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Abstract

Multiphase flows are present in many industrial and engineering applications as well as

in some physical phenomena. Simulations of multiphase flows serve as a crucial tool

in understanding the complex fluid dynamics present in various natural and engineering

phenomena.

The main objective of this study is to develop and advance numerical methods for

simulating multiphase flows with a novel approach that can reconstruct under-resolved

structures. The second objective is to evaluate its performance and extend the complexity

using adaptivity.

The research introduces and refines the moment-of-fluid (MOF) method, particularly in

addressing challenges related to interface capturing and fine-scale structure resolution. The

first part of the study presents a symmetric approach for reconstructing thin structures, or

filaments, using a new efficient approach. The MOF method is extended to an adaptive mesh

refinement (AMR) framework, employing a quadtree structure to efficiently resolve thinner

structures without a substantial increase in computational cost.

The effectiveness of the MOF method and its adpative extension are demonstrated through

benchmark problems, showcasing computational efficiency and accuracy. Furthermore, the

thesis introduces a novel adaptive dual grid technique, enabling simultaneous adaptive

resolution of fine interfacial details and solution of the Navier-Stokes equations on a coarse

grid. Validation against benchmark cases demonstrates the capability of the method in

accurately capturing complex interface dynamics while maintaining computational efficiency.
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Chapter 1

Introduction

1.1 Background and context of the research

Multiphase flows are characterised by the simultaneous presence and coexistence of two

or more discernible phases, encompassing liquids, gases, and solids, or by the presence of

multiple fluids, also called materials. They play a pivotal role in diverse fields of study, rang-

ing from engineering applications, natural phenomena to physical processes. The complex

interface between these phases has profound implications for the design and operation of

numerous engineering systems, such as oil transportation or gas extraction, inkjet printing

or coastal protection. Applications include electronics cooling and chemical reactions in

bubble columns and fluidised beds. Some applications are relevant to developing a deep

understanding of natural occurrences like river sediment transport, wave breaking, ocean cur-

rents, volcanic eruptions, cloud formation, droplet behaviour or bubble dynamics. Exploring

and understanding these phenomena is crucial for the development of novel methods aimed

at optimising industrial processes, enhancing energy efficiency and safety, and safeguarding

environmental sustainability.

Fig. 1.1 illustrates various instances of multiphase flow. The first example (a) depicted is

the Kelvin-Helmholtz instability, illustrated by cloud movements as a result of wind shearing
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clouds in opposite directions. The second example (b) shows a dam break experiment which

underscores the significance of complex dynamics of the water surface and its impact, essen-

tial for predicting flood propagation, inundation patterns and forces on walls or structures.

The third example (c) illustrates a river confluence, where two streams converge, which un-

derscores the challenges in predicting the interface behaviour between distinct water bodies,

crucial for understanding sediment transport dynamics and ecological implications. The

last example (d) highlights the interface dynamics phenomenon of droplet crown formation.

This phenomenon is observed when a liquid droplet impacts on a thin liquid surface. This

causes the surrounding liquid to disperse radially outward, exhibiting intricate patterns and

morphological changes as the liquid redistributes and retracts due to surface tension forces,

typically forming a very thin bridge of water.

(a) Kelvin-Helmholtz clouds (b) Dam break experiment by Buchner (2002)

(c) Interface at the confluence of two rivers (d) Droplet impact by Cossali et al. (1997)

Fig. 1.1 Examples of multiphase flow applications seen in nature or in the laboratory.
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Experimental studies are indispensable in scientific research (Buchner, 2002; Cossali

et al., 1997). They are frequently subject to constraints that may prevent their effectiveness

when compared to numerical approaches. One prominent challenge is the inability to control

all variables in a real-world setting. This may potentially result in factors that obscure the

correlation between variables of interest. In addition, experimental studies are typically

constrained by practical considerations such as cost, time, and simplicity which may restrict

the scope and scale of investigations.

On the contrary, numerical work offers flexibility, repeatability and scalability. The

advantage of control over model parameters and boundary conditions is significant. Further-

more, numerical simulations can study phenomena that may be impractical or impossible to

replicate in a laboratory setting. Despite these limitations, experimental studies remain indis-

pensable for validating numerical models and providing empirical grounding for theoretical

frameworks.

Within the realm of physics, the intricacies of multiphase flows not only test our un-

derstanding of fluid dynamics but also pose formidable numerical challenges, pushing the

boundaries of scientific research. In numerical multiphase flows, representing the inter-

face with accuracy is essential for several critical reasons. First and foremost, the accurate

depiction of interfaces is integral to providing reliable predictions of complex topological

structures. Yet, this accuracy is particularly challenging due to the technical complexities

associated with representing the interface between two or more materials numerically. With-

out a precise representation, the simulation may fail to capture the intricacies of multiphase

flow dynamics, leading to inaccurate predictions and preventing our ability to understand

and optimise various engineering processes.

Moreover, the evolving interfaces in multiphase flows necessitate considerable com-

putational resources for accurate prediction. A precise representation becomes crucial in

managing these computational demands effectively. It ensures that mass, momentum, and



1.2 Previous studies 4

energy transfer between phases are robustly and accurately simulated. In addition, increasing

the level of detail numerically also requires substantial resources, which may be currently

insufficient.

Tackling problems with different characteristic sizes may present numerical complexities,

particularly concerning the dynamic nature of the interfaces involved. These challenges

arise from the necessity to capture interfaces that may exist on scales smaller than those

of the overall flow field, often referred as "subgrid". As a result, using fixed grids necessi-

tates a fine uniform grid throughout the entire computational domain to accurately resolve

intricate interfacial details, leading to a substantial increase in computational effort. In addi-

tion, increasing the global resolution to directly resolve these interfaces using conventional

numerical methods can be impractical and highly expensive in large-scale simulations.

Therefore, developing advanced numerical methods and computational techniques capa-

ble of capturing the intricate dynamics of multiphase interfaces is imperative for extending

the boundaries of multiphase flow simulations and addressing real-world engineering chal-

lenges effectively. The use of subgrid modelling techniques to accommodate unresolved

structures is crucial to depict accurately their dynamics and interactions within the flow. In

essence, a precise characterisation of the interface is fundamental for reliable and robust

predictions of multiphase flows.

1.2 Previous studies

1.2.1 Interface techniques

Over the years, several techniques have emerged to effectively represent interfaces in compu-

tational simulations. These fall into two broad categories: interface tracking and interface

capturing methods.
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On one hand, interface tracking techniques are designed to follow and monitor a defined

set of points that represent the interface. The tracking is often aimed to track points along

the velocity field associated with the fluid flow. By continuously updating the positions

of points defining the interface, interface tracking methods provide detailed characteristics

of the interface over time. These techniques are particularly useful in situations where the

interface is sharp and well-defined (Leung and Zhao, 2009; Li, 2013; Sato and Ničeno, 2013;

Tryggvason et al., 2001).

On the other hand, interface capturing techniques are aimed at approximating the interface

without explicitly tracking individual points. Instead, these methods try to characterise the

interface to distinguish between different phases or materials (Scardovelli and Zaleski, 1999).

While interface capturing methods are generally less computationally intensive compared

to interface tracking, they may struggle to accurately represent sharp interfaces or capture

intricate interface dynamics.

Both approaches have their advantages and limitations. Some numerical techniques might

be easier to implement, some might have better mass conservation properties, and some

might resolve complex interfaces in a superior way. Overall, all these techniques have been

adopted widely in the literature for interface calculation.

Methods for predicting the behaviour of fluids with complex interfaces include the

marker-and-cell method (Harlow and Welch, 1965), front tracking method (Unverdi and

Tryggvason, 1992), diffuse interface method (Anderson et al., 1998), level-set method (Osher

and Sethian, 1988; Sethian and Smereka, 2003), volume-of-fluid (VOF) method (Hirt and

Nichols, 1981; Scardovelli and Zaleski, 1999), and some meshless methods such as smoothed

particle hydrodynamics (SPH) (Monaghan, 1992). This section will discuss some of them in

more detail.
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1.2.1.1 Interface tracking

Front tracking method The front tracking technique represents a traditional method that

combines interface tracking features on a fixed Eulerian grid (Tryggvason et al., 2001). In

a structured grid approach, the interface, or front, is explicitly tracked by a network of

connected marker points. The motion of the front within the velocity field is achieved by

tracking the advection of these marker points. Accuracy and stability are key advantages

offered by this explicit approach. Unlike approaches reliant on the advection of a marker

function, front tracking minimises numerical inaccuracies associated with scalar function

advection and surface tension representation. However, its complex implementation and

computational efficiency present significant challenges. In addition, simulating the breakup

and coalescence of material may be difficult. Fig. 1.2 depicts a visual schematic of the front

tracking approach, inspired by Tryggvason et al. (2001).

Fig. 1.2 Schematic of the front tracking technique. Marker points are linked to each other forming the
front/interface.
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Smoothed Particle Hydrodynamics Smoothed Particle Hydrodynamics (SPH) was origi-

nally designed to simulate compressible flows in astrophysics rather than to tackle incom-

pressible fluid problems. The SPH method is a mesh-free Lagrangian method that has gained

popularity for simulating complex fluid dynamics in multiphase flows. In SPH, the fluid

domain is discretised into particles, and physical quantities are represented by smoothing

kernels. This approach excels in handling large deformations and complex interfaces. Specif-

ically in multiphase flows, SPH has proven effective in capturing dynamic interfaces, such as

the breakup of droplets or the merging of liquid streams (Shao and Lo, 2003). However, some

limitations and difficulties arise due to the computational cost associated with this method.

Fig. 1.3 highlights an example of an SPH simulation outside the context of multiphase flows,

shedding light on the dynamic processes underlying Moon formation. Without relying on a

fixed grid, SPH enables the interactions of particles and gravitational forces to be simulated

and offers insights into the origins of the Moon.

Fig. 1.3 Formation of the Moon simulated using SPH (Nakajima and Stevenson, 2014). Four scenarios
of collision are studied. Top row shows the energy of particles, bottom rows shows the origins of
particles.
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Particle tracking method Similar to the SPH method, particle tracking methods involve the

simulation of individual particles representing fluid elements, enabling the tracking of their

trajectories over time. This Lagrangian approach proves advantageous for modelling particle

transport and intricate interactions within a flow (Koshizuka and Oka, 1996). This approach,

also called MPS method, is particularly effective in capturing phenomena like particle

dispersion, sedimentation, and the dynamic movement of individual fluid elements. The

MPS method employs kernel functions to calculate particle interactions. Particle detection,

resolution and computational cost are some of the drawbacks of the method. Indeed, to

ensure robust calculations, neighbouring particles need to be identified and detected, which

can be a particularly expensive computational process.

Moving mesh method Moving mesh techniques dynamically adjust the computational

grid to accommodate changes in the flow field and have proved to be particularly useful in

scenarios with evolving interfaces. The integration of particle tracking with a moving mesh

strategy provides a powerful approach for simulating multiphase flows with both accuracy

and efficiency (Zwart et al., 1999). Moving mesh techniques contribute to a comprehensive

understanding of multiphase flow phenomena across diverse applications. Whilst this method

enables a sharp interface to be maintained, it is not suited for predicting the breakup and

coalescence of materials.

1.2.1.2 Interface capturing

The trade-off between sharp and diffuse interface representations directly impacts the quality

of the interface and its numerical stability. Sharp interfaces enable precise calculation of

the normal of the interface. Conversely, diffuse methods enhance stability but can degrade

accuracy in the estimation of the normal, leading to errors in the dynamics of the interface.

Balancing these factors is critical for robust and accurate multiphase flow simulations.
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Diffuse interface method The diffuse interface method emerges from the idea of a diffused

interface between two fluids (Anderson et al., 1998). Instead of a distinct sharp separation

between two phases, this method describes a thin interface layer where fluid mixing occurs

gradually and smoothly, similar to the concept of shock waves. To simulate the behaviour

within this region, a function called the phase field is initialised. This phase distribution

represents the total free energy within the diffuse region. However, the method is prone to

numerical issues including the choice of thickness parameter and acceptable computational

costs.

Level set method Within interface capturing methods, the level set method stands as

a prominent technique. The fundamental component of this method is a signed-distance

function that is used to differentiate several phases/materials and which therefore defines

the interface between them (Osher and Sethian, 1988). The different phases are determined

based on the positive and negative values of the level-set function. By defining the interface

as the zero level set of this function, the method implicitly tracks the evolution and behaviour

of the interface over time. Traditionally, numerical errors are introduced in the calculation

of the smooth function which may lead to numerical instability and loss of accuracy. Some

improvements have been developed in order to rectify these by using a reinitialisation

equation (Sussman et al., 1994). Therefore, the enhanced accuracy and inherent robustness

make it valuable in simulating many complex multiphase flows. Whether dealing with

phenomena such as fluid mixing, phase separation, or surface tension effects, the method has

enjoyed great success in capturing intricate interface dynamics. Yet, despite its strengths, in

most engineering problems, the lack of mass conservation of the traditional technique poses

a significant challenge and makes it undesirable for accurate predictions. Fig. 1.4 shows a

visual representation of the traditional level set method and how the interface is represented.

To address this limitation, notable improvements have been made on this issue by

developing the conservative level set method (Chiodi and Desjardins, 2017; Olsson and Kreiss,
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Fig. 1.4 Illustration of the level set method in 2D. The smooth function is in red and the zero level set
representing the interface is highlighted with the blue plane. The projection of the boundary from
above forms the grey shape (Alexandrov and Santosa, 2005).

2005). By incorporating conservation principles into the formulation, the conservative level

set method strives to rectify the mass conservation issue, thereby enhancing its suitability for

a wider range of multiphase flow problems. Recent advances have extended the applicability

of the conservative level set method to encompass non-Newtonian multiphase flows, enabling

the solution of complex rheological problems involving viscoelastic fluids (Doherty et al.,

2023).

Volume-of-fluid method Another widely recognised interface capturing technique is the

volume-of-fluid (VOF) method (Rider and Kothe, 1998; Scardovelli and Zaleski, 1999).

The VOF method is a prominent numerical technique employed in the simulation of fluid
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interfaces. The method has gained popularity thanks to advantageous features such as mass

conservation, computational efficiency and ease of implementation. This method delineates

the interface between different fluid phases by quantifying the volume fraction of each phase

within grid cells. Broadly speaking, there are two categories of algorithms for solving the

transport equation: algebraic and geometric computation (Rider and Kothe, 1998).

Algebraic VOF The algebraic VOF method employs an algebraic equation to compute

directly the volume fraction through the transport equation, eliminating the need for interface

reconstruction. However, numerical schemes may exhibit excessive diffusion, where the

volume fraction values F fall outside of the interval [0,1]. This excessive diffusion can

be mitigated using limiter schemes. Additionally, this diffusion issue poses challenges to

maintaining mass conservation during the computational process.

Drawing on the principles of flux-corrected transport (FCT), a FCT-VOF algorithm was

introduced (Rudman, 1997; Zalesak, 1979). Initially, an intermediate F value is computed

using a monotonic low-order flux along cell boundaries. Subsequently, a corrective flux is

established to address the numerical diffusion arising from the low-order scheme. Finally,

correction factors are computed to guarantee that the application of anti-diffusive fluxes

does not introduce any new extremes into the solution in order to update the F value at

the new time step. Oscillations may arise with high-order schemes, which need mitigating.

Efforts to suppress these oscillations have been made using TVD or compressive schemes

(Zhang et al., 2015). A compressive scheme CICSAM (Compressive Interface Capturing

Scheme for Arbitrary Meshes) has been developed to maintain sharp interfaces by Ubbink

(1997). Similarly, the THINC (Tangent of Hyperbola for Interface Capturing) method uses

hyperbolic tangent functions to compute fluxes for the volume fraction (Xiao et al., 2005).

Geometric VOF On the other hand, the geometric VOF method relies on capturing

the fluid interface geometry explicitly. It employs numerical techniques to reconstruct the
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interface, providing a geometric profile and location of the fluid phases. Changes in volume

fraction are determined subsequently by integrating volume fluxes along cell boundaries.

Regarding interface reconstruction, geometric VOF methods can be categorised into two

classes:

• Simple Line Interface Calculation (SLIC): Initially developed by Hirt and Nichols

(1981), the interface is defined as being either horizontal or vertical within a cell and is

evaluated using the volume fraction of surrounding grid cells. A piecewise constant

method assumes that the interface within a cell forms a line aligned with one of the

grid axes. This approach is straightforward and easy to implement but is characterised

by low accuracy (see Fig. 1.5). In this instance, the orientation of the interface is

(a) Actual interface configuration (b) Hirt & Nichols SLIC interface reconstruction

Fig. 1.5 Interface reconstruction of the configuration compared to the SLIC method presented by Hirt
and Nichols (1981), inspired by Rudman (1997).

determined by approximating the gradient around the desired cell. If the vertical

gradient is smaller than the horizontal gradient, then the interface is horizontal and

vice versa.
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• Piecewise Linear Interface Calculation (PLIC): In a subsequent development, Youngs

method introduced an improved orientation to the interface (Youngs, 1982). The

interface representation within a cell is depicted as a sloped line in 2D. The slope of

the line is determined by an interface normal, which corresponds to the gradient of

the volume fraction, namely the volume fraction of neighbouring cells (see Fig. 1.6).

PLIC methods offer increased accuracy compared to piecewise constant methods as

they provide a more realistic topology of the interface (Pilliod Jr and Puckett, 2004;

Rider and Kothe, 1998). In the case of the Youngs PLIC method, the orientation of the

(a) Actual interface configuration (b) Youngs PLIC interface reconstruction

Fig. 1.6 Interface reconstruction of the configuration compared to the Youngs PLIC method presented
by Youngs (1982), inspired by Rudman (1997).

interface, β , creates an angle with the horizontal. It is evaluated using neighbouring

volume fractions.

Despite these advancements, traditional geometric VOF methods are not without their

shortcomings. Both geometric VOF methods are subject to natural diffusion and artificial

surface tension. These drawbacks may lead to rounder sharp corners causing the separation

of forming filaments and exhibit large errors in reconstructing interfaces with accuracy. More-
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over, these methods are limited by the constraint that only one interface can be reconstructed

within a single cell, which means that structures thinner than a cell size cannot be resolved.

To address these challenges, more sophisticated VOF approaches have been developed to

enhance accuracy and mitigate errors related to material diffusion using a parabolic recon-

struction within a cell (Evrard et al., 2023; López et al., 2004; Remmerswaal and Veldman,

2022). Often these methods are referred as piecewise parabolic interface reconstruction

(PPIC). Fig. 1.7 highlights three different types of reconstruction: SLIC, PLIC and PPIC.

Others have aimed to resolve filaments more effectively, particularly in scenarios where such

thin structures play a crucial role (Han et al., 2024; López et al., 2005).

(a) SLIC reconstruction (b) PLIC reconstruction (c) PPIC reconstruction

Fig. 1.7 Differences in reconstruction shape between SLIC, PLIC and PPIC methods (not scaled).

Furthermore, to leverage the strengths of both VOF and level set methods, hybrid ap-

proaches have been developed. These methods aim to combine the advantages of each

technique while mitigating their respective limitations. For instance, a coupled level set and

VOF (CLSVOF) method has been proposed to achieve a more robust and accurate interface

representation (Sussman and Puckett, 2000).

Moment-of-fluid method The latest advancement in the evolution of the VOF method

is manifested in the form of the moment-of-fluid (MOF) method. Distinguished by its

innovative approach, the MOF method, initially introduced in 2005, uses both the volume
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fraction (zeroth moment) and the centroid (first moment) of the reference interface to

accurately reconstruct the interface within a cell (Dyadechko and Shashkov, 2005). The

method significantly enhances the accuracy in interface orientation. While conserving mass

in each cell, the best approximation is obtained by finding the normal to the interface that

minimises the distance between the centroid of the reference interface and the centroid of the

reconstructed interface. Compared to a standard VOF method, the MOF method improves

the precision of interface reconstruction, mitigating errors inherent in traditional approaches.

Moreover, the MOF method exhibits superior mesh convergence properties.

A standout feature of the MOF method is its ability to reconstruct a piecewise linear

interface without requiring the exchange of information from neighbouring cells. In addition,

the MOF method can be implemented with ease for general polyhedral cells. Indeed, the

initial approach encompasses both convex and non-convex polyhedral configurations. This

versatility underlines its utility in diverse computational domains, where the complexity

of cell shapes may vary significantly. By accommodating both convex and non-convex

polyhedral cells, the approach demonstrates robustness and adaptability.

Nevertheless, it is essential to acknowledge that the MOF method contains some chal-

lenges. The time-consuming nature of the minimisation procedure is seen as the compu-

tational bottleneck. Indeed, an optimisation algorithm is inherently required in order to

reconstruct the interface within each cell. In addition, it is worth noting that the proposed

optimisation process relies on an initial guess, which does not necessarily ensure the optimal

solution. Fig. 1.8 highlights the key concepts for the MOF approach for a general polyhedral

cell with the reference (actual) interface Γ⋆, in which the reference material subset is ω⋆ and

its reconstructed polygon is ωℓ.

Following this advancement, Lemoine et al. (2017) made a notable breakthrough by

discovering an analytical solution that removes the necessity to employ an optimisation

algorithm. However, it is important to note that this solution is limited to rectangular cells,
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(a) Reference interface Γ⋆ and reference centroid
xc(ω

⋆)
(b) Reconstructed interface Γℓ and reconstructed cen-
troid xc(ω

ℓ)

Fig. 1.8 Initial MOF development using volume fraction and centroid for reconstruction. The normal
to the interface is represented by the outward pointing normal n. Image from Lemoine et al. (2017).

which means it cannot be implemented for more complex geometries. Their work has been

extended to 3D rectangular hexahedral cells (Milcent and Lemoine, 2020).

Building on the contribution of Lemoine et al. (2017), recent efforts have focused on

increasing the computational efficiency of the MOF method and reducing its considerable

computational runtime. One notable advancement involves the utilisation of pre-computed

values to accelerate the process of finding the reconstructed centroid (Cutforth et al., 2021).

By leveraging pre-computed data, the computational runtime associated with interface

reconstruction is significantly reduced. Moreover, additional innovative methodologies

have further enhanced the computational efficiency of the MOF method. Ye et al. (2021)

introduced a machine learning-based approach that results in drastic reductions in runtime.

However, subsequent enhancements have exclusively targeted Cartesian cells, highlighting

the limitation in applicability to other cell geometries or shape of grids.

One notable extension of the MOF method lies in the area of multi-material reconstruction,

where the MOF method outshines traditional VOF techniques. In scenarios involving three
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or more distinct materials, multi-material interfaces are considered to be situations in which

more than one interface delineate materials within a cell. This complex problem has been

addressed by Dyadechko and Shashkov (2008) for up to six materials. Filaments, T-junctions

and more complex interfaces are discussed using serial and nested dissections. When more

than four materials are used, groups are formed and dissection is carried out, also called

B-tree dissection. Fig. 1.9 shows the representation of multi-material reconstruction for four

materials scenarios. This includes the X-junction, the N-junction and the ∆-junction. Ahn

and Shashkov (2007) have addressed similar complex problems for general polyhedral cells,

either convex or non-convex. The capability of reconstruction of multiple materials within a

cell opens avenues for simulating complex multiphase systems with unprecedented accuracy

and fidelity.

(a) X-junction (b) N-junction (c) ∆-junction

Fig. 1.9 Four material reconstruction for complex scenarios using a B-tree dissection multi-material
MOF method.

Furthermore, efforts have been directed towards dealing with the ability of the MOF

method to effectively capture under-resolved filaments, also called subgrid structures. A

filament is a structure (material) containing two interfaces within a cell, which makes it

challenging to detect and resolve. Indeed, understanding the topology is paramount and

requires to perform multiple reconstructions to identify the solution that best matches the

reference topology. The reconstruction of these structures is facilitated using the multi-
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material reconstruction framework (Jemison et al., 2015). First, by detecting which materials

may or may not be adjacent to each other, the conglomeration algorithm enables one to

identify which type of reconstruction is needed. Consequently, a fictitious material is

introduced in order to proceed with a multi-material reconstruction. After reconstruction,

the fictitious material is reassigned to its original phase and therefore filaments are created.

However, despite great advances, this work has been combined with an adaptive grid approach

and has not been applied to fixed grids. By overcoming this limitation, the MOF method

enhances its applicability to a wide range of fluid dynamics phenomena, where the presence

of intricate filamentary features plays a pivotal role.

Another noteworthy development is the pursuit of symmetric reconstruction techniques

within the MOF framework (Hill and Shashkov, 2013). In most MOF methods, the optimi-

sation is carried out considering the centroid of one material in the distance minimisation

procedure. However, by incorporating considerations of all material information, the aim of

this research is to achieve more accurate and balanced representations of complex interfaces.

In a symmetric technique, the centroid of the remaining material is also considered in the ob-

jective function. Therefore, the sum of distances between both centroids and their respective

reference centroid is minimised at the same time. This additional feature of the MOF method

has thereby enhanced the overall robustness, reliability and versatility of the method.

Moreover, the integration of adaptive mesh refinement (AMR) strategies into the MOF

method has garnered significant attention (Ahn and Shashkov, 2009). By dynamically

adjusting the mesh resolution, AMR improves computational efficiency and ensures optimal

grid resolution in regions of interest. The refinement is triggered based on the error in

reconstruction, which also depends on the value of the objective function. In this work

however, only standard reconstruction has been considered. When large deformations of

the interface occur, standard MOF techniques are not precise enough to maintain a smooth
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interface and breakup occurs similar to VOF methods. As discussed earlier, the work of

Jemison et al. (2015) has later tackled the issues of adaptivity and material breakup.

Attempts have also been made to couple the level set method with the MOF method

(Jemison et al., 2013; Mukundan et al., 2022). Some research has been conducted on

Arbitrary Lagrangian-Eulerian (ALE) MOF methods, which aims to improve the quality of

interface reconstruction by combining the advantages of Lagrangian and Eulerian approaches

(Breil et al., 2013; Galera et al., 2011; Kucharik et al., 2010).

Collectively, these advancements have highlighted the evolution of the MOF method

into a sophisticated and versatile tool. More recently, even more elaborate and powerful

MOF methods have been developed in order to broaden the applicability of the MOF method.

In 2020, a quadratic MOF was developed which enables parabolic interface reconstruction

within a cell using second moments (Spainhour, 2020). Shashkov and Kikinzon (2023) and

Shashkov (2023) have developed the MOF2 which is able to reconstruct an interface with

two planes within a cell. This method has been extended to circular interfaces as well . In the

light of large and expensive optimisation processes, Milcent and Lemoine (2024) extended

an analytical solution from Cartesian to tetrahedral meshes.

1.2.2 Adaptive schemes

Adaptive methods represent a crucial advancement in the field of computational modelling,

effectively enhancing accuracy of the solution and substancially improving computational

efficiency. Indeed, fixed meshes require a uniformly fine grid across the entire computational

domain to precisely capture complex flow features, significantly increasing computational

demand. These methods have been applied in many complex and large-scale engineering

modelling applications, including fluid dynamics, climate modelling and structural analysis.

Examples include adaptive unstructured mesh (Xie et al., 2016; Zheng et al., 2005), adaptive

polynomial degree (Cantwell et al., 2015) and adaptive mesh refinement (Berger and Oliger,
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1984; Ceniceros et al., 2010; Chen and Yang, 2014; Greaves, 2004; Hartmann et al., 2011;

Liang, 2012; Mirzadeh et al., 2016; Popinet, 2009; Sussman et al., 1999) methods. Fig.

1.10 shows two examples of adaptive unstructured meshes for interface reconstruction for a

deformed circle and a droplet impact case.

(a) Refinement for a circle in a square domain (Xie
et al., 2016)

(b) Droplet refinement before impacting a surface
(Zheng et al., 2005)

Fig. 1.10 Examples of adaptive unstructured meshes for interface reconstruction.

The purpose of adaptive mesh methods is to adjust dynamically the resolution of a grid

in regions of interest or rapid change whilst maintaining coarse grid resolution in the regions

where the solution "stagnates". AMR focuses on locally refining regions of interest in the

grid, rather than uniformly refining the entire domain. Grid adaptation is triggered using a

specified refinement criterion. Typically, in VOF or level set methods, the mesh is refined

when either the volume fraction or level set function falls within a specific range, or the

estimated curvature gradient reaches a particular threshold value. Through "optimising" the

number of grid cells used in the computation, such a grid adaptation strategy may effectively

enhance computational efficiency while maintaining overall solution accuracy (Liang, 2012).
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In essence, AMR methods represent a cornerstone in the pursuit of efficient and accurate

engineering modelling, intelligently assigning computational resources where necessary in

order to tackle potentially large challenges posed by complex real-world phenomena.

In the realm of AMR, several techniques have been developed and refined over the years

in order to capture interfaces effectively and handle spatial refinement (Berger and Oliger,

1984). These approaches may be broadly classified into two categories: patch-based AMR or

quadtree(octree)-based AMR, each offering distinct advantages and drawbacks.

Patch-based AMR involves dividing the computational domain into a set of refinement

patches. This allows for local control over the mesh resolution, and the patches can be

refined or coarsened dynamically based on the evolution of the numerical solution being

computed. The main advantage of patch-based AMR is its flexibility. However, it can

lead to increased complexity in the maintenance and management of the grid being created,

potentially increasing the computational runtime (Zeng et al., 2023).

On the other hand, quadtree(octree)-based AMR uses a tree-based hierarchical data

structure. The computational domain is recursively divided into four subcells (in 2D), or

eight for octree (in 3D) when the refinement criteria are met. This AMR approach typically

refines regions with steep gradients or complex flow features whilst it coarsens areas with

little variation. This approach has the advantage of being computationally efficient and

easier to implement due to having a well-defined data structure (Liang, 2012). This method

is typically implemented on Cartesian grids, and also used to support some finite element

simulations on tetrahedral meshes (Antepara et al., 2021). Additionally, this method finds

utility in particle methods (Fu et al., 2017). Fig. 1.11 shows a schematic of the difference

between patch-based AMR grid and a quadtree AMR grid. For the patch-based grid, the first

level of refinement is surrounded by a red box; the second level of refinement is surrounded

by a thin green box. The quadtree grid has no color code for the refinement.
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(a) Patch-based AMR grid (b) Quadtree AMR grid

Fig. 1.11 Schematic highlighting the difference between patch-based AMR and quadtree AMR grids.
On the patch-based grid, the red box depicts the level 1 patch, the green box depicts the level 2 patch.

In quadtree-based AMR, most methods use a 2 : 1 balance constraint, which refers to a

condition where surrounding cells need to maintain a certain level of refinement based on

the finest subcell, ensuring balance across faces and corners in 2D. This approach aims to

ease mesh-based operations. On the other hand, unconstrained AMR involves dynamically

adjusting the mesh resolution without allocating a constraint on refinement levels onto

neighbouring cells. This approach aims to minimise computational costs. Fig. 1.12 shows

the differences in grid adaptation for these two approaches for the same interface. The

unconstrained approach exhibits notably fewer subcells.

In the past, AMR has emerged as a powerful technique to simulate interfacial flows

using volume-of-fluid (Chen and Yang, 2014; Greaves, 2004; Popinet, 2009) and level-set

(Mirzadeh et al., 2016; Sussman et al., 1999) methods. Local grid refinement has been

confirmed to be effective in significantly reducing the computational cost compared to

refining the entire grid while maintaining solution accuracy (Ginzburg and Wittum, 2001;

Greaves, 2004; Malik et al., 2007). One of the key advantages of local grid refinement
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(a) Constraint 2 : 1 balanced AMR grid (b) Unconstrained AMR grid

Fig. 1.12 Example showing the difference between (a) constrained and (b) unconstrained adaptive
mesh refinement grid for interface reconstruction.

techniques lies in its ability to mitigate unphysical material breakup. The estimated curvature

(Wang et al., 2004) and interface gradient have also been used as refinement criteria.

Despite the potential gain in computational cost, using adaptive mesh refinement in the

context of MOF has not been sufficiently explored. Undoubtedly, the associated complexity

and natural computational cost of the MOF method itself is the reason why AMR has been

limited in this context. In MOF situations, where zeroth and first moments are computed

for interface reconstruction, the latter is used as a refinement criterion. Indeed, the centroid

approximation is an estimate of the quality of the interface reconstruction. The accuracy

of the centroid approximation directly influences the quality of the interface reconstruction,

making it a suitable parameter for guiding grid refinement.

This adaptive mesh refinement method combined with the original MOF method was

first developed in 2009 by Ahn and Shashkov (2009). Their approach involved the use of an

unconstrained quadtree structure capable of up to five levels of refinement. In addition, the

refinement criterion was set to be unique for all levels and to a value smaller than machine
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precision. Later, Jemison et al. (2015) proposed for the first time a filament MOF approach

in a patch-based AMR framework. In the advection (dynamic) process, their innovative

approach reached up to two levels of refinement and their refinement criterion included a

tolerance taking into account the relative subcell size. More recently, a standard MOF-AMR

using a patch-based grid has been used in the flow simulation of droplets (Islam et al., 2022).

However, no attempt has been reported to combine the quadtree-based AMR and filament

MOF approaches to explore their advantages in improving model performance.

1.2.3 Application to multiphase flow solver

1.2.3.1 Single grid methods

In the realm of computational fluid dynamics (CFD), numerous methods have been used to

couple interface capturing/tracking methods to a fluid flow solver based on the Navier-Stokes

equations. A diverse array of techniques, including finite element methods, level set methods,

diffuse interface methods, and edge-tracking methods, have been employed to effectively

capture and model interfaces in fluid flows (Chirco and Zaleski, 2023; Ding et al., 2007;

Tryggvason, 1988; Xie et al., 2014; Xie and Stoesser, 2020). However, there has only been

a limited number of attempts at performing this coupling with a MOF method. The first

contribution coupled the MOF method with a finite element method (Ahn et al., 2009). Other

contributions have employed a coupled level set moment-of-fluid (CLSMOF) method with a

Navier-Stokes solver on a Cartesian grid but using a split advection method for several 2D

and 3D benchmark problems (Jemison et al., 2013; Mukundan et al., 2022). Moreover, there

are also some contributions that have used MOF in engineering applications (Banerjee et al.,

2022; Islam et al., 2022; Li et al., 2013; Schofield et al., 2010). The dynamics of interfacial

flows can often produce highly complex and intricate topological changes. Therefore, based

on fixed meshes, a very fine mesh across the entire computational domain is required

to capture the intricate interfacial details accurately, resulting in significantly increased
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computational effort. As such, the development and integration of efficient strategies, such

as subgrid reconstruction, represent a promising avenue for mitigating computational costs

while maintaining flow features and accuracy in modelling complex interfacial flows.

1.2.3.2 Dual grid methods

Within the CFD community, the dual grid method has emerged as a powerful tool to enhance

the accuracy and efficiency of the computation of complex flow phenomena by combining

solvers on separate grids. In this context, the aim is to solve the Navier-Stokes and transport

equations on separate grids. This method involves the use of two distinct grids: a primary

grid that captures the global flow variables, including velocity and pressure fields, and a

secondary or dual grid that focuses on specific regions of interest, for interface reconstruction,

scalar or mass transport, often where high gradients or intricate flow structures exist (Ding

et al., 2007; Pozzetti et al., 2019).

Generally, the convergence of the flow might have been achieved well before the interface

attains its grid independence. Therefore, maintaining identical grid resolutions for both the

Navier-Stokes and transport equations, despite achieving convergence in the flow, could

prolong computational time excessively and unnecessarily (Gada and Sharma, 2011; Rudman,

1998). This observation has led to the development of methodologies within the dual grid

framework that enable AMR to be employed selectively, thereby using computational re-

sources intelligently and efficiently. One prominent approach within the dual grid framework

is the overset grid method, in which multiple grids with different resolutions are overlaid

on one another, allowing for localised refinement where necessary (Ma et al., 2018; Wang

and Stern, 2022). The overset grid method offers flexibility in grid generation, especially in

complex geometries and facilitates dynamic simulations where grid movement is required.

However, the method tends to focus on solid rigid boundaries, whereas the primary focus in



1.2 Previous studies 26

this thesis is the dynamic deformation of interfaces. Indeed, in this context, the resolution of

interfaces is improved by adaptivity.

Adaptive mesh refinement (AMR), particularly the quadtree approach, has gained signifi-

cant traction in CFD due to its ability to dynamically adjust grid resolution to capture intricate

flow features with high precision. The quadtree method subdivides the computational domain

into quadrants, refining areas with high gradients or intricate flow details or coarsening

regions with minimal variation. This ensures computational efficiency without compromising

accuracy. The benefits of AMR include reduced computational cost, enhanced resolution in

critical regions, and the ability to capture transient phenomena with high fidelity (Biswas

et al., 1993; Hay and Visonneau, 2005). However, several challenges persist, such as ensuring

solution continuity across refined boundaries, increased algorithmic complexity, and potential

difficulties in parallelisation. (Berger and Oliger, 1984; Chen and Yang, 2014; Hartmann

et al., 2011; Liang, 2012; Mirzadeh et al., 2016; Sussman et al., 1999). Indeed, achieving

refinement on a single AMR grid may induce large computation error. The efficiency on a

single grid would be compromised with the novel unconstrained AMR framework for MOF

methods (Hergibo et al., 2024).

Combining a dual grid technique or a single AMR grid technique with interface capturing

methods has been a subject of increasing interest in the numerical multiphase flow community.

Oftentimes, the interface capturing/tracking methods have been either Volume-of-Fluid

(VOF), level-set (LSM) or even recently moment-of-fluid (MOF) methods. In these, both

Navier-Stokes and transport equations are solved on the same grid. In these instances, some

limitations appear such as the increased complexity in combining these numerical methods

(Banerjee et al., 2022; Ceniceros et al., 2010; Popinet, 2009; Xie et al., 2016). Efforts to

overcome these limitations have led to the development of dual grid techniques. Dual grid

techniques combined with VOF or LSM have been developed but typically employ fixed grids

to facilitate the interface capturing process (Lakdawala et al., 2016; Patel and Lakdawala,
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2018; Rudman, 1998). However, despite recent advances in MOF methods, the integration

of dual grid techniques with fixed grids or with adaptive mesh refinement, has not been

achieved.

Fig. 1.13 provides a timeline of the history and progression of the MOF method through-

out the years, from its origins in 2005 to its latest advancements. Over this period of time, the

MOF method has undergone considerable development in many directions, including analyti-

cal solution, filament structures, adaptive mesh refinement, and multi-material applications.

In addition, advancements such as efficient algorithms, advanced MOF methodologies using

second moment data, hybrid ALE techniques and coupling with level set or Navier-Stokes

equations have further extended the capabilities of the MOF method. On the other hand, Fig.

1.14 provides an overview of the prominent contributions at the forefront of the innovations

within the MOF context.

1.3 Research objectives and significance

The primary objective of this research in numerical multiphase flows is to advance the current

state of the art by developing novel methodologies characterised by their high degree of

complexity that address critical challenges in simulating multiphase flow phenomena. One

key focus is on achieving a sharp interface representation, aiming to capture accurately the

distinct boundaries between different phases. This involves refining numerical techniques to

overcome inherent difficulties related to interfacial dynamics, ensuring that the simulated

interfaces closely replicate real-world behaviour.

By pushing the boundaries of methodological intricacy, this research aspires to enhance

understanding and capability across a diverse array of applications. Another goal is to ensure

the correct topology of multiphase flows, emphasising the accurate representation of intricate

topological changes that often occur during dynamic interactions between different fluids.



1.3 Research objectives and significance 28

Fig. 1.13 Timeline of the MOF method.

Fig. 1.14 History of the MOF method.



1.3 Research objectives and significance 29

For instance, the research aims to model phenomena such as droplet breakup, coalescence,

and phase separation with high fidelity.

Moreover, this research aims to incorporate a multi-scale perspective, recognising the

inherent challenges of numerically modelling multiphase flow systems and the associated

computational cost. By integrating multiple scales, the simulations aim to effectively capture

large scale and sub-scale phenomena in a single numerical framework, contributing to a more

comprehensive understanding of complex flow behaviour.

Additionally, a crucial aspect of this research is to develop methodologies that maintain

computational efficiency. Balancing accuracy with computational cost is vital for the practical

applicability of numerical methods, especially in large-scale simulations. Techniques such as

adaptive mesh refinement and parallel computing will be explored to optimise computational

resources while maintaining accuracy.

Overall, the objective is to contribute novel insights and computational tools that not only

enhance the fidelity of multiphase flow simulations but also make them more accessible for

real-world applications across engineering, environmental, and industrial domains.

Central to this research is the development of a robust and novel moment-of-fluid method,

which specifically enables thin interfacial structures to be represented seamlessly. Addi-

tionally, an adaptive scheme extends the scope of this method with increased efficiency

and simplicity. The application of these advanced methods to real-world scenarios marks a

significant milestone. With the subsequent integration of a dual grid framework, the method

paves the way for consistent applicability across various scientific and engineering contexts.

Critical to the credibility of this research, each step of the development has been thor-

oughly and rigorously validated using a variety of benchmark problems from the literature,

including some experimental references. The validation process ensures the reliability and

accuracy of the proposed methodologies.
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1.4 Outline of the thesis

This thesis consists of seven chapters, with the current one serving as the introduction chapter.

The reminder of the thesis is organised as follows.

Chapter 2 lays the theoretical foundation by delving into the fundamental equations gov-

erning multiphase flows. This includes an in-depth exploration of the challenges inherently

associated with solving these equations numerically. Detailed discussions are provided on

the Navier–Stokes equations, as well as the transport equation used for capturing interfaces.

Additionally, a comprehensive explanation of the finite volume discretisation applied to

the governing equations including the coupling of pressure and velocity are provided in

this chapter. Furthermore, the formulation of initial and boundary conditions within this

numerical framework is described.

In Chapter 3, the moment-of-fluid (MOF) method is introduced, providing a comprehen-

sive overview of its principles and computational intricacies. Special attention is given to the

novelty associated with subgrid structures and its limitation in capturing multiphase inter-

faces. This chapter establishes a baseline for the subsequent development and enhancement

of numerical methods in the following chapters.

Chapter 4 introduces novel enhancements in the form of adaptivity within the MOF

method including a novel dual grid framework. These advancements address the extension

of the MOF method capability by offering improvements in both accuracy and efficiency.

The chapter outlines the criteria and methodologies surrounding the novel data structure for

refinement. Details are given on the implementation of the novel dual grid framework for

capturing complex multiphase flow phenomena.

In Chapter 5, attention is directed towards the practical application of the MOF method

on fixed grids, with a specific focus on resolving thin structures in multiphase flow scenarios.

This chapter presents simulation results and validates the filament MOF approach against

existing references in the literature. Discussions include an analysis of the physics associated
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with the coupling between a flow solver and the novel MOF method, emphasising the

accuracy and reliability of the proposed model in capturing intricate and filamentary features

of multiphase flows.

In Chapter 6, the outcomes of applying the adaptive MOF and dual grid methods are

introduced. Through a series of simulations and validation exercises, this chapter evaluates

the performance of these enhancements in various interface reconstruction scenarios. The

application and performance of the proposed dual grid method to real-world cases are

assessed with reference to predictions of existing methods and experimental data where

available. The chapter includes a complex scenario highlighting the practical implications of

the dual grid method for future developments in multiphase flow simulations.

Finally, Chapter 7 presents a summary of the primary findings and contributions. Ad-

ditionally, it discusses potential avenues for future work, highlighting areas where further

exploration and refinement could contribute to advancements in the field of multiphase flow

simulations, in particular interface capturing techniques.



Chapter 2

Mathematical model and discretisation

2.1 Introduction

The primary objective of this thesis is the development of a numerical methodology capable

of predicting the flow characteristics and features of two immiscible fluids, separated by a

well defined interface. A mathematical model, describing the flow of the two fluids and the

movement of the free surface or interface separating them is the subject of this chapter.

A mathematical model, which uses the continuum mechanics approach is used in this

thesis. The fluids are modelled as a continuum with a jump in the fluid properties at the

interface. As the purpose of the current work is to develop and test a methodology for

interface capturing and since the test cases involve flows dominated by inertial and pressure

forces rather than by turbulence effects, the issue of turbulence modelling and simulation

will not be considered in any depth.

The discretisation framework introduced in this thesis lays the foundation for numerical

investigations of fluid flow dynamics. Grounded in the principles of finite volume methods,

the framework offers a rigorous and systematic approach to translating the continuum-based

mathematical model, specifically the Navier-Stokes equations, into a discretised form for the

purpose of computational implementation.
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2.2 General transport equation

The fluid flow is described mathematically by three conservation laws, namely, the con-

servation of mass, momentum and energy. These laws completely determine the physical

behaviour of the fluid and are totally independent of the nature of the fluid. The fluid charac-

teristics itself are defined by physical properties such as density, viscosity, surface tension,

conductivity and compressibility. The general form of the conservation equation for a flow

quantity φ within a control volume VCV with boundary ∂V is described as follows:

d
dt

∫
VCV

φ dV +
∮

∂V
FC ·dS+

∮
∂V

FD ·dS =
∫

VCV

QS dV , (2.1)

where t is the time, FC is the convective flux vector field over the boundary, often written as

u φ , where u is the fluid velocity, FD is the diffusive flux vector field over the boundary, QS

is the source term and dS the outward pointing surface vector to ∂V . Fig. 2.1 highlights the

presence of each term defined above.

Fig. 2.1 Schematic of a control volume highlighting each term described in the general form of the
transport equation.

In continuum mechanics, Gauss’ theorem, also known as the divergence theorem, can be

used. It relates the flux of a vector field across a closed surface and the divergence of the
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field within the enclosed volume. This means that the convective and diffusive terms may be

expressed in the following alternative form:

d
dt

∫
VCV

φ dV +
∫

VCV

∇ ·FC dV +
∫

VCV

∇ ·FD dV =
∫

VCV

QS dV (2.2)

The general form of the transport equation for a flow quantity is valid for a scalar, vector

or tensor field. If the control volume is taken as a single point, the general equation can be

derived as:
∂φ

∂ t︸︷︷︸
unsteady term

+ ∇ · (u φ)︸ ︷︷ ︸
convective term

+ ∇ ·FD︸ ︷︷ ︸
diffusive term

= QS︸︷︷︸
source term

(2.3)

2.3 Navier-Stokes equations

The governing equations for fluid flows are known as the Navier-Stokes equations. These

equations are derived from the general form of the transport equation. Several assumptions

are made in order to derive these three conservation laws. In this thesis, temperature is

ignored, therefore the energy equation is omitted. The other two conservation laws, namely

the conservation of mass and the conservation of momentum are given by

∂ρ

∂ t
+∇ · (ρu) = 0 (2.4)

∂ (ρu)
∂ t

+∇ · (ρu⊗u) =−∇p+∇ ·
[
µ
(
∇u+(∇u)T)]+ f , (2.5)

where u is the velocity vector, p is the pressure, f represents the external body forces and

t is time. The superscript T denotes the transpose. The fluid parameters, ρ and µ are the

density and dynamic viscosity, respectively. These equations can be described in 2D or 3D

in component form with respect to the Cartesian coordinate system.
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In the case where incompressibility of the flow is assumed, the conservation of mass, or

continuity is simplified as the overall change in material density is neglected,

∇ ·u = 0 (2.6)

In terms of physical properties in multiphase flow, the flow solver is constituted of

relations for the density and dynamic viscosity of different fluids. These properties are

defined by:

ρ = Fρ
a +(1−F)ρb , (2.7)

µ = Fµ
a +(1−F)µb , (2.8)

respectively, where the two fluids are labelled 'a' and 'b' and F denotes the volume fraction of

a fluid 'a' within a control volume, explicitly the share of a single fluid or another within a

defined control volume. In a continous level, the volume fraction is defined by a step function.

On a discrete level, the volume fraction can be defined by:

F =


1 the control volume is full of fluid ’a’

0 < F < 1 the control volume contains both fluids

0 the control volume is full of fluid ’b’

(2.9)

Fig. 2.2 showcases a schematic of the configuration of two-phase flows with respective

densities and viscosities.

The air-water interface is then defined within the control volumes where 0 < F < 1. The

transport of F with the fluid is analogous to particles moving on a surface. It accounts for the

change in phase fraction and transport of phase. In Lagrangian terms, F has a zero material

derivative in the continuum approach,

DF
Dt

=
∂F
∂ t

+u ·∇F = 0 (2.10)
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Fig. 2.2 Physical properties within a control volume highlighting the density and viscosity of fluid 'a'
and 'b'.

Together with Eq. (2.6) and Eq. (2.5), this equation completes the mathematical de-

scription of multiphase flows. The aforementioned equations are general and provide a full

description of the dynamics of the two fluids and the interface separating them. Equation

(2.10) will be further discussed in the next chapter. This set of equations only possesses

analytical solutions in limited cases which are often very simplified cases under specific

initial and boundary conditions. Therefore, numerical solutions are typically required in

order to transition from a continuous to a discrete level.

2.4 Discretisation of the Navier-Stokes equations

Discretisation allows the conversion of these continuous equations into discrete forms that

can be solved numerically using discrete control volumes, such as grids or meshes. This

facilitates the use of computational methods like finite difference, finite element, or finite

volume methods to approximate solutions by dividing the domain into smaller elements.

In the finite volume method, these smaller elements are called control volumes or cells; a

control volume is bounded by a series of faces, allowing the transformation of Eq. (2.2)

into a sum of integrals over these faces. For instance, the divergence term in the transport
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equation (second term of Eq. (2.2) can be discretised as follows:

∫
VCV

∇ ·φ dV =
∮

∂V
φ dS≈

n

∑
f=1

A f ·φ f , (2.11)

where f is the index labelling the centre of each cell face, A f is the face area vector and n is

the number of faces of a control volume. The same transformation can be applied for other

terms in the integral or divergence form of the Navier-Stokes equations.

2.4.1 Finite volume method

The governing equations are discretised on a staggered mesh using the finite volume method

and solved using a Cartesian grid-based fluid flow solver, which is chosen for its suitability

in discretising partial differential equations. In this part, the application of the finite vol-

ume approach to the Navier-Stokes equations is discussed using Cartesian cells or control

volumes to capture the dynamics of multiphase flows. This approach involves dividing the

computational domain into a structured Cartesian grid, where the fluid flow solver utilises

staggered grid arrangements for the flow variables. This Cartesian grid approach can also

deal with either fixed or moving complex geometries using a cut-cell method (Xie, 2022).

Fig. 2.3 highlights the arrangement of velocity and pressure unknowns on the staggered grid.

The staggered grid arrangement removes the spurious chequerboard pressure mode that is

present on a collocated grid.

The finite volume method, applied to this staggered grid configuration, ensures the

conservation of mass and momentum by integrating the governing equations over control

volumes. This combined strategy not only simplifies the representation of complex geometries

but also enhances numerical stability, making it a widely employed and effective approach in

CFD.
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Fig. 2.3 Staggered grid arrangement on a 3× 3 grid. The black circle represent the cell-centered
pressure p(i, j). The plain arrows represent face-centered horizontal velocities U(i, j) and the hollow
arrows face-centered vertical velocities V (i, j). The red letters correspond to the present cell P and its
neighbouring cells N, S, W, E as well as cell faces in black e,w,n,s.

Using a similar discretisation as in Eq. (2.11) and substituting each term into the integral

form of Eq. (2.3), the resulting integrated momentum equation for a control volume with

centre P is:

ρVCV

∆t

(
φP−φ

0
P
)
+(Feφe−Fwφw)+(Fnφn−Fsφs) =

De (φE −φP)−Dw (φP−φW )+Dn (φN−φP)−Ds (φP−φS)+QSVCV ,

(2.12)

where Ff and D f represent the convective and diffusive coefficients of the variable φ at the

cell face f with surface area A f and QS the source term. Additionally, ∆t and φ 0
P represent

the time step and value of φP at the previous iteration, respectively. Note that the pressure

term and any other body force terms are included in the source term. Uppercase letters

{P,E,W,N,S} denote the values of φ at the centre of the present and neighbouring control

volumes, lowercase letters denote the values at cell faces f = {e,w,n,s}. The coefficients Ff
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and D f can be expressed as:

Ff = (ρuA) f D f =

(
µ

A
∆

)
f
, (2.13)

where µ is the viscosity and ∆ is the cell size in the x- and y-directions.

Collecting terms involving φP, Eq. (2.12) can be rearranged to yield,

aPφP +∑
nb

anbφnb = bP , (2.14)

(see Ferziger and Peric (2002)). The subscript nb refers to the neighbouring control volumes.

The process of integrating the momentum equation across all control volumes throughout

the entire domain results in an algebraic system of equations for the unknown values of

the variable φ . This integration is performed separately for the momentum equations in

each direction. Regarding the system of equations and its right-hand side, the source term

encompasses the pressure gradient in their respective directions and the source term itself.

The source term bP in the horizontal component of the momentum equation is expressed as:

bP =− pnb− pP

∆
VCV +QSVCV , (2.15)

where VCV denotes the area/volume of the cell and pnb the cell-centered pressure of neigh-

bouring control volume and ∆ represents the spatial displacement.

Because of the nonlinear nature and interdependence of the underlying differential

equations, it is not feasible to solve Eq. (2.14) directly since the coefficients of the equation

and the source term depend on the unknown solution φP. An iterative solution method is

used in this approach.
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2.4.2 Pressure-velocity coupling

In the incompressible Navier–Stokes equations, the pressure and velocity are decoupled

because the pressure term does not appear in the continuity equation. However, this thesis

employs a staggered grid, known for its effective coupling of pressure and velocity, introduced

through the discretisation process. On a 2D Cartesian grid, as illustrated in Fig. 2.3, velocities

are situated at the face centre of the control volume, while the pressure is stored at the cell

centre. In addition, the volume fraction F is stored at the same location as the pressure.

The nonlinear system of equations representing the momentum equation can be discretised

implicitly for the velocities at the subsequent time step, where the pressure term is separated

from the source term, as follows:

au
Pun+1

P +∑au
nbun+1

nb = bu
P−

(pnb− pP)

∆
, (2.16)

where au is the coefficient for the momentum equation and the subscripts P and nb =

E,W,N,S denote the variables in the present and neighbouring cells (shown in Fig. 2.3),

respectively, and bu
P is the source term, which in this case does not include the pressure term.

A guessed pressure, denoted as p∗, is necessary to facilitate the solution of velocities,

represented by u∗. This is expressed as:

aPu∗P +∑
nb

anbu∗nb =−
p∗nb− p∗P

∆
VCV +QSVCV (2.17)

Since the pressure in this equation corresponds to the previous time iteration, the velocities

obtained from the momentum equations only fulfill the momentum requirements, hence there

is no assurance regarding continuity. In this context, suppose the correct pressure is obtained

by adding a pressure correction p′ and similarly the correct velocity by adding a velocity
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correction u′.

pP = p∗P︸︷︷︸
guessed

+ p′P︸︷︷︸
corrected

uP = u∗P︸︷︷︸
guessed

+ u′P︸︷︷︸
corrected

(2.18)

By substituting these expressions into the corresponding algebraic systems of equations

Eq. (2.16), assuming that the u∗ values satisfy each equation, then the following system of

equations is derived for the corrected velocities,

aPu′P +∑
nb

anbu′nb =−
p′nb− p′P

∆
VCV (2.19)

Ultimately, the pressure correction values p′ are determined through the continuity

equation, which has to be satisfied, using the initially guessed velocities u∗ along with the

corrections u′. In this instance, the continuity equation (2.6), using the general discretisation

form, can be expressed as:

ρueAe−ρuwAw +ρvnAn−ρvsAs = 0 , (2.20)

where ue and uw are the horizontal velocities and vn and vs the vertical velocities within the

control volume.

In order to obtain the resulting pressure correction, the discretised form of the equation

is:

ap
P p′P +∑

nb
ap

nb p′nb = b′P (2.21)

The term b′P, referred to as the mass residual, in the pressure correction equation corre-

sponds to the left-hand side of the discretised continuity equation Eq. (2.20). A zero value of

b′P indicates that the velocity field satisfies the continuity equation (2.6).

Once the pressure correction equation is solved, the pressure can be determined using the

initially guessed and corrected pressure terms. Since this iterative scheme converges slowly,
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an under-relaxation factor αp is used in the discretised momentum equation to accelerate the

iterative process towards the solution (Ferziger and Peric, 2002). Typically, αp = 0.3 is used.

The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations), PISO (Pressure-

Implicit with Splitting of Operators), and PIMPLE (PISO-SIMPLE) algorithms are particular

examples of pressure-correction methods used to solve the coupled system of equations

described above. The SIMPLE algorithm solver approximates the velocity correction term by

ignoring their neighbouring contributions (Caretto et al., 1973; Patankar, 2018). The PISO

algorithm uses a second additional correction step (Issa, 1986). PIMPLE is a hybrid algorithm

that combines features of the SIMPLE and PISO schemes (Ferziger and Peric, 2002). The first

two methods are in widespread use in CFD. The SIMPLE method demonstrates robustness

in handling steady problems, while the PISO method proves to be more efficient when

addressing transient problems.

In this work, the SIMPLE algorithm will be used to solve the implicit pressure-velocity

coupling described above. It is widely used to ensure stability and accuracy in CFD simula-

tions. The SIMPLE algorithm is summarised in Algorithm 1.

2.5 Initial and boundary conditions

In order to fully describe the mathematical model, it is critical to establish boundary condi-

tions that play a role in defining fluid flow behaviour at the boundaries of a finite computa-

tional domain. They capture accurately the interaction between the fluid and its surroundings.

Let us define a domain Λ, the surroundings of the domain, its boundaries ∂Λ and the unit

outward pointing surface normal vector n. In mathematical terms, there are five types of

boundary conditions, namely Dirichlet, Neumann, Robin, mixed and Cauchy. However, the

focus will be on the first two in this thesis:
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Algorithm 1 SIMPLE algorithm

Start calculation at the new time tn+1 using un and pn

Set variables of the momentum equation u∗ = u0 and p∗ = p0

Solve equations to obtain u∗

aPu∗P +∑nb anbu∗nb =−
p∗nb−p∗P

∆
VCV +QSVCV

Evaluate coefficients of the continuity equation

Solve the pressure-correction equation to obtain p′

Correct velocity and pressure to obtain u and p

u = u∗+(1−αp)u′
p = p∗+αp p′

Repeat until convergence is achieved

Set un+1 = u and pn+1 = p

Advance to next time iteration

End

• Fixed boundary value, also called the Dirichlet boundary condition. An arbitrary

variable ϕ has a unique value defined at the boundary. This can be expressed as:

ϕ|
∂Λ

= BD , (2.22)

where BD is the unique value

• Fixed boundary gradient, also called Neumann boundary condition. An arbitrary

variable φ has its gradient defined at the boundary. This can be expressed as:

∂ϕ

∂n

∣∣∣∣
∂Λ

= BN , (2.23)

where BN is the unique value
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It is important to be reminded that no boundary conditions are imposed on the interface

between two fluids as the Navier-Stokes equations and the advection equation for the volume

fraction yield the interface.

2.5.1 Boundary conditions

In the realm of multiphase flows, boundary conditions play a crucial role in defining the

interactions between different phases and fluid characteristics within the computational

domain. In the context of multiphase flows, the various boundary conditions are often

referred as inflow, outflow, periodic and wall conditions. These can be classified as follows:

• Inflow Boundary Condition: This condition specifies fluid characteristics upon

entering the domain. It applies at boundaries where one or more phases enter the

computational domain. For instance, the inflow boundary may specify the properties

of the incoming velocity. Therefore, it may use the Dirichlet boundary condition where

u(x, t) = g(x, t), where g is a user-specified function describing the inflow properties,

x denotes spatial coordinates, t the time.

• Outflow Boundary Condition: Analogous to the inflow condition, the outflow bound-

ary is where one or more phases exit the computational domain. It involves specifying

the properties of the outgoing phases, ensuring a realistic representation of the flow

behaviour at the domain’s exit.

• Periodic Boundary Condition: In cases where the multiphase flow exhibits periodic

behaviour, such as waves or repeating patterns, periodic boundary conditions are

employed. These conditions enforce a periodic relationship between corresponding

points on opposite boundaries, ensuring the simulation captures the periodicity of the

flow. Mathematically, the imposed periodic condition may typically be written as

u(x+L) = u(x), where L is the length of the domain.
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• Solid Boundary Condition: This applies at boundaries representing solid surfaces.

This condition accounts for the interaction between the fluid phases and the solid

structure. There are two main types of solid boundaries, no-slip and slip conditions.

The first one is commonly used in many applications, and assumes that the fluid at

the solid boundary comes to a complete stop, adhering to the stationary solid surface.

Mathematically, it can be defined as u(x, t) = 0. In this context, it is important to

highlight the both normal and tangential velocity are imposed to be zero. These are

known as the no-penetration and no-slip conditions respectively.

Each of these boundary conditions plays a role in establishing a clearly defined computa-

tional domain that replicates the physical intricacies of multiphase flows, enabling precise

and insightful simulations of intricate fluid interactions.

2.5.2 Initial condition

Initial conditions are described across the computational domain at the start of a simulation,

at t = 0. Most of the time, users define the initial stage, however it does not necessarily

mean that the setup is at rest. For computation, the velocity and pressure field are initialised.

Additionally, for multiphase flows, the volume fraction is initialised.

The velocity can either be initialised at rest or with a prescribed velocity. The pressure is

oftentimes initialised using hydrostatic pressure depending on the water depth in the domain.

The initialisation of the volume fraction involves defining the volume fraction across all

control volumes in the domain. It also involves defining the initial interface normal in each

cell. Generally, cells can be either empty, full or contain an interface. Most of the time

the interface can be horizontal, vertical or with a specified normal. Examples may be a

flat surface, bubbles or droplets, or waves which often use an analytical solution as initial

condition. In VOF methods, the normal of the interface is defined based on the neighbouring
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volume fraction. In the context of MOF methods, the initial normal of the interface is

determined using knowledge of the centroid.

2.6 Closing remarks

In this chapter, the mathematical model and its numerical discretisation using the finite vol-

ume method are presented and the pressure-velocity coupling intricacies are described. While

focusing on the Navier–Stokes equations, the extension of numerical methods to multiphase

flows by incorporating an advection equation for the volume fraction is highlighted. The

finite volume discretisation for two-fluid systems involved control volumes with arbitrary

topology. The initial and boundary conditions have also been presented in this chapter.

Additionally, the presentation of boundary conditions details the interactions between the

computational domain and its surroundings, ensuring a well-posed mathematical formulation

in order to obtain realistic representation of the physical constraints. The forthcoming chapter

will present a comprehensive interface capturing technique, namely the moment-of-fluid

method.



Chapter 3

Numerical interface calculation

3.1 Introduction

As technological advancements continue to enable increasingly sophisticated simulations,

the accurate calculation of interfaces becomes essential for the successful representation of

physical phenomena. Understanding and predicting the behaviour of interfaces has become

an indispensable tool in order to study complex multiphase flow problems.

This chapter is concerned with numerical interface calculations, exploring its significance

in the context of multiphase flow simulations. A comprehensive overview of numerical

interface calculation methods employed in recent years is described earlier (see Section

1.2). In this chapter, the focus will be given on interface capturing methods, in particular

the geometric Volume-of-Fluid (VOF) and moment-of-fluid (MOF) methods. The VOF

method will be described initially, as a precursor to a recent extension of the technique, the

MOF method. The standard MOF method will be examined, followed by the exploration

of the filament MOF method. Finally, to establish a connection between interface capturing

techniques and the underlying physics associated with fluid flow behaviour, the coupling

between MOF methods and a flow solver and its integration will be discussed briefly.



3.2 The Volume-of-Fluid (VOF) method 48

3.2 The Volume-of-Fluid (VOF) method

In this section, the geometric VOF method is described. There are two variants of this explicit

numerical technique employed in the simulation of fluid interfaces differentiated by the way

that the interface is reconstructed: SLIC and PLIC. The first one captures the interface within

a cell with a straight line, either horizontal or vertical. The second reconstructs interfaces

with a sloped straight line.

3.2.1 SLIC reconstruction

The SLIC method is a piecewise constant method originated by Hirt and Nichols (1981),

where the interface within a cell forms a line aligned to one of the grid axes (horizontal or

vertical) (see Fig. 1.5). This approach is straightforward and easy to implement. In this case,

the orientation of the interface is calculated by approximating the gradient of the cell. The

vertical gradient can be expressed using neighbouring volume fractions as follows:

dY
dx

∣∣∣∣
i
=

2(Yi+1−Yi−1)

dxi+1 +2dxi +dxi−1
, (3.1)

where dxi represents the horizontal length scale of cell i, j, and Yi+1 and Yi−1 are determined

using the expression which contains the volume fraction of F(i, j) and their values either

side of cell i, j.

Yi = F(i, j−1)dy j−1 +F(i, j)dy j +F(i, j+1)dy j+1 (3.2)

Similarly, the horizontal gradient can be expressed as:

dX
dy

∣∣∣∣
j
=

2(X j+1−X j−1)

dy j+1 +2dy j +dy j−1
, (3.3)
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where on this occasion, dy j represents the vertical length scale of cell i, j, and Xi is expressed

as the sum of the volume fraction of F(i, j) and its adjacent cells in the horizontal direction.

X j = F(i−1, j)dxi−1 +F(i, j)dxi +F(i+1, j)dxi+1 (3.4)

If the vertical gradient is smaller than the horizontal gradient in magnitude, then the

interface is horizontal. Contrariwise, if the magnitude of the horizontal gradient is smaller

than the magnitude of the vertical gradient, the interface is represented vertically.

3.2.2 PLIC reconstruction

In the PLIC method used by Youngs (1982) and updated by Rudman (1997), the interface

is represented with a slope within a cell (see Fig. 1.6). The slope of the line is calculated

using the volume fractions of neighbouring cells to evaluate a normal to the interface. The

neighbouring cells aid in evaluating the gradient of a desired cell. In the case of the Youngs

PLIC method, the orientation of the interface, β , creates an angle with the horizontal. It is

evaluated using neighbouring volume fractions as follows:

β = tan−1

(
−

nx
i, j

ny
i, j

)
, (3.5)

where nx
i, j and ny

i, j are the horizontal and vertical components of the gradient and can be

expressed as follows:

nx
i, j =

1
dx

(
F(i+1, j+1)+2F(i+1, j)+F(i+1, j−1)

−F(i−1, j+1)−2F(i−1, j)−F(i−1, j−1)
) (3.6)

ny
i, j =

1
dy

(
F(i+1, j+1)+2F(i, j+1)+F(i−1, j+1)

−F(i+1, j−1)−2F(i, j−1)−F(i−1, j−1)
)
,

(3.7)
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where F represents the volume fraction, i and j are the cell indices, dx and dy are the cell

dimensions in Cartesian coordinates of a uniform mesh.

Once the normal is found, the interface can be reconstructed. In practice, four possible

geometric scenarios exist in 2D to fill a cell. As the angle β is bounded up to 90◦, the normal

of the interface can be rotated depending on the volume fraction. Fig. 3.1 highlights the four

possible option for filling a cell with a bounded angle.

(a) (b) (c) (d)

Fig. 3.1 Four possible interface reconstructions.

3.3 The moment-of-fluid (MOF) method: Standard

The moment-of-fluid (MOF) method is a numerical approach for simulating multiphase flows

by representing fluid interfaces through moments. The MOF method is able to capture com-

plex flow phenomena with enhanced computational efficiency and versatility (parallelisation,

multi-material, filaments).

3.3.1 Problem definition

Let us define the problem posed by the MOF method in order to reconstruct an interface.

Consider a convex polygon ωcp that is defined by n vertices, x1,..., xn. The area of ωcp,

denoted
∣∣ωcp

∣∣, and the centroid (centre of mass), denoted xc(ωcp) can be computed as

follows:
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∣∣ωcp
∣∣= 1

2

n

∑
i=1

[xi×xi+1] (3.8)

xc(ωcp) =
1

6
∣∣ωcp

∣∣ n

∑
i=1

[xi×xi+1] (xi +xi+1) , (3.9)

where [...× ...] is a 2D cross product, resulting in a scalar multiplying the following term,

a vector. The sum of them forms the centroid. Alternative expression to find the centroid

from the vertices of a polygon exists and can also be generalised in 3D. Note that xn+1 = x1.

Let Ω depict an arbitrary convex cell, hence not restricted to a Cartesian cell, filled with two

different materials. Consider the first material µ1 within Ω acting as a reference interface, its

area relative to the area of the cell is denoted by Fre f (µ1) which corresponds to the volume

fraction. Similarly, xre f (µ1) is defined to be the reference centroid of µ1 within the cell.

The MOF reconstruction problem is formulated as an optimisation problem in which

the distance between the reference centroid xre f (µ1) and the centroid of the reconstructed

polygon xact(µ1) is minimised while keeping the volume fraction of the reconstructed

polygon Fact(µ1) equal to the volume fraction Fre f (µ1). One can summarise the optimisation

problem as follows:


min

∣∣xre f (µ1)−xact(µ1)
∣∣

subject to

Fact(µ1) = Fre f (µ1)

(3.10)

As shown in Fig. 3.2, the reference interface may be curved, hence the minimised

centroid distance will aim to give the best reconstruction. Although the solution of the

optimisation problem is unique, local solutions and numerical round-off errors may cause

some inconsistencies. If µ1 already occupies a polygon with a piecewise linear interface, the

MOF method aims to reconstruct the exact interface.
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(a) Reference interface (b) Reconstructed interface

Fig. 3.2 Reference vs. reconstructed interface with their respective centroids xre f and xact where n
denotes the reconstructed normal to the interface and Γ denotes the length of the interface segment.

3.3.2 Reconstruction

The reconstructed normal to the interface within a polygon can be evaluated analytically but

only for rectangular cells (Lemoine et al., 2017). However, for cells of any other geometrical

shape, a minimisation algorithm is needed to evaluate the normal to the interface. The unit

normal is defined to be n = [cos(φa),sin(φa)] where φa corresponds to the angle the interface

makes with the horizontal. To cover all possible normal vectors, φa ∈ [0,2π]. The minimisa-

tion function, also known as the objective function, is recalled f (φa) =
∣∣xact(φa)−xre f

∣∣. In

general, f (φa) may have multiple local minima. The first derivative of the objective function

for a convex cell, initially given in Dyadechko and Shashkov (2005), is defined by

f ′(φa) = 2((xact(φa)−xre f ) ·x′act(φa)) , (3.11)

where x′act(φa) is given by

x′act(φa) =
1
12
|Γ(φa)|3

|Ω|Fre f (µ1)
[−sin(φa),cos(φa)] , (3.12)
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and is evaluated using the length of the reconstructed interface segment Γ(φa).

3.3.3 Bisection method

In this section, a new algorithm is presented to evaluate the normal to the interface. The

algorithm used in this thesis to find the global minimum is a bisection method. Using

four quadrants, explicitly [0,π/2], [π/2,π], [π,3π/4] and [3π/4,2π], the zeros of the first

derivative of the objective function can be determined. The bisection method uses only a

maximum of 10 iterations per quadrant to find the local minimum with a tolerance of 10−10.

When the value of the first derivative falls below the specified tolerance at the boundaries

of a quadrant, the bisection method is terminated for that quadrant. Once the minimum for

each quadrant is found, evaluating the objective function for all valid values will give the

global minimum. The global minimum of f (φa) will result in the best approximation for

the optimisation problem defined above. Fig. 3.3 shows the set of solutions as well as the

objective function within the four quadrants. Knowledge of the normal enables one to flood

the cell to reconstruct the interface with the minimum distance between the reference and

reconstructed centroid, which is defined as the least centroid error (Lemoine et al., 2017).

This method has the advantage of not requiring any initial condition or fine parameter

tuning to converge to the solution and is guaranteed to find the global minimum. However it

may require a larger number of iterations to converge.

3.3.4 Advection

Dynamic tests involve advecting materials across multiple time iterations. Information from

the previous time step is needed in order to reconstruct the material interface at the next time

step. The most natural way to perform this reconstruction is to use a Lagrangian framework.

Vertices of cells and polygons are tracked and displaced as particles. A pre-image captures
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(a) Potential location of the constrained optimisation (b) Objective function

Fig. 3.3 Set of solutions and objective function for various volume fractions F = 0.125, 0.25, 0.5 and
0.75 where x∗ denotes the reference centroid.

the state of the interface at a given time. This framework uses the Lagrangian pre-image in

order to compute the volume fraction and centroid of a material.

All vertices of a cell are advected backwards in time to capture the state of the interface

at the previous time step using a 2nd-order Runge-Kutta scheme (RK2) to form the backtrace

cell as seen in Fig. 3.4(a) (Iserles, 2009). This is a pragmatic decision which balances

accuracy and computational expense, in contrast to solely focusing on varying higher-order

schemes. The backtrace cell may intersect several cells at the previous time level. The

Sutherland-Hodgman polygon clipping algorithm is used in order to intersect each of these

cells to gain information about volume fraction and centroid1. The advantage of using the

Lagrangian approach is that there is no limitation on the Courant–Friedrichs–Lewy (CFL)

number used in the model. Indeed, the CFL number is a dimensionless quantity used in

numerical methods to represent the ratio of the physical time it takes for a particle to travel

across a grid cell. In general, for explicit schemes, stability is maintained when the CFL

number is less than or equal to unity. Moreover, the Lagrangian advection procedure is said

1https://rosettacode.org/wiki/Sutherland-Hodgman_polygon_clipping

https://rosettacode.org/wiki/Sutherland-Hodgman_polygon_clipping
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to be unsplit, which means it only requires one advection and reconstruction per cell. This

differs from other split schemes (Mukundan et al., 2022).

3.3.4.1 Advection of volume fraction

To compute the volume fraction at the next time step, the sum of intersecting areas forms the

new volume fraction of the cell as highlighted in purple in Fig. 3.4(b). However, in some

cases, its value may depend on the backtrace cell area relative to the cell area. If the backtrace

cell area is larger than the cell area, there is potential for the volume fraction to exceed unity.

On the contrary, if the backtrace cell area is smaller than the cell area, there is potential for

the volume fraction to be smaller than unity while being entirely filled with one material.

These cases may occur when the backtrace cell intersects with only one material, making the

new theoretical volume fraction equal to unity but the actual volume fraction is either greater

than or less than unity. If this is the case, a post advection remapping procedure is introduced

in order to ensure that the total material mass is consistent throughout the advection process.

The difference between the actual volume fraction and unity is computed, then redistributed

equally across all cells that can accept a gain or loss of mass/volume fraction. This is

defined as a global redistribution (Shashkov and Wendroff, 2004). The modified mass in

each cell is negligible so that the shape of the interface is not changed significantly, which

is demonstrated later when the algorithm is validated. To limit computational expense, this

procedure is only performed once per time step, which means there is a risk of not being able

to sufficiently redistribute the total mass.

3.3.4.2 Advection of centroid

To compute the centroid at the next time step, the centroid of the intersection of the backtrace

cell with a cell is computed, then advected using the same scheme as for the backtrace cell

advection as shown in Fig. 3.4(c). All cell intersection centroids are advected forward in
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time individually. The new reference centroid is obtained by weighting the cell intersection

centroids with their volume fraction. Since all centroids are framed within the backtrace cell

at the previous time step, the new reference centroid is guaranteed to be within the cell after

forward advection. Finally, Fig. 3.4(d) depicts the interface after the advection procedure. It

is important to acknowledge that the interface between cells may not be continuous as the

interface is resolved individually in each cell. The advection procedure is summarised in

Algorithm 2

(a) Lagrangian backtrace (b) Volume intersection (c) Centroid advection (d) Interface reconstructed

Fig. 3.4 Dynamic test: (a) advection of backtrace cell backwards, (b) intersection of volumes, (c)
advection of centroids individually, (d) interface after advection.

Algorithm 2 Advection procedure
Before the calculation, identify which cells may contain an interface to reduce computa-
tional effort

Advect vertices of a cell backwards (pre-image)

Intersect the pre-image with the desired material

Compute the volume fraction (sum of all polygons area) and centroid (weighted
average of all polygons centroids)

Advect the centroid forward in time

Reconstruct the interface in a cell

End

Repeat for all cells identified across the domain
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3.4 The moment-of-fluid (MOF) method: Filament

Filaments are defined as thin strands of material surrounded by another material within a

cell. These are structures thinner than a cell size. A standard MOF reconstruction creates a

linear interface splitting the cell into two, hence it does not reconstruct the topology of the

interface correctly as shown in Fig. 3.5. When considering a filament, two linear interfaces

emerge, one on each side of the structure, meaning that two reconstructions are needed to

capture the topology perfectly. In filament reconstruction, the conglomeration algorithm

is capable of detecting polygons of the same material that are not adjacent by using the

numerical adjacency condition. A fictitious material is introduced to reconstruct one of the

polygons surrounding the filament. Once reconstructed, the fictitious material is reassigned

to its original material. A symmetric multi-material reconstruction is presented to generate a

better topology.

(a) Reference interface (b) Standard reconstruction (c) Filament reconstruction

Fig. 3.5 Schematic diagrams showing (a) a reference interface, (b) the standard MOF reconstruction
and (c) filament MOF reconstruction.

3.4.1 Conglomeration

Filament reconstruction is performed when some adjacent polygons forming one material,

called a conglomerate, are not adjacent to other conglomerates of the same material. The

conglomeration algorithm allows the user to identify whether a cell needs a multi-material
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reconstruction or a standard reconstruction. It is possible to identify all polygons of one

material intersecting with the backtrace cell as shown in Fig. 3.6. Once all of these polygons

are identified, the conglomeration algorithm tests if each of these polygons is adjacent to

each other. Conglomerates are considered even when they do not split a cell, i.e. being only

adjacent to one cell edge. The green conglomerate in Fig. 3.8(b) is one of these. Flotsam

are not discussed in this thesis, since in general on a coarse mesh they do not tend to exist.

If more than one conglomerate is found, then one of these conglomerates is considered to

be the fictitious material. The conglomeration algorithm is a tree-based structure testing

adjacency of a list of polygons until the lowest level does not find any adjacent polygons.

Algorithm 3 details the procedure to identify conglomerates. The reference volume fraction

and reference centroid can easily be computed.

Algorithm 3 Conglomeration algorithm
Initialise list of polygons list_poly
while list_poly do

new_group← list_poly(1)
while iter do

for k = 1,size(list_poly) do
if is_ad jacent(new_group(), list_poly(k)) then

Remove list_poly(k)
Add list_poly(k) to new_group()
iter← true

end if
end for

end while
end while

3.4.2 Adjacency

The adjacency test is performed on all sides (segments) of a polygon with respect to another

polygon. Some tolerance is accepted as sides may not be perfectly adjacent but can still

be considered adjacent. For the purpose of numerical round-off errors, each segment is

described by a vector and if the magnitude of the cross-product of two vectors meets the
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(a) Intersection and conglomeration of material µ1 (b) Intersection and conglomeration of material µ2

Fig. 3.6 Conglomeration of polygons within the backtrace cell (dashed black outline) leading to the
creation of a fictitious material for a 3-material reconstruction. (a) Material µ1 has 1 conglomerate
(outline in blue); (b) Material µ2 has 2 conglomerates (outline in green).

lower bound of a tolerance, here ∆x∆yε with ε = 10−3, then segments are considered parallel.

Segments may be considered parallel, yet they also need to be adjacent. Hence, the endpoint

of a segment is projected onto the line defined by the other segment. If the distance between

the endpoint of the segment and its projection falls below the specified tolerance, here ∆xε ,

the projection of an endpoint also needs to fall between the bounds of the other segment.

Both polygons are said to be adjacent and form a conglomerate only if all conditions are

satisfied. Algorithm 4 summarises the conditional procedure to test if two polygons are

adjacent with three nested conditions. Fig. 3.7 shows two polygons within a cell. Segments

are highlighted in order to indicate the process of evaluating parallel and adjacent segments

from two distinct polygons. Condition 1 is represented with gold segments. Condition 1 and

2 are represented with blue segments. All three conditions are represented with red segments.
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Algorithm 4 Adjacency test
Initialise vector_poly1, vector_poly2 based on all vertex_l1, vertex_l2
for l2 = 1, size(vector_poly2) do

for l1 = 1, size(vector_poly1) do
% Condition 1
if abs(cross_product(vector_poly2(l2),vector_poly1(l1)))≤ ∆x ·∆y · ε then

% Condition 2
if distance(vertex_l2,projection_on_line(vertex_l2, line(vector_poly1)) ≤ ∆x · ε

then
% Condition 3
if projection_on_segment(vertex_l2, segment_l1)← true then

is_adjacent← true
end if

end if
end if

end for
end for

(a) Parallel segments but not adjacent (b) Adjacent segments

Fig. 3.7 Schematic diagrams to test adjacent segments with another polygon: (a) shows two con-
figurations where segments are parallel. Projection of the endpoints does not fall within tolerance
(highlighted in gold). One of the projections of the endpoints does not fall within the other segment
(highlighted in blue); (b) shows two segments that are parallel and adjacent, the projection of the
endpoints falls within tolerance and within the other segment.
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3.4.3 Limitation to three materials

It may happen that more than three conglomerates form within the backtrace cell. In that

case, a multi-material reconstruction can be considered. However, it can lead to expensive

reconstruction when testing all the combinations for several cells per iteration. For this reason,

the number of conglomerates is capped at three in the proposed model. Conglomerates are

sorted by volume fraction.

If two conglomerates exist for each material, the following condition is tested. If the

second conglomerate of one of the materials has a volume fraction smaller than 10−3, then

its volume fraction is added to the main (largest in volume fraction) conglomerate. If there

still exists two conglomerates for each material, no conglomerates are considered and a

standard reconstruction with the total volume fraction per material is performed. Fig. 3.8(a)

highlights this scenario. Indeed, coloured conglomerates belong to Material 2, explicitly 2

and 2′. Material 1 also has two conglomerates in white, explicitly 1 and 1′. None of them are

smaller than 10−3 in volume fraction.

In other cases, conglomerates with the smallest volume are "reattached" to the largest

conglomerate of the same material in the cell, usually where one material has one conglomer-

ate and the other has more than two conglomerates. Then, these smaller conglomerates have

their volume fraction added to the largest conglomerates. Fig. 3.8(b) highlights this scenario.

Three conglomerates (coloured) belong to Material 2, here explicitly 2, 2′ and 2′′. Conglom-

erate 2′′ will be reattached to Conglomerate 2, while Conglomerate 2′ will be considered

to be the fictitious material for reconstruction. "Reattaching" to the nearest conglomerates

based on the distance between their respective centroids may also be considered but does not

affect the topology greatly as the volume fraction for these conglomerates is often very small.
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(a) Two conglomerates exist of size larger than 10−3

for each material leading to them being reconstructed
as a standard MOF

(b) Three conglomerates exist for Material 2 leading
to reattachment of the green conglomerate to the red
(largest in cell)

Fig. 3.8 Schematic showing two complex examples of sorting multiple conglomerates within the same
cell. Let us assume all coloured polygons belong to Material 2.

3.4.4 Symmetric reconstruction of filaments

The reason to cap the number of materials at three is based on computational cost. Recon-

structing more than three materials at once has a significantly higher cost than only three

materials. Indeed, using the symmetric reconstruction in multi-material MOF schemes, the

number of combinations for m materials is reduced from m! order combinations to m!/2.

Consequently, using four materials instead of three may lead to a computational cost re-

duction by a factor of four. In addition, using a symmetric reconstruction of filaments may

provide a better topology in material reconstruction.

A standard reconstruction aims to reconstruct an interface based only on minimising

the centroid error of one material regardless of the other material in cell reconstruction. In

some cases, this can lead to a large error in the remaining material centroid. The symmetric

reconstruction approach aims to minimise both centroids at the same time. The objective

function fsym(n), combining both centroid defects, is given by
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fsym(n) =
∣∣xre f (µ1)−xact(µ1)(n)

∣∣+ ∣∣xre f (µrem)−xact(µrem)(n)
∣∣ , (3.13)

where xre f (µrem) denotes the reference centroid of the remaining material in the cell, and

xact(µrem) is its reconstruction centroid.

When it comes to filament reconstruction or three material reconstruction, the standard

approach is to test all ordering combinations and evaluate the topology that reduces the total

centroid defect. This procedure is called a sequential reconstruction. The total centroid defect

E can be expressed as the sum of the centroid errors for all materials µi.

E =

√
m

∑
i

∣∣xre f (µi)−xact(µi)
∣∣2 (3.14)

Consider three materials A, B and C, then six different configurations are possible.

Explicitly, and in order of reconstruction, these are (ABC), (ACB), (BAC), (BCA), (CAB)

and (CBA). A symmetric reconstruction reduces the number of combinations to only three,

thereby reducing the computational effort. Considering the same materials, one of (ABC)

and (ACB) combinations would be redundant as the first reconstruction minimises A and

the grouping of B and C. Then, (BC) or (CB) will result in the same reconstruction as only

symmetric reconstruction is considered. As seen in Fig. 3.9, a symmetric reconstruction

provides a better topology.

When enabling the filament MOF reconstruction in a simulation, additional steps are

required to ensure the advection process is complete. While the standard MOF can be

performed only using the desired material as targeted intersection, the filament MOF needs

to intersect all materials present in the domain in order to reproduce the exact topology.

Moreover, the conglomeration algorithm, which also contains the adjacency test, is per-

formed which enables the volume fraction and centroid of conglomerates to be calculated.

Subsequently, the choice of reconstruction between standard MOF and filament MOF can be
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(a) Sequential reconstruction (b) Symmetric reconstruction

Fig. 3.9 Comparison of (a) sequential and (b) symmetric reconstruction when using three materials,
where (+) denotes the reference centroids and (o) denotes the reconstructed centroids.

determined. Fig. 3.10 summarises the essential steps involved in the advection process for

both standard and filament MOF.

3.5 Coupling MOF-flow solver

3.5.1 Coupling between flow solver and MOF method

While the MOF method presented by Hergibo et al. (2023) uses node velocities during the

advection process, in both x- and y-directions, the finite volume Navier-Stokes flow solver

uses face velocities (Xie, 2010). To accommodate this, an extra step is needed to interpolate

the node velocity before MOF advection can be performed. The face velocity, representing

the velocity at the face of each control volume, is known and readily available. However,

to compute the node velocity, which characterises the velocity at the corner of each control

volume, a simple linear interpolation technique is employed. Note that for each control
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Fig. 3.10 Flowchart highlighting key steps to standard and filament MOF reconstruction and advection.
Red denotes the use of standard MOF. Green denotes the use of filament MOF.

volume, the east face defines the x-velocity, the north face defines the y-velocity, whereas the

bottom left node defines both x- and y-velocities simultaneously (see Fig. 3.11).

The case of a control volume located next to a wall is illustrated in Fig. 3.12. When

dealing with boundary conditions, additional adjustments are required to ensure proper

treatment of the velocity field near the boundaries. The interpolated node velocities near

the boundaries are adjusted to adhere to the prescribed boundary conditions, maintaining

consistency with the physics of the problem. For no-slip conditions, the interpolated velocities

at the wall are zero. In this instance, the node velocity at the wall in the tangential direction
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Fig. 3.11 Face velocities are defined at the face of the control volume. U(i, j) denotes the horizontal
velocity of cell i, j in full blue arrow. V (i, j) denotes the vertical velocity of cell i, j in dashed blue
arrow. Node velocity is interpolated from two neighbouring control volumes (red arrows). uv(i, j)
denotes both horizontal and vertical velocities of cell i, j at the node.

is forced to take the value at its nearest node, typically the first node velocity in its normal

direction. It is interesting to note that this can be overcome by using a slip condition for the

MOF method. Regarding periodic boundary conditions, node velocities remain unaffected

by the domain boundaries. Nevertheless, the use of ghost cells presents a counter-intuitive

aspect. Regardless of the direction of periodicity, the first row/column of cells corresponds to

the last row/column of cells in the domain. In this instance, the row/column of ghost cells on

one side corresponds to the penultimate row/column of cells of the domain of the other side

and vice versa.
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Fig. 3.12 Schematic diagrams showing the wall boundary conditions imposed in the domain for all
velocities at the bottom left edge of the domain. Cells in dashed lines are ghost cells. Red arrows &
dot represent the node velocities for MOF treatment. Green arrows are imposed boundary conditions
for face velocities.

3.5.2 Boundary conditions

To fully specify the mathematical model, it is imperative to establish boundary conditions that

play a critical role in defining fluid flow behaviour at the boundaries of a finite computational

domain. They accurately capture the interaction between the fluid and its surroundings, classi-

fied into inflow, outflow, and solid boundaries. Inflow conditions specify fluid characteristics

upon entering the domain, while outflow conditions prevent disturbances caused by fluid

leaving the domain. Solid boundaries simulate fluid interactions with solid objects through

various approaches. The accurate selection and implementation of boundary conditions is

crucial for reliable results in numerical fluid simulations, requiring careful consideration of

the specific problem and desired representation of fluid behaviour near the boundaries.

In most MOF methods, the treatment of the boundary condition is rarely discussed as

the interfacial topology is inside the computational domain. However, the reduction of the
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number of neighbouring cells near the boundary means that MOF methods exhibit better

accuracy when reconstructing interfaces in these regions. Therefore, special attention needs

to be paid to the MOF method in addition to the boundary conditions for the Navier-Stokes

solver.

Mass conservation is performed only near the interface. Indeed, in order to reduce

computational expenses, only cells near the interface are advected as the CFL constraint

guarantees that cells further away from the interface maintain their volume fraction. There-

fore, material distribution is performed on "mixed" cells, i.e. cells that contain an interface in

a global fashion. Over/under-filled cells are used to redistribute mass uniformly to mixed

cells in the domain. The author is aware that this does not guarantee mass conservation to

machine precision. However, the choice of time step may influence mass variation during the

simulation, which is not discussed in the remainder of this thesis.

3.6 Closing remarks

In conclusion, this chapter has provided a comprehensive exploration of the moment-of-fluid

(MOF) method, highlighting its theoretical foundations and computational implementation.

Initially, the geometric VOF method has been described briefly in order to provide the frame-

work for the development of the extension to MOF methods. Establishing a linkage between

VOF and MOF methods facilitates the comprehension of their strengths and limitations. A

fundamental distinction lies in their handling of neighbouring cells for interface reconstruc-

tion. The standard MOF and filament MOF methods have been detailed, highlighting their

significance and relevance in the context of interface reconstruction. In Fig. 3.13, the key

differences between standard and filament MOF methods and the additional steps required in

the latter are summarised in a flowchart. Finally, the coupling between the MOF method and

a fluid solver is described for a fixed grid.
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Fig. 3.13 Flowchart highlighting the key steps for a filament MOF method compared to a standard
MOF method.



3.6 Closing remarks 70

As the reader is embarked on the next chapter, the focus will shift towards the methodol-

ogy of dynamic adaptivity in a numerical framework. The integration of adaptive techniques

with the MOF method opens avenues for enhancing accuracy and reducing overall compu-

tational costs. The forthcoming chapter will explore how these combined methodologies

contribute to advancing the state-of-the-art in multiphase flow simulations.



Chapter 4

Adaptive dual grid framework

4.1 Introduction

In the evolution of computational simulations, the accurate representation of interfaces is

crucial for understanding the complexities of physical phenomena. The MOF method has

shown that is a valuable and significant player in the field of interface capturing methods.

Despite having a higher computational cost, the ease of interface representation in complex

cases such as filament or multi-material scenarios has demonstrated that it is relevant and

efficient.

The integration of adaptivity within the context of the moment-of-fluid (MOF) method

signifies a notable advancement in numerical multiphase flow simulations. Adaptivity

introduces a dynamic and responsive dimension to the MOF framework, allowing it to adjust

intelligently the resolution, refining or coarsening a computational grid based on specific

characteristics. This dynamic adaptability enhances the efficiency and accuracy of the MOF

method using reduced computational resources. This not only addresses computational

challenges associated with varying physical length scales but also contributes to a more

effective representation of sharp interfaces.
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This chapter explores the intricate details of adaptive mesh refinement (AMR) methods

applied in the context of MOF methods. The unconstrained nature of this method is detailed.

In addition, satisfaction of mass conservation to machine precision is accomplished. The last

part of this chapter deals with the adaptive scheme used in a fluid flow solver. The focal point

is the introduction and detailed examination of a dual grid framework, a pioneering approach

designed to enhance the accuracy and efficiency of numerical interface calculations.

4.2 Adaptive mesh refinement

Several techniques have been used over the years to capture interfaces in the context of

adaptive mesh refinement (AMR). These may be broadly categorised as either patch-based

AMR or quadtree(octree)-based AMR (see Fig. 1.11). Patch-based AMR involves dividing

the computational domain into a set of refinement patches. This allows for local control

over mesh resolution, and the patches can be refined or coarsened dynamically based on

the numerical solution being computed. The main advantage of patch-based AMR is its

flexibility. However, it can lead to increased complexity in the maintenance of the grid being

created. On the other hand, a quadtree(octree)-based AMR uses a tree-based hierarchical

data structure. The quadtree approach is adopted in this thesis and this is described in this

chapter.

The main motivation for using AMR is to balance the trade-off between solution accuracy

and computational cost. High deformation regions are of interest for AMR in order to

produce high-resolution prediction in these complex areas. The process of mesh refinement

must be informed by an appropriate criterion and the reconstruction error is used to inform

grid adaptation in the current MOF method (Ahn and Shashkov, 2009). Typically, the

refinement process involves splitting each cell into 4 subcells in 2D, and 8 subcells in 3D;

coarsening involves merging subcells into a larger (sub)cell when a specific condition is
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met. Generally, the refinement and coarsening processes are repeated until either a desired

accuracy is achieved or a certain level of refinement is reached.

4.2.1 Data structure

This work adopts the quadtree-based AMR and the data structure is designed to store and

manipulate the hierarchy of meshes with ease and efficiency, as well as allowing commu-

nication between levels (Liang, 2012). The quadtree data structure forms a tree where the

root node represents the coarsest mesh (base mesh), and each additional level of refinement

creates four children nodes to their parent node. This work introduces a simplified approach

in which the data structure replicates a quadtree algorithm up to two levels of refinement

such that children cells can be accessed from a parent cell at every level up to two. The

other advantage is that no subroutines are needed to find or access neighbours. In addition,

unlike many other AMR codes, the new approach does not constrain the refinement level of

neighbouring cells or subcells.

An arbitrary cell on the quadtree mesh generated using the new approach is indexed as

(i, j, is, js) where (i, j) represents the base mesh indices and is = 1, ...,Ms and js = 1, ...,Ms

are the subcells indices, with Ms = 2lev and lev denoting the level of refinement starting at 0

for the base mesh. Subsequently, the size of the new subcells is defined by dx(lev) = ∆x/2lev

and dy(lev) = ∆y/2lev with lev = 0,1 or 2. Naturally, at level 0, dx(0) = ∆x. In addition,

the cell-centre coordinates can be computed directly using the following relationships xc =

x(i)+(is− 1
2) ·dx(lev) in the x-direction and yc = y( j)+( js− 1

2) ·dy(lev) in the y-direction,

in which x(i) and y( j) are the bottom left coordinates of a level 0 cell. The cell area |Ω|(lev)

is then defined by |Ω|(lev) = dx(lev)dy(lev), and for a uniform mesh, the cell area is simply

defined as |Ω|. Accessing children cells uses the logic from a parent cell’s index parity is.

Children subcell indices can be called using (2is−1,2is) when the parent index is is even,
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and (is, is+1) when is is odd. This logic is valid up to level 2 and works in both horizontal

and vertical directions. The data structure and index system are shown in Fig. 4.1.

(a) Quadtree structure grid
(b) Schematic of refinement struc-
ture using indices (c) Schematic of level structure

Fig. 4.1 General idea of data structure used in an AMR framework.

In order to allow for the manipulation of variables, an additional index representing the

level of refinement is used in the data structure. Because the data structure may contain

several variables accounting for volume fraction, centroid or polygon representation at

different levels of refinement, a specific variable is used in the code for identifying which

level of refinement is reached. The logical variable last_lev_refinement(i,j,is,js,lev) allows

one to enable or disable any values of unused level of refinement. A true value means that

subcell (i, j, is, js) at level lev is the last refinement and contains a valid volume fraction to be

intersected. A false value shows that the subcell (i, j, is, js) at level lev is not the last level of

refinement and values are ignored. In general, when a higher level of refinement is triggered,

the logical value of last_lev_refinement of the corresponding parent subcell at a lower level

is set to false. The value of this logical variable is set to true for all children subcells.

Mathematically, the set Φlev, including subsets Φ0, Φ1 and Φ2, respectively, represents all

cells at their finest refinement i.e. Φlev = Φ0 ∪Φ1 ∪Φ2 with Φi ∩Φ j = /0 for i ̸= j. This

means, with reference to the colour scheme of Fig. 4.1, Φ0 corresponds to green cells, Φ1

to yellow subcells and Φ2 to red subcells. Algorithm 5 details how to loop and access any

variables in the code.
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Algorithm 5 AMR data structure
for lev = 0,2 do

for i = 1, N_cell_x do
for j = 1, N_cell_y do

Ms = 2lev;dx(lev) = ∆x/2lev;dy(lev) = ∆y/2lev

for is = 1, Ms do
for js = 1, Ms do

%EXAMPLE : accessing the volume f raction o f a subcell
volume_fraction(i,j,is,js,lev)
%EXAMPLE : checking the last level o f re f inement o f a subcell
last_lev_refinement(i,j,is,js,lev)← true

end for
end for

end for
end for

end for

4.2.2 Refinement criterion

In previous VOF or level set methods, refinement was triggered when the volume fraction

or level set function is in a certain range or when the estimated curvature gradient reaches

a certain value. In the adopted MOF method, the centroid error is used as the criterion for

refinement. Indeed, when a standard MOF or a filament MOF procedure is used in a cell,

the reconstruction error is a good indicator of the accuracy of the reconstruction. Eq. (3.14)

includes material centroid error and fictitious material in a filament case. In this thesis, the

refinement criterion is dependent on the cell size. Specifically, it is chosen to be 10−9dx(lev),

which is lower than that used by Jemison et al. (2015) and not set to a fixed tolerance, which

is different from criteria used in previous MOF-AMR schemes (Ahn and Shashkov, 2009).

4.2.3 Advection procedure on a refined mesh

Similar to advection on a uniform mesh, the advection on a refined mesh entails the use

of a Lagrangian pre-image (see Section 3.3.4). This requires intersecting the material at

the previous time step without omitting the different levels of refinement. All levels of
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refinement need to be intersected. As per the uniform approach, the backtrace cell is advected

backwards using RK2, and the area intersected in this pre-image relative to the subcell

area corresponds to the volume fraction of the refined subcell. Eventually, the centroids of

all polygons intersected forming the volume fraction are advected forward using the same

scheme and the weighted average will define the new reference centroid. The respective

reference volume fraction and centroid are used for reconstruction. Fig. 4.2 illustrates the

advection procedure on a refined mesh, with particular emphasis placed on intersecting each

subcell within the backtrace cell and advecting the centroid of all intersected subcells.

(a) Lagrangian backtracking pre-
image

(b) Intersection between backtrace
and material at all levels

(c) Forward advection of individual
centroids

Fig. 4.2 Schematic showing advection of moments in an AMR framework.

Our approach differs from the AMR scheme of Ahn and Shashkov (2009) since filament

MOF is enabled here. The ability to capture filaments has significant advantages over a

standard MOF method and has been shown to generate high accuracy on a uniform mesh

(Hergibo et al., 2023). The proposed work also differs from the work of Jemison et al. (2015)

as filaments may be captured without the need to refine cells. For the sake of capturing

filaments, the base mesh is used as the backtracking level, meaning that level 0 is advected

first at all time. To determine which cells need advecting, neighbouring volume fractions

are used at level 0 to evaluate its potential of containing an interface, similar to a uniform

advection.
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In the case of a cell being refined, the backtrace at a defined level of refinement is

performed as follows. The central point common to all child subcells is advected using the

usual RK2 subroutine. All other vertices are interpolated from the backtrace at level 0. This

will guarantee exact material intersection with the level of refinement below, hence exact

mass conservation. This is performed in a similar fashion for level 2.

(i) Backtrace the four vertices from a level 0 cell using RK2.

(ii) Advect the common node using RK2.

(iii) Interpolate the four mid-points from the level 0 backtrace cell

(iv) Create four new subcells

Fig. 4.3 shows the procedure in place for backtracking a subcell in this refinement

framework. This ensures the intersection with a refined backtrace cell with the interface. This

approach differs from the one introduced by Ahn and Shashkov (2009) where a simplified

backtracking approach is used. As stated above, the proposed approach does not create gaps

and overlaps, and therefore a simpler mass redistribution procedure can be implemented.

4.2.4 Time step on a refined mesh

In numerical simulations, the typical time step is determined according to the CFL condition.

In this thesis, the CFL number is chosen to be unity unless stated otherwise. The Lagrangian

approach enables an unrestricted choice of the CFL number (Hergibo et al., 2023). The

Lagrangian approach provides a significant benefit enabling mesh refinement without intro-

ducing inconsistencies in time steps. Specifically, the time step is chosen with respect to the

base mesh. When refining a mesh locally, the time step used for a refined cell is the same as

the one adopted for the base mesh, and so the CFL number is 2 for level 1 and 4 for level 2

cells. Without this approach, the integration of AMR schemes with MOF methods could lead
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(a) Backtracking a subcell at level 1 (b) Backtracking a subcell at level 2

Fig. 4.3 Schematic showing backtracking of moments in an AMR framework. (□) symbols refer to
vertices advected using RK2. (△) symbols refer to mid-point vertices being interpolated. Colour
scheme shows green vertices for level 0; Yellow vertices and dashed lines for level 1 vertices and
subcells; Level 2 vertices and subcells are in red.

to CFL issues, potentially due to instabilities or inaccuracies. Alternative time step strategies

such as adaptive time stepping can be employed, but for simplicity these were not adopted

here as no instability issues were encountered using the present approach.

In Fig. 4.4, the comprehensive integration of the concept of adaptive refinement is

emphasised. A closer examination of the refinement strategy reveals a structure, incorporating

one distinct level of refinement, in which one subcell contains a filament reconstruction. The

combination of refinement and filament schemes ensures a precise representation of complex

flow phenomena across varying levels of mesh resolution in order to enhance the accuracy

and fidelity of the numerical results.
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(a) Reference
interface

(b) Standard MOF (c) Filament MOF (d) Standard
MOF-AMR

(e) Filament
MOF-AMR

Fig. 4.4 Example of complex reconstruction using the MOF-AMR method in which the aim is to
reconstruct a curved filamentary interface: (a) reference interface, (b) fixed grid reconstruction using
standard MOF which highlights the limitation of this method, (c) fixed grid reconstruction using a
filament MOF in which the linear interface is reconstructed with a certain error, (d) reconstruction
using standard MOF with one level of refinement which still shows the limitations of standard
reconstruction, (e) reconstruction using a combination of filament MOF and MOF-AMR which is
able to reconstruct a linear interface while mitigating the error of the curved interface.

4.3 Mass conservation during advection

4.3.1 Uniform global mass redistribution

Mass conservation is difficult to enforce in a grid refinement procedure. Local redistribution

in a refinement step can lead to a large deformation of the interface, hence global redistribution

is used in this thesis. When using a global redistribution approach, over/under-filled cells are

considered. These cells are formed by only one material, however their area intersected leads

to a volume fraction being either less or greater than unity. These cells have their volume

fraction set to unity and the difference to unity multiplied by the cell area |Ω|(lev) is added

to a global variable. Let us call the global redistribution variable δ . In a uniform approach, δ

is redistributed to N mixed cells, i.e. cells with an interface. In fact, a δ/(|Ω|N) amount is

redistributed to mixed cells. In the case that not all of the mass is redistributed, an iterative

procedure is enacted to ensure all mass is redistributed. Indeed, lack of mass redistribution

can penalise mass conservation at other levels.

At other levels of refinement, over/under-filled cells may also occur in the intersection

process, meaning that mass needs to be redistributed at all levels. However, on a refined
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mesh, mass has been redistributed at a lower level with cells needing refinement. Therefore,

another local variable “distributed” is considered in the redistribution process corresponding

to the mass redistributed in each cell/subcell at a lower level. It allows the user to keep

track of redistribution to cells that may trigger refinement, with the sum of them all being

δlow_lev. Indeed, mass may be redistributed to cells that will be refined, hence that amount

needs to be shared at the next refinement level. All cells needing refinement have their mass

redistributed at a lower level added to the δ of the refinement level. Then, the new amount

of mass redistributed is δ +δlow_lev. Therefore, for each cell, the new volume fraction Fi is

calculated using

Fi← Fi +
(δ +δlow_lev)

|Ω|(lev)Nmix
, (4.1)

where Nmix corresponds to the number of mixed cells in the domain at a certain level. The

redistribution procedure is implemented as detailed in Algorithm 6. In this subroutine,

the amount of mass that is not repaired “not_repaired” is taken into account because some

"almost" full/empty cells may not be able to receive/give their contribution. In these instances,

the redistribution subroutine is repeated until the amount of mass is close to machine precision,

i.e. 10−15. The amount redistributed is kept in the variable “distributed”.

Several approaches can be used when redistributing the mass globally. Two of them are

presented in this section, these are termed the directly proportional and inversely proportional

distribution approaches.

4.3.2 Directly proportional global mass redistribution

Amongst redistribution procedures, the directly proportional redistribution approach seems

intuitive. The redistribution occurs in a similar fashion as the uniform case. However, the

mass is redistributed proportional to the volume fraction in a cell. Hence, the total volume
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Algorithm 6 Redistribution in a refined mesh

Initialise δ , δlow_lev
repair← δ +δlow_lev
not_repaired← repair
% Note δlow_lev = 0 at level 0
while (not_repaired > 10−13) do

if (mixed_cell← true .AND. repair < 0) then
% REPAIR IS NEGAT IV E −REMOV E VOLUME FRACT ION
if (vol f rac(i, j, is, js, lev)+ repair/(|Ω|(lev)N_mix)< 0) then

% CELL VOLUME FRACT ION CANNOT BE NEGAT IV E −RESET TO 0
not_repaired = not_repaired + vol f rac(i, j, is, js, lev)∗ (|Ω|(lev)N_mix)

else
vol f rac(i, j, is, js, lev) = vol f rac(i, j, is, js, lev)+ repair/((|Ω|(lev)N_mix)
distributed(i, j, is, js, lev) = distributed(i, j, is, js, lev)+ repair/N_mix
not_repaired = not_repaired− repair/N_mix

end if
else if (mixed_cell← true .AND. repair > 0) then

% REPAIR IS POSIT IV E −ADD VOLUME FRACT ION
if (vol f rac(i, j, is, js, lev)+ repair/(|Ω|(lev)N_mix)> 1) then

% VOLUME FRACT ION CANNOT MORE T HAN UNITY −RESET TO 1
not_repaired = not_repaired +(1− vol f rac(i, j, is, js, lev))∗ (|Ω|(lev)N_mix)

else
vol f rac(i, j, is, js, lev) = vol f rac(i, j, is, js, lev)+ repair/((|Ω|(lev)N_mix)
distributed(i, j, is, js, lev) = distributed(i, j, is, js, lev)+ repair/N_mix
not_repaired = not_repaired− repair/N_mix

end if
end if

end while
% WHEN REDIST RIBUT ION IS T RIGGERED AT NEW REFINEMENT LEV EL
δlow_lev = ∑distributed(i, j, is, js, lev) if(last_lev_re f inement(i, j, is, js, lev) == false)
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fraction of all mixed cells is calculated. The repair is then performed using the redistribution

process in which the new volume fraction is given by:

Fi← Fi +
(δ +δlow_lev)

|Ω|(lev)
Fi

∑
Nmix
j=1 Fj

(4.2)

This approach may alter the shape of the interface to a lesser extent. This approach is

discussed later in this thesis.

4.3.3 Inversely proportional global mass redistribution

Opposite to the previous concept, mass is redistributed inversely proportional to its volume

fraction in this approach. Conceptually, a proportional approach may lead to several iterations

of redistribution because a large mass is redistributed to an "almost" full/empty cell, and

therefore the mass that is not repaired may be large. By using the inversely proportional

approach, more mass is redistributed to those almost empty cells which intuitively would

reduce the number of redistribution iterations, but may alter the shape of the interface more,

as shown later in this thesis. The repair is redistributed as follows:

Fi← Fi +
(δ +δlow_lev)

|Ω|(lev)
(1−Fi)

∑
Nmix
j=1
(
1−Fj

) (4.3)

Fig. 4.5 summarises the major components of the procedure used in the MOF-AMR

method framework. This process involves the advection of "mixed" cells and their intersection

with the relevant materials within the backtrace cell. Mass is redistributed across the interface.

Eventually, interfaces are reconstructed using either the standard or filament MOF method.

Refinement is triggered if the error in reconstruction is unsatisfactory. Before looping back

and adding a level of refinement, the data structure is updated for both children and parent

cells.



4.4 Adaptive dual grid 83

Fig. 4.5 Flowchart highlighting the key steps in MOF-AMR reconstruction.

4.4 Adaptive dual grid

Adaptive dual grid is an innovative approach in the field of fluid dynamics, designed to

address the computational challenges associated with complex and evolving flow phenomena.

This method uses the power of adaptivity to dynamically refine grids in response to changes

in local flow characteristics, enabling higher resolution in regions of interest. By intelligently

allocating computational resources on two distinct grids, the adaptive dual grid technique
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achieves a balance between accuracy and efficiency. One grid solves the velocity-pressure

coupling on a fixed grid ensuring stability and consistency in the flow characteristics. Si-

multaneously, the second grid resolves the evolving interface by dynamically adjusting its

resolution to effectively capture detailed features of the interface.

The dynamic allocation of computational resources allows for a comprehensive rep-

resentation of interface phenomena, offering significant advantages in simulating a wide

range of fluid dynamics problems over fixed dual grids or a single adaptive grid. Fig. 4.6

shows the configuration for the three different method, namely the fixed dual grid, the single

adaptive grid and the adaptive dual grid. The selection of an optimal approach entails a

consideration of various factors such as flexibility, efficiency and complexity. The fixed

dual grid approach provides stability and accuracy in the solution, but lacks the flexible

grid adjustment which makes it less efficient, and computationally more expensive (Fig.

4.6(a)). Similarly, although the single AMR grid approach offers adaptivity, it may encounter

challenges in maintaining stability and consistency in flow calculations across diverse levels

of grid resolution (Fig. 4.6(b)). Computationally, the grid may be refined due to unresolved

features on the interface while having converge velocity-pressure. In contrast, the adaptive

dual grid method emerges as a balance between adaptivity, stability and efficiency thanks to

its flexibility at targeting regions of interest while maintaining low computational resources

with efficiency and accuracy (Fig. 4.6(c)).

(a) Fixed dual grid (b) Single adaptive grid (c) Adaptive dual grid

Fig. 4.6 Schematic highlighting different refinement scenarios when coupling a flow solver to an
interface capturing method.
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The aim of this work involves the use of adaptive dual grid techniques to maintain

sharp and precise interfaces whilst using a coarse and fixed primary grid to keep a low

computational cost. The secondary grid involves interfacial features, enabling adaptivity and

subgrid structures in the interface reconstruction.

4.4.1 Adaptive scheme

The unconstrained quadtree adaptive mesh refinement method presented by Ahn and Shashkov

(2009) is a sophisticated numerical technique employed to enhance accuracy and compu-

tational efficiency. A hierarchical data structure, referred to as a quadtree, is used where

the domain is repeatedly divided into subcells based on a user-defined criterion. Unlike

constrained methods, which follow the 2:1 refinement rule, the unconstrained approach

allows for irregular grid adaptations, making it particularly well-suited for capturing complex

flow features efficiently (see Fig. 1.12).

In the novel yet simplified quadtree mesh approach of Hergibo et al. (2024), an arbitrary

cell is denoted by (i, j, is, js), where (i, j) signifies the base mesh coordinates. Subsequently,

the subcell indices is and js are related to the desired level, lev, of refinement. To access

children cells, a logic based on the parent cell’s index parity is employed, where children

subcell indices are given by (2is−1,2is) when the parent index is even and (is, is+1) when

the parent index is odd. This logical scheme is applicable up to level 2 and is applicable in

both the horizontal and vertical directions. Fig. 4.7 highlights the refinement structure and

indexing of the hierarchy. In this example, the green cells are level 0 (L0), the yellow subcells

are level 1 (L1) and the red subcells are level 2 (L2). This example clearly demonstrates that

the red subcells indices are (3 : 4,3 : 4).

The triggering of refinement in the context of the MOF method employed here uses the

centroid error as the primary criterion. This approach considers the reconstruction error as

an effective gauge of the accuracy of the reconstruction, which encompasses the material
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centroid error, including the fictitious material in filament scenarios. Notably, the refinement

criterion in this study is normalised by the cell size.

(a) Level 0
is = 1; js = 1

(b) Level 1
is = 1 : 2; js = 1 : 2

(c) Level 2
is = 1 : 4; js = 1 : 4

Fig. 4.7 Structure and indexing of the novel quadtree approach. Green cell corresponds to level 0
(L0), yellow cells to level 1 (L1) and red cells to level 2 (L2).

4.4.2 Dual grid method

The dual grid method involves the addition of a secondary grid alongside the primary grid,

which allows for a refined resolution of complex flow features. Conserving computational

resources is critical in the context of MOF methods since the optimisation component of the

method can be expensive. By adapting grid resolution locally, the adaptive dual grid method

aims to enhance the precision and fidelity of numerical simulations in accurately predicting

fluid dynamics.

Due to the unconstrained nature of the proposed novel AMR structure, calculating fluxes

through different levels of refinement on a single AMR grid may be necessary for velocity,

pressure and volume fraction variables. Therefore, the dual grid aspect comes naturally.

Indeed in numerical multiphase flow simulations, the velocity-pressure coupling and volume

fraction are solved independently. The adaptive dual grid method stems from the difference in

resolution needed for accurate interface representation. Reasons to use an adaptive dual grid

approach rather than a single AMR grid include facilitating parallel computation, limiting
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the complexity of the flux calculations, utilising the convergence rates for the different

components of the numerical scheme and the unconstrained nature of the this approach.

The velocity-pressure coupling on a fixed coarse grid facilitates the overall understanding

of the flow. Concurrently, the interface dynamics are resolved effectively on an AMR grid.

The exchange between the two grids is facilitated through smooth communication of vital

information. The first part of the communication is from the fluid solver on a fixed coarse

grid to the interface MOF-AMR grid, in which the node velocities needed to advect the

interface are interpolated from the base grid for the Navier-Stokes solver. Specifically, the

fluid solver generates face-defined velocities U and V , in the horizontal and vertical direction

of a control volume, respectively. Linear interpolation is applied on a uniform Cartesian grid

with i and j indices as follows:

un(i, j) =
U(i−1, j−1)+U(i−1, j)

2

vn(i, j) =
V (i−1, j−1)+V (i, j−1)

2
,

(4.4)

where un and vn are the horizontal and vertical velocities at the bottom left corner node of

the control volume used in the MOF context. In the fluid solver, the pressure and volume

fraction are cell-centered. Fig. 4.8(a) shows how node velocities are spatially interpolated for

a single control volume, in addition to their directional components. Fig. 4.8(b) considers the

node velocity interpolation when refinement is triggered in the dynamic procedure. These

velocities are required during the material advection part.

The second part of the communication process exchanges information about volume

fraction between the MOF-AMR grid and the fixed coarse grid used for the fluid solver

in order to solve the system of discretised equations. The exchange is performed in the

following way. Communication to the coarse grid is carried out using the equivalent volume

fraction as follows
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(a) Node velocity interpolated in a control volume
denoted CV (i, j). Plain black arrows are horizontal
velocities U , hollow black arrows are vertical velocities
V , both face-centered. The red arrow denotes the node
velocity with components in horizontal and vertical
directions un and vn, respectively.

(b) Node velocity interpolation when refining grid for
level 0 (green arrows), level 1 (yellow arrows) and
level 2 (red arrows).

Fig. 4.8 Visual schematic of the interpolation of node velocity from the fluid solver on a fixed grid to
the MOF-ADG grid. All other velocities when subsequently refining the grid are interpolated from
the four fixed grid nodes.

FNS(i, j) = ∑
lev

∑
is, js⊂{Φlev}

FADG(i, j, is, js, lev) |Ω|(lev)
|Ω|(0)

, (4.5)

where FNS(i, j) denotes the volume fraction used on the flow solver grid, Φlev is the set of

cells/subcells and is, js and lev are indices in the AMR structure for each level of refinement

and |Ω|(lev) corresponds to the subcell area. It is crucial to note that if a cell has not been

refined then level 0 remains. In this case, the above relationship is simplified as follows:

FNS(i, j) = FADG(i, j,1,1,0) (4.6)

Fig. 4.9 serves as an illustrative snapshot of the effective communication and integration

between the two grids. The depiction encapsulates the exchange of data and information
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that is fundamental to the success of the adaptive dual grid method. The coordination, as

seen with the flowchart, is essential for maintaining accuracy and coherence in the numerical

simulation.

(a) (b)

Fig. 4.9 (a) Structure and (b) flowchart of the adaptive dual grid method. (a) Top grid is the interface
MOF-AMR grid using the same colouring scheme described in the previous section. Bottom grid
is the fluid solver grid, where dashed circles represent cell-centered pressure and volume fraction
FNS(i, j), plain arrows represent horizontal velocities U and hollow arrows vertical velocities V , both
face-centered. Communication between grids is required for velocities and volume fractions.

4.5 Closing remarks

In conclusion, this chapter has meticulously detailed a novel unconstrained adaptive mesh

refinement framework using the moment-of-fluid method (MOF-AMR). The second part of

this chapter has detailed the key components required in order to achieve machine precision

mass conservation in the MOF-AMR method. This generalises to any level of refinement,

from a fixed grid to at least two levels of refinement. The last part of this chapter has described

the adaptive dual grid framework, elucidating its fundamental principles and integration

within a fluid flow solver for numerical simulations. By emphasising the significance of

adaptivity, this framework has explored the enhancement of accuracy and efficiency of

interface calculations, addressing the intricacies of multiphase flow phenomena.
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The next chapter will describe the transition from methodology to results, assessing

the performance and outcomes of employing the MOF method and its integration with the

Navier-Stokes equations on a fixed grid, validating the methodology and applying it to real

test cases. These results will provide valuable insights into the performance and impact of

the method and into understanding complex fluid behaviour.



Chapter 5

A filament MOF method for multiphase

flows on a fixed grid : Benchmarks and

Results

5.1 Introduction

Progress in computational fluid dynamics (CFD) has transformed the capacity of the commu-

nity to simulate and analyse intricate fluid flow phenomena. As the accuracy and reliability

of numerical simulations is enhanced, the validation of computational methods becomes

crucial. The MOF method, a promising technique for capturing fluid interfaces, has gained

prominence in recent years due to its ability to simulate multiphase flows with improved

accuracy.

The primary objective of this chapter is to present a comprehensive overview of the

validation process employed for the MOF method and to showcase its successful application

to a range of carefully selected test cases. Validating a numerical method involves a rigorous

assessment of its ability to reproduce physical phenomena accurately under diverse conditions.

By scrutinising its performance against well-defined benchmarks, this research seeks to
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establish the credibility and effectiveness of the MOF method as a robust tool for simulating

complex fluid dynamics.

Furthermore, the chapter will explore the method’s versatility through its application to a

series of challenging test cases that encompass a spectrum of physical scenarios. Through the

analysis of the results, the method’s capability is assessed and compared to other methods to

highlight its potential for addressing real-world challenges. In essence, this chapter serves as

a bridge between the theoretical foundation of the MOF method and practical applications.

5.2 Validation: the filament MOF method

In this section, several benchmark problems are considered with the aim of testing the

performance of the new filament MOF method. Several problems are of considerable interest

since the associated velocity field yields high deformation in the material. Maintaining the

correct topology at maximum deformation is attractive and important for most engineering

problems. However, in order to assess the predictive capability of interface capturing

methods, each of the flows is reversed over the same time period and compared to its original

configuration. Whilst comparison with the initial condition is possible, the MOF enables

one to evaluate the difference between the final reconstruction and the original/reference

configuration rather than the initial reconstruction. From a computational cost perspective,

the proposed model uses an analytical reconstruction where possible. Indeed, when only

the reconstruction of a piecewise linear interface between two materials in a Cartesian cell

is required, this approach is significantly more efficient (Lemoine et al., 2017). In order to

reduce the total error in reconstruction, the interface is reconstructed based on the material

with the smallest volume fraction in a cell as suggested by Mukundan et al. (2022). For cases

involving more than two materials reconstruction, the symmetric multi-material approach is

chosen.
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5.2.1 Error evaluation

Evaluating errors in interface reconstruction is a powerful tool to compare different interface

tracking/capturing methods. The numerical errors in terms of volume fraction can be

evaluated using the L1 error norm EL1

EL1 = ∑
∣∣Ff inal−Finitial

∣∣ |Ω| , (5.1)

its relative error norm Er

Er =
∑

∣∣Ff inal−Finitial
∣∣ |Ω|

∑ |Finitial| |Ω|
, (5.2)

and the maximum error norm L∞

L∞ = max
∣∣Ff inal−Finitial

∣∣ |Ω| (5.3)

A more representative error measure is the symmetric difference error which provides a

better estimate of the interface reconstruction error. The symmetric difference error Esym is

given by

Esym = ∑

∣∣∣ωre f ∪ω
act−ω

re f ∩ω
act
∣∣∣ , (5.4)

where ωre f denotes the initial state reference interface, which is potentially curved, and ωact

denotes the final state reconstructed polygon.

When comparing the reference interface with its reconstruction in individual cells, the

symmetric difference error can be interpreted as the area between the two interfaces. Fig. 5.1

shows three different scenarios of intersecting interfaces and highlights the area corresponding

to the symmetric difference error Esym. Some simple calculations are necessary to evaluate

the area of a segment.
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(a) n = 2 (b) n = 1 (c) n = 0

Fig. 5.1 Symmetric difference error Esym in a single cell. The area shaded in blue highlights the error
corresponding to Esym irrespective of the number of times, n, the reconstructed interface intersects the
reference interface: (a) n = 2, (b) n = 1, (c) n = 0.

As well as evaluating the error in reconstruction, ensuring mass conservation is also cru-

cial during these advection tests. In 2D, mass conservation corresponds to area preservation

and mass loss is given by the expression:

∆m = ∑
∣∣Ff inal

∣∣ |Ω|−∑ |Finitial| |Ω| (5.5)

5.2.2 Benchmark: Zalesak slotted disc

In this benchmark test case, a slotted disc is advected in a rigid body rotation motion

(Zalesak, 1979). A circle of radius r = 0.15, with a slotted rectangle of width wZ = 0.05

and a maximum height of hZ = 0.85, is centered at (0.5,0.75) in a unit square domain. The

corresponding velocity field is given by:

u(x,y) =

0.5− y

x−0.5

 (5.6)
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This case does not exhibit any filament formation, however it shows that the conglomer-

ation algorithm works for velocity fields that rotate rather than deform the interface. Five

different uniform grids have been used explicitly 32×32, 64×64, 128×128, 256×256 and

512×512. On the coarsest mesh 32×32, the number of iterations is set to be nit = 1256

and ∆t = 2π/nit . The number of iterations is increased proportionally with increasing mesh

refinement. Hence, ∆t is decreased correspondingly.

In order to study the error convergence, the error measure used for this test case is

the L1 error. Table 5.1 summarises the L1 error for different mesh sizes and highlights

the convergence of the numerical approximation. In addition, Fig. 5.2 highlights the final

solution after a full body rotation for the first three grids. The shape of the original interface

is captured well. However, the sharp edges around the slotted rectangle have been smoothed

out during the rotation. Indeed, the MOF method is not able to capture these edges regardless

of the degree of mesh resolution. Potential improvements may arise with two half-planes

MOF reconstruction. The maximum error L∞ is a more relevant measure of the error for

this problem in order to understand the order of convergence around sharp edges. In this

case, second order convergence may be attained in some instances but it may depend on the

alignment of the sharp edges of the slotted disc with the grid.

Table 5.1 Dependence of the L1 error, EL1 , relative error, Er, and maximum error L∞ on mesh size for
the Zalesak slotted disc problem. Numbers in brackets indicate the order of convergence.

Mesh size EL1 Er L∞

32 3.17×10−3(-) 5.45×10−2(-) 2.77×10−4 (-)
64 9.02×10−4(1.81) 1.55×10−2(1.81) 5.23×10−5 (2.40)
128 3.81×10−4(1.24) 6.54×10−3(1.24) 3.47×10−5 (0.59)
256 1.35×10−4(1.50) 2.31×10−3(1.50) 1.52×10−5 (1.19)
512 4.93×10−5(1.45) 8.47×10−4(1.45) 2.47×10−6 (2.62)

The behaviour of the L1 error over one rotation is shown in Fig. 5.3 for three different

meshes mentioned in Fig. 5.2. The plot highlights that despite the interface only rotating, the
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(a) 32×32 mesh (b) 64×64 mesh (c) 128×128 mesh

Fig. 5.2 Solution of rigid body rotation for the Zalesak slotted disc. Green depicts a quarter of rotation.
Blue half rotation. Purple three quarter of rotation. Red depicts a full rotation and final solution. The
black outline depicts the reference interface.

error increases during the rotation progresses as the interface reconstruction error accumulates

at each time step.

Fig. 5.3 Behaviour of the L1 error during the rigid body rotation of the Zalesak slotted disc for different
mesh sizes. Φ denotes the angle of full body rotation.

5.2.3 Benchmark: Reversible Vortex T=8

The reversible vortex is a benchmark test case for deforming advection cases (Rider and

Kothe, 1998). A circle of radius r = 0.15 centered at [0.5,0.75] in a unit square domain is
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deformed in a divergence-free velocity field given by:

u(x,y, t) =

−sin2(πx)sin(2πy)

sin2(πy)sin(2πx)

cos(πt/T ) , (5.7)

where T represents the full period and T/2 the time at maximum deformation. Here T = 8.

The Courant-Friedrichs-Lewy (CFL) number is a dimensionless quantity defined as:

CFL =
u∆t
∆x

, (5.8)

where u is the characteristic velocity, ∆t is the time step size, and ∆x is the grid size. This

number represents the ratio of physical distance a particle travels in one time step to its grid

size. This ratio is a gauge to numerical stability in explicit methods. In this instance, the CFL

number is 1, hence the number of iterations nit = 256 and ∆t = ∆x when a 32×32 uniform

Cartesian mesh is considered. The number of iterations increases proportionally with mesh

size.

The circle deforms in a filamentary structure at maximum deformation t = T/2. For this

test case, filament detection is enabled. Several grids from 32×32 to 1024×1024 have been

used to perform this dynamic test case.

The symmetric difference error, Esym, is shown in Table 5.2 for the initial reconstruction

and at the final stage. The performance of the proposed method is compared with the results

obtained using other MOF methods as well as with the standard MOF. Runtime, rounded to

the next integer value, is also compared because the MOF method can be computationally ex-

pensive. Currently, the code has not been parallelised and so the computations are performed

on a single core. The order of convergence of this method is also highlighted as well as the

mass difference.

Fig. 5.4 shows the maximum deformation before reversal and the final reconstruction

for different mesh sizes: 32× 32, 64× 64 and 128× 128, respectively. Using a filament
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Table 5.2 Reversible vortex test case data using T = 8 compared with the standard MOF (STD MOF)
and with results generated using other MOF methods in the literature: a standard MOF with adaptive
mesh refinement (AMR) method (Ahn and Shashkov, 2009), a filament AMR method (Jemison et al.,
2015), a coupled level-set MOF (CLSMOF) (Mukundan et al., 2022).

Mesh size 32 64 128 256 512 1024

Esym in (Ahn and Shashkov, 2009) 2.34×10−2 3.31×10−3 5.78×10−4 1.22×10−4 2.01×10−5 -
Order of convergence - 2.82 2.51 2.24 2.60 -

Esym in (Jemison et al., 2015) 3.12×10−3 6.91×10−4 2.77×10−4 - - -
Order of convergence - 2.17 1.31 - - -
Runtime in (Jemison et al., 2015) 32.6 200 635.3 - - -

Esym in (Mukundan et al., 2022) 1.32×10−3 1.01×10−3 5.44×10−4 2.76×10−4 1.38×10−4 6.90×10−5

Order of convergence - 0.39 0.89 0.98 1.0 1.0

Esym for STD MOF 1.42×10−2 7.46×10−3 1.29×10−3 9.19×10−5 1.45×10−5 4.07×10−6

Order of convergence - 0.92 2.53 3.81 2.66 1.83

Initial Esym 1.74×10−4 4.06×10−5 1.28×10−5 2.99×10−6 1.49×10−7 4.19×10−8

Final Esym 2.80×10−3 5.06×10−4 1.54×10−4 4.45×10−5 1.48×10−5 3.64×10−6

Order of convergence - 2.46 1.71 1.79 1.58 2.02
Mass difference 1.09×10−6 2.54×10−7 3.98×10−8 2.31×10−9 −1.50×10−6 2.05×10−12

Runtime (s) 17 31 95 447 4856 43942

approach, the vortex does not exhibit any spurious separated structures, even on a coarse

mesh. In this test case, the trailing tail shows a thicker structure as the coarse cell cannot

reconstruct the filament tail accurately. As the mesh is refined, the tail becomes well-defined

but thicker than the filament width. The MOF method naturally creates these structures as it

exhibits some cross-stream diffusion, leading to a shorter tail than expected. The symmetric

difference error converges slightly faster than other MOF methods with a smaller error on

the finest mesh. Runtime is also considerably faster by a factor of between two to five,

although it may be related to computer and compiler performance. The error shows high

order of convergence, almost matching the reference order two. The symmetric difference

error for standard MOF exhibits a slower order of convergence on coarser grids. However,

the symmetric difference error is almost indistinguishable on the finest meshes for the two

approaches.
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(a) 32×32 grid at t = 4 (b) 64×64 grid at t = 4 (c) 128×128 grid at t = 4

(d) 32×32 grid at t = 8 (e) 64×64 grid at t = 8 (f) 128×128 grid at t = 8

Fig. 5.4 Reversible vortex test case using the filament MOF method and T = 8 for 32×32, 64×64
and 128×128 grids. Top row of figures shows the maximum deformation. Bottom row of figures
shows the final interface.

5.2.3.1 Influence of the mass redistribution

The investigation of the effect of mass redistribution is explored in this section. It is observed

that the remapping, or mass redistribution procedure does not affect the topology greatly as

the volume fraction that needs to be redistributed during the procedure is very small. Indeed,

during the deformation of the vortex the volume fraction redistributed varies between 10−4

and 10−10. During the early stages of the deformation, most mass has to be redistributed as

there are many cells in the inner part of the circle that are over/under-filled and very few cells

are mixed cells, i.e. cells containing an interface. On the contrary, at maximum deformation,

very few cells are over/under-filled cells, most of them contain one interface, or two in the

case of filaments. Fig. 5.5 summarises this. The difference between the interface shapes
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obtained with and without the post advection remapping procedure is highlighted in Fig.

5.5(a), whereas Fig. 5.5(b) shows the variation of volume fraction redistributed per iteration.

Note that the mass is redistributed equally between mixed cells. Table 5.3 shows the mass

difference for the reversible vortex case (T = 8) for a case where the mass was redistributed

and when it was not. Two orders of magnitude of difference can be observed, which shows

the advantage of using the proposed method for mass conservation. It is important to note

that the mass redistribution does not achieve machine precision in the redistribution case as

only one round of redistribution is performed in this work. This choice, made to reduce the

computational effort, prevents additional rounds of redistribution from achieving complete

mass balance.

(a) Filament MOF reconstruction including compari-
son with post advection remapping procedure

(b) Volume fraction redistributed as a function of the
time period of the reversible vortex T

Fig. 5.5 Comparison showing (a) the effect on the interface shape of the post advection remapping
procedure for mass conservation and (b) the actual mass redistributed per iteration for different grids.

5.2.3.2 Influence of the CFL number on the interface

One expects the CFL number to influence the interface reconstruction. However, the La-

grangian advection procedure is not greatly affected by the CFL number. Therefore, most
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Table 5.3 Mass difference for the reversible vortex with and without post advection remapping
procedure.

Mesh size With redistribution Without redistribution

32 1.09×10−6 1.35×10−4

64 2.54×10−7 2.58×10−5

128 3.98×10−8 3.75×10−6

256 2.31×10−9 5.72×10−6

cases are performed with the maximum available CFL number which equals unity. In theory,

a CFL number greater than unity can be used for such advection benchmarks. However, the

stencil used in the dynamic test procedure encompasses only a 3×3 stencil and therefore

limits larger CFL numbers. Fig. 5.6 shows a zoom on the final reconstruction for different

CFL numbers 0.2, 0.4, 0.5, 0.8 and 1.0 and the error convergence. A lower CFL number

will induce a larger number of iterations, therefore increasing the chances of error in recon-

struction. However, the difference in error is relatively small in magnitude. The difference

on the interface only occurs near the top of the circle which is near the tip of the filament at

maximum deformation.

(a) Zoom on final reconstruction on a 64×64 grid (b) Esym as a function of the CFL number on two grids

Fig. 5.6 (a) Influence of the CFL number on the final reconstruction of part of the interface; (b)
symmetric difference error, Esym, as a function of the CFL number for two grids: 32×32 and 64×64.
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5.2.3.3 Influence of the filament capable method

Filament capable MOF is able to reconstruct a moving interface with a greater accuracy

and better topology. Indeed, under strong deformations, materials tend to break up when

they are not supposed to do so. At the instant of maximum deformation, a continuous

interface is more likely and will result in better modelling of multiphase flows. Fig. 5.7

highlights both visual reconstruction and convergence of the standard and filament solution.

Fig. 5.7(a) shows that several breakups of the dynamic interface occur when a standard

MOF reconstruction is implemented. The final reconstruction does not match the reference

circle. Fig. 5.7(b) compares the order of convergence between a standard and the proposed

filament approach, together with other MOF methods. Note that for the finer grids, the error

tends to the same values as the thickness of the structure is larger than a cell size, hence the

filamentary approach is not used as frequently during the dynamic test.

(a) Standard MOF reconstruction for a 32× 32 grid
at reversal (in red) and final (in green). Black outline
denotes the reference interface.

(b) Convergence behaviour of the standard MOF and
filament MOF compared with the literature using Esym.

Fig. 5.7 (a) Influence of the filament capable method on the reconstruction; (b) Symmetric difference
error Esym compared with other MOF methods. Convergence rate is compared with a linear and
quadratic reference.
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5.2.4 Test case: Reversible Vortex T=12

This is the same benchmark test case as considered in Section 5.2.3 except that the full period

is increased to T = 12. A larger period increases the deformation and thinner filaments

are exhibited. Table 5.4 summarises the symmetric difference error for six different mesh

sizes from 32×32 to 1024×1024. As the material is more deformed than in the previous

benchmark with T = 8, the expected symmetric difference error is larger. As the mesh is

refined, there are no longer significant benefits associated with using the filament method

as the thickness of the deformed filament is greater than a cell width. Consequently, the

order of convergence decreases from quadratic to linear until the order of convergence of the

filament MOF follows that for standard MOF. Unexpected tendencies are observed in the

finest mesh of this test case, which according to the author may be attributed to infinitesimal

area calculation behaviour. The mass difference is very comparable. However, runtime is

increased significantly. Indeed, the number of cells containing a filament structure compared

to a standard interface is very large. Fig. 5.8 highlights the morphology of the very thin

interface. Because filament reconstruction is computationally more expensive, the runtime is

increased by a factor of three.

Table 5.4 Symmetric difference error, L1 error, mass difference and runtime for the reversible vortex
test case using T = 12 and its comparison with the standard MOF (STD MOF).

Mesh size 32 64 128 256 512 1024

Final Esym 4.98×10−3 9.91×10−4 2.48×10−4 1.27×10−4 2.06×10−5 6.33×10−6

Order of convergence - 2.32 1.99 0.96 2.62 1.70
EL1 4.18×10−3 9.62×10−4 2.58×10−4 1.23×10−4 4.11×10−5 6.29×10−6

Order of convergence - 2.11 1.89 1.06 1.58 2.70
Mass difference 3.12×10−6 3.08×10−7 4.93×10−8 4.01×10−9 −8.93×10−12 −7.33×10−7

Runtime (s) 51 95 180 958 7334 65418

Esym for STD MOF 2.66×10−2 1.81×10−2 3.37×10−3 1.18×10−3 4.05×10−5 7.70×10−6

Order of convergence - 0.55 2.42 1.51 4.86 2.39
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(a) 32×32 grid at t = 6 (b) 64×64 grid at t = 6 (c) 128×128 grid at t = 6

(d) 32×32 grid at t = 12 (e) 64×64 grid at t = 12 (f) 128×128 grid at t = 12

Fig. 5.8 Reversible vortex test case using T = 12 for 32×32, 64×64, 128×128 grids. Top row of
figures shows the maximum deformation. Bottom row of figures shows the final interface.

5.2.5 Benchmark: Droplet flow

The droplet flow test case has a nonlinear divergence free velocity field (Ahn and Shashkov,

2009). The deformation of material tears an initial circle of radius r = 0.125 centred in a unit

domain into a V-shape. The velocity field is given by:

u(x,y, t) =

 0.125(8x−4)

0.125
[
−(8y−4)−4−

(
1− (8x−4)2− (8x−4)4)]

 f (t) (5.9)

The velocity field is a function of time as the amplitude, f (t), varies in time according to:
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f (t) =


1 0≤ t < Tmax− tε/2

cos
(

π(t−Tmax+tε/2
tε

)
Tmax− tε/2≤ t ≤ Tmax + tε/2

−1 Tmax + tε/2 < t ≤ 2Tmax

(5.10)

At Tmax = 0.8, time at maximum deformation, the flow is reversed. The flow is reversed

smoothly during a transition period of tε = 0.1.

This test case provides a good insight into the filamentary formation of materials as the

filament tip is leading as opposed to trailing in the previous benchmark. For the base grid,

32×32, the number of iterations is set to nit = 160 for the entire simulation and ∆t = 0.01.

The number of iterations is increased proportionally with the mesh and therefore ∆t is

decreased proportionally with the mesh.

The dynamic test is performed for different grids from 32× 32 to 256× 256 using a

filamentary MOF method. As the mesh is refined, this approach becomes less relevant. The

symmetric difference error is compared with Jemison et al. (2015) despite an AMR capability

being used in that paper. In addition, details of mass conservation and runtime are given in

Table 5.5. Fig. 5.9 shows the maximum deformation and final reconstruction for 32×32,

64×64, 128×128 grids, respectively. It can be seen that coarser meshes lead to larger errors

in reconstruction. In addition, the method exhibits some diffusion in the sense of "floating"

elements. These "floating" elements could be attenuated with a higher tolerance in available

cell volume fraction. Lower volume fraction tends to create long and thin polygons, hence

a larger error in reconstruction. The lower bound of volume fraction available in a cell is

set to 10−5 in the proposed model, compared to 10−8 in most comparative studies. Both

maximum deformation and final reconstruction show a symmetric left-right deformation.

As the tip of the filament gets thinner, even the filamentary approach cannot reconstruct the

structure accurately. This leads to a shrinked filament structure. When the grid is refined,

the tip of the filaments are well-defined and the final solution shows acceptable errors. The
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mass difference is acceptable, bearing in mind the choice of only one round of redistribution.

In terms of runtime, the performance is compared with Jemison et al. (2015) which uses an

AMR scheme and thus fewer cells than in the proposed method. The order of convergence

of the solution shows a remarkable performance compared to methods described in other

papers.

(a) 32×32 grid (b) 64×64 grid (c) 128×128 grid

Fig. 5.9 Intermediate and final reconstruction for the droplet flow test case for different mesh sizes.
Red depicts the maximum deformation before reversal. Green depicts the final reconstruction. The
black outline is the reference circle.

Table 5.5 Symmetric difference error, order of convergence, mass difference and runtime for the
droplet flow test case at final reconstruction compared to reference papers.

Mesh size 32 64 128 256

Esym in (Jemison et al., 2015) 2.48×10−3 6.37×10−4 2.96×10−4 -
Order of convergence - 1.96 1.10 -
Runtime (s) 191.3 529.3 940.4 -

Esym 1.71×10−3 7.36×10−4 1.26×10−4 5.09×10−5

Order of convergence - 1.21 2.54 1.30
Mass difference −1.16×10−9 −1.07×10−7 −4.49×10−11 9.31×10−12

Runtime (s) 3 9 29 166

5.2.6 Benchmark: Rotating filament

The rotating filament benchmark is a test case where a thin rectangle is advected anti-

clockwise in a rigid body rotation motion (Ahn and Shashkov, 2009). The velocity field is the
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same as in Section 5.2.2 and is given in Eq. (5.6). The rectangle is centered at (0.505,0.75)

in a unit square domain. Its initial width is w f = 0.006 and height is h f = 0.3. For a coarse

mesh, here a 100×100 grid, the initial condition may already contain a filament structure.

The corresponding number of iterations is set to nit = 300 and ∆t = 2π/nit .

(a) 100×100 grid (b) 200×200 grid

Fig. 5.10 Solution of rigid body rotation for the rotating filament. Green depicts a quarter of rotation.
Blue half rotation. Purple three quarter of rotation. Red depicts a full rotation and final solution. The
black outline depicts the reference interface.

This benchmark can only be tested with a filament enabled approach on such coarse

meshes. Indeed, even with a 200×200 grid, the filament body is subject to under-resolved

filamentary structures. Fig. 5.10 shows the rotating filament at different stages of the full body

rotation. The filament body is well reconstructed. However, both ends of the filament show

cross-stream diffusion because the MOF method cannot reconstruct sharp edges accurately.

In addition, the filament height is shortened due to the reconstruction error. The filament

shortening matches with the height shown in Jemison et al. (2015). The zoom on the top left

of the figure highlights both shortening of the filament and cross-stream diffusion compared

to the reference rectangle outlined in black.
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5.2.7 Benchmark: S-shape

The S-Shape test case comprises a circle of radius r = 0.25 located at the centre of a unit

square domain at t = 0 (Ahn and Shashkov, 2009). The associated velocity field is nonlinear,

divergence free and given by:

u(x,y, t) =

 0.25[(4x−2)+(4y−2)3]

−0.25[(4y−2)+(4x−2)3]

 f (t) (5.11)

The advection process creates a highly deformed and thin structure which means the

filamentary capability is also enabled here. The amplitude f (t) is given in Eq. (5.10).

However, in this benchmark problem the maximum deformation occurs at Tmax = 4 and the

smooth transition period is tε = 2.

(a) 32×32 grid (b) 64×64 grid

Fig. 5.11 Maximum deformation for the S-shape benchmark.

This case shows strong deformation and thin structures, mainly in the centre of the domain.

A coarse mesh would struggle to reconstruct these structures. Indeed, for the 32×32 grid

in Fig. 5.11, the central part may have three interfaces within a cell. Therefore, capping to

three materials is a limiting factor, creating larger errors in reconstruction. Because of large
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reconstruction errors, several structures may merge and lead to different end results. The

64×64 grid is fine enough to have a maximum of two interfaces in a cell. The deformed

interface shows an accurate representation at maximum deformation.

5.3 Application: the MOF method for simulating multi-

phase flows on a fixed grid

In this section, the coupling between a flow solver and the proposed MOF method is validated.

Results obtained from numerical simulations using the MOF method for simulating multi-

phase flows are presented. The filament capability is enabled for this series of simulations.

This implies that if the topology does not produce thin structures, the reconstruction will

remain standard. The simulations were performed on a two-dimensional domain using a

Cartesian grid in order to validate the numerical implementation by considering well-known

benchmark test cases.

We have shown that standard MOF and filament MOF methods have shown good agree-

ment on pure advection test cases where a prescribed divergence-free velocity field is imposed

(Hergibo et al., 2023). In this section, these methods are applied to dynamic physical test

cases where the velocity field is not prescribed a priori but determined by solving the mo-

mentum equation. The velocity field will not be identically divergence-free due to numerical

rounding errors.

In this context, the incorporation of subgrid-scale filaments (shown in Fig. 5.12 for exam-

ple and also discussed in Section 3.4 for more details) within the MOF method constitutes a

novel contribution to the simulation of multiphase flows. This innovative approach addresses

the challenges of resolving subgrid-scale features and complex changes in topology. By

introducing subgrid filaments, the MOF method enhances the representation of thin films

and droplets, while operating on a relatively coarse computational grid.
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Fig. 5.12 Flowchart highlighting in blue the extra steps needed for the MOF method based multiphase
flow solver. In green, the MOF method can select a standard or filament MOF. On the right hand side,
subgrid structures are highlighted on a mesh-based approach using the example of saliva beads (Bhat
et al., 2010).

5.3.1 Dam break problem

We examine the classical 2D dam break benchmark problem, that has been investigated

extensively both experimentally (Martin et al., 1952) and numerically (Pavlidis et al., 2016;

Zhang et al., 2010). The computational domain has dimensions of 4a×4a in the streamwise

and vertical directions, respectively. Initially, a water column of height 2a and width a is

at rest. In this study, a = 0.146 m is chosen. Three computational grids are used, 32×32,

64× 64, 128× 128, respectively. Time is nondimensionalised by
√

9.81/a. In terms of

boundary conditions, the top boundary can be assumed to be an outflow, allowing material

to leave the domain. For the other boundaries, left, right and bottom, a no-slip condition

can be applied as the fluid adheres to the wall. However, in terms of the MOF method, a

slip condition may be more appropriate for these boundaries. A slip condition ensures a

zero velocity in the normal direction to the wall while allowing a calculated velocity in the

tangential direction. Since the proposed MOF method is node-based, the node velocity at the
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wall cannot be zero; otherwise the material would be unable to glide on the surface. This

boundary condition scenario is illustrated in Fig. 3.12.
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Fig. 5.13 Snapshots of the interface for the dam break test case for a 64×64 grid using nondimensional
time.

Fig. 5.13 displays snapshots of the computed remaining water interface for a coarse mesh.

Physically, two variables are good indicators of high-fidelity simulations : the surge front

(location of the leading edge of the flood wave at the bottom boundary) and height position

(vertical elevation of the water surface at the wall). These can be compared with experiments.

Fig. 5.14 shows the comparison between simulations using several meshes with the VOF

simulations of Xie and Stoesser (2020) and experiments of Martin et al. (1952) for surge front

position and water column height. Generally, the numerical results converge as the mesh

is refined, with only a minor disparity in surge position between the coarse and fine mesh

simulations. In terms of surge position, since the dam cannot be instantly removed in the

experiment, a slight time delay in the experimental data is expected, which is also observed

in other numerical simulations. A delay of 0.27 in nondimensional units is observed, which

corresponds to 0.023 s.

In order to investigate the convergence rate of the present method further, the free surface

profiles obtained from the simulations on the three meshes at T = 1 and T = 2 are compared

to the benchmark solution. Additionally, an extra simulation using an even finer mesh

(256×256) is performed; the resulting air-water interface is considered as the benchmark

solution for the purpose of the convergence study. Fig. 5.15 presents the calculated L1, L2,

and L∞ errors in relation to the benchmark solution. The convergence rate is observed to
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Fig. 5.14 Convergence of (a) water column height, and (b) surge front position, with mesh refinement
and comparison with the numerical predictions of Xie and Stoesser (2020) and the experimental data
of Martin et al. (1952).

lie between first-order and second-order, tending towards second-order as the fine mesh

is approached. The surge position error shows similar trends. It is interesting to note the

oscillation in mass variation during the simulation due to the advection of the interface only

and redistribution procedures. On the finest mesh, mass loss is below 0.15%.
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Fig. 5.15 Convergence study for the dam break case, using grid convergence and surge position
convergence as well as mass variation.
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5.3.2 Rayleigh-Taylor instability

This well-known instability is a phenomenon that emerges when a gravitational field causes

a heavy fluid initially at rest on top of a lighter fluid to deform the interface between them. In

this study, the same configuration as previous investigations (Ding et al., 2007; Tryggvason,

1988; Xie et al., 2014) is adopted. The rectangular domain is [0,d]× [0,4d]. The Atwood

ratio A, a measure of the density difference between the heavier and lighter fluids, is defined

by

A =
ρH−ρL

ρH +ρL
, (5.12)

where the subscripts H and L, respectively, denote a heavy and light fluid. Time is nondimen-

sionalised by
√

d/Ag, and surface tension and turbulence effects are ignored in this study. In

this test case, A = 0.5. Additionally, the Reynolds number is set to ReA = ρAd3/2g1/2/µA =

3000, where ρA and ρB represent the densities of the heavier and lighter fluids, respectively,

and µA corresponds to the dynamic viscosity of the heavier fluid. The interface between the

two fluids is initially perturbed with a sinusoidal waveform of amplitude 0.1d. Following

the work of Tryggvason (1988), nondimensional variables are employed, scaling length by

d, time by
√

d/Ag, and velocity by
√

Agd. Similar to the dam break case, slip conditions

are applied on the left and right walls in order to maintain the no-penetration conditions but

allows the fluid to move along the wall. No-slip conditions are applied on the top and bottom

boundaries. Surface tension is not considered here.

We conduct computations using three fixed Cartesian meshes, 32×128, 64×256 and

128×512, respectively. Fig. 5.16 highlights the different stages of the deformation of the

interface from a nondimensional time T = 0 to T = 2. The author observes that the vortex

formed during the spike penetration is well reconstructed. The interface remains sharp and

does not exhibit any diffusion.

The predictions of the present numerical scheme for this test case are compared to those

of other methods in order to ensure the correct behaviour is achieved. Fig. 5.17 shows the
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Fig. 5.16 Evolution of the Rayleigh-Taylor instability interface using the standard MOF method for a
32×128 grid.

position of the perturbation for both the heavy and light fluid. Good agreement is found with

other methods for both fluids (Tryggvason, 1988; Xie et al., 2014). Whilst the position of the

perturbation is a good criterion to ensure that the physics is correctly captured, the precision

of the vortex is also a good criterion. However, the vortex is reconstructed more precisely

with finer meshes. Grid convergence is not appropriate for this test case. In numerical

simulations, a finer grid tends to approach the true solution, however the work of Tryggvason

(1988) showed that finer grid will only provide more details in the vortex. Instead, the spike

penetration position and its error relative to a benchmark solution on the finest mesh are more

appropriate measures of the accuracy of the approximation.

In this instance, the benchmark considered is the solution on a 256× 1024 grid. The

error corresponds to the distance of the spike position relative to the benchmark solution.
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Fig. 5.17 Evolution of the position of the heavier and lighter fluids in nondimensional units.

The convergence is then evaluated for each grid. Fig. 5.18 highlights that near quadratic

convergence is obtained. In addition, the mass loss during the evolution of the flow is kept

to within 0.2%. A sudden loss of mass occurs at the beginning when the interface evolves

slowly.

5.3.3 Kelvin-Helmholtz instability

This well-known instability is a phenomenon that occurs when fluids with different velocities

interact. It is formed due to the shearing motion between fluids, leading to the formation of

vortices. It is commonly observed in natural settings such as cloud formations, ocean currents,

and atmospheric phenomena like jet streams. The domain of ratio 4 : 1 contains two fluids

of the same densities and viscosities. Gravity is neglected. At the initial stage, the interface
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Fig. 5.18 Convergence study on the Rayleigh-Taylor instability problem, (a) spike penetration error,
(b) mass variation (%).

between the two fluids takes the form of a sinusoidal function 0.5(1+0.01sin(2πx)). The

fluid at the bottom has a constant velocity magnitude of 0.5 towards the left hand side of

the domain. The fluid at the top has a constant velocity magnitude of 0.5 towards the right

hand side of the domain in order to create the shear motion. Periodic boundary conditions

are employed in the horizontal direction, while no-slip wall boundary conditions are imposed

on top and bottom boundaries.

Numerical predictions for this test case are performed for two different grid sizes, respec-

tively 128×32 and 256×64. Fig. 5.19 shows snapshots of the evolution of the interface

at t = 0 s, t = 1 s, t = 2 s and t = 3 s, respectively, in physical time. The vortices are well

reconstructed. Note that even for a coarse mesh, the gap between the two fluids remains

larger than a cell size, which justifies the decision not to use a filament MOF method for this

test case.
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Fig. 5.19 Snapshots of the Kelvin-Helmholtz instability interface using the MOF method on 128×32
and 256×64 grids.
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5.4 Filament MOF method coupled with Navier-Stokes

equations

In this section, the coupling between a flow solver and the proposed filament MOF method, in

scenarios where filaments are present, is discussed. While the previous section also addressed

this coupling, the test cases did not involve filament structures. Resolving subgrid-scale

structures for multiphase flows is challenging. It requires an extremely accurate method. The

newly developed filament MOF method (Hergibo et al., 2023) possesses good reconstruction

features mainly for filamentary flows. The Rayleigh-Taylor instability problem exhibits these

characteristics. However, most numerical techniques for this benchmark problem are unable

to resolve these filamentary structures and are limited to simulation times before they develop.

On the one hand, finer grids are used to fully resolve the physical phenomena occurring in

these instances. On the other hand, if coarser meshes are used, unphysical filament breakups

would likely arise. In this section, some results, illustrating the coupling between the filament

MOF method and the finite volume Navier-Stokes solver where filaments develop and are

resolved, are presented.

Fig. 5.20 shows snapshots of the Rayleigh-Taylor instability problem at later stages where

filaments develop. These snapshots are taken at a nondimensional time of T = 3 for three

different grids, 32×128, 64×256 and 128×512, respectively. The black rectangle denotes

the area where a zoomed solution is provided. Note that the filament solution seems to be

reconstructing filaments in a reasonable fashion. Filament breakups are reduced drastically,

although they may still occur. In addition, at this later nondimensional time, here T = 3, the

different grids do not seem to overlap, reducing any chance of grid convergence study. The

finer grid shows an asymmetry in the lighter fluid position. This may be due to dynamics

other than gravitational buoyancy occurring in the wake generation.
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Fig. 5.20 Snapshots of the Rayleigh-Taylor instability interface using the filament MOF method at
T = 3 on different grids. Black rectangle highlights zoomed in areas on the top row. Bottom row
shows zoomed in areas.
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(b) Mass variation when using filament MOF

Fig. 5.21 Study on the Rayleigh-Taylor instability case using filament MOF. Spike penetration position
and mass variation are presented.

However, the physical spike penetration position remains a good quantity to evaluate. Fig.

5.21 highlights the positions of the heavy and light fluid during the simulation. In this case,

the nondimensional time has been extended to T = 3. Note the heavy fluid spike position

continues to move downwards and even seems to accelerate at these later stages. To the best

of the author’s knowledge, no comparisons have been made for the physical spike position at

later stages. For mass variation, it shows a similar trend to the standard MOF results shown

above. A maximum of 0.654% mass loss is reached at T = 3 for the coarsest mesh 32×128.

As a comparison, Fig. 5.22 shows the exact comparison between the standard MOF and

the filament MOF method. The author observes that despite the filaments not being resolved

appropriately, the standard MOF cannot resolve any feature that is thinner than a cell size.

The standard MOF simulation exhibits unphysical breakups. As subgrid-scale structures get

resolved more accurately, effort needs to be made to ensure that the solution is physical and

is validated with high-fidelity numerical simulations. Quantifying features of the mushroom

shaped tail would be an interesting addition to the community.
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Fig. 5.22 Comparison of the standard and filament MOF method for the Rayleigh-Taylor instability
problem at T = 3 for a 32×128 grid and their respective runtimes.

Runtime is also compared between the standard and filament MOF methods. On a

single core, the test case takes 27 s to run for a standard MOF simulation, whereas the

filament MOF simulation takes 38 s. As expected, understanding the topology through

the conglomeration algorithm and performing filament reconstruction is more expensive.

However, a 40% increase in runtime is not significant when taking into consideration to the

quality of the reconstruction. Once filaments break up, coalescence is not possible for this

case. This leaves the user with a choice of balance between fast runtime and accuracy in

reconstruction.
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5.5 Closing remarks

In conclusion, this chapter has provided a detailed validation process for the moment-of-fluid

(MOF) method, showcasing its efficacy in dealing with dynamic interface reconstruction.

The successful validation process has demonstrated the reliability and accuracy of the MOF

method in capturing sharp interfaces while considering subgrid structures. The filament

MOF method has demonstrated its novel approach and capability in resolving multiphase

flow problems.

The application of the MOF method to real-world cases has further demonstrated its

versatility and practical relevance. The method robustly handles and accurately predicts

fluid behaviour in diverse situations. The application of the MOF method to these cases

allows the reader to gain insights and enhance understanding of the intricacies involved

in complex multiphase flow dynamics. Its successful application to real-world problems

demonstrates that it is a reliable and effective computational tool. This opens avenues for

further exploration and utilisation in various engineering and scientific domains.

The next chapter will address the implementation of adaptivity within the MOF frame-

work, exploring its capability and potential to enhance computational precision and efficiency.

Through the incorporation of adaptive techniques, the adaptive MOF method will be vali-

dated. Complex real-world applications will be demonstrated using the novel MOF-ADG

method.



Chapter 6

A MOF-adaptive dual grid method for

multiphase flows: Benchmarks and

Results

6.1 Introduction

The previous chapter has set the stage for subgrid structures or filament reconstruction. The

quest for increased accuracy and efficiency remains crucial, in addition to capturing fine-scale

features. One prominent technique is to use computational resources intelligently by refining

grids when needed using mesh adaptivity.

This chapter explores the concept of adaptive mesh refinement for the moment-of-fluid

(MOF-AMR) and its innovative application through the novel adaptive dual grid moment-of-

fluid (MOF-ADG). This dual grid system allows dynamic adjustment of grid resolution solely

on interfacial features. The primary focus of this chapter is on validating the MOF-AMR

method using a selection of well-known benchmark problems and extending the capability

of the complexity of the solver compared to a fixed grid setting. A rigorous assessment of

the efficiency of the method is carried out, showcasing some promising results.
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The integration of the adaptive dual grid technique with the moment-of-fluid method

adds a layer of sophistication, presenting a promising capacity for overcoming computational

challenges in complex scenarios. This chapter aims to unravel the potential of this adaptive

approach, providing complex real-world cases for multiphase flow dynamics.

6.2 Validation: the MOF-AMR method

6.2.1 Error evaluation

Computing errors play an important part of interface capturing methods as it is the primary

indicator of the effectiveness of a method. Comparing errors enables one to evaluate the

merits of different methods. The L1 error norm EL1 , which is based on a volume fraction

approach, is one of these numerical indicators. On a refined grid, the L1 error is evaluated

on the base mesh, which means that refined subcells are grouped together to form a single

volume fraction on the base mesh. Using the data structure described in Section 4.2.1, the

error can be evaluated using

EL1 = ∑
i, j

∣∣Ff inal(i, j)−Finitial(i, j)
∣∣ |Ω|(0) , (6.1)

where |Ω|(0) represents the cell area at level 0, Ff inal(i, j) and Finitial(i, j) are calculated in

similar fashion:

Ff inal(i, j) = ∑
lev

∑
is, js⊂{Φlev}

F(i, j, is, js, lev) |Ω|(lev)
|Ω|(0)

, (6.2)

where F represents the volume fraction in a subcell and Φlev corresponds to the set including

subsets Φ0, Φ1 and Φ2, respectively. If a cell contains subcells at level 1 and level 2, then Eq.

(6.2) aims at summing up their volume fractions with respect to their subcell grid size. If a
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cell has not been refined, then level 0 remains and Ff inal(i, j) is the volume fraction at level 0.

The relative error norm Er is given by:

Er =
EL1

∑i, j |Finitial(i, j)| |Ω|(0)
(6.3)

The symmetric error is another indicator of the error in reconstruction. This error indicator

provides an estimation of the discrepancy in the area between the initial and final states. On

a refined grid, the error is evaluated on any mixed subcells. Their sum forms the symmetric

error Esym, which is given by Equation (5.4).

Finally, the mass difference is also used as an indicator. Mass conservation is critical

during dynamic cases. In this thesis, mass corresponds to the area encompassed within the

original interface i.e.

∆m = ∑
∣∣Ff inal

∣∣ |Ω|(lev)−∑ |Finitial| |Ω|(lev) (6.4)

While the order of convergence is always calculated on a uniform mesh, an attempt at

finding the pseudo-order of convergence of the mesh is presented here. Indeed, the order of

convergence calculated with a uniform mesh is related to the mesh size but also to the ratio

of number of cells between refinement levels. In that respect, the aim is to give a ratio of

maximum number of grid cells. The pseudo-order of convergence OC is given by

OC = log
(

Esym
1

Esym
2

)
/ log

(√
nmax

2
nmax

1

)
, (6.5)

where Esym corresponds to the symmetric difference error of a particular grid and nmax its

maximum number of grid cells. Note that Eq. (6.5) is also valid for a uniform mesh and so

the ratio of maximum number of cells in a constant environment gives the same order of

convergence as for a uniform mesh.
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6.2.2 Static reconstruction

Static reconstruction consists of reconstructing the interface of a material using the same

AMR logic as that described in Section 4.2.1. The only variation is that no advection is

necessary. The refinement procedure still applies and the refinement criterion remains. The

intersection of a circle of radius r = 0.15 centred at [0.5,0.75] in a unit domain on a finer grid

is determined using the exact interface rather than the material configuration at the previous

time step. Exact mass conservation is achieved at all levels. Fig. 6.1 highlights the difference

in precision during reconstruction when refining the interface using zero, one or two levels of

refinement. The symmetric difference error gives a good insight into the increased precision

and accuracy obtained when using a higher level of refinement.

(a) Zero refinement level; Esym =
1.04×10−4

(b) One refinement level; Esym =
4.24×10−5

(c) Two refinement levels; Esym =
1.29×10−5

Fig. 6.1 Static reconstruction for a 16×16 base grid with zero, one and two levels of refinement and
the associated symmetric difference error.

6.2.3 Benchmark: Zalesak slotted disc

This benchmark test case involves a slotted disc which is rotated anti-clockwise in a rigid

body rotation around the centre of the domain (Zalesak, 1979). The circle of radius r = 0.15

has a rectangular slot of width wZ = 0.05 in its centre with a maximum height of hZ = 0.85.

The velocity field for this test case is given by:
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u(x,y) =

0.5− y

x−0.5

 (6.6)

Even though no filaments are formed during the advection process, the filament capability

of the proposed code is still enabled. The rotational nature of this test case also highlights

the fact that no deformation occurs in the material, hence the mass redistribution algorithms

are enabled but not used as the backtrace is always of the same size as the cell area. This

highlights the powerful choice of backtrace when refining a mesh as described in Section

4.2.3. Three different grids are presented, explicitly 32×32 as base mesh and a level 1 and

level 2 of refinement. The number of iterations is nit = 300 and ∆t = 2π/nit .

Table 6.1 Dependence of the L1 error, EL1 , and relative error, Er, on refinement level for the Zalesak
slotted disc problem using a 32×32 base mesh.

Refinement level EL1 Er

0 2.55×10−3 4.38×10−2

1 5.31×10−4 9.13×10−3

2 1.98×10−4 3.41×10−3

The error indicator used in this test case is the interpolated L1 error. Table 6.1 presents

the error for different levels of refinement. Fig. 6.2 shows the difference between initial and

final reconstructions, as well as the intermediate reconstructions captured during the full rigid

body rotation. The shape of the interface is maintained well, except around the sharp edges

of the rectangular slot. The MOF method, as it stands, is not able to reconstruct these sharp

edges even when refining the grid locally. Note, however, that the straight interfaces around

the longer edges of the rectangle are not refined at the initial stage. Indeed, because MOF

reconstructs the cells along these edges exactly, the refinement criterion is not triggered. The

main difference compared with the method of Ahn and Shashkov (2009) is that the tolerance
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used in that paper is independent of the cell dimension. This means that, with a tolerance set

to be smaller than machine precision, even cells that are reconstructed exactly will be refined.

Fig. 6.3 which is taken from Ahn and Shashkov (2009) shows that the neighbourhoods of the

slot are refined while it is not in the author’s initial reconstruction.

(a) Initial condition for level 0 (b) Initial condition for level 1 (c) Initial condition for level 2

(d) Final solution for level 0 (e) Final solution for level 1 (f) Final solution for level 2

Fig. 6.2 Zalesak slotted disc test case for a 32×32 base grid and one and two levels of refinement.
Top row of figures shows the initial reconstruction. Bottom row of figures shows the evolution of the
shape of the interface.

The Zalesak slotted disc is also a good benchmark to evaluate the efficiency of the

method through a quantitative analysis of the distribution of computational effort between

different components of the method. This data is reported using the average percentage of

time spent on each component per iteration. Five main blocks exist in this code, the first

involves identifying level 0 cells that will need to be advected. This second and third blocks

involves backtracking cells at any levels and also the intersection procedure. The final two

blocks involve global mass redistribution and interface reconstruction. Fig. 6.4 highlights
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(a) AMR up to level 0 (b) AMR up to level 2 (c) AMR up to level 4

Fig. 6.3 Figure taken from Ahn and Shashkov (2009) highlighting their initial reconstruction and
choice of refinement for the Zalesak slotted disc.

the percentage of time taken in each block of the code for both a 32×32 and 64×64 grid.

The second plot shows data for the same finest level of refinement. Note the percentage

of time spent on the advection identification and the redistribution procedure subroutines

is insignificant. Most of the time is spent in the intersection procedure as expected due

to looping through all cells and subcells. As more levels are considered, the percentage

of time increases in the intersection procedure. However, the percentage of time spent in

reconstruction does not increase significantly because of the limited number of cells reaching

higher levels. In addition, the likelihood of them not being filament reconstruction cells

mitigates the computational cost.

6.2.4 Benchmark: Reversible vortex T=8

The reversible vortex is an advection benchmark that has been widely studied in the literature

(Rider and Kothe, 1998). In this deformation problem, a circle of radius r = 0.15 located

within a unit square domain centered at [0.5,0.75] is sheared by a divergence-free velocity

field given by
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Fig. 6.4 Percentage of time spent on key MOF processes per iteration for a 32×32 and 64×64 grid
for level 0, level 1 and level 2, respectively. Comparison of time distribution for same finest level of
refinement.

u(x,y, t) =

−sin2(πx)sin(2πy)

sin2(πy)sin(2πx)

cos(πt/T ) , (6.7)

in which T represents the full period. In most cases, T = 8 and in this case, the Courant-

Friedrichs-Lewy (CFL) number is 1. In that respect, the number of iterations nit = 256 and

∆t = ∆x. The structure of the deformed interface exhibits filaments which indicates that

the filament procedure is activated within the proposed AMR scheme. Fig. 6.5 presents

the results for a base mesh of 32×32 with 0, 1 and 2 levels of refinement. The maximum

deformation at t = T/2 is shown, as well as the final state at t = T . Indeed, during the final

state, the symmetric difference error can be used to compare with the initial reconstruction.

It is important to note that during the refinement process, the local CFL number reaches 2

and 4, respectively, for refinement at level 1 and level 2. Mass difference and runtime are

also explicitly displayed in Table 6.2.
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(a) Zero refinement level at t = 4 (b) One refinement level at t = 4 (c) Two refinement levels at t = 4

(d) Zero refinement level at t = 8 (e) One refinement level at t = 8 (f) Two refinement levels at t = 8

Fig. 6.5 Reversible vortex test case using T = 8 for the base grid 32× 32 with zero, one and two
levels of refinement. Top row of figures shows the maximum deformation. Bottom row of figures
shows the final interface.

Table 6.2 Symmetric difference error, order of convergence, mass difference and runtime for the
reversible vortex test case at final reconstruction using a filamentary approach. The pseudo-order of
convergence is given in parenthesis.

Refinement level 0 1 2

Esym 3.05×10−3 1.14×10−3 8.93×10−4

Order of convergence - 1.41(4.25) 0.35(0.77)
Mass difference 3.3×10−15 −6.7×10−15 2.5×10−13

Runtime (s) 15.7 35.2 92.2

The evolution of the number of cells is displayed in Fig. 6.6. As expected, level 0 offers

a constant number of cells throughout the iterations, while the number of cells for level 1 and

level 2 increase gradually until the vortex is reversed. Note the small drop in the number of

cells in the final iteration before reversal. At this instant in time the magnitude of the velocity

field vanishes which limits the error in reconstruction.
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Fig. 6.6 Evolution of the number of cells when using different levels of refinement during the reversible
vortex test case.

6.2.4.1 Influence of the mass redistribution procedure

In this section the influence of the mass redistribution procedure is examined. In most

cases, mass is redistributed uniformly. However, as discussed in Section 4.3, directly

proportional and inversely proportional redistributions are implemented and explored in this

thesis. Fig. 6.7 shows the seemingly marginal differences between these approaches in terms

of reconstruction. Runtimes are also comparable with a uniform distribution. However, in

terms of mass conservation, machine precision is not achieved. The main difference lies

in the way the redistribution of mass is achieved. While a directly proportional approach

seems to be a natural way to follow, the number of iterations necessary to redistribute mass

is increased compared to a uniform approach. Similarly, the inversely proportional approach

iterates more times without increasing the runtime significantly.

6.2.4.2 Influence of the initial refinement

The initial reconstruction is the lower limit of error possible when reconstructing the interface.

Indeed, it may differ between the initial reconstruction and the dynamic case. In general,
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(a) One level of refinement (b) Two levels of refinement

Fig. 6.7 Visual comparison between a uniform, directly proportional and inversely proportional mass
redistribution at maximum deformation.

when using a refinement structure, the initial refinement is the same as the advection process.

This is the case for all other cases in this present study. Hence, this section assesses the

influence of the initial refinement on the final reconstruction. In the following case, the circle

is reconstructed using different levels of refinement at the initial stage, then advected using

either level 0, level 1 or level 2. Fig. 6.8 shows the final reconstruction for different levels of

refinement at the initial stage.

(a) Use of level 0 for advection (b) Use of level 1 for advection (c) Use of level 2 for advection

Fig. 6.8 Final reconstruction for the reversible vortex test case using T = 8 for the base grid 32×32,
one and two levels of refinement. Levels indicate the level of refinement at the initial stage.
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A slightly adapted data structure is used to accommodate the correct segmentation. In

the proposed code, (i, j, is, js, lev) is the data structure used for adaptive mesh refinement.

However, space allocation is performed at the start using the desired maximum refinement

level div_max, i.e. is has an allocation of 2div_max and so has js. Note that this allocation

would not work if the maximum level was 0 at the initial stage but then 2 during the advection

process as the allocation would not be performed. This allows the user to use any initial

condition in terms of refinement levels as one can see in Fig. 6.1. Note that the final state is

not highly dependent on the initial level of refinement.

6.2.4.3 Influence of the mesh refinement criteria

As described above the refinement criteria in a MOF framework is the discrepancy between

the reference and reconstructed centroid. This section discusses the influence of having

a finer or coarser criterion. Note that the criterion is nondimensionalised by the cell size

so that it is more meaningful than using machine precision. A lower tolerance has a great

influence on the reconstruction precision, but it also has implications on the number of cells

in the domain and indeed the runtime. In setting a suitable tolerance, one has to consider

the trade-off between accuracy and runtime. Runtime is comparable for all test cases and a

significant difference is not found. Fig. 6.9 shows the intermediate and final reconstruction

as well as the evolution of the number of cells in the domain. The maximum number of

cells is also comparable, however the evolution shows an interesting feature where the last

iteration before reversal exhibits a large drop in the number of cells. Indeed, the last iteration

corresponds to the cos(πt/T ) term vanishing, meaning the reconstruction is an almost-static

reconstruction. The level 0 advection is able to reconstruct more filaments. Combined with a

low tolerance, the number of cells in the domain decreases significantly.
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(a) Level 1 tolerance influence at
t = 4

(b) Level 1 tolerance influence at
t = 8

(c) Evolution of the number of cells
at level 1

(d) Level 2 tolerance influence at
t = 4

(e) Level 2 tolerance influence at
t = 8

(f) Evolution of the number of cells
at level 2

Fig. 6.9 Influence of the mesh refinement criterion tolerance on intermediate and final reconstruction
and evolution of the number of cells in the domain.

6.2.4.4 Influence of the backtrace on interface reconstruction

The choice of backtrace within a refinement framework can influence results greatly. Indeed,

the natural choice is to perform backtracking on the subcell itself, ascribed here as regular.

However, there are some advantages and disadvantages which are explained below. On the

one hand, the intersection procedure of the author’s approach must intersect the entirety

of the desired material at all times. In this regard, the backtracking approach is to use

level 0 as reference and make sure that all refined levels intersect the same area as previous

levels. This ensures exact mass conservation. However, the refined backtrace subcells are

slightly deformed, which means the reference volume fraction and centroid are somewhat

distorted. On the other hand, the regular backtrace creates gaps and overlaps that are
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very small (Ahn and Shashkov, 2009). This does not guarantee a full intersection of the

material, leading to poor conservation of mass. Despite this loss of mass, the interface

reconstruction is not distorted which may indicate a smoother interface reconstruction. The

correct backtracking consisting of advected hanging nodes may also create non-convex cells,

which means more complex algorithms are needed. This approach has been discarded. Fig.

6.10 emphasises the difference between a regular backtrace and the proposal for one and two

levels of refinement.

(a) One level of refinement (b) Two levels of refinement

Fig. 6.10 Comparison between a regular backtrace and the author’s choice of backtracking a refined
subcell at the final state.

Table 6.3 shows a comparison of error, mass difference and runtime between the proposed

model and a regular backtrace method. Although the symmetric difference error is smaller

when using a regular backtrace, this may not guarantee good mass conservation. In addition,

the regular backtrace choice seems to be computationally faster. Indeed, the backtracking

procedure is only relevant for the subcell itself, whereas in the proposed model, higher levels

need to account for previous levels of refinement for its backtracking procedure. For this case,

mass conservation approaches machine precision, which is an essential quantity to conserve

in numerical multiphase flows. The proposed model compares well with other AMR-MOF
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methods such as Ahn and Shashkov (2009). Moreover, it shows a good balance between

runtime and mass conservation while maintaining an acceptable error in reconstruction.

Table 6.3 Comparison between the proposed model and a regular backtrace regarding interface
reconstruction.

The proposed model Regular backtrace

Level 1

Esym 1.14×10−3 7.84×10−4

Mass difference −6.7×10−15 9.8×10−5

Runtime (s) 35.3 31.0

Level 2

Esym 8.93×10−4 6.26×10−4

Mass difference 2.5×10−13 −2.6×10−4

Runtime (s) 92.2 75.2

6.2.5 Benchmark: Droplet flow

Originally proposed by Ahn and Shashkov (2009) and further developed by Jemison et al.

(2015), the droplet flow test case deforms an initial circle of radius r = 0.125 centred in a

unit square domain using a nonlinear divergence-free velocity field given by

u(x,y, t) =

 0.125(8x−4)

0.125
[
−(8y−4)−4−

(
1− (8x−4)2− (8x−4)4)]

 f (t) , (6.8)

where

f (t) =


1 0≤ t < Tmax− tε/2

cos
(

π(t−Tmax+tε/2
tε

)
Tmax− tε/2≤ t ≤ Tmax + tε/2

−1 Tmax + tε/2 < t ≤ 2Tmax ,

(6.9)

represents the amplitude of the velocity field which varies in time so that at time t = Tmax the

initial droplet is recovered to its original position.
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Filaments are formed during the advection process. A leading tip is generated, making

this case challenging. The base mesh is 32×32, the number of iterations is nit = 160 and

∆t = 0.01. Two levels of refinement are tested. Fig. 6.11 shows the shape of the interface

at the intermediate time t = Tmax and at the final time t = 2Tmax using different levels of

refinement. All figures show very good agreement compared with the original circle. In

addition, filaments are well reconstructed except when the tip needs to be reconstructed using

refinements. This tends to lead to spurious breakups in the material.

(a) Zero refinement level (b) One refinement level (c) Two refinement levels

Fig. 6.11 Droplet flow test case for a 32×32 base grid with zero, one and two levels of refinement:
maximum deformation and location of the interface at final time.

Table 6.4 Symmetric difference error, mass difference and runtime for the droplet flow test case at
final reconstruction using a 32×32 base mesh compared to reference solutions.

Refinement level 0 1 2

Esym in Jemison et al. (2015) 2.48×10−3 6.37×10−4 2.96×10−4

Order of convergence - 1.96 1.10
Runtime (s) 191.3 529.3 940.4

Esym 1.53×10−3 2.55×10−4 1.90×10−4

Mass difference −2.82×10−4 −4.78×10−7 −4.92×10−16

Runtime (s) 2.9 7.8 21.2

Table 6.4 provides the information on the symmetric difference error, mass difference

and runtime. Note that the mass difference is not as accurate as expected. Indeed, for the

coarser refinement, some material tends to leave the domain near the bottom edge. The
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level 1 figure shows that some material at the final state was advected very near the edge of

domain, suggesting that for levels 0 and 1, some has left the domain. This highlights a major

drawback of the author’s approach. Indeed, when using a level 0 advection scheme combined

with filaments, material that breaks away from the main material tends to stay detached, or is

reconstructed poorly even when using some levels of refinement.

6.2.6 Benchmark: S-shape

First tested by Ahn and Shashkov (2009) and Jemison et al. (2015), the S-shape benchmark

case is a challenging material deformation test where an initial circle of radius r = 0.25

centred in a unit square domain is deformed in a nonlinear divergence-free velocity field

given by

u(x,y, t) =

 0.25[(4x−2)+(4y−2)3]

−0.25[(4y−2)+(4x−2)3]

 f (t) , (6.10)

where f (t) is given in Eq. (6.9). In this case, Tmax = 4 and tε = 2. The total number of

iterations for a base mesh 32×32 is nit = 320 and ∆t = 0.025.

The deformation creates a highly deformed material creating thin filamentary structures in

the centre of the domain. For this benchmark, the proposed filament capable MOF procedure

is used. Fig. 6.12 shows the maximum deformation of the material and its final state. The

level 0 grid shows poor reconstruction because the thin strand of material in the centre of the

domain is difficult to reconstruct even with a filament approach using three conglomerates.

When more than three conglomerates exist, a standard MOF reconstruction is used which

tends to merge materials together (Hergibo et al., 2023). Table 6.5 provides the information

on the symmetric difference error, mass difference and runtime. Using one or two levels

of refinement exhibits a better reconstructed interface than Jemison et al. (2015). However,

mass conservation is not well maintained for this challenging case due to the reversal of a
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large portion of thin filamentary structures. The significant loss of mass affects the symmetric

difference error at level 2, which is larger than the reconstruction at level 1.

(a) Zero refinement level at t = 4 (b) One refinement level at t = 4 (c) Two refinement levels at t = 4

(d) Zero refinement level at t = 8 (e) One refinement level at t = 8 (f) Two refinement levels at t = 8

Fig. 6.12 S-shape test case for a 32×32 base grid with zero, one and two levels of refinement: (a)-(c)
interface at maximum deformation; (d)-(f) final interface.

Table 6.5 Symmetric difference error, mass difference and runtime for the S-shape test case at final
reconstruction compared to Jemison et al. (2015).

Refinement level 0 1 2

Esym in Jemison et al. (2015) 2.11×10−2 1.34×10−3 4.74×10−4

Runtime (s) 157.2 773.1 1871.5

Esym 1.57×10−2 1.11×10−3 1.41×10−3

Mass difference −3.47×10−10 −2.44×10−4 3.30×10−3

Runtime (s) 35.9 61.7 180.7
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6.3 Discussion on the efficiency of MOF-AMR filament

capability

Any AMR framework is known to use a reasonable trade-off between accuracy and runtime,

refining regions of interest while decreasing the total number of cells used in computation

compared to a uniform grid. In general AMR practices, runtime increases with refinement

levels while the error decreases (or the region of interest becomes more accurately defined).

However, in the MOF context, regions of high deformation can be reconstructed with ease

using filaments while maintaining a reasonable computational cost. In this regard, one can

try to compare the efficiency of different levels of a MOF-AMR filament capable procedure.

Indeed, a filament reconstruction with a higher base resolution but with a lower level of

refinement may be equivalent to a lower base resolution reconstruction but with a higher

level of refinement. This section tries to give an insight into compromising runtime and

error for the well-known reversible vortex benchmark. At first the author uses a constant

unity CFL number on the base mesh, meaning the local CFL number for refined grids is 2

and 4, respectively, for level 1 and level 2. Secondly, the author considers an effective CFL

number for the finest resolution meaning that the number of iterations is constant for all three

configurations. The base mesh CFL number for one level of refinement is 0.5 and for two

levels of refinement 0.25, which is effectively half of the time step for each refinement level

simulations.

One can see from Table 6.6 that with a constant CFL number, runtime is better for one

level of refinement, which is also better than two levels of refinement. This is due to the fact

that level 1 has to be reconstructed first. In addition, the number of cells used is very small

compared to a uniform mesh even with the highest refinement levels. When using the same

effective CFL number, i.e. equivalent at the finest resolution, runtime increases significantly

with the increased number of iterations. Similarly, the symmetric difference error increases.
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Table 6.6 Efficiency table comparing computational accuracy and performance on three different
grids with the same maximum level of refinement. BM 128 relates to Base Mesh and its resolution.
CFL numbers are expressed for the base mesh.

BM 128 Level 0 BM 64 Level 1 BM 32 Level 2
CFL 1.0 1.0 1.0
Esym 1.56×10−4 2.36×10−4 8.93×10−4

Max number of cells 16384 5530 3061
Number of iterations 1024 512 256
Runtime (s) 115.3 81.2 92.9

CFL 1.0 0.5 0.25
Esym 1.56×10−4 1.65×10−4 2.42×10−4

Runtime (s) 115.3 165.5 296.9

(a) Base grid 128×128 grid at t = 4
with CFL = 1.0

(b) 64× 64 with one refinement
level at t = 4 with CFL = 0.5

(c) 32×32 with two refinement lev-
els at t = 4 with CFL = 0.25

(d) Base grid 128×128 grid at t = 8
with CFL = 1.0

(e) 64× 64 with one refinement
level at t = 8 with CFL = 0.5

(f) 32×32 with two refinement lev-
els at t = 8 with CFL = 0.25

Fig. 6.13 Visual results of the efficiency test of the MOF-AMR filament capable procedure using
different CFL numbers and therefore a constant number of iterations.

Fig. 6.13 shows the improved final reconstruction. Comparison of performance on a fine

uniform grid and a grid using one level of refinement, both using filament capable methods,
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shows that there is a significant improvement in runtime and a decrease in the number of

cells for the latter while the error is very similar in both cases. This choice of base mesh and

level of refinement may be a more desirable option. Fig. 6.14 shows that this approach uses

a significantly smaller number of cells. In addition, much better reconstruction is achieved

with a smaller CFL number. The influence of high CFL numbers (> 2) on interface accuracy

has not been demonstrated.

(a) Evolution of number of cells during the reversible
vortex test case

(b) Symmetric difference error as a function of max
number of cells

Fig. 6.14 (a) Evolution of the number of cells and (b) dependence of the symmetric difference error
on the maximum number of cells, for the efficiency test.

6.4 Application: the MOF-ADG method for multiphase

flows

The MOF-ADG method represents a cutting-edge computational approach for modelling

multiphase flows with great accuracy and efficiency. By integrating the moment-of-fluid

(MOF) technique with adaptive dual grid (ADG), this method excels in capturing complex
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fluid dynamics phenomena. Its versatility in simulating diverse multiphase flow benchmark

problems across various applications is demonstrated in this section.

6.4.1 Sloshing

6.4.1.1 Free sloshing of inviscid fluids

In this section, sloshing, the study of uncontrolled oscillatory motion of a liquid within

a container, is examined. Typically caused by external forces or perturbations, complex

topological change is created in the free surface. First, inviscid sloshing is considered, where

no viscosity is applied resulting in no damping of the fluid motion.

For the inviscid sloshing case, the author replicates the configuration used by Ubbink

(1997) who implemented an algebraic VOF method. A rectangular tank has length L = 0.1 m

and height H = 0.065 m. The initial wave is a half cosine of amplitude 0.005 m with the still

water level at rest at h = 0.05 m. Fig. 6.15(a) shows the domain and initial condition with a

half cosine wave. The ratio of densities of the fluids is 1000 and both viscosities are set to 0.

Similar to previous cases in earlier chapter, slip conditions are imposed on the left and right

walls to enforce no-penetration while permitting fluid movement along the wall. No-slip

conditions are applied on the top and bottom boundaries. The reader is guided towards the

illustration of Fig. 3.12.

At the initial stage, the liquid exhibits a half wave length perturbation. As time progresses,

characteristic wave patterns are formed. In this case, the period is given by

P =
2π√

gk tanh(kh)
, (6.11)

where g = 9.8 m/s2 is the acceleration due to gravity, h is the still water height and k the wave

number defined by k = π/L. Fig. 6.15(b) displays the wave elevation at the left boundary

in physical units for the initial six periods only using a level 0 grid. The waves are not
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(a) Schematic of the domain and initial condition
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(b) Evolution of the wave elevation

Fig. 6.15 Inviscid sloshing case: (a) schematic of the initial conditions, (b) evolution of the wave
elevation compared with the predictions of Ubbink (1997).

damped as this case is inviscid. The frequency aligns with the theoretical frequency. The

wave elevation exhibits different behaviour for even and odd periods, related to wave modes.

In both cases the amplitudes match the predictions of Ubbink (1997).

6.4.1.2 Free sloshing of viscous fluids

The second part considers the influence of viscosity on the sloshing motion by varying the

Reynolds number, resulting in damping of the wave elevation over time to different degrees.

In this instance, comparisons with the predictions of Liu and Lin (2008) are made. In this

setting the dimensions of the container and the initial condition are changed. The tank has

length of L = 1 m and height of H = 0.65 m. The initial wave is a full wavelength and its

amplitude is set to 0.01 m, while the water depth is maintained around 0.5 m. Fig. 6.16

shows the computational domain and initial condition.

Two scenarios are studied: Re = 20 and Re = 200, where Re is defined by

Re =
ρh
√

gh
µ

, (6.12)
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Fig. 6.16 Schematic of the tank dimensions and initial condition.

and ρ and µ are the density and dynamic viscosity of water, respectively. The air-water

density ratio is maintained as per the inviscid case. The viscosity ratio is kept constant while

studying different Reynolds numbers. In both cases, three levels of grid resolution were

implemented using the novel MOF-ADG method. The first one corresponds to a fixed grid,

level 0 (L0), the second has one level of refinement (L1) and the final one has two levels

of refinement (L2). The simulation time is extended to 30 units, where time is multiplied

by
√

g/h to obtain a dimensionless time. The time step used across different refinements is

constant.

Fig. 6.17 presents the normalised wave elevation at the left boundary as a function of

the nondimensional time. For both cases, Re = 20 and Re = 200, numerical predictions on

all three grids are compared with the analytical solution provided by Liu and Lin (2008)

and Wu et al. (2001). The characteristic oscillatory behaviour reveals a gradual reduction

in wave amplitude. Notably, the decay rate of the wave is more pronounced for a smaller

Reynolds number. In both situations, the wave elevation at the left boundary matches

favourably the analytical solution. Note that for a low Reynolds number the adaptive dual

grid method exhibits very similar behaviour irrespective of the levels of refinement while a
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higher Reynolds number exhibits a slight discrepancy in wave elevation when using one or

two levels of refinement.
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(a) Re = 20
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(b) Re = 200

Fig. 6.17 Evolution of water level at the left boundary using the MOF-ADG method with a 40×26
base grid compared with the analytical solution for (a) Re = 20, (b) Re = 200.

Fig. 6.18 depicts a natural sloshing sequence at various time intervals revealing the

dynamic behaviour and evolution of liquid movement within a tank when Re = 200. The

coarse base grid is composed of a 40×26 arrangement of Cartesian cells. As time progresses,

subsequent figures capture the agitation at T = 1.7, T = 3.55 and T = 30. Note that for

these two cases, the wave period is different from the inviscid case. These figures provide a

comprehensive visual representation, illustrating the dynamics of sloshing using the MOF-

ADG method.

6.4.1.3 Viscous sloshing under horizontal excitation

In this section, the sloshing of a liquid in a 2D rectangular tank that is horizontally ag-

itated is assessed. The excitation occurs periodically, with velocity components uexc =

[−Aω cos(ωt),0], where A is the displacement amplitude and ω denotes the angular fre-
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Fig. 6.18 Evolution of water level within the tank when Re = 200. Zoom is carried out on the interface
to highlight the performance of the MOF-ADG method. The base grid (L0) is composed of 40×26
Cartesian cells. Blue depicts level 0 (L0), green level 1 (L1) and red level 2 (L2).

quency of the excitation. Within the momentum equation, this excitation is provided as an

external force f in addition to gravity forces i.e.

f = g− duexc

dt
(6.13)

The parameters and dimensions of the tank are similar to the free sloshing case above.

The mesh used to generate the results is finer to better track the complex dynamics. The

notable difference is the initial condition. In such a scenario, the natural frequency of the fluid

in the tank is expressed as ω0 =
√

πg tanh(πh) s−1 (Liu and Lin, 2008). In the following

test case, the free surface is initially at rest in the tank at a new height h = 0.175 m. For this

test case, the amplitude and frequency are specified as follows: A = 0.06 m and ω = 2.0ω0.
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This case highlights the ability of the MOF-ADG method to handle complex dynamics.

Fig. 6.19 shows the evolution of the interface, which increases in complexity until the

forming jet falls onto the free surface. With the motion of the tank, a first jet emerges from

the interaction with the left-hand side wall, followed by a second thinner jet. Note that

due to the use of two levels of refinement, the thin jet does not break up and maintains a

sharp interface. This suggests that breakup is likely, however observations indicate that the

breakup occurs only with two levels of refinement, highlighting that the method is capable of

effectively capturing subgrid features. The series of snapshots captured during the simulation

offer a visual narrative of the dynamic topology of the interface. It also highlights the

interaction taking place within the domain near the boundary walls.
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Fig. 6.19 Snapshots of the evolution of the air-water interface during horizontal excitation (sloshing)
of a tank initially at rest and with A = 0.06 m and ω = 2.0ω0 using the MOF-ADG with two adaptive
levels of refinement.

6.4.2 Dam break problem

Demonstrating its significance as a benchmark problem in multiphase flow simulations,

the phenomenon of dam breaking encompasses intricate dynamics, including high-impact
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pressures, surface fragmentation, and the formation of water jets, among others. The

investigation presented in this section focuses on dam breaking and aims at replicating the

experimental work of Zhou et al. (1999) and Buchner (2002) and numerical work of Greaves

(2006). The computational domain consists of a rectangular tank measuring 3.22 m in length

and 1.8 m in height. The lower-left corner accommodates the water phase, with a reference

density of 1000 kg/m3, occupying an area of 1.2 m in width and Hc = 0.6 m in height. The

air medium is characterized by a reference density of 1.29 kg/m3. Fig. 6.20 offers a visual

schematic of the domain. Time is nondimensionalised by
√

g/Hc, pressure by ρgHc and

height by Hc.

Fig. 6.20 Schematic of the domain, initial condition and location of probes A, B and C, which are
used as instrumental validation.

Validating the numerical simulations of a dam break event against experimental and

numerical data in the literature is vital in demonstrating the reliability of the method. Fig. 6.21

shows a sequence of three snapshots following the collapse of the dam under the influence

of gravity. Snapshots show two levels of refinement where the base grid is composed of

161× 90 Cartesian cells. When the dam breaks the surge position advances rapidly (Fig.

6.21(a)). This is followed by a strong vertical motion after the water impacts the right-hand

wall (Fig. 6.21(b)). Eventually, the liquid falls back on itself creating a cavity (Fig. 6.21(c)).

Using the filament MOF method and a large time step, this last snapshot reveals a thin air film
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that does not enclose the cavity completely. Fig. 6.22 illustrates snapshots of the experimental

work of Koshizuka (1995), included as qualitative comparison despite dimensions being

different and being captured at slightly different nondimensional time.
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Fig. 6.21 Evolution of the air-water interface for dam break problem using the MOF-ADG method
with two levels of refinement.

(a) T = 1.61 (b) T = 3.23 (c) T = 4.85 (d) T = 6.46

Fig. 6.22 Evolution of the experimental work of Koshizuka (1995).

The present adaptive dual grid MOF method preserves detailed phenomena, such as

water splashing and the formation of flow jets. Fig. 6.23 shows the results of the present

method for level 0, 1 and 2 and comparison is made with the level-set method and SPH

methods provided by Colicchio et al. (2002). The air cavity is well captured and enclosed

using MOF-ADG (L0) method, while still containing a few "bubbles of air". Other numerical

methods also capture the air cavity but a large discrepancy occurs in predicting its location.

The level-set method creates a large bridge of coalescence and a small cavity whilst the SPH

method creates a large cavity. The associated jet also shows a significant difference between

the three methods. Note that the process of interface refinement tends to create a thin film of

air, rather than fully enveloping the cavity.

Fig. 6.24 illustrates the temporal evolution of water height and pressure at three locations.

These probes were used in the early experiments performed by Zhou et al. (1999) and
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Fig. 6.23 (a) Comparison of the air-water interface for the MOF-ADG, level-set and SPH methods at
T = 6.2. (b) Interface generated with level 0 is in blue, level 1 in green and level 2 in red (T = 6.2).

Buchner (2002). Probe A is located at xA/Hc = 3.721, probe B at xB/Hc = 4.542 along the

horizontal axis accounting for water height evaluation. Probe C is located at the right hand

wall at a height of 0.16 m.
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(b) Water height measurement at
probe B.
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Fig. 6.24 Water height and pressure measurement analysis using MOF-ADG method compared to
level-set and SPH methods from Colicchio et al. (2002) and experimental work from Buchner (2002).

While the experimental and numerical trends exhibit a satisfactory level of agreement

for water height measurements until T = 6.5, a notable disparity emerges throughout the

second part of the simulation and the water level peak seems to be underestimated. The

initial pressure rise agrees well with other numerical methods but there is a delay in attaining

its peak value compared to experimental work. Note that the different resolutions of the

MOF-ADG method exhibit nearly overlapping trends. In conclusion, there is a relatively
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limited level of agreement between the computational results and the experimental data which

may be due to the pressure transducer location or variations in the water front propagation

velocity. Challenges in achieving measurement repeatability has been previously documented

leading to inconclusive findings when comparing with experimental data (Zhou et al., 1999).

However, most numerical methods seems to show good agreement with each other.

6.4.3 Rayleigh-Taylor instability

This well-known instability is a phenomenon that emerges when gravity causes a heavy

fluid initially at rest on top of a lighter fluid to deform the interface between them. In this

study, the same configuration used in previous investigations (Ding et al., 2007; Tryggvason,

1988; Xie et al., 2014) is adopted. The rectangular domain is [0,d]× [0,4d] and the interface

is initially perturbed with a sinusoidal waveform of amplitude 0.1d. The Atwood ratio A,

which is a measure of the density difference between the heavier and lighter fluids, is set to

0.5. Time is nondimensionalised by
√

d/Ag, and surface tension and turbulence effects are

ignored in this study.

We conduct computations using three cases for the present MOF-ADG method with

different levels of refinement while using the same finest Cartesian grid size. Therefore

for these computations, the time step is the same. The coarsest grid is 32× 128 with 2

refinement levels (L2), the medium grid is 64× 256 (L1) and the finest grid is 128× 512

(L0), respectively. Fig. 6.25 shows a sequence of snapshots revealing the evolution of the

interface, where the heavy fluid falls into the lighter fluid. The early stages of the deformation

of the interface exhibit a 'mushroom' like shape, then thinner structures begin to appear as the

material becomes increasingly deformed. Some "bubbles"/"droplets" appear in the material

and are highlighted with the colour scheme of the refinement.

Fig. 6.26 highlights the refined reconstruction of the interface during deformation at a

nondimensional time of T = 3.5 for the three cases. The author observes that the "mushroom"
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Fig. 6.25 Snapshots showing the evolution of the interface between the heavy fluid (blue) and the
light fluid (white) using the novel MOF-ADG method with a 32×128 base grid with two levels of
refinement. T is nondimensional time.

shape formation during the spike penetration is reconstructed well. The interface remains

sharp and exhibits very limited diffusion. Many filaments are present, but grid convergence

of these structures is elusive. To the best of the author’s knowledge, such a late stage of

simulation with a coarse grid and subgrid structures has not been achieved in the literature.

In order to investigate the robustness and performance of the MOF-ADG method, some

insights into its performance in Fig. 6.27 is provided. The evolution of the spike position

aligns well with other methods used in the field and the nondimensional time is extended to

T = 3.5 (Fig. 6.27(a)). Acceptable mass conservation is achieved throughout the simulation

(Fig. 6.27(b)). A finer mesh tends to have inferior mass conservation properties compared

with a coarse mesh due to the number of over/under-filled cells and area of redistribution.

Indeed, for this particular scenario and despite advecting only the interface, more mass

needs to be redistributed around a small interface, which to a greater extent affects the mass

variation for finer grids. This is valid both for fixed grids and adaptive grids. Reducing
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Fig. 6.26 Snapshots of the Rayleigh-Taylor instability for the MOF-ADG method at T = 3.5 for the
same finest level of refinement. In these snapshots, blue denotes level 0, green level 1 and red level 2.

the time step would improve mass conservation even further but at a greater computational

cost. The Courant number is not a limiting factor in the proposed MOF approach. Two

fundamental variables, cell count and filament subroutine count are shown on a common

plot in Fig. 6.27(c). The filament subroutine count cycles through the domain and iterations

during the dynamic process in order to evaluate how many times the filament reconstruction

subroutine has been called. Since two interfaces are reconstructed within a cell, it is important

to understand its potential influence on the computational cost. The juxtaposition between
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Fig. 6.27 Detailed analysis of several numerical data of the MOF-ADG method. BM stands for base
mesh. CC stands for cell count and FP for filament procedure. 100% total runtime is based on the
shortest simulation.

cell count and filament count allows for a clear and concise comparison of the influence of

these outputs offering potential correlations with runtime. Moreover, the last figure (Fig.

6.27(d)) offers a crucial evaluation of the relative runtime performance of each principal

component of the computation. The total runtime is compared with respect to the time of

the shortest simulation, shown as a percentage, with the rest providing a more expensive

computation. The AMR and reconstruction subroutines are responsible for a major part of the
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interface capturing procedure (Hergibo et al., 2024). The time spent in these subroutines is

added together across all iterations and each value in the AMR and reconstruction histogram

corresponds to the percentage of time shared between them. It clearly shows that significant

time is spent in the AMR at level 2 while having nearly the same number of filaments

to reconstruct. As reported in Hergibo et al. (2024), in many instances a single level of

refinement is the most efficient approach.

6.5 Discussion on the efficiency of the MOF-ADG method

The MOF-ADG method framework offers a compromise between accuracy and runtime. It

achieves this by using dual grid benefits and also refining regions of interest. It naturally

reduces the overall number of cells used in a computation compared to a uniform grid or a

single AMR grid. Typically, in AMR practices, runtime increases as the number of refinement

levels increase, resulting in decreased error or a more precise region of interest.

However, in the context of the MOF method, regions experiencing high deformation may

be able to be reconstructed effortlessly using filaments while maintaining a reasonable com-

putational cost. Consequently, one can assess the accuracy of various levels of a MOF-ADG

method using standard and filament procedures. The choice between filament, adaptivity or

the combination of both can be assessed. Note that a filament reconstruction with a higher

base resolution but a lower level of refinement may be equivalent to a lower base resolution

reconstruction but with a higher level of refinement.

This section aims to provide insights into the trade-off between refinement and error

using the Rayleigh-Taylor instability problem. The time step remains constant across all test

cases, therefore, comparing runtime alone may not provide a comprehensive understanding

of efficiency. The first set of cases uses a 32× 128 grid with level 0, 1 and 2 and a stan-

dard reconstruction. The second set of cases uses the same resolution but with a filament

reconstruction.
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Fig. 6.28 shows a matrix of figures each with a zoom in for the standard and filament

MOF reconstruction and with zero to two levels of refinement. The figure demonstrates that,

in general, standard reconstruction does not provide a great deal of improvement and two

levels of refinement are needed. However, for such extreme filamentary cases, a coarse grid

and one level of refinement does not prevent the breakup of filaments, even when enabling

filament reconstruction. Eventually, two levels of refinement are necessary to achieve an

acceptable degree of precision, although using a standard reconstruction gives a poor result.

The zoom provided shows the standard MOF method with two levels of refinement is on the

verge of breaking up whereas the filament MOF method shows a smoother interface. The

filament MOF-ADG shows a better reconstruction even on a fixed grid, for level 0. Filaments

do breakup with zero and one level of refinement when using a filamentary reconstruction.

This can be explained by the choice of multi-material reconstruction described in Hergibo

et al. (2023). An interesting question concerns the choice of best variant of MOF-ADG

method in order to obtain acceptable results. On the one hand, it seems that a filament

method with L0 is faster and seems to breakup less than a standard MOF-ADG L1. On the

other hand, a filament MOF-ADG L1 offers more breakup than the standard MOF-ADG L2,

although significantly faster.

In terms of runtime, each runtime is provided in the caption. Filament reconstruction

generally achieves comparable results in terms of accuracy or slightly better but at a small

extra cost. Therefore, the comparison of runtime between standard and filament MOF-ADG

is less pertinent. With this information however, the author can conclude that filament recon-

struction is consistently a more advantageous choice than using adaptivity when considering

both accuracy and runtime. Combining both filament and adaptivity capabilities remain the

best choice.
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Fig. 6.28 Study of the efficiency of the MOF-ADG method. Accuracy against refinement using
both standard and filament reconstruction. The base mesh is 32×128 and uses three different levels
of refinement. The side figure shows a zoom on the tip of the filamentary mushroom, zoom box
[0.5,1]× [1.8,2.8].
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6.6 Closing remarks

To conclude this chapter, the adaptive mesh refinement moment-of-fluid (MOF-AMR) method

and the adaptive dual grid moment-of-fluid (MOF-ADG) have been explored as novel

approaches to enhance numerical multiphase flow dynamics. The primary objective was

to showcase the accuracy, efficiency, and versatility of these methods by addressing their

challenges and limitations.

This chapter has meticulously outlined the validation procedure for the adaptive mesh

refinement moment-of-fluid (MOF-AMR) method. The challenges of maintaining a sharp

interface in numerical multiphase flows are effectively addressed. The method has been

successfully validated with simplicity and accuracy, offering the possibility to capture

intricate subgrid structures for multiphase flows.

The real-world application of the adaptive dual grid moment-of-fluid (MOF-ADG)

method has not only demonstrated its adaptability but also confirmed that it is an important

newcomer in the arena of numerical methods for multiphase flows. The method manages

and predicts complex fluid motions across multiple scales for diverse problems, and offers a

valuable computational tool for multiphase flow dynamics.



Chapter 7

Conclusions and Future Research

The aim of this thesis is to create a computational method for understanding of complex

multiphase flow problems in two dimensions. In this chapter, the summary of the key

discoveries and conclusions is presented, followed by a discussion on recommendations for

future research.

7.1 Conclusions

7.1.1 The MOF method: filaments

In conclusion, a new MOF method with a symmetric multi-material approach has been

presented where thin structures are resolved using a filament approach for a fixed coarse

mesh. A novel robust approach to solve the optimisation problem is proposed using a

bisection method. No initial condition or parameters are necessary and the global minimum

can always be found. A Lagrangian backtracking approach ensures that there is no limitation

on the CFL number when advecting materials. Solving under-resolved filaments inherently

involves a higher computational cost, which is reduced by choosing to cap the number of

conglomerates at three and using a symmetric approach. As a result, almost quadratic order



7.1 Conclusions 162

of convergence is achieved and the error converges as the grid is refined. However for

complex and large material deformations, the limitation of this method is shown and the

topology might not be well maintained at sharp edges.

This efficient approach is applied to several benchmark problems with different levels

of deformation. Most of these benchmark problems are compared with different MOF

approaches, filaments, AMR, CLSMOF and standard MOF method. First, the Zalesak

slotted disc does not exhibit any filament behaviour, yet the chosen approach shows good

qualitative results. Other benchmark problems such as the reversible vortex and the droplet

flow case are tested for large deformation highlighting the quality of reconstruction of

filaments on coarse meshes. Finally, the rotating filament benchmark is presented, which

is only applicable using filament reconstruction for such coarse grids. The limitation of the

method is shown in the S-shape deformation benchmark. For most benchmark problems, the

error and runtime are at least comparable to other MOF methods. Furthermore, the accuracy

in interface reconstruction is improved for large deformation. In addition, runtime has been

decreased compared to most MOF methods, although its significance may be attenuated due

to advancements in computer performance over the years.

7.1.2 The MOF-AMR method: adaptivity

A new quadtree-based adaptive MOF method has been developed in which filament structures

are resolved using a symmetric multi-material approach on a refined grid. A simplified

quadtree structure has been implemented with logical connection between parent and children

cells up to two levels of refinement. A Lagrangian backtracking approach for refined grids

is proposed that enables exact material intersection during the advection process, hence

ensuring mass conservation. The refinement criterion is based on the centroid defect relative

to the cell or subcell size, ensuring linear interfaces are reconstructed exactly without the

need for refinement. As a result, the proposed framework achieved good results in terms
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of accuracy and runtime while using computational resources in a more efficient manner.

Comparison between different levels of refinement for the same minimum cell size provides

insight into the most efficient use of this framework and the MOF method in general.

This MOF-AMR method is tested on several benchmark problems with high material

deformation. All of these benchmark problems are compared with a couple of similar MOF

approaches using mesh refinement. First, the Zalesak slotted disc has less refined cells at

the initial stage and achieved good qualitative results. Other benchmark problems such as

the reversible vortex show highly precise reconstruction at maximum deformation under

different levels of refinement. The droplet flow and the S-shape test case yielding highly

deformed structures are presented with filament reconstruction. Quantitatively, results are

comparable to other MOF methods. The limitation of the proposed method lies in the

number of refinement levels available in an unconstrained adaptive grid structure. The chosen

refinement approach differs from other MOF-AMR reference methods. Machine precision

mass conservation algorithms are achieved for benchmark problems such as the reversible

vortex, whilst further improvements are required for other problems such as the droplet

flow or the S-shape case. Furthermore, runtime has been significantly decreased compared

to alternative MOF methods. In this study, no high-performance libraries are used and

calculations are carried out on a single core (Intel Core i7, 8M cache, base 1.8 GHz). High-

performance frameworks would offer strong scalability and efficient algorithms for handling

large parallel octree operations. Yet, complexity and potential resource requirements may be

challenging. In comparison, the proposed data structure offers ease of use and accessibility,

suitable for smaller-scale efforts. Many advantages follow from this decision such as the

absence of load balancing, numbering, and neighbouring search. However, the author is

aware of potential issues related to limited scalability and versatility, memory access, parent

node data optimisation and general computing performance.
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7.1.3 Application of the MOF method: simulating multiphase flows

The moment-of-fluid method coupled to a finite volume Navier-Stokes solver has been

presented for multiphase flows on a fixed grid. First, the MOF method is implemented for

different benchmark test cases where the complexity of the flow is relatively low. Then, the

filament MOF method is introduced where subgrid-scale structures are resolved for a highly

complex flow structure. This represents a significant advancement in the understanding

and modelling of complex multiphase flows. Higher levels of accuracy and efficiency in

capturing the intricate interactions between two phases are achieved. A direct comparison

has shown the differences of approach between a standard and a filament MOF method. The

representation of filaments is relatively well captured using the latter method, despite some

remaining filament breakups. Promising results in resolving subgrid-scale structures have

been demonstrated.

The proposed method is tested on well-known benchmark problems featuring different

levels of complexity. Good qualitative predictions of the evolution of the height of the

water column height and position of the surge front are achieved with both experimental

measurements and previous numerical studies for the dam break problem. In the case of

the Rayleigh-Taylor instability problem, the method is able to reconstruct the interface in a

precise manner during the early stages of development, while the filament MOF preserves

highly deformed subgrid-scale structures during the later stages. Both standard and filament

MOF methods maintain satisfactory agreement with the predictions of other numerical

methods. Finally, the method exhibits a good level of accuracy for the Kelvin-Helmholtz

instability problem.

7.1.4 The MOF-ADG method for multiphase flow simulations

In conclusion, this study introduces a novel adaptive dual grid moment-of-fluid (MOF-ADG)

method coupled with an implicit finite volume Navier-Stokes solver. This method represents
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a novel and promising approach for simulating complex multiphase flow dynamics using two

separate Cartesian grids: a fixed coarse grid for the fluid solver and an adaptive grid for the

interface capturing method. The present approach exhibits remarkable adaptivity in refining

computational grids, offering a significant improvement in the numerical efficiency and

accuracy of fluid flow simulations. In addition, numerical complexity has been enhanced by

including subgrid-scale elements such as filaments in order to reduce the persisting breakup

of numerical filaments through the moment-of-fluid method.

The method proposed in this thesis is evaluated using established benchmark problems in

which challenges are of varying complexities. The method demonstrates an excellent level of

accuracy in addressing the natural sloshing problem, displaying quantitative agreement with

existing literature and analytical solutions. Moreover, the dam break problem successfully

provides accurate quantitative estimations of water height evolution and pressure measure-

ment, aligning well with both experimental data and previous numerical studies for dam break

problems. In the Rayleigh-Taylor instability problem, the method precisely reconstructs the

interface during its early stages and effectively captures deformed subgrid-scale structures in

later stages with the particularly well developed filament MOF-ADG. In the final section,

the MOF-ADG method shows its relevance by comparing reconstructions for a single case

exploring different refinement scenarios. In summary, the MOF-ADG demonstrates excel-

lent performances in accurately capturing complex flow features and the intrinsic physical

behaviour.

7.2 Future research

The MOF method, like most interface capturing methods, diffuses when advecting sharp

edges. In addition, the tip of filaments is not well-resolved regardless of the mesh resolution.

However, the method shows greater ability to reconstruct accurate interfaces in complex

situations such as near boundaries or filament/multi-material over VOF methods. In future
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work the author would like to include the ability to reconstruct four conglomerates within a

cell while maintaining a high level of accuracy in reconstruction with an acceptable runtime.

For a fixed coarse mesh, this may lead to increased precision in thin layered filaments while

reducing the natural diffusion of material. This approach could involve an optimised selection

of which material to reconstruct. As well as being able to reconstruct multiple materials

within one cell, future work may involve extending the proposed MOF method to more

than two materials in the domain in order to be able to handle complex scenarios such as

fluid-structure interaction or three fluids interacting (air-water-oil). Undoubtedly, expanding

this will introduce several challenges such as increasing complexity, conserving mass for

all materials and maintaining a reasonable computational cost. Addressing challenging 3D

reconstruction is also a development that the author wish to pursue in the future.

The present MOF-AMR method tends to decrease the cross-stream diffusion of advected

material and can reconstruct sharp edges or tips of filaments with greater accuracy using up

to two levels of refinement. Further improvement may be made to address these numerical

issues by using the recent new moment-of-fluid method (Shashkov and Kikinzon, 2023) or the

parabolic interface reconstruction (PPIC) (Remmerswaal and Veldman, 2022). In addition,

the number of conglomerates has less influence on the centroid defect as these scenarios

tend to trigger refinement. In future work, advecting and reconstructing several materials

within the same domain using the present MOF-AMR method will be a priority, which

will most likely involve reconstructing more than three materials. In this AMR framework,

optimising the levels of refinement could reduce the computational cost by creating predictive

algorithms. Indeed, based on geometrical features and characteristics, predictive algorithms

can strategically refine cells and regions without the need to reconstruct iteratively, therefore

enhancing efficient and effective use of computational resources.

Despite advances in interface capturing methods for multiphase flows, surface tension

has been neglected in this thesis which may modify vortices created in certain complicated
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flow events. The complexity of the method and the associated computational cost, although

mitigated with analytical solution on Cartesian grids, may be a limiting factor for its use.

Nevertheless, the moment-of-fluid method remains a robust and promising improvement to

interface capturing/tracking methods and in numerical multiphase flows in general. Increas-

ing the levels of detail in subgrid-scale structure as well as including surface tension and

turbulence modelling, whether for Newtonian or non-Newtonian flows is the next priority

while maintaining acceptable levels of computational resources. The moment-of-fluid method

is an example of the next generation of interface capturing methods and is well-placed to

play a pivotal role in the analysis and prediction of complex multiphase systems.

In addition, certain limitations of the MOF-ADG method arise notably in situations

with breakup and coalescence or with complex geometries despite offering sharper interface

reconstruction. The computational expense of the proposed method is somewhat mitigated

by employing analytical solutions on Cartesian grids for interface capturing features when

possible. However, the use of a fixed coarse grid for the flow solver is not negligible in terms

of computational efficiency. For future work, the focus will be on addressing these limitations

by including additional features such as surface tension on an adaptive dual grid, which may

involve some additional complex numerical challenges, and extending the application of the

MOF-ADG method to a wider range of multiphase problems such as droplet and bubbles

dynamics. Furthermore, the proposed approach should be extended to three-dimensional

problems. In addition to 3D reconstruction mentioned previously, this extension in 3D may

involve challenges such as conglomeration algorithm and octree formation validity. The

adaptive dual grid moment-of-fluid (MOF-ADG) method has been shown to be a robust and

promising enhancement to interface capturing and tracking techniques in complex numerical

multiphase flows.

Parallelisation is crucial for the practical applicability of the MOF method and its deriva-

tive techniques, especially when dealing with larger systems. Nevertheless, this thesis has
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been carried out on a single core, leaving room for improvements through parallelisation.

Devoting efforts in this area involves exploring advanced high-performance computing tech-

niques. The goal is to enable simulations of large scale, allowing for representations of

real-world scenarios.

Some other future work may involve exploring coupling mechanisms with other complex

area of CFD such as mass and heat transfer or fluid-structure interaction. It is a fundamental

aspect in numerous real-world scenarios, from industrial processes to environmental studies.

Extending validation efforts to include simulations in extreme conditions is a crucial step in

ensuring the robustness and reliability of the MOF method. Simulating extreme conditions

or environments, such as high-speed compressible flows, provides an opportunity to test

the accuracy and stability of the method in scenarios where traditional approaches might

struggle.
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