von Neumann algebra, and x ∈ Mm,n(M), we define the Fuglede–
Kadison pseudo-determinant of x by

det+M (x) = exp

(
n

∫
(0,∞)

log t dµ|x|(t)

)
,

where |x| = (x∗x)1/2, and µ|x| is the spectral measure with respect to trn⊗τ . Here we are
following the usual convention that exp(−∞) = 0.

2.3. Galois theory. We fix some notation and recalling some of the fundamental concepts of
Galois theory, specific to algebraic field extensions of Q. Let Q be the algebraic numbers in C,
this is a field by [DF04, Corollary 19 in Section 13.2] We will write O for the algebraic integers
in C; recall that x ∈ O if there is a monic p ∈ Z[T ] so that p(x) = 0.

The absolute Galois group of Q is defined to be the group Gal(Q/Q) of all field automor-
phisms of Q (note that such automorphisms automatically fix Q). Each x ∈ Q has finite orbit
Gal(Q/Q) · x :=

{
σ(x) : σ ∈ Gal(Q/Q)

}
; if we equip these sets with their discrete topologies,

then
∏

x∈Q(Gal(Q/Q) · x) is compact by Tychonoff’s Theorem, and contains Gal(Q/Q). Since

Gal(Q/Q) is closed in this topology, it is a compact group. Note that a sequence σn ∈ Gal(Q/Q)
converges to σ ∈ Gal(Q/Q) if for every x ∈ Q we have σn(x) = σ(x) for all sufficiently large n.

Though we will not need it, we remark to the reader that the usual Galois correspondence
between subgroups and subfields extends to this setting. Namely, the closed normal subgroups
are in natural bijection with the Galois extensions of Q, via the correspondence that sends a
closed, normal subgroup H of Gal(Q/Q) to FixH(Q) = {x ∈ Q : σ(x) = x for all σ ∈ H}.
This correspondence naturally induces an isomorphism Gal(Q/Q)/H ∼= Gal(FixH(F )/Q). In
particular, if [Gal(Q/Q) : H] < +∞, then FixH(Q) is a finite Galois extension with degree
[Gal(Q/Q) : H].

We remind the reader here some of the core results of Galois theory and algebraic number
theory, which we will use in Section 3.

(1) If x ∈ Q, then x ∈ Q if and only if σ(x) = x for all σ ∈ Gal(Q/Q) (see [Lan02, Theorem
1.2]),

(2) the algebraic integers form a subring of Q (see [DF04, Corollary 24 in Section 15.3]),
(3) O ∩Q = Z (see [DF04, Proposition 28 in Section 15.3]).

3. Galois bounded microstates and algebraic soficity

In this section we introduce the concepts of Galois bounded sequences of microstates and
algebraic soficity. The motivation is to find an analogue of soficity which is better adapted to
∗-algebras not necessarily arising from groups, which will still be sufficient to give us bounds on
certain Fuglede–Kadison pseudodeterminants of operators arising from such algebras.

The generators of a sofic group admit microstates among the permutation matrices, where
all the entries are 0 or 1. This suffices to prove that their group algebras satisfy the determi-
nant conjecture [ES05] (in turn implying that L2-torsion of modules over them is well-defined
[Lüc02]), as well as Lück approximation [ES05]. They are thus of fundamental importance in
the study of L2-invariance. We will see that the same sort of control can be obtained when a
∗-algebra has generators admitting microstates whose entries, rather than being integers, are
algebraic integers all living in a fixed finite extension of Q. We make these idea precise in
Definitions 3.2 and 3.7.

6



As motivating examples, we show below that Mn(C) is algebraically sofic (despite not being
a group von Neumann algebra), as is L(Γ) for any sofic group Γ.

3.1. Galois bounded microstates and the Fuglede–Kadison determinant. Given A ∈
MN (Q) and σ ∈ Gal(Q/Q), we write σ(A) to mean the matrix obtained by applying σ to each

entry of A. For σ ∈ Gal(Q/Q), we let σ̃ ∈ Gal(Q/Q) be given by σ̃(z) = σ(z). Note that if
A ∈MN (Q), then

(1) σ(A∗) = σ̃(A)∗.

This will be used frequently in this section. For a matrix A ∈MN (Q), we use

Gal(Q/Q) ·A = {σ(A) : σ ∈ Gal(Q/Q)}.
The following lemma allows us to use number theory to obtain lower estimates on pseudo-
determinants of finite dimensional matrices. This lemma will then motivate a special type
of microstates approximation sequence whose existence implies positivity of Fuglede–Kadison
pseudo-determinants.

Lemma 3.1. Suppose A ∈MN (O). Set

C = max
σ∈Gal(Q/Q)

∥σ(A)∥,

d = #(Gal(Q/Q) ·A)

Then
det+(A)1/N ≥ C−d2+1.

Proof. Let Ω = Gal(Q/Q) · (A∗A). Following [Tho08b, Theorem 4.3], set

B =
⊕
S∈Ω

S.

Then the characteristic polynomial of B is

kB =
∏
S∈Ω

kS ,

where kS is the characteristic polynomial of S. Let r ∈ N ∪ {0} be such that kA∗A(T ) = T rp,
where p ∈ O[T ] has p(0) ̸= 0. Then, for S ∈ Ω, we have kS(T ) = T rpS(t) with pS ∈ O[T ], and
pS(0) ̸= 0. Hence

kB(T ) = T r#Ω
∏
T∈Ω

pS(T ).

Set
q =

∏
S∈Ω

pS .

Since kB is invariant under Gal(Q/Q) and has algebraic integer coefficients, we know that its
coefficients are in Q ∩ O = Z. It follows that q ∈ Z[T ] as well. Further q(0) ̸= 0. Thus
q(0) ∈ Z \ {0} so that

1 ≤ |q(0)| = det+(A)2
∏

S∈Ω\{A∗A}

|pS(0)|.

For S ∈ Ω, we know that pS(0) is the product of the nonzero eigenvalues of S. For σ ∈ Gal(Q/Q),

we define σ̃ ∈ Gal(Q/Q) by σ̃(z) = σ(z). Then,

∥σ(A∗A)∥ = ∥σ̃(A)∗σ(A)∥ ≤ C2.

This estimate implies that |pS(0)| ≤ C2N for every S ∈ Ω. So

1 ≤ det+(A)2C2(#Ω−1)N .

Moreover, (1) implies that

Ω ⊆ {(σ(A))∗ϕ(A) : σ, ϕ ∈ Gal(Q/Q)} ⊆ {S∗
1S2 : S1, S2 ∈ Gal(Q/Q) ·A}.

Thus #Ω ≤ d2, and this completes the proof. □
7



The preceding lemma suggests the following definition.

Definition 3.2. Let n(k) be a sequence of natural numbers. Let Gal(Q/Q) be the absolute

Galois group of Q. We say that X(k) ∈Mn(k)(C) is Galois bounded if

• the entries of X(k) are algebraic integers;
• supk maxσ∈Gal(Q/Q) ∥σ(X(k))∥ < +∞; and

• supk #(Gal(Q/Q) ·X(k)) < +∞.

If X(k) ∈ Mn(k)(C)r we say that it is Galois bounded if (X
(k)
j )∞k=1 is Galois bounded for all

j = 1, · · · , r. If (M, τ) is a tracial von Neumann algebra, and if x ∈ M r has ℓX(k) → ℓx, then

we say that X(k) are a Galois bounded sequence of microstates for x.

Recalling the correspondence between finite Galois extensions and finite index normal sub-
groups of the absolute Galois group discussed in §2.3, one can rephrase being Galois bounded in
the following way. A sequence (X(k))∞k=1 ∈

∏
kMn(k)(Q) is Galois bounded if and only if there

is a sequence Fk of subfields of C which are finite Galois extensions of Q such that:

• we have X(k) ∈Mn(k)(Fk ∩ O),
• supk[Fk : Q] < +∞,

• supk maxσ∈Gal(Fk/Q) ∥σ(X(k))∥ < +∞.

In fact, it is possible to rephrase all of our proofs in this framework without any reference to
the absolute Galois group. However, phrasing everything in terms of the absolute Galois group
makes the setup cleaner and simplifies the proofs of closure of Galois bounded elements under
various operations such as multiplication, adjoints, and conjugation by permutations.

Proposition 3.3. Let S be the set of Galois bounded sequences in
∏

kMn(k)(C).

(1) S is a subring of
∏

kMn(k)(O) which is closed under adjoints, and contains all sequences
of the form (α1n(k))

∞
k=1 for α ∈ O.

(2) S is invariant under the conjugation action of
∏

k Sn(k) on
∏

kMn(k)(Q).

(3) Suppose X = (Xk)k ∈ S and m(k) any sequence of integers. If (Yk)k ∈
∏

kMm(k)(Q) is
Galois bounded, we have that (Xk ⊗ Yk)k is Galois bounded.

(4) If (X(k))k ∈ Sr, then for all P ∈ Q ⟨T1, T ∗
1 , · · · , Tr, T ∗

r ⟩ we have

lim inf
k→∞

det+(P (X(k)))1/n(k) > 0.

Proof. (1): That the norm boundedness condition is closed under sums and products follows
from the facts O is a ring, that each σ induces an automorphism of Mn(k)(O), and that the
operator norm is submultiplicative. For the last condition, note that for A,B ∈ S, we have that

Gal(Q/Q) · (A(k)B(k)) ⊆ {σ(A(k))ϕ(B(k)) : σ, ϕ ∈ Gal(Q/Q)},
with a similar result for the sum. That S contains all constant algebraic integer multiples of the
identity is an exercise. Finally, to see that S is closed under adjoints, let A = (A(k))∞k=1 ∈ S.

Equation (1) implies that ((A(k))∗)∞k=1 ∈ S. The desired result follows.

(2): This follows from the fact the action of Gal(Q/Q) on Mn(k)(O) commutes with the
conjugation action of Sn(k).

(4): By scaling, we may assume that P ∈ O ⟨T1, T ∗
1 · · · , Tr, T ∗

r ⟩. By (1), we know that

(P (X(k)))∞k=1 ∈ S. Set

C = sup
k

max
σ∈Gal(Q/Q)

∥σ(P (X(k)))∥ < +∞,

d = sup
k

#Gal(Q/Q) · P (X(k)) < +∞.

For each k, we then have by Lemma 3.1,

det+(P (X(k)))1/n(k) ≥ C−d2+1.

Taking limit infimums of both sides completes the proof.
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(3): Using (1) we may reduce to the case that Yk is the m(k) ×m(k) identity matrix. This
case is an exercise using, for example, that

σ · (A⊗ 1m) = (σ(A) ⊗ 1m)

for m,n ∈ N and A ∈Mn(Q).
□

We now obtain Theorem B from the introduction as a corollary of Proposition 3.3.

Theorem 3.4 (Theorem B). If (M, τ) is a tracial von Neumann algebra, and x is a generating
tuple for M with a Galois bounded sequence of microstates, then for any matrix polynomial in
x with algebraic coefficients, the Fuglede–Kadison pseudo-determinant is positive.

Proof. Suppose that x = (x1, · · · , xr), and let P ∈Mm,n(Q ⟨T1, · · · , Tr⟩). Since

P ∗P ∈Mn(Q ⟨T1, T ∗
1 , · · · , Tr, T ∗

r ⟩)
we may, and will, assume that case m = n. Let Eij be the standard matrix units in Mn(C). It
follows by Proposition 3.3 (3) that the new tuple

x̃ = ((xl ⊗ Eij)1≤i,j≤n,1≤l≤r, (1 ⊗ Eij)1≤i,j≤n)

has a Galois bounded sequence of microstates. Let

I = [r] × [n] × [n] ⊔ [n] × [n].

For 1 ≤ i, j ≤ n we use (∅, i, j) for the element of I which correspond to (i, j) in the copy of
[n] × [n] inside I. Suppose P =

∑
i,j Pij ⊗ Eij , then as

P (x) =
∑
ij

Pij((xl ⊗ Eii)
r
l=1)(1 ⊗ Eij),

we have
P (x) =

∑
i,j

Qij(x̃),

where Qij ∈ Q
〈
Tβ, T

∗
β : β ∈ I

〉
is given by

Qij = Pij((T(l,i,i))
r
l=1)T∅,i,j .

This construction allows us to reduce to n = 1, by replacing x with x̃. Hence we may, and will,
assume that n = 1.

Let (X(k))k be a Galois bounded sequence of microstates for x. The fact that (X(k))k are
microstates for x implies that µ|P (X(k))| → µ|P (x)| weak∗. Thus, by weak∗-semicontinuity of

integrating the logarithm and (4),

log det+M (P (x)) =

∫
(0,∞)

log(t) dµ|P (x)|(t) ≥ lim inf
k→∞

∫
(0,∞)

log(t) dµ|P (X(k))|(t)

= lim inf
k→∞

log det+(P (X(k)))1/n(k) > −∞. □

For later use, we record the fact that the existence of Galois boundedness passes to direct
sums.

Lemma 3.5. Let (Mj , τj), j = 1, 2 be tracial von Neumann algebras. Suppose that xj ∈ M
rj
j

for some r1, r2 and each j = 1, 2. Suppose that (nj(k))∞k=1 are sequences of natural numbers for

j = 1, 2. Assume we are given for j = 1, 2 microstates sequences X
(k)
j ∈ Mnj(k)(C)rj for xj.

Finally, assume that (tk,j)
∞
k=1, j = 1, 2 are sequence of integers so that

α = lim
k→∞

tk,1n1(k)

tk,1n1(k) + tk,2n2(k)

exists. Then ((X
(k)
1 )⊕tk,1 ⊕ 0, 0 ⊕ (X

(k)
2 )⊕tk,2) converges in law to the law of (x1 ⊕ 0, 0 ⊕ x2)

regarded as an element in α(M1, τ1)⊕ (1−α)(M2, τ2). In particular, if there are Galois bounded
9



sequences of microstates for x1, x2 then for every 0 ≤ α ≤ 1, there are Galois bounded sequence
of microstates for (x1 ⊕ 0, 0 ⊕ x2) regarded as an element in α(M1, τ1) ⊕ (1 − α)(M2, τ2).

3.2. Algebraic soficity.

Definition 3.6. A sequence of matrices X(k) ∈Mn(k)(C) is called asymptotically constant
on the diagonal if

lim
k→∞

∥∥∥∆n(k)[X
(k)] − trn(k)[X

(k)]1
∥∥∥
2

= 0,

where ∆n(k) is the conditional expectation onto the diagonal subalgebra of Mn(k)(C).

Definition 3.7. Given a tracial von Neumann algebra (M, τ) we say that a tuple x = (xi)i∈I in

M I is algebraically sofic if for any finite F ⊆ I, there is a sequence of microstates (X
(k)
i )i∈F

for x
∣∣
F

that is Galois bounded (Definition 3.2), such that P (X(k)) is asymptotically constant
on the diagonal for every ∗-polynomial P . We say that M is algebraically sofic if it has an
algebraically sofic generating tuple.

If (M, τ) is a tracial von Neumann algebra, and x ∈M I is algebraically sofic, we remark that

for any set J and any P ∈ O ⟨Ti, T ∗
i : i ∈ I⟩J we have that P (x) is algebraically sofic. The name

derives from the case of soficity of groups, as defined by Gromov [Gro99] and named by Weiss
[Wei00]. Soficity can be phrased in terms of microstates: a group Γ is sofic if and only for every
finite F ⊆ Γ there is a sequence σk ∈ SF

n(k) which, when viewed as matrices, form microstates

for F . If we equip Sn(k) with the metric

d(σ, π) =
1

n(k)
|{j : σ(j) ̸= π(j)}|,

then if Σ,Π are the matrices corresponding to σ, π we have

d(σ, π) =
1

2
∥Σ − Π∥22.

If F ⊆ Γ is finite, with e ∈ F and if σk ∈ SF
n(k) is a microstates sequence for F , then for every

g ∈ F we have

tr(σk,g) →k→∞ δg=e

Since

∥∆n(k)(σk,g) − tr(σk,g)∥22 = ∥∆n(k)(σk,g)∥22 − tr(σk,g)2 = tr(σk,g)(1 − tr(σk,g))

being a sequence of microstates forces σk to be asymptotically constant on the diagonal. Thus
soficity of Γ implies that every tuple in Γ is algebraically sofic, when we view Γ ≤ U(L(Γ)). We
record this observation in the following proposition.

Proposition 3.8. If Γ is a sofic group, then {ug : g ∈ Γ} ⊆ L(Γ) is algebraically sofic. In
particular, L(Γ) is algebraically sofic.

In the definition of algebraic soficity, we retain having asymptotically constant diagonals, but
we relax the requirement of being a permutation (ill-adapted to a nongroup setting). We instead
require entries which are algebraic integers and whose entries have a “size of integrality” (both
in absolute value and in terms of how large of a field extension they live) that is controlled. The
intuition behind this relaxation is that the fact that permutation matrices have integer entries,
and the integrality of permutations is used in the proofs of many applications of soficity.

We want to show that finite-dimensional tracial ∗-algebras are algebraically sofic, and to this
end, we first show that Mn(C) is algebraically sofic using the following group-measure-space
construction.

Proposition 3.9. Let Γ be a finite abelian group. Let (uχ)
χ∈Γ̂ be the canonical unitaries in

L(Γ̂). Consider the action α of Γ on L(Γ̂) by αg(uχ) = χ(g)−1uχ for all g ∈ Γ, χ ∈ Γ̂.

(1) We have L(Γ̂) ⋊ Γ ∼= M|Γ|(C).
10



(2) Endow L(Γ̂)⋊Γ with its unique tracial state τ . For g ∈ Γ, let vg be the canonical unitaries

in L(Γ̂) ⋊ Γ implementing the action of Γ. Let

π : L(Γ̂) ⋊ Γ → B(L2(L(Γ̂) ⋊ Γ))

be the GNS representation coming from τ . Then:

(a) {uχvg : χ ∈ Γ̂, g ∈ G} is an orthonormal basis of L2(L(Γ̂) ⋊ Γ);

(b) if D is the MASA in B(L2(L(Γ̂)⋊Γ)) generated by the rank one projections onto Cuχvg,
for χ ∈ Γ̂ and g ∈ Γ, then

ED ◦ π = τ ;

(c) the matrix entries of π(uχvg) with respect to (uθvh)θ∈Γ,h∈G are elements of {0}∪{ϕ(k) :

ϕ ∈ Γ̂, k ∈ Γ}.
(d) For 1 ≤ i, j ≤ |Γ|, let Eij be the standard matrix units of M|Γ|(C). Let K = {ϕ(k) : ϕ ∈

Γ̂, k ∈ Γ}. Then the isomorphism given in (1) can be chosen so that the matrix entries
of π(Eij) with respect to (uθvh)θ∈Γ,h∈Γ lie in 1

|Γ|Z[K], for 1 ≤ i, j ≤ Γ.

Proof. (1): The Fourier transform induces an isomorphism L(Γ̂) ∼= ℓ∞(Γ) which conjugates

the action of Γ on L(Γ̂) to the shift action of Γ on ℓ∞(Γ). This induces an isomorphism

ℓ∞(Γ) ⋊ Γ ∼= L(Γ̂) ⋊ Γ, where the action of Γ on ℓ∞(Γ) is the shift action. The algebra
ℓ∞(Γ) ⋊ Γ is generated by the family of matrix units {δgugh−1δh : g, h ∈ Γ} and is therefore
isomorphic to M|Γ|(C).

(2): The fact that {uχvg : χ ∈ Γ̂, g ∈ Γ} are pairwise orthogonal is a direct computation. We
leave it as an exercise to verify that

⟨π(uχvg)uθvh, uϕvk⟩ = θ(g)δχθ=ϕδgh=k,

for all χ ∈ Γ̂, g ∈ Γ. This implies that

ED(π(uχvg)) = τ(uχvg)1

for all χ ∈ Γ̂, g ∈ Γ. Since such elements span L(Γ̂) ⋊ Γ, it follows that ED ◦ π = τ . Part
(??) follows from the above computation For part (2d), note that the fact that (uθvh)θ,h is an
orthonormal basis implies that

Eij =
∑
χ,g

tr(Eij(uχvg)∗)uχvg.

As shown above, the matrix entries of π(uχvg) with respect to the basis (uθvh)θ,h are in Z[K],
so the above expansion completes the proof. □

We start by recording how algebraic soficity behaves under tensor products.

Proposition 3.10. For j = 1, 2 let (Mj , τj) be tracial von Neumann algebras and xj ∈ M
rj
j

algebraically sofic tuples. Then (x1 ⊗ 1, 1 ⊗ x2) is algebraically sofic.

Proof. Let X
(k)
j ∈ Mnj(k)(O) be Galois bounded microstates for xj so that polynomials in

X
(k)
j are asymptotically constant on the diagonal. By Proposition 3.3 (3) we know that

(X
(k)
1 ⊗ 1n2(k), 1n1(k) ⊗X

(k)
2 ) is Galois bounded. Monomials in (X

(k)
1 ⊗ 1n2(k), 1n1(k) ⊗X

(k)
2 ) are

asymptotically constant on the diagonal, and thus polynomials in (X
(k)
1 ⊗ 1n2(k), 1n1(k) ⊗X

(k)
2 )

are asymptotically constant on the diagonal. □

This result on tensor products can also be used to show that algebraic soficity is preserved
under finite direct sums with rational weights. We show in the next section that the direct sum
of two algebraically sofic algebras without rational weights can fail to be algebraically sofic (see
Corollary 3.17).
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Theorem 3.11. Suppose that (Mj , τj), j = 1, 2 are algebraically sofic, and let q ∈ (0, 1) ∩ Q.
Let M = M1 ⊕M2 equipped with the trace

τ(a1, a2) = qτ1(a1) + (1 − q)τ2(a2).

Then (M, τ) is algebraically sofic. In particular, finite dimensional tracial von Neumann alge-
bras where every central projection has trace in Q are algebraically sofic.

Proof. The “in particular” part follows from the fact that every finite-dimensional von Neumann
algebra is a direct sum of matrix algebras.

Note that {ϕ(k) : k ∈ Z/nZ, ϕ ∈ (Z/nZ)̂} = Z[e2πi/n], and e2πi/n is algebraic integer. So the
fact that Mn(C) is algebraically sofic follows from Proposition 3.9 applied to Γ = Z/nZ. For
later use, we note the following specific consequence. For 1 ≤ i, j ≤ n, let Eij be the standard
matrix units of Mn(C). Then Proposition 3.9 shows that (nEi,j)i,j is an algebraically sofic tuple.

Now let (Aj , τj)j=1,2 be tracial ∗-algebras. Let sj ∈ A
rj
j be a generating tuple for Aj , j = 1, 2

such that there exists Galois bounded microstates (X
(k)
j )∞k=1 ∈

∏
kMnj(k)(C) as in the definition

of algebraic soficity.
Let A = A1 ⊕A2 be endowed with the trace

τ(a1, a2) = tτ1(a1) + (1 − t)τ2(a2)

for some t ∈ Q ∩ (0, 1). Write t = k
n with n ∈ N and 0 < k < n. We use the embedding

π : A1 ⊕A2 →Mn(C) ⊗A1 ⊗A2

given by π(a1, a2) =
(∑k

i=1Eii

)
⊗ a1 ⊗ 1 +

(∑n
i=k+1Eii

)
⊗ 1 ⊗ a2. It thus suffices to note that

Propositions 3.10 and 3.3 (1) implies that

n

((
k∑

i=1

Eii

)
⊗ s1 ⊗ 1, n

(
n∑

i=k+1

Eii

)
⊗ 1 ⊗ s2

)
is an algebraically sofic tuple. □

3.3. Tracial ∗-algebras which are not algebraically sofic. In this section, we show that
certain ∗-algebras can fail to be algebraically sofic. In fact, we show that any self-adjoint element
which is algebraically sofic (regarded as a 1-tuple) must have transcendental trace. Using, we
can show that if we equip A = Mk1(C) ⊕Mk2(C) with a trace which has a central projection
with transcendental trace, then every algebraic sofic element of A must be a scalar multiple of
the identity.

Our starting point is the following result of Thom.

Lemma 3.12 (Lemma 3.1 of [Tho08b]). Fix k ∈ N and C ∈ [0,+∞). Let Tk,c be the set of
polynomials in Z[t] of degree at most k and whose roots in C all have modulus at most C. Then
Tk,C is finite.

For our purposes, it will be best to rephrase this as follows.

Lemma 3.13. Fix k ∈ N and C ∈ [0,+∞). Let Sk,C be the set of algebraic integers in C which
have at most k Galois conjugates, all of which have modulus at most C. Then Sk,c is finite.

Proof. Let Tk,c be as in Lemma 3.12. Then

Sk,c =
⋃

p∈Tk,c

p−1({0}),

so Sk,C is a finite union of finite sets.
□

Corollary 3.14. Let (M, τ) be a tracial von Neumann algebra and suppose that x ∈ Ms.a. is
algebraically sofic. Then τ(x) is an algebraic integer.
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Proof. Let Sk,c be as in Lemma 3.13. Let X(N) ∈ Mk(N)(O) be a Galois bounded sequence of

microstates which witness that x is algebraically sofic. Since X(N) has asymptotically constant
diagonal entries and the average of these entries converges to τ(x) we may choose j(N) ∈
{1, · · · ,K(N)} with

X
(N)
j(N),j(N) →N→∞ τ(x).

By definition of Galois boundedness, there is a C ∈ [0,+∞) and a k ∈ N with X
(N)
j(N),j(N) ∈ Sk,C

for all N . By Lemma 3.13, we have that τ(x) ∈ Sk,C and so τ(x) is an algebraic integer.
□

Theorem 3.15. Let (M, τ) be a tracial von Neumann algebra and x ∈ M algebraically sofic
and self-adjoint. Then all the eigenvalues of x are algebraic integers.

Proof. Let X(N) ∈ Mk(N (O) be a sequence of Galois bounded microstates which witness alge-
braic soficity. By passing to a subsequence, we may assume that there is an r ∈ N with

r = |{σ(X(N)) : σ ∈ Gal(Q/Q)}.

For each N ∈ N, choose σ0,N , · · · , σr−1,N ∈ Gal(Q/Q) such that σ0,N = id and

{σ(X(N)) : σ ∈ Gal(Q/Q)} = {σj,N (X(N)) : j ∈ {0, · · · , r − 1}}.

Set

Y (N) =

r−1⊕
j=0

σ(Y (j)).

Passing to a further subsequence we may assume that µY (N) weak∗-converges to a probability

measure µ. Let µX(N) , µY (N) be the spectral measures of X(N), Y (N). Since the characteristic

polynomial of Y (N) is invariant under the absolute Galois group, we know it is an integer and
thus µY (N) is an atomic measure supported on algebraic integers, and by Galois boundedness it
is supported in a uniformly bounded set. Thus µ is an integer measure in the sense of [Tho11].
Let µx be the spectral measure of x. Since µX(N) ≤ rµY (N) for every N we have that µx ≤ rµ.
If λ ∈ C is not an algebraic integer, then since µ is an integer measure it follows from [Tho11,
Theorem 2.8] that

µx({λ}) ≤ rµ({λ}) = 0.

□

Corollary 3.16. Let (M, τ) be a tracial von Neumann algebra and x ∈ M algebraically sofic
and self-adjoint. If the spectral measure µx of x is atomic, then µx({λ}) is algebraic for every
λ ∈ C.

Proof. The case where λ is transcendental follows from the above Theorem. So suppose that λ
is algebraic. Define a polynomial

Fλ(t) =
∏

β∈spec(x),β ̸=λ

(t− β).

Note that Fλ has algebraic coefficients. Then

1λ(x) =
∏

β∈spec(x),β ̸=λ

(λ− β)−1Fλ(x).

So

µx({λ}) =
∏

β∈spec(x),β ̸=λ

(λ− β)−1τ(Fλ(x)).

We have that τ(Fλ(x)) ∈ Q by the preceding theorem, since xk is algebraically sofic for all
k ∈ N ∪ {0}.

□
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Corollary 3.17. Suppose that k1, k2 ∈ N and that gcd(k1, k2) = 1. Let α ∈ C be transcendental.
Let A = Mk1(C) ⊕Mk2(C) equipped with a trace

τ(x1, x2) = α tr(x1) + (1 − α) tr(x2).

If x ∈ A is algebraically sofic with respect to τ, then x ∈ C1. In particular, A is not algebraically
sofic.

Proof. Since x + x∗ and i(x − x∗) are algebraically sofic if x is, we may assume that x is
self-adjoint. Consider the spectral measure µx of x. Write x = (x1, x2). By Theorem 3.15
and Corollary 3.16, µx is an atomic measure concentrated on algebraic integers and µx({λ}) is
algebraic for every λ ∈ C. Let λ ∈ C, and let

ti =
dim(ker(xi − λ))

ki
∈ Q.

Then

µx({λ}) = α(t1 − t2) + t2.

Note that α is transcendental, whereas t1, t2, µx({λ}) are algebraic. Since algebraic numbers
form a field, this forces t1 = t2. Our assumptions on k1, k2 thus forces that either

dim(ker(x1 − λ))

k1
=

dim(ker(x2 − λ))

k2
= 0

or
dim(ker(x1 − λ))

k1
=

dim(ker(x2 − λ)

k2
= 1.

Since this holds for all λ and µx is a probability measure, this forces µx to be a Dirac mass.
Thus x ∈ C1. □

4. Algebraic soficity preserved by graph products

In this section, we show that the graph product of algebraically sofic tracial ∗-algebras is
algebraically sofic. In order to obtain the Galois bounded microstates for the graph product
from Galois bounded microstates for the individual algebras, we use a construction based on
conjugation by random permutation matrices from [CdSH+] (stated as Theorem 4.1 below);
this is the analog of Charlesworth and Collins’ construction in the unitary case [CC21], and the
proof uses a similar technique as in the free case studied by [ACD+21].

To model graph products, we will need to force certain matrices to commute with each other,
and certain matrices to be asymptotically free. As in [CC21], we will accomplish this by taking
the models in a tensor product of several copies of MN (C), with matrices having only scalar
components in certain tensor factors; in this way we can ensure that matrices which are meant to
commute do so. Heuristically, the index set of this tensor product will be a finite set of strings.
Given a subalgebra of this larger product formed by replacing some of the tensor factors with
copies of CIN , we will think of its elements as corresponding to collections of beads on the
strings where the algebra has a non-trivial factor. Two algebras commute, then, if the beads
representing their elements can slide past each other on this collection of strings. For more
detail on this picture, refer to [CC21, §3.2] or more generally [CN10].

The information of which tensor factors of a matrix are allowed to be non-scalar is determined
by the vertex it corresponds to. We will choose our set of strings and the assignments of
vertices to sets of strings in such a way that matrices will share a string in common precisely
when the graph product structure insists that the algebras they are modelling should be freely
independent. Given a prescribed finite graph G it is always possible to choose a set S and a
relation with this with this property; one approach was given in [CC21, Section 3.1].

The matrices produced by our construction will all live in MN (C)⊗S . The inputs to the

construction are deterministic matrices X
(N)
j which are each assigned a certain vertex χ(j), such

that X
(N)
j is MN (C)⊗Sv , viewed as a subalgebra of MN (C)⊗S in the standard way. Each matrix

X
(N)
j with χ(j) = v will be conjugated by a random permutation matrix Σ

(N)
v in

⊗
Sv
MN (C)
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to produce a new random matrix X(N)
j

in MN (C)⊗S . When we apply this construction in the

proof of Theorem C, X
(N)
j will be a matrix approximation for some element of Aχ(j), more

specifically some polynomial evaluated on microstates for our chosen generators of Aχ(j).

Theorem 4.1 is a statement about certain polynomials in X(N)
j

given by G-reduced words

with respect to the graph G (see Definition 2.2). The following theorem is a special case and
slight reformulation of the main theorem of [CdSH+].

Theorem 4.1. Let G = (V, E) be a simple graph with vertex set V, S be a finite set, and be
as above so that Sv ∩ Sv′ = ∅ if and only if (v, v′) ∈ E.

For N ∈ N, let ∆N#S be the conditional expectation onto the diagonal ∗-subalgebra DN of⊗
S MN (C).
Let Nk be a sequence of natural numbers with Nk → ∞. Let χ : [m] → V be such that

χ(1) · · ·χ(m) is a G-reduced word, and for i = 1, . . . ,m and k ∈ N, let X(k)
i ∈

⊗
Sχ(i)

MNk
(C)

be a deterministic matrix, with supk,i,j

∥∥∥X(k)
i

∥∥∥ <∞.

Further, let
{

Σ
(N)
v : v ∈ V

}
be a family of independent uniformly random permutation ma-

trices, with Σv ∈
⊗

Sv
MN (C), and write

X(k)
i

=
(

Σ
(k)
χ(i)

)∗
X

(k)
i Σ

(k)
χ(i) ⊗ I

⊗S\Sχ(i)

Nk
∈
⊗
S
MN (C).

Then

(2) lim
k→∞

∥∥∥∆
N#S

k
[(X(k)

1
− ∆N#S [X(k)

1
]) . . . (X(k)

k
− ∆N#S [X(k)

m
])]
∥∥∥
2

= 0 almost surely.

Note in [CdSH+], C rather than V is used for the set of vertices of G. In the notation

of [CdSH+], we have taken the diagonal matrices Λ
(n)
i,j to be identity. Moreover, rather than

having matrices X
(N)
i,j with j = 1, . . . , ℓ(i), we have a single matrix X

(N)
i (we take ℓ(i) = 1). We

used m here rather than k to denote the length of the word. Finally, we rather than having a

sequence X(N) of matrices of size N#S , we consider a sequence X(Nk) of matrices of size N#S
k ;

the theorem clearly still holds in this setting, since the proof is based on computing expectations
and analyzing their dependence on N , for which can simply substitute Nk.

We are now ready to prove Theorem C, which we restate here.

Theorem 4.2 (Theorem C). Let G = (V, E) be a finite simple graph and let (Av, τv) for a v ∈ V
be a family of tracial ∗-algebras. If each (Av, τv) is algebraically sofic, then so is

v∈G(Av, τv).

Proof. Suppose that (Av, τv) for v ∈ V are algebraically sofic, and let us prove that the graph
product

v∈G(Av, τv) is algebraically sofic.

For each v, fix a generating tuple yv for Av. Fix Galois bounded sequences of microstates

Ỹ
(k)
v in MNv,k

(C) for yv. Let Nk =
∏

v∈V Nv,k, and let Y
(k)
v = Ỹ

(k)
v ⊗ INk/Nk,v

. Note that Y
(k)
v

is a Galois bounded sequence of microstates for yv, but these microstates now come from the
same matrix algebra MNk

(C) for all vertices v.
Let S be a finite set and a relation between S and V so that for v1, v2 ∈ V, (v1, v2) ∈ E if

and only if Sv1 ∩ Sv2 = ∅. For each v ∈ V, fix some sv ∈ Sv. Let
{

Σ
(k)
v : v ∈ V

}
be a family of

independent uniformly random permutation matrices, with Σv ∈
⊗

Sv
MNk

(C). Let

Z(k)
v =

[
(Σ(k)

v )t(X(k)
v ⊗ I

⊗Sv\{sv}
N )Σ(k)

v

]
⊗ I

⊗S\Sv

N .

Let y and Z(k) be the tuples obtained by concatenating the tuples yv and Z
(k)
v respectively,

over all v ∈ V. It is immediate that each random outcome of (Z(k))k∈N is Galois bounded.

It remains to show that almost surely Z(k) is a microstate sequence for y and has asymptot-
ically constant diagonal. Being a microstate sequence means that for every non-commutative
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polynomial p, we have

lim
k→∞

| tr
N#S

k
(p(Z(k))) − τ(p(y))| = 0,

while being asymptotically constant on the diagonal means that

lim
k→∞

∥∥∥∆
N#S

k
[p(Z(k)] − tr

N#S
k

(p(Z(k)))I
N#S

k

∥∥∥
2

= 0.

In fact, the combination of these two conditions is equivalent to

(3) lim
k→∞

∥∥∥∆
N#S

k
[p(Z(k)] − τ(p(y))I

N#S
k

∥∥∥
2

= 0;

this follows from the triangle inequality and the fact that tr
N#S

k
◦∆

N#S
k

= tr
N#S

k
. By linearity,

it suffices to check (3) for a spanning set of polynomials. Recall [CF17, Remark 2.7] that
polynomials in y are spanned by 1 and polynomials of the form

(4) p(z) = (p1(zχ(1)) − τ(p1(yχ(1)))) . . . (pℓ(zχ(ℓ)) − τ(pℓ(yχ(ℓ))))

for G-reduced words χ(1) . . . χ(ℓ), with ℓ ≥ 1. The claim (3) is immediate when p = 1. Thus,
it remains to show (3) in the case when p has the form (4), and note that in this case the
term τ(p(y)) in (3) vanishes by graph independence of (yv)v∈V . Hence, our goal (3) reduces to
showing that almost surely

(5) lim
k→∞

∥∥∥∆
N#S

k
[(p1(Z

(k)
χ(1)) − τ(p1(yχ(1)))) . . . (pℓ(Z

(k)
χ(ℓ)) − τ(pℓ(yχ(ℓ))))]

∥∥∥
2

= 0.

Now we assumed that Y
(k)
v is a microstate sequence for y that is asymptotically constant on

the diagonal, and Z
(k)
v is obtained from Y

(k)
v by tensoring with the identity and conjugating by

a permutation matrix, and so

lim
k→∞

∥∥∥∆
N#S

k
[pj(Z

(k)
χ(j))] − τ(pj(y))I

N#S
k

∥∥∥
2

= lim
k→∞

∥∥∥∆Nk
[pj(Y

(k)
χ(j))] − τ(pj(y))INk

∥∥∥
2

= 0.

Thus, by swapping out each τ(pj(y)) term (5) for ∆
N#S

k
[pj(Z

(k)
χ(j))], using the fact that pj(Z

(k)
χ(j))

is uniformly bounded in operator norm as k → ∞, we obtain

lim
k→∞

∥∥∥∆
N#S

k
[(p1(Z

(k)
χ(1)) − τ(p1(yχ(1)))) . . . (pℓ(Z

(k)
χ(ℓ)) − τ(pℓ(yχ(ℓ))))]

− ∆
N#S

k
[(p1(Z

(k)
χ(1)) − ∆

N#S
k

[p1(Z
(k)
χ(1))]) . . . (pℓ(Z

(k)
χ(ℓ)) − ∆

N#S
k

(pℓ(Z
(k)
χ(ℓ))))]

∥∥∥ = 0,

so now the claim (5) to be proved reduces to

(6) lim
k→∞

∥∥∥∆
N#S

k
[(p1(Z

(k)
χ(1)) − ∆

N#S
k

[p1(yχ(1))]) . . . (pℓ(Z
(k)
χ(ℓ)) − ∆

N#S
k

(pℓ(Z
(k)
χ(ℓ))))]

∥∥∥
2

= 0.

Now we can apply Theorem 4.1, taking

X
(k)
j = pj(Y

(k)
χ(j)) ⊗ I

⊗Sv\{sv}
N ,

so that

X(k)
j

= (Σ
(k)
χ(j))

∗(pj(Yχ(j)) ⊗ I
⊗Sv\{sv}
N )Σ

(k)
χ(j) = pj((Σ

(k)
χ(j))

∗(Yχ(j) ⊗ I
⊗Sv\{sv}
N )Σ

(k)
χ(j)) = pj(Z

(k)
χ(j)).

Thus, Theorem 4.1 implies that (6) holds, which completes the proof. □

5. Strong 1-boundedness for graph products

Strong 1-boundedness is a von Neumann algebraic property introduced by Jung in [Jun07].
It implies the lack of a robust space of microstates up to conjugacy for any generating set of a
von Neumann algebra. This typically is achieved when the von Neumann algebra is hyperfinite
(see in connection, [Jun03, Jun06]) or admits algebraic rigidity in the form of abundant com-
mutation (see [Ge98, GS00, Voi99]) or existence of diffuse regular hyperfinite subalgebras (see
[Voi95, Hay18]), or even in the analytic setting of Property (T) which allows for discretizing the
microstate space (see [JS07, HJKE21]). On the other hand, strong 1-boundedness implies that
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every generating set has microstates free entropy dimension δ0(x) = 1, hence the free group fac-
tors are not strongly 1-bounded. Hayes refined this notion by extracting a numerical invariant,
implicit in [Jun07], for von Neumann algebras called the 1-bounded entropy h (see [Hay18]).
This is the main framework in which the modern theory of strong 1-boundedness is carried
out. Non-strongly 1-bounded algebras often exhibit indecomposability relative to strongly 1-
bounded subalgebras, which can be used to prove non-isomorphism results or rule out possible
structural properties. As a precise example, non-strongly 1-bounded algebras cannot be gener-
ated by two strongly 1-bounded subalgebras with diffuse intersection. Another application is a
free absorption theorem for strongly 1-bounded subalgebras in free products ([HJNS21]).

Such indecomposability phenomena in the setting of groups in many instances can be encap-
sulated in L2-invariants, such as the first L2-Betti number (see [Lüc02]). This cohomological
invariant has been of extreme use in the analytic study of groups, and has been increasingly in-
corporated as far as possible into the study of von Neumann algebras due to its rich applications
(see [CS05, Pet09]). Having positive first L2-Betti number automatically implies the lack of the
sort of algebraic rigidity described above in the group level. See [PT11] for such results. The
relationship between the first ℓ2-Betti number and free entropy theory is a difficult subject that
has been heavily investigated ([CS05, Jun, Shl21, HJKE]). Strong 1-boundedness for Connes-
embeddable group von Neumann algebras is believed to coincide with vanishing first ℓ2-Betti
number for the group. However, this has been checked only in certain cases, particularly in one
direction as outlined in [Shl09, Shl21], and remains a challenging open problem.

Given a tracial von Neumann algebra (M, τ) and N a von Neumann subalgebra of M , the 1-
bounded entropy of N in the presence of M is denoted h(N : M). We set h(M) = h(M :
M) and call this the 1-bounded entropy of M . Roughly speaking, the quantity h(N : M) is
a measurement of “how many” finite-dimensional approximations of N there are which extend
to M , We will not need the technical definition of 1-bounded entropy, and refer the reader to
[Hay18, Definition 2.2 and Definition A.2] for the precise definition. We enumerate below the
most essential properties of this quantity for our purposes:

(1) (see [HJKE21, §2.3.3]) h(N1 : M1) ≤ h(N2 : M2) if N1 ⊂ N2 ⊂M2 ⊂M1.
(2) (see [Hay18, Lemma A.12]) h(N1 ∨ N2 : M) ≤ h(N1 : M) + h(N2 : M) if N1, N2 ⊂ M

and N1 ∩N2 is diffuse. In particular, h(N1 ∨N2) ≤ h(N1) + h(N2).
(3) (see [Hay18]) h(N1 : N2) ≤ h(W ∗(NN2(N1)) : N2) if N1 ⊂ N2 is diffuse.
(4) If N ⊆M and N is hyperfinite, then h(N : M) ≤ 0.

We will also need Voiculescu’s microstates free entropy dimension =δ0(x) of a self-adjoint tuple
x in a tracial von Neumann algebra, define by Voiculescu [Voi96]. We will need to allow x to
be an infinite tuple, as opposed to a finite tuple in Voiculescu’s original definition. It is well
known to experts how to extend the definition to this setting, for a precise discussion see e.g.
the discussion in Section 4 of [HJKE21]. We use δ0(x) for the version of microstates free entropy
dimension where we replace a limit supremum in the definition with a limit infimum.

In contrast to the rest of the paper, we will need to restrict ourselves to self-adjoint gener-
ating tuples. For an integer r ∈ N, we let C ⟨S1, · · · , Sr⟩ be the algebra of noncommutative
polynomials in abstract variables S1, · · · , Sr. We give C ⟨S1, · · · , Sr⟩ the unique ∗-structure
which makes each Xj self-adjoint. Given a von Neumann algebra M and a x ∈M r

s.a. there is a
unique ∗-homomorphism

evx : C ⟨S1, · · · , Sr⟩ →M

satisfying evx(Sj) = xj . We set P (x) = evx(P ) for P ∈ C ⟨S1, · · · , Sr⟩. We will use O ⟨S1, · · · , Sr⟩,
Q ⟨S1, · · · , Sr⟩ etc. for the noncommutative polynomials in r-variables whose coefficients are in
O,Q etc.

5.1. Proof of Theorem A. We are now ready to prove Theorem A. For simplicity, we treat
its parts 2 and 3 separately from part 1.

Theorem 5.1. Let G = (V, E) be a graph with #V > 1, and for each v ∈ V, let (Mv, τv) be a
tracial ∗-algebra. Let (M, τ) =

v∈G(Mv, τv).
17



(1) If eachMv is diffuse and G is connected, thenM is strongly 1-bounded (in fact has 1-bounded
entropy at most zero).

(2) If each Mv is diffuse and Connes embeddable, and G is disconnected, then there is an index
set I and a generating tuple x ∈ M I

s.a. so that δ0(x) > 1. In particular, M is not strongly
1-bounded.

Proof. (1): Since G is connected, we can find a walk v1, v2, · · · , vk which visits every vertex of
G at least once. Let us denote by M≤j the algebra generated by Mv1 , . . . ,Mvj within M . We
claim that h(M≤j) ≤ 0 for all j ≥ 2.

Because Mv1 and Mv2 are diffuse, we may choose diffuse abelian subalgebras A1 ≤ Mv1 and
A2 ≤Mv2 . Using Properties (1), (3), (4) of 1-bounded entropy,

h(Mv1 ∨A2) = h(Mv1 ∨A2 : Mv1 ∨A2)

≤ h(W ∗(NMv1∨A2(A2)) : Mv1 ∨A2))

≤ h(A2 : Mv1 ∨A2)

≤ 0.

Similarly, h(A1 ∨Mv2) ≤ 0. As

Mv1 ∨A2 ∩ (A1 ∨Mv2) ⊇ A1 ∨A2,

we know that Mv1 ∨A2 ∩ (A1 ∨Mv2) is diffuse. Thus, by Property (2) of 1-bounded entropy:

h(M≤2) ≤ h(Mv1 ∨A2) + h(A1 ∨Mv2) ≤ 0.

For the general case, note for every 2 ≤ i < n, we have (Mvi ∨Mvi+1) ∩M≤i ⊇Mvi , which is
diffuse. Thus by Property (2) of 1-bounded entropy:

h(M≤i+1) ≤ h(Mvi ∨Mvi+1) + h(M≤i) ≤ h(M≤i),

the last inequality following from an argument identical to the case of M≤2. We thus inductively
see that h(M) = h(M≤n) ≤ 0.

(2): Let V1, . . . ,Vl be the connected components of G, and note that l ≥ 2 by assumption.
Let Mi be the graph product corresponding to the subgraph induced by Vi. Then the (Mi)

l
i=1

are freely independent. Let xi ∈ (Mi)
Ji
s.a. be a generating tuple. Set J =

⊔
i Ji, and let x ∈MJ

s.a.

be defined by x
∣∣
Ji

= xi. Since each Mv is embeddable, we know that Mi is embeddable by

[Cas16]. Since Mi is diffuse, this implies by the proof of [Jun03, Corollary 4.7]) that δ0(xi) ≥ 1.
Thus, by the proof of [Voi98b][Remark 4.8],

δ0(x) = δ0(x1) +
l∑

i=1

δ0(x) ≥ l > 1,

the last inequality following as V is disconnected.
□

To deduce strong 1-boundedness from vanishing first L2-Betti number, we will apply the
results in [Shl21] which require positive of certain Fuglede–Kadison pseudo-determinants asso-
ciated to our relations. To get this positivity, we will use Theorem B which requires polynomials
with algebraic coefficients. This will force us to reduce general relations among generators for
our tracial von Neumann algebras to only relations that have algebraic coefficients. For this,
the following lemma will be useful.

Lemma 5.2. Let (M, τ) be a tracial von Neumann algebra and x = (x1, · · · , xr) ∈ M r
s.a..

Suppose that for all P ∈ QS1, · · · , Sr we have that τ(P (x)) ∈ Q. Let evx : C ⟨S1, · · · , Sr⟩ → M
be the ∗-homomorphism evx(P ) = P (x). Then:

(a) ker(evx) is the complex linear span of ker(evx) ∩Q ⟨S1, ·, Sr⟩.
(b) If ker(evx) is finitely generated as a two-sided ideal, then there is a finite set

F ⊆ Q ⟨S1, · · · , Sr⟩
which generates ker(evx) as a two-sided ideal.
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Proof. (a). Let P ∈ ker(evx). Then there are monic monomials m1, · · · ,md and λ1, · · · , λd ∈ C
with P =

∑d
j=1 λjmj . Let A ∈Md(C) be the matrix whose ijth entry is τ(mj(x)∗mi(x)). Since

τ is a state, A is positive semidefinite. Let

λ =


λ1
λ2
...
λd

 ∈ Cd.

By direct calculation,

∥P (x)∥22 = ⟨Aλ, λ⟩ .
Since P (x) = 0 and A is positive semidefinite, we know that Aλ = 0. Observe that A has
algebraic entries, by assumption. Since A has algebraic entries, it follows from linear algebra

that the kernel of A (regarded as a linear transformation on Cd) has a basis v1, · · · , vs ∈ Qd
.

Choose complex numbers α1, · · · , αs so that

λ =
s∑

k=1

αkvk

For k = 1, · · · , s write vk = (vkj)
d
j=1 ∈ Qd

and set Pk =
∑d

j=1 vkjmj . Since vk ∈ ker(A), we
have that

∥Pk(x)∥22 = ⟨Avk, vk⟩ = 0.

So Pk ∈ ker(evx) ∩Q ⟨S1, · · · , Sr⟩ and

P =

s∑
k=1

αkPk.

(b) Suppose that F1, · · · , Fp ∈ C ⟨S1, · · · , Sr⟩ generate ker(evx) as a two-sided ideal. By (a),

we may find a t ∈ N and λij ∈ C, Fij ∈ ker(evx)∩Q ⟨S1, · · · , Sr⟩ for 1 ≤ i ≤ p, 1 ≤ t ≤ j so that

Fi =
∑
j

λijFij .

Then {Fij}1≤i≤p,1≤t≤j generate ker(evx) as a two-sided ideal. □

We will also need to pass to direct sums of algebras for which the above lemma applies. For
this we use the following lemma.

Lemma 5.3. Let A1, A2 be two ∗-algebras which are generated by x ∈ (A1)
r1
s.a. and y ∈ (A2)

r2
s.a..

Suppose that

E1 ⊆ C ⟨S1, · · · , Sr1⟩ and E2 ⊆ C ⟨T1, · · · , Tr2⟩
generate ker(evx) and ker(evy), respectively, as two-sided ideals. Denote

x̃ := (1 ⊕ 0, x1 ⊕ 0, . . . , xr1 ⊕ 0)

ỹ := (0 ⊕ 1, 0 ⊕ y1, . . . , 0 ⊕ yr2).

Then ker(evx̃,ỹ) ⊂ C ⟨S0, S1, . . . , Sr1 , T0, T1, . . . , Tr2⟩ is generated as a two-sided ideal by the
union

{S0P : P ∈ E1}
∪{T0P : P ∈ E2}
∪{SiTj : 0 ≤ i ≤ r1, 0 ≤ j ≤ r2}
∪{S0Si − Si, SiS0 − Si : 1 ≤ i ≤ r1}
∪{T0Tj − Tj , TjT0 − Tj : 1 ≤ j ≤ r2}
∪{S0 + T0 − 1}.
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Proof. Let J be the two-sided ideal in C ⟨S0, . . . , Sr1 , T0, . . . , Tr2⟩ generated by the above union,
and let B := C ⟨S0, · · · , Sr1 , T0, . . . , Tr2⟩ /J . Then J ⊆ ker(evx̃,ỹ) and this inclusion induces a
unique homomorphism

ψ : B → A1 ⊕A2

satisfying ψ ◦ q = evx̃,ỹ, where q is the quotient map onto B. To prove the lemma, it suffices to
show that this homomorphism is an isomorphism.

To see this, let z1 = S0 + J, z2 = T0 + J . Then z1, z2 are orthogonal projections which sum
to 1. Observe that for all P ∈ C ⟨S1, · · · , Sr1⟩ we have

q(S0P (S1, · · · , Sr1)) = q(P (S0S1, · · · , S0Sr1))

Thus for P ∈ E1 we have

q(P (S0S1, · · · , S0Sr1)) = q(S0P (S1, · · · , Sr1)) = 0.

Since E1 generates ker(evx) as a two-sided ideal and A1
∼= C ⟨S1, · · · , Sr1⟩ / ker(evx1), we

may find a unique homomorphism ϕ1 : A1 → z1B satisfying ϕ1(P (x)) = S0P + J for all
P ∈ C ⟨S1, · · · , Sr1⟩. Similarly, we may find a unique homomorphism ϕ2 : A2 → z2B satis-
fying ϕ2(P (y)) = T0P + J for all P ∈ C ⟨T1, · · · , Tr2⟩. The relations imposed on B imply that
zi acts as the identity on the image of ϕi. Since z1, z2 are orthogonal projections which sum
to 1, this implies that the map ϕ : A1 ⊕ A2 → B defined by ϕ(a1, a2) = ϕ1(a1) + ϕ2(a2) is a
homomorphism. Moreover, ϕ is the inverse to ψ. Thus ψ is an isomorphism, as desired. □

We are now ready to prove a general theorem from which we will quickly deduce Theorem A
(1) as a corollary. For this we need the first L2-Betti number of a ∗-subalgebra of a tracial von
Neumann algebra. The L2-Betti number of von Neumann algebras was first defined in [CS05,
Definition 2.1] in terms of homology. Thom later gave a definition in terms of cohomology, see
[Tho08a, Section 1].

Theorem 5.4 (Theorem A (1)). Let G = (V, E) be a graph with #V > 1, and for each v ∈ V,
let (Mv, τv) be a tracial ∗-algebra. Let (M, τ) =

v∈G(Mv, τv). Suppose that for all v ∈ V, we
can write Mv =

⊕gv
i=1Mv,i with gv,i ∈ N. Further assume that:

• τ(1Mv,i) ∈ Q, for all v ∈ V and i = 1, · · · , gv,i,
• for all v and all 1 ≤ i ≤ gv, there is a xv,i ∈ M

rv,i
v,i which is algebraically sofic and

generates Mv,i as a von Neumann algebra,

• for all v ∈ V, 1 ≤ i ≤ gv, τv(P (xv,i)) ∈ Q for all P ∈ Q ⟨T1, T ∗
1 , · · · , Tr, T ∗

r ⟩
• ker(evxv,i) is finitely generated as a two-sided ideal in C

〈
T1, T

∗
1 , · · · , Trv,i , T ∗

rv,i

〉
for all

v ∈ V, 1 ≤ i ≤ gv.

Let A be the ∗-subalgebra of M generated by
⋃

v∈V {xv,i,j : 1 ≤ i ≤ gv, 1 ≤ j ≤ rv,i}. If

β1(2)(A, τ) = 0, then M is strongly 1-bounded.

Proof. First, notice that by considering the real and imaginary parts of coordinates of xv,i,
we may assume that xv,i is a tuple of self-adjoint elements. Note that A is finitely presented,
namely there is an r ∈ N, a tuple x ∈ Ar

s.a. so that:

(1) the evaluation homomorphism evx : C ⟨S1, · · · , Sr⟩ → A given by evx(P ) = P (x) is
surjective,

(2) if J = ker(evx), then J is finitely generated as a two-sided ideal say by (F1, · · · , Fl).

In fact, we may choose x to be algebraically sofic and to choose Fi ∈ Q ⟨S1, · · · , Sr⟩. One way
to see this is as follows.

By assumption, ker(evxv,i) can be generated as a two-sided ideal by (F
(v,i)
h )

kv,i
h=1. Our assump-

tions on traces of algebraic polynomials in xv,i and Lemma 5.2 (b) implies we can choose F
(v,i)
h

to be in Q
〈
S1, · · · , Srv,i

〉
. Set rv = gv +

∑
i rv,i and let

xv = (1⊕0⊕gv−1, 0⊕1⊕0⊕gv−2, · · · , 0⊕gv−1⊕1, xv,1⊕0⊕gv−1, 0⊕xv,2⊕0⊕gv−2, · · · , 0⊕gv−1⊕xv,gv).
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Let r =
∑
rv, kv =

∑
i kv,i and x ∈ M r

s.a. be given by concatenating the xv. We relabel the

abstract variables S1, · · · , Sr as S
(v)
j with v ∈ V and 1 ≤ j ≤ rv, and set S(v) = (S

(v)
j )1≤j≤rv .

By iterated applications of Lemma 5.3, we can find a finite tuple F (v) ∈ (Q ⟨S1, · · · , Srv⟩)⊕kv

which generates ker(evxv) as a two-sided ideal in C ⟨S1, · · · , Srv⟩.
To generated ker(evx), we need to take all the F (v)(S(v)) and also polynomials of the form

S
(v1)
j S(v2)

p − S(v2)
p S

(v1)
j

for all (v1, v2) ∈ E , 1 ≤ j ≤ kv1 ,1 ≤ p ≤ kv2 . Then these polynomials generate ker(evx) and
have algebraic coefficients. Moreover, x is an algebraically sofic tuple by the proof of Theorem
3.11, and Theorem 4.2.

Let F = (F1, · · · , Fl) ∈ Q ⟨S1, · · · , Sr⟩⊕l. For i = 1, · · · , r define

(∂iF ) ∈Ml,1(Q ⟨S1, · · · , Sr⟩ ⊗Q ⟨S1, · · · , Sr⟩)

by (∂iF )j1 = ∂iFj . Here ∂i : Q ⟨S1, . . . , Sr⟩ → Q ⟨S1, . . . , Sr⟩⊗Q ⟨S1, . . . , Sr⟩ are Voiculescu’s free
difference quotients (see [Voi98a, Section 2]), i.e., the unique derivations with ∂i(Tj) = δi=j1⊗1.
Finally, set

DF =

[
S1 ⊗ 1 − 1 ⊗ S1 S2 ⊗ 1 − 1 ⊗ S2 · · · Sr ⊗ 1 − 1 ⊗ Sr

∂1F ∂2F · · · ∂rF

]
Which is an element of Ml+1,r(Q ⟨T1, · · · , Tr⟩ ⊗Q ⟨T1, · · · , Tr⟩). It is then a folklore result (see
e.g the proofs of [HJKE, Theorem 1.1], [BV18, Lemma 4.1]) that

dimM⊗Mop(ker(DF (x))) = β1(2)(A, τ) = 0.

Thus if β1(2)(A, τ) = 0, then DF (x) is injective, and so µ|DF (x)|({0}) = 0. Since x is algebraically

sofic, it follows by Proposition 3.10 and Theorem B that

det+M (DF (x)) > 0.

Moreover, F (x) = 0 by construction. Hence it follows by [Shl21, Theorem 1.5], [HJKE, Theorem
1.2] that M is strongly 1-bounded. □

We remark that this theorem implies Theorem A (1) by taking eachMv to be finite-dimensional
tracial algebras where every central projection has rational trace. Indeed in this case we may
take each Mv,i to be a matrix algebra. Now use the isomorphism Mn(C) ∼= L(Z/nZ) ⋊ Z/nZ
from Proposition 3.9. The generators for Mn(C) given in Proposition 3.9 (2) are algebraically
sofic, by Proposition 3.9, and it is direct to check that monic monomials in these generators
have algebraic traces.
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