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1 Abstract

Rivers and their drainage basins are fundamental landscape units, and their morphology
is a record of the cascade of geologic, tectonic, biological, and climatic processes acting
upon them. Quantifying this cascade depends on morphometric measurements of rivers
and drainage basins, and comparison of these measurements across diverse landscape
settings. Here we present a new near-Global dataset of Drainage Basin Morphology,
GDBM, which provides morphometric measurements of 254,966 basins and the longest
river channel within them. This dataset is created by extracting channels from the
30-meter resolution Shuttle Radar Topography Mission (SRTM) topographic data which
fall within Köppen-Geiger climate zones, to allow the influence of climate on river and
basin morphology to be quantified. GDBM contains measurements of channel length,
slope, relief, normalised concavity, basin area, basin shape and aridity. These data have
been generated with minimal assumptions, focusing on identifying and classifying
channels with high confidence, through the use of a conservative drainage area threshold.
GDBM provides opportunities for rapid spatial analysis of channel morphology at a
near-global scale and has the potential to yield continuing insight into landscape
evolution across diverse climate regimes. This dataset also has potential applications
across a range of Earth and environmental science domains, through the integration of
additional data on, for example, forest canopy height, landcover, or soil properties to
explore the spatial variability of channel and basin properties with climate.

2 Introduction 1

Rivers and their drainage basins are critical components of landscapes which exist at 2

spatial scales spanning several orders of magnitude, driving the distribution of water 3

and sediment across the Earth’s surface [1]. They exist across several orders of 4

magnitude of spatial scales, from continental river systems through to hillslope scale 5

drainage networks [2, 3]. The analysis of channel and basin morphometry has yielded a 6

diverse range of insights into landscape response to tectonic [4–7], climate [8–11] and 7
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anthropogenic [12] forcing, in addition to informing the parameterization of 8

hydrologic [13,14] and landscape evolution [15–17] models. 9

With the increasing availability of high quality global and near-global topographic 10

data, a number of compilations of global channel data have been produced, notably 11

MERIT Hydro [18], HydroSHEDS [19], HDMA [20], and Basin90m [21]. These datasets 12

are valuable resources for many avenues of research, typically however this existing 13

family of datasets are not directly suited to analysis which links climate and channel 14

morphometry. For some datasets, river mapping approaches make use of published blue 15

line maps [22], which perform well in humid environments but systematically exclude 16

intermittent and ephemeral channels, particularly those found in drylands [23,24]. In 17

the case of Basin90m [21], rivers in drylands are removed based on their aridity, 18

excluding many ephemeral channels from analysis. In other cases, morphometric data is 19

extracted using HydroSHEDS as the input for basin extraction [25], again potentially 20

excluding intermittent and ephemeral channels from the dataset. Some datasets make 21

use of a stream burning approach [26] to enforce channelised flow across a DEM and 22

this approach ensures a topologically consistent network, but modifies the topographic 23

data, potentially biasing measurements of channel or basin morphology. Other datasets 24

are predicated on lower resolution DEM products [19,21,27], reducing their ability to 25

identify smaller channels. Several datasets do not record geomorphometric data 26

natively [26], requiring a user to load the channel data, source a DEM and then sample 27

the required morphometric data. This lack of native morphometric information can lead 28

to inconsistency and a reduction in the spatial scope of analyses. With the aim of 29

addressing these limitations, supplementing existing datasets and facilitating the 30

analysis of relationships between climate and basin morphometry, we present a new 31

near-Global dataset of Drainage Basin Morphology, GDBM. 32

Identifying the initiation point of channels is very challenging, such that successful 33

schemes are only feasible on small spatial scales or with large amounts of manual 34

intervention [28]. Rather than developing new methods to delineate channel initiation 35

points, a challenging research topic known to be limited by data resolution [29], we 36

instead focus here on extracting the longest channel from large drainage basins, with a 37

parsimonious drainage threshold [30] of 22.5 km2). In doing this we can be confident 38

that the channels we extract within GDBM are not false positives, supporting global 39

analysis of channel morphology undertaken without undue influence from potential 40

channel extraction biases. The power of this new dataset is its minimal, parsimonious 41

assumptions and its close coupling to Köppen-Geiger climate zones [31] and global 42

aridity estimates [32,33]. GDBM thus creates opportunities to explore river and basin 43

morphology in a climate context at a near-global scale, from the profiles of individual 44

channels, to continental scale statistical properties. 45

3 Materials and methods 46

The processing and generation of GDBM follows a series of stages: 47

3.1 Climate zone processing 48

A fundamental component of GDBM is the connection of climate categories and 49

topographic data at an appropriate scale for near-global analysis. We use the 50

Köppen-Geiger climate classification [31] to divide the globe into discrete climate 51

sub-zone tiles, which can be processed in parallel. As the creation of this dataset is 52

motivated by an interest in climate-drainage basin relationships at a near-global scale, 53

the full climate classification extended by [31] is too granular. To this end, we generalise 54

the climate sub-zones into the categories described in Table 1, and exclude the ET and 55
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EF polar classifications. In some cases the sub-zones are still too big to be processed 56

efficiently. These are further divided using a quadtree-like algorithm to maintain 57

uniform tile shapes (Fig 1a). This division of the Earth’s surface into a series of large 58

tiles which can be processed in parallel is in line with other efforts to create large 59

datasets of channel morphology [21] and represents a compromise between 60

computational power and dataset scale. 61

Table 1. Details of aggregated Köppen-Geiger climate zones used in this dataset, and
short descriptions of each of these zones. Note that polar zones ET and EF are
excluded from this dataset.

Letter Code Description Original Codes
Af Tropical-Rainforest Af
Am Tropical-Monsoon Am
Aw Tropical-Savannah Aw
BWh Arid-Desert-Hot BWh
BWk Arid-Desert-Cold BWk
BSh Arid-Steppe-Hot BSh
BSk Arid-Steppe-Cold BSk
Cs Temperate-Dry summer Csa, Csb
Cw Temperate-Dry winter Cwa, Cwb, Cwc
Cf Temperate-Without dry season Cfa, Cfb, Cfc
Ds Cold-Dry summer Dsa, Dsb, Dsc, Dsd
Dw Cold-Dry Winter Dwa, Dwb, Dwc, Dwd
Df Cold-Without dry season Dfa, Dfb, Dfc, Dfd

Fig 1. Maps of the 1830 climate sub-zone tile boundaries. Classified by a)
Köppen-Geiger climate zone and b) Aridity Index. Note that channels within each tile
will have a range of AI values, as AI is recorded on a per channel basis within GDBM.

Following the creation of the climate sub-zone tiles, large bodies of water are 62

removed from each tile, to ensure that the tiles only represent terrestrial environments. 63

We used the Global Lakes and Wetlands Database [34] for this purpose. This dataset 64

characterises all classified bodies of water into two levels: level 1 is made up of all 65

bodies of water with a surface area above 50 km2 and level 2 represents all remaining 66

bodies above 0.1 km2. Consequently, all level 1 lake and reservoir polygons were 67

intersected with the climate sub-zone tiles using shapely [35]. In rare cases the resultant 68

intersection between water bodies and climate sub-zones created multiple polygons (for 69

example if a lake bisected a climate sub-zone tile). Therefore if a resultant split polygon 70

had an area less than 20% of its original size, it was classed as a sliver and removed 71

from further analysis [36]. 72

3.2 Topographic data processing 73

The river channels provided within this dataset are extracted from the NASA Shuttle 74

Radar Topography Mission Global 1 arc second DEM product [37,38], henceforth 75

referred to as SRTM. This is the latest version of the SRTM dataset which has 76

undergone extensive void-filling and quality control. The SRTM topographic data is 77

used extensively in global analyses of topography [10,39], and lower resolution versions 78

of the dataset have underpinned previous efforts to create global hydrologic 79

datasets [18,19]. 80

Due to the nature of the space shuttle’s orbit, topographic data was only collected 81

between 60◦N and 56◦S [37]. This limits the creation of a truly global dataset, however, 82
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as the purpose of these data are to understand the relationships between climate and 83

fluvial channel morphometry, excluding polar data where channel forms will be carved 84

by ice is beneficial. The latest version of the SRTM data has a grid resolution of 85

approximately 30 m at the equator [38], providing a good balance between 86

computational efficiency and data fidelity. For a full discussion of SRTM data quality 87

and validation, see [40]. 88

Topographic data for a given climate sub-zone was downloaded using the 89

OpenTopography Service [41], allowing the relevant data to be downloaded and 90

processed on the fly, rather than requiring the whole SRTM dataset to be downloaded 91

or processed at once. Using GDAL [42], the SRTM tiles which intersect with a given 92

climate sub-zone are then merged into a single DEM tile, and this merged tile is clipped 93

to the polygon outline of the climate sub-zone to create a DEM which covers only the 94

climate sub-zone of interest. To facilitate accurate comparisons between climate 95

sub-zones, each tile is then reprojected into the appropriate UTM zone, based on the 96

location of the southwest corner of the climate sub-zone. 97

The final stage of topographic processing is to hydrologically correct each clipped 98

and projected DEM. This is required to identify and remove topographic depressions 99

which inhibit surface flow paths and render channel extraction impossible [43]. At the 100

resolution of the SRTM data, and following the clipping out of lakes and water bodies, 101

the majority of depressions will be data artefacts rather than true topographic 102

features [44]. However, GDBM includes metrics which can be used when analysing these 103

data to control for channels unduly impacted by erroneous hydrological correction. This 104

processing stage is performed using the LSDTopotools [45] implementation of the Wang 105

and Liu algorithm [46]. This algorithm applies hydrological corrections to topographic 106

data in a computationally efficient manner, and has been shown to be robust under a 107

number of geomorphic applications [5, 47–49]. Other hydrological correction algorithms 108

have been developed, notably those that consider hydrological context alongside high 109

resolution topographic data [50–52]. However, given the resolution of the SRTM data 110

being processed, and the scale over which this dataset is being generated, increasing the 111

complexity of the hydrological correction algorithm would yield few benefits, weighted 112

against the considerable additional computational cost. 113

The final result of these processing steps is the generation of 1830 hydrologically 114

corrected and projected DEM tiles, corresponding to each of the climate sub-zone tiles 115

generated previously. 116

3.3 Channel extraction 117

Channel identification and extraction from topographic data is a common problem in 118

geomorphology [53]. Since the widespread adoption of LiDAR topographic data, a range 119

of algorithms have been developed, either attempting to identify a process domain 120

boundary where fluvial processes outcompete hillslope processes [54] or attempting to 121

identify a geomorphometric signature of channelisation [55–58]. These methods have 122

been demonstrated to be effective when applied to high resolution topographic data, but 123

have limited efficacy at SRTM’s 30-meter resolution [29]. Consequently a more 124

conservative channel extraction approach is employed using a drainage area threshold to 125

identify the initiation point of each channel [30,59,60]. Drainage area is computed using 126

the Fastscape implementation of the D8 steepest descent algorithm [61], which is 127

designed to work optimally over large spatial scales. 128

There is no globally appropriate drainage threshold which can be applied confidently 129

to extract river channels with an absence of both false positives and false negatives [56]. 130

If too low a threshold is chosen, channels will be identified in the data where none exist 131

in reality, and if too large a threshold is chosen, only the largest rivers in a drainage 132

basin will be identified. Here, we exploit this feature of drainage area based channel 133
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extraction by using a deliberately conservative fixed threshold of 22.5 km2. This 134

threshold ensures that every channel extracted has a high probability of corresponding 135

to a true channel. 136

GDBM only records morphometric information about the mainstem channel, defined 137

as the longest channel in a drainage basin, and so the loss of tributary channels due to 138

conservative drainage thresholding does not impact the overall compilation of the 139

dataset. To ensure that each channel within GDBM corresponds to a distinct climate 140

zone, drainage basins which cross or intersect with a climate sub-zone tile boundary are 141

not recorded within the dataset (n=35,979). This filtering of data to exclude boundary 142

crossing channels maximises the value of our dataset as a tool to explore relationships 143

between climate and basin morphometry. We also test for nesting of drainage basins, to 144

ensure that each channel is only recorded once in the dataset, avoiding problems of 145

serial correlation within the data. 146

3.4 Aridity Index processing 147

In addition to the Köppen-Geiger climate sub-zone data, each river channel in the 148

database records Aridity Index [32,33] (AI) values along its length. This sampling 149

process records AI values at the centroid of every channel pixel, resulting in an average 150

sampling frequency of 36 meters along each channel. These values can be used to explore 151

along channel variability in aridity, within Köppen-Geiger climate sub-zones (Fig 1b). 152

From this population of sampled values the mean and median AI values for each 153

channel are calculated, in addition to standard deviation, maximum and minimum 154

values. Due to the resolution disparity between the SRTM dataset (∼30 m) and the 155

Aridity Index dataset (∼900 m) some channels have a small number of Aridity Index 156

measurements along their length (<10), but this only accounts for 10 channels, or 157

0.004% of the whole dataset. The number of individual AI values for each river is 158

therefore also recorded, to allow users to filter out such rivers as required. 159

3.5 Channel and basin morphometric calculations 160

Following the extraction of channels within each of the climate sub-zone tiles, a series of 161

channel morphometrics are calculated. Channel relief (R) is calculated as: 162

R = E0 − En (1)

where E is channel elevation and the subscripts 0 and n correspond to the upstream 163

and downstream extent of the channel, respectively. Flow length (Lf ) is calculated by: 164

Lf = Ln − L0 (2)

where L is the cumulative upstream flow distance at a given point along the channel. 165

Total channel slope (S) is computed by: 166

S =
R

Lf
. (3)

The Normalised Concavity Index (NCI) [10] is calculated by fitting a straight line 167

through the points E0, En, described by the equation YL = E0 − θL where θ is the 168

gradient of the line, the y intercept is E0 and YL is the elevation of the line at position 169

L along the line. NCI can then be calculated at each channel pixel as follows: 170
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NCI = median
(EL − YL

R

)
. (4)

Similar calculations can be performed at reach scale rather than along the whole 171

channel, using the individual river data which are described below. 172

The Gravelius compactness coefficient (GC) [62], the ratio between a basin’s 173

perimeter and the circumference of a circle of the same area, is used to describe basin 174

shape, with a value of 1 indicating a circular basin and increasing values indicating 175

increasing basin elongation. Perimeter estimation has been shown to be impacted by 176

data resolution and basin size, where increasing basin size leads to increasing perimeter 177

overestimation [63]. To resolve this issue, we follow [64] in defining a relative resolution 178

(Rr): 179

Rr =
1

10

√
A (5)

where A is the basin area. This relative resolution can be used to convert basin 180

perimeter (P ) into relative perimeter: 181

Pr = P ·Rr (6)

and convert basin area into relative area: 182

Ar = A ·Rr
2 (7)

and using these relative values, the value of GC can be calculated: 183

GC =
Pr

2
√
πAr

. (8)

3.6 Quality assurance metrics 184

In addition to collecting topographically derived information about each channel, we 185

also record information that can be used to quality control the dataset. Common 186

concerns when working with topographically defined channels are that the pit filling 187

procedure may distort the true data or that the limitations of the D8 algorithm will 188

create anomalously straight channels. 189

To address the potential impact of the pit filling procedure on channel 190

morphometrics, DEMs of difference are generated between the filled and unfilled DEMs. 191

Fig 2 shows the distribution of topographic change across an example climate sub-zone 192

tile caused by the hydrological correction process. The majority of topographic changes 193

fall well below the SRTM relative vertical error of between 4.7 and 9.8 m [40] and so are 194

excluded from further analysis by filtering the data to the 98th percentile. The 195

remaining data corresponds to all pixels within a climate sub-zone which have been 196

altered by more than the reported vertical error within the data. The proportion of 197

each channel impacted by these altered pixels can then be calculated both in terms of 198

raw pixel counts and flow length to create quality assurance metrics. 199

Fig 2. Histogram of the distribution of per-pixel vertical change following
hydrological correction for a representative climate sub-zone tile. Dashed
vertical line indicates the 98th percentile threshold for meaningful vertical change. Error
bar shows the range of vertical error within the SRTM dataset [40].
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We define channel straightness by identifying the longest unbroken run of flow 200

directions within each channel. The length of this run is then compared to the complete 201

channel length to create a straightness quality assurance metric, where a value of 1 202

would denote a completely straight channel, and values close to 0 denote high variability 203

in channel flow direction. 204

4 Results 205

5 Data Records 206

5.1 Aggregate data 207

For each climate sub-zone (see Table 1) a csv file has been created, which contains 208

summary statistics and geographical information for each channel within that climate 209

sub-zone, with one river corresponding to each row in the dataset. Within GDBM every 210

river is given a unique name, for example 211

Af 74 9435e317 8045 44ab bba7 cb9ff452496f river 46 which is composed of: 212

• The Köppen-Geiger letter code. Af. 213

• A tile ID number, indicating that this river is found within the nth tile of that 214

climate sub zone. 74. 215

• An optional unique ID, used to denote where sub-zone tiles have been further 216

subdivided. 217

9435e317 8045 44ab bba7 cb9ff452496f. 218

• A river ID, denoting that this is the nth river of that tile. river 46. 219

It is important to note that no topological information is stored within the unique 220

river names, and so it is not possible to assume any spatial relationship between 221

sub-zones based on their numerical value. In total there are 13 csv files, with a total of 222

254,966 records and the size of this portion of GDBM is 69 MB. Table 2 provides a 223

description of each column within the aggregate data files. 224

5.2 Individual river data 225

Each row in the aggregate data corresponds to a csv file, named using the unique name 226

described above, which contains the data for each pixel along the river’s length. In total 227

there are 254,966 of these river files, organised into Köppen-Geiger climate sub-zone 228

subdirectories (see Table 1), these river files have a total size of 27 GB. To make the 229

computational processing of large batches of data more efficient, these river files do not 230

have a header row. Table 3 provides a description of each column within these river 231

files, in the order that they appear in the file. The individual river files are structured 232

so that each row corresponds to a single pixel within the channel, with the first row 233

corresponding to the outlet of the channel and the last row corresponding to the upper 234

limit of the channel. 235

6 Technical Validation 236

As discussed above, the channels that make up GDBM are extracted using a 237

conservative drainage area threshold to maximise the likelihood that the dataset 238

consists of true channels. We explore the impact that selecting such a parsimonious 239
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Table 2. Details of the variables recorded within the climate sub zone aggregate data files.

Variable name Description Units
RiverName Unique name for each river within the dataset. -
NCI Normalised Concavity Index. Calculated using Eq. 4, following [10]

and detailed in Section 3.5.
-

Relief Total channel relief, calculated as the difference between the maxi-
mum and minimum elevations within the channel, Eq. 1.

m

FlowLength The total along channel length of the river. m
TotalSlope Total channel gradient calculated as the ratio between the relief

and the flow length, Eq. 3.
m/m

Area The total drainage area for the channel. Computed at the lowest
elevation pixel within the channel.

m2

ai mean The mean Aridity Index value for the channel. Calculated by
sampling all Aridity index values along the channel and calculating
their mean.

-

ai median The median Aridity Index value for the channel. Calculated by
sampling all Aridity index values along the channel and calculating
their median.

-

ai std The standard deviation of Aridity Index values for the channel.
Calculated by sampling all Aridity index values along the channel
and calculating their standard deviation.

-

ai min The minimum Aridity Index value along the channel. -
ai max The maximum Aridity Index value along the channel. -
ai n The total count of Aridity Index values sampled along the channel. -
pit pixel proportion The proportion of channel pixels which the hydrological correction

process has altered by more than the SRTM vertical error, following
the process described in Section 3.6.

-

pit length proportion The proportion of the channel by length which the hydrological
correction process has altered by more than the SRTM vertical
error, following the process described in Section 3.6

-

straightness proportion The ratio between the length of the longest anomalously straight
section of channel and the total channel length, following the
process described in Section 3.6

-

perimiter pixels The total number of pixels making up the basin perimeter. -
area pixels The basin area in pixels. -
Gravelius coefficient The Gravelius compactness coefficient. Calculated using Eq. 8,

following [64] and detailed in Section 3.5.
-

drainage area threshold may have on the parameters extracted for each channel through 240

a sensitivity analysis. The full channel extraction process was run using drainage area 241

thresholds ±25% of the standard value of 22.5 km2. Fig 3 shows the distribution of the 242

NCI statistic for the four broad climate categories for each of the drainage thresholds. 243

From these distributions we can conclude that the choice of drainage threshold does not 244

have a meaningful impact on channel properties within GDBM at these scales. 245

Fig 3. Violin plots of NCI values calculated for every channel within GDBM,
grouped into broad Köppen-Geiger climate zones. For each climate category,
three channel initiation thresholds have been used to explore the influence of this
parameter on the consistency of the dataset as a whole. White bar on each violin
corresponds to the median value.
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Table 3. Details of the variables recorded within each individual river file. Note that the order of rows in this table
corresponds to the order of the columns within the dataset.

Variable name Description Units
row Row-wise pixel coordinate within the climate sub-zone tile. -
col Column-wise pixel coordinate within the climate sub-zone tile. -
latitude Latitude of a channel pixel recorded using WGS84 datum with

EPSG code 4326. Northern hemisphere values are positive and
southern hemisphere values are negative.

decimal degrees

longitude Longitude of a channel pixel recorded using WGS84 datum with
EPSG code 4326. Eastern hemisphere values are positive and
western hemisphere values are negative.

decimal degrees

elevation The elevation above sea level of a channel pixel. m
flow length The cumulative upstream flow distance of the channel. Note

that the first row of the dataset does not equal zero and must
be subtracted from all flow length values if comparisons between
rivers are to be made.

m

drainage area The cumulative upslope drainage area of a channel pixel. Drainage
area values increase with downstream distance.

m2

basin key An internal LSDTopoTools ID, used here to assign river numbers
in each river’s unique name.

-

flow direction An integer flag denoting the flow direction of a channel pixel, as
computed using the Fastscape algorithm [61]. 0 denotes North, and
values increment clockwise, concluding with Northwest denoted
by 7.

-

aridity index The sampled Aridity Index [32,33] value for a channel pixel, the
sampling process is described in detail in Section 3.4.

-

pit flag A boolean variable set to 1 if a pixel has been modified in excess of
the vertical error in the SRTM data by the hydrological correction
and 0 if it remains unmodified.

-

perimeter pixel count The number of pixels that make up the basin perimeter. -
area pixel count The number of pixels that make up the basin area. -
easting The easting of the channel pixel in UTM. m
northing The northing of the channel pixel in UTM. m

Fig 4a shows the distribution of the NCI statistic, under differing levels of filtering 246

based on the hydrological correction quality assurance metric. When the dataset only 247

retains channels where less than 0.5% (n=163,383) or 0.1% (n=136,530) of the total 248

channel length have been impacted by the hydrological correction process, there is 249

limited variation in the distribution of NCI values, even though there is a large 250

reduction in the number of channels that pass these threshold when compared to the 251

unfiltered dataset. 252

Fig 4. Violin plots of NCI values calculated for every channel within GDBM,
grouped into broad Köppen-Geiger climate zones. For each climate category,
three levels of filtering using quality control metrics are used, to explore the potential
impact of the channel extraction process on measures of channel morphology. Data is
filtered to exclude channels which have a quality control metric exceeding the reported
value. A value of 100 indicates no filtering has been applied. a) number of
hydrologically corrected pixels as a proportion of total channel length. b) length of
longest straight channel segment as a proportion of total channel length. White bar on
each violin corresponds to the median value.
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A similar process can be applied to explore how anomalous channel straightness may 253

impact the dataset (Fig 4b). In this case, there is a large reduction in the median values 254

when channels with greater than 0.1% of their total length being flagged as straight are 255

excluded. For most applications, this will be an overly prescriptive level of filtering, as 256

for the median length river in the dataset (31,897 m), this corresponds to a straight 257

length of approximately 32m, or less than 2 pixels. However, using a more appropriate 258

threshold of 0.5% preserves the same distribution and median as the unfiltered dataset. 259

A frequently espoused limitation of topographically defined channels, particularly 260

those extracted from global topographic datasets, is their inability to capture channel 261

sinuosity. We explore the ability of GDBM to capture large scale channel sinuosity, by 262

segmenting each channel into 10 km long reaches and calculating the ratio of channel 263

flow length to the straight line distance between the start and end point of each reach. 264

If this sinuosity ratio is greater than 1, the flow length of a reach is longer than the 265

Euclidean distance, indicating a meandering channel planform. In cases where the 266

sinuosity ratio is less than 1, the channel is meandering at much longer wavelengths. Fig 267

5 demonstrates the relationship between these two distance metrics, and that GDBM is 268

indeed capturing channel sinuosity at an appropriate scale. 269

Fig 5. Violin plots of the sinuosity ratios calculated for every 10 km reach
within the dataset. Sinuosity data is grouped into broad Köppen-Geiger climate
zones, as well as aggregated into a single dataset. Extreme outliers accounting for
approximately 0.01% of the data has been excluded to enhance clarity of the plot. In
each case the majority of reaches demonstrate a sinuosity ratio above 1, corresponding
to the identification of meandering channel planforms within GDBM. White bar on each
violin denotes the median value.

The validity of extracted channels can also be assessed through direct comparison 270

with existing global channel network datasets. Fig 6 shows example GDBM channels 271

from the four broad climate zones, alongside HydroSHEDS [19] channels from the same 272

geographic region. The motivation of these comparisons is not to critique existing 273

datasets, but rather to demonstrate the validity of GDBM and to draw distinctions 274

between the datasets and their different use cases. By design, GDBM channels are 275

sparser than the HydroSHEDS channels due to the parsimonious design of GDBM to 276

only extract the longest channel within each basin, using a conservative drainage area 277

threshold. Across all four climate zones, the GDBM data shows broad agreement with 278

the HydroSHEDS channels, however in the lower relief arid example (Fig 6b) the 279

HydroSHEDS channels do not follow the higher resolution GDBM channel, highlighting 280

the challenges of extracting dense networks in such terrain. When comparing a GDBM 281

channel to its HydroSHEDS counterpart, we generally observe a more sinuous channel 282

planform, conforming to the landscape morphology. This improved representation of 283

sinuosity is a function of the resolution of the topographic data used to create GDBM, 284

and provides us with confidence that the channel profile data contained within GDBM 285

is a reasonable representation of the true channel morphology at these spatial scales. 286

Fig 6. Maps showing comparisons between GDBM (blue) and
HydroSHEDS [19] (red) channels across: a) tropical; b) arid; c) temperate; and d)
cold Köppen-Geiger climate zones. Underlying hillshade is generated from the NASA
Shuttle Radar Topography Mission Global 1 arc second DEM product [37,38].
Coordinates are in the WGS84 datum with EPSG code 4326.
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7 Usage Notes 287

Version 1.0.0 of the GDBM dataset has been uploaded to the Zenodo data 288

repository [65], this is the canonical location to access this and any future versions of 289

the dataset. All of the GDBM data is in a csv format, designed for maximum 290

interoperability between different analysis environments. Due to the volume of data it is 291

expected that users of the dataset will interrogate GDBM programatically. The authors 292

recommend the use of NumPy [66] and pandas [67, 68] to read and analyse the data, or 293

their equivalents in other programming languages. Individual channel planforms can be 294

visualised inside any modern GIS package, for example QGIS [69]. 295

Code to generate all of these data, end to end (including full documentation), will be 296

archived alongside this paper (prior to publication, this code can be accessed at 297

https://github.com/sgrieve/gdbm). The code has been developed to run on the QMUL 298

Apocrita HPC facility [70], which runs Univa Grid Engine, and so job scripts, file paths 299

and virtual environments will need to be adapted to run the code on other HPC 300

systems. However, the actual data processing code will not need to be modified between 301

systems. The authors note that there is a considerable energy cost to running code on 302

HPC systems [71], with the generation of this dataset estimated to consume 188 kg CO2 303

equivalent [72]. However, in most use cases, there should be no need to re-generate the 304

GDBM data from scratch, lowering the overall environmental cost of this research. 305

Avoiding data re-processing through data sharing is an important component of 306

lowering the climate impact of computational research. Alongside the code to generate 307

the GDBM data, code to generate the figures in this paper is included, which acts as 308

additional documentation of how these data can be analysed using Python. 309

8 Code availability 310

All code used in the generation and processing of GDBM, in addition to the code used 311

to generate the figures in this paper have been released under the open source MIT 312

Licence and are available online (https://github.com/sgrieve/gdbm). All parameters 313

used within the processing workflow are documented within the code repository. 314
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