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ABSTRACT

Vaccination represents a core preventive strategy 
for public health, with interrelated and multi-
faceted effects across health and socioeconomic 
domains. Beyond immediate disease prevention, 
immunization positively influences downstream 
health outcomes by mitigating complications of 
preexisting comorbidities and promoting healthy 
aging. Severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), influenza virus, and respira-
tory syncytial virus (RSV) are common respiratory 
viruses responsible for broad societal cost and 
substantial morbidity and mortality, particularly 
among at-risk individuals, including older adults 
and people with frailty or certain comorbid condi-
tions. In this narrative review, we summarize the 

overall impact of vaccination for these 3 viruses, 
focusing on mRNA vaccines, each of which exhib-
its unique patterns of infection, risk, and transmis-
sion dynamics, but collectively represent a target 
for preventive strategies. Vaccines for COVID-19 
(caused by SARS-CoV-2) and influenza are effective 
against the most severe outcomes, such as hospi-
talization and death; these vaccines represent the 
most potent and cost-effective interventions for 
the protection of population and individual health 
against COVID-19 and influenza, particularly for 
older adults and those with comorbid conditions. 
Based on promising results of efficacy for the pre-
vention of RSV-associated lower respiratory tract 
disease, the first RSV vaccines were approved in 
2023. Immunization strategies should account for 
various factors leading to poor uptake, including 
vaccine hesitancy, socioeconomic barriers to access, 
cultural beliefs, and lack of knowledge of vaccines 
and disease states. Coadministration of vaccines 
and combination vaccines, such as multicompo-
nent mRNA vaccines, offer potential advantages 
in logistics and delivery, thus improving uptake 
and reducing barriers to adoption of new vac-
cines. The success of the mRNA vaccine platform 
was powerfully demonstrated during the COVID-
19 pandemic; these and other new approaches 
show promise as a means to overcome existing 
challenges in vaccine development and to sustain 
protection against viral changes over time.
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Key Summary Points 

Vaccines for COVID-19, influenza, and RSV 
are protective against illness, and real-world 
studies have demonstrated the effectiveness 
of COVID-19 and influenza vaccines against 
the most severe outcomes, including hospi-
talization and death.

Vaccination mitigates exacerbations of 
preexisting comorbidities and long-term 
consequences of infection, and a life-course 
approach to vaccination promotes healthy 
aging.

Barriers to maximizing impact of vaccination 
include challenges in vaccine development 
related to viral and logistical factors, as well 
as social features contributing to poor uptake, 
such as vaccine hesitancy and lack of knowl-
edge.

Coadministration of vaccines and combi-
nation vaccines, such as multicomponent 
vaccines that protect against several viruses, 
offer potential advantages in vaccine logis-
tics, which may improve uptake and reduce 
barriers to adoption of new vaccines.

New platforms, such mRNA vaccines, may 
help overcome existing challenges in current 
non-mRNA vaccine development and sustain 
protection against viral changes over time.

DIGITAL FEATURES

This article is published with digital features, 
including a graphical abstract and video abstract, 
to facilitate understanding of the article. To view 
digital features for this article, go to https:// doi. 
org/ 10. 6084/ m9. figsh are. 27096 055.

INTRODUCTION

Vaccination is a pillar of public health, heralded 
for its historic role in preventing and alleviating 
the global burden of infectious diseases [1, 2]. 
Worldwide, vaccines are currently estimated to 
prevent 2–3 million deaths per year; however, 
a further 1.5 million deaths due to vaccine-
preventable diseases could be avoided through 
increases in vaccine coverage and uptake [3]. 
Beyond reductions in mortality, the overall 
impact of vaccines is multidimensional and 
complex, with interrelated benefits across social, 
health, and economic domains [2]. In addition 
to their role in immediate disease prevention, 
the positive impact of vaccines encompasses 
mitigating complications as well as exacerba-
tions of preexisting comorbidities following 
infection, including cardiac and cerebrovascular 
events and exacerbations of chronic obstructive 
pulmonary disease (COPD) [4–6]. This positive 
impact extends to downstream general health 
outcomes, particularly those associated with 
aging and frailty, and life-course approach to 
vaccination can play an important and multi-
faceted role in healthy aging by modulating 
immune fitness and promoting the plasticity 
and resilience of the immune system [7–9]. Even 
on an individual level, immunization represents 
one of the most cost-effective interventions in 
public health, yielding substantial economic 
benefits across diverse domains and an esti-
mated return on investment of up to 18% in 
terms of productivity gains and healthcare cost 
savings [10, 11].

Severe acute respiratory syndrome coro-
navirus2 (SARS-CoV-2), influenza virus, and 
respiratory syncytial virus (RSV) are common 
respiratory viruses responsible for substantial 
morbidity and mortality, as described in other 
articles of this supplement. The seasonal and 
geographical distribution differ between each 
of these viruses, contributing to variable pat-
terns of circulation according to social dynam-
ics, meteorological factors, and host factors 
[12–19]. These three viruses present unique 
public health and clinical challenges but also 
demonstrate overlapping risks in certain pop-
ulations, collectively representing a target for 

https://doi.org/10.6084/m9.figshare.27096055
https://doi.org/10.6084/m9.figshare.27096055


S66 Infect Dis Ther (2025) 14 (Suppl 1):S63–S97

Despite the availability of vaccines for 
COVID-19, influenza, and RSV, and strong evi-
dence supporting their benefit to both indi-
viduals and populations, overall adherence to 
recommendations and vaccine uptake are, in 
general, universally suboptimal for a variety 
of reasons, including vaccine hesitancy and 
logistical challenges [3, 50]. Low uptake in 
high-risk populations, such as those with cer-
tain comorbid conditions, has been attributed 
to a lack of information or fear of symptoms, 
and expanding vaccination in this group is key 
to mitigating the impact of these respiratory 
viruses [51, 52].

This narrative review aims to comprehen-
sively evaluate the known benefits of vaccina-
tion for COVID-19, influenza, and RSV toward 
reducing morbidity and mortality, promoting 
healthy aging, and generating broad socioeco-
nomic benefits, while simultaneously high-
lighting the major challenges and potential 
future directions of vaccination approaches to 
overcome developmental and logistical barri-
ers and to reduce disease burden worldwide. 
Along with other vaccine options for influ-
enza and RSV, mRNA vaccines are highlighted 
for their ongoing impact on mitigating severe 
COVID-19–related outcomes and as an impor-
tant direction for new vaccines.

This article is based on previously conducted 
studies and does not contain any new studies 
with human participants or animals performed 
by any of the authors.

Impact of COVID‑19 Vaccines

Since its zoonotic emergence in December 
2019, SARS-CoV-2 has caused more than 774 
million cases and more than 7 million deaths, 
as of March 2024 [53]. Acute SARS-CoV-2 infec-
tion is driven by viral replication and gener-
ally manifests within 5 days; by contrast, the 
dysregulated immune response which is the 
hallmark of severe COVID-19, occurring 7–10 
days after symptom onset, leads to acute mul-
tiorgan disease, hospitalization, or death [54]. 
Whereas RSV and influenza have ongoing sea-
sonal impacts, our understanding of endemic 

preventive strategies. While these viruses affect 
all age groups, older adults, those who are frail, 
and individuals with certain comorbidities are 
at disproportionate risk of complications and 
progression to severe disease following infec-
tion [20–26]. Many of these underlying medi-
cal conditions, such as COPD and diabetes mel-
litus, represent age-independent common risk 
factors for severe outcomes for all three respira-
tory viruses, with higher numbers of co existing 
comorbidities associated with increased risk 
[20, 21, 23, 25]. In addition to impact on 
health, these three viruses are responsible for 
major societal costs, driven by direct factors 
(i.e., hospitalization, intensive care, and inap-
propriate antibiotic use) and indirect factors 
(i.e., productivity losses) [27–33].

Existing COVID-19 and influenza vaccines 
have demonstrated effectiveness against the 
most severe outcomes, including hospitaliza-
tion and death, and the first RSV vaccines were 
approved in 2023 based on positive results of 
efficacy from clinical trials [34–41]. COVID-19 
vaccines, particularly mRNA-based vaccines, 
have played an important role in the striking 
downturn of COVID-19–related hospitaliza-
tions and deaths compared with the early 
days of the pandemic, attributable to both 
averted cases and attenuated severity, leading 
to improved outcomes following infection [42]. 
Influenza vaccines provide moderate protec-
tion against virologically confirmed influenza; 
however, this protection fluctuates seasonally 
and may be greatly reduced or absent due to 
many factors, including antigenic mismatch 
with circulating strains and short duration of 
vaccine-elicited immunity [41, 43–45]. Nota-
bly, during the COVID-19 pandemic, cases and 
viral activity of RSV and influenza decreased 
to unprecedented low global levels due to the 
combined effects of multilayer public health 
interventions [46, 47]. As a consequence of this 
suppression, children who were very young or 
born during the winter of 2020–2021 may not 
have been exposed in their first months of life 
and remain susceptible to infection by RSV and 
influenza, potentially driving their epidemio-
logical rebound [48, 49].
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SARS-CoV-2 transmission and its cadence of 
surges is still developing, with future ende-
micity yet to be determined [13, 55, 56]. 
Additionally, a succession of highly mutated 
variant strains and lineages have arisen since 
the ancestral virus (i.e., alpha, beta, gamma, 
and delta), with the omicron lineage having 
obtained global dominance over earlier strains 
[57]. Since the emergence of ancestral SARS-
CoV-2, relatively high levels of infection and 
cases of symptomatic COVID-19 still occur, 
although with relatively low incidence of hos-
pitalizations and deaths compared to the pan-
demic phase [56]. COVID-19 vaccines played 
an integral role in containing the COVID-19 
pandemic and limiting its global impact [34, 
58]. However, adults aged ≥ 65 years remain at 
elevated risk, accounting for 63% of COVID-
19 hospitalizations and nearly 90% of in-
hospital deaths in the United States in 2023, 
thus underscoring the importance of age as a 
risk factor for severe outcomes [59]. Although 
some countries achieved high levels of vacci-
nation during the pandemic, vaccination rates 
varied widely, and efforts will be needed to 
sustain vaccination during the endemic phase 
of SARS-CoV-2 [60]. Novavax (Nuvaxovid), an 
adjuvanted protein-based COVID-19 vaccine is 
authorized for use in those aged ≥ 12 years by 
the US Advisory Committee on Immunization 
Practices (ACIP), European Medicines Agency 
(EMA), and Canadian National Advisory Com-
mittee on Immunization [61–63]. However, as 
of June 30, 2024, mRNA COVID-19 vaccines 
comprise by a large margin the most frequently 
administered COVID-19 vaccines in the United 
States, Europe, and other countries and thus 
are the focus of this section [64].

In the United States and parts of Europe, two 
mRNA-based COVID-19 vaccines, mRNA-1273 
 (Spikevax®; Moderna, Inc., Cambridge, MA, 
USA) and BNT162b2  (Comirnaty®; Pfizer Inc, 
New York, NY, USA; BioNTech Manufacturing 
GmbH, Mainz, Germany), are approved and 
authorized for use [65–68], while elsewhere 
other COVID-19 vaccines are available. These 
two vaccines have been periodically updated 
since their original authorization and approval 
to target and enhance protection against newly 
circulating SARS-CoV-2 variants, most recently Ta
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with a monovalent omicron XBB.1.5 compo-
nent for the 2023–2024 season [65, 66]. Anti-
viral drugs are available for the treatment of 
COVID-19; however, the low cost, effectiveness, 
safety, and broad applicability of vaccines makes 
immunization an irreplaceable component of 
COVID-19 control and mitigation [69, 70].

An extensive body of literature has demon-
strated the safety, efficacy, and real-world effec-
tiveness of COVID-19 mRNA vaccines, especially 
for severe outcomes, in both phase 3 clinical 
trials [71–76] and real-world settings (Table 1) 
[34–36, 58, 77–89]. A meta-analysis (22 studies, 
pooled n = 39,673,160) of reformulated variant-
targeting COVID-19 vaccines (BNT162b2 and 
mRNA-1273) found that the protection afforded 
by bivalent vaccines in people ≥ 50 years of age 
during the omicron XBB era was higher com-
pared with original vaccines for the composite 
endpoint of infection, COVID-19 diagnosis, 
and COVID-19 hospitalization and death [rela-
tive vaccine effectiveness (rVE), 49.7%; 95% 
CI, 41.4‒57.9] [80]. These findings support the 
continued value and importance of updating 
COVID-19 vaccines to target and provide con-
tinued protection against newly emerging SARS-
CoV-2 variants. Although evidence suggests that 
older vaccines against emerging SARS-CoV-2 
variants are not as effective in preventing infec-
tion, protection against severe outcomes, such 
as hospitalization and death, remains high [80]. 
Perhaps because cellular immunity, mediated by 
memory T cells, can persist long after the wan-
ing of humoral immunity, the impact of vac-
cines appears to last longer for these severe out-
comes compared with symptomatic infection, 
and is resistant to immune escape by emergent 
strains [90, 91].

Recent evidence has supported the overall 
importance of COVID-19 vaccination in older 
and other vulnerable individuals during the 
omicron era. Bivalent mRNA booster vaccines 
have demonstrated durable effectiveness of 
60–70% against severe COVID-19–related out-
comes [79, 92, 93]. An analysis using the Open-
SAFELY platform across five pandemic waves 
spanning nearly 2.5 years in England (through 
omicron BA.5 dominance) revealed that vac-
cines and advancements in COVID-19 manage-
ment substantially decreased population-level 

COVID-19–related mortality risks during subse-
quent waves of the pandemic; however, persis-
tent inequalities and vulnerabilities were found 
among clinical and demographic subgroups, 
particularly among people with comorbidi-
ties or immunocompromising conditions ver-
sus those without such conditions [81]. In the 
first pandemic wave, the highest standardized 
COVID-19–related death rates were seen in peo-
ple aged ≥ 80 years and in those with immu-
nocompromising conditions; in later waves, 
larger decreases (90‒91% decrease) in COVID-
19–related death rates were seen in groups 
prioritized for primary SARS-CoV-2 vaccina-
tion, including those aged ≥ 80 years and those 
with neurological disease, learning disability, 
or severe mental illness [81]. The most recent 
effectiveness estimates, using Centers for Disease 
Control and Prevention (CDC) data from the 
2023‒2024 season, including the omicron XBB 
lineage and JN.1 variant, show that the updated 
monovalent XBB.1.5 COVID-19 vaccines were 
effective, with a rVE of approximately 50% 
(compared with no updated vaccine) against 
symptomatic SARS-CoV-2 infection in adults 
aged ≥ 50 years and vaccine effectiveness (VE) 
of approximately 50% against COVID-19–related 
hospitalizations in adults aged ≥ 65 years [82, 
94]. Results of comparative effectiveness and 
safety studies using large, linked claims and elec-
tronic health record databases in older US adults 
suggest that mRNA-1273 may have a lower risk 
of adverse thromboembolic events and a higher 
rVE in preventing COVID-19–related outcomes 
(hospitalizations and outpatient visits) com-
pared with BNT162b2, with a greater protection 
seen among adults ≥ 65 years of age [77, 83].

Individuals with immunocompromising con-
ditions have been disproportionately affected by 
COVID-19, with an increased risk of severe out-
comes, including breakthrough infection, hos-
pitalization, and death, even with vaccination 
[95]. Although accounting for only 3.9% of the 
population of England, immunocompromised 
people comprised > 20% of COVID-19 hospi-
talizations, intensive care unit admissions, and 
deaths in the omicron era, even though > 80% 
of these individuals have received ≥ 3 doses of 
a COVID-19 vaccine [96]. Rates of seroconver-
sion and antibody titers following COVID-19 
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vaccination are significantly lower in individ-
uals with immunocompromising conditions 
compared with those without immunocompro-
mising conditions, [97] suggesting that modi-
fied vaccination approaches may be needed to 
bolster immune responses in this population. 
Real-world effectiveness studies in high-risk 
populations (aged ≥ 65 years, high-risk comorbid 
conditions, and/or immunocompromising con-
ditions), including data through the omicron 
era, have demonstrated potentially diminished 
effectiveness but still favorable effectiveness and 
safety profiles with updated COVID-19 vaccines 
in these groups [79, 84, 85, 87]. In a matched 
cohort study of US adults (median age, 65 years) 
with immunocompromising conditions, a third 
dose of mRNA-1273 improved protection against 
SARS-CoV-2 infection (adjusted relative VE, 
55.0%; 95% CI, 50.8‒58.9%), COVID-19 hospi-
talization (83.0%; 75.4‒88.3%), and COVID-19 
inpatient mortality (87.1%; 30.6‒97.6%) com-
pared with two doses [87]. Notably, adjusted 
relative VE was numerically higher for persons 
aged ≥ 75 years compared with those aged 18‒44 
years (58.5 vs. 49.8, respectively), suggesting a 
slightly enhanced protective effect in this group 
[87]. Some real-world studies in these popula-
tions have shown that mRNA-1273 vaccination 
compared with BNT162b2 vaccination is associ-
ated with a significantly reduced risk of severe 
outcomes, including breakthrough SARS-CoV-2 
infection, severe COVID-19, COVID-19–associ-
ated hospitalization, and COVID-19–associated 
mortality [85, 86]. Overall, enhanced protec-
tive measures, such as the use of additional or 
booster vaccine doses, may be needed for indi-
viduals with immunocompromised conditions 
[86, 98].

Long COVID encompasses a range of poten-
tially debilitating physical and psychological 
symptoms, likely to be driven by host immune 
responses, and can affect multiple organ sys-
tems and persist for weeks or months beyond 
the acute phase of COVID-19 [99]. The burden 
of disease associated with long COVID is large, 
affecting an estimated 10% of infected indi-
viduals or ≥ 65 million people worldwide, with 
incidence increasing to 50–70% among those 
hospitalized for COVID-19 [100]. The impact of 
vaccination on long COVID is not entirely clear, 

due in part to heterogeneity of case definitions, 
study methods, and differing time since vaccina-
tion; however, studies generally seem to indicate 
protection associated with vaccination [100]. 
Meta-analyses among adults ≥ 18 years of age 
have indicated that receipt of COVID-19 vacci-
nation (BNT162b2, mRNA-1273, Ad26.COV2.S, 
or ChAdOx1) prior to a diagnosed SARS-CoV-2 
infection, may have a significant protective 
effect against long COVID (overall VE, 30‒50%) 
and against long COVID-associated signs and 
symptoms such as persistent fatigue and pulmo-
nary disorders [58, 101, 102]. In a large cohort 
study among adults aged ≥ 18 years in Sweden 
through the omicron era, VE for the prevention 
of long COVID was 73% overall after 3 vaccine 
doses, 55% in those aged ≥ 65 years, and 55–71% 
in those with comorbidities (cardiovascular, pul-
monary, or diabetes) [88]. In a meta-analysis of 
adults ≥ 18 years of age (41 studies), increasing 
age and comorbidities were important identi-
fied risk factors for developing post-COVID 
conditions, whereas vaccination with ≥ 2 doses 
(BNT162b2, mRNA-1273, or ChAdOx1 nCoV-19) 
had a protective effect [odds ratio (OR), 0.57; 
95% CI, 0.43‒0.76], highlighting the benefit 
of vaccination in this key population [103]. 
A multinational study in European countries 
found that vaccination with any first vaccine 
dose (BNT162b2 or ChAdOx1) in adults was 
associated with an overall VE of 29–52% for the 
prevention of long COVID, with consistent pro-
tection against all age groups, including cohorts 
aged ≥ 75 years and ≥ 65 years [89]. These results 
were robust to multiple sensitivity analyses and 
different definitions of long COVID, including 
durations of symptoms and clinically diagnosed 
long COVID [89].

Overall, COVID-19 mRNA vaccines have 
proven to be the most sustainable and effec-
tive public health measure available [104], and 
were instrumental in mitigating the impact of 
the pandemic. Although strategies will need to 
constantly reevaluate the impact of emerging 
variants on outcomes and durability of protec-
tion, cost-effectiveness studies have shown that 
COVID-19 vaccination programs are uniformly 
cost-effective across a variety of countries in 
World Health Organization (WHO) regions 
[105]. The EMA as well as the US CDC and 
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ACIP recommend that all persons ≥ 6 months 
of age receive vaccination with updated mRNA 
COVID-19 vaccines irrespective of prior vaccina-
tion [106–108]. Because individuals can choose 
the COVID-19 vaccine they receive, it may be 
important for clinical guidelines to address 
which populations stand to benefit most from 
specific updated mRNA vaccines over time.

Impact of Influenza Vaccines

Between 1999 and 2015, influenza virus was 
responsible for an estimated 0.3 to 0.6 mil-
lion annual respiratory deaths globally, with 
the highest rates observed among individuals 
aged ≥ 75 years [109]. Compared with SARS-
CoV-2 and RSV, influenza comprises a diverse 
family of pathogens and strains, with seasonal 
patterns that vary between regions and coun-
tries, together posing a singular challenge for 
preventive strategies. Although 4 major types 
of influenza circulate, only type A (H1N1 and 
H3N2) causes widespread viral activity and epi-
demics in humans; type B (Yamagata and Victo-
ria lineages) is more commonly associated with 
outbreaks in care settings rather than epidemic 
disease [110]. In the temperate zones of the 
Northern and Southern Hemispheres, influenza 
A activity manifests as seasonal disease during 
the respective winter in each region, whereas 
tropical zones are sometimes characterized by 
bimodal seasonality and year-round transmis-
sion [19]. Influenza vaccine compositions are 
thus updated annually by the WHO Global 
Influenza Surveillance and Response System 
in response to circulating influenza virus activ-
ity [110]. Both quadrivalent and trivalent vac-
cine formulations have been recommended, 
although the global absence of the B/Yamagata 
lineage from circulation in recent years has 
resulted in the WHO revising recommendations 
to omit this influenza B component beginning 
in the 2024‒2025 influenza season in the North-
ern and Southern Hemispheres [110].

Seasonal influenza vaccines are largely manu-
factured using an egg-based process, although 
recombinant and cell culture-based options are 
also available [111], and the overall effective-
ness of these vaccines varies by population and 

season. In the United States, it is estimated that 
VE among the general population is 40–60% 
during seasons when vaccines are well-matched 
to circulating strains [112, 113]. In addition to 
one cell culture-derived quadrivalent influenza 
vaccine (QIV) vaccine, a variety of enhanced 
influenza vaccines are currently available for use 
in older adults, including two egg-based vaccines 
and one recombinant protein vaccine (Table 2) 
[114–117]. Compared with standard-dose vac-
cines, high-dose vaccines offer significantly 
greater protection against influenza-like illness 
and influenza in older adults and may attenu-
ate progression to severe disease (pneumonia, 
intensive care unit admission, and death) [40]. 
Although current influenza vaccines may pro-
vide moderate protection, vaccine-induced 
immunity declines over the course of an influ-
enza season, and effectiveness may also vary 
widely between vaccines and be greatly reduced 
or absent in some seasons [41, 44, 118].

The relatively variable VE of current influenza 
vaccines reflects a multitude of viral-, host- (i.e., 
age and immune function), and vaccine-related 
factors that impact vaccine performance [113, 
118, 119]. Major challenges to VE are related 
to strain mismatch of vaccines to circulating 
strains due to egg-adapted mutations acquired 
during manufacture or antigenic drift occur-
ring during the 6-month production time [45, 
113]. Viral adaptations resulting in impaired 
antibody responses to the circulating strain are 
a potential consequence of egg-based manufac-
turing, a time-consuming process that may limit 
production capacity [43]. Antigenic drift is an 
inherent feature of influenza viruses that leads 
to the accumulation of changes in major surface 
proteins [hemagglutinin (HA) and neuramini-
dase (NA)] and subsequent evasion of humoral 
immunity, thus rendering existing vaccines 
less effective against new strains [120]. Because 
production times are approximately 6 months 
from the determination of initial vaccine com-
position recommendations, antigenically diver-
gent clades from the original target can lead to 
antigenic mismatch [45]. Host-related factors 
also challenge influenza VE; people with immu-
nocompromising conditions, including organ 
transplant, malignancy, or receipt of immu-
nomodulating therapies, are at a heightened 



S78 Infect Dis Ther (2025) 14 (Suppl 1):S63–S97

Ta
bl

e 2
  S

tu
di

es
 o

f t
he

 im
pa

ct
 o

f e
nh

an
ce

d 
an

d 
ce

ll-
ba

se
d 

in
flu

en
za

 va
cc

in
es

 in
 ad

ul
ts

En
ha

nc
ed

 va
cc

in
es

St
an

da
rd

-d
os

e v
ac

ci
ne

s

Va
cc

in
e

Fl
uz

on
e H

D
 Q

IV
 (I

IV
3-

H
D

) 
[1

14
]

Fl
ua

d 
M

F5
9-

ad
ju

va
nt

ed
 Q

IV
 

(a
Q

IV
) [

11
5]

Fl
ub

lo
k 

Q
IV

 (R
IV

4)
 [1

16
]

Fl
uc

el
va

x 
Q

IV
 [1

17
]

Va
cc

in
e t

yp
e

Eg
g-

ba
se

d
Eg

g-
ba

se
d,

 M
F5

9-
ad

ju
va

nt
ed

R
ec

om
bi

na
nt

 p
ro

te
in

C
el

l-b
as

ed

D
os

e
60

 μ
g o

f H
A

 p
er

 st
ra

in
60

 µ
g (

15
 µ

g H
A

 ea
ch

 fo
r t

he
 2

 
in

flu
en

za
 ty

pe
 A

 an
d 

ty
pe

 B
 

str
ai

ns
)

45
 μ

g o
f r

ec
om

bi
na

nt
 H

A
 p

er
 

str
ai

n 
(1

80
 μ

g o
f p

ro
te

in
 p

er
 

do
se

)

15
 μ

g p
er

 0
.5

 m
L 

PF
S 

(1
5 

µg
 

he
m

ag
gl

ut
in

in
 p

er
 st

ra
in

)

St
ud

y d
es

ig
n

Ph
as

e 3
b–

4 
tr

ia
l c

om
pa

rin
g 

II
V

3-
H

D
 w

ith
 a 

st
an

da
rd

 d
os

e 
va

cc
in

e (
II

V
3-

SD
)

Ph
as

e 3
 tr

ia
l c

om
pa

rin
g a

Q
IV

 
w

ith
 a 

no
n-

in
flu

en
za

 co
m

pa
ra

-
to

r v
ac

ci
ne

Ph
as

e 3
–4

 tr
ia

l c
om

pa
rin

g R
IV

4 
w

ith
 an

 F
D

A
-a

pp
ro

ve
d 

in
ac

ti-
va

te
d 

va
cc

in
e (

II
V

4)

Ph
as

e 3
 tr

ia
l c

om
pa

rin
g c

el
l 

cu
ltu

re
-d

er
iv

ed
 va

cc
in

e  
(F

lu
ce

lv
ax

 Q
IV

) a
nd

 eg
g-

ba
se

d 
T

IV
 an

d 
pl

ac
eb

o

A
ge

 o
f s

tu
dy

 p
op

ul
at

io
n

 ≥
 6

5 
ye

ar
s

 ≥
 6

5 
ye

ar
s

 ≥
 5

0 
ye

ar
s

18
–4

9 
ye

ar
s

C
ou

nt
rie

s
U

ni
te

d 
St

at
es

 an
d 

C
an

ad
a

Bu
lg

ar
ia

, C
ol

om
bi

a, 
C

ze
ch

 
R

ep
ub

lic
, E

st
on

ia
, L

at
vi

a, 
Li

th
-

ua
ni

a, 
M

al
ay

sia
, P

hi
lip

pi
ne

s, 
Po

la
nd

, R
om

an
ia

, Th
ai

la
nd

, 
an

d 
Tu

rk
ey

U
ni

te
d 

St
at

es
U

ni
te

d 
St

at
es

, F
in

la
nd

, a
nd

 
Po

la
nd

Effi
ca

cy
R

el
at

iv
e t

o 
II

V
3-

SD
, e

ffi
ca

cy
 o

f 
II

V
3-

H
D

 w
as

 2
4.

2%
 fo

r t
he

 
pr

im
ar

y e
nd

po
in

t o
f l

ab
or

a-
to

ry
-c

on
fir

m
ed

 in
flu

en
za

 ≥
 1

4 
da

ys
 p

os
t-v

ac
ci

na
tio

n
Pr

e-
sp

ec
ifi

ed
 su

pe
rio

rit
y c

rit
e-

rio
n 

w
as

 m
et

Effi
ca

cy
 w

as
 1

9.
8%

 fo
r t

he
 

pr
im

ar
y e

nd
po

in
t o

f a
ny

 R
T-

PC
R

–c
on

fir
m

ed
 in

flu
en

za
 

oc
cu

rr
in

g a
fte

r d
ay

 2
1

Pr
es

pe
ci

fie
d 

su
cc

es
s c

rit
er

io
n 

w
as

 
no

t m
et

R
el

at
iv

e v
ac

ci
ne

 effi
ca

cy
 w

as
 3

0%
 

fo
r t

he
 p

rim
ar

y e
nd

po
in

t o
f 

RT
-P

C
R

–c
on

fir
m

ed
 in

flu
en

za
-

lik
e i

lln
es

s o
cc

ur
rin

g ≥
 1

4 
da

ys
 , 

po
st

-v
ac

ci
na

tio
n 

(a
ny

 in
flu

en
za

 
vi

ru
s t

yp
e)

Effi
ca

cy
 w

as
 8

3.
8%

 ag
ai

ns
t 

va
cc

in
e-

lik
e s

tr
ai

ns
 an

d 
69

.5
%

 
ag

ai
ns

t a
ll 

ci
rc

ul
at

in
g s

tr
ai

ns
 

fo
r t

he
 p

re
ve

nt
io

n 
of

 la
bo

ra
-

to
ry

-c
on

fir
m

ed
 in

flu
en

za
 ≥

 2
1 

da
ys

 aft
er

 va
cc

in
at

io
n



S79Infect Dis Ther (2025) 14 (Suppl 1):S63–S97 

FD
A 

U
S 

Fo
od

 an
d 

D
ru

g 
A

dm
in

ist
ra

tio
n,

 G
M

T
 g

eo
m

et
ric

 m
ea

n 
tit

er
, H

A 
he

m
ag

gl
ut

in
in

, H
A

I h
em

ag
gl

ut
in

at
io

n 
in

hi
bi

tio
n,

 H
D

 h
ig

h-
do

se
, Q

IV
 q

ua
dr

iv
al

en
t i

nfl
u-

en
za

 v
ac

ci
ne

, P
FS

 p
ho

sp
ha

te
-b

uff
er

ed
 sa

lin
e, 

RI
V4

 q
ua

dr
iv

al
en

t r
ec

om
bi

na
nt

 in
flu

en
za

 v
ac

ci
ne

, R
T-

PC
R 

re
al

-ti
m

e 
po

ly
m

er
as

e 
ch

ai
n 

re
ac

tio
n,

 S
A

E 
se

rio
us

 a
dv

er
se

 
ev

en
t, 

SD
 st

an
da

rd
 d

os
e, 

T
IV

 tr
iv

al
en

t i
na

ct
iv

at
ed

 in
flu

en
za

 va
cc

in
e

Ta
bl

e 2
  c

on
tin

ue
d

En
ha

nc
ed

 va
cc

in
es

St
an

da
rd

-d
os

e v
ac

ci
ne

s

Va
cc

in
e

Fl
uz

on
e H

D
 Q

IV
 (I

IV
3-

H
D

) 
[1

14
]

Fl
ua

d 
M

F5
9-

ad
ju

va
nt

ed
 Q

IV
 

(a
Q

IV
) [

11
5]

Fl
ub

lo
k 

Q
IV

 (R
IV

4)
 [1

16
]

Fl
uc

el
va

x 
Q

IV
 [1

17
]

Im
m

un
og

en
ic

ity
Fo

r a
ll 

3 
va

cc
in

e s
tr

ai
ns

, H
A

I 
an

tib
od

y G
M

Ts
 an

d 
se

ro
pr

o-
te

ct
io

n 
ra

te
s a

t 2
8 

da
ys

 p
os

t-
va

cc
in

at
io

n 
w

er
e s

ig
ni

fic
an

tly
 

hi
gh

er
 aft

er
 va

cc
in

at
io

n 
w

ith
 

II
V

3-
H

D
 th

an
 w

ith
 II

V
3-

SD

A
t d

ay
 2

2 
po

st
-v

ac
ci

na
tio

n,
 a 

sig
ni

fic
an

tly
 h

ig
he

r p
ro

po
rt

io
n 

of
 p

ar
tic

ip
an

ts
 in

 th
e a

Q
IV

 
gr

ou
p 

ha
d 

H
A

I a
nt

ib
od

y 
G

M
Ts

 o
f ≥

 1
:4

0 
co

m
pa

re
d 

w
ith

 th
e n

on
-in

flu
en

za
 va

cc
in

e 
co

m
pa

ra
to

r g
ro

up

Th
e p

ro
po

rt
io

ns
 o

f s
ub

je
ct

s 
w

ith
 p

os
t-v

ac
ci

na
tio

n 
H

A
I 

tit
er

s ≥
 1

:4
0 

w
er

e s
im

ila
r 

be
tw

ee
n 

th
e 2

 va
cc

in
e g

ro
up

s

N
o 

di
ffe

re
nc

es
 in

 b
as

el
in

e s
er

o-
pr

ot
ec

tio
n 

ra
te

s, 
se

ro
co

nv
er

-
sio

n 
ra

te
s, 

an
d 

H
A

I a
nt

ib
od

y 
G

M
Ts

 w
er

e s
ee

n 
be

tw
ee

n 
th

e 
st

ud
y g

ro
up

s

Sa
fe

ty
Th

e r
el

at
iv

e r
isk

 fo
r e

xp
er

ie
nc

-
in

g ≥
 1

 S
A

E 
w

ith
 II

V
3-

H
D

 
co

m
pa

re
d 

w
ith

 II
V

3-
SD

 w
as

 
0.

92
 (9

5%
 C

I, 
0.

85
–0

.9
9)

SA
Es

 o
cc

ur
re

d 
at

 a 
sim

ila
r r

at
e i

n 
th

e a
Q

IV
 g

ro
up

 an
d 

co
m

-
pa

ra
to

r g
ro

up
 (7

.0
%

 an
d 

6.
9%

, 
re

sp
ec

tiv
el

y)

W
ith

in
 6

 m
on

th
s a

fte
r v

ac
ci

na
-

tio
n,

 3
.4

%
 o

f t
he

 R
IV

4 
gr

ou
p 

an
d 

3.
0%

 o
f t

he
 II

V
4 

gr
ou

p 
ha

d 
≥ 

1 
SA

E

N
o 

cl
in

ic
al

ly
 re

le
va

nt
 d

iff
er

en
ce

s 
in

 sa
fe

ty
 an

d 
re

ac
to

ge
ni

ci
ty

 
w

er
e s

ee
n 

be
tw

ee
n 

th
e 2

 va
c-

ci
ne

 g
ro

up
s, 

an
d 

no
 S

A
Es

 w
er

e 
co

ns
id

er
ed

 re
la

te
d 

to
 th

e s
tu

dy
 

va
cc

in
e



S80 Infect Dis Ther (2025) 14 (Suppl 1):S63–S97

risk of complications following influenza infec-
tion, and both vaccination rates and vaccine-
mediated immunogenicity are suboptimal in 
this population [121]. However, vaccine studies 
often use population or pooled data that may 
not account for prior exposure, population prev-
alence of antibodies, and asymptomatic disease; 
thus, true correlates of protection are difficult to 
derive and interpret. These challenges associated 
with the development and implementation of 
influenza vaccines are inherent in the virology 
of influenza and suggest a need for new vaccine 
strategies.

Alternative approaches to overcome limita-
tions of conventional influenza vaccines are 
under clinical investigation [113]. One such 
approach is the mRNA platform, which has a 
simplified and highly scalable manufacturing 
process compared with conventional vaccines; 
shortened production timelines could thus 
enable selection of influenza vaccine strains 
closer to the start of influenza season, thereby 
increasing the likelihood of targeting circulat-
ing strains and limiting vaccine mismatch [122, 
123]. Studies on SARS-CoV-2 mRNA-based vac-
cines, mRNA-1273 and BNT162b2, have shown 
that mRNA vaccines can induce strong cellu-
lar responses and germinal center reactions, 
which could improve protection in older adults 
[124–126]. In addition, the mRNA platform 
allows for targeting additional antigenic sites, 
which may broaden protection by improv-
ing immunity against more conserved targets, 
including additional HA antigens and HA plus 
NA antigens [113, 127, 128]. This concept is 
being advanced in clinical trials for two candi-
date mRNA vaccines, mRNA-1010 and mRNA-
1012 (ClinicalTrials.gov: NCT05827068), which 
include additional HA antigens for influenza A.

Published clinical findings on an mRNA 
influenza vaccine are currently available for 
the mRNA-1010 vaccine (Moderna), an inves-
tigational seasonal influenza vaccine that 
encodes membrane-bound HA glycoprotein 
derived of influenza strains recommended by 
WHO [122]. In a first-in-human randomized, 
observer-blinded, multicenter, phase 1/2 clini-
cal trial (NCT04956575) in healthy adults aged  
≥  18 years, a single dose of mRNA-1010 
elicited HA inhibition antibodies against 

vaccine-matched strains at 28 days post-vac-
cination, irrespective of participant age [122]. 
Compared with a standard-dose influenza vac-
cine in medically stable adults, mRNA-1010 
elicited higher immunogenicity for influenza 
A strains and comparable immunogenicity for 
influenza B strains [122]. Overall, mRNA-1010 
had an acceptable reactogenicity profile, and 
most solicited adverse reactions were transient 
and grade 1 or grade 2 in severity [122].

Routine annual influenza vaccination has 
been shown to be a highly cost-effective inter-
vention in a variety of settings and in both high-
income and low- and middle-income countries, 
with the greatest impact noted in high-risk 
groups (adults aged ≥ 65 years and individuals 
with underlying comorbidities) [129–131]. Fur-
ther cost-effectiveness studies will be needed 
to assess the benefits of mRNA-based vaccines 
against their aforementioned logistical chal-
lenges. Currently, the EMA and ACIP recom-
mend that adults aged ≥ 65 years should prior-
itize receiving one of the following enhanced 
influenza vaccines: Fluzone HD QIV (HD-IIV4), 
Flublok QIV (RIV4), or Fluad QIV [132].

Impact of RSV Vaccines

Although the global burden of RSV is highest 
in children < 5 years of age, older adults and 
adults with certain underlying comorbidities 
are at elevated risk of RSV infection and severe 
outcomes, including hospitalization and death 
[22–24, 26, 133, 134]. RSV is responsible for an 
estimated 5.2 million annual cases of RSV-asso-
ciated acute respiratory infections and 33,000 
in-hospital deaths in adults ≥ 60 years of age 
in high-income countries [135]. The seasonality 
of RSV varies according to climate and geogra-
phy; however, RSV is notable for its consistently 
major annual burden of disease, compared with 
the highly variable impact of influenza [15, 136]. 
A cost-effectiveness analysis in the United States 
showed that an RSV vaccine could be cost-effec-
tive and substantially reduce the direct burden 
of RSV illness among older adults [137].

Recently, improved understanding of the 
structure of RSV envelope fusion (F) glycopro-
tein and its stabilization in the prefusion (preF) 
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conformation has advanced RSV vaccine devel-
opment [138, 139]. RSV-F glycoprotein medi-
ates fusion and is necessary for RSV infection 
to occur [140]. RSV preF protein is highly con-
served across the two primary cocirculating sub-
types of RSV-A and RSV-B, and is the primary 
target of RSV-neutralizing antibody activity 
[140], which has led to its use as a key target 
of RSV vaccine development. Progress toward 
an RSV vaccine was stalled for several years fol-
lowing clinical trials in previously RSV-naïve 
infants and children in the 1960s investigat-
ing a formalin-inactivated vaccine. Vaccine-
associated enhanced disease (VAED) was shown 
to develop possibly due to the generation of a 
nonprotective antibody response with low avid-
ity for RSV-F and administration of RSV-F in the 
post-fusion conformation, which is less stable 
and generates antibodies with lower neutralizing 
capacity compared with preF [141]. In children, 
VAED has been linked to induction of a T-helper 
2 (Th2)-biased T-cell response [142–144]. Despite 
these challenges, two protein-based subunit vac-
cines [RSVPreF3 (GSK), RSVpreF (Pfizer)] have 
been approved for the prevention of RSV-asso-
ciated lower respiratory tract disease (LRTD) in 
older adults, while RSVpreF has been approved 
for pregnant persons at 32–36 weeks gesta-
tional age to pass on protection to their baby 
[145, 146]. Additionally, an mRNA-based vac-
cine, mRNA-1345, was recently approved in the 
United States for use in adults aged 60 years and 
older [146].

RSVPreF3 (AREXVY; GSK, Brentford, 
Middlesex, UK) vaccine, a recombinant 
 AS01E-adjuvanted subunit vaccine containing 
F protein stabilized in the preF conformation 
[37], was the first vaccine to receive US Food 
and Drug Administration (FDA) authorization 
for the prevention of RSV-associated LRTI. This 
approval was followed by that for RSVpreF 
 (ABRYSVO®; Pfizer, New York, NY, USA), a 
bivalent protein subunit vaccine containing 
conformation-stabilized preF glycoproteins 
with a sequence derived from RSV-A and RSV-B 
[147, 148]. In clinical trials, both RSVPreF3 and 
RSVpreF elicited a ≥ tenfold increase in neu-
tralizing activity and similar durability through 
1 year, suggesting substantial durable protec-
tion [149, 150]. Both vaccines were efficacious 

for the prevention of RSV-associated LRTI 
(RSVPreF3: VE 82.6%; 96.95% CI, 57.9‒94.1) 
and LRTD (RSVpreF: VE 66.7%; 96.66% CI, 
28.8‒85.8) and were generally well-tolerated 
(Table 3) [37–39, 150, 151], although the FDA 
imposed post-marketing pharmacovigilance 
studies for the evaluation of Guillain–Barré 
syndrome (both vaccines) and acute dissemi-
nated encephalomyelitis (RSVPreF3) risks due 
to a potential safety signal observed during 
these trials [152, 153]. An additional RSV vac-
cine approved in 2024 for use in adults ≥ 60 
years of age is mRNA-1345 (Moderna, Cam-
bridge, MA, USA), an mRNA-based vaccine 
consisting of a lipid nanoparticle‒encapsulated 
mRNA vaccine encoding membrane-anchored 
preF conformation-stabilized RSV-F glycopro-
tein derived from the RSV-A strain [39, 146]. 
The efficacy of mRNA-1345 for the prevention 
of RSV-associated LRTD was demonstrated in 
the phase 3 ConquerRSV trial, which showed 
initial VE of 83.7% (95.88% CI, 66.0‒92.2; 
one-sided P < 0.001) and 82.4% (96.36% CI, 
34.8‒95.3; one-sided P = 0.008) for RSV-LRTD 
with ≥ 2 signs/symptoms and ≥ 3 signs/symp-
toms, respectively, meeting the prespecified 
criterion for efficacy (lower boundary of the 
alpha-adjusted CI > 20%) [39]. The mRNA-1345 
vaccine was efficacious across subgroups by age 
and preexisting comorbidities and protective 
against both RSV subtypes A and B [39]. No 
VAED was observed for RSVpreF, RSVPreF3, and 
mRNA-1345 in any clinical trials [39, 148, 149]. 
Observational VE data were recently presented 
at the ACIP meeting in June 2024, which dem-
onstrated that RSV vaccination provided pro-
tection against severe RSV disease and RSV-
associated emergency visits, hospitalizations, 
and critical illness in the first season of use 
among US adults aged ≥ 60 years, similar to 
the results from clinical trials; however, ongo-
ing monitoring of RSV VE is needed to confirm 
these findings [158].

The two protein-based vaccines, RSVPreF3 
and RSVpreF, were approved by the FDA in May 
2023 and by the EMA in June 2023 and August 
2023, respectively, for the prevention of RSV-
associated LRTD in adults aged ≥ 60 years [152, 
153]. RSVpreF was further approved by the FDA 
in August 2023 for use in pregnant individuals 
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to prevent LRTD in infants [154]. On June 21, 
2023, the ACIP and CDC recommended that 
adults ≥ 60 years of age may receive a single 
dose of RSV vaccine, using a shared clinical 
decision-making approach [155]. Shared deci-
sion-making may improve satisfaction and 
reduce decisional uncertainty among patients, 
and its benefits may potentially be greatest 
among populations with the lowest health lit-
eracy [156]. The mRNA-1345 vaccine has also 
received breakthrough status from the FDA 
and was approved on May 31, 2024, to pro-
tect adults aged 60 years and older from LRTD 
caused by RSV infection [157]. Overall, due to 
the recent development and approval of RSV 
vaccines, outcomes and immunogenicity data 
for these vaccines are much less comprehen-
sive than those for the other respiratory viruses 
discussed. Along with studies assessing dura-
bility of protection and the potential need for 
booster immunizations, additional long-term 
real-world effectiveness data will be needed to 
assess the ongoing impact of RSV vaccines and 
performance in high-risk groups, including the 
immunocompromised. Additionally, continued 
post-marketing studies are necessary to resolve 
concerns over possible safety signals for Guil-
lain–Barré syndrome and acute disseminated 
encephalomyelitis with protein-based vaccines. 
Whether similar requirements will be imposed 
following the approval of mRNA-1345 remains 
to be seen. Importantly, the infrastructure for 
the storage and distribution of RSV vaccines 
will also need to be developed to support pub-
lic health initiatives and guidelines endorsing 
RSV vaccination.

Factors Affecting Differences in Vaccine 
Uptake

Vaccine uptake within a population, or the 
number of people vaccinated with a certain 
dose of vaccine in a specified time period, is 
a critical metric of protection for high-risk 
groups, with poor uptake increasing the likeli-
hood that vulnerable individuals, such as older 
adults or those who have comorbidities or 
immunocompromising conditions, are suscep-
tible to infections and related severe outcomes 
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[159–162]. Thus, programs to increase vaccine 
coverage and uptake should focus on specific 
at-risk populations, such as those with high-
risk conditions and their close contacts or car-
egivers, particularly in zones of high popula-
tion density and household overcrowding [163, 
164]. Uptake is influenced by various factors, 
including cultural and socioeconomic ele-
ments [50, 165], and vaccination rates differ 
dramatically across demographic strata, with 
notable variations by race/ethnicity, religion, 
and household wealth [166, 167].

One major factor impacting uptake is vac-
cine hesitancy, a multifaceted phenomenon 
encompassing the refusal, reluctance, or post-
ponement of accepting vaccination despite 
the availability of vaccination services; this 
reluctance may be caused, in part, by vaccine 
cost and concerns regarding vaccine technol-
ogy [3, 50]. Furthermore, government support 
and the political atmosphere exert a variable 
but substantial influence on vaccine accept-
ance across different countries [168], and trust 
in government has been a key issue affecting 
the success of global vaccination campaigns, 
as most recently evidenced during the COVID-
19 pandemic [169]. In the United States, hesi-
tancy toward COVID-19 vaccination is high-
est in Black/African Americans and pregnant 
or breastfeeding women, while lower among 
men [170]. During the COVID-19 pandemic, 
influenza vaccination rates were also lowest 
among Black/African Americans, those of low 
educational attainment, and poorer individu-
als [166]. Because demographic inequalities in 
COVID-19 mortality were reflected in dispari-
ties of vaccination coverage, targeted efforts to 
increase uptake would likely have reduced the 
mortality burden in these groups [81].

Out-of-pocket cost and relative VE have also 
been identified as key factors in vaccination 
decision-making in different regional surveys; 
higher cost acts as a deterrent to vaccination, 
but individuals may be willing to pay more for 
greater VE [171–176]. The cost barrier may be 
more pronounced among some economically 
disadvantaged populations compared with other 
groups, which, in conjunction with higher rates 
of hesitancy described above, illustrates par-
ticular obstacles to vaccination among certain 

demographic subgroups and those who do not 
have health insurance [171]. Differences in 
uptake in population subgroups across different 
vaccine platforms highlight vulnerabilities and 
inequities in vaccination coverage, demonstrat-
ing the need for public health policy programs 
to address systemic barriers to vaccine uptake. 
Furthermore, funding for public health pro-
grams and vaccination varies dramatically across 
countries: to control COVID-19, low- and mid-
dle-income countries have depended substan-
tially on donations from developed countries 
and the COVID-19 Vaccines Global Access initia-
tive [177, 178]. Although more than 70% of the 
population in high-income countries completed 
the initial COVID-19 vaccination protocol, only 
2% of COVID-19 doses, including boosters, have 
been administered in low-income countries 
[177]. Compared with high-income countries, 
low- and middle-income countries generally 
have a smaller proportion of older vulnerable 
individuals but less robust and resilient health-
care systems [177]. These factors are reflected 
in the cost of immunization delivery, which is 
the main driver of the gap in successful national 
vaccination strategies, underlining the central 
role of strengthening health systems to achieve 
coverage goals [179].

Variations in vaccination rates are apparent 
throughout the world. Willingness to receive a 
COVID-19 vaccine was generally higher in low- 
and middle-income countries in Asia, Africa, 
and South America compared with the United 
States (mean 80.3% vs. 64.6%, respectively); in 
these countries, desire for personal protection 
and apprehension over vaccine side effects were 
the major factors in vaccine acceptance and 
hesitancy, respectively [180]. In Latin America, 
individual/group influences have been identi-
fied as the primary barrier to vaccination, with 
low socioeconomic status, lower education, 
and age contributing to low vaccine uptake, 
and education and trust in healthcare profes-
sionals enhancing vaccine acceptance [174]. A 
cross-sectional study involving respondents in 
10 countries in Asia, Africa, and South America 
found that female sex, identifying as Muslim, 
residence in rural areas, non-healthcare-related 
occupation, and non-receipt of influenza vac-
cination in the preceding year were significant 
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predictors of unwillingness to receive the 
COVID-19 vaccine [167]. In Europe, frequent 
engagement in the religious practice of praying 
(compared with never praying) and the holding 
of anti-elite, populist worldviews, independent 
of political preferences, increased the likelihood 
of exhibiting vaccine hesitancy compared with 
not engaging in praying and not holding those 
sentiments [168, 181]. These studies highlight 
the importance of the use of messaging that is 
adapted to specific regions, countries, and popu-
lation groups to address population-level factors 
influencing vaccine uptake.

Individuals with chronic diseases commonly 
report vaccine hesitancy, despite having an 
increased risk of direct and indirect complica-
tions and exacerbations due to preexisting ill-
ness. A survey in the United States found that 
vaccine hesitancy was reported by nearly 1 in 
5 respondents with comorbidities overall; of 
these respondents, 13.4% had cancer, 19.4% pre-
sented with autoimmune diseases, and 17.8% 
had chronic lung diseases [52]. Individuals with 
chronic conditions are significantly less likely to 
receive COVID-19 vaccination compared with 
those without such conditions, which is primar-
ily attributable to a lack of information, under-
estimation of personal risk, or fear of symptoms 
[51]. Tailoring public health messaging may thus 
reassure individuals with chronic diseases and 
aid in overcoming their concerns about post-
vaccination symptoms and the impact on daily 
function.

A general lack of understanding regarding 
the different vaccine platforms involved, com-
plicated by vaccine hesitancy, can also impact 
vaccine uptake. Hesitancy can vary by vaccine 
platform, with a reported disconnect between 
a person’s willingness to receive the influenza 
vaccine compared with the COVID-19 vaccine 
[182]. Furthermore, although more than one-
third of Americans expressed concern about the 
influenza, RSV, or COVID-19 vaccines, there was 
no consensus on which of these illnesses was 
perceived as the most severe, and knowledge 
about the related conditions varied among indi-
viduals [182]. Despite the apparent disconnect 
reported in this study, coadministration of influ-
enza and COVID-19 vaccines has led to a high 
uptake of both vaccines in adult populations 

[183, 184]. However, increasing the uptake 
among individuals who do not seek vaccina-
tion for either COVID-19 or influenza remains a 
general challenge. Increasing the knowledge and 
familiarity with newer vaccine technology and 
the disease state are thus important considera-
tions toward addressing vaccine hesitancy and 
refusal.

Coadminstration/Combination Respiratory 
Vaccines

Coinfection by multiple respiratory viruses may 
increase disease severity of illness, hospitaliza-
tion rates, and mortality rates; thus, simulta-
neous protection against SARS-CoV-2, RSV, 
and influenza viruses is an important public 
health goal [185–188]. However, the cocircula-
tion of these three viruses potentially compli-
cates immunization schedules, because vaccines 
should be administered ahead of the start of 
each viral season [189, 190]. Given the overlap-
ping patterns of risk common to SARS-CoV-2, 
RSV, and influenza viruses, multicomponent vac-
cine formulations and vaccine coadministration 
could streamline vaccination efforts and poten-
tially increase vaccine uptake in key populations 
[191]. Particularly for those with comorbidities, 
the recommended immunization schedule in 
adults is complex, which may be simplified by 
the coadministration of vaccines [192, 193]. 
By reducing the number of vaccine consulta-
tions, coadministration can also reduce costs 
and improve compliance [191, 194]. Addition-
ally, because new recommendations for recently 
authorized/approved vaccines may increase the 
complexity of vaccine schedules, coadminis-
tration can reduce the barrier to adoption and 
implementation of new vaccines [192].

Currently, coadministration of vaccines in 
older adults is under examination in several 
clinical trials, including those investigating 
COVID-19 (mRNA-1273, BNT162b2, ChAdOx1-
nCoV-19, and NVX-CoV2373), influenza, and 
RSV [183, 195–198] vaccines. Early results have 
demonstrated that coadministration of vaccines 
can increase immune responses against the rel-
evant viruses, with an acceptable safety pro-
file [183, 195–197, 199, 200]. The interactions 
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between these different vaccines have not been 
fully elucidated, and vaccine efficacy could be 
negatively affected by immune interference and 
immune imprinting caused by prior infection or 
vaccination [201]; however, most studies have 
demonstrated that coadministration of vaccines 
elicits adequate levels of antibodies to offer a 
protective response [197, 202]. Overall, coad-
ministration of vaccines could improve adher-
ence with vaccine recommendations according 
to age and risk, potentially reduce overall HCRU 
costs, and facilitate the adoption of new vaccines 
[191, 192]. Combining multiple vaccines in a 
single vial could also simplify the chemical logis-
tics (the physicochemical processes occurring 
during transport that impact vaccine potency) 
of vaccine administration [203], increasing the 
combined cost-effectiveness of vaccines and 
reducing the environmental impact of vaccine 
packaging and storage.

New vaccine modalities could be an impor-
tant approach toward development of a mul-
ticomponent vaccine that targets these viral 
pathogens. The mRNA platform can contain 
multiple mRNAs encoding several antigens in 
a single vaccine, thus expanding the breadth of 
protective responses against seasonal influenza 
or even multiple respiratory infections [204].  
A multicomponent mRNA vaccine capable of 
generating antibodies against numerous anti-
gen targets simultaneously  could target highly 
variable pathogens with antigenically distinct 
strains, such as influenza, rhinoviruses, and 
SARS-CoV-2 [204]. The mRNA platform also has 
a flexible and shortened vaccine development 
timeline, enabling periodic updates to vaccine 
compositions that target multiple circulating 
strains, thereby potentially enhancing coverage 
against disease [122, 204]. In addition, mRNA 
vaccines induce durable germinal center reac-
tions and strong cellular immune responses, 
which could improve protection in older adults 
[124–126]. Although mRNA vaccines face logisti-
cal challenges and stringent cold chain storage 
needs, which may pose barriers to distribution 
in certain regions [203], the expanding use of 
mRNA-based RSV vaccines and the correspond-
ing expansion of cold storage infrastructure 
could potentially address some of these barriers 
to use of other mRNA vaccines. mRNA vaccines 

may exhibit greater reactogenicity than tradi-
tional vaccines, and repeated inoculation may 
be associated with certain adverse reactions, 
such as hypersensitivity or myocarditis [205, 
206]. Nevertheless, mRNA vaccines are gener-
ally well-tolerated, severe reactions are rare, and 
the benefits outweigh the risks, particularly in 
older and high-risk populations [207]. The suc-
cess of mRNA-based vaccines against COVID-19 
and promising clinical results of mRNA influ-
enza and RSV vaccines have set the stage for the 
development of a combined respiratory vaccine 
that could provide protection against all three 
pathogens.

CONCLUSIONS

For SARS-CoV-2 and influenza, vaccines are the 
most potent and cost-effective tools available 
to reduce the risk of severe outcomes, particu-
larly among adults of older age and those with 
comorbid conditions. Novel vaccines have been 
approved for the prevention of RSV; however, 
extended outcomes data are needed to assess 
their long-term impact. New vaccine technolo-
gies, such as mRNA vaccines and vaccine coad-
ministration or combination, are potentially 
transformative in addressing ongoing viral and 
logistical barriers to immunization related to 
these viruses. Overall, the impact of vaccination 
against vaccine-preventable diseases is multifac-
eted, with implications beyond direct preven-
tion of disease, as described in the Introduction 
of this review. These far-reaching positive soci-
etal outcomes, which are not always quantifiable 
or recognized, should be highlighted to support 
the development of new vaccine technologies 
and to address challenges with vaccine uptake. 
Successful population-level vaccination against 
these viruses, including with mRNA vaccines, 
may also serve as a protective measure against 
future and emerging health threats.
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