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ABSTRACT

Vaccination represents a core preventive strategy
for public health, with interrelated and multi-
faceted effects across health and socioeconomic
domains. Beyond immediate disease prevention,
immunization positively influences downstream
health outcomes by mitigating complications of
preexisting comorbidities and promoting healthy
aging. Severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), influenza virus, and respira-
tory syncytial virus (RSV) are common respiratory
viruses responsible for broad societal cost and
substantial morbidity and mortality, particularly
among at-risk individuals, including older adults
and people with frailty or certain comorbid condi-
tions. In this narrative review, we summarize the
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overall impact of vaccination for these 3 viruses,
focusing on mRNA vaccines, each of which exhib-
its unique patterns of infection, risk, and transmis-
sion dynamics, but collectively represent a target
for preventive strategies. Vaccines for COVID-19
(caused by SARS-CoV-2) and influenza are effective
against the most severe outcomes, such as hospi-
talization and death; these vaccines represent the
most potent and cost-effective interventions for
the protection of population and individual health
against COVID-19 and influenza, particularly for
older adults and those with comorbid conditions.
Based on promising results of efficacy for the pre-
vention of RSV-associated lower respiratory tract
disease, the first RSV vaccines were approved in
2023. Immunization strategies should account for
various factors leading to poor uptake, including
vaccine hesitancy, socioeconomic barriers to access,
cultural beliefs, and lack of knowledge of vaccines
and disease states. Coadministration of vaccines
and combination vaccines, such as multicompo-
nent mRNA vaccines, offer potential advantages
in logistics and delivery, thus improving uptake
and reducing barriers to adoption of new vac-
cines. The success of the mRNA vaccine platform
was powerfully demonstrated during the COVID-
19 pandemic; these and other new approaches
show promise as a means to overcome existing
challenges in vaccine development and to sustain
protection against viral changes over time.

A graphical abstract and video abstract is
available with this article.
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Graphic abstract:
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Vaccines for COVID-19, influenza, and RSV

are protective against illness, and real-world
studies have demonstrated the effectiveness
of COVID-19 and influenza vaccines against
the most severe outcomes, including hospi-

talization and death.

Vaccination mitigates exacerbations of
preexisting comorbidities and long-term
consequences of infection, and a life-course
approach to vaccination promotes healthy
aging.

Barriers to maximizing impact of vaccination
include challenges in vaccine development
related to viral and logistical factors, as well
as social features contributing to poor uptake,
such as vaccine hesitancy and lack of knowl-
edge.

Coadministration of vaccines and combi-
nation vaccines, such as multicomponent
vaccines that protect against several viruses,
offer potential advantages in vaccine logis-
tics, which may improve uptake and reduce
barriers to adoption of new vaccines.

New platforms, such mRNA vaccines, may
help overcome existing challenges in current
non-mRNA vaccine development and sustain
protection against viral changes over time.

DIGITAL FEATURES

This article is published with digital features,
including a graphical abstract and video abstract,
to facilitate understanding of the article. To view
digital features for this article, go to https://doi.
org/10.6084/m9.figshare.270960S55.

INTRODUCTION

Vaccination is a pillar of public health, heralded
for its historic role in preventing and alleviating
the global burden of infectious diseases [1, 2].
Worldwide, vaccines are currently estimated to
prevent 2-3 million deaths per year; however,
a further 1.5 million deaths due to vaccine-
preventable diseases could be avoided through
increases in vaccine coverage and uptake [3].
Beyond reductions in mortality, the overall
impact of vaccines is multidimensional and
complex, with interrelated benefits across social,
health, and economic domains [2]. In addition
to their role in immediate disease prevention,
the positive impact of vaccines encompasses
mitigating complications as well as exacerba-
tions of preexisting comorbidities following
infection, including cardiac and cerebrovascular
events and exacerbations of chronic obstructive
pulmonary disease (COPD) [4-6]. This positive
impact extends to downstream general health
outcomes, particularly those associated with
aging and frailty, and life-course approach to
vaccination can play an important and multi-
faceted role in healthy aging by modulating
immune fitness and promoting the plasticity
and resilience of the immune system [7-9]. Even
on an individual level, immunization represents
one of the most cost-effective interventions in
public health, yielding substantial economic
benefits across diverse domains and an esti-
mated return on investment of up to 18% in
terms of productivity gains and healthcare cost
savings [10, 11].

Severe acute respiratory syndrome coro-
navirus2 (SARS-CoV-2), influenza virus, and
respiratory syncytial virus (RSV) are common
respiratory viruses responsible for substantial
morbidity and mortality, as described in other
articles of this supplement. The seasonal and
geographical distribution differ between each
of these viruses, contributing to variable pat-
terns of circulation according to social dynam-
ics, meteorological factors, and host factors
[12-19]. These three viruses present unique
public health and clinical challenges but also
demonstrate overlapping risks in certain pop-
ulations, collectively representing a target for
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preventive strategies. While these viruses affect
all age groups, older adults, those who are frail,
and individuals with certain comorbidities are
at disproportionate risk of complications and
progression to severe disease following infec-
tion [20-26]. Many of these underlying medi-
cal conditions, such as COPD and diabetes mel-
litus, represent age-independent common risk
factors for severe outcomes for all three respira-
tory viruses, with higher numbers of coexisting
comorbidities associated with increased risk
[20, 21, 23, 25]. In addition to impact on
health, these three viruses are responsible for
major societal costs, driven by direct factors
(i.e., hospitalization, intensive care, and inap-
propriate antibiotic use) and indirect factors
(i.e., productivity losses) [27-33].

Existing COVID-19 and influenza vaccines
have demonstrated effectiveness against the
most severe outcomes, including hospitaliza-
tion and death, and the first RSV vaccines were
approved in 2023 based on positive results of
efficacy from clinical trials [34-41]. COVID-19
vaccines, particularly mRNA-based vaccines,
have played an important role in the striking
downturn of COVID-19-related hospitaliza-
tions and deaths compared with the early
days of the pandemic, attributable to both
averted cases and attenuated severity, leading
to improved outcomes following infection [42].
Influenza vaccines provide moderate protec-
tion against virologically confirmed influenza;
however, this protection fluctuates seasonally
and may be greatly reduced or absent due to
many factors, including antigenic mismatch
with circulating strains and short duration of
vaccine-elicited immunity [41, 43-45]. Nota-
bly, during the COVID-19 pandemic, cases and
viral activity of RSV and influenza decreased
to unprecedented low global levels due to the
combined effects of multilayer public health
interventions [46, 47]. As a consequence of this
suppression, children who were very young or
born during the winter of 2020-2021 may not
have been exposed in their first months of life
and remain susceptible to infection by RSV and
influenza, potentially driving their epidemio-
logical rebound [48, 49].

Despite the availability of vaccines for
COVID-19, influenza, and RSV, and strong evi-
dence supporting their benefit to both indi-
viduals and populations, overall adherence to
recommendations and vaccine uptake are, in
general, universally suboptimal for a variety
of reasons, including vaccine hesitancy and
logistical challenges [3, 50]. Low uptake in
high-risk populations, such as those with cez-
tain comorbid conditions, has been attributed
to a lack of information or fear of symptoms,
and expanding vaccination in this group is key
to mitigating the impact of these respiratory
viruses [51, 52].

This narrative review aims to comprehen-
sively evaluate the known benefits of vaccina-
tion for COVID-19, influenza, and RSV toward
reducing morbidity and mortality, promoting
healthy aging, and generating broad socioeco-
nomic benefits, while simultaneously high-
lighting the major challenges and potential
future directions of vaccination approaches to
overcome developmental and logistical barri-
ers and to reduce disease burden worldwide.
Along with other vaccine options for influ-
enza and RSV, mRNA vaccines are highlighted
for their ongoing impact on mitigating severe
COVID-19-related outcomes and as an impor-
tant direction for new vaccines.

This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors.

Impact of COVID-19 Vaccines

Since its zoonotic emergence in December
2019, SARS-CoV-2 has caused more than 774
million cases and more than 7 million deaths,
as of March 2024 [53]. Acute SARS-CoV-2 infec-
tion is driven by viral replication and gener-
ally manifests within 5 days; by contrast, the
dysregulated immune response which is the
hallmark of severe COVID-19, occurring 7-10
days after symptom onset, leads to acute mul-
tiorgan disease, hospitalization, or death [54].
Whereas RSV and influenza have ongoing sea-
sonal impacts, our understanding of endemic
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Results

Interventions

Population Countries/

Methods

Table 1 continued

Study

regions

> 1 dose of BNT162b2, Vaccination with any COVID-19 first vaccine

United King-
mRNA-1273,

7= 1,618,395 (CPRD

A study of the effective-

Catalaetal.

dose was associated with a reduced risk of

5,729,800  dom, Spain,

GOLD), »

ness of COVID-19 vac-
cines in preventing long

2024 [89]

developing long COVID across all databases,

ChAdOx1, and Ad26.

CovaSs

Estonia

(CPRD AURUM),

with meta-analytic calibrated sHRs of 0.54

n = 2,744,821 (SID-

IAP), and #

COVID symptoms in

(95% CI, 0.44-0.67) in CPRD GOLD,
0.48 (0-34-0.68) in CPRD AURUM, 0.71

77,603

adults aged > 18 years

(CORIVA)

(0.55-0.91) in SIDIAP, and 0.59 (0.40-0.87)

in CORIVA

AE adverse event, 2HR adjusted hazard ratio, CDC US Centers for Disease Control and Prevention, CPRD Clinical Practice Research Datalink, HR hazard ratio,

KPSC Kaiser Permanente Southern California, OR odds ratio, RR relative risk, 7V’E relative vaccine effectiveness, SCIFI-PEARL Swedish COVID-19 Investigation
for Future Insights—a Population Epidemiology Approach using Register Linkage, SGTF S-gene target failure, SGTP S-gene target presence, SIDIAP Information

System for Research in Primary Care, VE vaccine effectiveness, VHA Veterans Health Administration, WHO World Health Organization

SARS-CoV-2 transmission and its cadence of
surges is still developing, with future ende-
micity yet to be determined [13, 55, 56].
Additionally, a succession of highly mutated
variant strains and lineages have arisen since
the ancestral virus (i.e., alpha, beta, gamma,
and delta), with the omicron lineage having
obtained global dominance over earlier strains
[57]. Since the emergence of ancestral SARS-
CoV-2, relatively high levels of infection and
cases of symptomatic COVID-19 still occur,
although with relatively low incidence of hos-
pitalizations and deaths compared to the pan-
demic phase [56]. COVID-19 vaccines played
an integral role in containing the COVID-19
pandemic and limiting its global impact [34,
58]. However, adults aged > 65 years remain at
elevated risk, accounting for 63% of COVID-
19 hospitalizations and nearly 90% of in-
hospital deaths in the United States in 2023,
thus underscoring the importance of age as a
risk factor for severe outcomes [59]. Although
some countries achieved high levels of vacci-
nation during the pandemic, vaccination rates
varied widely, and efforts will be needed to
sustain vaccination during the endemic phase
of SARS-CoV-2 [60]. Novavax (Nuvaxovid), an
adjuvanted protein-based COVID-19 vaccine is
authorized for use in those aged > 12 years by
the US Advisory Committee on Immunization
Practices (ACIP), European Medicines Agency
(EMA), and Canadian National Advisory Com-
mittee on Immunization [61-63]. However, as
of June 30, 2024, mRNA COVID-19 vaccines
comprise by a large margin the most frequently
administered COVID-19 vaccines in the United
States, Europe, and other countries and thus
are the focus of this section [64].

In the United States and parts of Europe, two
mRNA-based COVID-19 vaccines, mRNA-1273
(Spikevax®; Moderna, Inc., Cambridge, MA,
USA) and BNT162b2 (Comirnaty®; Pfizer Inc,
New York, NY, USA; BioNTech Manufacturing
GmbH, Mainz, Germany), are approved and
authorized for use [65-68], while elsewhere
other COVID-19 vaccines are available. These
two vaccines have been periodically updated
since their original authorization and approval
to target and enhance protection against newly
circulating SARS-CoV-2 variants, most recently
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with a monovalent omicron XBB.1.5 compo-
nent for the 2023-2024 season [65, 66]. Anti-
viral drugs are available for the treatment of
COVID-19; however, the low cost, effectiveness,
safety, and broad applicability of vaccines makes
immunization an irreplaceable component of
COVID-19 control and mitigation [69, 70].

An extensive body of literature has demon-
strated the safety, efficacy, and real-world effec-
tiveness of COVID-19 mRNA vaccines, especially
for severe outcomes, in both phase 3 clinical
trials [71-76] and real-world settings (Table 1)
[34-36, 58, 77-89]. A meta-analysis (22 studies,
pooled n = 39,673,160) of reformulated variant-
targeting COVID-19 vaccines (BNT162b2 and
mRNA-1273) found that the protection afforded
by bivalent vaccines in people > 50 years of age
during the omicron XBB era was higher com-
pared with original vaccines for the composite
endpoint of infection, COVID-19 diagnosis,
and COVID-19 hospitalization and death [rela-
tive vaccine effectiveness (rVE), 49.7%; 95%
CI, 41.4-57.9] [80]. These findings support the
continued value and importance of updating
COVID-19 vaccines to target and provide con-
tinued protection against newly emerging SARS-
CoV-2 variants. Although evidence suggests that
older vaccines against emerging SARS-CoV-2
variants are not as effective in preventing infec-
tion, protection against severe outcomes, such
as hospitalization and death, remains high [80].
Perhaps because cellular immunity, mediated by
memory T cells, can persist long after the wan-
ing of humoral immunity, the impact of vac-
cines appears to last longer for these severe out-
comes compared with symptomatic infection,
and is resistant to immune escape by emergent
strains [90, 91].

Recent evidence has supported the overall
importance of COVID-19 vaccination in older
and other vulnerable individuals during the
omicron era. Bivalent mRNA booster vaccines
have demonstrated durable effectiveness of
60-70% against severe COVID-19-related out-
comes [79, 92, 93]. An analysis using the Open-
SAFELY platform across five pandemic waves
spanning nearly 2.5 years in England (through
omicron BA.5 dominance) revealed that vac-
cines and advancements in COVID-19 manage-
ment substantially decreased population-level

COVID-19-related mortality risks during subse-
quent waves of the pandemic; however, persis-
tent inequalities and vulnerabilities were found
among clinical and demographic subgroups,
particularly among people with comorbidi-
ties or immunocompromising conditions ver-
sus those without such conditions [81]. In the
first pandemic wave, the highest standardized
COVID-19-related death rates were seen in peo-
ple aged > 80 years and in those with immu-
nocompromising conditions; in later waves,
larger decreases (90—91% decrease) in COVID-
19-related death rates were seen in groups
prioritized for primary SARS-CoV-2 vaccina-
tion, including those aged > 80 years and those
with neurological disease, learning disability,
or severe mental illness [81]. The most recent
effectiveness estimates, using Centers for Disease
Control and Prevention (CDC) data from the
2023—-2024 season, including the omicron XBB
lineage and JN.1 variant, show that the updated
monovalent XBB.1.5 COVID-19 vaccines were
effective, with a rVE of approximately 50%
(compared with no updated vaccine) against
symptomatic SARS-CoV-2 infection in adults
aged 2 50 years and vaccine effectiveness (VE)
of approximately 50% against COVID-19-related
hospitalizations in adults aged > 65 years [82,
94]. Results of comparative effectiveness and
safety studies using large, linked claims and elec-
tronic health record databases in older US adults
suggest that mRNA-1273 may have a lower risk
of adverse thromboembolic events and a higher
rVE in preventing COVID-19-related outcomes
(hospitalizations and outpatient visits) com-
pared with BNT162b2, with a greater protection
seen among adults 2 65 years of age [77, 83].
Individuals with immunocompromising con-
ditions have been disproportionately affected by
COVID-19, with an increased risk of severe out-
comes, including breakthrough infection, hos-
pitalization, and death, even with vaccination
[95]. Although accounting for only 3.9% of the
population of England, immunocompromised
people comprised > 20% of COVID-19 hospi-
talizations, intensive care unit admissions, and
deaths in the omicron era, even though > 80%
of these individuals have received > 3 doses of
a COVID-19 vaccine [96]. Rates of seroconver-
sion and antibody titers following COVID-19
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vaccination are significantly lower in individ-
uals with immunocompromising conditions
compared with those without immunocompro-
mising conditions, [97] suggesting that modi-
fied vaccination approaches may be needed to
bolster immune responses in this population.
Real-world effectiveness studies in high-risk
populations (aged > 65 years, high-risk comorbid
conditions, and/or immunocompromising con-
ditions), including data through the omicron
era, have demonstrated potentially diminished
effectiveness but still favorable effectiveness and
safety profiles with updated COVID-19 vaccines
in these groups [79, 84, 85, 87]. In a matched
cohort study of US adults (median age, 65 years)
with immunocompromising conditions, a third
dose of mRNA-1273 improved protection against
SARS-CoV-2 infection (adjusted relative VE,
55.0%; 95% CI, 50.8—58.9%), COVID-19 hospi-
talization (83.0%; 75.4—88.3%), and COVID-19
inpatient mortality (87.1%; 30.6—97.6%) com-
pared with two doses [87]. Notably, adjusted
relative VE was numerically higher for persons
aged > 75 years compared with those aged 18—44
years (58.5 vs. 49.8, respectively), suggesting a
slightly enhanced protective effect in this group
[87]. Some real-world studies in these popula-
tions have shown that mRNA-1273 vaccination
compared with BNT162b2 vaccination is associ-
ated with a significantly reduced risk of severe
outcomes, including breakthrough SARS-CoV-2
infection, severe COVID-19, COVID-19-associ-
ated hospitalization, and COVID-19-associated
mortality [85, 86]. Overall, enhanced protec-
tive measures, such as the use of additional or
booster vaccine doses, may be needed for indi-
viduals with immunocompromised conditions
[86, 98].

Long COVID encompasses a range of poten-
tially debilitating physical and psychological
symptoms, likely to be driven by host immune
responses, and can affect multiple organ sys-
tems and persist for weeks or months beyond
the acute phase of COVID-19 [99]. The burden
of disease associated with long COVID is large,
affecting an estimated 10% of infected indi-
viduals or > 65 million people worldwide, with
incidence increasing to 50-70% among those
hospitalized for COVID-19 [100]. The impact of
vaccination on long COVID is not entirely clear,

due in part to heterogeneity of case definitions,
study methods, and differing time since vaccina-
tion; however, studies generally seem to indicate
protection associated with vaccination [100].
Meta-analyses among adults > 18 years of age
have indicated that receipt of COVID-19 vacci-
nation (BNT162b2, mRNA-1273, Ad26.COV2.S,
or ChAdOx1) prior to a diagnosed SARS-CoV-2
infection, may have a significant protective
effect against long COVID (overall VE, 30—50%)
and against long COVID-associated signs and
symptoms such as persistent fatigue and pulmo-
nary disorders [58, 101, 102]. In a large cohort
study among adults aged > 18 years in Sweden
through the omicron era, VE for the prevention
of long COVID was 73% overall after 3 vaccine
doses, 55% in those aged > 65 years, and 55-71%
in those with comorbidities (cardiovascular, pul-
monary, or diabetes) [88]. In a meta-analysis of
adults > 18 years of age (41 studies), increasing
age and comorbidities were important identi-
fied risk factors for developing post-COVID
conditions, whereas vaccination with > 2 doses
(BNT162b2, mRNA-1273, or ChAdOx1 nCoV-19)
had a protective effect [odds ratio (OR), 0.57;
95% CI, 0.43—-0.76], highlighting the benefit
of vaccination in this key population [103].
A multinational study in European countries
found that vaccination with any first vaccine
dose (BNT162b2 or ChAdOx1) in adults was
associated with an overall VE of 29-52% for the
prevention of long COVID, with consistent pro-
tection against all age groups, including cohorts
aged > 75 years and > 65 years [89]. These results
were robust to multiple sensitivity analyses and
different definitions of long COVID, including
durations of symptoms and clinically diagnosed
long COVID [89].

Overall, COVID-19 mRNA vaccines have
proven to be the most sustainable and effec-
tive public health measure available [104], and
were instrumental in mitigating the impact of
the pandemic. Although strategies will need to
constantly reevaluate the impact of emerging
variants on outcomes and durability of protec-
tion, cost-effectiveness studies have shown that
COVID-19 vaccination programs are uniformly
cost-effective across a variety of countries in
World Health Organization (WHO) regions
[105]. The EMA as well as the US CDC and
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ACIP recommend that all persons > 6 months
of age receive vaccination with updated mRNA
COVID-19 vaccines irrespective of prior vaccina-
tion [106-108]. Because individuals can choose
the COVID-19 vaccine they receive, it may be
important for clinical guidelines to address
which populations stand to benefit most from
specific updated mRNA vaccines over time.

Impact of Influenza Vaccines

Between 1999 and 2015, influenza virus was
responsible for an estimated 0.3 to 0.6 mil-
lion annual respiratory deaths globally, with
the highest rates observed among individuals
aged > 75 years [109]. Compared with SARS-
CoV-2 and RSV, influenza comprises a diverse
tamily of pathogens and strains, with seasonal
patterns that vary between regions and coun-
tries, together posing a singular challenge for
preventive strategies. Although 4 major types
of influenza circulate, only type A (HIN1 and
H3N2) causes widespread viral activity and epi-
demics in humans; type B (Yamagata and Victo-
ria lineages) is more commonly associated with
outbreaks in care settings rather than epidemic
disease [110]. In the temperate zones of the
Northern and Southern Hemispheres, influenza
A activity manifests as seasonal disease during
the respective winter in each region, whereas
tropical zones are sometimes characterized by
bimodal seasonality and year-round transmis-
sion [19]. Influenza vaccine compositions are
thus updated annually by the WHO Global
Influenza Surveillance and Response System
in response to circulating influenza virus activ-
ity [110]. Both quadrivalent and trivalent vac-
cine formulations have been recommended,
although the global absence of the B/Yamagata
lineage from circulation in recent years has
resulted in the WHO revising recommendations
to omit this influenza B component beginning
in the 2024—-2025 influenza season in the North-
ern and Southern Hemispheres [110].

Seasonal influenza vaccines are largely manu-
factured using an egg-based process, although
recombinant and cell culture-based options are
also available [111], and the overall effective-
ness of these vaccines varies by population and

season. In the United States, it is estimated that
VE among the general population is 40-60%
during seasons when vaccines are well-matched
to circulating strains [112, 113]. In addition to
one cell culture-derived quadrivalent influenza
vaccine (QIV) vaccine, a variety of enhanced
influenza vaccines are currently available for use
in older adults, including two egg-based vaccines
and one recombinant protein vaccine (Table 2)
[114-117]. Compared with standard-dose vac-
cines, high-dose vaccines offer significantly
greater protection against influenza-like illness
and influenza in older adults and may attenu-
ate progression to severe disease (pneumonia,
intensive care unit admission, and death) [40].
Although current influenza vaccines may pro-
vide moderate protection, vaccine-induced
immunity declines over the course of an influ-
enza season, and effectiveness may also vary
widely between vaccines and be greatly reduced
or absent in some seasons [41, 44, 118].

The relatively variable VE of current influenza
vaccines reflects a multitude of viral-, host- (i.e.,
age and immune function), and vaccine-related
factors that impact vaccine performance [113,
118, 119]. Major challenges to VE are related
to strain mismatch of vaccines to circulating
strains due to egg-adapted mutations acquired
during manufacture or antigenic drift occur-
ring during the 6-month production time [45,
113]. Viral adaptations resulting in impaired
antibody responses to the circulating strain are
a potential consequence of egg-based manufac-
turing, a time-consuming process that may limit
production capacity [43]. Antigenic drift is an
inherent feature of influenza viruses that leads
to the accumulation of changes in major surface
proteins [hemagglutinin (HA) and neuramini-
dase (NA)] and subsequent evasion of humoral
immunity, thus rendering existing vaccines
less effective against new strains [120]. Because
production times are approximately 6 months
from the determination of initial vaccine com-
position recommendations, antigenically diver-
gent clades from the original target can lead to
antigenic mismatch [45]. Host-related factors
also challenge influenza VE; people with immu-
nocompromising conditions, including organ
transplant, malignancy, or receipt of immu-
nomodulating therapies, are at a heightened
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risk of complications following influenza infec-
tion, and both vaccination rates and vaccine-
mediated immunogenicity are suboptimal in
this population [121]. However, vaccine studies
often use population or pooled data that may
not account for prior exposure, population prev-
alence of antibodies, and asymptomatic disease;
thus, true correlates of protection are difficult to
derive and interpret. These challenges associated
with the development and implementation of
influenza vaccines are inherent in the virology
of influenza and suggest a need for new vaccine
strategies.

Alternative approaches to overcome limita-
tions of conventional influenza vaccines are
under clinical investigation [113]. One such
approach is the mRNA platform, which has a
simplified and highly scalable manufacturing
process compared with conventional vaccines;
shortened production timelines could thus
enable selection of influenza vaccine strains
closer to the start of influenza season, thereby
increasing the likelihood of targeting circulat-
ing strains and limiting vaccine mismatch [122,
123]. Studies on SARS-CoV-2 mRNA-based vac-
cines, mRNA-1273 and BNT162b2, have shown
that mRNA vaccines can induce strong cellu-
lar responses and germinal center reactions,
which could improve protection in older adults
[124-126]. In addition, the mRNA platform
allows for targeting additional antigenic sites,
which may broaden protection by improv-
ing immunity against more conserved targets,
including additional HA antigens and HA plus
NA antigens [113, 127, 128]. This concept is
being advanced in clinical trials for two candi-
date mRNA vaccines, mRNA-1010 and mRNA-
1012 (ClinicalTrials.gov: NCT05827068), which
include additional HA antigens for influenza A.

Published clinical findings on an mRNA
influenza vaccine are currently available for
the mRNA-1010 vaccine (Moderna), an inves-
tigational seasonal influenza vaccine that
encodes membrane-bound HA glycoprotein
derived of influenza strains recommended by
WHO [122]. In a first-in-human randomized,
observer-blinded, multicenter, phase 1/2 clini-
cal trial (NCT04956575) in healthy adults aged
> 18 years, a single dose of mRNA-1010
elicited HA inhibition antibodies against

vaccine-matched strains at 28 days post-vac-
cination, irrespective of participant age [122].
Compared with a standard-dose influenza vac-
cine in medically stable adults, mRNA-1010
elicited higher immunogenicity for influenza
A strains and comparable immunogenicity for
influenza B strains [122]. Overall, mRNA-1010
had an acceptable reactogenicity profile, and
most solicited adverse reactions were transient
and grade 1 or grade 2 in severity [122].
Routine annual influenza vaccination has
been shown to be a highly cost-effective inter-
vention in a variety of settings and in both high-
income and low- and middle-income countries,
with the greatest impact noted in high-risk
groups (adults aged > 65 years and individuals
with underlying comorbidities) [129-131]. Fur-
ther cost-effectiveness studies will be needed
to assess the benefits of mRNA-based vaccines
against their aforementioned logistical chal-
lenges. Currently, the EMA and ACIP recom-
mend that adults aged > 65 years should prior-
itize receiving one of the following enhanced
influenza vaccines: Fluzone HD QIV (HD-I1V4),
Flublok QIV (RIV4), or Fluad QIV [132].

Impact of RSV Vaccines

Although the global burden of RSV is highest
in children < S years of age, older adults and
adults with certain underlying comorbidities
are at elevated risk of RSV infection and severe
outcomes, including hospitalization and death
[22-24, 26, 133, 134]. RSV is responsible for an
estimated 5.2 million annual cases of RSV-asso-
ciated acute respiratory infections and 33,000
in-hospital deaths in adults > 60 years of age
in high-income countries [135]. The seasonality
of RSV varies according to climate and geogra-
phy; however, RSV is notable for its consistently
major annual burden of disease, compared with
the highly variable impact of influenza [15, 136].
A cost-effectiveness analysis in the United States
showed that an RSV vaccine could be cost-effec-
tive and substantially reduce the direct burden
of RSV illness among older adults [137].
Recently, improved understanding of the
structure of RSV envelope fusion (F) glycopro-
tein and its stabilization in the prefusion (preF)
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conformation has advanced RSV vaccine devel-
opment [138, 139]. RSV-F glycoprotein medi-
ates fusion and is necessary for RSV infection
to occur [140]. RSV preF protein is highly con-
served across the two primary cocirculating sub-
types of RSV-A and RSV-B, and is the primary
target of RSV-neutralizing antibody activity
[140], which has led to its use as a key target
of RSV vaccine development. Progress toward
an RSV vaccine was stalled for several years fol-
lowing clinical trials in previously RSV-naive
infants and children in the 1960s investigat-
ing a formalin-inactivated vaccine. Vaccine-
associated enhanced disease (VAED) was shown
to develop possibly due to the generation of a
nonprotective antibody response with low avid-
ity for RSV-F and administration of RSV-F in the
post-fusion conformation, which is less stable
and generates antibodies with lower neutralizing
capacity compared with preF [141]. In children,
VAED has been linked to induction of a T-helper
2 (Th2)-biased T-cell response [142-144]. Despite
these challenges, two protein-based subunit vac-
cines [RSVPreF3 (GSK), RSVpreF (Pfizer)] have
been approved for the prevention of RSV-asso-
ciated lower respiratory tract disease (LRTD) in
older adults, while RSVpreF has been approved
for pregnant persons at 32-36 weeks gesta-
tional age to pass on protection to their baby
[145, 146]. Additionally, an mRNA-based vac-
cine, mRNA-1345, was recently approved in the
United States for use in adults aged 60 years and
older [146].

RSVPreF3 (AREXVY; GSK, Brentford,
Middlesex, UK) vaccine, a recombinant
ASO1g-adjuvanted subunit vaccine containing
F protein stabilized in the preF conformation
[37], was the first vaccine to receive US Food
and Drug Administration (FDA) authorization
for the prevention of RSV-associated LRTI. This
approval was followed by that for RSVpreF
(ABRYSVO®; Pfizer, New York, NY, USA), a
bivalent protein subunit vaccine containing
conformation-stabilized preF glycoproteins
with a sequence derived from RSV-A and RSV-B
[147, 148]. In clinical trials, both RSVPreF3 and
RSVpreF elicited a > tenfold increase in neu-
tralizing activity and similar durability through
1 year, suggesting substantial durable protec-
tion [149, 150]. Both vaccines were efficacious

for the prevention of RSV-associated LRTI
(RSVPreF3: VE 82.6%; 96.95% CI, 57.9-94.1)
and LRTD (RSVpreF: VE 66.7%; 96.66% CI,
28.8—85.8) and were generally well-tolerated
(Table 3) [37-39, 150, 151], although the FDA
imposed post-marketing pharmacovigilance
studies for the evaluation of Guillain-Barré
syndrome (both vaccines) and acute dissemi-
nated encephalomyelitis (RSVPreF3) risks due
to a potential safety signal observed during
these trials [152, 153]. An additional RSV vac-
cine approved in 2024 for use in adults > 60
years of age is mRNA-1345 (Moderna, Cam-
bridge, MA, USA), an mRNA-based vaccine
consisting of a lipid nanoparticle—encapsulated
mRNA vaccine encoding membrane-anchored
preF conformation-stabilized RSV-F glycopro-
tein derived from the RSV-A strain [39, 146].
The efficacy of mRNA-1345 for the prevention
of RSV-associated LRTD was demonstrated in
the phase 3 ConquerRSV trial, which showed
initial VE of 83.7% (95.88% CI, 66.0-92.2;
one-sided P < 0.001) and 82.4% (96.36% CI,
34.8—-95.3; one-sided P = 0.008) for RSV-LRTD
with > 2 signs/symptoms and > 3 signs/symp-
toms, respectively, meeting the prespecified
criterion for efficacy (lower boundary of the
alpha-adjusted CI > 20%) [39]. The mRNA-1345
vaccine was efficacious across subgroups by age
and preexisting comorbidities and protective
against both RSV subtypes A and B [39]. No
VAED was observed for RSVpreF, RSVPreF3, and
mRNA-1345 in any clinical trials [39, 148, 149].
Observational VE data were recently presented
at the ACIP meeting in June 2024, which dem-
onstrated that RSV vaccination provided pro-
tection against severe RSV disease and RSV-
associated emergency visits, hospitalizations,
and critical illness in the first season of use
among US adults aged > 60 years, similar to
the results from clinical trials; however, ongo-
ing monitoring of RSV VE is needed to confirm
these findings [158].

The two protein-based vaccines, RSVPreF3
and RSVpreF, were approved by the FDA in May
2023 and by the EMA in June 2023 and August
2023, respectively, for the prevention of RSV-
associated LRTD in adults aged > 60 years [152,
153]. RSVpreF was further approved by the FDA
in August 2023 for use in pregnant individuals
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to prevent LRTD in infants [154]. On June 21,
2023, the ACIP and CDC recommended that
adults > 60 years of age may receive a single
dose of RSV vaccine, using a shared clinical
decision-making approach [155]. Shared deci-
sion-making may improve satisfaction and
reduce decisional uncertainty among patients,
and its benefits may potentially be greatest
among populations with the lowest health lit-
eracy [156]. The mRNA-1345 vaccine has also
received breakthrough status from the FDA
and was approved on May 31, 2024, to pro-
tect adults aged 60 years and older from LRTD
caused by RSV infection [157]. Overall, due to
the recent development and approval of RSV
vaccines, outcomes and immunogenicity data
for these vaccines are much less comprehen-
sive than those for the other respiratory viruses
discussed. Along with studies assessing dura-
bility of protection and the potential need for
booster immunizations, additional long-term
real-world effectiveness data will be needed to
assess the ongoing impact of RSV vaccines and
performance in high-risk groups, including the
immunocompromised. Additionally, continued
post-marketing studies are necessary to resolve
concerns over possible safety signals for Guil-
lain-Barré syndrome and acute disseminated
encephalomyelitis with protein-based vaccines.
Whether similar requirements will be imposed
following the approval of mRNA-1345 remains
to be seen. Importantly, the infrastructure for
the storage and distribution of RSV vaccines
will also need to be developed to support pub-
lic health initiatives and guidelines endorsing
RSV vaccination.

of special interest, medically attended AEs,

of unsolicited AEs, including severe AEs,
serious AEs (including fatal events), AEs
and AEs leading to trial discontinuation was

At 6 months post-vaccination, the frequency
balanced between the 2 groups

mRNA-1345/ConquerRSV [39]

difference in the rate of SAEs reported in
the RSVpreF and placebo groups (both
2.3%). Two cases of GBS within 7-8 days
post-vaccination were observed in two
members of the vaccine group

RSVpreF/Renoir [38]

Factors Affecting Differences in Vaccine
Uptake

Vaccine uptake within a population, or the
number of people vaccinated with a certain
dose of vaccine in a specified time period, is
a critical metric of protection for high-risk
groups, with poor uptake increasing the likeli-
hood that vulnerable individuals, such as older
adults or those who have comorbidities or
immunocompromising conditions, are suscep-
tible to infections and related severe outcomes

In the 6 months post-vaccination, SAEs were At 6 months post-vaccination, there was no

reported at a similar rate in RSVPreF3
OA and placebo groups (4.2% and 4.0%,

RSVPreF3 OA/AReSVi-006 [37]
respectively)

AE adverse event, IgG immunoglobulin G, GBS Guillain—Barré syndrome, LRTD lower respiratory tract disease, LRTT lower respiratory tract infection. O4 older

adult, RSV respiratory syncytial virus, RSVpreF respiratory syncytial virus prefusion F, SAE serious adverse event

Table 3 continued
Vaccine/trial

Safety
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[159-162]. Thus, programs to increase vaccine
coverage and uptake should focus on specific
at-risk populations, such as those with high-
risk conditions and their close contacts or car-
egivers, particularly in zones of high popula-
tion density and household overcrowding [163,
164]. Uptake is influenced by various factors,
including cultural and socioeconomic ele-
ments [50, 165], and vaccination rates differ
dramatically across demographic strata, with
notable variations by race/ethnicity, religion,
and household wealth [166, 167].

One major factor impacting uptake is vac-
cine hesitancy, a multifaceted phenomenon
encompassing the refusal, reluctance, or post-
ponement of accepting vaccination despite
the availability of vaccination services; this
reluctance may be caused, in part, by vaccine
cost and concerns regarding vaccine technol-
ogy [3, 50]. Furthermore, government support
and the political atmosphere exert a variable
but substantial influence on vaccine accept-
ance across different countries [168], and trust
in government has been a key issue affecting
the success of global vaccination campaigns,
as most recently evidenced during the COVID-
19 pandemic [169]. In the United States, hesi-
tancy toward COVID-19 vaccination is high-
est in Black/African Americans and pregnant
or breastfeeding women, while lower among
men [170]. During the COVID-19 pandemic,
influenza vaccination rates were also lowest
among Black/African Americans, those of low
educational attainment, and poorer individu-
als [166]. Because demographic inequalities in
COVID-19 mortality were reflected in dispari-
ties of vaccination coverage, targeted efforts to
increase uptake would likely have reduced the
mortality burden in these groups [81].

Out-of-pocket cost and relative VE have also
been identified as key factors in vaccination
decision-making in different regional surveys;
higher cost acts as a deterrent to vaccination,
but individuals may be willing to pay more for
greater VE [171-176]. The cost barrier may be
more pronounced among some economically
disadvantaged populations compared with other
groups, which, in conjunction with higher rates
of hesitancy described above, illustrates paz-
ticular obstacles to vaccination among certain

demographic subgroups and those who do not
have health insurance [171]. Differences in
uptake in population subgroups across different
vaccine platforms highlight vulnerabilities and
inequities in vaccination coverage, demonstrat-
ing the need for public health policy programs
to address systemic barriers to vaccine uptake.
Furthermore, funding for public health pro-
grams and vaccination varies dramatically across
countries: to control COVID-19, low- and mid-
dle-income countries have depended substan-
tially on donations from developed countries
and the COVID-19 Vaccines Global Access initia-
tive [177, 178]. Although more than 70% of the
population in high-income countries completed
the initial COVID-19 vaccination protocol, only
2% of COVID-19 doses, including boosters, have
been administered in low-income countries
[177]. Compared with high-income countries,
low- and middle-income countries generally
have a smaller proportion of older vulnerable
individuals but less robust and resilient health-
care systems [177]. These factors are reflected
in the cost of immunization delivery, which is
the main driver of the gap in successful national
vaccination strategies, underlining the central
role of strengthening health systems to achieve
coverage goals [179].

Variations in vaccination rates are apparent
throughout the world. Willingness to receive a
COVID-19 vaccine was generally higher in low-
and middle-income countries in Asia, Africa,
and South America compared with the United
States (mean 80.3% vs. 64.6%, respectively); in
these countries, desire for personal protection
and apprehension over vaccine side effects were
the major factors in vaccine acceptance and
hesitancy, respectively [180]. In Latin America,
individual/group influences have been identi-
fied as the primary barrier to vaccination, with
low socioeconomic status, lower education,
and age contributing to low vaccine uptake,
and education and trust in healthcare profes-
sionals enhancing vaccine acceptance [174]. A
cross-sectional study involving respondents in
10 countries in Asia, Africa, and South America
found that female sex, identifying as Muslim,
residence in rural areas, non-healthcare-related
occupation, and non-receipt of influenza vac-
cination in the preceding year were significant
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predictors of unwillingness to receive the
COVID-19 vaccine [167]. In Europe, frequent
engagement in the religious practice of praying
(compared with never praying) and the holding
of anti-elite, populist worldviews, independent
of political preferences, increased the likelihood
of exhibiting vaccine hesitancy compared with
not engaging in praying and not holding those
sentiments [168, 181]. These studies highlight
the importance of the use of messaging that is
adapted to specific regions, countries, and popu-
lation groups to address population-level factors
influencing vaccine uptake.

Individuals with chronic diseases commonly
report vaccine hesitancy, despite having an
increased risk of direct and indirect complica-
tions and exacerbations due to preexisting ill-
ness. A survey in the United States found that
vaccine hesitancy was reported by nearly 1 in
5 respondents with comorbidities overall; of
these respondents, 13.4% had cancer, 19.4% pre-
sented with autoimmune diseases, and 17.8%
had chronic lung diseases [52]. Individuals with
chronic conditions are significantly less likely to
receive COVID-19 vaccination compared with
those without such conditions, which is primar-
ily attributable to a lack of information, under-
estimation of personal risk, or fear of symptoms
[51]. Tailoring public health messaging may thus
reassure individuals with chronic diseases and
aid in overcoming their concerns about post-
vaccination symptoms and the impact on daily
function.

A general lack of understanding regarding
the different vaccine platforms involved, com-
plicated by vaccine hesitancy, can also impact
vaccine uptake. Hesitancy can vary by vaccine
platform, with a reported disconnect between
a person’s willingness to receive the influenza
vaccine compared with the COVID-19 vaccine
[182]. Furthermore, although more than one-
third of Americans expressed concern about the
influenza, RSV, or COVID-19 vaccines, there was
no consensus on which of these illnesses was
perceived as the most severe, and knowledge
about the related conditions varied among indi-
viduals [182]. Despite the apparent disconnect
reported in this study, coadministration of influ-
enza and COVID-19 vaccines has led to a high
uptake of both vaccines in adult populations

[183, 184]. However, increasing the uptake
among individuals who do not seek vaccina-
tion for either COVID-19 or influenza remains a
general challenge. Increasing the knowledge and
familiarity with newer vaccine technology and
the disease state are thus important considera-
tions toward addressing vaccine hesitancy and
refusal.

Coadminstration/Combination Respiratory
Vaccines

Coinfection by multiple respiratory viruses may
increase disease severity of illness, hospitaliza-
tion rates, and mortality rates; thus, simulta-
neous protection against SARS-CoV-2, RSV,
and influenza viruses is an important public
health goal [185-188]. However, the cocircula-
tion of these three viruses potentially compli-
cates immunization schedules, because vaccines
should be administered ahead of the start of
each viral season [189, 190]. Given the overlap-
ping patterns of risk common to SARS-CoV-2,
RSV, and influenza viruses, multicomponent vac-
cine formulations and vaccine coadministration
could streamline vaccination efforts and poten-
tially increase vaccine uptake in key populations
[191]. Particularly for those with comorbidities,
the recommended immunization schedule in
adults is complex, which may be simplified by
the coadministration of vaccines [192, 193].
By reducing the number of vaccine consulta-
tions, coadministration can also reduce costs
and improve compliance [191, 194]. Addition-
ally, because new recommendations for recently
authorized/approved vaccines may increase the
complexity of vaccine schedules, coadminis-
tration can reduce the barrier to adoption and
implementation of new vaccines [192].
Currently, coadministration of vaccines in
older adults is under examination in several
clinical trials, including those investigating
COVID-19 (mRNA-1273, BNT162b2, ChAdOx1-
nCoV-19, and NVX-CoV2373), influenza, and
RSV [183, 195-198] vaccines. Early results have
demonstrated that coadministration of vaccines
can increase immune responses against the rel-
evant viruses, with an acceptable safety pro-
file [183, 195-197, 199, 200]. The interactions
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between these different vaccines have not been
fully elucidated, and vaccine efficacy could be
negatively affected by immune interference and
immune imprinting caused by prior infection or
vaccination [201]; however, most studies have
demonstrated that coadministration of vaccines
elicits adequate levels of antibodies to offer a
protective response [197, 202]. Overall, coad-
ministration of vaccines could improve adher-
ence with vaccine recommendations according
to age and risk, potentially reduce overall HCRU
costs, and facilitate the adoption of new vaccines
[191, 192]. Combining multiple vaccines in a
single vial could also simplify the chemical logis-
tics (the physicochemical processes occurring
during transport that impact vaccine potency)
of vaccine administration [203], increasing the
combined cost-effectiveness of vaccines and
reducing the environmental impact of vaccine
packaging and storage.

New vaccine modalities could be an impor-
tant approach toward development of a mul-
ticomponent vaccine that targets these viral
pathogens. The mRNA platform can contain
multiple mRNAs encoding several antigens in
a single vaccine, thus expanding the breadth of
protective responses against seasonal influenza
or even multiple respiratory infections [204].
A multicomponent mRNA vaccine capable of
generating antibodies against numerous anti-
gen targets simultaneously could target highly
variable pathogens with antigenically distinct
strains, such as influenza, rhinoviruses, and
SARS-CoV-2 [204]. The mRNA platform also has
a flexible and shortened vaccine development
timeline, enabling periodic updates to vaccine
compositions that target multiple circulating
strains, thereby potentially enhancing coverage
against disease [122, 204]. In addition, mRNA
vaccines induce durable germinal center reac-
tions and strong cellular immune responses,
which could improve protection in older adults
[124-126]. Although mRNA vaccines face logisti-
cal challenges and stringent cold chain storage
needs, which may pose barriers to distribution
in certain regions [203], the expanding use of
mRNA-based RSV vaccines and the correspond-
ing expansion of cold storage infrastructure
could potentially address some of these barriers
to use of other mRNA vaccines. mRNA vaccines

may exhibit greater reactogenicity than tradi-
tional vaccines, and repeated inoculation may
be associated with certain adverse reactions,
such as hypersensitivity or myocarditis [205,
206]. Nevertheless, mRNA vaccines are gener-
ally well-tolerated, severe reactions are rare, and
the benefits outweigh the risks, particularly in
older and high-risk populations [207]. The suc-
cess of mRNA-based vaccines against COVID-19
and promising clinical results of mRNA influ-
enza and RSV vaccines have set the stage for the
development of a combined respiratory vaccine
that could provide protection against all three
pathogens.

CONCLUSIONS

For SARS-CoV-2 and influenza, vaccines are the
most potent and cost-effective tools available
to reduce the risk of severe outcomes, particu-
larly among adults of older age and those with
comorbid conditions. Novel vaccines have been
approved for the prevention of RSV; however,
extended outcomes data are needed to assess
their long-term impact. New vaccine technolo-
gies, such as mRNA vaccines and vaccine coad-
ministration or combination, are potentially
transformative in addressing ongoing viral and
logistical barriers to immunization related to
these viruses. Overall, the impact of vaccination
against vaccine-preventable diseases is multifac-
eted, with implications beyond direct preven-
tion of disease, as described in the Introduction
of this review. These far-reaching positive soci-
etal outcomes, which are not always quantifiable
or recognized, should be highlighted to support
the development of new vaccine technologies
and to address challenges with vaccine uptake.
Successful population-level vaccination against
these viruses, including with mRNA vaccines,
may also serve as a protective measure against
future and emerging health threats.
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