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Abstract
This short note is devoted to establishing the almost sure central limit theorem for the
parabolic/hyperbolic Anderson models driven by colored-in-time Gaussian noises,
completing recent results on quantitative central limit theorems for stochastic partial
differential equations. We combine the second-order Gaussian Poincaré inequality
with the method of characteristic functions of Ibragimov and Lifshits, effectively
overcoming the challenge from the lack of Itô tools in this colored-in-time setting,
and achieving results that are inaccessible with previous methods.
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1 Introduction

The classical central limit theorem (CLT) states that for a random sample of size n
drawn from a populationwithmean zero and variance one, the samplemeanMn admits
Gaussian fluctuation as the sample size n tends to infinity:
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√
nMn

law−−−→
n→∞ N (0, 1).

Following this setting, the almost sure central limit theorem (ASCLT) in its simplest
form asserts that one can observe aGaussian behavior (asymptotically) along a generic
trajectory via a logarithmic average: for almost every ω ∈ �

1

log n

n∑

k=1

1

k
δ√

nMn(ω) �⇒ ζ (1.1)

as n → ∞, where δx denotes the Dirac mass at x ∈ R, “�⇒” indicates the weak
convergence of finite measures, and ζ ∼ N (0, 1) stands for the standard Gaussian
measure on R throughout this note. The first ASCLT was introduced by P. Lévy in
his book [28, page 270] but remained largely unnoticed for several decades, until it
was rediscovered by various researchers in probability and dynamical systems [1, 11,
12, 22, 27, 38, 40]. For a comprehensive historical account up to 2001, see also the
work of Berkes and Csáki [9]. In recent years, several works [2, 8, 41, 42] have estab-
lished almost sure (non-)central limit theorems using variants of Malliavin calculus in
Gaussian, Poisson, and Rademacher settings.

On a different note, around 2018, Huang, Nualart, and Viitasaari initiated in
[24] a study on (quantitative) central limit theorems for stochastic partial differen-
tial equations (SPDEs) driven by Gaussian noises. More precisely, they established
a quantitative CLT for the spatial averages of the solution to a stochastic nonlin-
ear heat equation with multiplicative Gaussian space-time white noise. Additionally,
the first attempt of the similar topic for stochastic nonlinear wave equations was
published in [18]. Since this pioneering work [24], there has been a rapidly grow-
ing literature on the spatial averages of SPDEs. For CLT results, see, e.g., [4,
10, 15, 16, 25, 35, 36], and for spatial ergodicity that precedes the CLTs, refer
to [14, 37]. We refer the interested readers to [3, (incomplete) table on page 5]
for an overview of relevant results in the Gaussian setting and [7] in the Lévy
setting.

In a series of papers [29–31], Li and Zhang developed the ASCLTs for
several SPDEs with Gaussian noises that are white in time. A key tool they
employed is Malliavin calculus, particularly the Clark–Ocone formula, which replies
heavily on the martingale structure resulting from the white-in-time nature of
the Gaussian noises; see Remark 1.5-(ii) for more details. For a similar treat-
ment applied on the hyperbolic Anderson model driven by space-time pure-jump
Lévy white noise, refer to [6, Section 3.1]. However, this strategy using Clark–
Ocone formula fails when attempting to establish the ASCLT results for cases
with colored-in-time Gaussian noises as in, e.g., [4, 35]. Motivated by our joint
work with Balan [6], we will use a combination of the method of characteris-
tic functions of Ibragimov and Lifshits and the second-order Gaussian Poincaré
inequality to establish the ASCLT results for hyperbolic and parabolic Ander-
son models (HAM/PAM) driven by space-time Gaussian colored noises. Such
a combination was originally introduced in [6, Section 3.2] within the Lévy
setting.
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1.1 Framework

Consider the following two equations:

{
∂t u = 1

2�u + u 	 Ẇ ,

u(0, ·) ≡ 1; (PAM)

and

{
∂2t u = �u + u 	 Ẇ

u(0, ·) ≡ 1 and ∂t u(0, ·) ≡ 0; (HAM)

where 	 denotes the Wick product, meaning that the corresponding stochastic integral
is interpreted in the Skorohod sense, and Ẇ is a centered space-time Gaussian noise
with correlation

E
[
Ẇ (t, x)Ẇ (s, y)

] = γ0(t − s)γ1(x − y)

satisfying certain conditions to ensure the existence and uniqueness of (random field)
solutions. In this note, we consider (PAM) in any spatial dimension, while we restrict
our analysis of (HAM) to dimensions d = 1, 2; see Remark 1.7 for relevant discus-
sions. Let us first state the following standing hypotheses of this note.
(H1) γ0 : R → [0,∞] is nonnegative-definite and locally integrable.
(H2) γ1 : R

d → [0,∞] is nonnegative-definite such that γ1 = Fμ is the Fourier
transform of some nonnegative tempered measure μ, called the spectral measure,
satisfying Dalang’s condition ( [17]):

∫

Rd

1

1 + |ξ |2μ(dξ) < ∞. (1.2)

Definition 1.1 A random field u = {u(t, x) : (t, x) ∈ R+ × R
d} is called a solution

to (PAM)(PAM) or (HAM), provided that for all (t, x) ∈ R+ × R
d , it holds almost

surely that

u(t, x) = 1 +
∫ t

0

∫

Rd
Gt−s(x − y)u(s, y)W (ds, dy), (1.3)

where G = GH (resp. GW ) denotes the heat kernel (resp. wave kernel)

GH
t (x) := (2π t)− d

2 e−
|x |2
2t , ∀d ≥ 1, and GW

t (x) :=
⎧
⎨

⎩

1
21{|x |<t}, d = 1,

1
2π

√
t2−|x |2 1{|x |<t}, d = 2;

(1.4)
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and the stochastic integral is interpreted in the Skorohod sense. That is, the mild
form (1.3) should be understood as u(t, x) = 1 + δ(Gt−•(x − ∗)u(•, ∗)) with δ the
divergence operator inMalliavin calculus; see Sect. 2.1 and see also [33, Section 1.3.2]
and [34, Section 2.5]. Note that we follow the convention that Gt = 0 for t ≤ 0.

Due to the linearity in the unknown u, one can formally iterate the integral equa-
tion (1.3) to obtain an infinite series, which corresponds exactly to the Wiener chaos
expansion of the solution (whenever it exists):

u(t, x) = 1 +
∞∑

p=1

Ip( ft,x,p), (1.5)

where Ip( ft,x,p) stands for the p-th multiple Wiener-Itô integral of the kernel ft,x,p
given by

ft,x,p(s1, . . . , sp, z1, . . . , z p) := 1

p!
p∏

i=0

Gtτ (i+1)−tτ (i)

(
zτ(i+1) − zτ(i)

)
,

with τ denoting the permutation on {1, . . . , p} such that 0 < tτ(1) < · · · < tτ(p) < t ,
and by convention (tτ(0), zτ(0)) := (0, 0) and (tτ(p+1), zτ(p+1)) := (t, x); see Sect. 2
for some preliminaries. The finiteness of the above series in L2(�), or the validity of
the chaos expansion (1.5), can be verified by computing the second moment of each
multiple integral, which relies on the orthogonality relation (see, e.g., [34, Proposition
2.7.4]).

Remark 1.2 In fact, the above hypotheses (H1) and (H2) suffice to guarantee the
unique existence of solutions to (PAM)(PAM) and (HAM); see [23, Theorem 3.2] for
the heat case and see [5, Section 5] for the wave case. For the wave case, Balan and
Song proved the unique existence of solutions to (HAM) on any spatial dimension.
More precisely, (H1) and (H2) imply that (1.5) is the unique solution to (HAM) when
d ≤ 2 (see [5, Theorem 5.2]), and under the additional assumption that the spectral
measure μ is absolutely continuous with respect to the Lebesgue measure, (1.5) is the
unique solution to (HAM) when d ≥ 3 (see [5, Theorem 5.6]. The delicacy in higher
dimensions comes from the fact that the corresponding wave kernel GW on R

d , for
d ≥ 3, is not a function anymore, so that the interpretation of product of GW and the
unknown u (and thus the interpretation of the multiple integral Ip( ft,x,p)) requires
additional care. Such delicacy also makes it more difficult to establish the CLT results
in higher dimensions (see [20, 21]).

In the following, we present several results on (quantitative) CLTs for spatial aver-
ages, which will serve as the basis for establishing the ASCLTs.

Theorem 1.3 Let the above hypotheses (H1) and (H2) hold and we make further
assumptions on the temporal/spatial correlation kernels:
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(a) for any ε > 0,

∫ ε

0
γ0(r)dr > 0; (1.6)

(b) the spatial correlation kernel γ1 satisfies one of the following properties:

(b1) γ1 ∈ L1(Rd) with ‖γ1‖L1(Rd ) > 0,
(b2) γ1(z) = |z|−α with some α ∈ (0, 2 ∧ d).

Let u denote the solution (1.5) to (PAM)(PAM) for any spatial dimension d or (HAM)
with d ≤ 2. Fix any t0 ∈ (0,∞) throughout this note. We define for any R > 0 that

FR = FR(t0) :=
∫

|x |≤R
[u(t0, x) − 1]dx and F̂R := 1

σR
FR (1.7)

with σR := √
Var(FR) > 0 for each R > 0. Then, the following quantitative CLTs

hold for any R > 0:

dTV(F̂R, Z) ≤ C ×

⎧
⎪⎪⎨

⎪⎪⎩

R−d/2 for (PAM)(PAM) with (b1) (case 1)
R−α/2 for (PAM)(PAM) with (b2) (case 2)
R−d/2 for (HAM) with (b1) (case 3)
R−α/2 for (HAM) with (b2) (case 4),

(1.8)

where Z ∼ N (0, 1), dTV(X ,Y ) stands for the total-variation distance between two
real-valued random variables X and Y :

dTV(X ,Y ) := 1
2 sup

∣∣E[h(X)] − E[h(Y )]∣∣, (1.9)

where the supremum running over all real-valued bounded measurable functions h :
R → R such that ‖h‖∞ ≤ 1. Here, the implicit constant C does not depend on R.
See [4, 35] for more details.

The range of α in (b2) follows from (1.2), with the corresponding spectral mea-
sure μ(dξ) = cα|ξ |α−d for some explicit constant cα . The conditions (1.6) and
“‖γ1‖L1(Rd ) > 0" ensure that we are dealing with nontrivial space-time Gaussian
noises and that the spatial integral FR has strictly positive variance for each R. It is
not difficult to prove σR > 0 for each R > 0. In fact, for t0 > 0, E[u(t0, x)2] > 1, in
view of the chaos expansion (1.5) and the orthogonality relation of multiple integrals.
The same argument also leads to E[u(t0, x)u(t0, y)] ≥ 1, so that with these two facts
and the L2(�)-continuity of the solution, we get

σ 2
R =

∫

|x |,|y|<R

(
E[u(t0, x)u(t0, y)] − 1

)
dxdy > 0.

For the asymptotic behavior of σR , see (3.10).
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1.2 Main Result

Let us first state the definition of ASCLT.

Definition 1.4 A family {Fθ : θ ≥ 1} of real random variables is said to satisfy the
ASCLT if for P-almost everyω ∈ �, the map θ �→ Fθ (ω) is almost surely measurable
and

νω
T := 1

log T

∫ T

1
δFθ (ω)

dθ

θ
�⇒ ζ as T → +∞, (1.10)

where ζ stands for the standard Gaussian measure on R.

In this note, we aim to establish an ASCLT for F̂R in (1.7). Thus, we choose the
continuum parameter R > 0 in Definition 1.4, unlike the discrete parameter n ∈ N

stated in (1.1). We present an equivalent statement of ASCLT in Remark 1.5-(ii).

Remark 1.5 (i) The logarithmic average in (1.1) can be replaced by any slowly vary-
ing analogue. For example, 1/k and log n in (1.1), canbe substitutedwith anydk and
Dn > 0, respectively, provided that Dn = d1 + · · · + dn ↑ ∞ and Dn+1/Dn → 1
as n tends to infinity. See also the discussion in [27, page 204]. Note that our main
result (Theorem 1.6) remains valid when the logarithmic average is replaced by a
slowly varying analogue in (1.10), although we retain the former for simplicity in
presentation.

(ii) The validity of the ASCLT (Definition 1.4) for {Fθ : θ ≥ 1} is equivalent to the
statement that for any bounded and Lipschitz continuous function φ : R → R, it
holds almost surely that

1

log T

∫ T

1

1

θ
φ(Fθ )dθ →

∫

R

φ(x)ζ(dx),

as T → +∞; see [6, Remark 1.2]. Assuming CLT holds (i.e., Fθ �⇒ ζ ), it is
equivalent to show that, almost surely,

1

log T

∫ T

1

1

θ
Hθdθ →

∫

R

φ(x)ζ(dx),

where Hθ := φ(Fθ ) − E[φ(Fθ )] is uniformly bounded. Taking advantage of the
uniform boundedness of Hθ , it suffices to obtain a power decay like |E[Hθ Hw]| ≤
C(θ/w)β for θ < w with some β > 0 and C ∈ (0,∞). This can be easily
accomplished using Clark–Ocone formula when the noise is white in time; see,
e.g., [6, Section 3.1] and [29–31]. However, in our note, where the Gaussian noises
are colored in time, this strategy of applying the Clark–Ocone formula fails.

Now we are ready to state our main result.

Theorem 1.6 Under the assumptions of Theorem 1.3, theASCLT holds for
{
F̂R : R ≥

1
}
.
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Remark 1.7 (i) In this note, we focus exclusively on the wave equation in low spatial
dimensions (i.e., d ≤ 2). As previously mentioned, in higher dimension, the wave
kernels GW , unlike the those in (1.4), are no longer functions, leading to extra
difficulty in employing the Malliavin–Stein method to establish the desired CLTs.
Recent works by M. Ebina in [20, 21] have successfully established these CLTs
for the stochastic nonlinear wave equation on R

d with d ≥ 3. It is then a natural
extension to study the ASCLT in this high-dimensional setting.

(ii) For the heat equation, we simplify the presentation by focusing only on the regular
case from [35], where the spatial correlation kernel is a nonnegative function.
We do not address the rough case, which involves generalized functions for the
spatial correlation kernel. For instance, in one-dimensional case, this includes
the correlation whose spectral measure is μ(dξ) = CH1 |ξ |1−2H1 , and γ0(t) =
|t |2H0−2 for some explicit constant CH1 > 0 and 0 < H1 < 1/2 < H0 < 1 such
that H0 + H1 > 3/4, or even more rough situations as discussed in [32]. We are
optimistic that our strategy can be applicable in this rough case, while such an
investigation would inevitably require those very technical estimates from [35].

Let us comment a bit our strategy and postpone the details to Sect. 3. We will apply
the powerful Ibragimov–Lifshits criterion to prove Theorem 1.6.

Proposition 1.8 ([26, Ibragimov–Lifshits criterion]) A family of real-valued random
variables {Fθ }θ≥1 satisfies the ASCLT if θ �→ Fθ is measurable almost surely, and
the following inequality holds

sup
|s|≤T

∫ ∞

2

E
[|Kt (s)|2

]

t log t
dt < ∞, (1.11)

for any finite T > 0, where

Kt (s) := 1

log t

∫ t

1

1

θ

(
eisFθ − e−s2/2)

dθ, t ∈ (1,∞). (1.12)

In the original paper of Ibragimov and Lifshits [26], the criterion is proved for the
discrete-time version. For the proof of the above continuumversion, see [6, Proposition
3.3]. Note that the Ibragimov–Lifshits criterion is not limited to theGaussian limit (i.e.,
ASCLT), as one can see from the original paper and also from the recent application [2].
We expect that it will be useful in establishing almost sure noncentral limit theorem
in the SPDE context, for example, an almost sure noncentral limit theorem in the
framework of [19].

The said criterion requires us essentially to establish logarithmic decay in the sec-
ond moment of the difference of characteristic functions of the (random) probability
νω
T (1.10) and standard Gaussian measure. By some simple algebra, we only need
to bound the total-variation distances dTV(Fθ ,N (0, 1)) and dTV( Fθ−Fw√

2
,N (0, 1)).

While not claiming any originality, we state below an abstract result that concludes
this discussion.
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Proposition 1.9 A family {Fθ : θ ≥ 1} satisfy the ASCLT if

dTV(Fθ ,N (0, 1)) ≤ C1θ
−β1 (1.13)

and

dTV
( Fθ−Fw√

2
,N (0, 1)

) ≤ C2
(
θ−β2 + (θ/w)β3

)
for θ < w, (1.14)

whereC1,C2 are constants that do not depend on θ andw, whileβi > 0 for i = 1, 2, 3.
The above result remains valid, if the total-variation distances in (1.13)-(1.14) are
replaced by 1-Wasserstein distances.

Here, the 1-Wasserstein distance dWass(X ,Y ) of two real-valued random variables
X ,Y is defined by

dWass(X ,Y ) := sup
‖h′‖∞≤1

∣∣E[h(X)] − E[h(Y )]∣∣, (1.15)

where the supremum in (1.15) runs over all 1-Lipschitz functions h : R → R. In some
contexts (e.g., [6]), it is more natural to use the bounds in 1-Wasserstein distances in
place of (1.13)-(1.14). We postpone the proof of Proposition 1.9 to Sect. 2.

The rest of this note is organized as follows: We collect a few preliminaries in
Sect. 2 and we present the proof of Theorem 1.6 in Sect. 3.

2 Preliminaries

In Sect. 2.1, we present a few basics on Malliavin calculus, while in Sect. 2.2, we
record a criterion of Ibragimov and Lifshits.

Assume that all probabilistic objects in this note are defined on a rich enough
probability space (�,F , P).Wewrite ‖•‖p to denote the L p(�)-norm for p ∈ [1,∞]
and we write a(R) ≤ b(R) for lim supR→+∞ a(R)/b(R) < +∞, and a(R) ∼ b(R)

for

0 < lim inf
R→+∞ a(R)/b(R) ≤ lim sup

R→+∞
a(R)/b(R) < +∞,

for any nonnegative functions a and b.
Suppose the Gaussian noise Ẇ is defined as in the Introduction such that both

hypotheses (H1) and (H2) hold. Under these conditions, we can rigorously built the
isonormal framework needed for developing the L2 theory of Malliavin calculus. Let
Cc(R+ ×R

d) denote the set of all real continuous functions onR+ ×R
d with compact

support. We define the following inner product on Cc(R+ × R
d):

〈h1, h2〉H :=
∫

R+×R2d
h1(r , y)h2(r

′, y′)γ0(r − r ′)γ1(y − y′)drdr ′dydy′ (2.1)

123
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for any h1, h2 ∈ Cc(R+ × R
d). Let H denote the closure of Cc(R+ × R

d) under the
above inner product (2.1). A random field W = {W (h) : h ∈ H} is an isonormal
Gaussian process over the Hilbert space H, if W is a centered Gaussian family with
covariance given by

E[W (h1)W (h2)] = 〈h1, h2〉H.

Let σ {W } denote the σ -algebra generated by the noise Ẇ . That is, σ {W } is the σ -
algebra generated by {W (h) : h ∈ Cc(R+ × R

d)}. The well-known Wiener-Itô chaos
decomposition (see, e.g., [33, Theorem 1.1.2]) asserts that L2(�, σ {W }, P) can be
decomposed into mutually orthogonal closed subspaces (called Wiener chaoses):

L2(�, σ {W }, P) =
∞⊕

n=0

C
W
n , (2.2)

where C
W
0 � R is the set of constant random variables, C

W
n is called n-th Wiener

chaos that consists of all multiple integrals of order n; see, e.g., [34, Section 2.7]. The
n-th multiple integral operator In is a bounded linear operator from the n-th tensor
product H⊗n to C

W
n with the following orthogonality relation

E[In( f )Im(g)] = 1{n=m}n!〈 f̃ , g̃〉H⊗n (2.3)

with f̃ denoting the canonical symmetrization of f ; see, e.g., [34, Appendix B] for
the Hilbert space notation. Alternative to (2.2), we can express the Wiener-Itô chaos
decomposition as follows: for any F ∈ L2(�, σ {W }, P), there exist symmetric kernels
fn ∈ H⊗n such that

F = E[F] +
∑

n≥1

In( fn). (2.4)

The membership of F in L2(�) is equivalent to the finiteness of
∑

n≥1 n!‖ fn‖2H⊗n .
With this chaos expansion, we can define several Malliavin operators in a convenient
manner.

2.1 Basic Malliavin Calculus

Let us first define several relevant Malliavin operators using the above chaos expan-
sions (2.4), and present results specifically tailored to the solutions to (PAM)(PAM)
and (HAM).
• Malliavin derivative operator. For k ∈ {1, 2}, we let D

k,2 denote the set of all
square-integrable random variables F with the Wiener-Itô decomposition as in (2.4),
such that
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∑

n≥1

n!nk‖ fn‖2H⊗n < ∞.

For any F ∈ D
2,2 with theWiener-Itô decomposition as in (2.4), the Malliavin deriva-

tive DF and second-order Mallivin derivative D2F are given by

DF =
∑

n≥1

nIn−1( fn) and D2F =
∑

n≥2

n(n − 1)In−2( fn),

which are random vectors in H and H⊗2, respectively. Note that the Hilbert space
H may contain generalized functions, so that the random ‘function’ DF may not be
valued pointwise in general. The same comment applies to D2F , and when D2F is
indeed a function, Ds,y Dr ,z F is symmetric in (s, y) and (r , z) so that often we state
bounds only for r < s; see, e.g., (2.5) below. When u(t, x) denotes the solution to
(PAM)(PAM) or (HAM) in this note, we have the following results.

Proposition 2.1 Under the assumptions of Theorem 1.6, we have u(t, x) ∈ D
2,4 ⊃

D
2,2, meaning that |u(t, x)|+‖Du(t, x)‖H +‖D2u(t, x)‖H⊗H ∈ L4(�). Moreover,

the map (r , y) ∈ R+ × R
d �→ Dr ,yu(t, x) ∈ R is indeed a (random) function such

that for any finite p ≥ 2 and for almost every 0 < r < s < t ≤ T , and x, y ∈ R
d ,

∥∥Ds,yu(t, x)
∥∥
p �T Gt−s(x − y) and

∥∥Dr ,z Ds,yu(t, x)
∥∥
p �T Gt−s(x − y)Gs−r (y − z),

(2.5)

where the above implicit constants in ≤T do not depend on (r , s, t) but depend on T ;
see [35, Theorem 3.1] and [4, Theorem 1.3] for more details.

For notational convenience, we say a random variable F satisfies the property (P)
if F ∈ D

2,2 and almost surely, DF ∈ |H| and D2F ∈ |H⊗2| meaning that

{
(r , y) ∈ R+ × R

d �→ |Dr ,y F | ∈ R belongs toH
(r , y, s, z) ∈ (R+ × R

d)2 �→ |Ds,z Dr ,y F | ∈ R belongs toH⊗2. (P)

It is not difficult, via direct computations, to show that the solution u(t, x) in Propo-
sition 2.1 and the corresponding spatial integrals (1.7) satisfy the property (P).
• Ornstein–Uhlenbeck operators. For F ∈ D

2,2 written as in (2.4), we define LF =∑
n≥1 −nIn( fn). Let F ∈ L2(�) written as in (2.4). Suppose that E[F] = 0, we

define L−1F = ∑
n≥1 − 1

n In( fn). Here, L is called the Ornstein–Uhlenbeck operator
associated to the noise Ẇ and its domain coincides with D

2,2. The operator L−1 is
called the pseudo-inverse of L due to the fact that L−1LF = F − E[F] for F ∈ D

2,2,
and LL−1F = F for F ∈ L2(�, σ {W }, P) with zero mean. We define Pt = etL

for t ∈ R+, which is called the Ornstein–Uhlenbeck semigroup and satisfies the
contraction property:

‖Pt F‖p ≤ ‖F‖p (2.6)
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for any F ∈ L p(�, σ {W }, P) with p ∈ [1,∞). It is not difficulty to see that for F
as in (2.4), Pt F = E[F] + ∑

n≥1 e
−tn In( fn). Then, using the orthogonality relation

(2.3), we get ‖Pt F‖22 = |E[F]|2+∑
n≥1 e

−2tn‖In( fn)‖22 ≤ ‖F‖22 with equality when
and only when F is a constant or t = 0. This gives a proof of (2.6) for p = 2. The
general case can be easily proved by using Mehler formula (see, e.g., [34, Proposition
2.8.6]).

Using the chaos expansion, it is not difficult to show that −D•L−1F =∫ ∞
0 e−t Pt D•Fdt , from which, with Minkowski’s inequality and (2.6), we can have

‖D•L−1F‖p ≤
∫ ∞

0
e−t‖Pt D•F‖pdt

≤
∫ ∞

0
e−t‖D•F‖pdt = ‖D•F‖p

(2.7)

for any p ∈ [1,∞), whenever D•F is a function.
• Integration-by-parts formula and chain rule. The divergence operator δ is the
adjoint operator for D, which can be characterized by the following integration-by-
part formula:

E[〈DF, u〉H] = E[Fδ(u)] (2.8)

for any F ∈ D
1,2 and u ∈ dom (δ). Here, dom (δ) is the set of random vector

u ∈ L2(�;H) such that there is some finite constant Cu satisfying |E[〈DF, u〉H]| ≤
Cu‖F‖2 for any F ∈ D

1,2. It is not difficult to prove via chaos expansion that L = −δD
on D

2,2 (see, e.g., [33, Proposition 1.4.3]). For φ : R → R Lipschitz, differentiable
and F ∈ D

1,2, it is known that φ(F) ∈ D
1,2 with Dφ(F) = φ′(F)DF ; see [33,

Proposition 1.2.3]. Then, we can easily derive the following formula:

E[Gφ(F)] = E
[〈DF,−DL−1G〉Hφ′(F)

]
(2.9)

for any differentiable and Lipschitz function φ, F ∈ D
1,2, and G ∈ L2(�) with

E[G] = 0. Indeed, using G = LL−1G and the above chain rule with (2.8) and
L = −δD, we get

E[Gφ(F)] = E[−δDL−1Gφ(F)] = E[〈−DL−1G, Dφ(F)〉H]
= E[〈−DL−1G, DF〉Hφ′(F)].

Note that taking φ(x) = x , we get

Cov(F,G) = E
[〈DF,−DL−1G〉H

]
(2.10)

for centered random variable G with finite second moment and F ∈ D
1,2.

Now we state a key bound in this note, which arises in the so-called improved
second-order Gaussian Poincaré inequality; see [4, 39].
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Proposition 2.2 ( [4, Proposition 1.9]) Recall the notation in (P). Let F1, F2 be cen-
tered random variables inD

2,4 such that DFj ∈ |H| and D2Fj ∈ |H⊗2| almost surely
for j = 1, 2, (i.e., F1, F2 satisfy the property (P). Then,

Var
(〈DF1,−DL−1F2〉H

)
� A(F1, F2) + A(F2, F1),

where

A(F1, F2) :=
∫

R
6+×R6d

drdr ′dsds′dθdθ ′dzdz′dydy′dwdw′

× γ0(s − s′)γ0(r − r ′)γ0(θ − θ ′)γ (z − z′)γ (y − y′)γ (w − w′)
× ‖Dr ,z Dθ,wF1‖4‖Ds,y Dθ ′,w′F1‖4‖Dr ′,z′F2‖4‖Ds′,y′F2‖4.

2.2 Proof of Proposition 1.9

We conclude this section with the proof of Proposition 1.9.

Proof of Proposition 1.9 According to Proposition 1.8, the ASCLT holds for
{
Fθ : θ ≥

1
}
if

sup
|s|≤T

∫ ∞

2

E
[|Kt (s)|2

]

t log t
dt < ∞

for any finite T > 0, where Kt (s) is as in (1.12). Expanding |Kt (s)|2, we get

|Kt (s)|2 = 1

(log t)2

∫

[1,t]2
1

θw

(
eisFθ − e− s2

2
)(
e−isFw − e− s2

2
)
dθdw

= 1

(log t)2

∫

[1,t]2
1

θw

(
eis(Fθ−Fw) + e−s2 − eisFθ e− s2

2 − e−isFwe− s2
2

)
dθdw

= It (s) − e− s2
2 IIt (s),

where

It (s) := 1

(log t)2

∫

[1,t]2
1

θw

(
eis(Fθ−Fw) − e−s2

)
dθdw,

IIt (s) := 1

log t

∫ t

1

1

θ

(
eisFθ + e−isFθ − 2e− s2

2
)
dθ.

(2.11)

Therefore, it suffices to show that

A1(s) :=
∫ ∞

2

E
[
It (s)

]

t log t
dt and A2(s) :=

∫ ∞

2

E
[
IIt (s)

]

t log t
dt, s ∈ [−T , T ]

(2.12)
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are both uniformly bounded for any given T > 0.

• Estimation for A2. Recall that E[eisY ] = e− s2
2 with Y ∼ N (0, 1), and for any real

random variable X ,

∣∣E[eisX ] − E[eisY ]∣∣ = ∣∣E[eisX ] − e− s2
2

∣∣ ≤ 4 dTV(X ,Y ), (2.13)

where the total-variation distance dTV is defined as in (1.9). While using the local
Lipschitz property of the complex exponentials, we have

sup
|s|≤T

∣∣E[eisX ] − E[eisY ]∣∣ ≤ 2T dWass(X ,Y ). (2.14)

Therefore, it follows from (2.13)-(2.14) that

∣∣∣E
[
eisFθ + e−isFθ − 2e− s2

2
]∣∣∣ ≤ min{8 dTV

(
Fθ ,Y

)
, 4T dWass(Fθ ,Y )}. (2.15)

Therefore, it follows from (2.11), (2.15), and (1.13) that for any finite T > 0,

sup
{|A2(s)| : s ∈ [−T , T ]} ≤

∫ ∞

2

1

t log2 t

∫ t

1

1

θ1+β1
dθdt < ∞,

that is, sup{|A2(s)| : s ∈ [−T , T ]} < ∞ for any finite T > 0.
• Estimation for A1. Using the inequality,

∣∣∣E
[
eis(Fθ−Fw) − e−s2]∣∣∣ =

∣∣∣E
[
e
i
√
2s

(
Fθ −Fw√

2

)
− ei

√
2sY

]∣∣∣

≤ min
{
4 dTV

(
Fθ−Fw√

2
,Y

)
, 2

√
2T dWass

(
Fθ−Fw√

2
,Y

)}
,

we can write, with dist = dTV or dWass,

sup
|s|≤T

A1(s) ≤
∫ ∞

2

1

t(log t)3

( ∫

[1,t]2
1

θw
dist

( Fθ−Fw√
2

,Y
)
dθdw

)
dt

≤
∫ ∞

2

1

t(log t)3

( ∫

1<θ<w<t

1

θw
dist

( Fθ−Fw√
2

,Y
)
dθdw

)
dt, (2.16)

which is finite due to the assumption (1.14).
Hence, the proof of Proposition 1.9 is completed. ��

3 Proof of Theorem 1.6

In this section, we provide the proof of our main result Theorem 1.6. According to
Proposition 1.9, we only need to check the conditions (1.13) and (1.14) for the spatial
integrals F̂R (1.7) in place of Fθ .
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Note that Theorem 1.3 implies that in any of the four cases in (1.8), there is some
positive constant b > 0 such that

dTV(F̂θ ,Y ) ≤ Cθ−b. (3.1)

That is, the condition (1.13) is verified.
Next, we will show that there exist positive real numbers β1 and β2 such that

dTV
(
F̂θ−F̂w√

2
,Y

)
≤ θ−β1 + (θ/w)β2 (3.2)

for 1 < θ < w < ∞. This constitutes the bulk of the proof.
The bound in (3.2) is obtained using techniques analogous to those employed in

deriving the bound in (3.1). We provide a brief outline of these techniques below.

Observe that the random variable F̂θ−F̂w√
2

has mean zero and variance

Vθ,w := Var
(
F̂θ−F̂w√

2

)
= 1 − Cov

(
F̂θ , F̂w

)
. (3.3)

Thus, applying Stein’s bound (see, e.g., [34, Theorem 3.3.1]), we get

dTV(G,Y ) ≤ sup
∣∣E[Gφ(G) − φ′(G)]∣∣ with G := F̂θ−F̂w√

2
, (3.4)

where the above supremum runs over bounded, differentiable functions φ : R → R

with ‖φ‖∞ ≤ √
π/2 and ‖φ′‖∞ ≤ 2. In view of (2.10), the inner product

〈DG,−DL−1G〉H has mean

E[〈DG,−DL−1G〉H] = E[G2] = Vθ,w.

Then, it follows from (3.4), (3.3), and (2.9) with the Cauchy–Schwarz inequality that

dTV
(
F̂θ−F̂w√

2
,Y

)
≤ 2

∣∣1 − Vθ,w
∣∣ + 2E

∣∣〈DG,−DL−1G〉H − Vθ,w
∣∣

≤ 2
∣∣Cov(F̂θ , F̂w)

∣∣ +
√
Var

(〈
D(F̂θ − F̂w),−DL−1(F̂θ − F̂w)

〉
H

)
.

(3.5)

Recalling our goal (3.2), it suffices to show that, for any 1 < θ < w < ∞,

∣∣Cov(F̂θ , F̂w)
∣∣ ≤ (θ/w)β2 (3.6)

with β2 = d
2 in (case 1) and (case 3) and β2 = α

2 in (case 2) and (case 4) specified in
(1.8), where the above implicit constant does not depend on (θ,w). The bound (3.6)
will be proved in Sect. 3.1. For the variance term in (3.5), it is essential to estimate

Var
(〈
DF̂θ ,−DL−1 F̂w

〉
H

)
(3.7)
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for θ,w ∈ (1,∞), concerning the bilinearity of the inner product operation, the
linearity of the operators D and L−1, and the elementary inequality Var(X1 + X2) ≤
2Var(X1) + 2Var(X2) for any square-integrable random variables X1, X2. When θ =
w, the estimate for (3.7) has been established in [35, Section 3.1] and [4, Section 4.2],
where it is shown that, with an implicit constant independent of θ ,

Var
(〈
DF̂θ ,−DL−1 F̂θ

〉
H

) ≤
{

θ−d in (case 1) and (case 3)
θ−α in (case 2) and (case 4).

(3.8)

The derivation of (3.8) relies on the ideas around the so-called second-order Gaussian
Poincaré inequality ( [13, 39]), see Proposition 2.2. This inequality, utilized in [4, 35],
will also play a crucial role when estimating the term (3.7) for θ �= w. In Sect. 3.2, we
will show for 1 < θ < w:

Var
(〈
DF̂θ ,−DL−1 F̂w

〉
H

) + Var
(〈
DF̂w,−DL−1 F̂θ

〉
H

)

≤
{

θ−d in (case 1) and (case 3)
θ−α in (case 2) and (case 4).

(3.9)

Therefore, the claim (3.2) follows immediately from (3.5), (3.6), (3.8), and (3.9).
Hence, the proof is complete. ��

It remains to justify (3.6) and (3.9).

3.1 Proof of (3.6)

In this subsection, we will show (3.6) for the four cases specified in (1.8). First, we
present the precise asymptotic relation of the limiting variance of FR in (1.7), as cited
from [36, Theorems 1.6 and 1.7] for (PAM)(PAM) and [4, Theorem 1.4] for (HAM):

σR = √
Var(FR) ∼

⎧
⎨

⎩
R

d
2 in (case 1) and (case 3)

Rd−α
2 in (case 2) and (case 4),

(3.10)

where we write aR ∼ bR to mean 0 < lim inf R→+∞ aR/bR ≤ lim supR→+∞ aR/bR
< +∞.
• (case 1) and (case 3). It follows from [36, Theorem 1.6 for PAM] for (case 1) and
[4, Formulas (4.8) and (4.10) for HAM] for (case 3) that there exists a nonnegative
function �s,t ∈ L1(Rd) such that

�s,t (x − y) := Cov
(
u(t, x), u(s, y)

)
. (3.11)
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As a result, taking (3.10) into account, we get for R′ ≥ R > 1,

∣∣Cov(F̂R, F̂R′)
∣∣ ≤ (RR′)−

d
2

∣∣∣∣
∫

|x |<R
dx

∫

|y|<R′
dy Cov

(
u(t, x), u(t, y)

)∣∣∣∣

≤ (RR′)−
d
2

∫

|x |<R
dx

∫

Rd
dz�t,t (z) ≤ ( R

R′
)d/2

.

This verifies (3.6) for (case 1) and (case 3).
Note that in (case 2) and (case 4), the function �s,t in (3.11) does not belong to

L1(Rd). As a result, we need to carry out another approach to settle this difficulty.
• (case 2) and (case 4). Recall that F̂R is a centered random variable in D

1,2. Then,
using an integration-by-part formula from [34, Theorem 2.9.1], we can first write

E[F̂R F̂R′ ] = E
[〈DF̂R,−DL−1 F̂R′ 〉H

]

(see also (2.9)) and then apply the definition (2.1) and (2.7) with Fubini’s theorem and
Cauchy–Schwarz inequality to get

∣∣E[F̂R F̂R′ ]∣∣

≤ E

[ ∫

R
2+×R2d

|Dr ,y F̂R | × | − Dr ′,y′L−1 F̂R′ |γ0(r − r ′)γ1(y − y′)drdr ′dydy′
]

≤
∫

R
2+×R2d

∥∥Dr ,y F̂R
∥∥
2 × ∥∥Dr ′,y′ F̂R′

∥∥
2γ0(r − r ′)γ1(y − y′)drdr ′dydy′.

(3.12)

Using the basic property of Malliavin derivative operator and the bound in (2.5), we
have

∥∥Dr ,y F̂R
∥∥
2 ≤ 1

σR

∫

|x |<R
‖Dr ,yu(t0, x)‖2dx

≤ 1

σR

∫

|x |<R
Gt0−r (x − y)dx .

(3.13)

Therefore, combining (3.12) with (3.13) leads us to

∣∣E[F̂R F̂R′ ]∣∣ ≤ 1

σRσR′

∫

R
2+×R2d

∫

|x |<R

∫

|x ′|<R′
Gt0−r (x − y)Gt0−r ′(x ′ − y′)

× γ0(r − r ′)|y − y′|−αdrdr ′dydy′dxdx ′,
(3.14)

where we recall from (3.10) that σR ∼ Rd−α
2 and from (1.8) that γ1(z) = |z|−α for

α ∈ (0, 2 ∧ d).
In the following, we will use the Fourier analysis to get fine estimates of the above

spatial integral (3.14). Let us fix some notations: for an integrable function g : R
d →
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R, its Fourier transform ĝ is given by ĝ(ξ) = ∫
Rd e−i x ·ξ g(x)dx . Recall the expressions

of wave/heat kernels in (1.4) and we record below their Fourier transforms:

ĜH
t (ξ) = e− t

2 |ξ |2 and ̂GW
t (ξ) = sin(t |ξ |)

|ξ | , for all t > 0, ξ ∈ R
d . (3.15)

Then, using Plancherel’s theorem, we get from (3.14) with (3.10) that

∣∣E[F̂R F̂R′ ]∣∣ �(RR′)
α
2 −d

∫ t0

0

∫ t0

0
drdr ′γ0(r − r ′)

∫

Rd
dξ

×
∫

|x |<R
dx

∫

|x ′|<R′
dx ′e−iξ ·(x−x ′)Ĝt0−r (ξ)Ĝt0−r ′(ξ)|ξ |α−d

=( R
′

R )
α
2

∫ t0

0

∫ t0

0
drdr ′γ0(r − r ′)

∫

Rd
dξ

×
∫

|x |<1
dx

∫

|x ′|<1
dx ′e−iξ ·

(
x− R′

R x ′)
Ĝt0−r (ξ/R)Ĝt0−r ′(ξ/R)|ξ |α−d ,

(3.16)

where in the last equality, we performed a change of variable (x, x ′, ξ) �→
(Rx, R′x ′, ξ/R).

Next, we further bound (3.16) in (case 2) and (case 4) separately. For (case 2),
recalling (3.15), and using

|ξ |−2β = 1

�(β)

∫ ∞

0
dθe−θ |ξ |2θβ−1

with β = d−α
2 > 0, and making a change of variables (t0 − r , t0 − r ′) �→ (r , r ′), we

can get from (3.16) that

∣∣E[F̂R F̂R′ ]∣∣ �( R
R′ )

α
2

∫ t0

0

∫ t0

0
drdr ′γ0(r − r ′)

∫

|x |,|x ′|<1
dxdx ′

∫ ∞

0
dθθ

d−α−2
2

×
∫

Rd
dξe−i(x− R′

R x ′)·ξ−(θ+ r+r ′
2R2

)|ξ |2

=(2π)
d
2 ( R

R′ )
α
2

∫ t0

0

∫ t0

0
drdr ′γ0(r − r ′)

∫

|x |,|x ′|<1
dxdx ′

×
∫ ∞

0
dθθ

d−α−2
2

(
θ + r+r ′

2R2

)− d
2 exp

(
− |x− R′

R x ′|2
4(θ+ r+r ′

2R2
)

)
,

(3.17)

where in the last step, we use the Fourier transform of the heat kernel.
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To deal with the integration in θ from (3.17), we decompose the region (0,∞) into
two segments (0, r+r ′

2R2 ) and ( r+r ′
2R2 ,∞). Since r , r ′ ∈ (0, t), it is easy to deduce that

∫ r+r ′
2R2

0
dθθ

d−α−2
2

(
θ + r+r ′

2R2

)− d
2 exp

(
− |x− R′

R x ′|2
4(θ+ r+r ′

2R2
)

)

≤( R2

r+r ′
) d
2 exp

(
− |x− R′

R x ′|2
4(r+r ′)/R2

) ∫ r+r ′
2R2

0
dθθ

d−α−2
2 with d−α−2

2 > −1

≤( R2

r+r ′
) d
2 exp

(
− |x− R′

R x ′|2
4(r+r ′)/R2

)( r+r ′
2R2

) d−α
2

=( R2

r+r ′
) α
2 exp

(
− |x− R′

R x ′|2
4(r+r ′)/R2

)
≤ |x − R′

R x ′|−α,

(3.18)

and

∫ ∞
r+r ′
2R2

dθθ
d−α−2

2
(
θ + r+r ′

2R2

)− d
2 exp

(
− |x− R′

R x ′|2
4(θ+ r+r ′

2R2
)

)
≤

∫ ∞
r+r ′
2R2

dθθ
−α−2

2 e−|x− R′
R x ′|2
8θ

≤
∫ ∞

0
dθθ

−α−2
2 e−|x− R′

R x ′|2
8θ ≤ |x − R′

R x ′|−α.

(3.19)

Therefore, we deduce from (3.17), (3.18), and (3.19) with the local integrability of γ0
that

∣∣E[F̂R F̂R′ ]∣∣ ≤ ( R
R′ )

α
2

∫ t0

0

∫ t0

0
drdr ′γ0(r − r ′)

∫

|x |,|x ′|<1
dxdx ′|x − R′

R x ′|−α

= ( R
R′ )−

α
2

∫

|x |<1
dx

∫

|x ′|<1
dx ′| R

R′ x − x ′|−α ≤ ( R
R′ )−

α
2 ,

(3.20)

where for the last step, we used the following elementary fact that

sup
z∈Rd

∫

|x |<1
|z − x |−βdx < ∞, ∀β ∈ (0, d). (3.21)

Thus, the proof of (3.6) in (case 2) is complete.
Now let us deal with (case 4). For the wave kernel in R

d with d ≤ 2, it enjoys the
following property that with 1R(x) := 1{|x |<R},

(1R ∗ Gr )(y) :=
∫

Rd
1{|x |<R}Gr (x − y)dx ≤ r1R+r (y), (3.22)

which follows from the definition (1.4) of the wave kernel; see also [10, Lemma 2.1].
Note that the Fourier transform of 1R is a real-valued and rotationally symmetric
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function (see, e.g., [36, Lemma 2.1]). Then, using Plancherel’s theorem and some
Fourier calculations, we derive from (3.14) with (3.10) and a change of variables
(t0 − r , t0 − r ′) → (r , r ′) that

∣∣E[F̂R F̂R′ ]∣∣ ≤ (RR′)
α
2 −d

∫ t0

0

∫ t0

0
drdr ′γ0(r − r ′)

∫

Rd
dξ |ξ |α−d Ĝr (ξ)Ĝr ′(ξ)

×
( ∫

|x |<R
dx

∫

|x ′|<R′
dx ′e−i(x−x ′)·ξ

)

= (RR′)
α
2 −d

∫ t0

0

∫ t0

0
drdr ′γ0(r − r ′)

∫

Rd
dξ |ξ |α−d 1̂R(ξ)1̂R′(ξ)Ĝr (ξ)Ĝr ′(ξ)

= Cα,d(RR
′)

α
2 −d

∫ t0

0

∫ t0

0
drdr ′γ0(r − r ′)

∫

R2d
(1R ∗ Gr )(y)(1R′ ∗ Gr ′)(y′)

× |y − y′|−αdydy′,

where the constant Cα,d comes from inverting the Fourier transform of the spectral
measure |ξ |α−ddξ . Nowapplying the inequality (3.22)with r , r ′ ∈ (0, t0) and utilizing
the local integrability of γ0, we get

∣∣E[F̂R F̂R′ ]∣∣ ≤ t20 (RR′)
α
2 −d

∫ t0

0

∫ t0

0
drdr ′γ0(r − r ′)

∫

R2d
1R+t0(y)1R′+t0(y

′)

× |y − y′|−αdydy′

≤ (RR′)
α
2 −d

∫

R2d
1R+t0(y)1R′+t0(y

′)|y − y′|−αdydy′

≤ (RR′)
α
2 −d(R + t0)

d(R′ + t0)
d−α ≤ ( R

R′ )
α
2 ,

where we obtained the last second step with the same argument as in (3.20)-(3.21).
Hence, the proof of (3.6) in (case 4) is finished. ��
3.2 Proof of (3.9)

To prove (3.9), we first apply Proposition 2.2 with the bounds in (2.5) and (3.13): with
BR := {x ∈ R

d : |x | < R}, we need to bound

A(
F̂R, F̂R′

) ≤σ−2
R σ−2

R′
∫ t0

0
dr

∫ r

0
dθ

∫ t0

0
dr ′

∫ r ′

0
dθ ′

∫

[0,t]2
dsds′

∫

R6d
dzdz′dydy′dwdw′

× γ0(s − s′)γ0(r − r ′)γ0(θ − θ ′)γ (z − z′)γ (y − y′)γ (w − w′)

×
∫

B2
R

dx1dx2Gt−r (x1 − z)Gr−θ (z − w)Gt−r ′(x2 − z′)Gr ′−θ ′ (z′ − w′)

×
∫

B2
R′
dx3dx4Gt−r ′ (x3 − y)Gt−s′(x4 − y′).

In (case 1), we simply enlarge the region BR to BR′ . Then, applying the estimates for

A∗ appearing in [35, Section 3.1.1] and recalling from (3.10) that σR = σR(t0) ∼ R
d
2 ,

one can easily conclude that
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A(
F̂R, F̂R′

) ≤ R−d .

For (case 2), we follow the idea employed in [35, Section 3.1.2]. That is, for i.i.d.
standard normal random variables Z1, . . . , Z6, we have

K :=
∫

B4
1

dx1 · · · dx4E

[∣∣∣
√
t − r

R
Z1 −

√
r − θ

R
Z2 −

√
t − s

R
Z3 +

√
s − θ ′
R

Z4 + x1 − x2
∣∣∣
−α

×
∣∣∣
√
t − s

R
Z3 −

√
t − s′
R′ Z6 + x2 − x4

∣∣∣
−α

×
∣∣∣
√
t − r

R
Z1 −

√
t − r ′
R′ Z5 + x1 − x3

∣∣∣
−α

]

≤1,

and thus, the expression

SR = SR(t, r , r ′, s, s′, θ, θ ′)

:=
∫

B2
R

dx1dx2

∫

B2
R′
dx3dx4

∫

R6d
dzdz′dydy′dwdw′γ (z−z′)γ (y−y′)γ (w−w′)

× Gt−r (x1 − z)Gr−θ (z − w)Gt−r ′(x2 − z′)Gr ′−θ ′(z′ − w′)Gt−r ′(x3 − y)

× Gt−s′(x4 − y′)
= R2d−2α(R′)2d−αK ≤ R2d−2α(R′)2d−α.

Then, with σR ∼ Rd− α
2 , we get

A(
F̂R, F̂R′

) ≤ σ−2
R σ−2

R′

∫ t0

0
dr

∫ r

0
dθ

∫ t0

0
dr ′

∫ r ′

0
dθ ′

∫

[0,t]2
dsds′SR � R−α.

Turning to the cases for (HAM), we first consider (case 3). Just like (case 1), with
extending the integrating region in x1, x2 to BR′ , applying the estimates forAR in [4,
Page 809], we have

A(
F̂R, F̂R′

)
� R−d ; and for (case 4), following a similar argument as in [4, Section

4.2.2], one can deduce that A(
F̂R, F̂R′

)
� R−α. The estimates for A(F̂R′, F̂R) are

also very similar and thus omitted here. Therefore, we have

A(
F̂R, F̂R′

) + A(
F̂R′, F̂R

)
�

{
R−d , (case 1) and (case 3)
(R′)−α < R−α, (case 2) and (case 4).

The proof of (3.9) is then complete by invoking Proposition 2.2. ��
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