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Transmission through a complex network of nonlinear one-dimensional leads is discussed by extending the
stationary scattering theory on quantum graphs to the nonlinear regime. We show that the existence of cycles
inside the graph leads to a large number of sharp resonances that dominate scattering. The latter resonances are
then shown to be extremely sensitive to the nonlinearity and display multistability and hysteresis. This work
provides a framework for the study of light propagation in complex optical networks.
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The study of quantum graphs has gained its popularity in
recent years [1] not only because graphs emulate successfully
complex mesoscopic and optical networks, but also because
they manage to reproduce universal properties (such as level
statistics, transmission fluctuations, and others) observed in
generic quantum chaotic systems. Here we generalize quantum
graph theory to the nonlinear domain. The theory will be
applied in particular to show the effect of nonlinearity on
transmission through networks of nonlinear fibers. Our model
may also be used as a simple yet nontrivial model where
the universal properties derived from detailed numerical
computations of Bose-Einstein condensates in nonregular
traps [2–7] could be further investigated.

Scattering is studied as a stationary process. The main
finding is that the sharp resonances which dominate scattering
in networks with complex connectivity lead to a dramatic
amplification of the nonlinear effects: while nonresonant
scattering hardly deviates from the predictions of the linear
theory, tuning the parameters to a nearby resonance (without
changing the incoming field intensity) brings the system
into the nonlinear regime which is signaled by multistability
and hysteresis. For this reason we revisit the theory of
scattering in the linear regime and demonstrate that sharp
resonances with large amplification of the incoming wave
inside the system are very frequent for graphs compared to
other complex (chaotic) scattering systems. The origin of this
effect can be related to the topology of the graph (existence
of cycles) and leads to a power-law distribution for the
amplification.

I. THE NONLINEAR SCHRÖDINGER
EQUATION ON GRAPHS

Consider a general metric graph which consists of V

vertices connected by B internal bonds and N leads to infinity,
as illustrated in Fig. 1. The bonds and leads will be collectively
referred to as edges. The bonds are of finite lengths Lb,
b = 1, . . . , B and are endowed with coordinates xb ∈ [0,Lb]
(with a definite choice for the direction in which xb increases).
The semi-infinite leads have the coordinate xl ∈ [0,∞) and
xl = 0 is at the vertex where the lead is attached. The wave
function on the graph is a bounded piecewise continuous and

differentiable function on the edges and is written collectively
as

�(x) = {ψe(xe)}B+N
e=1 , (1)

where ψe(xe) is the wave functions on edge e. While the model
can describe far more general settings, we restrict ourselves in
this exploratory work to the discussion of stationary scattering.
The wave function on edge e satisfies the stationary nonlinear
Schrödinger equation (NLSE)

−d2ψe

dx2
e

+ ge|ψe|2ψe = Eψe. (2)

Here, ge is real nonlinear coupling parameter which we assume
constant on each edge (but it may take different values on
different edges). E is taken positive throughout this work, E =
k2 and k reduces to the wave number (propagation constant
in fiber optics) in the linear case. Setting ge = 0 on all edges
will reduce our model to a standard (linear) quantum graph.
Note that, for applications in fiber optics, g|ψ |2 � E and the
nonlinear term is a small perturbation of an otherwise linear
wave equation. Then the stationary equation above describes
the spatial evolution of the amplitude of a continuous wave
beam rather than a wave envelope (for which one would have
a nonstationary nonlinear Schrödinger equation [8]).

A. The wave function on a single bond

The solutions of (2) on a single bond can be obtained [9]
by writing ψ(x) = r(x)eiθ(x) (omitting the index e for the
moment). Then, (2) is equivalent to two coupled ordinary
differential equations

d

dx
H = 0 and

d

dx
L = 0, (3a)

H = 1

2

(
dr

dx

)2

+ r2

2

(
dθ

dx

)2

+ E

2
r2 − g

4
r4, (3b)

L = r2 dθ

dx
. (3c)

These equations formally describe a classical particle in
a central potential V (r) = (E/2)r2 − (g/4)r4 on the two-
dimensional (2D) plane, where x now takes the role of time.
The Hamiltonian energy H and the angular momentum L are
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FIG. 1. (Color online) A graph with V = 4 vertices, B = 6 bonds
and N = 2 leads. The incoming, reflected, and transmitted waves are
shown on the respective leads.

constants of motion. Note that the angular momentum (3c)
reduces to the flux

L ≡ Imψ∗dψ/dx (4)

carried by the wave function. For given values for H and L the
full solution is obtained in the form of the integrals

x =
∫

(2H − 2V − L2/r2)−1/2dr, (5a)

θ = L
∫

r−2(2H − 2V − L2/r2)−1/2dr, (5b)

which can be reduced to elliptic integrals [9].

B. Matching conditions at the vertices

Two physical requirements guide our choice of matching
conditions at the vertices: continuity and the conservation of
flux. Consider a vertex j with vj adjacent edges and set xe = 0
as the vertex coordinate on all edges e emanating from j . Using
the classical point-particle analog, continuity implies that at
“time” xe = 0, all radii re and angles θe assume the same
values. Flux conservation is equivalent to angular momentum
conservation:

vj∑
e=1

Le = 0. (6)

There is a large family of mathematically acceptable matching
conditions which satisfy the latter requirements; for example,
all matching conditions that define a self-adjoint linear
Schrödinger operator on the graph (see [10]) satisfy flux
conservation. The matching conditions appropriate for any
particular experimental setting should, in principle, be derived
ab initio, which is clearly a nontrivial task. Since the purpose
here is to display general features of wave propagation
through a nonlinear network, we chose a “minimal” set of
local matching conditions commonly used in the linear case:
we require continuity and that the sum over all outgoing
derivatives of wave functions on edges adjacent to j to be
proportional to the common value φj of the wave function at
the vertex:

ψe(0) = φj , (e = 1, . . . , vj ), (7a)
and

vj∑
e=1

dψe

dxe

∣∣∣∣
xe=0

= λjφj . (7b)

The constants λj are arbitrary real parameters. In the classical
particle picture, the imaginary part of this condition ensures
conservation of angular momenta (6) and the real part can be
expressed via

vj∑
e=1

pe(0) = λj rj , (8)

where pe is the radial momentum associated with the particle
on edge e and rj is the radial coordinate at the vertex. When
vj = 2 the matching condition is equivalent to replacing the
vertex by a δ potential with strength λj .

In linear quantum graphs theory, it was found useful to
express the matching conditions in terms of a vertex scattering
matrix σ (j ), which connects the coefficients of incoming and
outgoing waves [1]. Although in the nonlinear settings the
lack of a superposition principle prohibits a decomposition
into incoming and outgoing waves, the concept can be taken
over formally. Defining

ain,j
e = 1

2k

(
kψe(0) + i

dψ(0)

dxe

)
xe=0

, (9a)

aout,j
e = 1

2k

(
kψe(0) − i

dψ(0)

dxe

)
xe=0

, (9b)

and collecting them in vectors ain,(j ) = (ain,j

1 , . . . , a
in,j
v )T

and aout,(j ) = (aout,j
1 , . . . ,a

out,j
v )T , the matching conditions

become

aout,(j ) = σ (j )ain,(j ), (10a)

σ
(j )
ee′ = 1

vj

(
1 + e

−2i arctan
λj

vj k

)
− δee′ . (10b)

The flux conservation follows from the unitarity of the
vertex scattering matrix and Le = Im[ψ∗

e (0)dψe(0)/dxe] =
k(|aout,j

e |2 − |ain,j
e |2) so that

∑v
e=1 Le = 0 becomes∑

j |ain,(j )|2 = ∑
j |aout,(j )|2—implying flux conservation. In

the sequel we will assume that the vertex matching conditions
(7a) and (7b) are satisfied on all vertices.

To finish the discussion of the vertex matching conditions
we note that matching conditions for the time dependent NLSE
on star graphs where discussed previously in [11,12]. The more
relevant to the present work is Ref. [11] where the authors
treated rigorously the case vj = 2 (see also [2]). For weak
nonlinearity the vertex scattering matrix (10b) follows from
their derivation.

C. Scattering from a nonlinear network

In the linear case the transport through a quantum graph
with N leads can be described by an N × N unitary scattering
matrix S(k) which connects incoming and outgoing amplitudes
on the leads

aout,leads = S(k)ain,leads. (11)

The scattering matrix S(k) can be expressed explicitly in terms
of the vertex scattering matrices σ (j ), the bond lengths and the
wave number k [13] in the form

S(k) = ρ + τout
1

1 − T (k)σint
T (k)τin. (12)
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Here T (k) is a diagonal 2B × 2B matrix with diagonal entries
eikLb that give the phase difference of a plane wave at the
two ends of the bond b (each bond appears twice due to the
two possible directions of a plane wave). The matrices ρ, σint,
τin, and τout are built up from the vertex scattering matrices
σ (j ). That is, ρ is an N × N matrix that contains all direct
scattering amplitudes (if all leads are attached to different
vertices this is a diagonal matrix); the 2B × 2B matrix σint

contains all scattering amplitudes from one (directed) bond to
another inside the graph. Eventually, τin and τout are 2B × N

and N × 2B matrices that contain scattering amplitudes from
the leads into the bonds and from the bonds out to the leads.
They can be combined to one unitary matrix


 =
(

ρ τout

τin σint

)
. (13)

Unitarity of 
 implies the unitarity of the scattering matrix
S(k). The unitarity of S(k) ensures global flux conservation

|aout,leads|2 = |ain,leads|2. (14)

Moreover, in a linear system the scattering matrix S(k) is
independent of the incoming amplitudes ain,leads.

In the nonlinear case, transport is described by a N -
component nonlinear scattering function

aout,leads = s(k,ain,leads). (15)

Flux conservation on each vertex implies that the scattering
function conserves the norm

|s(k,ain,leads)|2 = |ain,leads|2. (16)

Although the general solution of the NLSE on each edge
and the matching conditions are all known explicitly, it is
generally not possible to solve the corresponding set of
equations and obtain the scattering function s(k,ain,leads) in
closed form. Therefore, we shall continue the discussion in
the following section by presenting a numerical solution of a
relevant example.

II. RESONANT SCATTERING FROM
A NONLINEAR NETWORK

A. A simple exemplary model

We study the graph shown in Fig. 1. The six bond lengths
were chosen by a random number generator in the interval
0 < Lb < 1 and are rationally independent within the nu-
merical accuracy. We have kept the same set of lengths
for all numerics that are presented in this work (see [14]
for the actual values). While we do not show results for
different (random) choices we have checked that they lead to
qualitatively equivalent results (the statistical properties that
we will mention are also quantitatively equivalent).

Two linear leads (L for “left” and R for “right”) are
attached at vertices 1 and 2, respectively, with gL = gR = 0. A
stationary wave with E = k2 and intensity Iin = |ain

L |2 incident
from the left lead is partially transmitted to the right lead and
partially reflected:

ψL(xL) = ψin + ψrefl = ain
L

[
e−ikxL + r

(
k,ain

L

)
eikxL

]
, (17a)

ψR(xR) = ψtrans = ain
L t

(
k,ain

L

)
eikxR . (17b)

Global gauge invariance implies that the phase of ain
L can be

chosen arbitrarily, so we take ain
L = √

Iin � 0. The reflection
and transmission coefficients r(k,ain

L ) and t(k,ain
L ) will be

computed as functions of k and Iin. In the linear case (ge = 0
for all bonds) the reflection and transmission amplitudes are
the matrix elements of a 2 × 2 scattering matrix S(k). In
the nonlinear case they form the two components of the
scattering (vector valued) function s = ain

L (r(k),t(k))T . Flux
conservation implies∣∣r(k,ain

L

)∣∣2 + ∣∣t(k,ain
L

)∣∣2 = 1. (18)

In the present setting the importance of the nonlinear effects
is controlled by Iin. The linear theory is obtained in the limit
Iin → 0. However, the strength of the nonlinearity will not be
uniform as a function of k because the intensity inside the
graph structure may vary strongly, especially near resonances,
as we will show below.

Using the formalism described above, the solution of
the scattering problem reduces to a finite set of nonlinear
equations in a high-dimensional space, which requires rather
substantial computer resources. The numerical complexity can
be alleviated further by considering the special case with
just one nonlinear bond b̃, so that gb = ±δb,b̃. In the present
simulation we choose b̃ = (1,2) but we have also checked that
other choices yield quantitatively similar behavior.

B. Linear scattering: resonances and amplification

The key to the understanding of the amplification of the
nonlinear effects resides with the scattering in the linear
regime. The upper panel of Fig. 2 shows the (linear) reflection
probability |r(k,0)|2 as a function of the wave number k for an
interval of moderate wave numbers, where the typical length
of a bond is about 14–16 wave lengths. Several resonances are
clearly visible. Quantum graphs with incommensurate bond
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FIG. 2. (Color online) Upper panel: reflection probability
|r(k,0)|2 for the graph depicted in Fig. 1 in the linear limit. The
arrow marks the narrow resonance which is discussed in the text.
Lower panel: intensity amplification factor α(k) in logarithmic scale
in the linear limit ain

L → 0 on the bond connecting vertices 1 and 2 in
Fig. 1.
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lengths are a paradigm of quantum chaotic scattering [13]
where the statistics of resonances (i.e., of their location and
their widths) are very close to the universal predictions of
random-matrix theory. This implies that the width of the
resonances is distributed over a broad range of values, as
illustrated by Fig. 2. The width of a single resonance is
inversely proportional to the decay time of the corresponding
resonant state. Narrow resonances are associated with waves
which are trapped in the structure for long time, which is
expressed in the stationary formalism by relatively large values
of the wave function on the bonds. The lower panel in Fig. 2
shows the amplification factor

α(k) =
∫ Lb

0 |ψb(xb)|2dxb

LbIin
(19)

for the bond (1,2) in the linear limit. While the intensity
on the bond fluctuates around the incoming intensity Iin,
there are also large peaks at narrow resonances. For example,
near the marked sharp resonance in Fig. 2 the intensity on
the bond is two orders of magnitude (≈320 times) higher
than the intensity of the incoming beam. Over a larger
spectral interval (0 < k < 20 000) we found several other res-
onances with amplification factors α > 105 and a distribution
P (α) = K−1

∫ K

0 δ(α − α(k))dk with a power law decay
P (α) ∼ α−s with s ≈ 2.85 (see Fig. 3). The algebraic decay
of this distribution is a special feature of networks, which
would usually not be expected in other chaotic scatter-
ing models such as scattering through a chaotic quantum
dot. To explain the difference between a network and a
more general chaotic scattering system, let us go back to
Eq. (12), which describes scattering through the network.
Similar equations have been used to model chaotic scattering
[e.g., by an average over the matrix 
 from Eq. (13)]. In
either case the factor [1 − T (k)σint]−1 in the second term
is responsible for the resonances and one may expect large
amplification factors whenever T (k)σint has an eigenvalue near
unity (an exact eigenvalue of unity indicates the existence
of a bound state which is confined to the bonds). In any
generic model of chaotic scattering unimodular eigenvalues
of the subunitary matrix σint (which acts on a vector of
2B coefficients; one for each directed bond) are strongly
suppressed. For other known examples of resonant scattering
in one-dimensional nonlinear Schrödinger systems [5–7], the
equivalent of σint is one number with modulus smaller than 1.

10−2 1 102 104
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FIG. 3. (Color online) Double logarithmic plot of the numerically
obtained distribution of the amplification factor on the nonlinear bond
for the graph depicted in Fig. 1.

In all these models high amplification factors are either cut off
or extremely rare. However, for networks with the standard
vertex matching conditions (7a) and (7b) (and λj = 0; see
below for λj �= 0) the situation is drastically different as
every cycle created from the bonds of the network supports
an eigenvalue unity of σint (moreover cycles of even length
support eigenvalues minus unity). In fact, let us consider
a cycle that consists of three bonds b1, b2, and b3, then
corresponding eigenvector a of σint with unit eigenvalue
vanishes on all directed bonds that do not belong to the cycle
and has values ±1 on the directed bonds that belong to the
cycle (the two signs correspond to two different directions to
go through the cycle). For rationally dependent bond lengths
this implies that one may chose k such that

eikLb1 = eikLb2 = eikLb3 = 1, (20)

which shows the existence of embedded bound states in the
continuum of scattering states. The construction is equivalent
to that of perfectly scarred states (see [15])—these scarred
states vanish exactly on the vertex and, for each bond on the
cycle, the bond length is an integer multiple of the wavelength
2π/k. For incommensurate bond lengths, there are no perfectly
scarred states on the cycle as the condition (20) can never be
met exactly. However, the mapping k → (eikLb1 ,eikLb2 ,eikLb3 )
is an ergodic flow on a three-dimensional torus; one thus finds
values for the wave number k which approximate condition
(20) to arbitrary precision. In the exemplary model we have
used for our calculation, the graph structure contains two
independent cycles that both contain the nonlinear bond. The
two cycles can be chosen such that they consist of three bonds.

In the above discussion we have assumed the vertex
potentials λj vanish. The vertex scattering matrices (10b)
show, however, that for sufficiently high wave number k these
potentials are not relevant. Note also that vertex matching
conditions which are entirely different from (7a) and (7b)
do not necessarily have a similar distribution of narrow
resonances.

C. Implications for nonlinear scattering: multistability

The strength of nonlinearity on the nonlinear bond may be
measured by the effective parameter

ν = |ge|
E

|ψ |2 ≡ |ge|
ELe

∫ Le

0
|ψe(xe)|2dxe. (21)

For a fixed incoming intensity Iin and with |ge| = 1 the
effective nonlinearity will be proportional to the amplification
factor

ν(E) = 1

E
α(E)Iin. (22)

Even if the incoming intensity is too low to induce noticeable
nonlinear effects off resonance, at narrow resonances the high
fields on the bonds are expected to behave in a nonlinear
way. This qualitative picture is supported by the numerical
simulations. For incoming intensities up to Iin ≈ 0.005 the
nonlinearity is either not relevant at all or can be taken into
account as a perturbation for almost the entire k spectrum.
However, near the marked resonance the amplification by two
orders of magnitude is sufficient to give rise to strong nonlinear
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FIG. 4. (Color online) Reflection probability near the narrow
resonance marked in Fig. 2. The central (blue) curve is the resonance
in the linear limit. The green (red) curves left (right) from the central
one correspond to 8 increasing values of the incoming intensity |ain

L |2
(in equal steps from 0.0006 to 0.0048) in the attractive (g = 1)
and repulsive (g = −1) case. The inset shows the corresponding
amplification factor.

effects that cannot be described perturbatively. This is shown
in figure Fig. 4, which resolves the narrow resonance in the
reflection probability (and the amplification factor) for various
values of the incoming intensity. In the attractive (repulsive)
case the resonance moves to the left (right) as Iin increases.
However, some parts of the curve move faster than others
which eventually leads to a multivalued dependence above the
critical value Icrit. This implies multistability—an experiment
would show hysteresis. In both the attractive and the repulsive
cases the critical incoming intensity where multistability sets
in is near Icrit ≈ 0.002. For this incoming intensity the strength
of nonlinearity inside the graph is typically (i.e., away from the
resonance) on the order of νtyp ∼ 5 × 10−8; at the resonance
it is, however, νres = 1.5 × 10−5. These findings are similar to
previous work on nonlinear resonant scattering from quantum
dots [3,4] and from one-dimensional structures [5–7]. Our
model generalizes the latter results by allowing for additional
topological complexity.

D. Application in nonlinear fiber optics

The numerically found power-law distribution of the ampli-
fication factor α can be expected to be a generic feature (at least
for similar types of vertex matching conditions). This implies
that, by tuning the parameters of an experiment to a sufficiently
narrow resonance, one may find arbitrarily high amplification
factors and thus the nonlinearity effects of multistability and
hysteresis may be observed at considerably lower incoming
velocities than in our example. Nonetheless, let us translate
the important parameters of our model to a fiber-network
experimental setup.

For a cw optical beam propagating in a single-mode telecom
fiber with the linear refraction index n0 = 1.5, nonlinear

Kerr coefficient n2 = 2.4 × 10−16 cm2/W, and effective mode
area Seff = 50 µm2 operating at the telecom wavelength λ =
2πc/ω = 1.55 µm, the strength of the nonlinearity (on the
nonlinear bond) can be estimated as [8]

ν = 8n0ω
2

c2β2Seff
n2 Pav. (23)

Here, β is the propagation constant and Pav is the bond-
averaged power |ψ |2 of the beam in watts. For the purposes
of the current estimate one can neglect mode dispersion of the
fiber and assume β ≈ n0(2π/λ). Then, from (23) it follows
that, in order to achieve the resonance level of nonlinearity
νres = 1.5 × 10−5 from the numerical example considered
above at the telecom wavelength λ, the required power level
must be as high as Pav ∼ 6 kW, which is above the thresholds
for stimulated Raman and Brillouin scattering for the fiber
length of a few meters. This can be offset in several ways: one
can consider mode dispersion and operate at lower frequencies
so that the effective mode index βc/ω is lower, reduce the
effective mode area by a factor up to 10 by changing the size of
the fiber core, or else one could use highly nonlinear nonsilica
fibers where the value of the nonlinear coefficient n2 can be
enhanced up to two orders of magnitude [8]. Thus, using the
estimates based on the present simulation, one can expect that
nonlinear effects will appear at power levels of 1/10 W.

In an experiment, varying the wave number in a controlled
way may not be feasible, so let us mention that one may
equivalently change the lengths of the edges in a controlled
way by slowly varying the temperature. Let us also mention
that multistability in scattering from nonlinear crystals has
been observed experimentally [16].

III. CONCLUSION

To conclude, the theory presented here shows how the
interplay between complex topology and nonlinearity gives
rise to a pronounced amplification of nonlinear effects. We
would like to stress that, while our model is highly idealized,
the strong amplification of intensity near narrow resonances is
a universal effect that can be expected in any linear complex
network. Any coexisting nonlinearity that may be negligible
off resonance will be drastically amplified at a resonance.
We believe that the latter effect can be observed in actual
experiments with interconnected optical fibers even though
the model itself may need further adjustment to fit the details
of such an experiment. Moreover we believe that NLSE on
metric graphs as presented here will be a very useful paradigm
system where the interplay between topology and nonlinearity
can be studied qualitatively.
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