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A B S T R A C T

Conventional Direct Torque Control (DTC) is widely used for torque and speed control in doubly-fed induction
machines (DFIM). However, it has notable drawbacks, including high torque and flux ripples, which generate
acoustic noise and reduce system performance. To address these limitations, several advanced approaches have
emerged. This article provides a critical analysis of the following cutting-edge methods: DTC with Space Vector
Modulation (DTC-SVM), DTC based on Fuzzy Logic (DTC-FL), DTC using Artificial Neural Networks (DTC-ANN),
DTC optimized by Genetic Algorithms (DTC-GA), DTC with Ant Colony Optimization (DTC-ACO), DTC with
rooted tree optimization (DTC-RTO), Sliding Mode Control (DTC-SMC), and Predictive DTC (P-DTC). Our
evaluation focuses on various aspects: torque and flux ripple reduction, speed tracking improvement, switching
losses minimization, algorithmic complexity simplification, and sensitivity reduction to parameter variations.
Results show that DTC-ANN and DTC-SVM stand out for their ripple reduction performance, making them
particularly suitable for applications requiring high precision. Additionally, DTC-FL and DTC-SMC excel in
robustness against system parameter variations, a valuable asset for evolving industrial environments. Optimi-
zation approaches such as DTC-GA, DTC-ACO, and DTC-RTO contribute to reducing switching losses and
improving energy efficiency, a crucial aspect for large-scale applications. Finally, P-DTC offers excellent dy-
namics and precise speed tracking, making it ideal for rapid response systems. These findings provide valuable
insights for researchers and engineers seeking to optimize modern DTC system performance according to the
specific needs of their applications.

1. Introduction

The origins of electric motors can be traced back to 1820, when Hans
Christian Oersted made the groundbreaking discovery that electric
currents create magnetic fields. This discovery set the stage for Michael
Faraday’s experiments in 1821, where he demonstrated electromagnetic
rotation, the principle behind the first primitive direct current (DC)
motor. Faraday’s exploration continued, leading to his pivotal discovery
of electromagnetic induction in 1831, which further spurred the
development of electric motors (A review on Direct Torque, 2024). A
significant advancement occurred in 1883 when Nikola Tesla developed

the asynchronous alternating current (AC) motor, which represented a
major milestone in motor technology. Today, the core types of electric
motors, direct current (DC), asynchronous alternating current (AC), and
synchronous, are still grounded in the foundational theories put forth by
Oersted, Faraday, and Tesla more than a century ago. Among these,
asynchronous machines, commonly known as induction motors, are
particularly favored in industrial applications. Their popularity stems
from several advantages: cost-effectiveness, robust construction,
simplicity, and minimal maintenance needs. However, these motors
necessitate more sophisticated internal structures and control mecha-
nisms (A review on Direct Torque, 2024), (Herizi et al., 2023).
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The Dual-Fed Induction Motor (DFIM) represents an evolution of the
traditional induction motor. It is an asynchronous motor with a unique
configuration where both the rotor and stator are supplied with alter-
nating current, allowing for enhanced control and efficiency. The DFIM
has gained attention due to significant strides in power electronics and
innovative control strategies, making it a strong contender in high-
power, variable-speed drive applications. One of the standout features
of DFIMs is their capability to operate effectively at lower speeds.
Moreover, these motors can be integrated with various control tech-
niques and static converters, providing a flexible and dynamic response
to changing load conditions. This adaptability, combined with the
ability to maintain a constant frequency supply to the stator despite
speed variations, positions DFIMs as a viable alternative to conventional
synchronous machines in many modern electric drive systems (Herizi
et al., 2023).

New developments in signal processing techniques opened the door
to more sophisticated control structures in the mid-1980s. Proposed by
Takahashi, Noguchi (Takahashi and Noguchi, 1986), and Depenbrock
(1988), the term DTC (direct torque control) refers to the most recent
developments made in this regard. The use of a hysteresis comparator
offsets the benefits of the DTC approach, which include good dynamics,
resilience, low sensitivity to parameter fluctuations, ease of imple-
mentation, and high performance. A pseudo-random overshoot of the
hysteresis band is caused by the finite sampling frequency and, in the-
ory, the comparator may lead to variable frequency operation (Krieger
and Salmon, 2005). Consequently, the motor’s behavior may be
impacted by low-speed operation and changes in motor resistance. It is
challenging to forecast the different output signals’ harmonic compo-
sition (Fig. 1) (see Fig. 2).

Nevertheless, the DTC is associated with a number of significant
drawbacks.

(a) The application of hysteresis controllers results in the generation
of high flux and electromagnetic torque ripples, which in turn
give rise to the production of unwanted mechanical vibrations
and acoustic noises (Mahfoud et al., 2021a).

(b) Furthermore, the output power’s quality is also negatively
affected by switching losses and current distortions brought on by
the changing switching frequency.

(c) Failure to account for the stator resistance can result in issues at
low speeds.

Moreover, the Dual-Fed Induction Motor (DFIM) experiences torque
oscillations when a traditional direct torque control (DTC) is applied.
These oscillations can trigger mechanical resonances, which can result

in vibrations and audible noise and premature machine aging
(Comparison of the error; Direct torque control versus indirect).

Several approaches have been proposed to minimize the ripples and
preserve a steady frequency. One such strategy is.

1. SVM based DTC

A Dual-Fed Induction Motor’s enhanced direct torque control (DTC)
technique employing space vector modulation (SVM) is presented in this
study (Mahfoud et al., 2021a). The goal of the SVM-based control system
is to replace hysteresis controllers with PI controllers in order to enhance
DTC performance. With this replacement, the advantages of DTC control
are maintained while reducing electro-magnetic flux and torque ripple,
which minimizes mechanical vibration and acoustic noise.

2. DTC-PC

This article introduces a new innovative predictive direct torque
control (DTC) technique for the Dual-Fed Induction Motor (DFIM) that is
intended to run at a low switching frequency continuously is presented
in this study (Venu Madhav et al., 2021). Even in variable-speed oper-
ating settings, the suggested DTC approach efficiently lowers torque and
flux ripples at low switching frequencies. The study evaluates the sug-
gested predictive DTC strategy’s performance against the traditional
DTC approach in a range of operating scenarios, including as step
changes, continuous torque command variation, and DFIM performance
close to synchronous speed. The findings demonstrate that, in compar-
ison to the traditional DTC idea, the predictive DTC technique demon-
strates superior dynamic responsiveness.

3. SMC based DTC

The outcomes demonstrate that the traditional DTC-Integral-
Proportional approach is outperformed by the DTC-SMC (Direct Tor-
que, 2024). The DTC-SMC exhibits a very quick torque response time, no
steady-state error, and no overshoot. (Bekakra et al., 2018).

4. AI based DTC

At present, a great deal of research is devoted to solving these
problems. Artificial intelligence (AI) has emerged as a crucial term in
modern research fields. The main families of AI include fuzzy logic,
neural networks, rooted tree optimization algorithms, ant colony opti-
mization algorithms, and genetic algorithms. The authors of (Bekakra
et al., 2018), (Bekakra et al., 2021a), (El Ouanjli et al., 2019a),

Fig. 1. Classification of DTC schemes for DFIM.

Z. Sakhri et al. Cleaner Engineering and Technology 24 (2025) 100891 

2 



(Mahfoud et al., 2022a), and (Mahfoud et al., 2022b)recommend using
AI methods to enhance DTC control’s dynamic performance for DFIM.
These control strategies seek to maximize performance in a range of
operating environments, encompassing reduced torque and flux ripple,
decreased THD, increased efficiency, and reduced energy consumption.
The findings will be shown in the section that follows.

Many publications that examine DTC methods for dual-fed induction
motor drives are available in the literature; however, these schemes are
not subjected to a rigorous assessment. In addition to working on new
research directions, the goal is to provide researchers with an under-
standing about the current state of the DTC method (Table 1).

2. Dual-fed induction motor (DFIM)

The power supply for the DFIM utilizes a chain of energy conversion
with two converters, one on the stator and another on the rotor, as
illustrated in Erreur ! Source du renvoi introuvable. A filter is posi-
tioned between the two converters (Cherifi and Miloud, 2018).

1. Model of the DFIM

The general equations of the double-fed inductionmotor in the three-
phase reference frame are as follows (Bakou et al., 2019).

2.1. Electrical equations

By applying Faraday’s law to each winding, we can write:
⎧
⎪⎪⎨

⎪⎪⎩

[vs] = [Rs].[is] +
dψ s

dt

[vr] = [Rr].[ir] +
dψ r

dt

(1)

2.2. Magnetic equations

Now, some of the assumptions made here are such that the relations
of flux and currents are linear: in matrix form, they are thus expressed:
{

[ψ s] = [Lss][is] + [Msr][ir]
[ψ r] = [Mrs][is] + [Lrr][ir]

(2)

the four inductor matrices are:

[Lss] =

⎡

⎣
Ls Ms Ms
Ms Ls Ms
Ms Ms Ls

⎤

⎦ (3)

[Lrr] =

⎡

⎣
Lr Mr Mr
Mr Lr Mr
Mr Mr Lr

⎤

⎦ (4)

[Msr] = [Mrs]
T
=M

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos θ cos
(

θ +
2π
3

)

cos
(

θ −
2π
3

)

cos
(

θ −
2π
3

)

cos θ cos
(

θ +
2π
3

)

cos
(

θ +
2π
3

)

cos
(

θ −
2π
3

)

cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)

2. Representation of the DFIM in two-phase reference frame (α,β)

The two-phase model represented by the reference (α, β) is the most
suitable model to examine the dynamic behavior and the control algo-
rithm design of the DFIM. The machine’s three-phase representation (a,
b, and c) is made less difficult by this paradigm. In the reference frame
(α, β), the electromagnetic equations of the DFIM are provided by
(Mahfoud et al., 2021a), (Moussaoui et al., 2021), (El Ouanjli et al.,
2017b), (Mahfoud et al., 2022h):

2.3. Electrical equations in αβ frame

The following equations express the stator and rotor voltages in the
frame αβ:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vsα = Rs.isα +
dψ sα
dt

vsβ = Rs.isβ +
dψ sβ

dt

vrα = Rr.irα +
dψ rα
dt

+ ωm.ψ rβ

vrβ = Rr.irβ +
dψ rβ

dt
− ωm.ψ rα

(6)

With:

Fig. 2. Overview of DFIM drive System installation.
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ωm =ωs − ωr (7)

2.4. Magnetic equations in αβ frame

The fluxes of the rotor and stator are provided by:
⎧
⎪⎨

⎪⎩

ψ sα = Ls.isα + Lm.irα
ψ sβ = Ls.isβ + Lm.irβ
ψ rα = Lr.irα + Lm.isα
ψ rβ = Lr.irβ + Lm.isβ

(8)

2.5. Mechanical equations in αβ frame

The following expression provides the electromagnetic torque
equation as a function of stator flux and current:

Tem = p.
(
ψ sαisβ − ψ sβisα

)
(9)

J
dΩ
dt

+ fΩ = Tem − Tr (10)

The Concordia transformation (El Ouanjli et al., 2019d) can be uti-
lized to convert a three-phase reference (a, b, and c) into a two-phase
reference (α,β). The transformation can be expressed as follows:

[
Xα
Xβ

]

=

̅̅̅
2
3

√

.

⎡

⎢
⎢
⎢
⎣

1 −
1
2

−
1
2

0
̅̅̅
3

√

2
−

̅̅̅
3

√

2

⎤

⎥
⎥
⎥
⎦
.

⎡

⎣
Xa
Xb
Xb

⎤

⎦ (11)

Where (X) can represent current, voltage, or machine flux. This con-
version is essential for implementing control strategies that can
dynamically adjust to changes in the motor’s operational states, thereby
enhancing the DFIM’s performance in various applications.

This two-phase model greatly simplifies the complex interactions
within the motor by reducing the three-dimensional problems into two
dimensions, where advanced control strategies like vector control can be
more easily implemented to improve the performance and efficiency of
the DFIM. The use of the Concordia transformation is particularly ad-
vantageous in scenarios where precise control of torque and speed is
required, making it a cornerstone in modern DFIM control algorithms
(El Ouanjli et al., 2019e), (El Mahfoud et al., 2021a).

3. Model of a two-level voltage source inverter (VSI)

The dual-level voltage source inverter (VSI) is a key technology that
has become a standard in the domain of energy efficiency applications
(Kouro et al., 2010), (Rodriguez et al., 2002). The inverter creates an
output phase voltage from a rectifier (Udc), which delivers the input
voltage. By manipulating controlled transistors, this voltage is turned

into a three-phase AC voltage signal, characterized by changeable
amplitude and frequency (Holmes and Lipo, 2003), (Kaźmierkowski
et al., 2002). The selection of switching components, generally IGBT
transistors combined with antiparallel diodes, depends on the inverter’s
power rating and the required switching frequency (Baliga, 2010).

1. Two-level voltage source inverter (2L-VSI) mathematical model

The dual-fed induction motor (DFIM) in this work is supplied by a
dual-level voltage source inverter (2L-VSI), as shown in Fig. 3. There are
just two complimentary, each output arm the topology incorporates
controllable power semiconductor switches, resulting in eight distinct
switching states. The array of seven unique voltages generated by these
eight inverters’ switching configurations can be observed in Fig. 4.
Table 2 provides a detailed breakdown of the eight possible voltage
vectors along with their corresponding voltage states (Sami et al., 2020).

Of the eight vectors, six (V1 − V6) are active vectors, and the other
two (V0 and V7) are zero vectors.

A coordinate system (abc)with three axes is commonly employed for
the purpose of delineating the voltage and current parameters within a
three-phase configuration:

vabc = [ va vb vc ]T (12)

iabc = [ ia ib ic ]T (13)

Additionally, the relationship between the inverter output voltage
applied to the DFIM and the DC-link voltage, Vdc, (Evangelista et al.,
2010), (Matraji et al., 2015), along with the switching functions, Sa, Sb,
and Sc, is elucidated in Equation (14) as follows:

vabc = [ va vb vc ]T
Vdc

2
(14)

The voltage in the two-dimensional αβ stationary reference frame
(Zaid and Ro, 2019), is expressed in equation (15):

vαβ =

[
vα
vβ

]

=

⎡

⎢
⎢
⎢
⎣

3
2

−
1
3

−
1
3

0
̅̅̅
3

√

3

̅̅̅
3

√

3

⎤

⎥
⎥
⎥
⎦

⎡

⎣
va
vb
vc

⎤

⎦ (15)

In the α − β reference frame, the stator voltages (Udcs) and rotor
voltages (Udcr) are determined by the switching states (Sa, Sband Sc),
derived from the switching Table 2 (Fig. 4) (Sutikno et al., 2014):
⎧
⎪⎪⎨

⎪⎪⎩

Vα =
UDC

3
(2.Sa − Sb − Sc)

Vβ =

̅̅̅
3

√
UDC

3
(Sb − Sc)

(16)

Table 1
Categorization of DTC control methods with literature references.

Control bases
DTC

References

Conventional
DTC

(Bekakra et al., 2021a), (Moussaoui et al., 2021), (El Ouanjli et al., 2017a), (Zarean Shahraki and Kazemi, 2012), (Ouanjli et al., 2017a), (Ouanjli et al., 2017b), (
Rafajlovski and Digalovski, 2018), (El Ouanjli et al., 2019b), (Aroussi et al., 2020)

SVM based DTC (Mahfoud et al., 2021a), (Boukadida et al., 2014), (Sutikno et al., 2014), (Habetler et al., 1992), (Ozkop and Okumus, 2008), (Hiba et al., 2013), (Casadei et al.,
2000), (Ahmed et al., 2020a), (Kumar and Das, 2017), (Tripathi et al., 2004)

SMC based DTC (Bekakra et al., 2018), (Ali et al., 2019), (Kati, 2011), (Bekakra et al., 2020), (Jaladi, 2019), (Boumaraf et al., 2021)
DTC-MPC (Venu Madhav et al., 2021), (Zhang et al., 2011), (Abad et al., 2006), (Aghasi et al., 2012), (Mohammed et al. et al., 2022), (Amiri et al., 2018), (Abad et al.,

2008), (Agustin et al., 2019)
Fuzzy based DTC (Bouhoune et al., 2017), (Ouanjli et al., 2018), (El Ouanjli et al., 2019c), (Brahim et al., 2020), (Kruselj, 2017), (Department of Electrical Engineering et al.,

2010a)
ANN based DTC (Mondal et al., 2002a), (Hamidia et al., 2013), (Ahmed et al., 2020b), (Mahfoud et al., 2022c), (Zemmit et al., 2016), (Mahfoud et al., 2022d)
GA based DTC (Mahfoud et al., 2022e), (Mahfoud et al., 2021c), (Zemmit et al., 2018), (Mahfoud et al., 2022f), (Singh et al., 2016), (Jayachitra and Vinodha, 2014), (Whitley,

1994), (Tabassum, 2014)
ACO based DTC (Mahfoud et al., 2022b), (Mahfoud et al., 2022g), (Li et al., 2022), (Varol and Bingul, 2004), (Rezvanian et al., 2023), (Wang et al., 2023), (A. Colorni), (

Skackauskas et al., 2022), (Chiha et al., 2012)
RTO based DTC (Bekakra et al., 2021b), (Wadood et al., 2018), (‘Improving the search pattern of)
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4. Direct torque control

1. Historical Development of Direct Torque Control

Introduced in the late 1980s by Takahashi and Noguchi (1986), the
advent of Direct Torque Control (DTC) brought about a revolution in
motor control as it enabled direct manipulation of both torque and flux,
rendering the need for a speed sensor obsolete. Subsequently, DTC un-
derwent a series of continuous enhancements in order to overcome its

initial drawbacks, particularly in relation to torque ripple and switching
frequency. The progress made in power electronics, digital signal pro-
cessing, and computing has also played a significant role in optimizing
the efficiency and precision of DTC. It is imperative to comprehend the
historical evolution of DTC in order to fully grasp its current state and
evaluate its potential for future advancements in engine control tech-
nology (Rafajlovski and Digalovski, 2018).

2. Principe of the DTC control (DTC Modelling)

The DTC works by directly activating switches in the drive to adjust
the actual frequency according to the reference speed. The flux and
torque hysteresis controllers play an essential role in keeping these
quantities within predefined bands. When the flux or torque reaches the
limits of these hysteresis bands, the controller generates a signal to
change the switching state of the drive, thereby changing the voltage
vector applied to the motor. The voltage vector is selected using a

Fig. 3. Representation of the 2L-VSI circuit.

Fig. 4. Schematic representation of the voltage vectors in a 2-level Voltage
Source Inverter (2L-VSI).

Table 2
Voltage vector and switching state Configurations for a two-level inverter in αβ
frame.

Voltage Vectors Voltages in αβ Frame Switching States

vα vβ Sa Sb Sc

V0 0 0 0 0 0
V1 2

3
Vdc

0 1 0 0

V2 1
3
Vdc

1̅
̅̅
3

√ Vdc
1 1 0

V3
−
1
3
Vdc

1̅
̅̅
3

√ Vdc
0 1 0

V4
−
2
3
Vdc

0 0 1 1

V5
−
1
3
Vdc −

1̅
̅̅
3

√ Vdc
0 0 1

V6 1
3
Vdc −

1̅
̅̅
3

√ Vdc
1 0 1

V7 0 0 1 1 1
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commutation table based on the outputs of the hysteresis comparators
and the position of the stator flux. There are eight possible voltage
vectors (six active and two zero) that can be applied. Abrupt transitions
between these vectors, caused by changes in the switching state of the
hysteresis controllers, result in sudden changes in the magnetic flux and
electromagnetic torque, causing undesirable ripple (Mahfoud et al.,
2022h).

4.1. Estimation of the flux and electromagnetic torque

The system regulates the flux and torque without needing to directly
measure them. Instead, the flux and torque are estimated and compared
against reference values. The control system then adjusts the inverter
output to maintain the desired flux and torque (El Ouanjli et al., 2019d),
(Belay et al., 2024).

a. Control of stator and rotor fluxes

Stator and rotor flux vectors are estimated based on Dual-Fed In-
duction Motor (DFIM) voltage and current measurements. The stator
and rotor flux expression is written as (Zarean Shahraki and Kazemi,
2012), (Mahfoud et al., 2022h):

⎧
⎨

⎩

ψ̂ sα =

∫

(vsα − Rsα.isα)dt

ψ̂ sβ =

∫
(
vsβ − Rsβ.isβ

)
dt

(17)

⎧
⎨

⎩

ψ̂ rα =

∫

(vrα − Rrα.irα)dt

ψ̂ rβ =

∫
(
vrβ − Rrβ.irβ

)
dt

(18)

The inverter switches are managed over a control period (Te), during
which the states (Sa,Sb and Sc) of each inverter are maintained constant.
A two-level hysteresis comparator facilitates flux control within two
concentric circles of close radii (see Fig. 5a). The bandwidth of the

hysteresis is determined by the switching frequency of the inverter (see
Fig. 5b and c).

b. Torque estimation

The torque generated by the DFIM is calculated using the cross,
product of the stator flux and current magnitudes. The estimated torque
is given by (Mahfoud et al., 2022c):

T̂em = p.
(

ψ̂ sα.isβ − ψ̂ sβ.isα
)

(19)

c. The objective is to control the flux of the stator and rotor.

Hysteresis controllers maintain the stator and rotor fluxes within
predefined two-level bands (Fig. 5c). In the event that the estimated flux
exceeds the band limits, the controller adjusts the voltage vector to re-
turn the flux to within the specified limits. This mechanism results in
frequent switching of the inverter.

d. The genesis of flux and torque ripples

The occurrence of flux and torque ripples is predominantly attrib-
utable to the discrete nature of voltage vector switching in conventional
DTC. Hysteresis controllers precipitate abrupt alterations in the applied
voltage vector upon the flux or torque reaching the limits of the hys-
teresis bands. These precipitous transitions give rise to precipitous
changes in magnetic flux and electromagnetic torque, resulting in the
generation of sharp ripples (Fig. 5b).

e. Elaboration of the Switching Table

The selection of voltage vectors Vs and Vr is guided by the required
torque and flux levels, which vary based on industry requirements and
the dynamic characteristics of torque and flux. Table 3 provides details
on flux errors (ΔΨs andΔΨr), torque errors (ΔTem), and the positions of

Fig. 5. (a) trajectories of the fluxes, (b) three-level torque hysteresis comparator, and (c) two-level flux comparators.
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the flux vectors (i = 1 through 6), allowing for appropriate vector se-
lection to regulate the fluxes and electromagnetic torque of a fed in-
duction motor (Mahfoud et al., 2021b), (Mahfoud et al., 2022h) (Fig. 5).

4.2. Synthesis technique for calculating speed PI parameters in DTC

a. Overview of PI Controller in DTC

The DFIM’s speed is controlled in DTC by use of the PI controller. It is
stated to be achieved when the speed reference signal matches the real
observed speed value. In this situation the speed PI regulator uses a
comparison mistake as input. From mechanical Equation (5), the speed
is expressed as a function of the torque, as given by: (1 /f )/ (1 + s j /f ),
one deduces the transfer function TF of the process.

Furthermore, applied for controller gain determination is the pole
positioning method. Fig. 6 shows the speed PI controller graphic block.

b. Calculation of Controller Gains

The initial step involves determining the gain (G0) by intersecting the
− 45-degree line on the Bode diagram of gain with the phase curve (refer
to Fig. 7b for details). Subsequent to this, the gains for the PI regulator
are computed for the closed-loop speed transfer function. Assuming a
time constant τ of 0.1 seconds, the value of (G0) obtained from the Bode
diagram is used in Equation (20) to calculate Kp. This Kp value is then
utilized to determine Ki using the same equation. The resulting values
for the speed control loop are Kp = 0.776 and Ki = 28.74.

c. Equation for PI Controller

The PI controller’s equation in the Laplace domain is:

PI(s) =
T

G0 × τ

(

1+
1
Tis

)

= KP + Ki
1
s

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

KP =
T

G0 × τ

KI =
KP

0.1×
I
f

(20)

where:
T = J/f and G0 = 1/f and τ time constant.

d. Stability Analysis Using Nyquist Criterion

To ascertain system stability, the closed-loop transfer function is
plotted on a Nyquist diagram. The stability criterion requires that the
contour encircles the point (− 1, 0) on the left, which is confirmed as per
Fig. 7a. This indicates that the system maintains stability under the
given settings.

Fig. 8 depicts the speed transfer function’s step response after
correction. Themeasured speed response closely tracks the setpoint with
a small deviation and fast reaction time, indicating the programmed PI
controller’s effectiveness in maintaining desirable speed levels.

5. DTC for DFIM

Direct Torque Control (DTC) is increasingly recognized for its
effective application in induction motor drives, particularly in Doubly
Fed Induction Motors (DFIM). Its appeal lies in the rapid dynamic
response and resilience to variations in system parameters, all without
the necessity for advanced controllers (Takahashi and Noguchi, 1986),
(Aarniovuori et al., 2012), (Abdul Kadir et al., 2007), (Idris and Yatim,
2002), (Lee et al., 2005), (Reza and Mekhilef, 2013). This method is
valued for its straightforward implementation process as it does not
require coordinate transformations.

In the standard DTC framework (see Fig. 9), errors in electrome-
chanical torque and both stator and rotor fluxes are identified and
processed using hysteresis comparators for digitization. A pre-defined
switching table is then employed to regulate the inverter switches,
which in turn determines the positioning of the voltage vector (Vs) based
on the flux angles of the stator and rotor. While this strategy enhances
the speed of torque response, it may also lead to torque ripple and
variations in the inverter switching frequency. To improve the precision
in voltage vector selection, techniques involving voltage zone sub-
divisions have been introduced (Kumar et al., 2006), albeit with limited
success in reducing torque ripple due to sector transitions.

The evolution of DTC has led to the categorization of various
schemes into Traditional and Modern DTC approaches (refer to Fig. 10),
with further details provided in subsequent sections. At its core, DTC
directly manipulates motor torque and flux through the control of
voltage supply inverter switches (Bascetta et al., 2010). This is princi-
pally achieved using hysteresis controllers that manage system states,
particularly the flux amplitudes (both stator and rotor) and electro-
magnetic torque, to maintain them within preset error boundaries.

The outcomes derived from these controllers, in combination with
flux position information, dictate the selection of the most favorable
voltage vectors. The VSI has the capability to reach seven distinct phase-
plane positions, each corresponding to one of the eight possible se-
quences of inverter output voltage vectors (Bose, 2009), (Reza et al.,
2014). The foundational model of DTC for a DFIM consists of two control
pathways dedicated to overseeing flux and torque. These pathways are
governed by three hysteresis regulators, two of which are specifically
assigned to managing the fluxes of the stator and rotor, while one is
tasked with overseeing torque regulation. Depending on the operational
mode, the system is supplied with either reference fluxes or feedback
from a speed controller, which acts as the torque reference. Subse-
quently, the estimation and regulation modules compute parameters
such as produced torque, flux levels, and flux positions. By comparing
predicted values against reference values, the hysteresis controllers
generate digital signals, which are then utilized to make decisions
regarding adjustments to the VSI based on the primary position. The
DFIM ultimately receives the output voltages produced by the inverters
(El Ouanjli et al., 2017a).

1. Space Vector Modulation based Direct Torque Control (DTC-SVM)

Habetler et al. (1992) introduced the concept of Direct Torque
Control with Space Vector Modulation (DTC-SVM) (Habetler et al.,

Table 3
The inverter sequences.

Hψs or Hψr
HTem Sector Si

S1 S2 S3 S4 S5 S6

1 1 v2(110) v3(010) v4(011) v5(001) v6(101) v1(100)
0 v7(111) v0(000) v7(111) v0(000) v7(111) v0(000)

− 1 v6(101) v1(100) v2(110) v3(010) v4(011) v5(001)
0 1 v3(010) v4(011) v5(001) v6(101) v1(100) v2(110)

0 v0(000) v7(111) v0(000) v7(111) v0(000) v7(111)
− 1 v5(001) v6(101) v1(100) v2(110) v3(010) v4(011)
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Fig. 6. Speed PI controller diagram block.

Fig. 7. Closed Loop Function Transfer (CLFT) bode responses (b) and circular Nyquist response (a) diagrams.

Fig. 8. The process step response after regulation.
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1992), aimed at manipulating the flux speed in order to control the
electromagnetic torque of Dual-Fed Induction Motors (DFIM). By
incorporating zero voltage vectors to regulate torque, DTC-SVM presents
considerable advantages over hysteresis-based DTC by effectively
addressing its inherent limitations (Casadei et al., 2000), (Tripathi et al.,
2004). In hysteresis-based DTC, the determination of stator and rotor
voltage relies on selecting voltage vectors from a lookup table, which is
based on torque and flux requirements analyzed by hysteresis compar-
ators. In contrast, DTC-SVM computes the reference vector of stator and
rotor voltage within a sampling period and generates it through the
employment of a space vector modulator (Habetler et al., 1992), (Ozkop
and Okumus, 2008). The calculation of the reference vector of stator and
rotor voltage in DTC-SVM is predicated upon torque and flux re-
quirements, enabling a higher level of precision in motor operation
control. (Sutikno et al., 2014).

5.1. General structure of the control DTC-SVM

Three PI controllers handle the torque, stator flux, and rotor flux in
the DTC-SVM for DFIM control, which has two inverters. The torque PI
controller calculates the quadratic stator and rotor voltages, abbreviated
as vq. The other two PI controllers in the flux loop generate direct

voltages, which are represented as vd. After obtaining the values of vd
and vq, they are converted into a stable reference frame (α, β) before
being inputted into the SVM. The Support Vector Machine (SVM) pro-
duces the switching signals Sa, Sb, and Sc for the power transistors of the
inverter (Controller design for direct torque, 2024).

5.2. Application of DTC control with SVM on DFIM

Space Vector Modulation (SVM) is separate from typical pulse-width
modulation (PWM) approaches. It employs a vectorial spatial repre-
sentation of the inverter’s output, avoiding the requirement for discrete
phase modulators. Instead, the reference voltages are defined by the
components of the spatial voltage vector inside the intricate plane
(Energies; Five-Phase Induction Motor DTC; Improving the search
pattern; Mossa and Bolognani). SVM works on the premise of estimating
the inverter voltage vector by projecting the reference vector (Vref ) be-
tween two neighboring vectors, which indicate non-zero switching
states (Abu-Rub et al., 2013).

The switching vector diagram is constructed as a hexagon split into
six 60◦ sectors for two-level inverters, as seen in Fig. 11.

The duration to which each vector is applied can be precisely
calculated, with any remaining time within the cycle allocated to the

Fig. 9. General structure of DTC of the DFIM.
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zero vector (Kim and Sul, 1996). Table 4 details the control signals for
inverter switches across various sectors, exemplifying the configurations
required for each sector’s specific needs.

In sector 1, for instance, the reference voltage is synthesised using
vectors V1, V2 and V0 (the zero vector), as seen in Fig. 12. The

application of the volt-second principle for this sector is described by the
following equation:

VrefTe =V1T1 + V2T2 + V0T0 (21)

Te =T1 + T2 + T0 (22)

Here, T1, T2 and T0 represent the times allocated to each of the voltage
vectors.

Simple projections are used to derive the timings T1 and T2, which
correspond to the voltage vectors:

X=
Te
Vdc

̅̅̅
2

√
Vα (23)

Y=
Te
2Vdc

( ̅̅̅
6

√
Vβ +

̅̅̅
2

√
Vα

)
(24)

Fig. 10. Block diagram DTC-SVM scheme for DFIM.

Fig. 11. Illustrates the schematic representation of a voltage space vector.

Table 4
inverter switches across various sectors.

Sector 1 T1 = − Z,T2 = X

Sector 2 T2 = Y,T3 = Z
Sector 3 T3 = X,T4 = − Y
Sector 4 T4 = Z,T5 = − X
Sector 5 T1 = − Y,T6 = − Z
Sector 6 T6 = − X,T1 = Y
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Z=
Te

2Vdc

( ̅̅̅
2

√
Vβ −

̅̅̅
6

√
Vα

)
(25)

The following is a representation of the switching times (duty cycles)
computation:

Taon =
Te − T1 − T2

2
(26)

Tbon =Taon + T1 (27)

Tcon =Tbon + T2 (28)

Fig. 13 depicts the calculation of switching periods or duty cycles for
sector 1. The symmetrical carrier wave produced by the SVM model is
presented, with an example period (Te) in sector 1. Fig. 10 next displays
the total structure of DTC-SVM control for the DFIM, which is coupled by
two voltage inverters.

2. Fuzzy Logic based Direct Torque Control (DTC-FL)

In 1994, Mir proposed the first fuzzy-based direct torque control
(FDTC) controller, which replaced hysteresis controllers and commu-
tation tables with fuzzy logic for space vector selection in the conven-
tional DTC-DFIM drive. The fuzzy controller takes into account torque
and flux errors, as well as stator and rotor flux positions. Each of the 601
sectors has been divided into two subsets, resulting in a large number of
fuzzy rules. This approach has since become a promising method for
improving the performance of variable speed drives, particularly in the
context of dual-feed induction machines (DFIM). By using fuzzy logic

controllers (FLC) instead of traditional elements, FDTC provides
improved dynamic response and increased resilience to parameter var-
iations. The FLC uses inputs such as stator and rotor flux error, elec-
tromagnetic torque error and stator and rotor flux vector positions to
generate optimal switching states for the inverter arms. This efficient
control of flow and torque relative to their setpoints is achieved by
taking advantage of linguistic variables and fuzzy sets, enabling precise
control with a minimum of rules and better adjustment to changing
operational circumstances. Research has demonstrated the effectiveness
of fuzzy logic in resolving the drawbacks of conventional DTC, notably
the reduction of torque ripples and improved robustness. Despite the
difficulties associated with parameter tuning and the complexity of
implementation, the advantages offered by fuzzy logic in DTC underline
its potential for improving the performance and robustness of DFIM
control systems (Bouhoune et al., 2017), (Ouanjli et al., 2018), (El
Ouanjli et al., 2019c).

5.3. General structure of the control DTC-FL

The conventional hysteresis controllers and switching tables are
replaced with two fuzzy logic controllers in this setup to enhance system
performance and reduce fluctuations in electromagnetic torque and flux.
Within this system, inputs such as flux error, torque error, and flux angle
are fed into each fuzzy logic controller to optimize control responses
(Department of Electrical Engineering et al., 2010b).

εψs =ψ s− ref − ψ̂ s = Δψ s (29)

εψr =ψ r− ref − ψ̂ r = Δψ r (30)

εTem =Tem− ref − T̂em = ΔTem (31)

The error functions employed in this context are formed from the
disparities between commanded and estimated magnitudes. Each input
variable is separated into numerous fuzzy sets, which permits more
efficient management with a limited set of rules (El Ouanjli et al.,
2019c). Fig. 14 displays the block design for the fuzzy DTC imple-
mentation on a DFIM.

The control process utilizing fuzzy logic generally develops in three
separate phases: fuzzification, rule-based output determination, and
defuzzification, as explained by (Akın et al., 2003).

5.4. Fuzzification of inputs

The objective of the fuzzification procedure is to turn deterministic
input variables into linguistic variables using predetermined member-
ship functions. One significant input variable is the flux location, which
refers either to the stator or rotor flux. The range of this variable is
partitioned into six fuzzy sets, called θ1 through θ6. Each of these sets is
represented by a triangle membership function, as depicted in Fig. 15.

The fuzzification procedure aims to convert the deterministic input
variables into linguistic variables by establishing membership functions
for each input variable.

The first input variable is the location of the flux, which may either
be in the stator or the rotor. The variable’s discourse universe consists of
six fuzzy sets (θ1 to θ6) with their membership functions shown in
Fig. 15.

A triangular function of membership has been chosen for all angle
variables θi.

The second input variable, the error in electromagnetic torque, is
categorized into three fuzzy sets within its discourse universe.

◦ Positive torque error is denoted as (P);
◦ Zero torque error is denoted as (Z);
◦ Negative torque error is denoted as (N).

Fig. 12. Demonstrates the reference vector composed by merging adjacent
vectors within sector 1.

Fig. 13. Switching times of sector 1.
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Fig. 16 illustrates the membership functions for these sets, employing
trapezoidal functions for the ’P’ and ’N’ sets and a triangular function
for the ’Z’ set.

The third input variable, flux error, is segmented into two fuzzy sets
within its universe of discourse.

◦ Flux error is categorized as positive (P).
◦ Flux error is categorized as negative (N).

As depicted in Fig. 17, trapezoidal membership functions are used for

both fuzzy sets.

5.5. Outputs defuzzication

The defuzzification process entails converting the fuzzy data sup-
plied by the inference system into a tangible physical or numerical value
that informs the operation’s control rule. For the inverter switches, the
output variable consists of three sub-outputs, each reflecting a switching
magnitude (S1, S2, S3). The discourse universe for each output is sepa-
rated into two fuzzy sets, denoted as zero and one. As illustrated in

Fig. 14. Conceptual framework of fuzzy logic-based DTC.

Fig. 15. Membership functions for flux position variables.
Fig. 16. Electromagnetic torque error membership function.
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Fig. 18, Trapezoidal membership functions are applet for these sets.

5.6. Control regulations

The formulation of control rules is dictated by the relationship be-
tween the output and input variables utilized in the conventional direct
torque control switching table. Fig. 19 presents the layout of a fuzzy
logic controller. Additionally, the methodology for determining the
output variables from the given input variables is systematically ar-
ranged in Table 5.

The control algorithm consists of 36 rules and utilizes the Mamdani
technique with Max-Min decision for inference. This approach is chosen
for its ease of implementation and superior performance. This technique
is articulated as:

μRⅈ =min(μXi(εθ), μYi(εTem), μwi(εψ )) (32)

The Mamdani minimum method yields results via the use of fuzzy

reasoning.

μNʹi =min(μri, μNi(n)) (33)

The output’s membership function μN is determined as follows:

μN(n)=max(μNʹi(n)), i=1, 2,…..36. (34)

Control rules are articulated as mathematical functions linking input
variables to output variables in a fuzzy logic system. The general form of
a control rule can be expressed as:

If (θ is X) and (εTem is Y) and (εψ is W) then (V is Vi).
Here X,Y and W represent the fuzzy sets of the input variables, and

Vi(S1, S2, S3) denotes the fuzzy sets of the output variables. Below are
examples of the control rule:

• If (is θ1) and (εTem is P) and (εψ is P) then (S1 is 0) and (S2 is 1) and (S3
is 0).

• If (is θ2) and (εTem is N) and (εψ is P) then (S1 is 1) and (S2 is 0) and
(S3 is 1).

3. Artificial Neural Network based Direct Torque Control (DTC-ANN)

Artificial Neural Networks (ANNs) are widely applied across
numerous technological and scientific sectors, solving complicated is-
sues unresolvable using rigid mathematical approaches. ANNs play a
vital role in various applications such as classification, image and audio
processing, estimation, process identification, and the control of elec-
trical systems, among others. (Chegwidden and Watts, 1975), (Lin et al.,
2001), (Mondal et al., 2002b), (Stein, 1975).

ANNs are valued in research owing to their resilience and efficiency.
Research (Esen et al., 2008) emphasized the usefulness of ANNs and
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) in correctly simu-
lating ground-coupled heat pump (GCHP) systems. The 2008 study
applied a combination technique of ANNs and Statistical Weighted
Preprocessing (SWP) to estimate the performance of GCHP systems,
primarily concentrating on horizontal layouts. The appropriateness of
ANNs for this purpose was proved by their study.

More, modeling research assessed a novel solar air heater (SAH)
system utilizing ANN and wavelet neural network (WNN) models, with
the findings reported in (Esen et al., 2009). According to research re-
ported in (Esen et al., 2017), ANFIS and ANN are efficient in estimating
the performance of solar ground-source heat pump systems. Another
unique use of ANNs was in modeling a robotic system meant to traverse
across environments with obstacles (V. M). Additionally, a unique
strategy integrating the Gravitational Search Algorithm (GSA) with

Fig. 17. The flux linkage error membership function.

Fig. 18. Functions that determine membership for output variables.

Fig. 19. The architecture of the fuzzy controller designed for the two-level inverter.
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ANNs for selecting initial weight and bias values has been presented
(Zamfirache et al., 2022). This strategy dramatically boosts performance
in reference-tracking jobs.

5.7. ANN-based comparators, regulation speed, and switching tables
controls

A neural network may be conceptualized as a mathematical frame-
work for distributed processing that displays properties analogous to
those seen in biological brain networks. It is made of multiple nonlinear
computational units, referred to as neurons, which act simultaneously
and are interconnected by connections represented by numerical pa-
rameters known as weights (Mahfoud et al., 2022c), (Mahfoud et al.,
2022d), (Menghal and Laxmi, 2018).

ANNs are constructed of densely linked basic processors that work in
parallel. One of the major components of ANNs is their training data,
which is necessary for learning and enhancing performance (V. M). The
neuron, key to the ANN design, has summing junctions and activation
functions. The mathematical formulas that explain a neuron’s function
are described given by (Mahfoud et al., 2022c):

yi = F1(s)*

{
∑N

i=1
(xi*wi + b)

}

(35)

Oi = F2(s)*

{
∑N

i=1
(yi*wi + b)

}

(36)

In this section, xi,wi, b and y denote the input signals, the corresponding
synaptic weights of these input signals, a bias parameter, and the neu-
ron’s output signals, respectively. The hyperbolic tangent function F1(s),
a nonlinear activation function, is defined by the equation:

F1(s)=
eαs − e− αs

eαs + e− αs (37)

as depicted in Fig. 20. Furthermore, a linear activation function, F2(s), is
defined by:

F2(s)= βs (38)

where α and β are the respective gains. This function is differentiable,
bipolar, and exhibits monotonic behavior, achieving its highest gain at
zero. The Neural Network undergoes training through the feedforward
backpropagation method until the Mean Squared Error (MSE) between
the desired output patterns and the actual outputs is minimized.

MSE=
1
N

∑N

i=1
(di(k) − Oi(k))2 (39)

where.

- di(k): is the target output,
- Oi(k): is the network’s actual output,
- N: represents the dataset size, and
- k: denotes the iteration count.

Table 5
Displays a group of fuzzy rules.

Fig. 20. ANN for DTC: a schematic framework.
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The weight update formula is:

wji(k+ 1)=wji(k) − η ∂MSE(k)
∂wji(k)

(40)

where wji(k+1) and wji(k) represent the updated and previous weights
between the ith and jth neurons, and η is the learning rate.

It is recommended to use neural network-based controllers for speed,
stator and rotor flux, and torque, as illustrated in Fig. 21a, b, 22c, and
22d. These ANNs function as hysteresis comparators and play a crucial
role in developing an on-off switching model for the switching tables
depicted in Fig. 23a and b. This model assists in creating a switching
pattern for inverter switches. The inputs, ξi, to each ANN’s comparator
are the differences between the reference setpoints and the estimated
setpoints.

ξΩ = Ωref − Ω
ξψs = ψS ref − ψS est
ξψr = ψ r− ref − ψ r− est

ξT = ψT− ref − ψT− est

(41)

In the hidden layer of the network, each controller trains a specified
number of neurons. The input ξi is multiplied by the weight wi, and the
hidden layer’s output is calculated as vi =

∑N
i=1 eawi + b, where b rep-

resents the bias. Both a hyperbolic tangent nonlinear activation function
and a linear activation function are employed for error backpropagation.
Since the outputs yi = f

( ∑N
i=1 eawi +b

)
of the artificial neural network

(ANN) are not exactly 0 or 1, a comparator without a hysteresis band is
used until the desired output is reached. Weights are continuously
adjusted via the backpropagation algorithm using Equation (40) to
reduce the error defined in Equation (39). Fig. 24’s schematic arrange-
ment illustrates the suggested ANN-DTC strategy for implementation on
both ends of DFIM.

5.8. Selection of artificial neural network (ANN) parameter technique

a. Preparation of training data (input-output pairs).

The training dataset preparation necessitates comprehensive infor-
mation regarding the operation modes of the variable speed drive sys-
tem, encompassing all four quadrants (including both acceleration and
deceleration in two rotational directions), as well as scenarios with and
without load torque application. By conducting extensive practical ex-
periments utilizing DTC-ANN control through the MATLAB toolbox, the
optimal parameters for each ANN controller were selected after multiple

trials, aiming to achieve the most effective controllers for the application
of DTC-ANN control to the DFIM.

In the process of preparing the training dataset, 70% of the data is
allocated for supervised learning, 15% for network validation, and the
remaining 15% for learning assessments. The validation and testing data
play crucial roles as criteria for halting and evaluating performance,
which are integrated into the MATLAB toolbox. The first criterion fo-
cuses on assessing generalization quality, terminating the algorithm
when generalization no longer improves to prevent overfitting. While
not impacting the learning process, the second criterion offers an inde-
pendent evaluation of network performance during and after learning.
The sampling interval was established at 0.00013 s.

b. Selection of Neural Network Topology

The lack of a definitive methodology for specifying the number of
hidden layers and neurons within each layer renders the determination
of the neural network architecture a complex process. Consequently, we
employed a trial-and-error methodology. Initially, we considered
structures with a single hidden layer and a minimal number of neurons,
gradually increasing the neuron count until the desired performance
level was attained. Following a period of extensive experimentation, the
use of 10 neurons for the speed controller, 16 neurons for the torque and
flux controllers, and 20 neurons for the switch table controllers yielded
suboptimal outcomes. This observation indicated that solely adjusting
the number of neurons was inadequate for enhancing performance.
Consequently, we proceeded to utilize 10, 16, and 20 neurons in the
hidden layers corresponding to each controller. For the activation
functions, tangent-sigmoid functions (tansig in MATLAB) were
employed for the hidden layer neurons, while linear activation functions
(purelin) were utilized for the network outputs.

c. Selection of the Learning Algorithm.

The final phase of the process involved the selection of the learning
algorithm. The Backpropagation Error Learning Method was chosen as
the most appropriate algorithm for this task. TheMATLAB toolbox offers
a variety of algorithms, including the gradient descent algorithm
(traingd), gradient descent with momentum (traingdm), and the
Levenberg-Marquardt algorithm (trainlm), all of which employ the
batch technique. The toolbox provides performance metrics, including
the mean squared error (MSE) for minimization and the regression value
(R), which is used to measure the correlation between outputs and

Fig. 21. Feed-forward ANNs for speed controller (a) torque controller (b).
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targets. R = 1 indicates a strong relationship. A notable indicator of
potential overfitting is when the learning performance is satisfactory,
yet the testing performance is significantly suboptimal. Once all

parameters for the neural regulators have been configured, the
learning phase commences. Fig. 25 illustrates the error backpropagation
learning algorithm employed for the construction of the neural network
(Mahfoud et al., 2022c).

4. Genetic Algorithm based Direct Torque Control (DTC-GA)

According to Whitley (1994) (Whitley, 1994), the Genetic Algorithm
(GA) is a stochastic global adaptive search optimization technique based
on the principles of natural selection. An objective function evaluates
each chromosome in the population that starts this method, representing
a different solution to the problem (Singh et al., 2016). Moreover, GA is
utilized in contemporary applications to determine the ideal parameter
values of rational functions (Irshad et al., 2016). It is utilized in an
electric distribution network’s control system (Storti et al., 2015).
Furthermore, GA is used with MPPT to improve a PV system’s ability to

capture energy (Daraban et al., 2014). Moreover, it is utilized to improve
distribution systems’ power quality and dependability (Gupta et al.,
2014). But GA has its limitations. In addition to taking a long time to
reach convergence and adjust every parameter, such as the mutation
rate, elitism percentage, crossover parameters, and so forth, it is unable
to ensure the identification of the global minimum. Moreover, GA re-
quires the normalization of fitness because it is a trial-and-error process
(Tabassum, 2014), (Hannan et al., 2018).

5.9. General structure of the control DTC-GA

Genetic algorithms are a particular type of evolutionary algorithm
that employ techniques derived from evolutionary biology, including
selection, crossover, and mutation (Jayachitra and Vinodha, 2014).
Fig. 27 illustrates the sequence of actions performed in a GA, shown as a
flowchart that follows a GA’s evolutionary principles. Fig. 28’s sche-
matic arrangement illustrates the suggested DTC- GA strategy for
implementation on both ends of DFIM.

Fig. 26 illustrates the streamlined configuration of the genetic

Fig. 22. Feed-forward ANNs for stator flux controller (c) rotor flux controller (d).

Fig. 23. Feed-forward ANNs for switching tables on the stator (a) and rotor (b).
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algorithm optimization approach.

5.10. Operators and parameters of GA

The success of a GA is contingent upon the efficacy of its operators.
These operators, which include selection, crossing, and mutation, are
fundamental to the functioning of the GA. While the underlying prin-
ciples of each operator are relatively straightforward, Explaining the
importance of each operator in the overall performance of a GA can be
challenging. This is partly due to the fact that each operator operates
according to its own set of criteria, including the selective value of the
individuals, the probability of activation of the operator, and so forth
(Mahfoud et al., 2022f).

5.11. Chromosome coding

The method starts by encoding solutions in binary format, repre-
sented as chromosomes in the logical framework (El Mahfoud et al.,
2021b). Genetic algorithms (GAs) use coding methods, which sets them
apart from other search optimization procedures. Typically, a genetic
algorithm utilizes binary coding (Soleimani and Kannan, 2015). Due to
the variability of circumstances, it is not possible to definitively deter-
mine the optimal coding strategy. Real numbers often prove practical,
though their applicability is confined to specific issues. It’s crucial to
identify the performance boundaries of the PID controller before setting
its coefficients. The discussed method stipulates that the minimum value
for PID coefficients is zero. Addressing encoding problems requires more
than just using a Genetic Algorithm (GA). Hence, the effectiveness of the
GA depends significantly on the chosen encoding format. In this
approach, each PID parameter is considered a gene, with each gene
encoded as a distinct chromosome (Shukla et al., 2019).

5.12. Fitness

The choice of the objective capacities considered to evaluate each

chromosome’s fittingness could be a pivotal stage in GA execution.
Execution files were utilized in a few distributions (Bekakra et al.,
2021c) as objective capacities. Whereas utilizing ISE, IAE, and ITAE in
(El Ouanjli et al., 2017a), the creators of (Lyu and Lin, 2022) utilized
mean squared blunder (MSE), fundamentally time outright mistake
(ITAE), coordinates outright mistake (IAE), and necessarily square
blunder (ISE). In this work, the speed mistake flag e(t) = Ωref (t) − Ω(t)
was minimized and compared utilizing the execution records IAE, ITAE,
and ISE, as well as a combination of the three records, to decide which
was most suitable. The taking after depiction of the execution files is
required (Optimization of PID Tuning Using, 2021):

IAE=
∫ t

0
|e(t)|dt (42)

ISE=
∫ t

0
e(t)2dt (43)

ITAE=
∫ t

0
t⋅|e(t)|dt (44)

Fw =ω1 × IAE+ ω2 × ISE+ ω3 × ITAE (45)

where Fw is the weighted work, e(t) is the mistake flag, and ω1, ω2, and
ω3 are the weights. The hereditary calculation was utilized in this work
to play down the blunder between the reference and the genuine speed
of the engine. This operation is carried out by expanding the wellness
esteem spoken to by equation (46), which naturally diminishes the
mistake. For each emphasis of the controller, picks are produced in such
a way as to maximize wellness. Optimal arrangements are defined as
gains that allow for a significant error (Amirjanov, 2015).

Fitness Value=
1

Objecitves Functions
(46)

Fig. 24. Application of the ANN-DTC to a doubly-fed induction motor (DFIM).

Z. Sakhri et al. Cleaner Engineering and Technology 24 (2025) 100891 

17 



5.13. Population initialization

After selecting the coding scheme, it is necessary to establish an
initial population consisting of valid solutions to the issue. Various
methods have been used in previous studies to create the initial popu-
lation (‘Sustainability | Free Full). The user’s understanding of the issue
determines the initialization selection. If there is no specific information
available, the most appropriate approach is to randomly initialize the
system in a way that evenly covers the whole search space, thereby
promoting maximal exploration. Nevertheless, in other scenarios, it is

feasible to use alternative techniques. Furthermore, this stage presents a
primary

challenge, namely the population size selection. A population that is
too large can significantly increase computational time and require
substantial memory, while a population that is too small may only lead
to the identification of local optima. Grefenstette observed that genetic
algorithms exhibit optimal performance when the population size is
within the range of 10–160 (Meena and Devanshu, 2017). Nevertheless,
studies have demonstrated that the interactions between crossover,
mutation, and population size are non-linear. Odeyato proposed a
population size between 100 and 400, while Robertson investigated
sizes up to 8000 (‘Systems | Free Full). In separate studies, Goldberg
evaluated the optimal population sizes for both sequential and parallel
GA. The initial choice of population size has a significant impact on the
algorithm’s speed. In this study, the optimal population size was
determined to be 20 individuals. This figure was arrived at following
extensive testing and subsequent validation as an effective parameter.

5.14. Selection operator

During each generation ’i’, an intermediate population is created
using the selection operator. This population is then combined and
modified to form the population for the next generation í+ 1ʹ. The se-
lection of chromosomes is based on the adaptability levels of the in-
dividuals. There are various methods for selecting candidates, with the
focus on the most effective ones:

1. The "ranking" method is the simplest form of selection. It involves
organizing the n chromosomes of the population in order of their
evaluations, either ascending or descending depending on the
objective. The top M individuals are selected, ensuring that only the
most elite individuals are retained.

2. Selection via a roulette wheel entail assigning a segment to each
chromosome in proportion to its fitness. These segments are
consolidated on a normalized axis ranging between 0 and 1 (uniform
distribution between 0 and 1); subsequently, the selected segment
and corresponding chromosome are identified. This method ensures
that favorable chromosomes are chosen more frequently than unfa-
vorable ones, allowing for the possibility of multiple selections of the
same chromosome. However, the accurate mathematical expectation
of selection may be challenging to obtain in small populations due to
the limited number of draws, resulting in varying degrees of selection
bias based on population size.

3. Tournament selection involves randomly selecting two or more in-
dividuals from the population, with the most robust individual being
chosen, i.e., the one with the highest fitness level.

4. Random selection, as the name implies, involves choosing chromo-
somes based on a uniform distribution.

For this investigation, tournament selection was chosen, as it is
commonly preferred by numerous researchers (gai Ye et al., 2017),
(Comparison of the error; Direct torque control versus indirect).

5.15. Crossover operator

Crossover permits the fusion of genetic material from two parents to
produce two children. The underlying assumption is that the resulting
children acquire the most desirable qualities from their parents. The
crossover approach entails combining the beneficial regions of the
chromosomes belonging to the parents, labeled P1 and P2, to create two
children, E1 and E2, with increased attributes. For instance, in a binary
setting, the merger of two strings, 00000000 and 11111111, at the fifth
bit position might give birth to two unique children, namely 11110000
and 00001111, each with a chance of 0.5, reflecting fifty percent of the
genetic material (Colorni et al; Aparanji et al; A novel optimal PID
controller). It is proposed to restrict the occurrence of crossover

Fig. 25. The error backpropagation learning algorithm is utilized to construct a
neural network.
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occurrences by defining a probability value ranging from 0.6 to 0.99
(‘Tuning PID Controller for Inverted). In the current experiment, a
crossover probability of 0.8 was selected based on its usefulness as an
appropriate parameter for the crossover operator.

5.16. Mutation operator

Fig. 27 displays a flowchart that conforms to the evolutionary prin-
ciples of genetic algorithms (GA), while distinguishing the procedural
processes required in a GA. In a GA, the algorithm delineates the
sequence of operations. The function of mutation is to inhibit quick
convergence to a local optimum, hence encouraging exploration of the

Fig. 26. Genetic algorithm (GA) is used to optimize the settings of the PID controller.

Fig. 27. Diagram illustrating the sequence of steps in the Genetic Algorithm.
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search space. Mutation entails changing a chromosome to investigate a
potentially more intriguing location within the search space. Despite
endowing GA with ergodic qualities, mutation is typically seen as a
supplemental operator that assures accessibility to all locations in the
search space. Hence, the value of this operator cannot be over-
emphasized. The mutation rate must lie between the ranges of
[0.001,0.01] (‘Energies | Free Full) to add unique information to the
genetic chromosome and prevent the population from drifting towards a
local optimum under specified conditions. In the cited research, the
probability value (Pm) was fixed at 0.001 (‘Energies | Free Full).

5. Ant Colony Optimization based Direct Torque Control (DTC-ACO)

Heuristically, the ant colony Optimization algorithm (ACO) has
effectively simulated this ant foraging behavior in nature (A. Colorni).
Nevertheless, of course, this algorithm became well-known for its global

optimization ability without a problem description. Furthermore, its
features include internal parallelism, positive feedback, and robustness.
The ACO matches, most prominently, better than other algorithms in
terms of higher reliability, more robust search capabilities, and ease of
implementation, particularly on combinatorial optimization problems.
These have interested many and have been tried in different disciplines.
As a result, ACO has significantly advanced as a multidisciplinary topic.
ACO has effectively solved the traveling salesperson problem (TSP) and
numerous other problems, demonstrating reasonably good results. More
research reveals that ACO can deal with NP-hard problems such as
quadratic assignment, vehicle routing, and job shop scheduling pri-
marily because of its improved learning system, which includes
distributed computing, strong robustness, and an easy-to-integrate
structure, making it collaborate with other optimization algorithms. It
suffers from long search times and sometimes stalls, known as the pause
phenomenon (Wang et al., 2023). Fig. 29’s synoptic form describes the

Fig. 28. The schematic diagram of DTC- GA control applied to DFIM.
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newly proposed DTC-ACO strategy, which is applied on both sides of the
DFIM.

5.17. Operating principle

The ACO technique is a metaheuristic that draws inspiration from the
foraging behavior of ants. Initially, ants move randomly within their
environment. When they locate food (ND), they trace their way back to
their colony (NS), depositing a pheromone trail along the route
(Rezvanian et al., 2023), (Chiha et al., 2012). If other ants encounter this
trail, they may cease their random search and follow the
pheromone-marked path, thereby reinforcing it if it indeed leads to food.
Consequently, the shortest route to the food source becomes increas-
ingly popular and reinforced, making it the most attractive path. Less
traveled paths weaken over time, leading all ants to eventually converge
on the shortest, most efficient route. Fig. 30 illustrates this process,
showing how ants select the shortest branch.

The Ant Colony Optimization (ACO) approach designates an ant as
an autonomous agent capable of constructing potential solutions. There
are two fundamental factors in deciding when an ant will be employed
to build a solution.

(a) Visibility factor: Also known as the gluttonous force, it is repre-
sented by ηij, where ʹ́ij́ʹ indicates the decision under
consideration.

(b) Pheromone factor: represented by τij, where ʹ́ij́ʹ represents the
decision in question again. The higher the value of τij, the more
historically beneficial it has proven to make this decision.

These factors influence the probability that a particular decision ʹ́ij́ʹ
will be selected by an ant, guiding its path-building activity in the so-
lution space. This relationship underscores the probability that a
particular decision will be favored based on past successes and imme-
diate visibility or attractiveness.

Fig. 29. The schematic diagram of DTC-ACO control applied to DFIM.
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pkij(t)=

⎧
⎪⎪⎨

⎪⎪⎩

[
τij(t)

]α⋅
[
ηij(t)

]β

∑

s∈J(i)

[
τij(t)

]α⋅
[
ηij(t)

]β, j ∈ Ji

0, j ∕∈ Ji

(47)

τij(t) is the pheromone amount on edges of node i to j at time t. ηij(t)
displays the visibility, or attractiveness, between nodes i and j, which
varies according to conditions that help to solve the problem. The
parameter α is the level of importance that gives the pheromone trail in
making decisions, and β gives the importance weight of the visibility
term. Ni is the set of unselected nodes.

5.18. Development of the integrated ACO and PID controller

So far, academics have investigated the optimization of PID con-
trollers using the ACO algorithm, using various ways to improve the
ACO’s effectiveness. The use of ACO for parameter tuning of a
Proportional-Integral-Derivative (PID) controller in a second-order
process with multiple cost functions is described in reference (Varol
and Bingul, 2004). The study demonstrates significant improvements
compared to traditional tuning approaches. Fig. 31 depicts the optimi-
zation of the PID controller using the ACO block structure.

The problem of designing a PID controller using the ACO algorithm

may be seen as a network problem similar to that shown in Fig. 32. In the
network, every feasible value for each of the PID parameters, that is, KP,

KI and KD, is represented by three different vectors. These vectors can be
thought of as paths that connect various nests in the network.

In such a scenario, an ant must move through three nests, making
decisions at various nodes from the origin to the destination. In this
scenario, the ACO’s most preferred goal is to find a route with the
minimum cost function in Equation (53) that connects the three found
nests. At each step of movement, the ants drop pheromones on the
chosen routes. These pheromone levels are then adapted by the rein-
forcement rule, wherein the trail strength is enhanced by the solution
quality for a particular solution. More specifically, after it has finished
an assigned tour, each ant updates pheromones on the path constructed
through the local pheromone update rules as given in Equation (48).
This enables fitter paths to acquire denser pheromone concentrations,
guiding successive ants toward potentially optimal solutions.

τij(k)= τ(k − 1) +
0.01θ
J

(48)

The symbol τij(k) represents the pheromone value between nest i and j at
the kth iteration.

The symbol θ represents the coefficient used for updating phero-
mones in a generic manner.

Fig. 30. The structure of the experiment concerning how a colony of ants selects the smallest branches.

Fig. 31. Enhancing the PID controller using ant colony optimization.
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J represents the cost function associated with the trip taken by the
ant.

The global pheromone updating rule adjusts the pheromone levels on
paths belonging to the most successful ant colony tour Equation (49) and
the least successful ant colony tour Equation (50):

τij(k)best = τ(k)bestij +
θ
Jbset

(49)

τij(k)worst = τ(k)worstij −
0.3θ
Jworst

(50)

In this context, τbest and τworst denote the pheromone concentrations on
the routes traversed during the tours, with the minimum cost

(
Jbest

)
and

maximum cost (Jworst) correspondingly, inside a single iteration. The
concentrations of pheromones on the pathways of the most successful
tour are greatly elevated, whereas those on the paths of the least suc-
cessful trip are diminished. Subsequently, pheromone evaporation, as
detailed in Equation (51), allows the ant algorithm to essentially "forget"
its prior activities, enabling the ACO to explore new options and avoid
being constrained to local optima.

τij(k)= τ(k)λ
ijij+

(
τ(k)worstij ij+ τ(k)bestij ij

)
(51)

where λ is the evaporation constant (Zemmit et al., 2018), (Varol and
Bingul, 2004).

5.19. Fitness

A crucial aspect of implementing the ACO is selecting appropriate
cost functions to assess the fitness of each node. Various studies, such as
those by (Particle Swarm Optimization; PDF, 2024; Sliding mode based
DTC of, 2024) and (An enhanced ACO and PSO, 2024), utilize perfor-
mance indices as cost functions. Specifically, in (Particle Swarm Opti-
mization), the authors evaluate three distinct cost functions, Integral
Time Absolute Error (ITAE), Integral Absolute Error (IAE), and Integral
Square Error (ISE), both individually and in a weighted combination.
Among these, the ISE has been demonstrated to be particularly effective
in enhancing performance. Consequently, in this work, a weighted
combination of these cost functions is employed to boost the efficacy of
the ACO, thereby improving the overall system performance. This
approach to performance indices is outlined by (Kanojiya and Meshram,

2012).

ISE=
∫ t

0
e(t)2dt (52)

The PID controller is employed to minimize the error signal e(t),
thereby reducing the values of specific performance indices and, in turn,
minimizing the equivalent value represented by knots. This reduction
leads to the formation of knots. The adequacy of each node is deter-
mined as follows:

Fitness Value=
1
ISE

(53)

5.20. ACO parameters

The method of PID optimization utilizing Ant Colony Optimization
(ACO) is outlined in the following algorithm, with the matching flow-
chart displayed in Fig. 33.

This approach encodes PID controller parameters using 5000 nodes,
each representing a possible solution for the parameters (KP,KI and KD).
Increasing the number of nodes boosts the accuracy of the solution up-
dates. After extensive tests, the best ACO parameters were found to be =
0.06 and λ = 0.95. Selecting adequate ACO parameters is critical for
swiftly converging to optimum values. This paper presents a technique
to assess optimum values and decreased convergence time. The initial
parameters of the ACO algorithm

(Var Pmax,VarPmin,VarImax,VarImin,VarDmax,VarDmin,and n iter))
should be set to high values (VarPmax= VarImax= VarDmax=
100,VarPmin= VarImin= VarDmin= − 100, n iter= 100) to increase
the likelihood of obtaining the best values for KP,KI and KD. However,
the system only converges after a specific duration. After this first phase,
the algorithm parameters should be changed closer to the optimum
gains discovered before to decrease the number of rounds and minimize
execution time.

6. Rooted Tree Optimization Algorithm based Direct Torque Control
(DTC-RTO)

The implementation of the Rooted Tree Optimization (RTO) method
for optimizing DTC responses in DFIM has been investigated throughout
various research studies. Bekakra et al. (2021b) provided a strategy
where RTO was applied to tune integral-proportional (IP) controller

Fig. 32. Shows a graph of the ACO for the PID tuning process.
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Fig. 33. Diagram illustrating the sequence of steps in the ACO algorithm.
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settings in the speed loop control of DTC for DFIM, exhibiting increased
performance over typical tuning approaches like Ziegler-Nichols and
pole placement. The research revealed superior speed responsiveness
and resilience against parameter alterations compared to conventional
approaches and other optimization techniques such as fuzzy-PID and
iterative feedback tuning (Bekakra et al., 2021b)

Edagbami et al. (‘Improving the search pattern of) improved the RTO
method by introducing Lateral Growth Rooted Tree Optimization
(LGRTO), which removes the impact of the best root to avoid premature
convergence. Edagbami et al. (‘Improving the search pattern of) evalu-
ated the LGRTO on benchmark functions and real-world applications,
demonstrating competitive performance compared to other sophisti-
cated optimization approaches.

5.21. Rooted tree optimizations

The Rooted Tree Optimization (RTO) algorithm, introduced in 2016
(Labbi et al., 2016), is inspired by the way desert plant roots search for
water. Initially, roots start from the top of the stalk and extend into the
first soil layer (initial generation). These roots explore randomly for
moisture, and the root closest to the moisture source becomes the node
for the next generation of roots, continuing the search for the optimal
location (best solution) to access water, as shown in Fig. 34 (A novel
rooted tree optimization).

5.22. Equations of RTO

The RTO technique, like to other algorithms, starts by generating an
initial population at random. Within the RTO framework, each "root"
signifies a possible solution, while the "Wetness Degree (Dw)" serves as
the assessment measure, showing the fitness of a candidate relative to
the rest of the population.

a. Rate of the nearest root to water (Rn)

The rate in question specifies the percentage of candidates from the
whole population that should converge towards the wettest place, which
is the ideal answer. The new population that congregates closest to the

water supply is defined as follows:

xnew(k, iter+1)= xbest(iter) + c1.Dw(k).randn.upper
/
(N.iter) (54)

Where, iter: iteration step, xnew(k, iter + 1): new candidate for the iter-
ation (iter + 1), xbest(iter): best solution from the previous generation, k:
candidate number, N: population scale, upper: upper limit of the
parameter, randn: normal random number between [ − 1,1].

b. Rate of the continuous root in its orientation (Rc)

This rate signifies the proportion of members who continue the
previous path as they are positioned near the water source. The new
population originating from a randomly selected root is given by:

xnew(k, iter+1)= x(k, iter) + c2.Dw(k).rand.
(
xbest(iter) − x(k, iter)

)
(55)

Where, (k,iter): Represents the candidate from the previous iteration iter,
rand: Is a random number between [0,1].

c. Random Root Rate (Rr)

This measures the ratio of selected candidates to the entire popula-
tion, dispersed randomly across the search space to increase the chances
of discovering the global solution. Furthermore, roots from the prior
generation that exhibit a low wetness degree are substituted. A new set
of random roots is then established for the population.

xnew(k, iter+1)= xr(iter) + c3.Dw(k).randn.upper/iter (56)

Where:
xr(iter): Represents a randomly selected individual from the previous

generation,
c1, c2 and c3 are adjustable parameters that can be tuned as needed.

The rates Rn,Rr and Rc are determined experimentally based on the
specific problem being addressed. These rates are considered variables
that influence the rate of convergence (Labbi et al., 2016).

Fig. 34. Root behavior of desert plants in their search for water.
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5.23. RTO algorithm

The RTO algorithm progresses through the following steps.

Step 1: Initialize the Population

Create an initial set of N candidates, each randomly positioned
within the variable limits of the research space. At this initial phase,
establish numerical values for the rates Rn,Rr and Rc.

Step 2: Evaluate the Population

Assess all members of the population by calculating their objective
function, known as the wetness degree Dw, which is defined as:

Dw(k)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fk
max(fk)

forthemaximumobjectivefunction

1 −
fk

max(fk)
fortheminimumobjectivefunction

,k=1,2,…,N

(57)

Step 3: Reproduction and Replacement

Generate a new population by rearranging the current population
according to the wetness degree Dw. Replace individuals based on the
rates Rn,Rr and Rc using the designated equations (Eqs. (54)–(56)).

Step 4: Iteration

Repeat Step 2 unless the predefined stopping criteria are met, indi-
cating either convergence or the fulfillment of other specified
conditions.

These steps provide a clear and systematic approach to the process
from initialization to potential convergence. They guide through eval-
uation, adaptation, and iterative improvement based on the simulated
behaviour of root systems in nature.

5.24. RTO applied to PID controller

The responses of several simulated systems to a unit step in reference
input are examined to demonstrate the proposed method’s effectiveness
in a control system. The systems considered for the PID controller
problem are of different orders (second, third, and fourth) (Fuzzy gain
scheduling of PID controllers, 2024) as follows:

G1(s)=
e− 0.5s

(s+ 1)2
(58)

G2(s)=
4.228

(s+ 0.5)(s2 + 1.64s+ 8.456)
(59)

G3(s)=
27

(s+ 1)(s+ 3)3
(60)

Additionally, the proposed algorithm, along with the IFT method,
has been rigorously tested on three additional simulated systems
(Lequin et al., 2003).

G4(s)=
e− 5s

20s+ 1
(61)

G5(s)=
1

(10s+ 1)8
(62)

G6(s)=
(1 − 5s)e− 3s

(10s+ 1)(20s+ 1)
(63)

A block diagram of a simplified control system demonstrating this
setup is shown in Fig. 35. These configurations allow for a compre-
hensive evaluation of the control strategy across a variety of system
dynamics.

In practical applications, the output of the PID controller is defined
by the following formula:

u(t)=KP

[

e(t)+
1
KI

∫ t

0
e(t)+KD

de(t)
dt

]

(64)

For the PID controller, the transfer function that goes with it is:

GPID(s)=KP

[

1+
1
KIs

+KDs
]

(65)

where:
KP represents the proportional gain, KI is the integral action time, KD

is the derivative action time and e(t) is the error between the input and
the output of the process at time ‘ t ’.

The fundamental objective of multi-objective optimization is to
achieve equilibrium between contending objectives. Multiple solutions
that concurrently optimize all considered objectives are frequently
presented in such problems, with no single solution being clearly su-
perior. In general, no single solution is superior in all respects. Perfor-
mance criteria for control system applications frequently include a
weighted combination of various characteristics, such as overshoot and
settling time. The optimal system response should minimize the settling
time (Ts) while maintaining a low or nonexistent level of overshoot
(Osh). As a result, the objective function Obj is established by:

Obj=min (F) (66)

Where.

F = [ f1 f2 ]T: vector of the objective functions,
f1: settling time (Ts)
f2: overshoot (Osh)

The objective function can be formulated as:

Obj=α1f1 + α2f2 (67)

where:
α1 and α2 are adjustable parameters.
In Equation (67), the primary focus of the objective function is on

settling time and overshoot, as these are crucial for ensuring the sys-
tem’s response is both quick and stable. A faster settling time and
minimal overshoot reduce the area between the input and output,
minimizing error in a closed-loop system.

The study investigates the use of a PID controller, optimized with
Rooted Tree Optimization (RTO), for managing various linear systems
with constant time delays, specifically G1 (s),G4 (s) and G6 (s). It is
important to highlight that if the time delay fluctuates, the controller
may need frequent re-tuning to adjust its gains in response to changes in
the system model. This adaptation is vital for maintaining stability and
enhancing performance, as the controller utilizes fixed gains that have
been optimized through offline tuning with RTO.

5.25. Adjustment of the PI speed controller using the pole placement
technique and RTO

In speed control loops, an PI controller is favored for its effective
response, especially in rejecting disturbances (Comparison of Propor-
tional, 2024). This section examines two tuning methods for an PI speed
controller: the classical pole placement method and the optimization of
a multi-objective function (Equation (67)) using Rooted Tree Optimi-
zation (RTO). The RTO algorithm iteratively adjusts the gains Ki and Kp
based on feedback from the closed-loop speed transfer function, as
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shown in Fig. 36.

a PI speed controller tuned by pole placement method

The closed-loop speed transfer function, as illustrated in Fig. 36, is
expressed as:

Ωr(s)
Ω*

r (s)
=

1
J

KPKI
s2 + KP+f

KPKI
s+ 1

(68)

This function can be compared to a standard second-order system
given by:

F(s)=
1

1
ωn2

S2 + 2ξ
ωn
S+ 1

(69)

From this comparison, the following relationships are derived:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

J
KPKI

=
1

ωn
2

KP + f
KPKJ

=
2ξ
ωn

(70)

These equations lead to the solutions for the controller gains:
⎧
⎪⎨

⎪⎩

KP = 2Jξωn − f

KI =
Jωn

2

KP
=

Jωn
2

2Jξωn − f
(71)

and KP is proportional gain, KI is integral gain, ξ is damping factor and
ωn is natural frequency.

b Stability Conditions for the PI Speed Controller

Stability is essential for the optimal performance of control systems.
Referring to Equation (68), which defines the closed-loop speed transfer
function with an PI controller, the denominator of this function is
expressed as:

D(s)=
J

KPKI
s2 +

KP + f
KPKI

s+ 1 (72)

The roots of the denominator (D(s)= 0) equation (68) describes the
poles of the system. The calculations yield:
⎧
⎪⎪⎨

⎪⎪⎩

s1 = −
1
2J

[

KP + f −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(KP)
2
+ 2KPf − 4JKIKP + f2

√ ]

s2 = −
1
2J

[

KP + f +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(KP)
2
+ 2KPf − 4JKIKP + f2

√ ] (73)

Substituting the values of the DFIM parameters, J and f into Equation
(72), we obtain:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s1 = −
5
2

[

KP −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(KP)
2
−
4
5
KIKP

√ ]

s2 = −
5
2

[

KP +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(KP)
2
−
4
5
KIKP

√ ] (74)

For stability, all system poles must reside in the left-half of the
complex plane (ScienceDirect), meaning their real parts must be purely
negative. Defining the poles as:

Fig. 35. Shows a block design of a PID controller built on a simpler control system.

Fig. 36. Tuning of PI speed controller.
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Fig. 37. The schematic diagram of DTC- RTO control applied to DFIM.
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{
s1 = A1 + jB1
s2 = A2 + jB2

(75)

where: A1 and A2 are the real parts of the poles s1 and s2, respectively,
B1 and B2 are the imaginary parts of the poles s1 and s2, respectively.
and,

⎧
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(76)

Hence, the system is considered stable if:

⎧
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⎩

A1〈0
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2
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4
5
KPKI

√ ]

〈0

(77)

Thus, according to Equation (76), the system remains stable under the
condition that:

Ki > 0 and Kp > 0 (78)

5.26. PI speed controller tuned by RTO

The PI speed controller, tuned by the RTO, aims to improve the dy-
namic response and either minimize or eliminate steady-state errors in
the system. We look at transient response indices like settling time (Ts),
overshoot (Osh), integral absolute error (IAE), integral square error
(ISE), and integral time absolute error (ITAE) to figure out how well the
PI-controlled system works. Fig. 37 displays the complete DTC diagram

for a DFIMwith an PI controller adjusted via RTO. The primary objective
is to fine-tune the gains of the PI controllers, KI and KP, using the system
illustrated in Fig. 37. The optimization of these parameters is achieved
by the RTO method, which starts with an initial population and aims to
minimize the objective function outlined in Equation (68). Each gain, KI
and KP, is represented by a number of roots, determined experimentally
to yield optimal results, with a single root in two dimensions symbol-
izing the best values for KI and KP. Fig. 38 presents a flowchart of the
RTO-based tuning method for the PI controller within the DFIM’s DTC
system. The process begins with a randomly selected initial population
for the two dimensions (gains KI and KP). The DTC-DFIM model then
evaluates the objective function for each population member as per
Equation (68). Throughout each iteration, a single minimum objective
function value is recorded, preserving the optimal KI and KP values
associated with this minimum. The algorithm concludes once it reaches
the preset maximum number of iterations, solidifying the best values
found for the objective functions across all iterations (see Fig. 39).

7. Predictive based Direct Torque Control (P-DTC)

Predictive-based Direct Torque Control (P-DTC) is an advanced
control strategy designed for managing complex industrial systems. It
works by predicting the system’s future behavior using a dynamic model
within the controller, allowing for the calculation of optimal control
parameter values (Camacho, 1993). The use of Model Predictive Control
(MPC) in digital control systems has proven to enhance both speed and
precision (‘Model Predictive Control | SpringerLink).

Applying a predictive control strategy to Direct Torque Control
(DTC) has gained recognition for its ability to minimize the switching
frequency of the voltage inverter and reduce torque and flux ripples. In
P-DTC setups, the conventional DTC switching table is replaced by an
online optimization algorithm that selects vectors based on a predefined
cost function (‘[PDF] Model Predictive Direct Torque, 2024), (Zeinaly
et al., 2011), (Papafotiou et al., 2009). Predictive models for stator flux,
torque, and angular velocity are used to forecast the future states of
these control variables.

Fig. 38. Flowchart of the DTC-RTO.
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At each sampling interval, new measurements are incorporated, and
the process repeats to achieve closed-loop control. Feedback from these
measurements guides the predictions and adjustments needed to mini-
mize the cost function value (Wang et al., 2018), (‘Performance Evalu-
ation of DTC, 2024). The straightforward nature of the MPC concept
makes it simple to implement, accommodating system constraints,
nonlinearities, and multivariable systems (‘[PDF] Model Predictive
Direct Torque, 2024), (‘M. Mossa and S). However, this control method
requires more extensive online computation than traditional DTC.

Previous studies have introduced predictive control strategies that
optimize a cost function over a specified horizon, enhancing disturbance
rejection, robustness against parameter variations, and overall system

efficiency. These strategies have significantly improved DTC’s dynamic
performance, delivering quick responses, reduced torque and flux rip-
ples, and better current waveforms (Zeinaly et al., 2011), (Papafotiou
et al., 2009), (Wang et al., 2018), (‘Performance Evaluation of DTC,
2024), (Pacas and Weber, 2005).

5.27. Stator and rotor flux estimation

In the PTC approach, the estimation of stator and rotor fluxes at the
current sampling step k is crucial. By employing the Euler method for
derivative approximations along with necessary substitutions, the
following equations are derived for flux estimations:

Fig. 39. Block diagram of the P-DTC.
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⁃ The estimated stator flux at step k is given by:

φ̂s(k)= φ̂s(k − 1) + Tsvs(k) − RsTsis(k) (79)

⁃ The rotor flux estimation is updated using the relationship:

φ̂r(k)=
Lr
Lm

φ̂s(k) + is(k)
(

Lm −
LsLs
Lm

)

(80)

5.28. Torque and flux prediction

An analysis of the electromagnetic torque Ts and the stator flux ψ s for
each voltage vector of a 2-level voltage source inverter (2L-VSI) is
necessary. If the value of (79) has been modified at the subsequent
sample moment k+ 1, the stator flux will be forecasted.

φp
s (k+1)= φ̂s(k) + Tsvs(k) − RsTsis(k) (81)

Torque prediction is based on the predicted values of stator flux and
current:

Tp(k+1)=
3
2
pIm

{
φp
s (k+1)ips (k+1)

}
(82)

Prediction of the stator current for the subsequent instant k+ 1 uti-
lizes the Euler method:

ips (k+1)=
(

1+
Ts
τσ

)

is(k) +
Ts

τσ + Ts

{
1
Rσ

[(
kr
τr
− krjω

)

φ̂r(k)+ vs(k)
]}

(83)

5.29. Cost function optimization

With the stator flux expressed in terms of the inverter voltages Vs(k),
seven different predicted values of stator flux and torque are computed.
These values are then evaluated using a Cost function to determine the
optimal voltage vector:

gh = |T* − Tp(k+1)| + λψ
⃒
⃒φ*

s − φp
s (k+1)

⃒
⃒ (84)

Where, λψ is a weighting factor that prioritizes control objectives (Amiri
et al., 2018).

8. Sliding Mode Control based Direct Torque Control (DTC-SMC)

Sliding Mode Control (SMC) falls under the umbrella of Variable
Structure Control (VSC) and was initially developed by Utkin (Sliding
mode control design principles, 2024; Sustainability Free Full; Systems
Free Full; Tuning PID Controller for Inverted). It is particularly recog-
nized for its resilience against both internal and external uncertainties,
such as parameter variations within the machine and load-induced
disturbances, as well as unaccounted phenomena in the model
(Boubzizi et al., 2018), (‘Sliding mode based DTC of, 2024). A distinctive
feature of SMC is the altered control law, which is characterized by its
discontinuous nature (Model Predictive Control; Modified vector
controlled DFIG wind, 2024). Despite its advantages, SMC is not without
its limitations. Notably, the discontinuity in the control can lead to a
phenomenon known as chattering. This chattering effect can adversely
impact the operational integrity of the machinery (Rodic and Jezernik,
2002). Moreover, the system demands constant and intensive control
efforts to ensure it aligns with the desired trajectories, which can be
impractical (see Fig. 40).

The control structure for a dual-feed induction machine utilizing the
DTC-SMC, as illustrated in Fig. 41, is a cascade control that regulates
electromagnetic torque, square-norm flux and speed. The control
scheme employs steady-state control algorithms to adjust torque, flux
and speed. The "estimator" block of this control scheme comprises a flux
and torque estimator that utilizes solely stator and rotor voltage and

current measurements in the reference frame (α,β). The aforementioned
control scheme exhibits both rapid response times and robustness,
although it may potentially generate undesirable oscillations in the
controlled magnitude. To mitigate this issue, alternative research has
employed the robust sliding-mode observer approach (Sun, 2010),
which enhances flux estimation resilience to measurement noise.

5.30. Speed Sliding Mode Controller analysis

In this research, a first-order Sliding Mode Controller (SMC) is
employed. The sliding surface, denoted as σs, is defined by the speed
error e, which is calculated as follows (Bekakra et al., 2018):

Fig. 40. Flowchart of the P-DTC.
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e=Ω*
r − Ωr (85)

The control surface for speed, σs(Ωr), and its time derivative are
derived as:

σs(Ωr)= e=Ω*
r − Ωr (86)

dσs(Ωr)

dt
=
dΩ*

r
dt

−
dΩr

dt
(87)

Given that φsq = 0 as per Equation. (9), post-Park transformation, the
electromagnetic torque Te is:

Te = pφsdisq (88)

Using the dynamics of rotor speed change from Equation. (10):

dΩr

dt
=
1
J
(Te − TL − fΩr) (89)

Inserting Equation. (88) into Equation. (89), the derivative of the
sliding surface becomes:

dσs(Ωr)

dt
=
dΩ*

dt
−
1
J
(
pφsd ⋅ isq − TL − fΩr

)
(90)

In sliding mode, take:

isq = ieqsq + insq (91)

with.

ieqsq : equivalent control,
insq: switching control,

Within the sliding mode, particularly in the transient state, the
conditions are:

σs(Ωr)=0,
dσs(Ωr)

dt
=0 and insq =0 (92)

Under these conditions, the equivalent control ieqsq is formulated as:

Fig. 41. Block diagram of the DTC-SMC.
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ieqsq =
1

p⋅φsd

(

J
dΩ*

r
dt

+TL + fΩr

)

(93)

Hence, the switching control insq is determined by:

insq =K⋅sat (σs(Ωr)) (94)

where, K: represents a positive gain, and sat: refers to the saturation
function.

6. Critical analysis

Table 6 provides a comprehensive comparison of the various
methods developed to improve DTC (direct torque control) performance
in dual-fed inductionmachines, examining each approach on the basis of
key performance parameters such as torque ripple, flux ripple, current
THD, switching frequency, parameter sensitivity, switching losses, low-
speed dynamic response and algorithm complexity. Each measurement
was analyzed to highlight the strengths and weaknesses of each control
technique. Although comparisons between techniques can be difficult
due to variations in experimental set-ups, machine specifications and
simulation parameters from one study to another, some general trends
emerge. These trends offer valuable insights into the suitability of each
method under specific operating conditions.

Conventional DTC, as shown in Table 6, benefits from a simpler
structure than more advanced methods, resulting in lower switching
frequencies but higher torque ripple - a known drawback of conven-
tional DTC. While increasing sampling rates can reduce torque ripple, it
also increases computational requirements. Recent advances, in partic-
ular AI-enhanced methods such as ANN-DTC and P-DTC, have shown
promise in reducing torque ripple without excessively high sampling
rates. However, these AI-

Based approaches add algorithmic complexity, making them more
suitable for high-precision, high-power applications. Other strategies,
including space vector modulation (SVM) and sliding mode control
(SMC), have also improved DTC performance, although each presents
unique challenges. SVM-based DTC, for example, is more sensitive to
parameter variations, while SMC-based DTC can introduce chattering
effects, which can impact on smooth operation. Contrary to traditional
assumptions, adaptive methods such as fuzzy logic and ANN-based DTC
inherently exhibit variable switching frequencies. This adaptability,
while advantageous for some applications, may require further optimi-
zation of the control algorithms to reduce the computational load on the
microprocessor, which is crucial for real-time applications. One poten-
tial direction of optimization is the development of hybrid control
schemes that integrate multiple techniques, capitalising on their indi-
vidual strengths to achieve a balance between accuracy and computa-
tional efficiency. For example, combining AI-based methods with
conventional approaches could enable a trade-off between performance
and processing requirements. In essence, although each method offers
distinct advantages, the choice of the best DTC strategy depends on the
specific requirements of the application, such as minimizing torque
ripple or improving robustness to parameter variations. Ultimately,
Table 6 provides a structured framework for the evaluation of DTC
methods, focusing on areas where further refinement and hybridisation
could deliver significant performance improvements. This overview
serves as a guide to choosing the most appropriate DTC approach ac-
cording to the specific needs and constraints of the application.

7. Advanced DTC methods: simulation results from literature

Recent literature has reported several significant improvements in
Direct Torque Control (DTC) through intelligent control approaches in

Table 6
Comparative analysis of enhancement strategies for direct torque control.

Torque
Ripple
(Nm)

Flux Ripple
(Stator/
Rotor) (Wb)

Current
THD
(Stator/
Rotor) (%)

Switching
Frequency
(kHz)

Parameter
sensitivity

Switching
loss

Dynamic at
low speed

Algorithm
complexity

Response
Time (ms)

Precession

Conventional DTC (
Ouanjli et al., 2017b),
(El Ouanjli et al.,
2019b)

2.445 0.05855/
0.0122

7.82/11.7 Variable
(1–8.66)

Sensitive High Poor Simple 367.7 Low

SVM based DTC (
Mahfoud et al.,
2021a), (Kumar and
Das, 2017)

1.64 0.051/
0.012

4.87/5.2 Constant
(5.62)

Sensitive Medium Good Intermediate 16 Medium

SMC based DTC (
Bekakra et al., 2018), (
Ali et al., 2019),

1.8 0.00758/
0.005

3.5/4.2 Slightly
Variable
(3.5–4)

Insensitive Medium Very good More
Complex

150.7 Medium

P-DTC (Venu Madhav
et al., 2021), (Amiri
et al., 2018)

0.58 0.0066/
0.0024

3/4 Constant (1) Insensitive Low Very good Complex 48 High

Fuzzy based DTC (
Ouanjli et al., 2018), (
El Ouanjli et al.,
2019c)

1.14 0.02/0.004 1.73/2.81 Variable
(2–5)

Sensitive Medium Good More
complex

35 High

ANN based DTC (
Mahfoud et al.,
2022c), (Zemmit
et al., 2016)

1.08 0.01827/
0.00752

3.26/3.31 Variable
(2–4)

Insensitive Low Very good More
complex

49.4 High

GA based DTC (
Mahfoud et al.,
2022e), (Mahfoud
et al., 2021c)

1.76 0.04304/
0.00893

4.8/7.54 Constant
(3.5)

Insensitive Low Very good Complex 18.2 High

ACO based DTC (
Mahfoud et al.,
2022b), (Mahfoud
et al., 2022g)

1.91 0.04294/
0.00983

4.82/7.98 Slightly
Variable
(4–5)

Sensitive Medium Good Complex 25.6 Medium

RTO based DTC (
Bekakra et al., 2021b),
(Wadood et al., 2018)

2 0.035/0.01 5/6 Variable
(2–4)

Insensitive Medium Good Intermediate 156.1 Medium
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DFIM systems. This section examines three representative examples
from published research (Mahfoud et al., 2022b), (Mahfoud et al.,
2022c), (Mahfoud et al., 2022e)., demonstrating the effectiveness of
advanced DTC strategies. Using MATLAB/Simulink platform, these
studies present comparative analyses between conventional DTC and
intelligent control methods: GA-DTC (Mahfoud et al., 2022e), ACO-DTC
(Mahfoud et al., 2022b), and ANN-DTC (Mahfoud et al., 2022c). Fig. 42
illustrates the comparative performance of these methods, with speed
responses (a,c,e) and electromagnetic torque characteristics (b,d,f).
Each method, as reported in these studies, undergoes rigorous testing
under diverse operating conditions, including various speed references
and load torque variations.

Fig. 42(a and b) presents the comparative test results between con-
ventional DTC and GA-DTC strategies. Fig. 42 (a) illustrates the speed
control behavior through a comprehensive operating profile including
acceleration, steady-state operation, speed reversal, and deceleration
phases, while Fig. 42 (b) shows the electromagnetic torque response. In
(Mahfoud et al., 2022e), the control strategy was tested through various
operating conditions, examining both speed variation and load torque
fluctuation. Their results demonstrated that the GA-DTC approach
substantially improved system performance compared to conventional

DTC. The speed control exhibited perfect reference tracking without
overshoot and eliminated static error across all operating conditions.
The torque analysis showed significant reduction in ripples and
improved dynamic response during transient conditions. The GA-DTC
strategy demonstrated particular effectiveness in maintaining consis-
tent performance during both loaded and unloaded operations, showing
enhanced robustness throughout all operating modes.

Fig. 42(c and d) presents the comparative test results between con-
ventional DTC and ACO-DTC strategies. Fig. 42 (c) illustrates the speed
control performance through various operating modes, including for-
ward and reverse operation, speed transitions, and different load con-
ditions, while Fig. 42 (d) shows the electromagnetic torque behavior. In
(Mahfoud et al., 2022b), the authors evaluated their strategy through a
comprehensive speed profile including acceleration, steady state, speed
reversal, and deceleration phases, with sudden load torque variations.
Their results showed that the ACO-DTC significantly enhanced the sys-
tem’s performance compared to conventional DTC. The speed control
demonstrated improved characteristics with elimination of overshoot
and notable reductions in response time, rejection time, and undershoot.
The torque analysis revealed considerable reduction in ripples while
maintaining excellent reference tracking during load variations. The

Fig. 42. DFIM speed and torque simulation results from literature: conventional DTC with GA DTC (a,b), ACO DTC (c,d), and ANN DTC (e,f).
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ACO-DTC strategy proved particularly effective in maintaining stable
performance during speed transitions and load disturbances, demon-
strating enhanced robustness across all operating conditions.

Fig. 42(e and f) presents the comparative test results between con-
ventional DTC and ANN-DTC strategies. Fig. 42 (e) shows the speed
response through a complete operating profile, including acceleration,
steady state operation, speed reversal, and deceleration phases, while
Fig. 42 (f) demonstrates the corresponding electromagnetic torque
behavior. In (Mahfoud et al., 2022c), the authors carried out various
operating conditions in MATLAB/Simulink, testing both low and
high-speed ranges with sudden changes in load torque. Their results
demonstrated that the ANN-DTC approach significantly improved the
system’s dynamic performance compared to conventional DTC. The
speed control showed marked improvement in undershoot reduction
and faster disturbance rejection. The torque analysis revealed consid-
erable reduction in ripple while maintaining precise reference tracking
throughout all operating phases. Notably, the ANN-DTC maintained
consistent performance during both acceleration and deceleration pha-
ses, demonstrating enhanced robustness during speed transitions and
load variations.

Based on these simulation results from literature, all three intelligent
control methods demonstrate significant improvements over conven-
tional DTC for DFIM systems. The presented investigations clearly
highlight the advantages of each approach: GA DTC offers excellent
speed tracking and torque ripple reduction, ACO DTC provides
enhanced dynamic response with minimal overshoots, and ANN DTC
achieves superior disturbance rejection capabilities. These detailed
performance assessments provide valuable guidelines for selecting the
most suitable control strategy according to specific application re-
quirements in industrial DFIM drives.

8. Conclusion

This study presents an in-depth analysis of advanced strategies for
improving direct torque control (DTC) in dual-feed induction machines
(DFIMs), focusing on overcoming the limitations of traditional DTC
methods. The results indicate that each advanced DTC technique offers
distinct benefits tailored to specific operational requirements. Both DTC-
SVM and DTC-ANN demonstrate superior performance in minimizing
torque and flux ripples, making them particularly well suited to high-
precision applications, such as manufacturing systems and industrial
drives requiring constant torque output. In contrast, DTC-FL (fuzzy
logic) and DTC-SMC (sliding mode control) are more robust to param-
eter variations and disturbances, making them ideal for industrial en-
vironments where operating conditions can fluctuate unpredictably. For
applications where energy efficiency and switching loss reduction are
priorities-such as heavy machinery and energy-intensive systems-opti-
mization-based methods, including DTC-GA (genetic algorithm), DTC-
ACO (ant colony optimization) and DTC-RTO (rooted tree optimiza-
tion), are recommended, with DTC-RTO showing particular effective-
ness in real-time environments. For applications requiring fast dynamic
response and accurate speed tracking, such as electric vehicles and
aerospace systems, Predictive DTC (DTC-P) is particularly advantageous
due to its ability to adapt quickly to changes in speed and load. The
choice of the most suitable DTC enhancement method depends on the
specific requirements of each application. DTC-SVM and DTC-ANN are
recommended for tasks requiring high precision, while DTC-FL and
DTC-SMC are better suited to robust environments. Optimization-based
methods such as DTC-GA, DTC-ACO, and DTC-RTO are beneficial for
applications focused on maximising energy efficiency, while DTC-P is
optimal for those requiring fast response times. This study provides a
structured decision-making framework that helps engineers and re-
searchers select the most appropriate DTC approach by aligning specific
performance metrics and practical constraints, including computing
resources and budget considerations, with the unique requirements of
their applications.
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