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1.  INTRODUCTION

The maintenance of a balance between excitatory and 

inhibitory neurotransmission (E-I balance) is essential 

for healthy brain function and its disruption underlies a 

range of psychiatric conditions, notably autistic spec-

trum disorder (ASD) (Nelson & Valakh, 2015; Rubenstein 

& Merzenich, 2003; Sohal & Rubenstein, 2019). High-

frequency neurophysiological oscillations in the gamma 

range (>30 Hz) play a key role in information processing 
(Fernandez-Ruiz et al., 2023) and arise due to interac-
tions between neuronal excitation and inhibition (Bartos 
et al., 2007; Vinck et al., 2013). Thus, measurement of 
gamma oscillations can provide a powerful metric of E-I 
balance (Gray & Singer, 1989; Gray et  al., 1989; 
Whittington et  al., 1995). Despite this importance, our 
understanding of gamma oscillations, their develop-
mental trajectory in early childhood and perturbation by 
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disorders remains poorly characterised, and this is 
largely due to instrument limitations. Here, we use a new 
neurophysiological imaging platform to measure gamma 
oscillations in individuals from early childhood to adult-
hood and a model of neural circuitry to investigate their 
underlying neural generators.

Gamma oscillations can be measured non-invasively 
using either electro- or magnetoencephalography (EEG or 
MEG), with MEG providing more robust data. However, 
both techniques have limitations, particularly for children. 
In EEG, the gamma signal (which manifests as an electrical 
potential difference across the scalp surface) is diminished 
in amplitude and distorted spatially by the skull (Baillet, 
2017). EEG signals are also obfuscated by interference 
generated by non-neural sources such as muscles (Boto 
et al., 2019; Muthukumaraswamy, 2013), making it difficult 
to measure gamma reliably, particularly if subjects move 
(which is common with children). MEG, which measures 
magnetic fields generated by neural currents, is less 
affected by non-neural artefacts and has better spatial 
specificity than EEG (because magnetic fields are less dis-
torted by the skull than electrical potentials). This means 
that gamma oscillations have a higher signal-to-noise ratio 
(SNR) and their origin can be better localised when using 
MEG rather than EEG (Muthukumaraswamy & Singh, 
2013). Multiple studies argue that MEG is the measure-
ment of choice for gamma oscillations (Gaetz et al., 2011; 
Hall et al., 2005; Muthukumaraswamy et al., 2009, 2010; 
Orekhova et  al., 2015; Takesaki et  al., 2016; Tan et  al., 
2016). However, MEG systems classically rely on cryogen-
ically cooled sensors that are fixed in position in a one-
size-fits-all helmet. Such systems cannot cope with 
changing head size through childhood or large subject 
motion relative to the static sensors. Consequently, most 
extant MEG studies of gamma oscillations are limited  
to adults.

As ASD has a typical diagnostic age of 3 years and 
above, if we are to understand its neural substrates, E-I 
imbalance (and gamma oscillations) must be measured 
reliably in children from 2–3  years of age and upward. 
While this is challenging using conventional MEG equip-
ment, new technology, based on optically pumped mag-
netometers (OPMs) (for a review see Schofield et  al. 
(2023)), shows significant promise. OPMs uniquely allow 
MEG signals to be recorded using small (Lego-brick-
sized) sensors mounted in wearable helmets (Boto et al., 
2018; Hill et al., 2020), which adapt to different head sizes 
and allow for movement during scanning. This provides 
an ideal environment to gather high-fidelity data in chil-
dren, and studies have already shown that OPM-MEG 
can be used to measure neurophysiological signals in the 
early years of life (Corvilain et al., 2025; Hill et al., 2019) 
and can assess neurodevelopmental changes in neuro-

physiology (Rier et  al., 2024; Vandewouw et  al., 2024). 
This platform, therefore, offers the best opportunity for 
measurement of gamma oscillations, and subsequent 
modelling of underlying neural circuitry to understand 
how E-I balance changes with age.

Here, we characterised the neurodevelopmental tra-
jectory of gamma oscillations from age 2 years to adult-
hood in a cohort of >100 participants. We used a newly 
developed child-friendly OPM-MEG system to collect 
data during a visual task that is known to elicit gamma 
oscillations in the primary visual cortex (Hall et al., 2005). 
These visual gamma effects have been associated with 
feature integration (Eckhorn et  al., 1988; Gray et  al., 
1989), object representation (Tallon-Baudry & Bertrand, 
1999), and selective attention (Fell et al., 2003). Existing 
studies suggest that features of these oscillations, such 
as peak frequency and relative amplitude, are different in 
children relative to adults (Gaetz et al., 2011; Orekhova 
et al., 2018) (albeit in older children), in ASD (Orekhova 
et al., 2023; Safar et al., 2021), and twin studies suggest 
they are highly heritable (Pelt et  al., 2012). The cellular 
generators of visual gamma oscillations have been 
described (Spaak et al., 2012; Xing et al., 2012) by mod-
elling the interaction between superficial pyramidal cells 
and inhibitory interneurons within V1. Having measured 
gamma oscillations using OPM-MEG, we subsequently 
employ a dynamic causal model (DCM)—based on a 
canonical cellular microcircuit (Shaw et  al., 2017)—to 
investigate the contributions of inhibitory and excitatory 
neurotransmission to the gamma signal. We hypothe-
sised that OPM measurement of gamma oscillations 
alongside DCM would demonstrate an E-I balance 
change in the superficial layer of V1 as the human brain 
matures.

2.  METHODS

OPM-MEG data were collected using two systems: one 
located at the Sir Peter Mansfield Imaging Centre, Univer-
sity of Nottingham, UK (UoN), one located at The Hospital 
for Sick Children (SickKids), Toronto, Canada (SK).

2.1.  Participants and paradigm

The study was approved by the local research ethics 
board committee at both sites. All adult participants pro-
vided written informed consent. A legal guardian for all 
participants under 18 years provided the written informed 
consent, and the child gave verbal assent. The study 
included 102 typically developing participants (aged 
2–34  years; 44 male; see Table  S2 in Supplementary 
Information). At UoN, 27 children and 26 adults were 
scanned; 24 children and 26 adults were scanned at SK. 
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Children were always accompanied by a parent and at 
least one experimenter inside the magnetically shielded 
room (MSR). Adult data were sex- and age-matched 
across the two sites to enable a cross-site comparison.

Visual stimulation comprised an inwardly moving cir-
cular grating moving at 1.2°s−1 (Fig. 1b). The grating was 
displayed centrally at 100% contrast and subtended a 
visual angle of 7.6°, with 1.32 cycles per degree. A single 
trial comprised 1000 ms of stimulation followed by a jit-
tered rest period with a white fixation cross located cen-
trally on a black screen for 1250 ± 200 ms. Sixty trials in 
total were shown and these circles trials were inter-
spersed with images of faces (data not included). Precise 
timing of the onset and offset of stimulation was sent 
from the stimulus PC to the OPM-MEG system via a par-
allel port.

2.2.  Data acquisition

The UoN OPM array comprised 64 triaxial OPMs (3rd gen-
eration QZFM; QuSpin, Colorado, USA), enabling up to 
192 channels of magnetic field measurement. The SK 
system comprised 40 dual-axis OPMs (3rd-generation 
QZFM; QuSpin), enabling up to 80 channels of magnetic 
field measurement. The two systems had a similar design 
(Cerca Magnetics Ltd. Nottingham, UK), and channels 
were located to ensure good coverage of the visual cor-
tices (see also Supplementary Information Table  S1; 
equivalence between systems is shown in Fig. S1).

In both systems, sensors were combined to form an 
array and integrated with other hardware (e.g., for mag-
netic field control) and software (e.g., for stimulus delivery 
and data acquisition) to form complete neuroimaging 
systems (Cerca Magnetics Ltd, Nottingham UK). Sensors 
were mounted in rigid 3D-printed helmets (five sizes were 
available). Participants wore a thin aerogel cap or had 
insulating padding under the helmet for thermal insula-

tion. Participants were seated in a patient support at the 
centre of the MSR. The UoN system was housed in an 
OPM-optimised MSR which comprises four layers of mu-
metal, one layer of copper, and is equipped with degauss-
ing coils. The SK system was housed in a repurposed 
MSR from a cryogenic-MEG system which comprised 
two layers of mu-metal and one layer of aluminium  
(Vacuumschmelze, Hanau, Germany). In both systems, 
bi-planar coils (Cerca Magnetics Ltd.) surrounded the 
participants to provide active magnetic field control  
(Holmes et  al., 2018). In the UoN system, coil currents 
were applied to cancel out the residual (temporally static) 
magnetic field (Rea et al., 2022; Rhodes et al., 2023; Rier 
et al., 2024). At SK (where time-varying field shifts were 
larger), a reference array provided dynamic measurement 
of the environmental magnetic field and feedback to the 
bi-planar coils enabled real-time compensation of both 
static and dynamic magnetic field changes (Holmes et al., 
2019). Equivalent data from these two systems have 
been demonstrated previously (Hill et al., 2022). In both 
systems, participants were free to move throughout data 
acquisition (but were not encouraged to do so). Data 
were collected at a sampling rate of 1200  Hz, from all 
sensors, using a National Instruments (NI, Texas, US) 
data acquisition system interfaced with LabView (NI).

For coregistration of sensor geometry to brain anat-
omy, two 3D digitisations of the participant’s head (with 
and without the OPM helmet) were acquired using a 
structured light camera (Einscan H, SHINING 3D, Hang-
zhou, China). These digitisations, coupled with accurate 
knowledge of the helmet structure from its computer 
aided design, allowed identification of the sensor loca-
tions/orientations relative to the head. They also enabled 
generation of a ‘pseudo-MRI’ which provided an approx-
imation of the underlying brain anatomy (for more details 
see Rhodes et al., 2025). Briefly, age-matched template 
MRIs (Richards et al., 2016) were warped to the individual 

Fig. 1.  Methods. (a) An image of a child in the OPM-MEG system, (b) the concentric circles visual stimulus and paradigm 
timing, which was presented for 60 trials. Parental consent and authorization for publication of the image of the participant 
has been obtained.
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participant’s 3D head digitisation using FSL FLIRT 
(Jenkinson et al., 2002). For some of the youngest partic-
ipants, head digitisation without the helmet (which is only 
required for the pseudo-MRI generation) failed or was not 
acquired (n = 20) and the age-matched templates were 
used as the pseudo-MRI without warping.

2.3.  Data analyses

Data processing was identical at both sites and imple-
mented using custom pipelines (https://github​.com​
/nsrhodes​/gamma​_opm​_2024). Bad channels (those that 
either had high noise or low signal) were identified by 
manual inspection of the channel power spectra and 
removed. Data were notch filtered at the powerline fre-
quency (50 Hz for UoN and 60 Hz for SK) and 2 harmon-
ics. A 1–150 Hz band pass filter was applied, following 
which data were epoched to 3 s trials encompassing 1 s 
prior to the onset of the circle and 2 s after. Bad trials 
were identified as those with trial variance greater than 3 
standard deviations from the mean and were removed. 
Visual inspection was carried out, and any further trials 
with noticeable artefacts were removed. ICA was used to 
remove eye blink and cardiac artefacts (implemented in 
FieldTrip (Oostenveld et  al., 2011)), and homogeneous 
field correction (HFC) was applied to reduce interference 
that manifests as a spatially homogeneous field (Tierney 
et  al., 2021). Following data pre-processing, one child 
participant was removed due to failure to acquire a com-
plete 3D head digitisation with the helmet on (necessary 
for accurate coregistration). We removed 13 ±  9 (mean ± 
standard deviation) trials in children and 7 ± 4 trials in 
adults due to excessive interference. Trials were then 
matched across age groups by selecting and removing 
additional trials in adults and older children, and this 
resulted in each age group having an average of 43 trials. 
On average, we had 159 ± 11 (mean ± standard devia-
tion) channels of data at UoN, and 78 ± 3 channels at SK.

We used an LCMV beamformer to project magnetic 
fields recorded at the sensors into estimates of current 
dipole strength in the brain (Van Veen et al., 1997). The 
forward model was constructed using a single-shell 
model (Nolte, 2003), fitted to the pseudo-MRI, and 
implemented in FieldTrip (Oostenveld et al., 2011). Vox-
els were placed on an isotropic 4 mm grid covering the 
whole brain, and an additional 1 mm isotropic grid cov-
ering the visual cortex (identified by dilating a mask of 
the left and right cuneus from the AAL atlas (Hillebrand 
et al., 2016; Tzourio-Mazoyer et al., 2002) with a 5 mm 
spherical structuring element). Covariance matrices 
were generated using 1–150 Hz broadband data span-
ning all trials (excluding bad trials), regularized using the 
Tikhonov method with a regularization parameter of 5% 

of the maximum eigenvalue of the unregularized matrix 
(Brookes et al., 2008). This matrix was used to compute 
the beamformer weighting parameters used for all sub-
sequent calculations.

Pseudo-T statistical images were constructed by con-
trasting either alpha or gamma power during stimulation 
and rest. Specifically, we derived four additional covari-
ance matrices (CON_alpha, COFF_alpha, CON_ gamma and 
COFF_ gamma). For the gamma matrices, we used 30–80 Hz 
filtered data and for alpha band we used 6–14 Hz filtered 
data. The ON window was 0.3–1 s, and the OFF window 
was -0.8 to -0.1 s (timings relative to the onset of the circle.

Time frequency spectra (TFS) showing neurophysio-
logical activity at the locations of maximum gamma/alpha 
modulation (identified using the 1 mm resolution images) 
were derived. TFS data in the 1–100 Hz frequency range 
were generated by first sequentially filtering broadband 
beamformer projected data into 45 overlapping fre-
quency bands (2  Hz separation, 4  Hz bandwidth). For 
each band, the Hilbert transform was computed to give 
the analytic signal; the absolute value was computed to 
derive a measure of instantaneous oscillatory amplitude, 
and these Hilbert envelopes were averaged across trials 
and concatenated in the frequency dimension. For each 
band, a mean baseline amplitude was taken in the -0.8 s 
to -0.1  s window and subtracted. Data were then nor-
malised by the baseline values to give a measure of rela-
tive change in amplitude. These data were collapsed in 
time to give spectral relative change (i.e., Figs. 3 and 5). 
In all cases, we investigated the statistical relations 
between age and amplitude modulation using Spear-
man’s correlation.

2.2.1.  DCM

Neurophysiologically informed modelling was performed 
using dynamic causal modelling (DCM) for steady-state 
responses implemented in SPM8 (Moran et  al., 2009; 
Shaw et al., 2017). The canonical microcircuit structure 
(shown in Fig. 4a) describes a model that strikes a bal-
ance between biological reality and complexity that can 
be modelled. The model estimates membrane potentials 
and postsynaptic currents of cell populations across four 
interacting cortical layers through differential equations. 
We followed the methods described in Shaw et al. (2017). 
Briefly, the model takes the spectral content from the 
time course at the location of maximum gamma modula-
tion, pre-whitens the data to flatten the spectra to reveal 
alpha, beta, and gamma peaks, and scales the amplitude 
to ensure the individual outputs are all in the same range. 
The alpha peak is then explicitly modelled using a single 
Gaussian (constrained to 8 to 13 Hz) and removed, as the 
model is capable of generating clear beta and gamma 

https://github.com/nsrhodes/gamma_opm_2024
https://github.com/nsrhodes/gamma_opm_2024
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peaks but alpha is thought to be generated over more 
extensive circuity, including thalamo-cortical interactions 
(Bastos et  al., 2014). Priors are set by first fitting the 
model to the mean spectral density across all partici-
pants (seen in Fig. 4b). Finally, the model with the set pri-
ors is fit to each individual participant’s spectral signal.

Here, we differ from the analysis described in Shaw 
et al. (2017) by using relative spectra as the model input 
rather than pre-whitening by removal of the 1/f profile to 
remove the strong power-law that dominates the signal, 
as this proved advantageous for OPM data where abso-
lute spectra are more prone to noise (see also Fig. S2 and 
Section 4). Relative broadband spectra from the beam-
former estimated time series at the peak gamma modula-
tion were calculated by taking the power spectral density 
(PSD) of data during the stimulus (0.3–1 s) minus the PSD 
of data during the rest (-0.8 to -0.1 s) windows, divided 
by the rest period. The absolute of these values was 
derived (so all features are shown as positive peaks). The 
relative spectra were normalised such that the area under 
the global average equals 1, but relative peak height was 
preserved, and the alpha peak was removed as described 
above. Model priors and parameters that have little or no 
effect (G1, G3, G10, and G13) are held constant prior to 
submitting data to model inference as in prior work (Shaw 
et al., 2017). These processes allow the DCM to estimate 
the ‘G parameters’ (the model output) that describe the 
relative contributions of excitatory and inhibitory signals 
that result in the measured beta and gamma responses, 
alongside the F-statistic, which represents the log model 
evidence (a measure of model fit with a complexity pen-
alty). The F-statistic allows for Bayesian Model Compari-
son, although this was not explored here as we are 
interested in intersubject variations rather than model 
selection. Having fitted the model to each subject’s spec-
trum, we used Spearman’s correlation to investigate the 
relationship between age and all model parameters. We 
also investigated the ratio between parameters in the 
superficial layer (G12/G11) and the deep layer of pyrami-
dal neurons (G6/G9) to probe age changes in the hypoth-
esised E-I balance (Shaw et al., 2017).

3.  RESULTS

3.1.  Gamma oscillations change with age

Figure 2a-f, show the spatial and spectro-temporal signa-
tures of gamma activity for all participants. Data were sep-
arated into six age groups and, for all groups, an image 
showing the spatial distribution of gamma modulation is 
shown (as a red overlay on the standard brain, averaged 
across subjects). TFS extracted from the location of peak 
gamma modulation are also shown. In the TFS, yellow 

indicates a task-induced increase in oscillatory amplitude 
relative to baseline, whereas blue indicates a decrease. All 
age groups showed a peak gamma response that local-
ised to the primary visual cortex, as expected. We saw no 
significant difference in the location of the visual gamma 
response with age (see Fig. 2 g) in any axis.

We did, however, see a changing spectro-temporal 
picture with age. In younger subjects, we saw a task-
induced broadband gamma increase (this is also clear in 
task and rest PSD plots given in Fig. S2). In older children, 
the broadband response remains, and we also observed 
bimodal gamma activity, most prominent at around 
35 Hz and 70 Hz, with the higher-frequency component 
qualitatively in agreement with the literature in older 
children (Gaetz et al., 2011; Orekhova et al., 2018). This 
further evolved to a broad band response with addi-
tional high-amplitude narrow band activity at around 
60 Hz in adults, consistent with the literature in adults 
(Bharmauria et  al., 2016; Murty et  al., 2018; Ray & 
Maunsell, 2011).

Figure 3 formalises the data in Figure 2 by demonstrat-
ing statistical significance of the observed spectral 
changes. The central graph shows stimulus-induced rela-
tive change in oscillatory amplitude for the 6 age groups, 
plotted against frequency. This was calculated by con-
trasting the 0.3–1 s window (during stimulation) to the -0.8 
to -0.1  s (baseline) window (Campbell et  al., 2014). The 
inset plots show relative change in oscillatory amplitude 
for individual participants, for frequency bands 11–15 Hz, 
29–33 Hz, and 51–55 Hz. Here, each data point represents 
a single individual in the study and data are plotted against 
age. Spearman’s correlation showed a significant increase 
in spectral amplitude across gamma frequencies spanning 
45–65 Hz (indicated by the grey horizontal bar), peaking in 
the 51–55 Hz range (R = 0.58,  p = 1.8 ×10−10). There was 
no significant effect, however, at 11–15  Hz (alpha fre-
quency range) or 29–33 Hz (low gamma) (R = −0.15,  p = 0.14 
and R = −0.1, p = 0.31, respectively). Separate analysis of 
the child and adult groups showed trends of positive rela-
tion with age across the gamma band (Spearman’s cor-
relation of p  <  0.05 in range 59–71  Hz in children and 
43–57 Hz in adults), though these did not survive correc-
tion for multiple comparisons. This is consistent with a 
stimulus-induced broadband gamma increase at all ages, 
demonstrated by the visual localisation and positive rela-
tive change, with emergent narrowband effects in adults.

3.2.  DCM suggests E-I balance drives spectral 
changes

A local spectral DCM, optimised for V1 (Shaw et  al., 
2017), was used to determine how inhibitory and excit-
atory activity drives the observed changes in gamma 
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Fig. 2.  Age-group-specific time-frequency spectrograms show development of gamma oscillations. Participant-averaged 
pseudo-T statistical images of gamma modulation are shown in red (4 mm resolution) overlaid on the standard brain. The 
time-frequency spectrograms show group-averaged oscillatory dynamics from the location of largest gamma modulation 
in the visual cortex. (a) 2–4-year-olds (n = 23), (b) 5–8-year-olds (n = 15), (c) 9–13-year-olds (n = 12), (d) 21–24-year-olds 
(n = 19), (e) 25–28-year-olds (n = 18), and (f) 29–34-year-olds (n = 14) (ages are inclusive). Note the evolution of spectral 
signature with age. (g) Ellipsoids describing the mean and standard deviation of the coordinates of the largest gamma 
modulation for all age groups. We saw no significant difference in the location of the visual gamma response with age 
in any axis (p = 0.44, p = 0.52, and p = 0.51 for x, y, and z axes, measured using Spearman correlation to test for a 
systematic shift in spatial localisation due to age).
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oscillations between children and adults. This model, 
which is summarised by Figure 4a, has been verified in 
recent literature using adult MEG recordings and phar-
macological intervention (Shaw et al., 2017, 2020). Fig-
ure 4b shows the average (absolute) relative difference 
spectrum (between stimulation and rest, divided by 
baseline) for all participants, highlighting the gamma 
change, while also showing features of the signal that 
fall into the alpha and beta bands. Similar spectra (for 
individuals) were used to fit the DCM. The model output 
comprised ‘G parameters’, which are related to spec-
tral features as outlined in Table S3 in Supplementary 
Information, and the F-statistic, a metric of model qual-
ity of fit, which showed no significant age relation 

(Fig.  S4). Figure  4c shows the results of our correla-
tional analyses between each model parameter and 
age, with significant relations in parameters G5 
(describing the excitatory output from spiny stellate 
cells to inhibitory interneurons), G11 (the inhibitory con-
nection between inter-neurons and superficial pyrami-
dal neurons) and the ratio between G12 and G11 (which 
represents the relation between excitatory and inhibi-
tory connections between superficial pyramidal neu-
rons and inhibitory inter-neurons). These relationships 
remain significant following correction for multiple 
comparisons and are detailed in Table S4 in the Sup-
plementary Information. The parameters demonstrating 
significant age-related correlations are shown in the 

Fig. 3.  Gamma amplitude changes with age. The stimulus-induced relative change in oscillatory amplitude from baseline 
is plotted against frequency for the 6 age groups (a). The relative change was measured in the 0.3 to 1 s window post-
stimulus compared to the -0.8 s to -0.1 s baseline period (i.e., ((stimulation–baseline)/baseline) for each frequency band). 
Lines show the group means with shading representing standard error across subjects. The inset scatter plots (b, c, and 
d) show relative change for all individuals in the study plotted against age (colour indicating age group), with straight 
lines fitted to the data. We show data in the frequency ranges 11–15 Hz (b) (R = −0.15, p = 0.14); 29–33 Hz (c) (R  =-0.1, 
p = 0.31); and 51–55 Hz (d) (R = 0.58,  p = 1.8 ×10−10 ) (all p-values generated using Spearman’s correlation). The star (**) 
and grey horizontal bar between 45 and 65 Hz indicates significance following Bonferroni correction with a threshold of 
p < 0.0011 to account for 44 comparisons across different frequency bands.
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scatter plots in Figure 4d; notice that inhibition tends to 
increase, while excitation decreases in the superficial 
layer, such that the ratio of excitation to inhibition 
decreases with increasing age. Spearman’s correla-
tional analysis within the child and adult age groups 
separately observed the same negative trend in the E-I 
ratio, although these did not reach significance inde-
pendently. We independently assessed the G12/G11 
ratio for male and female participants, with results pre-
sented in Figure S5 of the Supplementary Information. 

Analyses showed that the significant negative relation 
of E-I balance with age held in both sexes.

3.3.  Alpha suppression is comparable across ages

Finally, for completeness, we assessed how age affects 
stimulus-induced change of alpha oscillations. Figure 5a 
shows the spatial signature of alpha suppression (in blue, 
overlaid on the standard brain) alongside the TFS data 
from the locations of largest task-induced alpha modula-

Fig. 4.  DCM suggests E-I balance underlies age related spectral differences. (a) The canonical microcircuit model 
describes the relative contribution of cells within the cellular column. The model takes spectral input from data in the visual 
cortex and fits a set of parameters (G1–G12) which describe the relative contribution of the different neuronal assemblies 
to the measured signal. Excitatory signals are indicated by blue and inhibitory in orange. (b) The absolute values of the 
average (across all subjects) relative difference spectrum between active and control windows (divided by the control 
window), with canonical frequency bands highlighted (alpha in blue, beta in green, and gamma in red). (c) Correlation of 
the model-derived G parameters with age. Significant age-relations were observed in G5, G11 and the ratio of parameters 
G12 and G11. (d) Scatter plots for G5 (excitatory); the E-I ratio of G12 and G11, and G12 (excitatory) and G11 (inhibitory) 
individually. The star (*) indicates uncorrected significance (p < 0.05), and (**) indicates significance following Bonferroni 
correction with a threshold of p < 0.005 to account for 10 comparisons across parameters.
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tion, across the age groups. Note that these regions differ 
from those of maximum gamma change (as would be 
expected from previous studies (Muthukumaraswamy & 
Singh, 2013)) and, consequently, the gamma change is 
less prominent. We found that the localisation of the 
alpha desynchronisation is somewhat lateralised; this 
was expected based on previous studies (e.g., Wiesman 

et al., 2021). We show in our TFS that alpha modulation is 
clear in all age groups.

In Figure 5b, the spectrum shows relative change in 
oscillatory amplitude from baseline as a function of fre-
quency (including a zoomed in area over the alpha band). 
The inset scatter plots show relative change, for individ-
ual participants, for the frequency bands 5–9 Hz, 9–13 Hz, 

Fig. 5.  Alpha suppression is comparable across ages. (a) Pseudo-T statistical maps and time-frequency spectrograms 
from the locations of peak of alpha suppression. Data are divided by age group. (b) Relative change in oscillatory 
amplitude as a function of frequency (i.e., ((stimulation – baseline)/baseline) for each frequency band). The inset scatter 
plots show how stimulus-induced amplitude change differs for individuals in the (c) 5–9 Hz range (R = 0.31, p = 0.0013),  
(d) 9–3 Hz range (R = −0.04, p = 0.7261 and (e) 11–15 Hz range (R = −0.25 p = 0.0093) bands (colour indicating age group). 
The star (*) indicates uncorrected significance (p < 0.05).
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and 11–15 Hz. We found no change in alpha modulation 
for the 9–13 Hz canonical alpha band. However, we saw 
increased (more negative) 5–9 Hz modulation in younger 
participants (which was also observed with Spearman’s 
correlation for only the child participants with p < 0.05) 
and increased 11–15 Hz modulation for older participants 
(though these were non-significant following correction 
for multiple comparisons across 44 frequency bands). 
This is in broad agreement with the widespread finding 
that the alpha rhythm’s peak frequency increases with 
age (Miskovic et al., 2015). We support this finding further 
by directly assessing the relation between the peak alpha 
frequency with age, showing a significant positive cor-
relation in Supplementary Information (Fig. S3).

4.  DISCUSSION

E-I balance (or imbalance) underpins healthy (and atypical) 
brain function and its characterisation could provide valu-
able insights into neurodevelopmental disorders (Sohal & 
Rubenstein, 2019). While in-vitro and animal studies form 
the basis of such models, the ability to non-invasively 
characterise E-I balance using imaging offers a means to 
bridge the gap between experimental animal and in-vivo 
human physiology. A significant body of literature sug-
gests that gamma oscillations provide a window on E-I 
balance. For example, animal studies show that visual 
gamma frequency is reduced by administration of thiopen-
tal, which interacts with GABA neurotransmission (Oke 
et al., 2010). In humans, alcohol, propofol, and ketamine 
have all been shown to alter gamma amplitude and fre-
quency, which has been attributed to modulation of GABA 
receptors (Campbell et  al., 2014; Saxena et  al., 2013; 
Shaw et al., 2015). These direct pharmacological manipu-
lations suggest that gamma oscillations change with mod-
ulation of E-I balance. However, the formation of gamma 
oscillations and their developmental trajectory in humans 
in the early years of life remains poorly understood. This 
study is the first to capitalize on the potential of OPM-MEG 
for the investigation of gamma oscillations from toddler-
hood to adulthood, and the first to apply a DCM to OPM 
data to explore the underpinnings of gamma signals.

Using a well-established visual paradigm, we showed 
that age has a significant impact on the spectro-temporal 
neurophysiological response from the visual cortex. In 
the broadband gamma frequency range (30–80 Hz), low-
amplitude oscillations are present, even early in child-
hood, and appear to remain through to adulthood. 
However, in later childhood we see a multi-spectral 
response, with a higher frequency (>60 Hz) component 
that agrees with the previous literature in school-aged 
children (Gaetz et al., 2011; Orekhova et al., 2018, 2023) 
and a lower frequency component (~30 Hz) that falls into 

the high beta band. These are then followed by the well-
established higher-amplitude band limited oscillations (at 
~50–60  Hz) which are present in adulthood, and thus 
agreeing with previous studies (Hoogenboom et al., 2006; 
Muthukumaraswamy et  al., 2010). Statistical analyses 
showed a significant increase in oscillatory amplitude 
with age in frequency bands spanning 45–65 Hz, with a 
peak change in the 51–55 Hz window. It is worth noting 
that the PSDs during stimulation and rest (Fig. S2) show 
these signals are not driven by changes in the aperiodic 
slope, which has been shown to flatten with age and be 
implicated in E-I balance (Gao et al., 2017; Vandewouw 
et al., 2024). Despite these significant spectral changes, 
we saw no measurable shift in the spatial origin of gamma 
oscillations with age, with the maximum signal consis-
tently localised to the primary visual cortex.

Our results also highlight that visual gamma, even in 
adults, has high inter-individual differences and this 
agrees with other reports employing similar paradigms 
(e.g., Muthukumaraswamy et al., 2010). This lack of con-
sistency of strong-induced gamma oscillations across 
individuals may be due to paradigm or system design. 
Despite evidence that OPM systems could be more sen-
sitive than conventional MEG systems, our system was 
not optimised specifically for the detection of these sig-
nals; it was structured for whole-head uniform coverage. 
Future work should investigate whether an optimised 
system design (i.e., dense coverage of triaxial OPM sen-
sors across visual cortices (e.g., in Hill et al., 2024)) may 
improve capture of induced gamma signal from younger 
participants. Further, while our visual paradigm was 
clearly able to induce visual gamma oscillations from our 
participants, previous studies in school aged children 
typically employed a larger stimulus and more trials 
(Orekhova et al., 2018); our lower amplitude signals may, 
therefore, be due in part to stimulation parameters. Further 
work should investigate the optimal stimulus to robustly 
induce gamma oscillations across the lifespan.

Despite a lower amplitude gamma response in chil-
dren, the suppression of alpha oscillatory amplitude 
during visual stimulation was relatively stable across all 
age groups. In the 9–13  Hz band, alpha suppression 
showed no significant relationship with age; this provides 
a key validation of data quality across our dataset (i.e., if 
data were of poorer quality in younger participants, we 
would likely see a drop in alpha suppression in those indi-
viduals, which is not the case). We did, however, see a 
trend towards increased 5–9 Hz modulation in younger 
participants and increased 11–15  Hz modulation in 
adults. This is in good agreement with other studies 
(Miskovic et al., 2015) which show a shift in alpha peak 
frequency with age (albeit typically in resting state data), 
with younger subjects tending to have a lower alpha  
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frequency. We further confirmed this by directly testing 
peak alpha frequency during the rest period, showing a 
significant increase with age in Figure S3. This provides 
further verification of our data quality.

Our DCM illustrates how age-related changes in 
gamma oscillations are driven by a neural circuit that 
matures with age. Specifically, our results show that sev-
eral parameters demonstrate an age dependency: excit-
atory signals from spiny stellate cells to inhibitory 
interneurons (parameter G5) are significantly increased, 
and the relative excitatory versus inhibitory signalling 
from superficial pyramidal neurons to inhibitory interneu-
rons (the ratio of parameters G12 and G11) is significantly 
decreased in adults compared to children. Previous work 
has demonstrated that G5 relates to beta and gamma 
amplitudes (Shaw et  al., 2017); thus, this is in strong 
agreement with our spectral results, where we showed 
increased gamma amplitude in older participants. A 
decrease in the ratio between G12 and G11 supports our 
initial hypothesis that maturation would see a change in 
E-I balance (Larsen et al., 2022), such that inhibition in 
the superficial layer of the visual cortex increases, while 
excitation decreases, with age. This is likely due to an 
increase in gamma aminobutyric acid (GABA) (Jansen 
et al., 2010) and a relative decrease in glutamate (Hädel 
et  al., 2013). We are the first to implicate these age-
related changes via assessment of visual gamma oscilla-
tions. It is important to note that the model used is a 
simplified approach to infer the biophysical origin of such 
signals, and we have necessarily assumed that the struc-
ture of the model is consistent throughout development 
(we only consider the relative strength of connections to 
vary through age). This is supported, however, by the fact 
that the laminar composition of the cortex is formed 
during early gestation (Terashima et al., 2021).

A variety of methods have been used previously to 
investigate E-I balance and the development of excit-
atory and inhibitory signalling in early life. In animal mod-
els, invasive electrophysiological techniques allow direct 
measurement of synaptic inputs and neural firing. For 
example, studies on the early postnatal development of 
mice showed maturation of inhibitory signalling in the 
somatosensory cortex led to a rapid developmental 
decrease in E-I ratio (Zhang et  al., 2011). Optogenetic 
stimulation has enabled direct manipulation of E-I bal-
ance in mice models, demonstrating the developmental 
tilt of E-I balance towards inhibition (Chini et al., 2022). In 
humans, functional MRI and magnetic resonance spec-
troscopy have been used to infer E-I balance through 
metabolic activity and neurotransmitter concentrations 
(Larsen et al., 2022; McKeon et al., 2024). However, these 
measures suffer from low temporal resolution, reliance on 
indirect mechanisms, and a challenging scanning envi-

ronment. For characterisation of the early development 
of E-I balance, OPM-MEG offers unique advantages, 
combining high temporal resolution and non-invasive 
measurement of neural signals directly related to excit-
atory and inhibitory signalling with a naturalistic scanning 
environment. These features position OPM-MEG as a 
powerful tool for bridging the gaps between human and 
animal studies of the development of E-I signalling.

This study provides an important foundational step in 
the measurement of E-I balance via gamma oscillations 
in neurodevelopment. However, there are limitations 
which should be addressed. Firstly, OPM-MEG systems 
remain a new technology; OPMs have a higher noise floor 
than conventional MEG sensors, and the number of mea-
surement channels is lower (again compared to conven-
tional MEG instrumentation). However, we did use 
helmets which are lightweight, allow subject movement, 
and come in multiple sizes enabling adaptation for age. 
This ameliorates confounds of SNR change with age and 
movement, which (anecdotally) was large in children. We 
believe this study would not have been possible using 
either conventional MEG (due to confounds of head size 
and movement) or EEG (due to gamma oscillations being 
obfuscated by muscle artefacts). Importantly, OPM sys-
tems are still under development, and it is highly likely 
that sensor density (Hill et al., 2024) and noise floor will 
improve with time, meaning OPM-MEG will likely become 
the technique of choice for high-fidelity characterisation 
of brain function in neurodevelopment in the future. Sec-
ondly, to increase participant numbers, data were col-
lected from two sites, potentially introducing a 
confounding effect of scanner configuration. To mitigate 
this, we matched recording conditions as far as possible, 
and a cross-site comparison within our adult groups 
(Fig. S1) showed no significant differences between sites. 
Further, at both sites we studied children and adults, 
meaning any measurable age-related differences are 
unlikely to be driven by site. We, therefore, think it is 
unlikely that our results could be affected by the cross-
site nature of recordings; indeed, the fact that we were 
able to demonstrate cross-site reliability is extremely 
positive to accelerate the (already rapid) uptake of OPMs 
and to support the collection of new large, across-site 
datasets. A final limitation is that we have a non-uniform 
range of participant age; while this was enough to 
demonstrate significant age-related changes, the addi-
tion of adolescents and older adults to this study would 
enable elucidation of non-linear trajectories. Future work 
will aim to fill these gaps.

An imbalance in excitatory and inhibitory neurotrans-
mission underlies current theories for the pathophysiolog-
ical underpinnings of neurodevelopmental and psychiatric 
disorders. However, the study of these signals has been 
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limited by technology, restricting most studies to adults, 
animal models, and the lab benchtop. OPM-MEG lifts 
these constraints, allowing us to measure signals relating 
to E-I balance directly, and from early life. We have demon-
strated this important milestone and our results—which 
show significant changes in gamma oscillations and E-I 
balance with age—offer insight into early cortical matura-
tion and provide a typically developing standard, from 
which clinical applications can be explored.

DATA AND CODE AVAILABILITY

Data from UoN will be made available on Zenodo. Data 
from SickKids will be available through Ontario Brain 
Institute. OPM analysis code will be made available  
on GitHub (https://github​.com​/nsrhodes​/gamma​_opm​
_2024). Dynamic causal modelling was performed using 
a variant of DCM-SSR in SPM8, and code will be made 
available upon request.
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