
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/177053/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Lai, Peiwen, Zhong, Weizhi, Qin, Yipeng , Ren, Xiaohang, Wang, Baoyuan and Li, Guanbin 2025. LLM-
driven multimodal and multi-Identity listening head generation. Presented at: The IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR) 2025, Nashville, USA, 11 - 15 June 2025. 

Publishers page: 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



LLM-driven Multimodal and Multi-Identity Listening Head Generation

Peiwen Lai1 Weizhi Zhong1 Yipeng Qin2 Xiaohang Ren3 Baoyuan Wang3 Guanbin Li1,4,5*
1Sun Yat-sen University 2Cardiff University 3Xiaobing.AI 4Peng Cheng Laboratory

5Guangdong Key Laboratory of Big Data Analysis and Processing
{laipw5, zhongwzh5}@mail2.sysu.edu.cn, qiny16@cardiff.ac.uk, xiaomums@qq.com

zjuwby@gmail.com, liguanbin@mail.sysu.edu.cn

Abstract

Generating natural listener responses in conversational
scenarios is crucial for creating engaging digital humans
and avatars. Recent work has shown that large language
models (LLMs) can be effectively leveraged for this task,
demonstrating remarkable capabilities in generating con-
textually appropriate listener behaviors. However, current
LLM-based methods face two critical limitations: they rely
solely on speech content, overlooking other crucial com-
munication signals, and they entangle listener identity with
response generation, compromising output fidelity and gen-
eralization. In this work, we present a novel framework that
addresses these limitations while maintaining the advan-
tages of LLMs. Our approach introduces a Multimodal-LM
architecture that jointly processes speech content, acous-
tics, and speaker emotion, capturing the full spectrum of
communication cues. Additionally, we propose an identity
disentanglement strategy using instance normalization and
adaptive instance normalization in a VQ-VAE framework,
enabling high-fidelity listening head synthesis with flexible
identity control. Extensive experiments demonstrate that
our method significantly outperforms existing approaches
in terms of response naturalness and fidelity, while enabling
effective identity control without retraining.

1. Introduction
Generating natural and responsive listener behaviors is cru-
cial for creating engaging conversational agents and avatars,
which has recently attracted increasing research interest due
to its wide range of applications in human-computer inter-
action [21, 50, 53], digital humans [55, 56], virtual real-
ity [18, 19], metaverse [8, 9, 30], etc. While humans nat-
urally provide non-verbal feedback through facial expres-
sions and head movements during conversations, synthesiz-
ing these subtle yet meaningful responses remains a signif-
icant challenge in computer vision and graphics.

*Corresponding author is Guanbin Li.

Figure 1. Comparison between LM-listener [24] and our method.

Several notable approaches have emerged in this rapidly
evolving field, e.g., Zhou et al. [55, 56] established a bench-
mark and a speaker-listener architecture for 3DMM [3] pre-
diction; Learning2Listen [23] improved accuracy with VQ-
VAE and motion-audio cross-attention; DIM [37] added
self-supervised contrastive learning; while ELP [31] used
emotional priors for more expressive outputs. A recent
breakthrough came with the LM-listener [24], which shows
that large language models (LLMs) can be effectively lever-
aged for listening head generation. By tapping into the
rich semantic and contextual understanding capabilities of
LLMs, LM-listener showed remarkable effectiveness in
generating contextually appropriate listener responses from
speaker speech content alone. This success revealed a
promising direction: the strong prior knowledge embed-
ded in LLMs about human communication patterns can be
transferred to guide the generation of non-verbal responses,
fundamentally advancing the field beyond traditional listen-
ing head generation approaches.

However, realizing the full potential of the LLM-based
framework requires addressing two critical limitations in
LM-Listener [24]. First, its unimodal approach (relying
solely on speech content) fails to capitalize on the rich mul-
timodal nature of human communication, where acoustic
information and facial expressions significantly influence
listener responses. Second, its entangled handling of lis-
tener identity and response generation not only compro-
mises output fidelity but also limits the model’s ability to



generalize across different listener identities. Addressing
these limitations within an LLM framework presents unique
challenges, as it requires careful consideration of how to ef-
fectively integrate multimodal information and disentangle
identity control while preserving the powerful language un-
derstanding capabilities of LLMs.

In this paper, we present a novel framework based
on LM-listener [24] that addresses these two challenges
while maintaining the advantages of the LLM-based ap-
proach. First, we introduce a Multimodal-LM architecture
that jointly processes speaker speech content, acoustics, and
emotion (extracted from facial motion) to generate more
contextually appropriate and natural listener responses. By
incorporating speech acoustics through SpeechTokenizer
[52] and discretizing facial motions into emotional states
using EMOCA [10], our model captures the nuanced inter-
play between verbal and non-verbal communication cues.
Second, we propose a novel identity disentanglement strat-
egy that explicitly separates static identity features from dy-
namic facial motions during listening head generation. This
separation is achieved through a carefully designed VQ-
VAE architecture with instance normalization for identity
erasure and adaptive instance normalization for identity in-
jection, enabling high-fidelity response generation that can
be easily adapted to different listener identities without re-
training. Extensive experimental results demonstrate that
our approach significantly outperforms existing methods in
both the naturalness and the generalizability of generated
listener behaviors. Our contributions include:
• We extend the promising LLM-based listening head gen-

eration framework to process multimodal inputs (speech
content, acoustics, and emotion), enabling the model to
capture the full spectrum of communication cues while
preserving the advantages of language model priors.

• We develop a novel identity disentanglement approach
for the VQ-VAE used in listening head generation using
instance normalization and adaptive instance normaliza-
tion, achieving high-fidelity output with flexible identity
control without retraining.

• Extensive experiments demonstrate that our approach sig-
nificantly outperforms existing methods in response nat-
uralness and fidelity, while providing effective identity
control across different listeners.

2. Related Work

2.1. Listener Response Generation

Conversational avatars involve not only speaker motion
[2, 16, 25, 44, 54] but also responsive listener motion
that provides non-verbal feedback to the speaker. Previ-
ous methods [1, 4, 7, 32] have focused on generating con-
versational agents that interact through speech [7], ges-
tures [1, 32] or a combination of multiples modalities [4].

Recent methods [12, 23, 24, 31, 37, 55] have shifted focus to
the synthesis of listening head motions, including facial ex-
pressions and head poses. For example, RLHG [55] propose
the listener-centric task of listening head generation and
present a new benchmark dataset and baseline. The base-
line method consisting of a speaker encoder and listener
decoder predicts the 3DMM [3] parameters of head pose
and facial expression, which are further rendered into the
listening video by a neural renderer. Learning2Listen [23]
applies the VQ-VAE [39] to the domain of listener motion
generation and predicts the listener motion in a quantized
motion space via motion-audio cross-attention. Based on
this, DIM [37] devised a pre-training strategy through self-
supervised contrastive learning to learn a unified representa-
tion for listener motion generation. ELP [31] utilizes emo-
tional priors to rearrange the latent space for emotional lis-
tener head generation. Recently, LM-listener [24] demon-
strated that large language models (LLMs) can be effec-
tively used for listening head generation, which can gener-
ate contextually appropriate listener responses from speech
content alone. However, its unimodal approach and entan-
gled handling of listener identity and response generation
limit the naturalness and fidelity of its outputs, and its gen-
eralizability across diverse listener identities.

In this work, we address these two limitations by intro-
ducing a Multimodal-LM architecture to incorporate multi-
modal cues and an identity-disentangled VQ-VAE for flex-
ible identity control.

2.2. Large Language Models

Large Language Models (LLMs) [6, 26, 35] have show-
cased remarkable capability in various vision and language
tasks [15, 20, 29, 41, 43, 45], thanks to their scalable
models and the large-scale dataset for training. Given the
inherently multimodal nature of real-world environments,
many studies [33, 45–48, 51] have focused on developing
LLMs capable of perceiving or generating multimodal sig-
nals, leading to the emergence of multimodal LLMs (MM-
LLMs). For example, AnyGPT [51] integrates new modal-
ities into LLMs by converting various modalities into dis-
crete representations, while keeping the model’s architec-
ture unchanged and performing multimodal understanding
and generation. X-VILA [45] proposes a cross-modality
alignment mechanism that can align the features of vari-
ous modalities with the LLM textual embedding, facilitat-
ing cross-modality understanding, reasoning, and genera-
tion. GenArtist [42] utilizes MM-LLM as an agent to plan
and invoke external tools through tree structure for unified
image generation and editing. ShapeGPT [49] proposes a
shape-included MM-LLM framework for 3D shape genera-
tion by discretizing continuous shapes into shape words.

In this work, we follow the MM-LLMs paradigm and
propose a novel approach for listening head generation.



3. Method

In this work, we address two primary limitations of LM-
listener [24]: (i) its unimodal approach, which introduces
ambiguity in listener responses; and (ii) its entanglement of
listener identity with response generation, which not only
reduces the fidelity of the output but also makes it challeng-
ing to control or alter identities without retraining. To over-
come these limitations, we propose: (i) integrating multi-
modal speaker information (i.e., speech content, acoustics,
and emotion) into speaker-listener modeling rather than re-
lying solely on the speaker’s unimodal speech content (Sec-
tion 3.1); and (ii) disentangling listener identity control
from response synthesis (Section 3.2), which not only ef-
fectively separates static components (i.e., identity) from
dynamic elements (i.e., listener facial motion) in the gen-
eration process to improve fidelity, but also enables flexible
response generation across multiple listener identities with-
out retraining.

Notations. For an input speaker video containing T frames,
denoted as t = {1, 2, . . . , T}, we represent its correspond-
ing facial motion as Fs = {fs1 , fs2 , . . . , fsT } and audio as
As, where fst = [ψs

t , θ
s
t ] is defined using the 3DMM [3]

facial expression parameters ψ and head pose parameters
θ. Note that we intentionally exclude the identity-specific
shape parameter β in f , as it remains static for each speaker
and listener. This exclusion facilitates disentangled iden-
tity control and helps mitigate biases introduced by the
speaker’s identity. Similarly, we represent the output lis-
tener facial motion as Fl = {f l1, f l2, . . . , f lT }. The 3DMM
parameters for each video frame are extracted following the
methods in [10, 11].

3.1. Multimodal Speaker-Listener Modeling

3.1.1. Multimodal Speaker Input
Speech typically comprises two key components: content,
which includes phonemes and syllables, and acoustic in-
formation, including prosody, timbre, and stress patterns.
Unlike LM-listener that relies solely on the unimodal con-
tent of speaker audio, our approach decouples the speaker’s
speech into distinct content and acoustics components. This
separation allows our model to perform a more in-depth
analysis, leveraging both content and acoustics to enhance
its understanding of the speaker’s intended meaning.

Speech Content. To represent the speech content, we lever-
age text-based encoding. Specifically, we employ a pre-
trained automatic speech recognition (ASR) model, Whis-
per [27], to transcribe the speaker audio As into text W ∈
RN×1, whereN is the number of text tokens corresponding
to the input speaker video of T frames.

Speech Acoustics. Speech acoustics captures the delivery
style of speech, which plays a critical role in conveying the

speaker’s emotions, attitudes, and intentions. To extract this
information from As, we utilize the pretrained SpeechTo-
kenizer model [52], a residual vector quantization (RVQ)
network with 8 quantizers. The first quantizer’s output is
interpreted as content tokens, while the outputs from the re-
maining quantizers primarily capture the acoustic features.
To balance performance and computational efficiency, we
select the output of the second quantizer as the representa-
tion of speech acoustics, denoted as SA ∈ RM×1, where
M is the number of acoustic tokens corresponding to the
input speaker video of T frames.

Emotion. Building on the Emotional Contagion theory
[13, 40], which demonstrates the significant impact of
speaker emotions on listener responses, we discretize the
speaker’s facial motion into a finite set of emotional states
rather than their detailed expressions. To achieve this, we
first downsample the sequence of speaker facial motions
Fs = {fs1 , fs2 , . . . , fsT } by a rate of r, dividing Fs into
T/r groups. For each group, we use the emotion recog-
nition module (ER) from EMOCA [10] to predict the emo-
tion probability distribution for each facial motion within
the group. Then, we average the emotion probability distri-
butions across all motions in the group. Finally, the emotion
state with the highest probability is selected as the emotion
token for that group’s facial motions. This process is re-
peated for all groups, resulting in the final speaker emotion
tokens emo ∈ R(T/r)×1. Please see the supplementary
materials for more details.

3.1.2. Multimodal-LM for Listener Generation
Leveraging the multimodal speaker inputs (i.e., speech con-
tent W, speech acoustics SA, and emotion emo) intro-
duced above, we extend unimodal language models (LMs)
to process multimodal input tokens as follows.

Specifically, we begin with a transformer-based LM, G,
which takes a sequence of text tokens as input and outputs
a probability distribution over the vocabulary to predict the
next token. Then,
• To adapt G for multimodal input, we randomly initialize

word embeddings EMM ∈ R(VLR+VSA+Vemo)×dw and ap-
pend it to the native word embedding of speech content
(text) W in G, where VLR, VSA, and Vemo are the num-
ber of listener response (facial motion) tokens, speaker
speech acoustic tokens, and speaker emotion tokens, re-
spectively; dw is the dimension of token embeddings.

• To adapt G for listener response generation, we addition-
ally append another randomly initialized affine projection
layer to its output, producing a probability distribution
over listener tokens.

Sequential Organization of Multimodal Input. As shown
in Figure 2, we structure the input sequence S to G in inter-
leaved order: LRi, Wri+1:r(i+1), SAri+1:r(i+1), emoi+1,
LRi+1, . . . , where Wt1:t2 represents the words spoken be-



Figure 2. Illustration of the proposed Multimodal-LLM for listening head generation.

tween frames t1 and t2; SAt1:t2 corresponds similarly to
the acoustic information within the same time frame. Note
that the output LRi+1 of G, generated based on the previ-
ous tokens as input, is fed back as input for the next pre-
diction step, thereby preserving causality between speaker
input and listener response. We also incorporate N ′ his-
tory speech content tokens Wh = {wh

1 , w
h
2 , . . . , w

h
N ′} that

occur before the first frame as additional contextual infor-
mation. Except for speech content tokens, tokens from all
other modalities include special start and end tokens to mark
their boundaries. Finally, we have:

S = {Wh,W1:r,SA1:r, emo1,LR1,

Wr+1:2r,SAr+1:2r, . . . ,LRT/r}
(1)

Training. The training of our Multimodal-LM consists of
two stages, each of which uses cross-entropy loss to opti-
mize the model for next-token prediction.
Stage 1. Speaker Understanding Pretraining.
We initialize G from a standard LM and fine-tune it to learn
the semantics of the speaker acoustic and emotion tokens.
In this stage, G processes a speaker-only input sequence:

S′ = {Wh,W1:r,SA1:r, emo1,

Wr+1:2r,SAr+1:2r, . . . , emoT/r}
(2)

and outputs probabilities over the entire vocabulary. The
loss is calculated for speech content tokens, speech acoustic
tokens, and speaker emotion tokens:

Lpre = −
N+M+T/r∑

j=1

log Pr[G(S′
1:N ′+j−1) = S′

N ′+j ] (3)

which enables G to learn the probability distributions of var-
ious speaking styles and emotions.
Stage 2. Listener Response Fine-tuning.
In this stage, G takes S (Equation (1)) as input and outputs
the probability distribution for each listener response token
LR. Here, we calculate the loss only for LR:

L = −
T/r∑
i=1

log Pr[G(Wh,W1:ri,SA1:ri,

emo1:i−1,LR1:i−1) = LRi].

(4)

which enables G to learn the probability distributions of var-
ious listener responses.

3.2. Listener Identity Disentanglement
Unlike [24] which requires the listener response decoder to
simultaneously learn both listener identity and facial motion
(which is a challenging task that compromises fidelity), we
propose a novel strategy to explicitly inject listener iden-
tity information into the decoding process, thereby facili-
tating the decoder training. By disentangling listener iden-
tity from response (facial motion) synthesis, our approach
not only improves the fidelity of the generated responses
but also significantly enhances the model’s generalization
to multiple identities without requiring retraining.

Specifically, we formulate the training of the listener re-
sponse decoder as a proxy reconstruction task using VQ-
VAE [39], whose architecture is introduced as follows:
Overview of VQ-VAE. In a nutshell, our VQ-VAE aims to
reconstruct a given sequence of listener facial motions Fl



Figure 3. Network architecture of the proposed identity-disentangled VQ-VAE for listening head generation.

using a codebook of listener response token embeddings as
their latent representations. As shown in Figure 3 (left), our
VQ-VAE consists of an encoder, a decoder, and a codebook
C ∈ RK×dc of LR embeddings, where K = VLR and
dc is the dimension of LR embeddings in VQ-VAE. Each
LR embedding corresponds to an atomic listener facial mo-
tion. Then, the encoder takes the sequence of listener facial
motions Fl = {f l1, f l2, . . . , f lT } as input and produces a se-
quence of latent features Z = {z1, z2, . . . , zT/r}, zi ∈ Rdc ,
where r is the downsampling rate described earlier. Then,
a deterministic and parameter-free quantizer function Q is
applied to map each zi into an LR embedding in C using
nearest-neighbor matching:

LRj = Q(zi) = arg min
1≤j≤K

∥zi − LRj∥2, (5)

Finally, the decoder takes as input the quantized latent fea-
tures ZQ = {Q(z1), Q(z2), . . . , Q(zT/r)} along with the
injected listener identity information βl, and outputs the re-
constructed listener facial motions F̂l = {f̂ l1, f̂ l2, . . . , f̂ lT }.
Listener Identity Erasure and Injection. To disentangle
listener identity from response synthesis, we need to i) erase
the identity information from the encoder and ii) inject the
identity information back into the decoder. Specifically, we
treat listener identity as a “style” control for response syn-
thesis and have:
• To obtain an identity-agnostic codebook of LR, we em-

ploy instance normalization layers [38] in the encoder to
eliminate identity-specific variations, enabling the model
to focus on the content of facial motions rather than indi-
vidual style, thereby facilitating the codebook learning.

• To ensure accurate facial motion reconstruction from the
identity-agnostic LR, we incorporate adaptive instance
normalization (AdaIN) layers [17] in the decoder to in-
ject identity information back into the response synthesis
process (Figure 3, right). Specifically, the 3DMM iden-
tity parameter βl of a listener is introduced as a condi-
tional input to adjust the mean and variance of the feature

maps during decoding, thereby enabling flexible control
and altering of listener identities without retraining.

Training. Following the common practice [24, 39], we use
a set of different losses to train our VQ-VAE, including:
Lembed, Lcommit, Lrec, and Lveloc. Exponential moving
average and codebook reset operations are also employed to
enhance the efficiency and stability of the training process.
Please see the supplementary materials for more details.

Remark. Note that the listener response {LRi}T/r
i=1 used in

training our Multimodal-LM (Section 3.1.2) is obtained by
applying the trained encoder to Fl = {f li}Ti=1.

4. Experiment
4.1. Experimental Settings
Datasets. We use two open-source listener datasets: L2L-
trevor [24] and RealTalk [12] to evaluate our method. L2L-
trevor is a single-listener (Trevor Noah) dataset introduced
in Learning2Listen [23] and enhanced in LM-listener [24].
RealTalk is a multi-listener dataset proposed in [12]. Fol-
lowing the preprocessing in [24], we process the datasets in
three steps. First, we segment the raw videos into 8-second
segments to ensure sufficient context and perform speech
separation [5, 34] to identify listener segments. Next,
we use EMOCA [10, 11] to extract 3DMMs of both the
speaker and listener from the videos, further recognizing the
speaker’s emotions. Finally, we employ Whisper [27] and
SpeechTokenizer [52] to extract time-aligned speech tran-
scriptions and acoustic information. This results in 2,366
training, 222 validation, and 543 test segments in L2L-
trevor, and 2,714 training, 238 validation, and 808 test seg-
ments in RealTalk.
Implementation Details. (i) For VQ-VAE, the codebook
size VLR is 256, the dimension of the codebook embedding
dc is 512, and the downsampling rate r is 8. The weights
for Lcommit and Lveloc are set to 0.02 and 0.5 respectively,
with the rest set to 1. (ii) For the language model, we in-



Method L2 ↓ FD ↓ Variation Diversity P-FD ↓ L2 Affect(102) ↓
GT 0.1148 2.6053

Random 0.6791 32.6036 0.1035 2.4601 33.7893 11.1136
NN Facial Motion 0.5682 26.4138 0.0896 2.2948 27.6294 9.6732
NN Speech Content 0.5232 23.9410 0.0884 2.2834 25.0246 7.8624
Naive Random Walk 0.7103 29.5126 0.2664 4.8417 31.5963 9.8946
LM-listener (GPT2) [24] 0.4485 18.5156 0.1215 2.8880 19.9911 6.4928
LM-listener (LLAMA2) [24] 0.4345 17.6299 0.1189 2.9374 19.1583 6.3992

Ours Random Walk 0.3456 11.9217 0.0961 2.7620 13.3772 2.9964
Ours (GPT2) 0.2848 9.8093 0.0762 2.3280 11.0835 2.6575
Ours (LLAMA2) 0.2910 10.0949 0.0704 2.2960 11.3908 2.5797

Table 1. Quantitative comparison on the L2L-trevor dataset [24].

stantiate G as GPT2-Medium [26] and LLAMA2-7B [36],
using full parameter fine-tuning and LoRA [14] fine-tuning
respectively. We use an AdamW [22] optimizer in training.
During testing, we use greedy sampling to predict motion
tokens from the language model. Please see the supplement
for more details.

Metrics. Following [24], we evaluate our method based on
realism (L2 and Frechet Distance (FD)), diversity (Varia-
tion and Diversity), and synchrony (Paired FD (P-FD) and
L2 Affect). Please see the supplement for more details.

Baselines. We compare ours to the following baselines:
• Random: Return a random listener sequence (train set).
• NN Facial Motion: For an input facial motion sequence,

return the corresponding listener sequence of its nearest
neighbor (cosine similarity) in the training set.

• NN Speech Content: Same as above, but we find NN via
text embeddings obtained from Sentence-BERT [28].

• Naive Random Walk: Randomly walk over codebook
indices. The codebook is from the naive VQ-VAE used in
[23, 24] without the listener identity disentanglement.

• Ours Random Walk: Same as above, but the codebook
is from our identity-disentangled VQ-VAE.

• LM-listener [24]: The state-of-the-art listener response
generation method. It uses a naive VQ-VAE and predicts
listener responses using only speaker’s speech contents.

4.2. Quantitative Results
L2L-trevor Dataset. As Table 1 shows, Ours significantly
outperforms all baselines across a range of metrics: i) For
realism, measured by L2 and FD, our approach yields lis-
tener responses and their distributions closest to the ground
truth, with improvements of 38% and 45% over [24], re-
spectively. ii) Our model also excels in diversity, produc-
ing listener responses with variability comparable to real
data. iii) Notably, Ours achieves high performance on P-
FD and L2 Affect for synchrony, demonstrating that it ef-
fectively captures conversational dynamics, generating lis-
tener responses with facial motions that synchronize well
with the speaker. Interestingly, Ours Random Walk sig-
nificantly outperforms Naive Random Walk and even sur-
passes LM-listener [24], indicating that our identity VQ-
VAE can generate realistic, individualized listener motions,
even with random sampling from the codebook.

Method L2 ↓ FD ↓ Variation Diversity P-FD ↓ L2 Affect(102) ↓
GT 0.0260 1.3087

Random 0.3127 15.7005 0.0437 1.7969 16.0617 21.3266
NN Facial Motion 0.2951 15.0987 0.0274 1.3456 15.3962 19.1231
NN Speech Content 0.2773 13.7154 0.0408 1.7148 14.0675 16.0370
Naive Random Walk 0.2253 10.2483 0.0549 2.1963 10.7152 14.0559
LM-listener [24] 0.2026 9.6016 0.0313 1.5817 9.9899 11.6484

Ours Random Walk 0.1168 4.7305 0.0355 1.4534 5.5045 6.4791
Ours 0.0860 3.3939 0.0130 1.0426 3.6768 5.2537

Table 2. Quantitative comparison on the RealTalk dataset [12].

Generalization across LM models. To demonstrate the gen-
eralizability of our approach, we evaluate it using two lan-
guage models: GPT2-Medium [26] and LLAMA2-7B [36].
As Table 1 shows, Ours consistently outperforms LM-
listener [24] across both models, confirming that the per-
formance gains achieved are not model-specific. Notably,
there is minimal performance difference between Ours
(GPT2) and Ours (LLAMA2), likely due to dataset size
limitations and variations in fine-tuning procedures. Bal-
ancing performance and computational cost, we proceed
with GPT2-Medium [26] for subsequent experiments.

RealTalk Dataset. As Table 2 shows, Ours achieves the
highest performance across a range of metrics as well. No-
tably, Ours outperforms LM-listener [24] by 60% in L2
and 65% in FD, a substantial improvement over the gains
of 38% and 45% observed on the single-listener L2L-trevor
dataset mentioned above. This highlights our model’s en-
hanced ability to generate realistic facial motions across
diverse listener styles, facilitated by incorporating listener
identity information. Additionally, our approach sets a new
state-of-the-art on metrics that assess distribution distances
between listener-speaker pairs (P-FD), and on metrics eval-
uating listener facial affect accuracy (L2 Affect) between
generated and ground-truth data.

4.3. Qualitative Results
Listener Response Consistency. We show our method’s
ability to generate listener responses aligned with the emo-
tional context of a conversation by comparing it to LM-
listener [24] across different emotional scenarios (Fig. 4).
For convenience, speaker speech style descriptions are used
to represent speech acoustics. In the first two scenarios,
where the speaker’s sarcastic humor is difficult to cap-
ture from text alone, our method successfully perceives
the speaker’s emotional state (happy) and style (humorous),
generating a synchronized response (laughter). In the third
and fourth scenarios, although the speaker uses positive
words (best and love), their serious facial expressions and
tone prompt our model to generate calm expressions rather
than positive ones. By integrating multimodal cues, our
method accurately captures the speaker’s emotional state,
producing listener responses that align with the context.

Results Generated with Different Identities. As shown
in Fig. 5, unlike naive VQ-VAE [23, 24], ours disentan-



Figure 4. Qualitative comparison on the L2L-trevor dataset [24]. Please zoom in for the best view.

Figure 5. Qualitative comparison of listener responses generated
with different identities on the RealTalk dataset [12].

gles listener identity from response synthesis, enabling flex-
ible response generation across multiple listener identities
without retraining. Specifically, the naive VQ-VAE pro-
duces fixed expressions and poses for a given LR token,
disregarding identity differences. In contrast, our identity-
disentangled VQ-VAE adapts the same token to generate
identity-specific expressions and poses, capturing unique
listener styles, e.g., open-mouth versus closed-mouth smiles
(Fig. 5, top), thereby learning and reconstructing more real-
istic, individualized listener facial motions.

User Study. To validate our quantitative results, we con-
ducted a user study with 33 volunteers. Each volunteer
watched a series of videos, each comprising a speaker video
paired with three types of listener responses generated by
our method, LM-listener [24], and synthesized ground truth,
presented in random order. Volunteers ranked the responses
based on how well they aligned with the emotional con-

Input Modality L2 ↓ FD ↓ Variation Diversity P-FD ↓ L2 Affect(102) ↓
GT 0.1148 2.6053

W 0.4485 18.5156 0.1215 2.8880 19.9911 6.4928

W + iSC 0.4531 18.7325 0.1123 2.8307 20.2486 6.4200
W + SA 0.4477 18.3777 0.1232 2.9453 19.8907 6.6520
W + emo 0.4320 17.9176 0.1141 2.8006 19.3585 5.9971

W + iSC + emo 0.4510 18.7733 0.1071 2.7377 20.2696 6.7678
W + SA + emo 0.4027 16.5647 0.0992 2.6329 17.9687 5.5912

Table 3. Ablation study of the speaker’s different modality tokens
on the L2L-trevor dataset [24].

text and synchronized with the speaker. Our method sig-
nificantly outperformed LM-listener [24], with volunteers
preferring it in 86.4% of instances, mirroring the quantita-
tive trends shown in Tab. 1. Additionally, when compared
with ground truth, our method was preferred 65.8% of the
time, highlighting the perceptual realism of our generated
listener motions.

4.4. Ablation Study
4.4.1. Effectiveness of Multimodal Tokens
To assess the effectiveness of the speaker’s different modal-
ity tokens (Sec. 3.1.1), we experiment with various combi-
nations of speech content (W), speech acoustics (SA), and
emotion (emo). Note that we also include in our test the im-
plicit speech content (iSC), which is the output of the first
quantizer in SpeechTokenizer [52], to further demonstrate
the effectiveness of speech content.

As Tab. 3 shows, using W as a baseline, we find that
combinations including iSC, such as W + SiC and SC + iSC
+ emo, yield no performance gains. This is likely because
iSC is semantically redundant with W, adding complexity
without new information. Similarly, W + SA shows limited
improvement, as low-level SA information is challenging
for the model to leverage for listener response generation.
In contrast, W + emo significantly improves listener affect
accuracy (L2 Affect) since emo clearly conveys the emo-
tional context through distinct semantic labels. The combi-
nation W + SA + emo achieves the best results across all
metrics, suggesting that emo enhances the model’s under-
standing of low-level SA, creating a complementary effect.
Note that iSC + SA + emo is not included as it makes no



Method MultiModal Identity L2 ↓ FD ↓ Variation Diversity P-FD ↓ L2 Affect(102) ↓
GT 0.1148 2.6053

Naive × × 0.4485 18.5156 0.1215 2.8880 19.9911 6.4928
MM only

√
× 0.4027 16.5647 0.0992 2.6329 17.9687 5.5912

ID only ×
√

0.3009 10.4572 0.0847 2.4312 11.7611 2.9486
Full (Ours)

√ √
0.2848 9.8093 0.0762 2.3280 11.0835 2.6575

Table 4. Ablation study of the different components (Multimodal-LM and Identity-disentangled VQ-VAE) on the L2L-trevor dataset [24].

use of the learned priors in large language models in inter-
preting speaker input.

4.4.2. Choice of IN/AdaIN for Disentangling Identity
To validate our choice of Instance Normalization (IN) and
Adaptive Instance Normalization (AdaIN) for identity dis-
entanglement, we test VQ-VAE models with different nor-
malization configurations: none (∅), instance/layer normal-
ization (IN or LN), and adaptive instance/layer normal-
ization (AdaIN or AdaLN). Specifically, (∅, ∅) denotes
no normalization in both encoder and decoder, while our
identity-disentangled VQ-VAE (IN, AdaIN) applies IN in
the encoder and AdaIN in the decoder. We assess per-
formance using Reconstruction (Rec.), Commitment (Com-
mit.), and Perplexity (PPL), with details in the supplement.

As Tab. 5 shows, i) Incorporating normalization layers
significantly improves reconstruction performance for lis-
tener response generation. Specifically, normalization lay-
ers use the input motion sequence’s mean and variance
to enhance results, whereas the naive VQ-VAE uses the
dataset-wide mean and variance, which degrades perfor-
mance when handling input with diverse distributions. ii)
The adaptive normalization layer in the decoder notably
boosts Commit. by allowing the model to adjust the mean
and variance of the output sequence according to iden-
tity, improving the reconstruction of listener facial motions
with varying distributions. Without adaptive normalization,
the codebook bears the responsibility of denormalization,
which harms token quality and increases the distance to
the encoder output. iii) Our identity-disentangled VQ-VAE
achieves improvements of 66% and 87% in Rec. on the
L2L-trevor [24] and RealTalk [12] datasets, respectively,
demonstrating its ability to better represent diverse listener
motion distributions. iv) Finally, we observe minimal per-
formance differences between instance and layer normal-
ization. We opt for instance normalization due to its preva-
lence in identity transfer [17].

4.4.3. Effectiveness of Different Components
To justify the effectiveness of our proposed Multimodal-
LM and Identity-disentangled VQ-VAE, we conduct an ab-
lation study on them. Specifically, we use Naive to de-
note the LM-listener [24] baseline, which uses a naive
VQ-VAE and predicts listener motion from speech content

Dataset Method Rec. ↓ Commit. ↓ PPL. ↑

L2L-trevor

∅, ∅ 0.60 2.10 3.53
LN, LN 0.19 0.90 3.71

LN, AdaLN 0.22 0.15 3.67
IN, IN 0.17 0.68 4.00

IN, AdaIN 0.21 0.18 3.79

RealTalk

∅, ∅ 0.49 1.25 3.38
LN, LN 0.05 0.27 3.82

LN, AdaLN 0.08 0.05 3.68
IN, IN 0.04 0.20 3.98

IN, AdaIN 0.06 0.08 3.97

Table 5. Justification of choice of IN/AdaIN for identity disentan-
glement on the L2L-trevor [24] and RealTalk [12] datasets.

only; we use MM only to denote the incorporation of our
Multimodal-LM only (Sec. 3.1); and we use ID only to de-
note the integration of our Identity-disentangled VQ-VAE
only (Sec. 3.2); and Full denotes the proposed method.

As shown in Tab. 4, MM only primarily improves L2
Affect, suggesting that our Multimodal-LM enhances the
model’s understanding of the speaker, helping generate lis-
tener responses aligned with the emotional context. ID
only allows the identity-disentangled VQ-VAE to produce
more realistic listener responses, yielding significant im-
provements. Finally, Full achieves the best performance
across all metrics, demonstrating that these components
complement each other effectively. Additional results on
RealTalk [12] are provided in the supplementary materials.

5. Conclusion

In this work, we propose a novel framework that advances
listening head generation by addressing two key limitations
of LLM-based approaches: i) Our method extends the LLM
framework to jointly consider speech content, acoustics,
and speaker emotion through a carefully designed token
organization strategy; ii) Our identity disentanglement ap-
proach using IN and AdaIN in the VQ-VAE framework en-
ables high-fidelity listening head synthesis while providing
flexible identity control without model retraining. Extensive
experiments demonstrate the effectiveness of our approach.
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