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Abstract
Financial jumps have occurred more frequently with the advent of high-frequency trading enabled by 
technological advancement. Most existing jump detection methods that treat a jump as a singular, random, 
and isolated shock event were not designed to capture the clustering of jumps related to contagious 
behaviour, in which the occurrence of jumps increases the probability of further jumps soon after. This 
paper presents a new Med9 method that addresses the challenges of capturing both singular and 
consecutive jumps. This approach evaluates the size of individual returns with a measure of local volatility 
based on the median of consecutive absolute returns. We use this method to detect jumps in both S&P 
500 and simulated time series, and compare its performance with several classic jump detection methods. 
Throughout, our Med9 consistently outperforms other approaches applied to both real and simulated 
financial return series. In addition, we demonstrate that the Med9 detection results are not biased or 
compromised by the intraday volatility pattern.
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1 Introduction
The increased complexity in financial market trading led by the advancement in technology has 
seen asset prices exhibit much more volatility. The flash crash on 6 May 2010 saw the S&P 
500 index fall around 8.6% and the Dow Jones drop 998.5 points (see Figure 1). On 21 April 
2015, the U.S. Department of Justice laid ‘22 criminal counts, including fraud and market manipu-
lation’ relating to the ‘2010 May Crash’ against Navinder Singh Sarao, a trader from a modest 
background in the UK, for significantly ‘spoofing the market’. Nanex, a Chicago-based data pro-
vider, has reported 180 flash crashes in Europe, on a scale similar to 2010, between January 2012 
and January 2014 across all types of financial assets. The academic literature has also documented 
an increasing number of crashes including (Brogaard et al., 2018; Prodromou & Westerholm, 
2022; Sornette & von der Becke, 2011), etc. They seem to share common features of sudden oc-
currence, rapid self-recovery, and contagion effects that is a tendency for jump clustering.

Mathematically, a financial jump can be measured using a particular detection method. But em-
pirically, jumps may be defined differently. In ultra-high-frequency trading (e.g. milliseconds or 
nanoseconds), all price changes can be interpreted as jumps. But in other settings and more com-
monly, jumps are viewed as extreme but rare events that exhibit discontinuity in time series.1.

1 Literature also debates distinctions between jumps, structural breaks, bubbles, etc. and whether flash crashes 
should be deemed as jumps. However, there is no consensus on what constitutes a jump.
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We consider jumps to be different from the underlying volatility process as Merton (1976) sug-
gested that diffusion could not describe some rapid large changes in financial price series and intro-
duced ‘jumps’ in the form of a Poisson process, in conjunction with Geometric Brownian motion. 
This provides a better description of financial time series and improves option pricing that is based 
on Brownian motion (see Bachelier, 2006; Black & Scholes, 1973; Samuelson, 1965). Since then, 
many studies have discussed the properties of Poisson or Lévy jumps, incorporated into a variety of 
diffusion processes (see Cont & Tankov, 2016 that documents an extensive treatment of their ap-
plications to financial problems). However, these models cannot accommodate contagion or clus-
tering of jumps, which could compromise the model’s fitness and ability for forecasting and pricing. 
Hence, in this paper, we introduce a new jump detection method that addresses these issues based 
on studying a long time series of the S&P500 index at intraday 2-minute frequency. We demon-
strate our new detection method outperforms several commonly used existing methods.

A large body of literature examine ‘macro-jumps’ that occur infrequently within a day and de-
tect jumps based on a statistical significance test with a null hypothesis of no jumps and at least one 
jump as the alternative at an aggregated level of each day (see Andersen et al., 2000, 2001, 2003, 
2010; Barndorff-Nielsen & Shephard, 2004, 2006; Corsi et al., 2010; Huang & Tauchen, 2005; 
Podolkskij & Ziggel, 2010 and Christoffersen et al., 2008). As a result, some of these detection 
methods are not designed to capture ‘micro-jumps’ that occur at higher frequencies and average 
out over some intraday intervals, and thus do not point to a statistically significant ‘macro-jump’. 
Some studies have suggested a recursive method (see Andersen et al., 2010) to detect additional 
jumps when one macro-jump at the day frequency is found. Bajgrowicz et al. (2016) use multiple 
testing procedures to filter out spurious jumps and relate ‘true’ jumps to news. Bolleslev et al. 
(2008) and Gilder et al. (2014) suggest that intraday jumps and contemporaneous jumps (co- 
jumps) rarely occur closely together.

However, as established facts of the increased complexity of trading have shown, micro-jumps, 
especially when they cluster within a trading day, become highly relevant for everyday risk manage-
ment. Andersen et al. (2007b), Lee and Mykland (2008) and Andersen et al. (2010) have suggested 
various methods to identify intraday jumps, which are not based on examining the variance struc-
ture over one day cumulatively. However, these methods often failed to detect obvious jumps when 
multiple jumps occur close to each other, i.e. there are strong jump clustering effects.

We are therefore motivated to introduce a new jump detection method that can effectively capture 
jumps when contagion is present. We will demonstrate how our method performs better than three 
commonly used approaches that are designed to detect intraday jumps but have problems dealing 
with contagious jumps, namely RV-BV, LM and ABD tests, first introduced, respectively, by 
Barndorff-Nielsen and Shephard (2004, 2006), Lee and Mykland (2008) and Andersen et al. (2007a).

Section 2 introduces existing jump detection methods and highlights the distinction between 
global and local detection methods and the problems created by contagion of jumps. Section 3 in-
troduces our method of jump detection based on a local approach using a median of 9 consecutive 
returns. Section 4 introduces the data whilst Section 5 shows the results of applying this new de-
tection method to the data. Section 6 compares the new method with alternative detection meth-
ods. Section 7 concludes.

Figure 1. 2-Min log-prices and log-returns of S&P 500 on May 06, 2010. Panel (a) shows the log-prices and Panel (b) 
shows the standardized log-returns in the afternoon.
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2 Existing jump detection methods
A generic jump diffusion model, assuming the jump process is separate from a Brownian process, 
can be written as

dp(t) = μ(t) + σ(t)dW(t) + k(t)dq(t), t ≥ 0, (1) 

where p(t) is the continuous-time log-price process; μ(t) is the drift; σ(t) is the instantaneous vola-
tility process; W(t) is a standard Brownian motion without drift. The counting process of jumps 
q(t) is normalised, so that dq(t) = 1 represents a jump at time t and dq(t) = 0 otherwise; k(t) is 
the jump size if a jump occurs at time t.

Each trading day t is divided into M equal time intervals and the log-return for the jth interval is 
defined as rt,j = pt,j − pt,(j−1) for j = 1, . . . , M and t = 1, . . . , T. Looking for price jumps is now 
equivalent to looking for large absolute log-returns.

Andersen and Bolleslev (1998), Andersen et al. (2001) and Barndorff-Nielsen and Shephard 
(2002) define realized variance for day t as:

RVt =
M

j=1

r2
t,j, t = 1, . . . , T. (2) 

RVt estimates the daily increment to the quadratic variation for the underlying log-price process 
represented by equation (1). When M→∞,

RVt →p ∫ t
t−1σ2(s)ds +



s∈(t−1,t]

k2(s), t = 1, . . . , T. (3) 

In the absence of jumps, the second term vanishes and realized variance (the first term) consistently 
estimates integrated variance. Barndorff-Nielsen and Shephard (2004, 2006) show that this first 
term of equation (3) can be separately identified using the realized bi-power variation defined as

BVt = μ−2
1

M

j=2

|rt,j−1| |rt,j|, t = 1, . . . , T, (4) 

where μ1 =
��
2
π



. When M→∞, equation (4) can be written as.2

BVt →p ∫ t
t−1σ2(s)ds, t = 1, . . . , T. (5) 

Different jump detection approaches are discussed within Subsection 2.1 based on the difference 
of RVt and BVt over each day (the global approach); while Subsection 2.2 examines methods that 
compare the magnitude of individual log-returns with some volatility measure such as BVt (the 
local approach).

2.1 The global detection approach
The contribution from jumps to total return variation on day t is estimated by the difference be-
tween equations (3) and (5). That is, as M→∞

RVt − BVt →p



s∈(t−1,t]

k2(s), t = 1, . . . , T. (6) 

2 The rationale for this is that, for large M, there is at most one jump in any two adjacent intervals of length 1/M. 
Since the contribution of each absolute return associated with the diffusion in the limit is very small, any product involv-
ing a jump return will be vanishingly small asymptotically.
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In absence of jumps, RVt − BVt could be negative or take on small positive values.
Barndorff-Nielsen and Shephard (2004, 2006) test the null hypothesis of no jumps against the 

alternative of at least one jump on day t using the test statistic

Zt ≡
���
M
√ ln(RVt) − ln(BVt)

((μ−4
1 + 2μ−2

1 − 5)TQtBV−2
t )1/2 →d N(0, 1), (7) 

where TQt represents realized tri-power quarticity and is defined as

TQt ≡ Mμ−3
4/3

M

j=3

|rt,j−2|
4/3|rt,j−1|

4/3|rt,j|
4/3, t = 1, . . . , T, (8) 

where μ−3
4/3 = 22/3Γ(7/6)/Γ(1/2) with Γ(·) denoting the Gamma function.

The test, referred as the BNS test, is based on asymptotic theory, for interval sizes tending to zero 
and judged as significant at level α if the statistic Zt exceeds the 1 − α fractile of the standard normal 
distribution. On days where there are no significant jumps, the continuous volatility component is 
measured by realized variance; otherwise, volatility is measured by realized bi-power variation.3

Huang and Tauchen (2005) carried out extensive simulations to compare some statistics that 
are asymptotically equivalent to that given by equations (7) and (8). Andersen et al. (2010) intro-
duce a recursive procedure that removes the largest jump and recalculates the statistic to test fur-
ther jumps until there are no more significant jumps.

Corsi et al. (2010) found that bi-power variation can sometimes be seriously inflated if there are 
large jumps in adjacent intervals and proposed threshold bi-power variation (TBV) that replaces 
large returns above a set threshold by zero to counter this. This is similar to bi-power variation, in 
which they replace large returns above a set threshold by zero. They further suggest the Corrected 
Threshold measure, C-TBV, to implement the replacement with a an expected absolute value from 
a Normal distribution instead of zero. They modify and improve the BNS test for no jumps on day 
t using a C-TZ statistic rather than the BNSZ statistic. However, the work does not look for in-
dividual jumps. Ferriani and Zoi (2020) introduced s − CPR using the corrected measure C-TZ of 
Corsi et al. (2010) to carry out a sequential test similarly to Andersen et al. (2010).

2.2 The local detection approach
Andersen et al. (2007a) proposed a test (ABD) to examine individual returns divided by the square 
root of bi-power (continuous) variation calculated over the whole day. They used a statistic 
|rt,j|/

���������
BVt/M
√

to capture and report jumps only at the end of each day.
In contrast, Lee and Mykland (2008) proposed a local jump detection method, the LM test, that 

calculates the ratio of the local return rj to a volatility measure σ(ti) over an interval (t j−1, tj) over a 
period preceding that point. The statistic that tests for a jump in the interval (t j−1, tj) is defined as

L(i) =
ri

σ(ti)
, (9) 

where σ2(ti) = 1
K−1

i−1
j=i−K+1 |r j−1| |rj|. K is the window size. If L(i) exceeds a certain threshold, that 

observation is a jump. The local volatility measure is similar to the square root of bi-power vari-
ation, with a different scaling constant: it will therefore be liable to the same problems of inflation 
if large returns occur in adjacent intervals.

Tsai and Shackleton (2016) modified both ABD and LM tests, using so-called interpolated 
Bipower Variation. This uses a heterogeneous autoregression (HAR) model, combining estimates 
of bipower variation averaged over previous daily, weekly, monthly, and quarterly periods, and a 
current local estimate of bi-power variation. They also use a generalized extreme value (GEV) dis-
tribution to deal with extreme behaviour in the tail and allow for the effect of multiple compari-
sons on the test size.

3 Bi-power variation can be generalised to multipowers, see (Kolokolov & Renò, 2017)
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Recall LM uses a volatility divisor which is essentially the square root of a BV measure averaged 
over K previous returns. Ferriani and Zoi (2020) use an exponentially weighted moving average to 
replace observations beyond a threshold by zero. Then, they take a simple average of forward and 
backward versions of the weighted moving average to obtain volatility information from before 
and after the return being tested. They claim their modified method (m − LM) is more powerful.

2.3 The problem of contagious jumps
Global methods like Andersen et al. (2010) are useful for identifying jumps at the daily level and 
depend on the bi-power variation that is the product of absolute returns in successive intervals (see 
Equation 4). If jumps occur in two or more consecutive intervals, BVt could be inflated and be-
come larger than RVt, signaling no jumps. Although ocal methods like (Lee & Mykland, 2008) 
consider the magnitude of price changes, and hence jumps, they need to be determined by condi-
tioning on local volatility.

In reality, jump clustering is often seen in financial time series, especially at an intraday level. 
Recall the flash crash day on 6 May 2010 in Figure 1. Panels (a) and (b) show that morning prices 
are fairly quiet but in the afternoon a sharp decline and rebound (8.6%) occurred in S&P 500 re-
turns. At least two jumps, one downward and one upward, happened within a short period be-
tween 14:42 and 15:54. It is associated with a run of six consecutive large absolute returns (at 
2-min intervals) with standardized magnitudes, −4.59, −10.80, 5.72, 2.33, 5.39 and 3.20, that 
inflates the BV causing it to exceed the RV. We calculated RVt = 0.00238, BVt = 0.00259, so 
that RVt < BVt: a strong indication of no jumps on the day according to Andersen et al. (2010). 
Ferriani and Zoi (2020) also concluded that large neighbouring returns could mask the detection 
of jumps, hence implementing the s − CPR and m − LM tests before fitting Hawkes process mod-
els to 5-minute returns of S&P 500 and Euro StOXX 50 where jump clustering was present.

3 Jump detection based on medians
Andersen et al. (2012) introduced an estimator of realized volatiity, (Med3RVt,M), based on a roll-
ing sum of the median of three consecutive absolute returns as follows:

Med3RVt,M =
π

6 − 4
��
3
√

+ π
(

M
M − 2

)
M−1

j=2

med(|rt,j−1| |rt,j| |rt,j+1|)
2. (10) 

This estimator is claimed to be robust to the presence of single jumps in the absolute returns and 
against occasional zero returns when the market lacks of activity. However, it has some limita-
tions. As Ferriani and Zoi (2020) suggested, jump clustering tends to occur at frequencies higher 
than 5-min, and it takes time to fully unfold: e.g. the downward jump on the flash crash day took 
place over approximately 12 min (six 2-min intervals). Hence, Med3RVt,M would not fully cover 
the entire course of the occurrence of the contagious jump. Therefore, we extend Andersen et al. 
(2012) and generalise this estimator and use it, not only to measure realized volatility, but also to 
find jumps that occur in the presence of contagion.

Essentially, with M equally spaced log-returns {rt,j} on day t, we suggest a family of jump-robust 
estimators of daily realized volatility MedkRVt,M, based on running medians of k absolute returns 
and defined by

MedkRVt,M =
M

M + 1 − k

M−(k−1)/2

j=(k+1)/2

LVkt,j (11) 

LVkt,j = ckmed(|rt,j−(k−1)/2| · · · |rt,j| · · · |rt,j+(k−1)/2|)
2, (12) 

where ck = 1.41936, 1.62360, 1.74332, and 1.82184 for k = 3, 5, 7, and 9, respectively. The fac-
tors ck are chosen so that MedkRVt,M is an unbiased estimator of daily realized volatility in the 
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event that returns were to be distributed as i.i.d.N(0, σ2).4 LVkt,j estimates the local volatility in 
the neighbourhood of the jth interval of day t. MedkRVt,M averages these local volatility over 
day t. Furthermore, in any block of k consecutive returns it is capable of eliminating up to 1, 2, 
3, or 4 large returns for k = 3, 5, 7, or 9, respectively. Hence, it is useful when jumps cluster. 
We can also derive the standardized returns for which each return is divided by a measure of vola-
tility based on all returns of day t. For example, the individual standardized returns for k = 9 are 
written as

r∗t,j =
rt,j

������������������
Med9RVt,M/M

 , (13) 

Empirically, analysts can choose a suitable critical threshold upon which any standardized return 
whose absolute value exceeds that threshold would be identified as a jump: we discuss possible 
choices in Section 5. Our Med9 also allows for identification of multiple jumps in a day, which 
relaxes the assumption that jumps are rare events.

4 S&P 500 data
We use the 1-min S&P 500 prices from Thomson Reuters TM Tick History from 3 January 2006 to 
13 March 2015. Data outside the normal trading hours (09:30–16:00) were deleted. Other data 
exclusion include 15 half-trading days just before or after major public holidays; 2 when 
Hurricane Sandy caused exchange closure; and a further 8 days that contain blocks of 5 or 
more consecutive minutes with missing data. A small number of other minutes with missing 
data, mostly isolated minutes but with at most four consecutive missing minutes, had data values 
inserted by backfilling. This cleaning process provided us with complete data for 2,285 trading 
days.

We then converted the time series into 2-min intervals to avoid problems such as microstructure 
noise, consistent with Andersen et al. (2012). We omit the first 2-min interval each trading day, as 
data burning at the start of trading are established facts. Subsequently, we obtain 195 log-prices 
and 194 log-returns for each trading day (between 9:32 and 16:00, see Figure 2). We can clearly 
identify the 2008 financial crisis and several large absolute values (jumps) in panel (b).

5 Jump detection for S&P 500
We report jump detection results based on the Medk approach, for various values of k along with 
RV and BV, using the S&P 500 2-min sample in Subsection 5.1. We conclude that the measures 
with k = 9 are the most appropriate for these data. Subsequently, we use Med9RVtM to define 
standardized returns using equation (13) and consider jumps to be returns whose standardized ab-
solute values exceed a certain threshold. We study the time of day at which such jumps are likely to 
occur and also consider the number of jumps per day as a time series. These are discussed in 
Subsection 5.2.

5.1 Local volatility and jump-robust estimators of daily volatility
Table 1 reports the statistics of volatility estimators MedkRVtM(k = 3, 5, 7, 9), BV and RV. They 
are calculated as a square root multiplied by a scale factor of 1,000 for each day (e.g. the statistics 
in column 1 are calculated on 1,000

�����
RVt
√

, t = 1, . . . 2,285).The distributions of all MedkRVtM 

measures are similar but have lower means/medians than BV. The BV statistics are generally lower 
than RV except for the maximum value, indicating the problem of inflated BV in real data. Med7 
and Med9 seem to cope with BV inflation better, compared to Med3 and Med5, given their lower 
maximums.

We also analyze a set of matched pair differences recorded in Table 2. Each test is based on 
2,285 differences of two variables (one difference per day). Note that the mean differences are con-
sistent with the differences of the means in the penultimate row of Table 1. With 2,285 values, the 
distributions of the mean are close to Normal with known variances. The Z statistic, the mean 

4 We thank Assad Jalali for his initial calculation of these factors (also see Jalali, 2014).
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difference divided by its standard error, provides a test of the hypothesis that the mean difference is 
zero. The mean differences are all clearly positive, including RV-BV, but smaller for MedkRVtM 

and the means of the Medk volatility decrease with increasing k.
The choice of an appropriate MedkRV varies according to the dataset. For example, Yang et al. 

(2018) use Med7RV for their 15-min level data while Med9RV is the best for our study. We illustrate 
this in Figure 3, with BV = 3.93, RV = 3.62, Med3 = 3.31, Med5 = 3.10, Med7 = 2.59, Med9 = 
2.34. There is little difference among the local estimators except for a short section just after 
10:00, where there are three large absolute returns within a run of five successive intervals: the effect 
of those returns is partially eliminated in LV7, and more so in LV9.

Panel (a) of Figure 4 shows the square root of the ratio of the realized volatility and a 
jump-robust estimate, 

����������������
RV/Med9RV


. The two largest values occur on 23 April 2013 and 18 

September 2013. Panel (b) plots daily 
�����������
Med9RV
√

: there is considerable volatility in late 2008 
and 2011, and flash crash day. Figure 5 illustrates the intraday volatility profile for our sample. 
For each 2-min interval, we take the median value of 

������
LV9
√

of that interval (multiplied by 
1,000) of each day and compute the average value over the 2,285 days. This reveals the typical 
U-shaped intraday volatility pattern (IVP) discussed in the literature like Andersen et al. (2012), 
Boudt et al. (2011) and others.5

5.2 Standardized returns and jumps
Table 3 summarizes the daily counts of three different-sized jumps (n = 3, 4, 5). The daily averages 
for J3, J4, and J5 are 3.72 (too many), 1.10 and 0.41 (too few), respectively. We further find that 
well over half of the sample period have 0 or 1 J4 jumps but as many as 5 jumps in a day is not 
uncommon and occasionally there are 6, 7 or even 8 jumps. Hence, we will work with J4 jumps 
for the various tests.6.

Figure 6 shows the counts of J4 jumps within each 2-min interval of the day summed over the 
sample. Many jumps occurred in the first half hour of trading, then the rate drops. Between 11:00 
and 14:00, the market appears quiet, followed by more activity toward the end of the day when 
traders start to balance their order books to protect their overnight positions. What is striking is 
the very large number of jumps that occur just after 10am: remember the little blip about 10:00 in 
the intraday volatility profile in Figure 5. We believe this relates to news announcements routinely 
issued at 10:00.7 We also see some concentration of jumps between 14:00 and14:20, similar to 
results found by Boudt and Petitjean (2014) for the Dow Jones Industrial Average (DJIA) index, 
coincident with some market report announcements.

Figure 2. 2-min log-prices (a) and log-returns (b) of S&P 500 between 3 January 2006 and 13 March 2015.

5 The IVP refers to the seasonality pattern where the market is more volatile at the beginning and end of a trading day 
(especially at the beginning). We take MedkRVt,M to be constant during day t instead of adjusting for IVP because this 
popular treatment could introduce arbitrary information that is not carried by real data (see some examples in Figure 8a). 
Also note a slight blip just after 10:00 (discussed later).

6 Note that we use a ‘Data Science’ approach to choose a critical test value (n) based on data rather than a traditional 
significance level approach that needs assumptions about a probability distribution that we do not know. After all, it is 
the number of events that is important here. We also implemented simulations to test the robustness of the J4 jump de-
tection method. These are not included in the paper to meet the publication requirements of the article length, but can be 
requested from the authors.

7 e.g. University of Michigan Consumer Sentiment Survey, Institute for Supply Management purchasing indices, 
housing reports, US Bureau of Labor Statistics and US Census Bureau reports.
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Figure 7 shows autocorrelations and partial autocorrelations of the daily numbers of J4 jumps 
for S&P 500. There are several significant (at 5%) positive correlations within the first ten lags 
(shown as falling outside horizontal dotted lines on the graphs), suggesting that the contagion ef-
fect of jumps also spills over several days.

6 Comparison of detection methods
We compare our Med9 with other common jump detection methods: Med9 vs. RV-BV method by 
Barndorff-Nielsen and Shephard (2004, 2006) in 6.1 and Med9 vs. LM test by Lee and Mykland 
(2008) and ABD test of Andersen et al. (2007a) in 6.2.

6.1 Med9 vs. RV-BV methods
The original RV-BV method and other extensions (e.g. Andersen et al., 2010 recursive method) 
test the null hypothesis of no jumps on a day against the alternative of at least one jump on the 
day. However, these methods sometimes indicate no jumps when actual jumps took place (e.g. 
flash crash day). We compared the detection results on 12 jump days reported by Nanex in our 
sample (see Table 4). There are nine days when the RV-BV tests are not significant (NS), but 
we find at least one J4 jump. Sometimes the BV is larger than RV, resulting a negative 
1 − BV/RV, hence no jumps.

Table 5 shows how the numbers of days with positive RV-BV tests is related to the number of J4 

jumps detected in a day by the Med9 method. For example, of the 897 days on which there are no 
J4 jumps, there are 155 days (17% of 897) where the RV-BV test suggests at least one jump. As the 
number of J4 jumps in a day, n, increases, RV-BV find fewer days with at least one jump. Even 
when n > =3, there are still about 1/3 such days where the RV-BV test indicates no jumps on 
that day. Overall, the RV-BV method seems to suffer from inflation in BV when large jumps occur 
consecutively, but not so much with isolated medium-sized jumps. The median method (e.g. 
Med9) performs much better by mitigating the effect of large individual jumps.

6.2 Med9 vs. LM & ABD tests

The LM volatility estimator σ̂2(ti) = 1
K−1

i−1
j=i−K+1 |r j−1| |rj| is proportional to bi-power vari-

ation, hence subject to a similar inflation problem if there are adjacent large absolute returns. 

Table 1. Basic statistics for MedkRVtM (k = 3, 5, 7, 9), BV and RV on S&P 500

Statistic RV BV Med3 Med5 Med7 Med9

min 1.74 1.73 1.67 1.51 1.49 1.44

LQ 4.42 4.19 4.13 3.99 3.93 3.89

median 6.08 5.81 5.65 5.57 5.50 5.43

UQ 9.11 8.71 8.57 8.43 8.26 8.18

max 81.04 87.15 82.42 82.02 78.98 77.49

mean 7.85 7.55 7.42 7.28 7.19 7.13

sd 6.04 5.98 5.91 5.89 5.84 5.81

Table 2. Matched pair analysis for volatility measures

Statistic RV - BV BV - Med3 Med3 - Med5 Med5 - Med7 Med7 - Med9

mean 0.3033 0.1269 0.1426 0.0869 0.0599

SE of mean. 0.0095 0.0074 0.0073 0.0052 0.0041

Z statistic 31.9 17.1 19.6 16.8 14.7
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Figure 3. Local volatility (
�������
LVkt,j


) of S&P 500 on the morning of 14 February 2007.

Figure 4. Daily realized volatility of S&P 500 over the sample period. Panel (a) shows 
����������������
RV/Med9RV


and Panel (b) 

shows 
�����������
Med9RV
√

.

Figure 5. Intraday local volatility of S&P 500.

Table 3. The count of J3, J4, and J5 jump days in S&P 500

Jumps/day 0 1 2 3 4 5 6 7 8 >8 Total Avg.

J3 115 271 390 386 366 285 200 121 75 76 8,494 3.72

J4 897 733 358 172 87 29 7 1 1 0 2,515 1.10

J5 1,599 493 146 37 8 2 0 0 0 0 938 0.41
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Figure 6. J4 jumps in the S&P 500 index returns over the sample.

Figure 7. Panels (a) and (b) show, respectively, autocorrelations and partial autocorrelations of the daily numbers of 
J4 jumps for S&P 500.

Table 4. Jump detection comparison for selected days

Date J4 RV − BV 1 − BV/RV

05/10/2006 6 NS 0.048

05/09/2007 2 NS −0.245

05/15/2008 0 S 0.098

08/05/2008 2 NS −0.147

11/24/2009 1 NS −0.094

05/06/2010 4 NS −0.088

03/31/2011 2 NS 0.083

06/14/2012 4 NS 0.034

10/31/2012 0 S 0.140

04/23/2013 3 NS 0.082

09/18/2013 3 S 0.532

04/21/2014 2 NS 0.005

Note. S or NS refers to a significant or not significant null hypothesis of no jumps under the RV-BV test at the 5% 
significance level.
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It treats the returns as one long series, not divided into different days, while the Med9 uses a 
median of variation based on all returns on the same day. σ̂2(ti) is measured on returns prior to 
the return being tested but Med9 is for end-of-the-day analysis. We propose two compari-
sons:1) Med9 vs. Pseudo LM that uses the bi-power variance estimate over the whole day 
in which the return we wish to test is located, like the ABD test by Andersen et al. 
(2007a); and 2)The LM that calculates the local volatility prior to the return being tested, 
and compare it with Med9 which is shifted to estimate the volatility over the same prior peri-
od (so this includes some returns on both previous days and the current day): call this modi-
fied Med9 (Med9mod).

6.2.1 ABD (Pseudo LM) vs. Med9
We begin by generating a series of 2,285 × 194 i.i.d N(0, 1) variables to compare the variances es-
timated based on Med9 and BV that is proportional to the variance quoted by ABD (see Table 6). 
Taking M = K = 194 as the number of intervals per day, we calculate for each day the variance per 
interval as σ̂2

Med9(t) = Med9t,M/M and

σ̂2
ABD(t) = σ̂2

BV(t) =
π

2(M − 1)

M

j=2

|rt,j−1| |rt,j|, t = 1, . . . , 2,285. (14) 

Both means are close to 1, consistent with N(0, 1) data (white noise with no jumps). The estimator 
based on BV/ABD has a slightly more compact distribution.

For each test, we consider each of the 2,285 × 194 standardized returns, rt,i/σ̂(t) to be divided by 
the standard deviation for that test on that day, and obtain the upper 0.01% critical values: 3.914 
for the ABD test and 4.101 for Med9.8 We apply both tests to the S&P 500 returns, using these 
critical 0.01% values. The number of days that n jumps occur is reported in Table 7.9 Indeed 
ABD misses about 20% of the jumps that the Med9 method finds (compare bottom two rows 
of Table 7).

When considering the statistic ABD, we use the median estimator vt,j =σMed9(t) for each day (i.e. 
for all j = 1, . . . , M) and the cut-off value used for Med9. Thus we replace rt,j in equation (14) by 
zero if |rt,j|/σMed9(t) > 4.101. This treatment could lead to a small volatility measure σ2

BV(t) and 
yield too many ‘ABD’ jumps. So, we propose to replace with a fraction αrt,j. Call α, 0 ≤ α ≤ 1, 
the shrink factor:10 α = 0 gives the original Threshold BV method and α = 1 gives the unadjusted 
BV method. The count of jump days with various α are in Table 7. As expected, the (α = 0) case 
results in too many jumps while (α = 1) leads to less than one jump per day. When α = 0.3, the re-
sults for the ABD and Med9 methods are comparable.

Table 5. Two-way table of RV-BV and J4 counts

n 0 1 2 3 4 ≥ 5 Total

# days with n J4 jumps 897 733 358 172 87 38 2,285

# days RV-BV test positive 155 279 188 110 56 25 813

% days RV-BV test positive 17 38 53 64 64 66 36

Note. It reports the number of days with n J4 jumps and the number of such days when the RV-BV indicates at least one 
jump.

8 We also have the critical value for the upper 0.1% level (3.328 for ABD and 3.386 for Med9. But 400+ false pos-
itives are found (about 1 in every 5 days on average, with some days having 2 or 3) - far too many for white noise. At the 
0.01% level, there is roughly one false positive every 50 days.

9 The Med9 test with critical value 4.101 reported 2,247 jumps (J4.101 )in total, slightly fewer than the total 2,515 J4 
jumps in Table 3. This is because bi-power variation causes the standardized return statistic using ABD to be reduced on 
some days: therefore possible jumps may be missed.

10 Corsi et al. (2010) proposes to replace large absolute returns by an expected value under a Normality assumption. 
This assumption seems to be far from how the real data behave.
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6.2.2 LM vs. Med9mod

We study the LM test using the 194 returns prior to the return that is to be tested to estimate the 
volatility. We compare these results with the Med9mod calculated over the same prior times.11 We 
use the same critical values (i.e. 3.914 and 4.101 for the LM test and Med9mod test, respectively), 
and shrink factors for LM. The results of n-jump day counts for S&P 500 are given in Table 8.

Comparing the results with those of Table 7 suggests that looking at volatility on previous days 
tends to give rather wild results, presumably because the volatility changes from day to day: more 
jumps will be detected in a volatile period that follows a quiet period. As before the modified Med9 
method finds more jumps than the raw LM method; the threshold LM method is fairly stable with 
respect to the value of α but a shrinkage value of about 0.3 for the LM method is probably again 
about right.12

6.3 Piecewise constant intraday volatility patterns
Many studies have noted intraday volatility patterns (IVPs) as evidence of time-varying volatility 
by assuming the U-shape volatility profile and testing its validity and robustness. Standard ap-
proaches include (Andersen & Bolleslev, 1997) decomposition of intraday volatility, 
(Parkinson, 1980) high-low approach, open-high-low-close profiling by Garman and Klass 
(1980) (also see Chan & Lien, 2003), Andersen et al. (2001) and Andersen et al. (2007a)’s filtered 
J-statistics (a periodicity test), and Boudt et al. (2011)’s extension to robust filtered J-statistics 
etc.13

Boudt et al. (2011) tested the hypothesis that IVP introduces biases in jump detection (also see 
Gilder et al. (2014)) but concluded that the null is not significant. Bolleslev et al. (2008) suggest 
the sampling frequency (e.g. Dimitru & Urga, 2012) and stale prices (e.g. Corsi et al., 2010 and 
Schulz & Mosler, 2011) are the real causes for such biases. Andersen et al. (2019) and 
Andersen et al. (2023) further suggest that the real intraday volatility profiling would be far 
from IVP and believe the variation in the IVP is partly driven by the current level of volatility 
(also see Torben et al., 2019 and Vatter et al., 2015).

We propose a new simulation approach, Piecewise Constant IVP (PC-IVP), to demonstrate that 
IVP does not affect jump detection performance, hence extending the literature. The PC-IVP meth-
od can also be customized to fit different frequencies of intraday volatility, thus is more precise in 
capturing intraday volatility patterns in real data.

To demonstrate the method, we test daily volatility patterns at both 1- and 2-min S&P log- 
returns over the 2,285-day sample. Instead of considering a constant volatility averaged over a 
day, we divide each day into n sub-windows. Though the partition does not need to be evenly 
spaced, we use the equal sized windows for simplicity. The volatility within each sub-interval is 
assumed to be constant. We calculate the piecewise approximation of daily volatility over n sub- 
intervals (Pn-volatility). We have several significant findings: first, we demonstrate the U-shape ex-
ists; second, we find the IVP is the dominant pattern for the intraday time-varying volatility; and 
finally, other volatility patterns, often, noisy, are also identified within a day.

Table 6. Distributions of variances from white noise simulation

Min Mean Max st.dev

σ̂2
ABD 0.658 0.998 1.472 0.116

σ̂2
Med9 0.551 0.999 1.619 0.145

11 i.e. The Med9 variance estimator is modified to be averaged over 186 medians in the same window as the corre-
sponding LM variance is calculated. The first return to be tested is the first return of day 2 with the variance estimated on 
the previous 194 returns. Thereafter the variance estimator rolls forward one interval at a time and is applied to the cor-
responding test return that moves forward in parallel.

12 We also compare the LM with Med9. We find that the total jumps are 2,500, 2,484, 2,476, and 2,456 for 
α = 0, 0.3, 0.4, 1, respectively

13 Early theoretical works on Ergodicity of IVP include Birkhoff (1942) and Walters (1982).
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We report the results of P3 and P6-volatility. The P3-volatility patterns are shown in Figure 8
and it is clear that our Med9P3-volatility is comparable to the ABD method in capturing the 
IVP. This implies the IVP does not affect jump detection whether the Med9 or another detection 
method is applied. We further refine each P3 partition into two equal sub-intervals, forming the 
P6-volatility illustrated in Figure 9. It is also clear that the Med9P6-volatility remains a U-shape 
pattern, suggesting that IVP does not affect jump detection.14

With the P3-volatility, there could be up to eight pattern, for instance (high, low, high) denoted 
as (+, −, +) etc.15. We compute the percentage of the occurrence of each pattern to demonstrate 
the P3-volatility profile under both ABD and Med9 methods at both frequencies. We identify four 
patterns (see Table 9) that are distinctively visible but the other four are not. We not only find the 
U-shape volatility represented by Pattern (+, −, +), but also show the IVP is dominant. We further 
identify that pattern((+, −, −)) also has significant counts though less dominant than the volatility 
smile. Two other patterns also have effective counts. Moreover, our Med9 method shows a slight 
advantage over ABD in capturing the IVP (71.33% vs. 69.50 & 72.82% vs. 70.97%). We also 
summarize the P6-volatility pattern counts (5 distinctive patterns) in Table 10. It is more promin-
ent that IVP is not the only pattern for intraday volatility but still somewhat dominant.

We further report the count of n-jumps using P3 and P6- volatility (Med9 & ABD) at 2-min fre-
quency in Table 11.16 This shows that the daily average detection of jumps for ABD(P3) drops 
about 30% and a further 16% for ABD(P6). In contrast, the Med9(P3) detection drops less 
than 10% and the Med9(P6) performance is better. It is noticeable that ABD(P6) does not perform 
well for jumps higher than 5. This result demonstrates that Med9 is more robust than ABD with 
respect to IVP partition.

Table 7. The count of n-jump days with shrink α in S&P 500 using ABD and Med9

Shrink 0 1 2 3 4 5 6 7 >7 Total Daily

α Jump Avg.

0 978 682 334 151 85 30 17 2 6 2,460 1.08

ABD 0.3 990 716 332 151 65 21 7 2 1 2,262 0.99

0.4 994 737 328 144 54 24 3 0 1 2,187 0.96

1 1,038 806 345 76 19 1 1805 0.79

Med9 – 995 717 325 149 69 25 3 2 2,247 0.98

Table 8. The count of n-jumps in S&P 500 using LM and Med9mod

Shrink 0 1 2 3 4 5 6 7 >7 Total Daily

α Jump Avg.

0 1,017 638 310 169 69 46 20 8 67 2,505 1.10

LM 0.3 1,023 635 309 168 68 47 19 8 7 2,491 1.09

0.4 1,028 631 309 169 66 48 18 8 7 2,481 1.09

1 1,034 632 307 164 69 47 16 10 5 2,456 1.08

Med9mod − 1,013 584 288 171 94 62 33 15 24 2,881 1.26

14 Similar patterns are found for other scenarios: 2-min Med9, 1- & 2-min ABD.
15 The eight patterns include: (high, higher, higher)−(+, +, +),(low, lower, lower)−(−, −, −),(high, higher, 

low)−(+, +, −), (low, lower, high)−(−, −, +); (high, low, lower)−(+, −, −),(high, low, high)−(+, −, +), (low, high, 
low)−(−, +, −) and (low, high, higher)−(−, +, +).

16 1-min results are similar. ABD(P3) detections drop 41% and Med9(P3) decrease 27%. ABD(P6) drops another 
26% while Med9(P6) reduces a further 5%.
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6.4 Simulations
We compare Med9 and ABD with a shrink factor α using simulations. We have performed various 
simulations but specifically report the cases representing jump clustering (contagion) effects, 
which is the core reason for proposing the Med9 method (see Subsections 6.4.1 and 6.4.2. 

Figure 8. P3-volatility patterns for Med9 and ABD methods. Panels (a) (b)are the 2-min P3-volatility volatilities while 
Panels (c) (d) are the 1-min patterns. (a) 2-min ABD. (b) 2-min Med9. (c) 1-min ABD. (d) 1-min Med9.

Figure 9. 1-min P6-volatility pattern using Med9.
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To achieve this, we simulate a Hawkes-jump-diffusion process by superposing a one-dimensional 
Hawkes process (see Yang et al., 2018) on a Gaussian white noise series and calibrate the param-
eters to the S&P500. The rationale is to take advantage of the Hawkes processes’ ability to gen-
erate consecutive jumps (contagion) through its self-exciting intensity. We stress test for both 
methods through raising the intensity of jump occurrences controlled by λt. We see the ABD meth-
od starts to fail to detect jumps but Med9 remains robust when λt increases.

We start by generating a series of 2,285 × 194 from an i.i.d. N(0, 1) process called Gaussian 
white noise. The summary statistics are as follows

Table 9. Intraday volatility pattern counts with P3-volatility

2-min 1-min

Pattern ABD % Med9 % ABD % Med9 %

(+, −, +) 69.50 71.33 70.97 72.82

(+, −, −) 23.81 22.89 23.23 22.09

(−, +, +) 3.81 2.97 3.51 3.82

(−, +, −) 2.89 2.80 2.28 1.27

Table 10. Intraday volatility pattern counts with P6-volatility

2-min 1-min

Pattern ABD % Med9 % ABD % Med9 %

(+ − − − ++) 18.29 14.75 20.16 19.54

(− − − − −+) 9.93 8.79 11.11 10.67

(− + − − ++) 3.02 4.29 1.84 2.90

(− − − + −−) 3.59 2.76 3.38 2.5

(− + + + ++) 0.00 0.00 0.00 0.00

Table 11. The count of n-jumps with P3 & P6-volatility at 2-min

0 1 2 3 4 5 6 7 >7 Total Daily

Jump Average

ABD(P1) 1,038 806 345 76 19 1 0 0 0 1,805 0.79

ABD(P3) 1,358 648 224 44 9 2 0 0 0 1,274 0.56

ABD(P6) 1,460 612 171 37 5 0 0 0 0 1,085 0.47

Med9(P1) 995 717 325 149 694 25 3 2 0 2,247 0.98

Med9(P3) 1,092 676 302 130 55 18 8 4 0 2,056 0.90

Med9(P6) 979 670 374 146 66 32 11 4 3 2,399 1.049

Min Mean Max st.dev

σ̂2
ABD 0.6824 0.9993 1.4136 0.1163

σ̂2
Med9 0.5645 0.9995 1.5832 0.1449
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The Hawkes-jump process, generated using package HawkesProcesses.jl in Julia, is then added 
to the Gaussian white noise, which symbolically reads N(0, 1) + H where H has the intensity of 
jump occurrence λt

λt = λ0 +


t>ti

γe−β t−ti( )

The jump size can be generated from an independent log-normal distribution. A jump size from a 
Lévy distribution was also examined. Then, the matrix of 2,285 × 194 (representing normalized 
returns) is constructed wherein the time of jump occurrences to reconstruct the intensity λt cali-
brated to the S&P500 sample using Bayesian statistics.

6.4.1 Jump clustering simulation at 2-min level
This simulation, with intensity parameters (λ0, γ, β) = (0.15, 2.2, 5), shows the day count of 
n-jumps in a simulated series that has a high percentage of self-excitations indicating consecutive 
jumps (contagion). As shown in Table 12, the ABD method fails to detect sufficient total jumps 
regardless of the shrink parameters while Med9 performs consistently in identifying jumps. It is 
evident that Med9 is a superior method for detecting jumps when jump clustering occurs because 
the ABD method is not particularly effective when there are ¿2 jumps in a day while Med9 detects 
well even when n > 7. If we look back at the singular jump scenario, ABD suggests that jumps oc-
cur over a maximum of 2% of the sample period (47 out of 2,285 days), which is far from the real-
ity. While the Med9 reports approximately a much more realistic 15% jump days.

6.4.2 Jump clustering simulation at 1-min level
To show the robustness, we increase the simulated sample frequency to 1-minute, which increases 
the data matrix size to 2, 285 × 388. With the same intensity parameters 
(λ0, γ, β) = (0.15, 2.2, 5)), Table 13 reports the new results of the day count of n-jumps. First, 
we observe that doubling the data frequency generally worsens the effectiveness of the ABD 

Table 12. The count of jump clustering at 2-min frequency

Shrink 0 1 2 3 4 5 6 7 >7 Total Daily

α Jump Average

0 2,224 47 7 3 3 0 1 0 0 88 0.039

ABD 0.3 2,240 38 4 1 2 0 0 0 0 57 0.025

0.4 2,242 38 3 0 2 0 0 0 0 52 0.023

1 2,256 28 1 0 0 0 0 0 0 30 0.013

Med9 1,407 351 200 120 70 51 27 20 39 2,306 1.009

Table 13. The count of jump clustering at 1-min frequency

Shrink 0 1 2 3 4 5 6 7 >7 Total Daily

α Jump Average

0 2,241 38 5 1 0 0 0 0 0 51 0.022

ABD 0.3 2,246 34 5 0 0 0 0 0 0 44 0.019

0.4 2,247 33 5 0 0 0 0 0 0 43 0.0188

1 2,252 32 1 0 0 0 0 0 0 34 0.0148

Med9 1,268 425 219 126 97 47 41 22 40 2,663 1.65
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detection but Med9 continues to show strong detection performance (see total jumps). ABD ap-
pears to perform even more poorly in recognizing clustered jumps for different shrink factors; 
but Med9 can detect up to over seven consecutive jumps. Finally, ABD single jump detection de-
clines, indicating a maximum 1.7% of the 2,285 days having a jump while that of the Med9 im-
proves to 18.6%.

7 Conclusion
Many existing methods of jump detection in financial series are based on integration over a whole 
day while others concentrate on looking for large individual returns. However, both types often 
fail to detect jumps if there are large returns in consecutive intervals. We propose a new detection 
method in which individual returns are assessed against a jump-robust measure of daily volatility, 
Med9RV, using a 9-interval rolling median. Thus a bigger return is required on volatile days than 
on quiet days to be called a jump. The volatility measure ensures that the test denominator is less 
likely be inflated by one or several large adjacent returns, which could cause a jump to be missed/ 
masked like several traditional methods of jump detections.

We test the Med9 method on a 2-min S&P 500 returns series over a 2,285-day sample period. 
First, the Med9 method find jumps more effectively while RV-BV type methods often fail to iden-
tify jumps on days when most people would agree that jumps have occurred. Second, comparisons 
with the local volatility approaches of Lee and Mykland (2008) and Andersen et al. (2007a) also 
suggest that our Med9 approach is consistently better at detecting jumps, especially identifying 
large jumps, because it does not suffer from inflated bi-power variation or insufficient time to al-
low for jump contagion to naturally unfold.

We have conducted simulations using a Hawkes-jump-diffusion process, particularly construct-
ing the case of jump clustering, to demonstrate the robustness of the Med9 vs. ABD methods. We 
further enhance the evidence in supporting the Med9 method through increasing the frequency of 
the simulated series from 2 to 1 min. We find the Med9 method consistently performs better. We 
find the ABD method not only detects an unrealistically low number of single-jump days, but also 
becomes ineffective in the presence of multiple jumps within a day (n > 2). In summary, we con-
clude that monitoring the local volatility is important for detecting jumps in price and return series. 
The proposed Medn approach overcomes the challenges of measuring intraday volatility when 
jump contagion and clustering exist and more accurately locates jumps.
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form by JRSSC).

Data availability
The data are obtained from Thomson Reuters TM Tick History under the paid data subscription 
license of Swansea university. Data can be shared on request to the authors within the remit of such 
subscription license. Alternatively, researchers could directly request a sample similar to this data-
set from Thomson Reuters TM Tick History or other data sources for educational purpose.

References
Andersen T. G., & Bolleslev T. (1997). Intraday periodicity and volatility persistence in financial markets. Journal 

of Empirical Finance, 4(2–3), 115–158. https://doi.org/10.1016/S0927-5398(97)00004-2
Andersen T. G., & Bolleslev T. (1998). Answering the skeptics: Yes, standard volatility models do provide accur-

ate forecasts. International Economic Review, 39(4), 885–905. https://doi.org/10.2307/2527343
Andersen T. G., Bolleslev T., & Das A. (2001). Variance-ratio statistics and high-frequency data: Testing for 

changes in intraday volatility patterns. Journal of Finance, 56, 305–327. https://doi.org/10.1111/0022- 
1082.00326

Andersen T. G., Bolleslev T., & Debrov D. (2007a). No-arbitrage semi-martingale restrictions for continuous- 
time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional im-
plications. Journal of Econometrics, 138(1), 125–180. https://doi.org/10.1016/j.jeconom.2006.05.018

J R Stat Soc Series C: Applied Statistics, 2025, Vol. XX, No. XX                                                             17
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlaf025/8114823 by guest on 08 M
ay 2025

https://doi.org/10.1016/S0927-5398(97)00004-2
https://doi.org/10.2307/2527343
https://doi.org/10.1111/0022-1082.00326
https://doi.org/10.1111/0022-1082.00326
https://doi.org/10.1016/j.jeconom.2006.05.018


Andersen T. G., Bolleslev T., & Diebold F. X. (2007b). Roughing it up: Including jump components in the meas-
urement, modeling and forecasting of return volatility. Review of Economics and Statistics, 89(4), 701–720. 
https://doi.org/10.1162/rest.89.4.701

Andersen T. G., Bolleslev T., Diebold F. X., & Labys P. (2000). Exchange rate returns standardized by realized 
volatility are (nearly) Gaussian. Multinational Finance Journal, 4(3/4), 159–179. https://doi.org/10.17578/4

Andersen T. G., Bolleslev T., Diebold F. X., & Labys P. (2001). The distribution of exchange volatility. Journal of 
the American Statistical Association, 96(453), 42–55. https://doi.org/10.1198/016214501750332965

Andersen T. G., Bolleslev T., Diebold F. X., & Labys P. (2003). Modeling and forecasting realized volatility. 
Econometrica: Journal of the Econometric Society, 71(2), 579–625. https://doi.org/10.1111/ecta.2003.71. 
issue-2

Andersen T. G., Bolleslev T., Frederiksen P., & Nielsen M. (2010). Continuous time models, realized volatilities 
and testable distributional implications for daily stock returns. Journal of Applied Econometrics, 25(2), 
233–261. https://doi.org/10.1002/jae.v25:2

Andersen T. G., Dobrev D., & Schaumburg E. (2012). Jump robust volatility estimation using nearest neighbor 
truncation. Journal of Econometrics, 169(1), 75–93. https://doi.org/10.1016/j.jeconom.2012.01.011

Andersen T. G., Su T., Todorov V., & Zhang Z. (2023). Intraday periodic volatility curves. Journal of the 
American Statistical Association, 119, 1–11. https://doi.org/10.1080/01621459.2023.2177546

Andersen T. G., Thyrsgaard M., & Todorov V. (2019). Time-varying periodicity in intraday volatility. Journal of 
the American Statistical Association, 114(528), 1695–1707. https://doi.org/10.1080/01621459.2018. 
1512864

Bachelier L. (2006). In M. H. Davis, & A. Etheridge (Eds.), Louis Bachelier’s theory of speculation. Princeton 
University Press.

Bajgrowicz P., Scaillet O., & Treccani A. (2016). Jumps in high-frequency data: Spurious detections, dynamics 
and news. Management Science, 62(8), 2198–2217. https://doi.org/10.1287/mnsc.2015.2234

Barndorff-Nielsen O. E., & Shephard N. (2002). Econometric analysis of realized volatility and its use in estimat-
ing stochastic volatility models. Journal of the Royal Statistical Society, Series B, 64(2), 253–280. https://doi. 
org/10.1111/1467-9868.00336

Barndorff-Nielsen O. E., & Shephard N. (2004). Power and bipower variation with stochastic volatility and 
jumps. Journal of Financial Econometrics, 2(1), 1–37. https://doi.org/10.1093/jjfinec/nbh001

Barndorff-Nielsen O. E., & Shephard N. (2006). Econometrics of testing for jumps in financial economics using 
bipower variation. Journal of Financial Econometrics, 4(1), 1–30. https://doi.org/10.1093/jjfinec/nbi022

Birkhoff G. D (1942). What is the ergodic theorem? The American Mathematical Monthly, 49(4), 222–226. 
https://doi.org/10.1080/00029890.1942.11991212

Black F., & Scholes M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 
81(3), 637–654. https://doi.org/10.1086/260062

Bolleslev T., Law T. H., & Tauchen G. (2008). Risk, jumps and diversification. Journal of Econometrics, 144(1), 
234–256. https://doi.org/10.1016/j.jeconom.2008.01.006

Boudt K., Croux C., & Laurent S. (2011). Robust estimation of intraweek periodicity in volatility and jump 
detection. Journal of Financial Economics, 18(2), 353–367. https://doi.org/10.1016/j.jempfin.2010.11.005

Boudt K., & Petitjean M. (2014). intra-day liquidity dynamics and news releases around price jumps: Evidence 
from the DJIA stocks. Journal of Financial Markets, 17(2), 121–149. https://doi.org/10.1016/j.finmar. 
2013.05.004

Brogaard J., Carrion A., Moyaert T., Riordan A., Shkilko A., & Sokolov K. (2018). High-frequency trading and 
extreme price movements. Journal of Financial Economics, 128(2), 253–265. https://doi.org/10.1016/j. 
jfineco.2018.02.002

Chan L., & Lien D. (2003). Using high, low, open, and closing prices to estimate the effects of cash settlement on 
futures prices. International Review of Financial Analysis, 12(1), 35–47. https://doi.org/10.1016/S1057- 
5219(02)00125-4

Christoffersen P., Jacobs P. K., Ornthanalai C., & Wang Y. (2008). Option valuation with long-run and short-run 
volatility components. Journal of Financial Economics, 90(3), 272–297. https://doi.org/10.1016/j.jfineco. 
2007.12.003

Cont R., & Tankov P. (2016). Financial modelling with jump processes. Chapman & Hall/CRC.
Corsi F., Pirino D., & Reno R. (2010). Threshold bipower variation and the impact of jumps on volatility fore-

casting. Journal of Econometrics, 159(2), 276–288. https://doi.org/10.1016/j.jeconom.2010.07.008
Dimitru A. M., & Urga G. (2012). Identifying jumps in financial assets: A comparison between nonparametric 

jump tests. Journal of Business and Economic Statistics, 30(2), 242–255. https://doi.org/10.1080/ 
07350015.2012.663250

Ferriani F., & Zoi P. (2020). The dynamics of price jumps in the stock market: An empirical study on Europe and 
US. The European Journal of Finance, 28, 718–742. https://doi.org/10.1080/1351847X.2020.1740288.

Garman M., & Klass M. (1980). On the estimation of security price volatilities from historical data. Journal of 
Business, 53(1), 67–78. https://doi.org/10.1086/jb.1980.53.issue-1

18                                                                                                                                           Khashanah et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlaf025/8114823 by guest on 08 M
ay 2025

https://doi.org/10.1162/rest.89.4.701
https://doi.org/10.17578/4
https://doi.org/10.1198/016214501750332965
https://doi.org/10.1111/ecta.2003.71.issue-2
https://doi.org/10.1111/ecta.2003.71.issue-2
https://doi.org/10.1002/jae.v25:2
https://doi.org/10.1016/j.jeconom.2012.01.011
https://doi.org/10.1080/01621459.2023.2177546
https://doi.org/10.1080/01621459.2018.1512864
https://doi.org/10.1080/01621459.2018.1512864
https://doi.org/10.1287/mnsc.2015.2234
https://doi.org/10.1111/1467-9868.00336
https://doi.org/10.1111/1467-9868.00336
https://doi.org/10.1093/jjfinec/nbh001
https://doi.org/10.1093/jjfinec/nbi022
https://doi.org/10.1080/00029890.1942.11991212
https://doi.org/10.1086/260062
https://doi.org/10.1016/j.jeconom.2008.01.006
https://doi.org/10.1016/j.jempfin.2010.11.005
https://doi.org/10.1016/j.finmar.2013.05.004
https://doi.org/10.1016/j.finmar.2013.05.004
https://doi.org/10.1016/j.jfineco.2018.02.002
https://doi.org/10.1016/j.jfineco.2018.02.002
https://doi.org/10.1016/S1057-5219(02)00125-4
https://doi.org/10.1016/S1057-5219(02)00125-4
https://doi.org/10.1016/j.jfineco.2007.12.003
https://doi.org/10.1016/j.jfineco.2007.12.003
https://doi.org/10.1016/j.jeconom.2010.07.008
https://doi.org/10.1080/07350015.2012.663250
https://doi.org/10.1080/07350015.2012.663250
https://doi.org/10.1080/1351847X.2020.1740288
https://doi.org/10.1086/jb.1980.53.issue-1


Gilder D., Shackelton M., & Taylor S. (2014). Cojumps in stock prices: Empirical evidence. Journal of Banking 
and Finance, 40(2), 443–459. https://doi.org/10.1016/j.jbankfin.2013.04.025

Huang X., & Tauchen G. (2005). The relative contribution of jumps to total price variation. Journal of Financial 
Econometrics, 3(4), 456–499. https://doi.org/10.1093/jjfinec/nbi025

Jalali A. (2014). On expected values of maxima of samples from Gamma distributions. Personal communication.
Kolokolov A., & Renò R. (2017). Efficient multipowers. Journal of Financial Econometrics, 16(4), 629–659. 

https://doi.org/10.1093/jjfinec/nbx018
Lee S. S., & Mykland P. (2008). Jumps in financial markets: A new nonparametric test and jump-dynamics. The 

Review of Financial Studies, 21(6), 2535–2563. https://doi.org/10.1093/rfs/hhm056
Merton R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial 

Economics, 3(1-2), 125–144. https://doi.org/10.1016/0304-405X(76)90022-2
Parkinson M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of 

Business, 53, 61–65. http://dx.doi.org/10.1086/296071
Podolkskij M., & Ziggel D. (2010). New tests for jumps in semimartingale models. Statistical Inference for 

Stochastic Processes, 13(1), 15–41. https://doi.org/10.1007/s11203-009-9037-8
Prodromou T., & Westerholm P. J. (2022). Are high frequency traders responsible for extreme price movements? 

Economic Analysis and Policy, 73(2), 94–111. https://doi.org/10.1016/j.eap.2021.11.001
Samuelson P. A. (1965). Rational theory of warrant pricing. Industrial Management Review, 6, 13–22.
Schulz F. C, & Mosler K. (2011). The effect of infrequent trading on detecting price jumps. AStA Advances in 

Statistical Analysis, 95(1), 27–58. https://doi.org/10.1007/s10182-010-0137-y
Sornette D., & von der Becke S. (2011). Crashes and high frequency trading: An evaluation of risks posed by high- 

speed algorithmic trading. Foresight Driver Review – DR 7 for The Future of Computer Trading in Financial 
Markets, Government Office for Science, UK. Date accessed June 1, 2022.

Torben G. A., Martin T., & Viktor T. (2019). Iime-varying periodicity in intraday volatility. Journal of the 
American Statistical Association, 114(528), 1695–1707. https://doi.org/10.1080/01621459.2018.1512864

Tsai P.-C., & Shackleton M. B. (2016). Chapter 6, Handbook of high-frequency trading and modeling in finance. 
Wiley.

Vatter T., Wu H. T., Chavez-Demoulin V., & Yu B. (2015). Non-parametric estimation of intraday spot volatil-
ity: Disentangling instantaneous trend and seasonality. Econometrics, 3(4), 864–887. https://doi.org/10.3390/ 
econometrics3040864

Walters P. (1982). An introduction to ergodic theory. Springer-Verlag.
Yang S. Y., Liu A., Chen J., & Hawkes A. G. (2018). Application of a multivariate Hawkes process to joint mod-

elling of sentiment and market return events. Quantitative Finance, 18(2), 295–310. https://doi.org/10.1080/ 
14697688.2017.1403156

J R Stat Soc Series C: Applied Statistics, 2025, Vol. XX, No. XX                                                             19
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlaf025/8114823 by guest on 08 M
ay 2025

https://doi.org/10.1016/j.jbankfin.2013.04.025
https://doi.org/10.1093/jjfinec/nbi025
https://doi.org/10.1093/jjfinec/nbx018
https://doi.org/10.1093/rfs/hhm056
https://doi.org/10.1016/0304-405X(76)90022-2
http://dx.doi.org/10.1086/296071
https://doi.org/10.1007/s11203-009-9037-8
https://doi.org/10.1016/j.eap.2021.11.001
https://doi.org/10.1007/s10182-010-0137-y
https://doi.org/10.1080/01621459.2018.1512864
https://doi.org/10.3390/econometrics3040864
https://doi.org/10.3390/econometrics3040864
https://doi.org/10.1080/14697688.2017.1403156
https://doi.org/10.1080/14697688.2017.1403156

	A new method for jump detection: analysis of jumps in the SP 500 financial index
	Conflicts of interest
	References


