
Optimising water quality monitoring to 

understand biogeochemical processes in 

UK rivers and reservoirs 

 
A thesis submitted for the degree of Doctor of Philosophy 

 

by 

Inge Elfferich 

 

School of Earth and Environmental Sciences 

Cardiff University 

 

October 2024 

 



i 
 

Summary 
This thesis explores how high-frequency sensor data can improve understanding of 

environmental and biogeochemical conditions in inland water bodies, particularly for 

predicting cyanobacteria-related taste and odour (T&O) compounds geosmin and 2-

MIB in drinking water reservoirs. Since these compounds cannot be directly measured 

in situ, alternative predictors are required.  

High-frequency hydrochemical sensor data from six UK rivers showed that a minimum 

measurement frequency of four hours was required to capture the necessary variation 

in the parameters. For T&O prediction, key drivers need to be identified that high-

frequency sensors can measure. These drivers were studied in laboratory microcosms 

with reservoir water, which found that nutrient ratios (N:P and NH4
+:NO3

-) and 

concentrations impacted phytoplankton productivity, community composition and the 

production of 2-MIB. 2-MIB production was linked to benthic cyanobacteria 

(Leptolyngbya spp. and Pseudanabaena spp.) and community productivity, with total 

nitrogen being a stronger predictor than nutrient ratios, but P-limitation also played a 

role. NH4
+ caused rapid ‘boom-bust’ growth, while NO3

- led to more balanced growth 

four days later. Long-term manual sampling and sensor data from 2022-2023 in the 

same reservoir showed that optimal weather conditions led to increased productivity 

and a delayed T&O response. Geosmin concentrations (likely from planktic 

cyanobacteria) increased 1-2 weeks after high solar energy and low rainfall, while 2-

MIB (likely from benthic cyanobacteria) was linked to high temperatures and low wind 

gusts 2-3 weeks earlier. 

While N:P and NH4
+:NO3

- ratios were direct predictors of geosmin and 2-MIB, these 

are not useful for an early-warning system, because elevated NH4
+ and PO4

3-
 

concentrations were likely related to internal loading and T&O release after cell death. 

The most useful predictors were environmental parameters that support phytoplankton 

growth (seasonality, solar energy, air temperature, precipitation and wind speed), 

indirect growth indicators (dissolved oxygen, vertical mixing), and measurements of 

inflows to the reservoir via a tributary (NO3
--N, PO4

3--P, NH4
+-N or EC and turbidity, 

alongside discharge). Appropriate in situ measurement of these factors, especially 

when combined with weather forecasts, can provide early warnings of T&O events that 

can guide water treatment management.
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Chapter 1: General Introduction 
 

1.1 Cyanobacterial blooms 

Anthropogenic eutrophication is a global freshwater challenge which is likely to 

increase due to an increasing world population (Trommer et al., 2020). Eutrophication 

is used to describe the symptoms that waterbodies exhibit in response to nutrient 

fertilisation (Schindler et al., 2008). These symptoms may include increased primary 

productivity, phytoplankton growth, cyanobacterial blooms, a reduction in macrophytes 

and anoxic deeper layers during stratification due to decaying organic matter (Moss et 

al., 2011). Eutrophication together with high light availability and warm temperatures 

are some of the environmental factors that enhance cyanobacterial growth and 

persistent blooms (Paerl & Otten, 2013; Richardson et al., 2019). Climate change will 

likely result in more optimal growth conditions for cyanobacteria because of the higher 

water temperature (Cottingham et al., 2015; De Senerpont Domis et al., 2007) and 

increased nutrient availability due to runoff from agricultural or urban areas, internal 

loading from sediments and longer residence times (Paerl & Otten, 2013; Paerl & Paul, 

2012). Cyanobacterial blooms are a major water quality issue because they can affect 

animal and human health, partly due to mass cell death which results in oxygen 

depletion at the sediment (Alghanmi et al., 2018) but also due to cyanotoxins that 

some cyanobacteria can produce (Lürling & Faassen, 2013). Moreover, these blooms 

disrupt the use of water resources for example for fisheries, agriculture, recreation or 

drinking water and this results in economic loss.  

1.2 Nutrient sources and dynamics 

The most important macronutrients that drive eutrophication and support 

phytoplankton growth are nitrogen, phosphorus and carbon. The sources and 

dynamics of these nutrients in lakes or reservoirs can be separated into external 

processes (catchment inflows) and internal processes (cycling within the lake or 

reservoir).  
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1.2.1 External nutrient processes 

Nitrogen 

In freshwaters, the two main inorganic fractions of nitrogen are the oxidised form as 

nitrate (NO3
--N) and the reduced form as ammonium (NH4

+-N) but dissolved organic 

nitrogen (DON) is also important for phytoplankton (Mackay et al., 2020).   

NO3
--N enters freshwaters from agricultural land and urban areas, and due to its highly 

mobile nature it infiltrates quickly in groundwater where it accumulates (Elser et al., 

2007; Heathwaite et al., 1996; Schmutz & Sendzimir, 2018). This frequently results in 

a strong dependence of NO3
--N on hydrological connectivity in the catchment (Chen 

et al., 2018). Typical nitrate concentrations in pristine streams are 0.1 mg/L of NO3
--N 

(Allan & Castillo, 2007; Meybeck et al., 1990) but the average NO3
--N concentration in 

European rivers was 1.5 mg/L in 2016, whilst average groundwater concentrations 

were 18 mg/L in 2012 (Kristensen et al., 2018). Slurry runoff can result in spikes >60 

mg/L of NO3
--N (Vidal et al., 2000) and sewage inputs can cause spikes of total 

oxidised nitrogen (TOxN = NO3
--N + NO2

--N) of ±30 mg/L of N (Halliday et al., 2014; 

Halliday et al., 2015). 

NH4
+-N is a water-soluble ion that can turn into ammonia gas (NH3) which is toxic to 

aquatic life (Dodds & Whiles, 2020). Farming practices and urbanisation can cause 

elevated concentrations of NH4
+-N in freshwaters, through direct inputs of sewage or 

slurry, and soil runoff with NH4
+-N adsorbed to charged soil particles (Donald et al., 

2011; Schmutz & Sendzimir, 2018) as well as atmospheric deposition (Neal et al., 

2012). In pristine streams the ammonium concentration is usually around 0.015 mg/L 

of NH4
+-N (Allan & Castillo, 2007). Urbanised rivers affected by sewage runoff and 

septic leachate were found to exhibit spikes of 0.97 mg/L NH4
+-N (Mallin & McIver, 

2012), 3.49 mg/L NH4
+-N (Halliday et al., 2014) and 5.4 mg/L NH4

+-N (Halliday et al., 

2015). Rivers affected by slurry showed spikes exceeding 2 mg/L of NH4
+-N (Quilbé 

et al., 2005; Vidal et al., 2000). 

Phosphorus 

In freshwaters, phosphorus exists in the dissolved phase either as inorganic 

orthophosphate (PO4
3--P) and dissolved organic phosphorus (DOP), but is largely in 

the particulate phase adsorbed onto particles (Schmutz & Sendzimir, 2018) or inside 
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organisms, both of which are largely unavailable to phytoplankton on short-medium 

timescales. 

The most bioavailable phosphorus fraction PO4
3--P is often approximated by 

measuring soluble reactive phosphate (SRP). PO4
3--P has a strong binding capacity 

to compounds in soils, like clay particles and metals; Aluminium (Al), Magnesium (Mg), 

Iron (Fe), Copper (Cu) and Calcium (Ca). Therefore, PO4
3--P enters freshwaters during 

runoff periods, attached to soil particles from agricultural land where fertilizer or slurry 

has been applied (Schmutz & Sendzimir, 2018). In pristine streams the PO4
3--P 

concentration is usually < 0.01 mg/L of P (Allan & Castillo, 2007), but the average 

PO4
3--P concentration in European rivers was 0.045 mg/L of P in 2016 (Kristensen et 

al., 2018). Sewage runoff was found to cause spikes of up to 5.4 and 9.3 mg/L of PO4
3-

-P (Halliday et al., 2014; Halliday et al., 2015) while slurry runoff resulted in spikes of 

0.6 mg/L of PO4
3--P (Vidal et al., 2000). 

Carbon 

In freshwaters, carbon exists in the dissolved phase as inorganic carbon and organic 

carbon. Inorganic carbon fractions are photosynthesis-mediated equilibrium products 

of carbonic acid (H2CO3). Besides dissolved organic carbon (DOC), which are the 

carbon molecules in dissolved organic matter (DOM), there is also particulate organic 

carbon, which are a part of live or decaying organic matter (Wetzel, 2001). Total 

organic carbon (TOC) includes dissolved and particulate fractions. There is a range of 

different organic carbon-containing substances, humic and non-humic, with different 

molecular weights and availability for microbial decomposition (Wetzel, 2001). 

Phytoplankton, including cyanobacteria, obtain inorganic carbon as CO2 through 

photosynthesis and convert it into organic compounds. Additionally, they can acquire 

organic carbon by directly absorbing certain fractions of DOC or by consuming other 

organisms (mixotrophy) (Reinl et al., 2022).     

DOC can enter freshwaters via groundwater and runoff as part of dissolved organic 

matter (DOM), in seminatural catchments this is natural organic material from soils 

and plants etc. whereas DOM has an anthropogenic origin in catchments impacted by 

agricultural intensification or urbanisation (e.g. sewage treatment works) (Yates et al., 

2019a). DOM inputs and its nutrient composition depend largely on the catchment; 

land use, soil type (Worrall et al., 2008), vegetation, hydrology and temperature 
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(control on microbial decomposition), nutrient cycling, soil uptake and mobility (Wetzel, 

2001; Yates et al., 2019a). In pristine streams, average DOC concentrations were 2 

mg/L (Allan & Castillo, 2007), whilst DOC concentrations in rivers affected by urban 

runoff (sewage) and septic leachate, showed spikes up to 21.2 mg C/L (Halliday et al., 

2015). 

Organic N and P  

Despite being less bioavailable than inorganic phases, dissolved organic nitrogen 

(DON) and dissolved organic phosphorus (DOP), which are part of dissolved organic 

matter (DOM), have been suggested as an important fraction for phytoplankton growth 

(Mackay et al., 2020; Reinl et al., 2022). Concentrations of ammonium, urea 

(CH4N2O), dissolved organic nitrogen (DON) and dissolved organic phosphorus 

(DOP) are increasing in freshwaters due to sewage discharges, aquaculture and the 

worldwide rise of urea-based fertilizers (Glibert et al., 2016). Especially in areas of 

livestock farming, the inputs from manures and slurries are associated with high 

concentrations of DON and DOP such as urea (CH4N2O), amino acids and phytic acids 

(Turner et al., 2002). 

1.2.2 Internal nutrient processes 

Waterbodies with retention times of less than one month (0.07-0.08 years) are 

expected to limit phytoplankton biomass development, while resupplying nutrients 

from the catchment (Maberly et al., 2020). Lakes have longer retention times than 

rivers, leading to nutrient accumulation and enabling internal nutrient recycling. 

Bioavailable fractions of nutrients are taken up and stored as organic forms in live 

biomass (organic matter), whilst dead organic matter undergoes microbial 

decomposition at the sediment and this process breaks down organic N, P and C into 

bioavailable fractions again (Wetzel, 2001). Most nutrients fractions accumulate near 

the sediment in the stable period and get dispersed into the water column during 

periods of physical (wind) mixing (Jones & Welch, 1990), but some fractions become 

gaseous and volatilize, like CO2, CH4, N2, NH3 etc. (Santschi et al., 1990). 

Phytoplankton play a major role in nutrient cycling through; I) photosynthesis-

respiration cycles (uptake and release of CO2 and dissolved oxygen), II) nitrogen fixing 

capacities of some cyanobacteria, and III) producing substantial biomass (organic 

matter) followed by decaying organic matter (Cottingham et al., 2015; Parmar et al., 
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2011). Decomposition of phytoplankton debris released bioavailable P rapidly to the 

aquatic environment, resulting in positive feedback loops (Feng et al., 2018). 

Internal loading 

A stable water column (vertical stability) with warm temperatures, which often happens 

in summer, will increase microbial decomposition, lower the redox potential and result 

in anaerobic conditions at the sediment-water interface (SWI), which increases the 

internal loading of NH4
+-N and PO4

3--P (Jensen & Andersen, 1992; Jeppesen et al., 

2009; Jones & Welch, 1990; Yao et al., 2023). Anaerobic conditions initiate the 

accumulation of NH4
+-N through ammonification and suppressed nitrification 

(McCarthy et al., 2016; Perkins et al., 2019). Moreover, it transforms metals such as 

manganese (Mn), aluminium (Al) and iron (Fe) in the sediment to the dissolved fraction 

(Santschi et al., 1990), and releases PO4
3--P from metal complexes, such as Al(OH)3 

and Fe(III) (Hupfer & Lewandowski, 2008; Søndergaard et al., 2003). Kang et al. 

(2018) found that anaerobic sediment conditions doubled concentrations of P (TP, 

TDP, SRP) and N (TN) at the sediment-water interface compared to the sediments in 

aerobic environments, whilst NH4
+-N increased 12 times.  

Denitrification 

Anaerobic conditions at the sediment will also initiate microbial denitrification, the 

conversion from NO3
--N to N2 (g) (Seitzinger, 1988). The loss of NO3

--N via 

denitrification is affected by flow speed, residence time, water temperature, oxygen 

availability and organic matter (Wang et al., 2019a). Seitzinger (1988) estimated that 

denitrification removed between one and 36% of the nitrate inputs to six studied lakes. 

1.3 Taste and odour (T&O) 

Some species of cyanobacteria can produce secondary metabolites that give the 

water an unfavourable smell and taste. So-called taste and odour (T&O) compounds 

have not been related to human health impacts, but they are problematic for drinking 

water sources as it impacts customer confidence. T&O problems in drinking water are 

globally increasing in frequency and magnitude (Winter et al., 2011). This causes 

increased customer complaints (Bai et al., 2017) and high costs of additional 

powdered or granular activated carbon treatment  required due to T&O compounds 

stable nature and resistance to oxidation (Dunlap et al., 2015). Certain treatment 

processes can be used to remove T&O compounds as a single method or combined 
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approach, including granulated activated carbon (GAC) as an in-line final treatment 

step, manual additions of powdered activated carbon (PAC), ozonation or chlorination. 

T&O treatment accounted for 8% of annual plant operating costs in Saskatchewan 

(Kehoe et al., 2015). T&O problems occur in rivers (Chung et al., 2016; Espinosa et 

al., 2020; Park et al., 2018), lakes (Brownlee et al., 2004; Durrer et al., 1999; Jiang et 

al., 2016; Kutovaya & Watson, 2014; Li et al., 2007; Ma et al., 2013; Peter et al., 2009; 

Qi et al., 2020a), drinking water reservoirs (Bai et al., 2017; Billica et al., 2010; 

Dzialowski et al., 2009; Jähnichen et al., 2011; Jørgensen et al., 2016; Kehoe et al., 

2015; Olsen et al., 2016a; Otten et al., 2016; Perkins et al., 2019; Su et al., 2013; Tsao 

et al., 2014; Westerhoff et al., 2005) and aquaculture (Auffret et al., 2011). T&O 

compounds were found to accumulate in animal tissue which can impact the economic 

value of fish from fisheries (Alghanmi et al., 2018). 

1.4 Geosmin and 2-MIB 

Among the many T&O compounds, geosmin (1,10-dimethyl-trans-9-decalol) and 2-

MIB (2-Methylisoborneol) are the most common and well-studied (Figure 1.1). 

Geosmin and 2-MIB are secondary metabolites which have an unfavourable earthy or 

muddy smell and taste, and they can be detected by humans at low thresholds; 6.3 

ng/L for 2-MIB and 1.3 ng/L for geosmin (Wert et al., 2014).  

 

Figure 1.1 The molecular structure of geosmin and 2-MIB (Watson et al., 2016). 

Geosmin and 2-MIB can be produced by a variety of microorganisms including 

actinomycetes, cyanobacteria, proteobacteria, myxobacteria and some fungi (Watson 

et al., 2016). Planktic and benthic cyanobacteria, mostly filamentous species, are the 

main source of geosmin and 2-MIB production in aquatic environments (Watson et al., 

2016) but actinomycetes can also be present in the sediment (Asquith et al., 2018; 

Clercin & Druschel, 2019) or they play a role via soil runoff (Kehoe et al., 2015).  
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Several genera of cyanobacteria have been identified as geosmin producers, including 

Dolichospermum (formerly Anabaena), Aphanizomenon, Nostoc, Cylindrospermum, 

Nodularia, Calothrix, Scytonema, Tychonema, Lyngbya, Leptolyngbya, Oscillatoria, 

Phormidium and Planktothrix. Approximately 75 cyanobacterial species, growing in 

benthic, planktic or epiphytic habitats, are known to produce geosmin (Wang et al., 

2019c; Watson et al., 2016). Cyanobacteria with the ability to produce 2-MIB are less 

well understood and can sometimes produce geosmin as well. So far, the genera 

Oscillatoria, Lyngbya, Leptolyngbya, Phormidium, Microleus, Planktothrix, 

Pseudanabaena, Tychonema and Synechococcus are identified as 2-MIB producers, 

and the 35 cyanobacterial species are mostly benthic or epiphytic (Watson et al., 

2016). Certain cyanobacteria genera can be benthic or planktic, for example 

filamentous Pseudanabaena sp. has been recorded as a planktic (Yue et al., 2024) 

but also as a benthic (Gaget et al., 2017; Perri et al., 2024) 2-MIB producer. It is 

possible these genera occupy different habitats throughout their lifecycle (Cottingham 

et al., 2021), but there could also be a large variation in species traits between species 

within a genus or differences in habitat due to certain environmental conditions. 

Planktic species of cyanobacteria have been found to grow on the sediment for 

extended periods of time, if there is sufficient light availability (Boström et al., 1989). 

In a Welsh drinking water reservoir, geosmin was most likely produced by planktic 

cyanobacteria Dolichospermum sp. while Oscillatoria sp. occurred as a benthic biofilm 

in shallower regions and was a likely source of both 2-MIB and geosmin (Perkins et 

al., 2019). A large body of research (Espinosa et al., 2020; Gaget et al., 2020; 

Jähnichen et al., 2011; Otten et al., 2016; Watson & Jüttner, 2019) indicates that 

benthic mats of cyanobacteria should not be overlooked as a source of geosmin and 

2-MIB, especially in rivers, shallow lakes and shores of reservoirs (Watson & Jüttner, 

2019). Some studies attributed geosmin and 2-MIB concentrations in deeper water 

layers to actinomycetes (Chislock et al., 2021) or diatoms (Olsen et al., 2016b).  

1.5 Geosmin and 2-MIB drivers 

It is not certain why cyanobacteria produce geosmin and 2-MIB, but a few theories 

are: 1) to dump excess energy when there are high light conditions (Behr et al., 2014) 

or when cells switch from oxidized NO3
- to reduced NH4

+ (Perkins et al., 2019), 2) to 

act as a carbon source for other bacteria (Guttman & van Rijn, 2012), 3) to stimulate 
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algae to produce alkaline phosphatases (APs) which will free up organic phosphorus 

(Raven, 2010), or 4) to act as allelopathic compounds that inhibit the growth of other 

phytoplankton (Achyuthan et al., 2017; Lee et al., 2017; Ozaki et al., 2008). It is 

generally accepted that T&O production happens intracellularly during the exponential 

growth phase, with peak production in the late exponential stage, followed by 

extracellular release of T&O compounds when cells enter the stationary and death 

phase (Alghanmi et al., 2018; Naes et al., 1989; Saadoun et al., 2001; Zhang et al., 

2009). However, it is still uncertain whether cyanobacteria can actively release T&O 

compounds (Ma et al., 2013); possibly to stimulate enzymatic P release (Bar-Yosef et 

al., 2010; Raven, 2010), or if these compounds are passively released when cells die 

and release their contents (Zhang et al., 2016), or if both processes are involved 

(Wang & Li, 2015; Watson, 2003). Another discussion in the literature is whether 

chlorophyll a production affects T&O production negatively due to competing synthesis 

pathways (Kutovaya & Watson, 2014; Liu et al., 2009; Pattanaik & Lindberg, 2015; 

Saadoun et al., 2001; Shen et al., 2020; Wang & Li, 2015), or positively due to T&O 

accumulation as a result of increased cell metabolism (Alghanmi et al., 2018; Giglio et 

al., 2011; Zimba et al., 1999). Additionally, the amount of T&O compound that is 

produced per cyanobacterial cell may vary depending on the species or strain, as well 

as environmental factors (Chiu et al., 2016; Saadoun et al., 2001; Wang et al., 2016; 

Watson & Ridal, 2004).  

Geosmin and 2-MIB can be produced by benthic and planktic cyanobacterial species, 

which will have different species traits that determine the environmental conditions that 

support their growth. Planktic cyanobacteria are often the source of geosmin, and they 

rely on light availability, water temperature and nutrients. Some planktic species can 

control buoyancy which gives them a competitive advantage during vertical stability 

and some species have N2-fixation capabilities, which allows them thrive during N-

limitation and at low N:P ratios (Miller et al., 2013). Benthic cyanobacteria are often 

the source of 2-MIB, and they rely on light availability, water temperature, a stable 

water column with low sediment resuspension and nutrients. However, these species 

are not so reliable on nutrients in the water column because they can access nutrients 

in the sediment (Jähnichen et al., 2011) and are low-light acclimated so they can 

survive periods of disturbance (Abeynayaka et al., 2018; Gao et al., 2018).  
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The difference in growth habitat makes it harder to determine the source of T&O 

production, as extracellular T&O compounds can remain present in the water column 

whilst they get transported away from their source (Watson & Jüttner, 2019). The 

underlying complexities in the environmental drivers, time-lags between intracellular 

T&O production and extracellular release, and challenges in representatively 

measuring T&O within the water column, explain why cyanobacterial biomass is not 

always clearly correlated with T&O concentration in field studies (Billica et al., 2010; 

Harris et al., 2016; Jähnichen et al., 2011; Tsao et al., 2014; Wu et al., 1991). However, 

there are also examples were cyanobacterial biomass did correlate with T&O 

concentrations (Peter et al., 2009). The location, severity and timing of T&O events is 

unpredictable because it depends on a multidimensional scale of interacting 

processes which causes spatial and temporal complexity (Watson et al., 2016). 

Intracellular molecular processes that involve coding, signalling and T&O production 

play a role as well as temperature, light, nutrients, food web interactions combined 

with large- and small-scale hydrodynamics. T&O drivers could be site-specific and a 

combination of environmental factors, which was the case for cyanotoxins in three 

urban lakes in Western Australia (Sinang et al., 2015).  

Environmental and catchment processes determine the physical and chemical 

conditions of a water body, and this influences phytoplankton community structure, 

which determines the potential for 2-MIB and/or geosmin production (Figure 1.2). 

Phytoplankton growth and T&O production (C) is indirectly or directly related to the 

following processes: A) Nutrient dynamics: external inputs (related to catchment 

characteristics) and internal nutrient processes; as well as B) Hydrodynamics, 

temperature and light availability. These processes also impact one another, which 

causes complexity and frequent interdependence (Figure 1.2). 
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Figure 1.2 Environmental and catchment processes that influence phytoplankton growth and 
phytoplankton community response which can result in taste and odour production in a lake 
or reservoir. 

1.6 Nutrient dynamics (A) 

Nitrogen (N) and phosphorus (P) concentrations and their ratios play an important role 

in shaping phytoplankton community structure (Harris et al., 2016). Water column 

ratios DIN:SRP (dissolved inorganic nitrogen : soluble reactive phosphorus) and 

TN:TP (total nitrogen : total phosphorus) are used to approximate potential N- or P-

limitation for phytoplankton growth. The Redfield ratio of 16:1 for TN:TP is considered 

the threshold between N-limitation (<16) and P-limitation (>16) (Redfield et al., 1963), 

although this can vary depending on the phytoplankton species and growth stage 

(Klausmeier et al., 2004). N-limitation has also been defined as TN:TP <20 and 

DIN:SRP <13, and P-limitation as TN:TP >38 and DIN:SRP >50 (Kosten et al., 2009). 

The TN:TP ratio is heavily influenced by both external inputs and internal cycling of N 

and P, which can lead to highly variable ratios over a short space of time (Glibert et 

al., 2008). PO4
3--P uptake by bloom-forming cyanobacteria happens within 15-25 

minutes and increases productivity rates instantly (Aubriot & Bonilla, 2012). The form 

of N and P and subsequent bioavailability depends on the dominant nutrient source, 

which can vary depending on the seasons (Andersen et al., 2020).  



11 
 

Cyanobacterial dominance in phytoplankton communities is often associated with a 

low TN:TP ratio (Smith, 1983; Vrede et al., 2009), with Smith (1983) identifying a 

threshold of less than 64:1 (29:1 as mass ratio). P-limited conditions tend to favour 

chlorophytes (green algae) and diatoms, whilst cyanobacteria are more likely to 

dominate under N-limiting conditions (Andersen et al., 2020). Harris et al. (2014) 

identified a TN:TP ratio >75:1 for chlorophytes dominance and low cyanobacteria 

biomass. Several cyanobacterial taxa have specific species traits, such as N2-fixation 

and the capability to produce enzymes that enable the uptake of otherwise unavailable 

forms of nitrogen and phosphorus (Chaffin & Bridgeman, 2014; Chen et al., 2020). 

Species capable of N2-fixation, like Aphanizomenon sp., often dominate during N-

limitation and at low TN:TP ratios (Miller et al., 2013).    

The chemical form of inorganic nitrogen, oxidized as NO3
--N or reduced as NH4

+-N, 

affects the uptake rate among different phytoplankton taxa due to a difference in 

cellular energetic cost. NH4
+-N is more readily available, whilst NO3

--N uptake requires 

activation of a different transport mechanism and/or the reduction of NO3
--N to NH4

+-

N through enzymatic processes (Erratt et al., 2020; Glibert et al., 2016; Trommer et 

al., 2020). Uptake of NO3
--N can be suppressed when NH4

+-N is available (Glibert et 

al., 2016). Optimal NH4
+-N concentrations can promote faster growth compared to 

NO3
--N and urea, but excessively high concentrations can inhibit growth or even 

become toxic, with optimal concentrations depending on the class, genus or species 

of phytoplankton (Collos & Harrison, 2014; Glibert et al., 2016). In lakes and reservoirs, 

(harmful) algal blooms have been linked to elevated concentrations of NH4
+-N and 

PO4
3--P from agricultural inputs (Chen et al., 2018; Glibert, 2020; Glibert et al., 2016; 

Perkins et al., 2019) and internal loading from the sediment during periods of vertical 

stability (Hoffman et al., 2022; Yao et al., 2023). The NH4
+:NO3

- ratio can influence 

phytoplankton community structure (Glibert et al., 2016; McCarthy et al., 2009) and 

the abundance of T&O producing cyanobacteria. NO3
- enrichment tends to promote 

diatom growth, while NH4
+ enrichment favours dinoflagellates, chlorophytes (green 

algae), and (toxic) cyanobacteria (Andersen et al., 2020; Domingues et al., 2011; 

Donald et al., 2013; Donald et al., 2011; Erratt et al., 2020; Glibert & Berg, 2009; 

McCarthy et al., 2009). However, research by Kim et al. (2017) suggested that the 

NH4
+:NO3

- ratio and the N:P ratio alone did not explain the maximum growth of the 
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cyanobacterium Microcystis aeruginosa, but this was determined by the TN 

concentration instead when a minimum concentration of PO4
3- was present. 

1.7 Hydrodynamics, temperature and light availability (B) 

Temperature and light availability are important factors that influence phytoplankton 

growth, but the optimal temperature and light availability is specific for each species 

or even strain. Each species has species traits and optimal growth habitats, which 

determine how the natural environment shapes the phytoplankton community. After a 

period of phytoplankton growth, a sudden change in temperature or light can cause 

mass cell death, which can release intracellular compounds like T&O from the cells 

and have large implications for a drinking water supply (Ma et al., 2013).  

Hydrodynamics in a lake or reservoir are strongly associated with weather patterns; 

stable dry weather with a low wind speed will result in vertical stability, whilst unstable 

rainy weather with higher windspeeds will cause vertical mixing, catchment runoff and 

hydraulic flushing. Vertical stability of the water column often happens in summer 

during periods of warm stable weather and this process influences nutrient dynamics 

by increasing internal loading (PO4
3--P, NH4

+-N, etc.) and light availability by reducing 

sediment resuspension in shallow lakes. When periods of vertical stability are 

disrupted by a weather event (rainfall, wind) this causes vertical mixing and 

compounds that were accumulated at the sediment will be dispersed into the water 

column (Qi et al., 2020b). A weather events can also result in catchment runoff, which 

can impact nutrient loading, as well as hydraulic flushing which can result in 

phytoplankton loss (Reynolds, 2006).  

Short-term meteorological variability was found more important for planktic 

cyanobacterial bloom response than average temperature for two years with summer 

heatwaves (Huber et al., 2012). In one year long-lasting (>3 weeks) thermal 

stratification promoted blooms, whilst the other year had no blooms due to a period of 

lower temperatures and stronger winds mid-summer that weakened stratification 

(Huber et al., 2012). During a period of stratification, little chemical transport happens 

between the surface and bottom of the lake or reservoir, which means that nutrients 

can get depleted in the surface layer, whilst they accumulate at the bottom. Planktic 

phytoplankton that are capable of buoyancy control will have a competitive advantage 

as they can move to nutrient-rich lower water (Wagner & Adrian, 2009; Walsby, 1994), 
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while also able to access enough light near the surface (Ibelings et al., 1991). Warm, 

dry conditions with a stable water column were found to cause the most severe 

cyanobacteria blooms due to increased internal phosphorus loading, whilst summer 

runoff and precipitation caused bloom die-off due to reduced water temperature, light 

availability and water column mixing (Hecht et al., 2022). Climate change and lake 

warming is expected to result in stronger seasonal fluctuations as well as higher 

internal loading caused by longer periods of vertical stability, which will result in optimal 

conditions for long-lasting cyanobacterial blooms (Yindong et al., 2021). 

Benthic cyanobacteria have access to nutrients in the sediment, so their growth mainly 

depends on light availability and temperature, which are both impacted by 

hydrodynamics. Hydrodynamics also impact the stability of the sediment where they 

grow, vertical mixing causes disturbance and potentially burial of cells. Benthic 

cyanobacteria need approximately 1% of surface irradiance to grow, but this is species 

dependent (Jähnichen et al., 2011). Increasing water levels as well as suspended 

particles, a high organic matter content or a planktic algal bloom in the water can 

reduce the light availability at the sediment. Benthic cyanobacteria can proliferate if 

light availability in the littoral zone is sufficiently high, which is more likely in low-

nutrient conditions due to low turbidity (Jähnichen et al., 2011).  

1.8 Phytoplankton growth and T&O production (C) 

Multiple mesocosm and laboratory culture studies have been conducted to investigate 

the drivers of T&O production by cyanobacteria. An overview with details of these 

studies can be found in Appendix A Table S.1. The following factors were investigated; 

nutrient concentrations and ratios TN:TP as well as NH4
+:NO3

-, vertical mixing, light 

availability and temperature.  

Oh et al. (2017) concluded that NO3
--N increased geosmin and 2-MIB production, 

whereas most other research states that NH4
+-N stimulated production and NO3

--N 

inhibited it (Clercin & Druschel, 2019; Harris et al., 2016; Perkins et al., 2019; Saadoun 

et al., 2001; Shen et al., 2020). The inhibitory effect was demonstrated by Saadoun et 

al. (2001) and Shen et al. (2020), as elevated NO3
--N concentrations increased cell 

growth and chlorophyll a production by Dolichospermum smithii and Anabaena sp., 

while geosmin synthesis decreased. The production of 2-MIB by Nostoc sp. and 

Anabaena sp. seemed to be suppressed by the presence of added nitrogen, but 
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geosmin production was not affected (Milovanović et al., 2015). Geosmin production 

by benthic Oscillatoria sp. was related to high concentrations of NH4
+-N, NO3

--N and 

PO4
3--P and a low DIN:SRP ratio of 4:1 (Espinosa et al., 2021) and geosmin production 

by planktic Anabaena sp. was also stimulated by a low N:P ratio and NH4
+-N additions 

(Saadoun et al., 2001). Water temperature and NH3-N were positively correlated with 

2-MIB production by planktic Pseudanabaena sp. (Gao et al., 2018; Lee et al., 2023). 

Several field studies identified that geosmin and/or 2-MIB concentrations related to 

low TN:TP ratios (Winston et al., 2014; Yue et al., 2024) as well as high NH4
+:NO3

- 

ratios (Harris et al., 2016; Perkins et al., 2019). Harris et al. (2016) suggested a T&O 

risk threshold of TN:TP <66:1 (30:1 as mass ratio). 

Ma et al. (2018) showed that high concentrations of NH4
+-N in aquatic ecosystems 

can cause a stoichiometric N:P imbalance which results in a sudden P limitation.  

Dzialowski et al. (2009) hypothesized that limitation of inorganic phosphorus was an 

important determinant of geosmin production by cyanobacteria in five Kansas (USA) 

reservoirs. During P-limitation it is possible that some T&O producing cyanobacteria 

excrete alkaline phosphatases; enzymes to free up P from dissolved organic forms 

(Chen et al., 2020), or release T&O metabolites to stimulate other phytoplankton to 

produce these enzymes, which is shown for cyanotoxins (Bar-Yosef et al., 2010; 

Raven, 2010). Phosphorus inhibited T&O production only when it was limited but no 

changes in T&O production were reported due to increasing levels of phosphorus (Oh 

et al., 2017). Dzialowski et al. (2009) found a negative relationship between PO4
3--P 

concentrations and geosmin levels in Lake Huron (USA), which contained the 

cyanobacterial taxa Aphanizomenon, Anabaena, Microcystis and Oscillatoria. This 

finding emphasizes that PO4
3--P concentrations may relate to T&O concentrations 

differently than TP in field studies, as algal blooms convert inorganic P into organic P 

within its biomass, which raises TP levels (Dodds & Whiles, 2020). Moreover, algal 

blooms can cause stronger internal nutrient cycling, because decaying blooms release 

high concentrations of nitrogen and phosphorus (Wang et al., 2019b), as well as taste 

and odour compounds (Ma et al., 2013). Adam et al. (2016) found that colony-forming 

Aphanizomenon sp. released about half of its recently fixed N2 (g) as NH4
+-N, which 

provided an N-source to the phytoplankton community. 

Vertical stratification enhanced 2-MIB concentrations produced by Leptolyngbya sp. in 

a Chinese reservoir (Yue et al., 2024). Paerl et al. (2022) found a negative correlation 
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between discharge and 2-MIB concentrations in a drinking water reservoir in North 

Carolina (USA), which suggested stratification favoured the growth of 2-MIB 

producers. Compounds like geosmin and 2-MIB can be released from the bottom 

water through the whole reservoir when mixing disrupts the vertical stratification, which 

was discovered in Lake Taihu, China (Qi et al., 2020b). Olsen et al. (2016b) found that 

nutrient enrichment (phosphorus and nitrogen) quickly boosted geosmin regardless of 

mixing, which was linked to cyanobacterial biovolume, whilst 2-MIB was influenced by 

nutrient enrichment and mixing, and was also associated with cyanobacteria. Benthic 

cyanobacteria (Oscillatoria sp.) in rivers were found to produce the highest geosmin 

concentrations when there were low flow conditions (0.09 L/s) and low light conditions 

(20% of natural light conditions; 107 µmol photons m-2 s-1) (Espinosa et al., 2020). The 

expression levels of 2-MIB-related genes in Pseudanabaena foetida var. intermedia 

were light-dependent; unfavourable light conditions (dark period or green light) 

significantly reduced 2-MIB production, possibly due to demand for photopigment 

synthesis (Dayarathne et al., 2024). This indicates that a certain threshold of available 

light is required for T&O production by benthic cyanobacteria. Sudden changes in 

water level have been shown to reduce growth of benthic cyanobacteria (Jähnichen 

et al., 2011), which has been used as a management strategy for 2-MIB (Su et al., 

2017). Su et al. (2017) used the reservoir shape, bathymetry and light coefficient of 

the water to calculate areas of potential benthic T&O producing cyanobacterial growth 

to inform their water level management. However, a sudden increase in water level 

can also release high levels of 2-MIB when conditions become unfavourable, and cells 

lyse (Rong et al. 2018). 

In laboratory experiments with samples from Lake Taihu (China) by Huang et al., 

(2018a), high cyanobacteria biomass led to increased T&O concentrations. 

Additionally, higher temperatures were found to increase rates of cell decomposition, 

which triggered T&O release (Huang et al., 2018a). Yen et al. (2007) found a positive 

correlation between water temperature and 2-MIB production in two drinking water 

reservoirs in Taiwan. However, several other studies suggest that growth-inhibiting 

temperatures and light intensities might inhibit cyanobacteria chlorophyll a production 

whilst stimulating or forcing the production of geosmin and/or 2-MIB (Wang & Li, 2015; 

Zhang et al., 2009). Saadoun et al. (2001) found in laboratory cultures of Anabaena 

sp. that increasing light intensity at 20 °C boosted geosmin production and chlorophyll 
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a, while higher temperatures favoured chlorophyll a production and higher light 

intensity favoured geosmin production. Tsao et al. (2014) showed that geosmin 

production was higher in deeper water layers with low light conditions, compared to 

surface water with a high light intensity. Wang and Li (2015) found that growth inhibiting 

conditions and subsequent T&O production was species-specific; Anabaena ucrainica 

produced highest geosmin concentrations at 10 °C and 60 µmol photons m-2 s-1 and 

Pseudanabaena sp. Produced highest 2-MIB concentrations at 35 °C and 60 µmol 

photons m-2 s-1. Jeong et al. (2021) found that excretion of 2-MIB by benthic 

Pseudanabaena yagii happened slowly in the growth phase but rapidly increased 

when the temperature dropped. 

1.9 Modelling, prediction and early warning 

1.9.1 Planktic cyanobacteria predictions 

Predicting cyanobacterial blooms in freshwater has been attempted by many studies, 

but certain elements are site-specific, and it is often hard to extrapolate the findings to 

other lakes and reservoirs. Water column stability, hypolimnetic TP, % cyanobacteria 

biovolume two weeks prior and 7-day mean wind speed was found to predict % 

cyanobacteria biovolume in two Canadian temperate lakes (Persaud et al., 2015). 

Descy et al. (2016) found that phosphorus (total and soluble reactive phosphorus), 

dissolved inorganic nitrogen, epilimnion temperature, photoperiod and euphotic depth, 

were good predictive variables depending on the ecological traits of the dominant taxa 

(Aphanizomenon, Microcystis, Planktothrix and Anabaena), as well as meteorological 

factors wind, rainfall and surface irradiance. Recknagel et al. (2016) developed 

forecasting models for Anabaena, Aphanizomenon and Microcystis for Lake 

Müggelsee and found that water temperature and transparency, concentrations of 

NO3
--N and PO4

3--P were key predictors, but the same species had different thresholds 

during a hypertrophic and a eutrophic phase. Zhang et al. (2012) determined that 

sunshine hours and wind speed were the primary contributors to onset of the 

cyanobacterial blooms in Lake Taihu (China) and were also good predictors of 

variability in duration of annual blooms. They suggest that when nutrients are 

sufficiently high, climatic variables are critical in predicting cyanobacterial blooms. 

Meteorological factors as temperature, wind speed and wind direction were combined 

in an index, to determine cyanobacteria occurrence at a drinking water intake in 

Canada, which were found to explain 68% of a bloom that occurred (Ndong et al., 
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2014). A modelling study by Hecht et al. (2022) found that cyanobacterial blooms in 

Lake Champlain (USA) were driven by warm, dry conditions with a stable water 

column (internal loading) whilst summer runoff and precipitation caused water column 

mixing as well as lower temperature and light availability, which caused bloom die-off. 

1.9.2 Benthic cyanobacteria predictions 

Fewer studies have been undertaken to predict benthic cyanobacterial growth. 

Sediment stability and light availability are important factors that determine benthic 

cyanobacterial growth, which is why cyanobacterial growth in rivers has been related 

to low water flow (Espinosa et al., 2020). Su et al. (2017) used bathymetry to classify 

areas of the littoral zone with sufficient light availability as high-risk zones for deep-

living Planktothrix sp. in Miyun Reservoir (China) and determined that water level 

management could significantly reduce taste and odour problems related to this 

species. Benthic cyanobacteria Lyngbya wollei was found downstream of tributaries 

draining farmlands in the St. Lawrence River (Canada), and models identified that 

DOC (positive), TP (negative) and DIN:TDP (negative) were important variables 

explaining its spatial distribution (Lévesque et al., 2012). They hypothesised the 

growth of benthic Lyngbya wollei was related to high DOC, low phosphorus and 

nitrogen under relatively low DIN:TDP ratios, because this resulted in little competition 

with macrophytes. However, it is likely that nutrient concentrations were much higher 

within the benthic mat than water column samples revealed. Observations of 

Phormidium sp. mats in New Zealand showed that this taxa was tolerant to velocity, 

depth and substrate type, and that its abundance seemed to increase with increasing 

nitrogen concentrations (Heath et al., 2015). Perri et al. (2024) found that toxic benthic 

cyanobacterial mats, including Pseudanabaena sp. and Leptolyngbya sp. were 

associated with a low daily river inflow, high TP and NO3
- concentrations as well as the 

day of the year.  

1.10 T&O prediction 

There are several examples of studies in which a model has been created to predict 

T&O events (Chong et al., 2018; Dzialowski et al., 2009; Kehoe et al., 2015; Parinet 

et al., 2013). Most studies to date have used simple linear regression models with a 

range of different water quality parameters related to phytoplankton productivity 

(turbidity or water transparency, chlorophyll a and total phosphorus) (Dzialowski et al., 

2009). Some non-linear models exist that have extended model predictions based on 
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microbial abundance data, phytoplankton data and hydrodynamics, or they have 

incorporated phytoplankton data in hydrodynamic models (Chong et al., 2018). More 

recently artificial intelligence and machine learning have been used for T&O prediction 

(Kehoe et al., 2015; Parinet et al., 2013). Kehoe et al. (2015) created a random forest 

model to forecast T&O events in a reservoir in Saskatchewan, Canada, using algal 

data (T&O producing algae taxa), temperature, total phosphorus and chlorophyll a. 

The model showed highest T&O predictive capacity with a fortnight time-lag and was 

able to predict taste and odour threshold number levels up to 12 weeks in advance 

(Kehoe et al., 2015). Parinet et al. (2013) tested various models to predict geosmin 

concentrations in three raw water sources in Canada. The best multi-linear regression 

model used four variables (phaeophytin, sum of green algae, chlorophyll a and 

potential Redox), whilst the best model with artificial neural networks included ten 

variables (potassium, heterotrophic bacteria, organic nitrogen, total nitrogen, 

phaeophytin, total organic carbon, sum of green algae, potential Redox, UV 

absorbance at 254 nm and atypical bacteria) (Parinet et al., 2013). A non-linear Cubist 

model was able to predict geosmin concentrations in Cheney Reservoir (Kansas, 

USA), with total Kjeldahl nitrogen, day of the year and silica as most important 

predictors (Harris & Graham, 2017). In this model, chlorophyll a could predict 

maximum geosmin concentrations when turbidity was >22.2 FNU and silica was <10.4 

mg/L. Regression analysis and self-organising maps revealed that cyanobacterial 

blooms of certain species, water temperature, reservoir volume and oxidised nitrogen 

availability were key factors to predict geosmin events in an Australian reservoir 

(Bertone & O’Halloran, 2016).  

1.10.1 Existing sensors for water quality monitoring 

Most drinking water treatment plants don’t sample for T&O compounds frequently 

during the whole year, as the laboratory method is time consuming and expensive. 

There is often a decision framework in place that uses alert levels from manual 

sampling to identify periods of T&O risk in which they increase manual sampling and 

management through additional treatment (Kibuye et al., 2021). Delays between the 

detection of T&O events and potential management decisions are caused by the 

waiting time for manual laboratory results or the time passed until customers start 

complaining (Kibuye et al., 2021). These delays result in a reactive response at the 

treatment, whilst a pro-active response would be better, which highlights the 
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importance of developing T&O risk predictions and forecasts. Most currently available 

T&O models (Section 1.10) also use laboratory results, which would still not allow a 

pro-active response (forecasting) but can only be used for hindcasting. Real-time 

prediction of T&O events using high-frequency sensors is an area of research that still 

needs to be further explored, but it could provide direct evidence for pro-active 

management at the water treatment plant. For example, additional powdered activated 

carbon (PAC) can be added in preparation for elevated T&O concentrations.    

Commercially available water quality sensors that might be useful for T&O prediction 

are: water temperature, water level (pressure), pH, oxidation-reduction potential 

(ORP), electrical conductivity (EC), turbidity, dissolved oxygen (DO), 

photosynthetically active radiation (PAR), dissolved organic matter (DOM) as CDOM 

(chromomorphic or coloured DOM) or fDOM (fluorescent DOM), photosynthetic 

pigments (chlorophyll a, phycocyanin, phycoerythrin) and nutrients (NO3
--N, NH4

+-N, 

PO4
3--P, TP) (Table 1.1). Standard sensors on a multiparameter probe often include 

EC, pH, ORP, DO, water temperature, water level and turbidity, which use well 

established sensing technologies (Table 1.1). Chlorophyll a and phycocyanin sensors 

measure fluorescence of the pigment in situ, which estimates total phytoplankton 

biomass and cyanobacteria-specific biomass, respectively (Painter et al., 2023) (Table 

1.1). CDOM sensors measure UV-Visible absorbance and fDOM sensors measure 

fluorescence (Table 1.1), but they both provide estimates of DOM and can be used to 

estimate DOC in aquatic environments (Danhiez et al., 2017).  

Table 1.1 Water quality parameters and their commercially available sensor technique and 
measurement method. 

Sensor 

technique 

Measurement method Water quality parameters 

Optical Absorbance (UV-Vis) Nitrate (NO3
--N)/Nitrite (NO2

--N) 

CDOM 

Turbidity 

Fluorescence fDOM  

Protein-like (Tryptophan) and Humic-like 

Photosynthetic pigments: chlorophyll a, 

phycocyanin, phycoerythrin 

Dissolved oxygen (DO) 

Irradiance Photosynthetically Active Radiation (PAR) 

Electrochemical Ion Selective Electrode pH 

Oxidation-reduction potential (ORP) 

Nitrate (NO3
--N) 
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Ammonium (NH4
+-N) 

Polarographic/Galvanic Dissolved oxygen (DO) 

Inductive/Conductive Electrical conductivity (EC) 

Other Thermistor Temperature 

Transducer Pressure 

Wet chemistry 

analyser 

(reagent-based) 

Colorimetric Nitrate (NO3
--N)/Nitrite (NO2

--N) 

Ammonium (NH4
+-N) 

Soluble reactive phosphorus (SRP) 

Total phosphorus (TP) 

  

Recent advancements of in situ monitoring technology have resulted in the availability 

of nutrient sensors and analysers that can monitor NH4
+-N, NO3

--N, SRP and TP at a 

high frequency (Beaton et al., 2012; Beaton et al., 2017; Blaen et al., 2016; Clinton-

Bailey et al., 2017; Daniel et al., 2020; Grand et al., 2017; Mowlem et al., 2021). Nitrate 

(NO3
--N) can be measured with three different technologies: ion-selective electrode 

(electrochemical), UV-Visible absorbance (optical) and a wet chemistry analyser 

(reagent-based and colorimetric) (Table 1.1). Wet chemistry analysers use the same 

assay-based methods that are generally applied in laboratory analysis with reagents 

and a colour reaction, but on a microfluidic scale, which is why these analysers are 

also called “lab-on-chip”. Ammonium (NH4
+-N) can be measured with ion-selective 

electrode or a wet chemistry analyser (reagent-based and colorimetric). Soluble 

reactive phosphorus (SRP; indicative of PO4
3--P) and total phosphorus (TP) can 

currently only be measured with a wet chemistry analyser (reagent-based and 

colorimetric).  

Different sensor technologies come with differences in cost, sensor performance 

(sensitivity, limit of detection or LoD, precision and accuracy; see Table 1.2), 

maintenance requirements, response time etc. which will determine the best choice of 

technology for a parameter and a certain monitoring purpose (Rozemeijer et al., 2025). 

Ion-selective electrodes are cheapest (few hundred pounds), but also least sensitive 

and are therefore mainly used in wastewater treatments or other applications where 

concentrations of analytes tend to be high (Bende-Michl & Hairsine, 2010). UV-Visible 

absorbance optical sensors are expensive (a few thousand pounds), they provide a 

better sensitivity but can also suffer from interferences within the water matrix and 

biofouling (Blaen et al., 2016; Daniel et al., 2020). Wet-chemical analysers are the 

most expensive (tens of thousands of pounds), they are most accurate and can 

measure at low LoD due to internal calibration solutions, but they also require more 
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maintenance (reagent replacements), produce waste and have a slower response 

time (Blaen et al., 2017; Daniel et al., 2020).  

Table 1.2 Terms commonly used by sensor manufactures to describe sensor performance 

Term used Description of term 

Limit of Detection 

(LoD) 

The lowest amount of a substance present that can be reliably 

detected by a sensor 

Range 
The difference between the highest and lowest amount of a 

substance that can be detected by a sensor 

Sensitivity 
The smallest degree of change in the environment required to trigger 

a change in the sensor reading 

Accuracy 
The degree to which a given result given by a sensor is likely to vary 

from the actual amount of a substance present 

Precision 
The likelihood of obtaining the same result if exactly the same test is 

repeated by a sensor 

1.10.2 Potential sensors for T&O prediction 

Johnston et al. (2024) evaluated water quality and meteorological parameters that 

could be measured with in situ sensors and deployed as continuous monitoring 

systems for harmful algal blooms in lakes. If cyanobacterial blooms can be monitored 

continuously, this will provide further information on T&O risk. The overview in Figure 

1.3 highlights which parameters could be measured with in situ sensors to capture the 

three key processes in lakes or reservoirs related to algal blooms: water column 

conditions (hydrodynamics, light availability and temperature), nutrient dynamics 

(external and internal) as well as phytoplankton productivity and biomass. 
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Figure 1.3 Key processes in lakes or reservoirs (dark blue squares) that are interconnected, 
and which can be identified in situ by measuring the parameters in the coloured circles 
adjacent to each blue square. The parameters in circles in the middle can be indicative of any 
of the three key processes. 

Meteorological data from weather stations and potentially forecasts can provide insight 

in water column conditions, as well as measuring water level, water temperature and 

PAR with sensors, possibly at different depths in the water column (Figure 1.3). 

Nutrient dynamics are important in driving cyanobacterial blooms, and fDOM/CDOM, 

NO3
--N, NH4

+-N and PO4
3--P can be measured with sensors or analysers. Generally, 

a higher nutrient concentration would indicate increased risk of blooms, but DOM 

(fDOM/CDOM) can also affect light attenuation and limit phytoplankton growth, and 

has been found to interfere with phytoplankton fluorescence measurements 

(chlorophyll a and phycocyanin) (Johnston et al., 2024). Dissolved oxygen dynamics 

in the water indicate photosynthesis and respiration, and it can be used to estimate 

phytoplankton productivity as well as periods of cell death and decomposition related 

to oxygen consumption (Johnston et al., 2024). Measurements of pH and ORP also 

indicate processes related to photosynthesis processes. Fluorescence sensors can 

measure chlorophyll a to estimate phytoplankton biomass and phycocyanin to 

estimate cyanobacteria biomass. If they are both measured, the relative abundance 

of cyanobacteria in the total phytoplankton community can be estimated. Dedicated 

phytoplankton classification sensors exist that detect multiple fluorescence signals 
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and estimate the percentage of each group to the total phytoplankton community, 

which can provide useful insights into T&O risk, as long as manual samples are used 

alongside sensor data (Johnston et al., 2024). 

The parameters turbidity and EC can indicate several physical and biogeochemical 

processes and need to be interpreted with catchment knowledge in mind. Changes in 

baseline measurements can indicate important events in the ecosystem, which can be 

further investigated using other sensors or manual sampling. Turbidity can provide an 

indication of suspended particles, light availability and mixing, but also interferes with 

fluorescence measurements (chlorophyll a and phycocyanin) (Johnston et al., 2024). 

EC can be related to the salinity of the lakes, which relates to water column stability 

and risk of algal cell lysis (Johnston et al., 2024), but also indicates significant pollution 

events in rivers (Halliday et al., 2014) or changes in chemistry of river inflows (Painter 

et al., 2023). Continuous real-time monitoring of the current state of the lake or 

reservoir can be combined with information from short-term local weather forecasts to 

potentially provide an early warning of cyanobacterial bloom risk and subsequent risk 

of T&O events. 

1.10.3 Using sensors for water quality management 

There are several examples of real-time sensor measurements that are used to inform 

water treatment management. Water temperature, pH, dissolved oxygen (DO), 

nitrogen, phosphate, organic matter and algal count was measured with real-time 

sensors at the raw water intake of a water treatment facility in Beijing, and DO could 

be used as an indicator for T&O events (Chen et al., 2019). A decrease in DO at the 

source water in late August was a result of decaying algae consuming oxygen, and 

the peak of T&O would happen a few weeks later (Chen et al., 2019). Chlorophyll a, 

water temperature and dissolved oxygen were dominant abiotic factors influencing 

T&O concentrations in Lake Taihu (China) (Xuwei et al., 2019), which could be 

measured with sensors. Clercin and Druschel (2019) studied Eagle Creek Reservoir 

(USA) and found a time-lag of 37 days between peak inflows from a river and 2-MIB 

and Geosmin. Investigating the site-specific lag-time between tributary inflow and T&O 

event is a useful tool that can be measured with sensors to provide an early warning. 

Chlorophyll a and phycocyanin sensors are useful indicators of cyanobacteria risk 

(Almuhtaram et al., 2021b; Carey et al., 2021; Cotterill et al., 2019; Yang et al., 2019), 
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and potential for T&O compounds (Bertone et al., 2018; Painter et al., 2023). Zamyadi 

et al. (2016) highlighted the potential of in situ phycocyanin fluorescence probes in a 

drinking water treatment plant to optimise the dosing required to treat 2-MIB. However, 

without species information this does not mean T&O are produced by these species 

(Kibuye et al., 2021) and it won’t detect benthic T&O producers (Almuhtaram et al., 

2021b). Jalili et al. (2022) suggested a decision framework to manage cyanobacteria 

and cyanotoxins at a drinking water treatment plant combining phycocyanin sensor 

measurements at the raw water intake and laboratory results of toxins and T&O 

measurements. Dissolved oxygen and chlorophyll a sensors were used in a German 

drinking water reservoir to investigate vertical patterns in oxygen and chlorophyll a 

during stratification, which highlighted the effect of Planktothrix sp. on anoxia (Wentzky 

et al., 2019). A reservoir in Virginia (USA) was equipped with a meteorological station, 

DO and water temperature sensors at different depths and a UV-Visible 

spectrophotometer, to model hydrodynamics and predict iron and manganese 

concentrations (Hammond et al., 2023). 

The most common algal bloom monitoring in reservoir and lakes uses real-time 

sensors deployed on buoys, measuring meteorological parameters, standard water 

quality parameters with multiparameter sondes as well as chlorophyll a and 

phycocyanin fluorescence (Painter et al., 2023). Real-time nutrient analysers have 

currently been used in oceans (Mowlem et al., 2021), glacial runoff (Beaton et al., 

2017), rivers (Beaton et al., 2012; Bowes et al., 2015b; Halliday et al., 2014; Lloyd et 

al., 2015; Outram et al., 2014; Rode et al., 2016; Wade et al., 2012) and (drinking) 

water treatment plants (Rode et al., 2016). They are often deployed in rivers to 

measure nutrient patterns at a high frequency to investigate diurnal biogeochemical 

cycling, the response to storms and to detect sources of pollution (Bowes et al., 2015b; 

Chappell et al., 2017; Halliday et al., 2014; Scholefield et al., 2005). Real-time nutrient 

analysers have not yet been successfully utilized for monitoring algal blooms in lakes 

and reservoirs, but a trial in several lakes in the USA highlights the potential 

opportunities and challenges (Johnston et al., 2024). Given that nutrient dynamics are 

a likely driver of geosmin and 2-MIB production, measuring nutrients in the reservoir 

in real-time could help predict geosmin and 2-MIB events.   

It is important to design a sensor monitoring network by considering the most efficient 

resource application. Depending on the sensors or analyser, their smallest 
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measurement frequency is between 1 minute and 30 minutes. Sensors and analysers 

have running costs and maintenance costs, particularly for lab-on-chip nutrient 

analysers which use reagents and produce waste, but even optical and 

electrochemical systems have duty cycles that when exceeded result in decreased 

sensitivity or general performance. It needs to be carefully considered what temporal 

frequency of measurement is necessary to capture data variability without creating 

excess information. Several studies have shown that nutrient loading calculations are 

impacted by a limited sampling frequency (Cassidy & Jordan, 2011; Johnes, 2007; 

Lloyd et al., 2014) and it was also found to impact Water Framework Directive (WFD) 

classifications (Skeffington et al., 2015). A process called ‘aliasing’ can happen where 

low sampling frequencies impact the data variability so much that the data can get 

wrongly interpreted (Chappell et al., 2017). Moreover, typical manual sampling 

strategies are also expected to cause bias due to fair weather bias (Rand et al., 2022) 

and sampling during working hours and typical working days (Halliday et al., 2015; 

Skeffington et al., 2015). 

1.11 Research gaps 

The environmental drivers of geosmin and 2-MIB production remain uncertain, partly 

due to the limited frequency of manual sampling, which fails to capture the full 

complexity of the physical, chemical and biological factors influencing water 

conditions. Additionally, these drivers are likely influenced by the species traits of the 

T&O producing cyanobacteria species. Furthermore, geosmin and 2-MIB may be 

produced by benthic or planktic cyanobacteria species, which will result in different 

environmental drivers. Nutrients have been suggested as a key factor in various 

laboratory culturing and field studies, especially considering NH4
+:NO3

- and DIN:SRP 

ratios. The response to NO3
--N, NH4

+-N and PO4
3--P by geosmin and 2-MIB producing 

cyanobacteria has been tested in culture studies. However, these studies are generally 

unrealistic because there is no competition or interaction with other phytoplankton, 

bacteria or zooplankton. Field studies, which include these factors, often have limited 

temporal frequency and hence the lag-time between an environmental driver, the 

growth of cyanobacteria and geosmin and 2-MIB concentrations, cannot be 

determined.  

To predict T&O in real-time, several commercially available sensors could be used to 

measure parameters that influence T&O, for example water column conditions, 
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nutrient dynamics, phytoplankton productivity and biomass of certain phytoplankton 

groups within the community. Currently high-frequency, in situ nutrient analysers have 

mainly been applied to understand biogeochemical cycles in rivers and are rarely used 

in lakes or reservoirs. Sensors are being used to predict cyanobacterial blooms in 

drinking water treatment plants and subsequent T&O events (for example, dissolved 

oxygen in Chen et al. (2019), phycocyanin fluorescence in Zamyadi et al. (2016) and 

ambient environmental conditions combined with chlorophyll a fluorescence in Painter 

et al. (2023)), but these factors seem highly site-specific, and knowledge is still limited. 

Questions remain how to design a monitoring network effectively which uses 

resources efficiently. Sampling frequency of sensor measurements needs to 

accurately represent biogeochemical processes, without using additional resources.  

It was therefore hypothesized that:  

1) Differing sampling frequencies of water quality sensors can impact 

interpretations of biogeochemical processes.  

To explore this hypothesis, Chapter 2 investigates high-frequency hydrochemical data, 

including nutrients (NO3
--N, SRP and TP), from six UK river catchments to determine 

the impact of measurement time and frequency on the interpretation of 

biogeochemical processes. 

2) Nutrient concentrations and ratios are important factors in predicting geosmin 

and 2-MIB events. 

In Chapter 3, a laboratory microcosm study was conducted with a natural 

phytoplankton community from a Welsh drinking water reservoir to investigate the 

effect of nutrient ratios (NH4
+:NO3

- and DIN:SRP) and concentrations on the 

phytoplankton productivity, community structure and subsequent T&O compound 

production. 

3) Sensor data can provide an early warning for geosmin and 2-MIB events. 

Chapter 4 investigates how 2-MIB and geosmin events in a Welsh drinking water 

reservoir could be predicted. A comprehensive data analysis was performed using 

long-term data from manual sampling and laboratory analysis, as well as high-

frequency in situ sensor data from a deployment in 2022-2023 that measured NO3
--N, 

NH4
+-N and several standard water quality parameters. 
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Chapter 2: Interpretation of river water quality data 

is strongly controlled by measurement time and 

frequency 
 

2.1 Introduction 

Water quality monitoring programmes must strike a balance between resource 

efficiency (cost) and representation of changes in water conditions required to fulfil the 

monitoring purpose. Traditional water quality sampling relies on periodic sample 

collection and subsequent laboratory analysis. However, such manual sampling 

regimes cannot capture all events, and indeed biases in data can be caused by 

changing day and time of the week (Johnes, 2007; Skeffington et al., 2015), weather 

conditions (Rand et al., 2022) and extreme high or low flow conditions (Lloyd et al., 

2015). Rand et al. (2022) compared manual and automated sensor data from the 

Belgrade Lakes, USA, where they found that manual lake sampling showed a 

significant likelihood to take place during “fair weather”, with lower windspeeds and 

rainfall intensity and higher air temperature than the mean. Infrequent manual 

sampling of water chemistry, which most likely occurs during standard working hours 

at regular intervals (weekly, monthly etc.), can bias the calculation of annual average 

concentration, annual nutrient load and environmental quality standards (Cassidy & 

Jordan, 2011; Halliday et al., 2015; Johnes, 2007; Jordan et al., 2007; Skeffington et 

al., 2015). Extreme high or low flow conditions are important for nutrient transport; they 

can contribute to most of the total nutrient load in rivers with a flashy hydrology 

(Cassidy & Jordan, 2011). These conditions are often short-lived, only occur 

infrequently (Johnes, 2007; Lloyd et al., 2014) and will not be captured fully by 

infrequent manual sampling. High flows can promote transport of sediment-bound 

nutrient fractions from land to water or via in-channel remobilisation, whilst low flow 

conditions can be dominated by nutrient inputs from sewage effluent in urbanised 

rivers, due to low dilution capacity (Halliday et al., 2015), as well as nutrient delivery 

along throughflow pathways including from waterlogged soils when there is drizzle 

(Collins et al., 2010; Durand et al., 2011; Evans & Johnes, 2004; Lloyd et al., 2014; 

Yates & Johnes, 2013). Thus, sampling regimes that capture such conditions are 

critical to reflect nutrient transport processes and estimate nutrient loads accurately. 
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Advances in in situ sensing technologies have the potential to reduce bias associated 

with sampling periodicity. Continuous or high temporal resolution hydrochemical 

sampling therefore can enable an enhanced understanding of catchment processes 

(Bieroza et al., 2023; Blaen et al., 2017; Bowes et al., 2015b; Kirchner et al., 2004; 

Lloyd et al., 2015; Rode et al., 2016). This is especially relevant for transient events 

and short-term biogeochemical dynamics, including diurnal or other cyclic patterns that 

are closely linked to hydrological and biological processes (Khalil & Ouarda, 2009) 

such as pollutant load estimates (Johnes, 2007) and response to storm events 

(Chappell et al., 2017; Jordan et al., 2007), as they are based on representative 

measured concentrations and the discharge rate. In the UK, increased interest in high-

resolution water quality monitoring is partly driven by the recent implementation (April 

2023) of Section 82 of the Environment Act 2021, which requires water companies to 

deploy continuous water quality monitoring up and down stream of all sewage effluent 

discharges to a water course (DEFRA, 2023; Hanson, 2023). Simultaneously, drinking 

water production is moving towards smart catchment monitoring and management 

with high-resolution sensor technologies in source waters; for example for anoxia 

(Wentzky et al., 2019), iron and manganese concentrations (Hammond et al., 2023) 

and algal bloom related issues (Carey et al., 2021; Painter et al., 2023; Zamyadi et al., 

2016). 

An important consideration in monitoring, however, is that more data are not always 

better (Coraggio et al., 2022). The optimal sampling regime must balance the minimum 

frequency needed to capture fluctuations, particularly in flashy streams, and the 

maximum frequency that can be collected sustainably (considering power demands 

and data costs) without returning redundant information and increasing potential noise 

in the data that masks the information required (Coraggio et al., 2022; Khalil & Ouarda, 

2009). The objectives of the monitoring network, for example meeting certain 

environmental quality standards, detecting sources of pollution or measuring a change 

before or after a mitigation, will determine the required data analysis, which in turn 

sets requirements for the temporal resolution of the data. Determining the temporal 

frequency of measurement is not a static process. Measurement intervals can be 

optimised over time or in response to external stressors (Coraggio et al., 2022), for 

example adaptive monitoring (Blaen et al., 2016) aims to optimise the intervals in real-

time when a threshold is met, like an extreme event.  
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This chapter will investigate the first overarching hypothesis: Differing sampling 

frequencies of sensors can impact interpretations of biogeochemical processes. A 

systematic assessment was conducted using high resolution hydrochemical sensor 

data from six different UK catchments. The following research questions were 

addressed: 

1) What is the lowest measurement frequency that can fully capture data 

variation in different water quality parameters? 

2) How does sampling at specific times of the day impact the interpretation of 

biogeochemical cycles? 

3) What is the effect of measurement frequency on the interpretation of 

biogeochemical cycles? 

2.2 Materials and methods 

2.2.1 Catchment characteristics 

High-frequency water quality data were collected at least every hour using in situ 

sensors, in six different UK rivers (Figure 2.1): the Wylye (Hampshire Avon 

catchment), Enborne (Kennet catchment), Blackwater drain (Wensum catchment), 

Thames (Thames catchment), Hiraethlyn (Conwy catchment) and Newby Beck (Eden 

catchment).  

 

Figure 2.1. Catchments in the UK that were used for this study. 
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The monitoring stations in the Hampshire Avon (Lloyd et al., 2015; Lloyd et al., 2019; 

Outram et al., 2014), Wensum (Cooper et al., 2018; Outram et al., 2014) and Eden 

(Outram et al., 2014; Owen et al., 2012; Perks et al., 2015) catchments were part of 

the DEFRA funded Demonstration Test Catchments (DTC). The Enborne monitoring 

station was part of the LIMPIDS programme and UKCEH Thames Initiative (Bowes et 

al., 2018; Bowes et al., 2015a; Halliday et al., 2014; Wade et al., 2012) and the Conwy 

catchment was monitored as part of the DOMAINE programme (supplied by Chris 

Yates and Penny Johnes, University of Bristol, Bristol, UK; underpinning data set as 

referenced by Mackay et al. (2020) and Yates et al. (2023)). The Thames monitoring 

station at Goring-on-Thames was part of UKCEH Thames Initiative monitoring 

(unpublished data, supplied by Mike Bowes, UK Centre for Ecology & Hydrology, 

Wallingford, UK, and the UK Environment Agency; referenced in Rode et al. (2016) 

and Moorhouse et al. (2018)). The studied catchments cover a wide range of 

catchment characteristics related to geology and climate, like the base flow index (BFI) 

and mean flow (Table 2.1). Moreover, they vary significantly from 13 to 4634 km2 in 

area, and there is a marked difference in land use (Table 2.1). Further details about 

the catchments can be found in the papers referenced in Table 2.1.  
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Table 2.1. Catchment characteristics of the six UK catchments studied and the exact period of high-frequency monitoring. 

River Hiraethlyn Enborne Wylye Thames Blackwater Drain Newby Beck 

Catchment Conwy Kennet Hampshire Avon Thames Wensum Eden 

Monitored location Bodnant Brimpton Brixton Deverill Goring-on-Thames Kiosk F - Park 

Farm 

Newby 

Latitude 53.2260 51.3803 51.1600 51.5235 52.7771 54.5853 

Longitude -3.7990 -1.1838 -2.1901 -1.1435 1.1491 -2.6202 

Catchment size (km2) 20.5 (g) 148.0 50.2 4633.7 (h) 19.7 12.5 

Elevation of sampling 

point (m a.s.l.) 

11 (f) 62 189 (a) 30 43 (a) 233 (i) 

Annual average 

rainfall (mm) 

1200 (f) 810 (d) 967 (d) 680 (d) 655 (a) 1167 (a) 

Baseflow Index (BFI) 0.46 (f) 0.54 (d) 0.93 (a) 0.64 (d) 0.66 (c) 0.39 (a) 

Mean flow (m3/s) 0.54 (l) 1.06 (l) 0.47 (l) 23.0 (l) 0.094 (c) 0.33 (l) 

Dominant land use Improved 

grassland (g) 

Arable and 

grassland 

Livestock and 

cereals 

Arable/horticulture, 

improved 

grassland (h) 

Intensive arable 

cultivation 

Livestock 

(dairy and 

meat) 

% Urban 0.3 (g) 6.5 7.0 7.3 1.0 2.0 (d) 

Land use distribution 
   

 
  

Monitoring start date 19/06/2015 01/11/2009 13/03/2012 29/12/2013 08/03/2011 14/09/2011 

Monitoring end date 30/09/2017 29/02/2012 05/03/2014 13/10/2015 31/12/2014 01/01/2016 

a: Robson and Reed (1999); b: https://www.landis.org.uk/soilscapes/ (accessed: 24/06/2021); c: Cooper et al. (2018); d: Marsh and Hannaford 

(2008); e: https://en-gb.topographic-map.com/maps/iu/United-Kingdom/ (accessed: 24/06/2021); f: Estimate based on Yates et al. (2023) and 

Marsh and Hannaford (2008); g: Yates et al. (2019a); h: Gauging station Thames at Reading https://nrfa.ceh.ac.uk/  (accessed: 24/06/2021); i: 

Outram et al. (2014); j : Lloyd et al. (2019); k : Bowes et al. (2015b); l: Calculated from dataset. Legend for land use distribution pie-charts:  

https://www.landis.org.uk/soilscapes/
https://en-gb.topographic-map.com/maps/iu/United-Kingdom/
https://nrfa.ceh.ac.uk/
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The list of monitored parameters varied slightly per site, but all included temperature, 

water level or discharge, pH, electrical conductivity (EC), dissolved oxygen (DO), 

turbidity, chlorophyll a (Chl-a), nitrate (as N) and total reactive phosphorus (TRP). At 

some sites, total phosphorus (TP) and ammonium (as N) were also measured. Full 

details of all equipment and sampling regimes are described below for each sampling 

campaign. 

2.2.2 Site descriptions and equipment 

DOMAINE: Hiraethlyn at Bodnant 

The Hiraethlyn is a tributary of the River Conwy in North-Wales, in the relatively more 

urbanised part of the catchment. The DOMAINE project established this monitoring 

station at Bodnant in June 2015 and collected data until September 2017. More 

information on this site can be found in Table 2.1 and Yates et al. (2019a). Water level 

(pressure transducer in a stilling well), velocity (acoustic Doppler flow meter) and the 

stream profile was used to estimate average discharge (m3/s). Velocity measurements 

were not reliable enough to create discharge data for the whole dataset. Other sensors 

were; an OTT HydroMet Hydrolab MS5/DS5 (OTT HydroMet, Kempten, Germany) for 

standard water quality parameters, a Sea-Bird SUNA v2 for nitrate (NO3
--N) and a 

Sea-Bird ECO-FL for CDOM & fDOM and chlorophyll a (Sea-Bird Scientific, Bellevue, 

Washington, USA) (Table 2.2). To validate the sensor measurements, spot samples 

were taken daily or weekly depending on the time period, which were analysed in the 

Bristol University laboratory, following standard procedures (Yates et al., 2019a). 

DOMAINE data are available on the Environmental Information Data Centre (UK 

Centre for Ecology and Hydrology): https://eidc.ac.uk/. 

LIMPIDS: Enborne at Brimpton 

The River Enborne is a tributary of the River Kennet. There are a few sewage 

treatment works (STW’s) in the catchment serving some small towns and villages 

within the catchment. The LIMPIDS program installed the monitoring equipment at 

Brimpton in November 2009, and they measured until February 2012. Detailed 

information on the catchment and monitoring set-up can be found in Table 2.1 and 

Table 2.2 and Wade et al. (2012). Discharge was monitored by the EA flow monitoring 

station at Brimpton. Sensors installed were a YSI 6600 v2 multi-parameter probe (YSI 

Inc., Yellow Springs, Ohio, USA) for standard parameters, a Hach Nitratax Plus for 

nitrate (as N) (Hach, Loveland, Colorado, USA) and a Systea Micromac C (Systea 

https://eidc.ac.uk/
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S.p.A, Anagni, Italy) to measure total reactive phosphorus (TRP) (Table 2.2). The 

monitoring station was housed within an insulated shed on the riverbank, to protect 

the equipment from extreme weather and potential theft. The Nitratax was installed in 

the river, but the YSI 6600 and Systea Micromac C were located in flow cells in the 

shed that were intermittently filled every hour with river water via a peristaltic pump. 

There was no filtration step in the analyses of TRP. In addition, manual samples were 

taken each week and analysed in the UKCEH laboratories using standard analytical 

methods described in Bowes et al. (2018); Wade et al. (2012). LIMPIDS data are 

available on the Environmental Information Data Centre (UK Centre for Ecology and 

Hydrology): https://eidc.ac.uk/.   

Demonstration test catchments (DTC): Wylye at Brixton Deverill, 

Blackwater Drain at Park Farm and Newby Beck at Newby 

Each DTC site had a monitoring network, with an overarching aim but run by local 

scientists. The Wylye at Brixton Deverill is a tributary of the Hampshire Avon (Lloyd et 

al., 2015; Outram et al., 2014). This monitoring station was maintained by the 

University of Bristol. The Blackwater Drain at Park Farm (Kiosk F) is a small 

agricultural stream in the Wensum catchment (Cooper et al., 2018; Outram et al., 

2014). The monitoring station there was maintained by the University of East Anglia 

and the Wensum Alliance. Newby Beck at Newby (close to Morland) is a tributary of 

the River Eden (Outram et al., 2014; Owen et al., 2012). This monitoring station was 

maintained by Durham University. At the Wylye, discharge was monitored by EA flow 

monitoring stations locally. At the Blackwater Drain and Newby Beck, discharge was 

estimated based on water level (pressure transducer in stilling well), velocity (acoustic 

Doppler flow meter) and the stream profile. In the case of Blackwater Drain, the 

discharge data were not available for analysis. Rain gauges were installed at 

Blackwater Drain and Newby Beck. At all locations, sensors installed were a YSI 6600 

v2 multi-parameter probe (YSI Inc., Yellow Springs, Ohio, USA) for standard 

parameters, a Hach Nitratax Plus for nitrate (NO3
--N) and a Hach Sigmatax SC 

followed by a Hach Phosphax Sigma to measure Total Reactive Phosphorus (TRP) 

and Total Phosphorus (TP) after a digestion step (Hach, Loveland, Colorado, USA) 

(Table 2.2). The sensor data has been validated with routine spot sampling, this was 

done daily in the Wylye, weekly in the Blackwater Drain and monthly in Newby Beck. 

Samples were analysed in three different local laboratories at the related universities, 

https://eidc.ac.uk/
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using standard methods. An inter-laboratory comparison in 2011-2012 showed that 

the analytical procedures were consistent in the three catchments (Outram et al., 

2014). DTC data and contact details for data requests are visible on the Agricultural 

and Environmental Data Archive: http://www.environmentdata.org/.   

UKCEH: Thames at Goring 

The River Thames flows through an urbanised part of the UK. The sensors were 

deployed between December 2013 and October 2015. The instrumentation was 

housed in a mains-powered, insulated building by the riverbank upstream of Cleve 

Lock, near the town of Goring-on-Thames. At hourly intervals, water was pumped from 

the river into two flow-through tanks within the building, to reduce the impact of 

biofouling in the river. An EXO2 sonde (YSI Inc., Yellow Springs, Ohio, USA) within 

one of the flow-through tanks had probes to measure water temperature, dissolved 

oxygen, conductivity, turbidity, pH, chlorophyll a and ammonium. The other larger (10 

litre) tank contained a Hach Nitratax probe for measuring nitrate concentrations. Water 

was sub-sampled from the tank for total phosphorus and total reactive phosphorus 

using a Hach Phosphax / Sigmatax spectrophotometric auto-analyser (Hach, 

Loveland, Colorado, USA) (Table 2.2). The YSI EXO2 was replaced with a new, fully 

calibrated EXO2 each month, and the Phosphax self-calibrated every 2 days. In 

addition, manual samples were taken each week and analysed in the UKCEH 

laboratories using standard analytical methods described in Bowes et al. (2018), 

alongside Aquacheck quality control standards (LGC Standards, Teddington, UK), to 

groundtruth the automatic water quality data. Discharge was recorded by the EA 

gauging station at Caversham, Reading, and downloaded via the National River Flow 

Archive (https://nrfa.ceh.ac.uk/). 

http://www.environmentdata.org/
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Table 2.2. Detailed information on sensor equipment used at each monitoring station and three shades of green indicate the frequency (freq. in 
table) of each measurement, with dark green = every 1 hour, medium green = every 30 minutes and light green = every 15 minutes. 

River Hiraethlyn Enborne Wylye Thames Blackwater Drain Newby Beck 

Detailed 
information 

Personal 
communication 

Penny Johnes and 
Chris Yates 

Bowes et al. 
(2015b); Wade et 

al. (2012) 

Lloyd et al. (2016); 
Outram et al. (2014) 

Personal 
communication 

Mike Bowes and 
Dan Read 

Cooper et al. 
(2018); Outram et 

al. (2014) 

Cooper et al. (2018); 
Owen et al. (2012) 

Parameters 
measured 

with 
sensors 

freq. 
Sensor 

information 
freq. 

Sensor 
information 

freq. 
Sensor 

information 
freq. 

Sensor 
information 

freq. 
Sensor 

information 
freq. 

Sensor 
information 

Discharge 
(m3/s) 

  x   

EA flow 
monitoring 
station River 
Enborne at 
Brimpton 

  

EA flow 
monitoring 
station River 
Wylye at 
Brixton 
Deverill 

  

EA flow 
monitoring 
River 
Thames at 
Caversham, 
Reading 

  x   

Acoustic 
Doppler flow 
meters 
(Argonaut-
SW, Sontek) 
to estimate 
discharge 
using 
velocity, 
stage and 
stream profile 

Level/stage 
(m) 

  

Pressure 
transducer 
in stilling 
well 
(FL9000) 

  x   

Thistle 24R 
Incremental 
Shaft 
Encoder with 
a float and 
counterweight 
in stilling well 

  x   
Pressure 
transducers 
in stilling well 

  x 

Rainfall 
(mm) 

  x   x   x   x   
Rain gauge 
installed at 
site 

  
Rain gauge 
installed at 
site 
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Dissolved 
oxygen 
(mg/L) 

  
Hydrolab 
MS5 

  YSI 6600 v2   YSI 6600 v2   YSI EXO2   YSI 6600 v2   YSI 6600 v2 

Turbidity 
(NTU) 

  
Hydrolab 
DS5 

  YSI 6600 v2   YSI 6600 v2   YSI EXO2   YSI 6600 v2   YSI 6600 v2 

Chlorophyll 
a (µg/L) 

  
Sea-Bird 
ECO-FL 

  YSI 6600 v2   YSI 6600 v2   YSI EXO2   YSI 6600 v2   YSI 6600 v2 

pH   
Hydrolab 
MS5 

  YSI 6600 v2   YSI 6600 v2   YSI EXO2   YSI 6600 v2   YSI 6600 v2 

Electrical 
conductivity 

(µS/cm) 
  

Hydrolab 
MS5 

  YSI 6600 v2   YSI 6600 v2   YSI EXO2   YSI 6600 v2   YSI 6600 v2 

Water 
temperature 

(°C) 
  

Hydrolab 
MS5 

  YSI 6600 v2   YSI 6600 v2   YSI EXO2   YSI 6600 v2   YSI 6600 v2 

Ammonium 
as N (mg/L) 

  x   x   YSI 6600 v2   YSI EXO2   x   x 

Nitrate as N 
(mg/L) 

  
Sea-Bird 
SUNA v2 

  
Hach 
Nitratax 
Plus 

  
Hach Nitratax 
Plus SC 

  
Hach 
Nitratax Plus 
SC 

  
Hach 
Nitratax Plus 
SC 

  
Hach Nitratax 
1000 SC 

Total 
phosphorus 

(mg/L) 
  x   x   

Hach 
Sigmatax SC 
followed by 
Phosphax 
Sigma 

  

Hach 
Sigmatax SC 
followed by 
Phosphax 
Sigma 

  

Hach 
Sigmatax SC 
followed by 
Phosphax 
Sigma 

  

Hach 
Sigmatax SC 
followed by 
Phosphax 
Sigma 

Total 
reactive 

phosphorus 
(mg/L) 

  x   
Systea 
Micromac C 

  

Hach 
Sigmatax SC 
followed by 
Phosphax 
Sigma 

  

Hach 
Sigmatax SC 
followed by 
Phosphax 
Sigma 

  

Hach 
Sigmatax SC 
followed by 
Phosphax 
Sigma 

  

Hach 
Sigmatax SC 
followed by 
Phosphax 
Sigma 

CDOM    
Sea-Bird 
ECO-CDOM 

  x   x   x   x   x 
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2.2.3 Data conversions 

For mean flow (m3/s), average values were calculated from datasets which included 

flow measurements. For the Hiraethlyn, mean flow (m3/s) was calculated using data 

on level (m) and velocity (m/s), which was combined with an estimated river width of 

2 m and assumption of an approximately rectangular riverbed. The Blackwater Drain 

had annual discharge data (Cooper et al., 2018) for several years. To calculate DO 

(mg/L) from % saturation for the River Enborne, daily average barometric air pressure 

data was used from Thatcham, a town close to the monitoring station, as well as water 

temperature from the Enborne dataset. The Rstudio package ‘rMR’ (Moulton, 2018) 

was used to convert the DO units. 

2.2.4 Analysis 

Data manipulation – artificial decimation 

At each site, the sensors logged data at time intervals ranging from 15 minutes to one 

hour (Table 2.2). The high-resolution datasets were sub-sampled at predefined 

intervals to create a subset of smaller datasets. This artificial decimation (Johnes, 

2007) process was executed in two different ways, to test a) the influence of reduced 

sampling frequency on median and range, and b) the influence of intra-daily variation. 

Methods are described below: 

Temporal frequency effects (a) 

Some data in this study were collected every 15 minutes, but for consistency the most 

frequent data available in all catchments was used for this comparison, which was 

hourly data. Artificial decimation was used to create one version of an hourly (every 

day at every whole hour), four-hourly (every day at 00:00, 04:00, 08:00, 12:00, 16:00 

and 20:00), twelve-hourly (every day at 00:00 and 12:00), daily (every day at 12:00), 

weekly (every Wednesday at 12:00), and monthly dataset (every second week of the 

month, on Wednesday at 12:00). Artificially created datasets with four-hourly, twelve-

hourly, daily, weekly, and monthly data were compared to the hourly data, to assess 

the influence of a reduced frequency on the percentage of the total hourly range 

captured in the data set and the percentage change in the median.  

Percentage of the total range captured was calculated for each parameter accordingly 

(Equation 2.1):  
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Equation 2.1: 
𝑀𝐴𝑋(𝑥)−𝑀𝐼𝑁(𝑥)

𝑀𝐴𝑋(ℎ𝑜𝑢𝑟𝑙𝑦)−𝑀𝐼𝑁(ℎ𝑜𝑢𝑟𝑙𝑦)
∗ 100  

where x is the artificially created datasets e.g. four-hourly, twelve-hourly, daily, weekly 

and monthly data. Parameter behaviour is determined by the median, 25% and 75% 

interval and data distribution, which can be visualised by the width of a violin boxplot 

(the width of the boxplot depends on the number of datapoints at each value). 

Percentage change in the median was calculated for each parameter accordingly 

(Equation 2.2): 

Equation 2.2: 
𝑀𝑒𝑑𝑖𝑎𝑛 (𝑥)−𝑀𝑒𝑑𝑖𝑎𝑛 (ℎ𝑜𝑢𝑟𝑙𝑦)

𝑀𝑒𝑑𝑖𝑎𝑛 (ℎ𝑜𝑢𝑟𝑙𝑦)
∗ 100 

where x is the artificially created datasets e.g. four-hourly, twelve-hourly, daily, 

weekly and monthly data. 

Intra-daily variation (b) 

Artificial decimation was repeated for multiple initial conditions to create different 

versions of a daily dataset (Halliday et al., 2015; Johnes, 2007); Daily with different 

times of the day: every day at 00:00, 04:00, 08:00, 12:00, 16:00, 20:00, resulting in six 

different daily datasets. 

To determine intra-daily variation, for each of these timeframes a new dataset was 

created which included the median for each day. The difference between the median 

and the corresponding datapoints in the six artificially decimated daily datasets was 

calculated and compiled in one dataset (Figure 2.2). For example, the intra-daily 

variation data consisted of a calculated difference for each of the six times of day 

(00:00, 04:00, 08:00, 12:00, 16:00, 20:00) for every day in the multi-year dataset. The 

outcome was tested for significant differences using Kruskall-Wallis analysis of 

variance and Dunn’s post-hoc test (Rstudio version 2023.06.2+561, R version 4.2.1 

(2022-06-23 ucrt)). Each dataset was then banded by significance, with data that 

showed no significant differences grouped together (denoted by the same colour). 

Variation for the multi-year datasets was plotted as boxplots (with significant outliers 

removed to enable better visualisation on the y-axis).  
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Figure 2.2. Artificial decimation process to calculate intra-daily variation. Daily median and six 
new daily datasets from six selected times of day were created to calculate intra-daily variation 
for the whole dataset. 

2.3 Results 

2.3.1 Seasonality 

Variation in all parameters recorded in the full datasets from each site prior to artificial 

decimation (Figure 2.3) indicated a considerable temporal and spatial difference in 

range, median as well as 25% and 75% interval. The seasonal effect depended on the 

catchment and varied by parameter (Figure 2.3). Median nitrate, total phosphorus and 

total reactive phosphorus concentrations calculated per month (in multi-year datasets) 

highlight important biogeochemical processes and dominant transport mechanisms 

that occur throughout the year, which are catchment dependent (Figure 2.4).  
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Figure 2.3. Boxplots (without outliers) for water quality data from the six study catchments. Bl. 
Drain = Blackwater Drain. Seasons are defined as follows; spring: March, April, May; summer: 
June, July, Augustus; autumn: September, October, November; winter: December, January, 
February. 
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Figure 2.4. Median monthly concentrations of nitrate (as N), total phosphorus (TP) and total 
reactive phosphorus (TRP) in the six study catchments. 

2.3.2 Temporal frequency effects 

Reducing the temporal frequency had a different impact on the captured range (Table 

2.3), median (Table 2.3) and data distribution (histogram; the width of the violin boxplot 

visualises the number of datapoints at that value, Figure 2.5), depending on the 

parameter and catchment. Reduced frequency showed the largest percentage change 

in median for turbidity, dissolved oxygen, temperature, TP and TRP, and had the 

largest overall impact on total range of turbidity captured (Table 2.3), but there are 

many nuances dependent on the catchment. Monthly frequency impacted dissolved 

oxygen concentrations in the Wylye and turbidity in Blackwater Drain, changing the 

median by >13% whilst capturing 53% and 8% of total range, respectively (Table 2.3). 

In general, reducing frequency had the least impact on median and range for nitrate 

and electrical conductivity, followed by dissolved oxygen, temperature, and pH, 

although this was largely catchment dependent. Reducing to monthly frequency had 
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a relatively small impact on nitrate concentration observations in Newby Beck and 

electrical conductivity in the Hiraethlyn, where the median changed by <2% whilst 88% 

and 90% of the total range was recorded, respectively (Table 2.3).  

The percentage of the total range captured and percentage change in the median 

were not always similarly affected by a reduction in frequency. For example, daily data 

for dissolved oxygen in the Wylye almost captured the total range of the hourly data 

variation (99%) but had a large impact (>10% change) on the calculated median (Table 

2.3). The opposite pattern, with a large impact on total range captured and relatively 

small impact on median, was also present in some catchments (Table 2.3), for 

example in weekly observations of EC in Blackwater Drain (28% of total range 

captured, 0% change in median).  

In the six catchments, the change in median for turbidity was most consistent, 

decreasing (negative) at monthly compared to hourly data, but this was not the case 

for every temporal frequency studied (Table 2.3). There was no consistent direction 

(increase or decrease) of change in the median with reduced temporal frequency for 

any of the studied catchments (Table 2.3).  
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Table 2.3: Percentage of total range captured and percent median change, comparing reduced frequencies to hourly data. Reduced temporal 
frequency datasets were artificially created at: four-hourly, twelve-hourly, daily, weekly and monthly frequency. Figure 2.5 violin boxplots visualise 
this data and the data distribution. Colours in the percentage of total range table are added to clarify the trend, with a continuous green-yellow-
red scale to indicate 100-50-0 percent of total range captured by the reduced frequency datasets. 

River Parameter 

% Total range captured Median % change 

4 Hourly 
(%) 

12 Hourly 
(%) 

Daily 
(%) 

Weekly 
(%) 

Monthly 
(%) 

4 Hourly 
(%) 

12 Hourly 
(%) 

Daily 
(%) 

Weekly 
(%) 

Monthly 
(%) 

Hiraethlyn 

Temperature 100 88 82 74 62 0.00 -0.18 -0.18 -0.26 -0.62 

DO (mg/L) 80 73 64 44 38 0.11 0.43 2.46 1.98 4.98 

pH 94 94 94 92 54 -0.15 0.00 0.31 0.62 -0.77 

EC 98 98 96 95 90 0.00 0.00 0.00 -0.73 -0.97 

Turbidity 100 19 19 3 1 33.33 100.00 200.00 0.00 -33.33 

NO3
--N 82 80 79 59 36 0.00 0.31 -0.62 -2.15 0.31 

TRP NA NA NA NA NA NA NA NA NA NA 

TP NA NA NA NA NA NA NA NA NA NA 

Enborne 

Temperature 97 93 93 87 74 0.00 0.97 0.97 -4.85 -7.28 

DO (mg/L) 99 81 80 74 65 0.06 2.02 5.03 9.74 10.60 

pH 100 88 74 65 47 0.00 0.13 0.25 0.13 0.13 

EC 83 83 75 52 48 0.00 0.00 0.63 0.95 0.95 

Turbidity 83 48 48 8 6 0.85 1.69 -1.69 -6.78 -0.85 

NO3
--N 93 90 79 67 54 0.00 0.18 0.18 0.55 -0.36 

TRP 97 85 80 80 53 0.61 0.00 -5.32 1.23 -9.20 

TP NA NA NA NA NA NA NA NA NA NA 

Wylye 

Temperature 100 81 80 69 64 0.00 1.28 7.95 7.70 5.99 

DO (mg/L) 99 99 99 88 53 0.00 1.49 10.55 10.18 14.38 

pH 99 96 95 83 73 0.00 0.13 1.29 1.23 1.94 

EC 98 85 85 58 11 0.00 0.00 -0.32 -0.16 0.32 

Turbidity 100 52 51 33 3 0.00 -3.13 -9.38 -6.25 -12.50 

NO3
--N 95 95 95 55 17 -0.06 -0.05 0.12 -0.10 1.43 

TRP 93 84 52 48 11 0.00 0.00 0.00 0.00 -3.92 

TP 98 60 42 38 9 0.21 0.00 0.00 -0.22 -7.29 

Thames 
Temperature 99 97 97 95 78 0.07 0.07 0.59 0.63 3.97 

DO (mg/L) 97 96 75 74 68 0.00 0.27 0.27 2.71 -2.58 
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pH 100 67 67 65 59 0.00 0.00 0.12 -0.12 -0.49 

EC 100 96 94 94 84 0.00 -0.04 -0.03 -0.34 -0.94 

Turbidity 68 68 68 12 12 -0.57 0.85 1.70 6.75 -12.00 

NO3
--N 99 99 99 39 31 0.00 -0.11 -0.11 -0.79 -0.07 

TRP 87 85 82 82 71 0.00 1.46 1.46 1.46 -6.58 

TP 71 69 66 59 48 0.00 0.00 1.88 1.61 -0.27 

Blackwater 
Drain 

Temperature 98 89 88 80 57 -0.19 0.84 6.00 2.44 3.61 

DO (mg/L) 98 95 91 80 73 0.00 0.60 2.05 3.50 6.70 

pH 98 77 77 55 41 0.00 0.00 0.26 0.26 0.26 

EC 100 67 66 28 19 0.00 0.00 0.00 0.00 -0.13 

Turbidity 100 89 89 15 8 0.00 -1.64 -9.84 -11.48 -13.11 

NO3
--N 99 98 98 90 39 0.00 0.21 0.64 0.64 4.06 

TRP 92 89 87 29 18 0.00 0.00 0.00 0.00 0.00 

TP 96 57 57 17 11 0.00 0.00 0.00 0.00 -12.50 

Newby 
Beck 

Temperature 99 89 87 85 71 -0.11 -0.21 0.96 0.53 0.85 

DO (mg/L) 59 59 59 43 23 0.09 0.83 4.86 4.95 6.42 

pH 97 92 92 87 73 0.00 0.12 0.87 1.00 1.06 

EC 98 96 73 72 51 0.00 0.20 0.39 0.39 -0.99 

Turbidity 100 100 100 36 11 0.00 0.00 -4.17 -6.25 -12.50 

NO3
--N 98 97 97 91 88 -0.11 0.11 0.11 0.44 -1.31 

TRP 100 82 56 44 43 0.00 0.90 1.74 -0.41 1.74 

TP 100 100 99 67 42 0.00 2.86 4.57 0.56 4.01 
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Figure 2.5. Violin boxplots showing the median, 25% and 75% interval as well as the data 
structure, for the six UK catchments water quality parameters, with the different artificially 
created datasets with lower temporal data frequency: four-hourly, twelve-hourly, daily, weekly 
and monthly. Bl. Drain is an abbreviation of Blackwater Drain. 
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Four-hourly data captured most of the parameter behaviour (Figure 2.5), as well as 

the percentage of total range captured and percentage change in median compared 

to hourly data (Table 2.3). From all 45 individual parameter-catchment combinations 

(six to eight parameters in six catchments), four-hourly data captured most of the 

hourly range (>90%) for 37 combinations, and 41 had limited impact on the median 

(<0.5% change). The Wylye and Blackwater Drain four-hourly datasets captured 92%-

100% of the total range for all parameters in the hourly data, which is a higher overall 

range captured than the other four catchments at four-hourly frequency (Table 2.3). 

The Newby Beck four-hourly dataset captured 95-100% of the total range apart from 

for DO, where only 59% was recorded (Table 2.3). The other catchments captured 

>90% for most parameters at four-hourly measurement frequency, except for DO and 

nitrate at the Hiraethlyn; turbidity and EC at the Enborne; and turbidity, TP and TRP at 

the Thames (Table 2.3). Twelve-hourly and daily data represented >90% of the range 

with limited impact on the median (<0.5% change) in approximately half of the 

combinations. Daily measurements captured >90% of total range for certain 

parameters; nitrate (4 of 6 catchments), pH (3 of 6 catchments), EC (2 of 6 

catchments) and DO (2 of 6 catchments). Most parameters at weekly frequency did 

not cover >90% of total range, except for the pH and EC at the Hiraethlyn; EC and 

temperature at the Thames; nitrate at the Blackwater Drain and nitrate at Newby Beck 

(Table 2.3), which all had <1% change in median. Monthly data frequency resulted in 

generally low percentages of range captured for all catchments, with some exceptions 

(Table 2.3). Monthly data from the Hiraethlyn revealed the lowest percentage of range 

captured; 1% of the hourly range in turbidity, but also the highest percentage of range 

captured; 90% of the hourly range in EC (Table 2.3). 

2.4 Intra-daily variation 

Most parameters and catchments displayed significant differences in variation 

between the six different times of day (denoted by differing colour bands in Figure 2.6). 
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Continued on next page 
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Figure 2.6. This and previous page: Intra-daily variation for all study catchments based on six versions of a daily dataset. Datapoints were selected 
from different times of day; 00:00, 04:00, 08:00, 12:00, 16:00, 20:00. Significance bands bar colours indicate for each individual plot (each 
catchment within each parameter) the significance between the six different times of day from the Kruskall-Wallis analysis of variance and Dunn’s 
post-hoc test; bars with the same colour are not significantly different from each other, whilst different colours denote significant difference. 
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2.4.1 Physico-chemical parameters  

The intra-daily variation in water temperature can be used to interrogate the patterns 

of significance shown, as this parameter has a predictable cyclic pattern throughout 

the day, with cooler temperatures at night and warming throughout daylight hours. This 

physical process persists throughout different seasons and is expected to reveal a 

strongly significant intra-daily variation pattern for this multi-year analysis. The 

variation is calculated as the parameter value at one of the six selected times of day 

minus the parameter median of the whole day, collated for each day in the dataset. 

The outcome plotted for the six selected times of day allows a comparison of variation 

within a day (intra-daily). Throughout the dataset there are cooler temperatures at 

night-time, which result in a more negative variation value (for all days in the dataset, 

the value at that time is lower than the daily median), and warmer temperatures at 

daytime which cause a more positive variation (higher values than the daily median) 

(Figure 2.6). The variation for the water temperature was significantly different for 

every time of day in almost all catchments, which means the described pattern was 

consistent throughout the whole dataset and all seasons (denoted by differing colours 

in Figure 2.6). Relative to the median temperature each day, 04:00 or 08:00 was the 

coldest and 16:00 was the warmest in every catchment. The Thames had the smallest 

range in variation, followed by the Enborne. 

A cyclical day-night pattern for DO and pH was also visible in all catchments, albeit 

more pronounced in some, such as the River Wylye and Newby Beck (Figure 2.6). In 

most of the catchments there was a strong connection between DO and pH, where 

they both followed the same day-night trend. However, in the Blackwater Drain and 

Hiraethlyn, DO had maximum positive variation four hours earlier than pH. Electrical 

conductivity (EC) revealed a significant diurnal trend in most catchments, apart from 

the Enborne and Thames. The variation in EC followed the opposite trend of pH and 

DO in the Wylye and Newby Beck, DO in the Hiraethlyn and pH in the Blackwater 

Drain. Intra-daily variation for turbidity in the Enborne, Thames, Blackwater Drain and 

Newby Beck showed significantly more positive variation at night and significantly 

more negative variation during the day (Figure 2.6), whilst the Hiraethlyn and Wylye 

did not show any trends. 
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2.4.2 Total reactive phosphorus, total phosphorus and nitrate 

Intra-daily variation in nutrients revealed less clear significant patterns than the 

physico-chemical parameters, and these patterns were catchment dependent (Figure 

2.6). Nitrate had significant intra-daily variation in most catchments, apart from the 

Thames, with the clearest diurnal cycle (most significant differences between the 

timesteps) in the Blackwater Drain. There was a general trend towards more positive 

variation (higher values compared to the median for each day) from early morning until 

mid-day and more negative variation (lower values compared to the daily median) from 

late afternoon until midnight (Figure 2.6), except for the Hiraethlyn in which this pattern 

seemed to be reversed. Total reactive phosphorus (TRP) and total phosphorus (TP) 

showed significant intra-daily variation in some catchments, but there was often no 

clear diurnal trend. The Enborne showed the clearest diurnal cycle in TRP with most 

positive variation in early morning and most negative variation in the afternoon. Newby 

Beck and the Blackwater Drain had similar patterns for TRP and TP and revealed a 

general tendency for more negative variation in the morning. TRP in the Enborne and 

TP in the Blackwater Drain followed similar intra-daily variation patterns to turbidity 

(Figure 2.6).   

Differences in intra-daily variation depending on the season will not be visible in Figure 

2.6, as the datasets consisted of multiple whole years which would even out any intra-

daily variation pattern that only existed seasonally. Examples for the Enborne and 

Newby Beck are presented here to show intra-daily variations by season (Figure 2.7), 

while all other results are visualised in Figure 2.8. Nitrate and TRP concentrations for 

the Enborne and Newby Beck, with intra-daily variation separated by season (Figure 

2.7), illustrate the influence of season on intra-daily variation patterns in nutrients. 

Nitrate concentrations in the Enborne didn’t show an impact of season on intra-daily 

variation, but Newby Beck had a much clearer diurnal cycle in spring, summer and 

autumn compared to winter (Figure 2.7). TRP concentrations in the Enborne had a 

clear diurnal cycle in spring, summer, and autumn but not in winter, whereas Newby 

Beck had only minor diurnal fluctuations in summer (Figure 2.7). TP in summer in the 

Wylye had a strong pattern but no other season and TRP in the Thames only had a 

strong pattern in winter (Figure 2.8). 
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Figure 2.7. Nitrate (as N) and total reactive phosphorus (TRP) intra-daily variation separated 
by season for the Enborne and Newby Beck. Datapoints were selected from different times 
of the day; 00:00, 04:00, 08:00, 12:00, 16:00, 20:00, which are indicated by different colours. 
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Figure 2.8. Nitrate (as N), total reactive phosphorus (TRP) and total phosphorus (TP) intra-daily variation at six selected times of the day, 
separated by season. Note that TP was not measured at Hiraethlyn and the Enborne, and neither TRP at Hiraethlyn. 
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2.5 Discussion  

Catchment characteristics such as size, land use (urban and agriculture) and dominant 

flow paths (groundwater, throughflow or overland flow) which are primarily controlled 

by catchment geology, are a first order control of variation in these datasets. Previous 

assessments have demonstrated that monthly sampling cannot capture the full 

variation of physical and biogeochemical parameters, and even that monitoring at less 

than daily frequency can alter nutrient load assessments (Wade et al., 2012). 

Infrequent sampling and random sampling effects may result in the same water body 

being misclassified under legislation such as the Water Framework Directive (Halliday 

et al., 2015; Skeffington et al., 2015), with multiple classes possible depending on 

sampling frequency for the determinand of interest. However, each hydrochemical 

parameter displayed variable patterns in different catchments, seasons and times of 

the day, so exploring high-resolution data and signposting when, where and what 

frequency observation is necessary is critical for optimising sampling regimes.   

2.5.1 Reduced temporal frequency effects 

Reducing temporal frequency creates the risk that the data will not capture the “real” 

median and range, a phenomenon termed ‘aliasing’ (Chappell et al., 2017). Reducing 

measurement frequency from hourly to four-hourly, twelve-hourly, daily, weekly, and 

monthly in this study increasingly changed the interpretation of the data by altering 

data distribution, median and range, with catchment- and parameter-specific effects. 

In general, turbidity, dissolved oxygen, temperature, TP and TRP showed the largest 

percentage change in median with reduced frequency of observation, whilst the 

greatest overall impact on total range was for turbidity, although this effect was 

catchment dependent. These parameters, where reduced frequency has the largest 

impact, are expected to have a large data variability due to rapid rainfall response 

(turbidity which is controlled by sediment mobilisation and transport, and overland 

flow-generated phosphorus transfers such as for TP) or strong diurnal cycles 

(temperature and dissolved oxygen). 

Reduced temporal frequency did not always affect the captured range and the median 

simultaneously, since the range could be impacted without any changes in the median 

and vice versa. Data variability for each parameter in every catchment can be 

influenced by some or all of; time of day (diurnal cycle), season (seasonal cycle) and 

extreme weather (rainfall-response and flow pathway activation and separation) 
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(Figure 2.9). Parameters which are less strongly controlled by the latter, and in 

particular with overland flow or near-surface throughflow pathways, such as nitrate 

and electrical conductivity in some study catchments, can potentially be measured at 

lower temporal frequencies without compromising the median and range, but this 

depends on the monitoring purpose and the catchment flow activation regime.  

 

Figure 2.9. Processes that can impact data variability and their effect on median, range and 
data distribution. 

Variability caused by time of day has the largest impact on the median, as diurnal 

cycles cause intra-daily variation in some parameters, which won’t be fully represented 

in a data set with reduced measurement frequency (Figure 2.9). Variability caused by 

seasonality alone will have relatively little effect on median and range at reduced 

frequency. However, in nutrient load calculations by Williams et al. (2015), the summer 

season was more biased and less precise for nitrate (as N) and dissolved reactive 

phosphorus (DRP). Moreover, seasonality can influence the diurnal cycle, illustrated 

by the nitrate and total reactive phosphorus concentration presented in this study 

(Figure 2.7 and Figure 2.8). Variability caused by extreme weather responses will have 

the largest impact on range, because reduced frequency will not fully capture high 

concentration flux responses to short-term extreme events (Figure 2.9), unless the 

sample happens to accidentally capture the peak of such an event, which can then 

positively bias annual load estimates (Johnes, 2007; Jordan et al., 2007). Variability 

caused by all three factors will have an impact on data distribution (histogram), by not 

capturing the full width of the data variation. 
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Reducing the measurement frequency not only impacts the range and variability of the 

data, but also the distribution (Figure 2.5), as demonstrated by Cassidy and Jordan 

(2011) for TP, Johnes (2007) for total dissolved phosphorus (TDP) and TP and Lloyd 

et al. (2014) for these same fractions plus for nitrate. This result indicates that monthly 

or weekly sampling fails to capture important extreme events and potentially 

underestimates (or overestimates) the median and subsequent annual load 

calculations (Johnes, 2007). While the median did change in this study, the data 

showed no consistent under- or over-estimation. This can be partially attributed to the 

nature of the analysis, as sub-sampling was done at only one selected time of day 

(daily), day of the week (weekly) and week of the month (monthly), based on common 

manual sampling regimes. These conditions, however, would have had an impact on 

the direction of percentage change in the median, as the time of day would have 

skewed the results for daily, weekly and monthly frequencies, especially for 

parameters with strong diurnal cycles like dissolved oxygen (Rand et al., 2022). 

2.5.2 Optimal frequency 

From all 45 analysed parameter-catchment combinations (six to eight parameters in 

six catchments), four-hourly data captured most of the hourly range (>90%) for 37 

combinations, and 41 out of 45 had limited impact on the median (<0.5% change). 

Twelve-hourly and daily data captured >90% of the range in 17 and 15 combinations 

respectively, with limited impact on the median in 30 and 19 combinations, 

respectively. Weekly data captured >90% of the hourly range in 6 combinations and 

16 had limited impact on the median. Monthly data didn’t capture >90% of the hourly 

range in any combination, whilst 10 had limited impact on the median. The individual 

parameters that were most affected by reducing frequency depended on the 

catchment.  

Mathematical methods can define an optimum sampling frequency for any water 

quality parameter by calculating the point at which an increase in frequency does not 

provide an increase in information. Coraggio et al. (2022), for example, used high-

frequency monitoring data from Bristol Harbour and mathematically determined the 

optimum sampling frequency for water temperature, electrical conductivity, dissolved 

oxygen, and turbidity as 9 hours, 6 hours, 5 hours, and 3 hours, respectively. 

Parameters with a rapid response to extreme events, such as turbidity and total or 

particulate phosphorus fractions, need to be monitored at a higher frequency to 
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capture full data variability. Parameters with a diurnal cycle, like pH, dissolved oxygen 

and electrical conductivity need to be monitored frequently enough to capture these 

cycles or could be monitored at an appropriate, but standardised time on each day to 

calculate an average, depending on the monitoring purpose. This study found that 

four-hourly frequency captured most of hourly data variability, depending on 

parameter-catchment responses, but the optimal frequency needs to take into account 

the monitoring purpose. Changing the time of day at which observations are captured, 

within any monitoring programme could bias the resulting data sets.   

To determine the optimal monitoring frequency for a parameter, which captures 

sufficient data without using excess resources, the following factors need to be 

considered; (I) Parameter & catchment and (II) Monitoring purpose. 

Parameter & catchment (I) 

Parameter and catchment interaction determined the effect of reduced temporal 

frequency on the range, median and data distribution. No parameter in this study was 

found to behave consistently for the six different catchments, hence parameter 

behaviour was largely dependent on catchment specific characteristics that define its 

response to biogeochemical cycling processes and hydrological regime (Figure 2.9).  

As observed in previous work on P fractions alone (Johnes, 2007; Jordan et al., 2007) 

catchment characteristics such as the contribution of groundwater to river flow (base 

flow index), land use (urban and agriculture) and size have a strong impact on water 

quality data variability (Table 2.1). Catchment size can strongly influence the data 

distribution, with biogeochemical changes damped or subject to lag times (Creed et 

al., 2015). Year-round high flows in the Thames (Table 2.1) were found to mask local 

biogeochemical effects, which is possibly a result of the large catchment size and 

subsequently large river flow volume (Williams et al., 2000). Diurnal biogeochemical 

patterns in rivers are often stronger during stable, non-turbid, low flow conditions as 

riverine biological processes are more prominent (Bowes et al., 2016; Scholefield et 

al., 2005). 

Catchments with a high base flow index (BFI) have notable groundwater contributions 

which influence temperature and nutrient concentrations. This is illustrated in the 

Wylye, where groundwater nitrate inputs vary inversely with overland flow inputs 

(Outram et al., 2014; Yates & Johnes, 2013). Nutrient concentrations are also strongly 
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influenced by agriculture and urban land use (Salvia-Castellví et al., 2005). Intensive 

livestock farming and urban wastewater discharges cause a similar biogeochemical 

reaction as their effluents are both rich in ammonium (Donald et al., 2011). Rivers with 

a more urbanised catchment will receive a larger proportion of wastewater discharges, 

from sewage treatment works (STW) or septic tanks, especially during low flow 

conditions (Macintosh et al., 2011; Yates et al., 2019b). STW discharges are often 

related to increased turbidity, EC, temperature, ammonium and phosphorus, whilst 

stimulating microbial activity. Microbial processes include nitrification (nitrate 

production) and the decomposition of organic material, which can subsequently 

reduce dissolved oxygen (Halliday et al., 2015) and alter the composition of the 

nutrient pool instream (Yates et al., 2019b).   

This study shows that all catchments had a clear intra-daily water temperature pattern, 

coldest in the early morning and warmest late afternoon. Dissolved oxygen and pH 

also showed intra-daily variation in every catchment, positive in the afternoon and 

negative in the early morning as a result of photosynthesis-respiration cycles. Driven 

by diurnal water temperature and solar energy cycles, daytime photosynthesis 

removes (acidic) carbon fractions and produces oxygen, whilst night-time respiration 

does the opposite (House, 2003; Scholefield et al., 2005). The amplitude of this 

biological diurnal cycling depends on the temperature, light availability, and the relative 

contribution of autotrophic and heterotrophic organisms (Nimick et al., 2011). More 

abundant submergent plant communities in certain catchments, particularly chalk 

streams like the Wylye (Evans & Johnes, 2004; Lloyd et al., 2019; Yates & Johnes, 

2013), would explain its more prominent diurnal cycle for DO and pH. Electrical 

conductivity had intra-daily variation, negative in the afternoon and positive in the early 

morning, in most catchments apart from urbanised rivers Enborne and Thames, which 

is most likely due to uptake and release (or lack of uptake) of free ions with diurnal 

biological activity. Intra-daily variation for turbidity, negative (lower values than the daily 

median) in the afternoon and positive (higher values than the daily median) in the early 

morning, occurred in most catchments apart from the Wylye and Hiraethlyn, which 

might be a result of night-time bioturbation: sediment resuspension caused by the 

feeding and movement of fish and invertebrates like crayfish (Cooper et al., 2020; 

Cooper et al., 2016; Halliday et al., 2015). These natural biogeochemical patterns can 

be masked by, for example, the volume of flow, shading from bankside growth, a large 
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groundwater influx with lower temperatures or a large influx of non-natural water such 

as sewage outflows. 

Nitrate (as N), total reactive phosphorus and total phosphorus can also follow diurnal 

cycles as a response to nutrient uptake by biological activity in the river, which results 

in a typical diurnal cycle of lowest concentrations in the late afternoon and highest in 

the early morning (Cooper et al., 2020; Nimick et al., 2011; Palmer-Felgate et al., 2008; 

Scholefield et al., 2005). However, in most rivers, this is not the dominant process all 

year round, because of minimal biological activity in the winter months and the 

alteration of natural cycles by anthropogenic influences (agriculture or wastewater 

discharges) (Jordan et al., 2007; Nimick et al., 2011; Pellerin et al., 2009). In urbanised 

catchments, electrical conductivity, turbidity, nitrate (as N) and phosphorus fractions 

(TRP, TP) can also exhibit diurnal cycles because of consistent daily patterns in 

wastewater effluent discharges to these rivers (Halliday et al., 2014; Palmer-Felgate 

et al., 2008; Withers & Jarvie, 2008). High-frequency data from the River Cut, of which 

36%-90% of flow consists of STW effluent, revealed a double-peak in the daily EC 

signal, during midday and late evening, a delayed response to peak domestic water 

usage in the morning and evening (Palmer-Felgate et al., 2008; Withers & Jarvie, 

2008). Such effect will become less evident in larger rivers with greater dilution 

capacity and when there is increased flow caused by rainfall in autumn/winter months. 

The same parameters can exhibit diurnal signals in agricultural catchments because 

of consistent daily discharges from dairy farm operations (milking) (Foy & Kirk, 1995), 

which might also have a delayed response. 

Diurnal cycles can also be influenced by seasons, so although seasonal cycles 

themselves will most likely be captured with a reduced temporal monitoring frequency 

(monthly), it is critical to understand the influence of seasonal signals on daily, and 

sub-daily (for example, extreme weather) events. Moreover, certain agricultural 

processes only happen during spring and summer months, which could lead to a 

different data variation pattern throughout the year. In certain catchments, episodic 

short-lived extreme events can play a major role in biogeochemical processes, and it 

is important to fully capture their data variability.  
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Monitoring purpose (II) 

Optimal temporal frequency depends on the purpose of monitoring; long-term trend 

analysis, load calculations and storm-induced solute transport modelling require 

different inputs and therefore have unique data frequency demands (Coraggio et al., 

2022). Sub-sampling high-frequency data to pre-determined lower frequencies 

(artificial decimation process) can be done iteratively to contain multiple initial 

conditions, and determine the optimal monitoring frequency for specific purposes 

(Chappell et al., 2017; Coraggio et al., 2022; Crockford et al., 2017; Johnes, 2007; 

Reynolds et al., 2016; Skeffington et al., 2015; Williams et al., 2015). Previous 

analyses have suggested that seasonal variation or long-term trends can be captured 

with monthly or up to half-yearly frequency (Coraggio et al., 2022). For basic statistical 

calculations, for example to assign Water Framework Directive classifications, for 

phosphorus fractions, dissolved oxygen, pH and temperature (Skeffington et al., 

2015), or to detect trends in nitrate data such as mean concentration, peak 

concentration, drinking water standard exceedance and flux (Reynolds et al., 2016), 

weekly or daily sampling is recommended. In annual load estimates (Bowes et al., 

2009; Crockford et al., 2017; Johnes, 2007; Williams et al., 2015) daily sampling gives 

the more robust and reliable results but weekly is also acceptable provided the 

uncertainties associated with load estimates are also reported (Lloyd et al., 2014). This 

largely depends on the nutrient fraction, the season and catchment characteristics as 

those influence reaction time and variability. Williams et al. (2015) found optimal 

frequency for dissolved reactive phosphorus (DRP) was every 13-26 hours and nitrate 

(as N) every 2.7-17.5 days. When modelling biogeochemical response during storm 

events (Chappell et al., 2017; Lloyd et al., 2015; Outram et al., 2014), a higher 

measurement frequency is required to capture this accurately, with Chappell et al. 

(2017) arguing for sampling rates of less than 120 minutes to greater than 600 

minutes. However, these studies, and this data demonstrate that minimum temporal 

frequency can change over time, and between catchments and parameters, with a 

higher frequency needed when there is more variation and depending on the variable 

of interest and its environmental behaviour in each catchment. 

2.5.3 Sensor uncertainty implications for monitoring design 

The data variability captured by any monitoring campaign is subject to the limitations 

of the equipment used for measurement. Where data fluctuations are within the 
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uncertainty bounds of a technique, or when measurements are subject to bias, limiting 

the availability of data points by reducing measurement frequency can be problematic. 

It is therefore critical that uncertainty bounds are known to ensure relevant fluctuations 

can be captured. The uncertainty of the sensor measurements used in this study is 

well-quantified, by comparison between laboratory samples for TP and nitrate (as N) 

and the sensor data at Brixton Deverill on the Wylye (Lloyd et al., 2015). The headline 

uncertainty bounds of ±0.15 mg/L for TP and ±0.75 mg/L for nitrate (as N) calculated 

by Lloyd et al. (2015) suggest that the intra-daily variation patterns that we have 

identified could fall within the range of uncertainty. The maximum daily variation 

without outliers that we identified in the six studied catchments is ±0.05 mg/L for TP 

and ±0.5 mg/L for nitrate (as N). However, where the sensor data display daily 

variation, the uncertainty bounds of the data also vary according to the antecedent 

conditions, so the signal is unlikely to fluctuate between the highest and lowest bounds 

at adjacent time points. This temporal autocorrelation effect means that the variations 

revealed in our data are likely to be a real signal, even if they fall within the overall 

sensor uncertainty. It is therefore imperative that data users have a strong 

understanding of the measurement capabilities of the chosen device.  

2.5.4 Recommendations 

Reliance on weekly or monthly data means the likelihood of capturing total data 

variability (range and median) is small for most catchments. A balance is therefore 

required to determine the most cost-effective yet representative sampling regimes for 

different catchments. High-frequency sensor data cannot be captured everywhere, so 

instrumentation should be selected and deployed for the target chemistries of interest. 

It is also important to note that sensors cannot currently measure all parameters of 

interest, so optimal sampling programmes are likely to combine both high resolution 

sensor networks with manual or automated sample collection paired with laboratory 

analyses where tighter quality assurance and quality control can reduce uncertainties, 

albeit at a lower temporal sampling resolution. If manual sample collection cannot 

physically be done more than weekly or monthly it is critical to calculate, report, and 

minimise sampling bias, while reporting data with resultant uncertainty bands is 

essential. Jordan and Cassidy (2022) created an overview with important 

considerations to select a fit-for-purpose monitoring strategy, for example stakeholder 

engagement and evidence for policy or land-use management changes. Moreover, 



61 
 

Rozemeijer et al. (2025) proposes a decision workflow for high-frequency water quality 

monitoring that considers monitoring data requirements, sensor selection, 

maintenance and calibration, and systematic data processing. It is important to 

evaluate the cost of every element and what the added value is of monitoring at a high 

frequency instead of a low frequency (Rozemeijer et al., 2025).  

Our analysis of sensor datasets here shows that the size of the catchment, land use, 

baseflow index and the degree of urbanisation with associated sewage discharges to 

rivers will determine the most important biogeochemical cycles for each parameter in 

each season, and hence the required sampling frequency when relying on sensor-

derived observations. An additional challenge is that the minimum temporal frequency 

is not static but can vary per season and per year. This variability might also increase 

in the future, with warmer, wetter years and a greater frequency of sudden, intense 

rainfall are predicted (Ockenden et al., 2016). Optimising the measurement frequency 

over time or in real-time as a response to external stressors (extreme events) with 

adaptive monitoring strategies (Blaen et al., 2016; Coraggio et al., 2022), can improve 

data collection for extreme weather driven parameters. For parameters affected by 

diurnal cycles, possible methods to prevent bias are to sample at standardised times 

of the day or taking 24 samples every seven hours (the 24/7 sampling approach), 

which samples every hour of the day over the course of a week (Halliday et al., 2012). 

The 24/7 approach was designed for the use of auto-samplers which require samples 

to be returned to the laboratory for analysis, but has the potential to be a cost-effective 

measurement frequency regime for sensor optimisation to capture dynamic river 

conditions (Halliday et al., 2012; Jordan & Cassidy, 2022).  

In general, when deciding a minimum measurement frequency for a sensor suite, the 

median, 25% and 75% intervals and the data distribution as well as the range should 

be investigated relative to hourly data or the highest available frequency. The minimum 

required sampling frequency can only be determined with high-frequency observations 

at that location, which are often unavailable when a monitoring programme is 

designed. As a result, sampling frequency recommendations are typically done 

retrospectively, as with our analyses that suggested a minimum of four-hourly 

frequency. We therefore recommend flexible high-frequency monitoring installations, 

including sensors or autosamplers, that can be deployed for trial periods to understand 

the behaviour of the catchment before the long-term sampling regime commences, so 
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this can be optimised to reduce resource expenditure which captures representative 

environmental behaviours for the determinands of interest. We also caution that the 

data should be captured with a clear focus on understanding what questions will be 

asked, whether the sensors selected have uncertainty bounds beyond the expected 

variability, and whether capturing the full range of behaviour of all parameters is indeed 

necessary.  

2.6 Conclusions 

High resolution hydrochemical data from six different catchments in the UK was 

systematically analysed using data resampling techniques, which provided answers 

to the formulated research questions. 

1) What is the lowest measurement frequency that can fully capture data variation 

in different water quality parameters?   

All catchments in this study showed that for almost every parameter, a four-hourly data 

frequency was required to capture most of the hourly variation across all determinands 

monitored, although for some parameters most variation could be captured with 

twelve-hourly or daily frequency. 

2) How does sampling at specific times of the day impact the interpretation of 

biogeochemical cycles?  

Different catchments have different responses to biogeochemical and hydrological 

events, thus the measurement regime required to capture the true range of variation 

will itself be variable. Nutrient concentrations, flow regimes and temperature drive 

much of the in-stream biological activity and their temporal variations can in turn affect 

variability in other water quality parameters, such as DO and pH. Most catchments 

included in this study showed significant intra-daily trends in physico-chemical 

parameters, often clearly defined diurnal cycles, but the importance of these trends in 

some parameters varied depending on the season. For example, photosynthesis-

related diurnal oxygen patterns are generally less prevalent in winter. If a parameter 

has significant intra-daily variation, the sampling time of day will determine the data 

distribution and alter the range and median.  

3) What is the effect of measurement frequency on the interpretation of 

biogeochemical cycles? 
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The measurement frequency influences the interpretation of biogeochemical cycles, 

as commonly measured parameters exhibit diurnal patterns and short-lived responses 

to rainfall. Reducing the measurement frequency impacted the calculated range and 

median, but it varied by catchment and parameter. Generally, parameters that are 

controlled by time of day (diurnal patterns) will impact the median, whilst parameters 

that are controlled by extreme weather will impact the range. Parameters with a more 

predictable pattern can be measured at a lower frequency without impacting the 

interpretation of biogeochemical cycles.  

High-frequency sensor data can be used to provide more insight into biogeochemical 

processes in freshwaters, for example to enable real-time prediction of taste and odour 

(T&O) events in drinking water reservoirs. This study emphasises the importance of 

carefully considering the monitoring frequency and the measurement time when 

designing programs using high-frequency sensors, with assessment needed for each 

catchment and parameter. The purpose of the monitoring should be clearly defined to 

allocate resources effectively, and a pre-monitoring sensor optimisation period is 

advised to understand catchment-specific responses. If data variation is small, 

sensors with a large uncertainty won’t accurately capture the fluctuations, so sensor 

performance must be evaluated beforehand. Regular re-assessment of the monitoring 

network is essential to account for environmental changes, sensor performance, and 

evolving management priorities. 
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Chapter 3: The effect of nutrient ratios and 

concentrations on 2-MIB production by benthic 

cyanobacteria in a UK drinking water reservoir 
 

3.1 Introduction 

Water reservoirs can suffer from episodes of unfavourable taste and odour (T&O) that 

limits the use of drinking water assets, a problem that is globally increasing in 

frequency and magnitude (Winter et al., 2011). The most common T&O compounds 

are geosmin (trans-1,10-dimethyl-trans-9-decalol) and 2-methylisoborneol (1,2,7,7-

tetramethyl-exo-bicyclo-[2,2,1]-heptan-2-ol, referred to as 2-MIB). These are 

secondary metabolites widely produced by soil bacteria (actinomycetes) that may be 

active in reservoirs (Asquith et al., 2018; Clercin et al., 2022; Kutovaya & Watson, 

2014), but some strains of cyanobacteria have also acquired the genes needed to 

produce these metabolites. Many genera of cyanobacteria have been found to 

produce geosmin and/or 2-MIB in culture or molecular-based studies, and they are 

mostly filamentous (Watson et al., 2016). Geosmin is generally associated with 

planktic cyanobacterial genera like Dolichospermum, Aphanizomenon and 

Planktothrix but can also be produced by certain benthic genera. 2-MIB is almost 

exclusively produced by benthic cyanobacterial genera such as Oscillatoria, 

Phormidium, Pseudanabaena and Leptolyngbya (Watson et al., 2016) and some of 

these genera can produce both geosmin and 2-MIB. Recent research indicates that 

benthic mats of cyanobacteria should not be overlooked as a source of geosmin and 

2-MIB, especially in rivers, shallow lakes and shores of reservoirs (Espinosa et al., 

2020; Gaget et al., 2020; Jähnichen et al., 2011; Otten et al., 2016; Watson & Jüttner, 

2019). In drinking water reservoirs, the source of T&O is difficult to pinpoint as the T&O 

compounds are persistent and spread through the water column easily once they are 

released from the cell. Moreover, standard methods of water column sampling won’t 

detect benthic species that can sometimes grow over a large part of the shallow zones 

of the reservoir and near or on the drinking water inlet structure (Otten et al., 2016).  

Environmental conditions (temperature and light availability, plus nutrient availability) 

can enhance cyanobacterial growth and persistent blooms (Paerl & Otten, 2013; 
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Richardson et al., 2019), and it is hypothesised that climate change will result in more 

optimal growth conditions for cyanobacteria (Cottingham et al., 2015; Paerl & Otten, 

2013; Paerl & Paul, 2012). Nitrogen (N) and phosphorus (P) concentrations and ratios 

determine phytoplankton community structure (Harris et al., 2016). DIN:SRP  

(dissolved inorganic nitrogen : soluble reactive phosphorus) and TN:TP (total nitrogen 

: total phosphorus) ratios in the water can be used to determine approximations of 

potential N- or P limitation of phytoplankton growth. The Redfield ratio for N:P at 16:1 

(molar based) is thought to be the transition between N-limitation (<16) and P-limitation 

(>16) (Redfield et al., 1963), but it depends on the phytoplankton taxa and growth 

stage (Klausmeier et al., 2004). Kosten et al. (2009) specified N-limitation as TN:TP 

ratios below 20 and DIN:SRP below 13, whilst TN:TP ratios above 38 and DIN:SRP 

above 50 indicate P limitation (Kosten et al., 2009). Cyanobacteria dominance in the 

phytoplankton community has often been linked to a low TN:TP ratio (Smith, 1983; 

Vrede et al., 2009), <64:1 (29:1 by mass) according to Smith (1983). P-limiting 

conditions generally favour chlorophytes and diatoms, whilst cyanobacteria can 

dominate under N-limiting conditions (Andersen et al., 2020). 

These ratios largely depend on inputs (internal or external) and uptake of inorganic N 

and P concentrations which can result in highly variable nutrient ratios over a short 

space of time (Glibert et al., 2008). The form of N and P also depends on the dominant 

input, which can cause variability depending on the season (Andersen et al., 2020). 

External inputs like groundwater are often the dominant source of NO3
- whilst internal 

recycling of organic matter under anaerobic conditions increases NH4
+ (Andersen et 

al., 2020). The chemical form of inorganic nitrogen; oxidized (nitrate; NO3
-) or reduced 

(ammonium; NH4
+), influences the uptake rate by different phytoplankton taxa 

because they have different cellular energetic costs, ammonium being more 

bioavailable (Erratt et al., 2020; Glibert et al., 2016; Trommer et al., 2020). 

Phytoplankton taxa have specific traits (N-fixation etc.) and some produce enzymes 

that give them a different affinity for certain forms of N and P (Chaffin & Bridgeman, 

2014). Optimal ammonium concentrations can result in higher growth rates than nitrate 

and urea, but concentrations that are too high can repress growth or even be toxic 

(Glibert et al., 2016), which depends on phytoplankton class and genus/species 

(Collos & Harrison, 2014). Chemically reduced forms of N, like ammonium, but also 

urea and dissolved organic nitrogen (DON) are increasing in freshwaters due to 
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sewage discharges, aquaculture and the worldwide rise of urea-based fertilizers 

(Glibert et al., 2016). Therefore, this is an important area of research as we might 

create the optimal scenario for cyanobacterial blooms and subsequent problems. 

The NH4
+:NO3

- ratio may influence the phytoplankton community structure (Glibert et 

al., 2016; McCarthy et al., 2009) and the abundance of T&O producing cyanobacteria. 

Several studies showed that NO3
- enrichment favoured diatom growth whilst NH4

+ 

enrichment favoured dinoflagellates, chlorophytes and cyanobacteria (Andersen et al., 

2020; Donald et al., 2013; Donald et al., 2011; Erratt et al., 2020; Glibert & Berg, 2009), 

including toxin producing species of cyanobacteria (McCarthy et al., 2009). Espinosa 

et al. (2021) also found that high nutrient concentrations (12 µg Ammonium-N, 110 µg 

Nitrate-N, 4 µg Phosphate-P) and a low DIN:SRP (dissolved inorganic nitrogen and 

soluble reactive phosphorus) ratio of 4:1 stimulated geosmin production by benthic 

Oscillatoria sp.. Saadoun et al. (2001) found that geosmin production by Anabaena 

sp. was directly correlated with a high Ammonium-N and a low Nitrate-N, with low N:P 

ratios resulting in increased geosmin production. A field study in Korea (Lee et al., 

2023) found that 2-MIB correlated with water temperature and NH3-N. Water 

temperature and NH3-N also revealed a positive correlation with Pseudanabaena sp. 

growth in cascading reservoirs Xili-Tiegang-Shiyan, China (Gao et al., 2018). Harris et 

al. (2016) found that a low TN:TP <66:1 (30:1 as mass ratio) together with a low NO3
-

:NH4
+ ratio resulted in the ideal conditions for cyanobacteria to produce T&O 

compounds. Similarly, Perkins et al. (2019) identified that ammonium (NH4
+) can 

predict geosmin and 2-MIB production as well as low TN:TP ratios. Perkins et al. 

(2019) hypothesised that when cells switch from oxidized (NO3
-) to reduced (NH4

+) as 

nitrogen source the excess energy might be reallocated by producing geosmin and 2-

MIB as an “overflow” product.  

Biomass of cyanobacteria (expected T&O producers) often does not clearly relate to 

total T&O production in field studies (Harris et al., 2016), thus there are complexities 

to be revealed between environmental drivers, time-lags between intracellular T&O 

production and extracellular release and ability to measure within the water column. It 

is generally agreed that T&O producing taxa produce T&O compounds intracellularly 

during the exponential growth phase, with maximum production in late exponential 

phase and the T&O compounds are released extracellularly during the stationary and 

death phase (Alghanmi et al., 2018; Naes et al., 1989; Saadoun et al., 2001; Zhang et 
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al., 2009). It is still uncertain whether cyanobacteria release T&O compounds actively, 

for example to stimulate other phytoplankton to release organic phosphorus (Bar-

Yosef et al., 2010; Raven, 2010), or passively due to cell death and lysis (Zhang et al., 

2016), or if it is a combination of both processes (Wang & Li, 2015; Watson, 2003). 

Productivity and photosynthetic activity have been hypothesized to negatively (I) or 

positively (II) influence T&O production. I) Chlorophyll a and T&O metabolite synthesis 

compete for the same isoprenoid pathway and therefore, T&O metabolites are only 

produced under decreased photosynthetic activity as an “overflow” product to release 

excess energy (Kutovaya & Watson, 2014; Liu et al., 2009; Pattanaik & Lindberg, 

2015; Saadoun et al., 2001; Shen et al., 2020; Wang & Li, 2015). II) Alternatively, 

increased T&O accumulation can simply be the result of increased carbon flow through 

the isoprenoid pathway when the cells experience increased cell metabolism 

(Alghanmi et al., 2018; Giglio et al., 2011; Zimba et al., 1999). What remains to be 

understood is how physical and chemical conditions interact to stimulate T&O 

production in representative drinking water reservoir phytoplankton and microbial 

communities. This study therefore aims to investigate the effects of different nutrient 

ratios (NH4
+:NO3

- and DIN:SRP) and concentrations on the phytoplankton community 

structure and resulting 2-MIB production under controlled physical conditions.  

This chapter aims to answer the second overarching hypothesis: Nutrient 

concentrations and ratios are an important factor in predicting geosmin and 2-MIB 

events. Laboratory microcosms with a natural phytoplankton community were used to 

identify the effect of different nutrient concentrations and ratios, NH4
+:NO3

- and 

DIN:SRP, on 2-MIB production. Several research questions were addressed in this 

study: 

1) How do different nutrient ratios (NH4
+:NO3

- and DIN:SRP) and concentrations 

impact the community structure and productivity of phytoplankton? 

2) How do phytoplankton community structure and productivity affect the 

production of 2-MIB? 

3) Can specific nutrient ratios and concentrations be used as an early warning for 

the onset of 2-MIB production? 
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3.2 Materials and methods 

3.2.1 Experimental set-up 

Surface water from a drinking water reservoir in North Wales, Latitude 53.222067° N, 

Longitude -3.540305° W (further referred to in the text as Reservoir 1; in European 

Nucleotide Archive (ENA) as WR1), was collected on the 28th of June 2022 in two acid-

washed (10% HCl) and sterilized (autoclaved) 20 L Nalgene bottles, after they were 

rinsed three times with the same surface water. Samples were transported to the 

laboratory on the same day and stored at room temperature. The next day, 29th of 

June, water from one of the 20 L Nalgene bottles was filtered through a 0.7 um GF/F 

filter with a vacuum pump in the laminar flow hood and collected in a third prepared 

20 L Nalgene bottle, using bleached (1% sodium hypochlorite) siphoning tubes. 

Samples were taken from the filtered and unfiltered bottle, after which the bottles were 

kept in a cold room at ±4 ºC until the start of the incubation experiment, to hinder 

further nutrient changes. Samples were filtered through a pre-leached 0.45 µm 

cellulose nitrate filter with a vacuum pump and analysed for concentrations of 

dissolved inorganic nitrogen (DIN; NO3
-, NH4

+, NO2
-) and dissolved inorganic 

phosphorus (DIP; PO4
3-) on a Skalar San++ multichannel continuous flow 

autoanalyzer (Skalar Analytical B.V., The Netherlands), at the University of Bristol 

(detailed methods described in Section 3.3.1 and 3.3.2 and analytical performance of 

each run specified in Section 3.3.3). The measured nutrient concentrations in filtered 

and unfiltered water were used to determine mixing ratios of the two water types and 

calculate treatment-specific nutrient additions to ensure the required nutrient ratios 

and concentrations (Table 3.1 and Table 3.2). Consequently, the filtered water was 

50% diluted with ultrapure Milli-Q water and this “medium” was mixed with the 

unfiltered water as “inoculum” in the ratio 50% medium with 50% inoculum. This new 

mixture was sampled in triplicate in amber glass bottles (1000 ml) for geosmin and 2-

MIB analysis at Glaslyn laboratory (Dŵr Cymru Welsh Water, referred to as DCWW) 

(Section 3.3.7) and additional triplicate samples were collected in acid-washed (5-10% 

HCl) and sterilized (oven/furnace at 200 ºC for 2 hours or autoclaved) Duran bottles 

(250 ml) to enable Sterivex filtering for DNA analysis (Section 3.3.8). 

For the incubation experiment (Figure 3.1), which started on 4th of July, 850 ml of this 

mixture was filled in 21 acid-washed (5-10% HCl) and sterilized (autoclaved) 1000 ml 

Erlenmeyer flasks with foam stoppers. Nutrient spikes were added from highly 
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concentrated NO3
-, NH4

+ and PO4
3- stock solutions (1000 or 100 mg/L, shown in Table 

3.2) to create seven treatments; six treatments with specific nutrient ratios and a 

control in which nothing was added (Table 3.1). Each treatment was done in triplicate.  

 

Figure 3.1. Experiment overview which highlights the different elements of the research 
questions that were addressed by the study. 

Table 3.1. Final molar nutrient ratios NH4
+:NO3

3- (ratio in brackets if NH4
+ was compared to 1 

mol of NO3
-) and DIN:SRP of each treatment, done in triplicate (n=3). Treatment ID was used 

for reference in this study. 

Treatment Treatment ID Treatment ID meaning NH4
+:NO3

- DIN:DIP 

Control No Addition No Addition x x 

A HNO3_LNH4_HPO4 High NO3
-, Low NH4

+, 

High PO4
3- 

1:100 (0.01) 9:1 

B MNO3_MNH4_HPO4 Medium NO3
-, Medium 

NH4
+, High PO4

3- 

1:10 (0.1) 9:1 

C LNO3_HNH4_HPO4 Low NO3
-, High NH4

+, 

High PO4
3- 

1:1 (1) 9:1 

D HNO3_LNH4_LPO4 High NO3
-, Low NH4

+, 

Low PO4
3- 

1:100 (0.01) 128:1 

E MNO3_MNH4_LPO4 Medium NO3
-, Medium 

NH4
+, Low PO4

3- 

1:10 (0.1) 128:1 

F LNO3_HNH4_LPO4 Low NO3
-, High NH4

+, 

Low PO4
3- 

1:1 (1) 128:1 
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Table 3.2. Volume (mL) of nutrients from stock solutions (concentration of 1000 mg/L or 100 
mg/L) that was added to each treatment, apart from the control, as well as target 
concentrations (conc.) of NO3

--N, NH4
+-N and PO4

3--P in each treatment. 

Treatment mL of NO3
--N 

stock (1000 

mg/L) 

Target 

conc. 

NO3
--N 

(mg/L) 

mL of 

NH4
+-N 

stock (100 

mg/L) 

Target 

conc. 

NH4
+-N 

(mg/L) 

mL of PO4
3--P 

stock (100 or 1000 

mg/L) 

Target 

conc. 

PO4
3--P 

(mg/L) 

A 7.492 7.714 0.000 0.077 1.915 (1000 mg/L) 1.915 

B 1.179 1.400 0.629 0.140 0.379 (1000 mg/L) 0.379 

C 0.479 0.700 6.229 0.700 0.344 (1000 mg/L) 0.344 

D 7.492 7.714 0.000 0.077 1.347 (100 mg/L) 0.135 

E 1.179 1.400 0.629 0.140 0.266 (100 mg/L) 0.027 

F 0.479 0.700 6.229 0.700 0.242 (100 mg/L) 0.024 

 

The dissolved oxygen and pH were measured with benchtop probes (Sections 3.3.5 

and 3.3.6) in the Erlenmeyers, sterilizing them in between with 70% Ethanol. 100 ml 

was taken from each Erlenmeyer straight away for nutrient analysis on a Skalar San++ 

(Skalar Analytical B.V., The Netherlands) and an additional 5 ml was taken for 

measurements on a PHYTO-PAM-II multiple excitation wavelength phytoplankton & 

photosynthesis analyzer (Walz Photosynthesis Instruments, Germany). The 21 

Erlenmeyer flasks were placed in an LMS 280 NP+ incubator (LMS, United Kingdom) 

set at 20 °C, with average light intensity of 33 (± 9.6 standard deviation; SD) µmol 

photons m-2 s-1 and a 12h:12h light:dark cycle. Every day throughout the 23 day long 

experiment they were swirled and randomly relocated in the incubator to ensure a 

random block design. Three flasks were chosen from treatments A, C and Control and 

these flasks (Ctrl3, A2 and C1) had continuous dissolved oxygen sensors (PreSens 

oxygen needle-type sensors, more information below) installed. Sub-samples were 

collected on days 4, 8, 12, 16 and 19 for analysis of community productivity (PHYTO-

PAM-II), pH (Orion) and dissolved oxygen (PreSens Fibox 3). Sub-samples were 

collected on day 0 and day 22 for nutrient concentrations (Skalar San++, Skalar 

Analytical B.V., The Netherlands; GalleryTM Discrete Analyzer, ThermoFisher 

ScientificTM, USA; at the University of Bristol), T&O compounds (Dŵr Cymru Welsh 

Water laboratory), environmental DNA (Cardiff University) and qPCR (Cardiff 

University) (Figure 3.2, Table 3.3). PHYTO-PAM-II measurements were deemed 
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unreliable due to technical issues caused by non-homogeneous phytoplankton growth 

in the experiment and were subsequently excluded from further analysis.  

 

Figure 3.2. Experimental design which demonstrates the sampling days and analyses that 
were done at each sampling day. More details on measurements can be found in Table 3.2. 

Table 3.3. Measurements and their temporal frequency during the laboratory incubation 
experiment 

Frequency Measurement  

Continuously Dissolved oxygen in flasks Ctrl3, A2 and C1 

(primary productivity proxy) 

Every 3 or 4 days pH, dissolved oxygen, PHYTO-PAM-II 

(biomass proxy and yield/health) 

Start and End Nutrient composition, DOC, T&O 

concentration (geosmin and 2-MIB), DNA 

next generation sequencing (16S rRNA and 

rbcL), qPCR (16S rRNA, geoA, mic) 

 

3.3 Laboratory methods 

3.3.1 N, P, C sample preparation 

100 ml of sample was collected in acid-washed (5-10% HCl) bottles and 60 ml was 

filtered through a pre-leached 0.45 µm cellulose nitrate filter with a vacuum pump. Half 

of the filtered sample was collected in a 50 ml Falcon tube and frozen at -20 °C for 

later DOC analysis (4). The other half of the filtered sample was put in a second 50 ml 



72 
 

Falcon tube and split in two, 10 ml was used as Filtered Fresh sample (1) and another 

10 ml was digested, to become the Filtered Digested (2) sample. Digestion was 

conducted using the persulphate (K2S2O8) oxidation method, described by Johnes and 

Heathwaite (1992) and modified for the CEM Mars Xpress microwave digestion unit 

by Yates et al. (2019b). Moreover, 10 ml of Unfiltered sample from the collection bottle 

was digested, creating the Unfiltered Digested (3) sample.  

1) Filtered Fresh = PO4
3--P, TOxN (nitrate and nitrite), NH4

+-N 

2) Filtered Digested = Total dissolved phosphorus (TDP), Total dissolved nitrogen 

(TDN) 

3) Unfiltered Digested = Total phosphorus (TP), Total nitrogen (TN) 

4) DOC analysis 

3.3.2 N and P fractions 

Sample types 1, 2 and 3 (explained in Section 3.3.1) were analysed within 24 hours 

of sample collection using a Skalar San++ multichannel continuous flow autoanalyzer 

(Skalar Analytical B.V., The Netherlands), following the methods described in (Yates 

et al., 2019a; Yates et al., 2019b). The Skalar San++ (Skalar Analytical B.V., The 

Netherlands) is a continuous flow analyser with colorimetric detection which can 

analyse digested samples (sample types 2 and 3). The Skalar San++ (Skalar 

Analytical B.V., The Netherlands) was set up to simultaneously measure total oxidised 

nitrogen (TOxN, includes nitrate as NO3
--N and nitrite as NO2

--N), as well as total 

ammonium (NH3-N + NH4
+-N) and soluble reactive phosphorus (SRP, indicative of 

PO4
3--P). An independent stock solution was used to make calibration standards 

(range 0.01 – 1 mg/L for PO4
3--P , NH4

+-N and NO2
--N and 0.1 – 10 mg/L for TOxN) 

and the stock solution 6 (TOxN = 6 mg/L, NH4
+-N = 0.6 mg/L, NO2

--N = 0.6 mg/L, PO4
3-

-P = 0.6 mg/L) was run frequently throughout the analysis to enable quality control. 

Additionally, analytical and digest blanks were run to check the performance of the 

protocol and the instrument. From these results, additional nitrogen and phosphorus 

fractions can be determined, using calculations specified in Lloyd et al. (2019); Yates 

et al. (2019a): 

Dissolved organic nitrogen; DON = TDN – TON – NH4
+-N 

Dissolved organic phosphorus; DOP = TDP – PO4
3--P 
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Particulate organic nitrogen; PON = TN – TDN 

Particulate phosphorus; PP = TP - TDP  

The Skalar San++ (Skalar Analytical B.V., The Netherlands) did not perform well for 

NH4
+-N concentrations, possibly due to background ammonium present in the 

laboratory which caused sub-optimal calibration curves. The Skalar San++ (Skalar 

Analytical B.V., The Netherlands) NH4
+-N measurements for the three sample runs 

‘preparation’ (LoD 0.07 mg/L, ±3.1% precision, ±5.3% accuracy), ‘day 0’ (LoD 0.11 

mg/L, ±5.7% precision, ±5.4% accuracy) and ‘day 22’ (LoD 0.11 mg/L, ±5.8% 

precision, ±8.5% accuracy) were not precise or accurate (Table 3.4). Therefore, ’day 

22’ (final day) samples were also analysed on a GalleryTM Discrete Analyzer 

(ThermoFisher ScientificTM, USA) for NH4
+-N with the low detection setting (LoD 0.003 

mg/L, ±0.9% precision, ±1.7% accuracy) (Table 3.4), and a comparison of both sample 

measurements can be found in Figure S.1 (Appendix B). The GalleryTM Discrete 

Analyzer (ThermoFisher ScientificTM, USA) is a continuous flow analyser with 

colorimetric detection but cannot analyse digested samples (sample types 2 and 3). 

Moreover, filtered water samples are frozen before they are analysed on the GalleryTM 

Discrete Analyzer, hence a test was done to compare between filtered samples stored 

in the fridge and in the freezer. Two water samples were either frozen or put in the 

fridge and analysed within 24 hours on the Skalar San++, whilst the frozen sample 

was analysed on the GalleryTM Discrete Analyzer. No notable differences that would 

raise concern were identified in the results, caused by freezing (Appendix B, Table 

S.2) 

3.3.3 LoD, precision and accuracy of Skalar San++ and GalleryTM 

LoD, precision and accuracy were calculated for each individual nutrient fraction for 

every run on the Skalar San++ (Skalar Analytical B.V., The Netherlands) and GalleryTM 

Discrete Analyzer (ThermoFisher ScientificTM, USA). LoD was determined based on 

the linear calibration curves, implementing a linear regression to x (actual 

concentration) and y (measured concentration) to calculate Sy (the standard deviation 

of the predicted y-value for each x in a regression) and S (slope of the regression). 

Following guidelines from ICH Harmonised Tripartite Guideline (2005), the limit of 

detection (LoD) was calculated using Equation 3.1. 
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Equation 3.1: 

𝐿𝑜𝐷 = 3.3 ∗ (
𝑆𝑦

𝑆
) 

The precision was calculated based on repeated measurements of the same 

concentration. For the Skalar San++ (Skalar Analytical B.V., The Netherlands) this was 

a drift measurement (n=9) of a calibration solution that contained 0.6 mg/L of nitrite, 

phosphate and ammonia and 6 mg/L of TOxN. The GalleryTM Discrete Analzyer 

(ThermoFisher ScientificTM, USA) did not execute a drift measurement but measured 

all calibration solutions in triplicate (n=3), so the calculations were performed on each 

calibration concentration separately and then averaged. For each repeated 

measurement, the absolute deviation from the average of all measurements was 

calculated, which was averaged (average deviation), then divided by the average of 

all measurements and multiplied by 100 (Equation 3.2). An example of hypothetical 

triplicate measurements y1, y2 and y3 (average value = 𝑦̅) of actual concentration x 

was used to clarify Equation 3.2 and Equation 3.3. 

Equation 3.2: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
(

|𝑦1 − 𝑦|̅ + |𝑦2 − 𝑦̅| + |𝑦3 − 𝑦̅|
3

)

𝑦̅
∗ 100 

The accuracy was calculated as the absolute percentage difference for repeated 

measurements; “average concentration (𝑦̅)” – “actual concentration (x)” divided by the 

“actual concentration (x)” and multiplied by 100 (Equation 3.3):  

Equation 3.3: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  |
𝑦̅ − 𝑥

𝑥
∗ 100| 

Moreover, the coefficient of variation (CV %) was calculated as the standard deviation 

of the measurements divided by the average of the measurements multiplied by 100 

to get a percentage. 

Table 3.4 demonstrates the different analytical performance of every nutrient fraction 

in each sample run for the Skalar San++ (Skalar Analytical B.V., The Netherlands) and 

the GalleryTM (ThermoFisher ScientificTM, USA), to compare between instruments and 

runs (Table 3.4). 
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Table 3.4. Limit of detection (LoD, mg/L), precision (%), accuracy (%) and coefficient of 
variation (CV, %) for each run on the Skalar San++ (Skalar) and GalleryTM (Gallery) for nitrite 
(NO2

--N), phosphate (PO4
3--P), total oxidisable nitrogen (TOxN) and ammonium (NH4

+-N). 

Nitrite (NO2
--N) 

Sample Date Instrument LoD (mg/L) Precision (%) Accuracy (%) CV (%) 

Preparation 30/06/2022 Skalar 0.076 14.647 18.185 19.194 

Day 0 05/07/2022 Skalar 0.015 1.120 3.574 1.419 

Day 22 27/07/2022 Skalar 0.060 2.505 10.389 2.989 

Phosphate (PO4
3--P) 

Sample Date Instrument LoD (mg/L) Precision (%) Accuracy (%) CV (%) 

Preparation 30/06/2022 Skalar 0.030 0.584 2.130 0.733 

Day 0 05/07/2022 Skalar 0.022 0.747 1.852 0.938 

Day 22 27/07/2022 Skalar 0.070 0.672 5.296 0.936 

Total Oxidisable Nitrogen (TOxN) 

Sample Date Instrument LoD (mg/L) Precision (%) Accuracy (%) CV (%) 

Preparation 30/06/2022 Skalar 0.260 3.097 8.256 3.420 

Day 0 05/07/2022 Skalar 0.128 1.137 18.793 1.840 

Day 22 27/07/2022 Skalar 0.499 1.077 10.919 1.360 

Ammonium (NH4
+-N) 

Sample Date Instrument LoD (mg/L) Precision (%) Accuracy (%) CV (%) 

Preparation 30/06/2022 Skalar 0.068 3.056 5.296 3.829 

Day 0 05/07/2022 Skalar 0.108 5.680 5.352 6.465 

Day 22 27/07/2022 Skalar 0.113 5.829 8.500 7.323 

Day 22 29/07/2022 Gallery 0.003 0.896 1.703 1.198 

 

3.3.4 DOC 

Following methods from Yates et al. (2019a) and Yates et al. (2019b), dissolved 

organic carbon (DOC) concentrations were measured as non-purgeable organic 

carbon, on a 0.45 µm filtered sample which was acidified with HCl. A Shimadzu TOC-

L series analyser (Shimadzu Corp., Kyoto, Japan) was used for coupled high 

temperature catalytic oxidation. The mean of three to five 100 µL injections was 

calculated, where the coefficient of variance between replicate injections was <2%. 

3.3.5 Oxygen probes 

Continuous dissolved oxygen measurements were executed with needle-type fiber-

optic oxygen microsensors, Profiling Oxygen Microsensor PM-PSt1 (PreSens 

Precision sensing GmbH, Germany) that were connected to an autonomous data 

logger OXY-10 micro, a 10-channel microsensor oxygen meter (PreSens Precision 

sensing GmbH, Germany) using PreSens OXY10 v3 software on a desktop.  
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Each measurement day, an Oxygen Dipping Probe DP-PSt3 (PreSens Precision 

sensing GmbH, Germany) and a temperature sensor were connected to a Fibox 3 

fiber optic oxygen meter and a laptop using PreSens PSt3 v6 software (PreSens 

Precision sensing GmbH, Germany). The software recorded dissolved oxygen as air 

saturation (%) and temperature (°C) every 10 seconds for the whole day. After the 

experiment, all the data was processed to retrieve the correct oxygen measurements 

in each flask by matching the measurement time in the dataset when the oxygen 

sensor had stabilized. This way a range of datapoints was available for each flask at 

every measurement day, enabling more data quality certainty and statistical 

calculations (mean, standard deviation etc.). 

Both oxygen sensors were calibrated before the experiment and checked for drift after 

the experiment.  The following method was used; 100% air saturation in the air above 

damp cotton wool and 0% in a solution with sodium sulphite dissolved in Milli-Q water 

(±0.1 gram in 10 ml Milli-Q). Continuous dissolved oxygen needle-type sensors (Pst1) 

performed well throughout the experiment with <2% drift. Final day measurements 

with calibration standards were; channel 1 = ctrl 3 (0% = 0.1%; 100% = 100%), channel 

5 = a2 (0% = 0.1 %; 100% = 98%), channel 10 = c1 (0% = 0.1%; 100% = 98%). The 

intermittent oxygen dipping sensor (Pst3) also performed well, with minimal drift of < 

0.2% (0% = 0.0%; 100% = 99.8%).  

3.3.6 pH 

pH was measured with a ThermoFisher ScientificTM Orion Star series benchtop pH 

meter (ThermoFisher ScientificTM, USA), equipped with a Sentek pH probe Type P11/ 

ROD/ BNC (Sentek Sensor Technologies, Australia). The probe was calibrated at the 

start of the experiment with a 4-point calibration (pH 2, 4, 7 and 10). After the 

experiment, a drift check was done and in the pH range of the experiment (7-10), the 

drift was approximately 0.18 pH value (7 = 6.84; 10 = 9.82). 

3.3.7 Geosmin and 2-MIB 

250 ml of sample was collected in Dŵr Cymru Welsh Water (DCWW) provided amber 

glass vials (1000 ml) and stored in the dark at 4 °C until samples were transported to 

Glaslyn, the DCWW accredited laboratory (ISO/IEC 17,025:2017), for analysis. Their 

accredited laboratory method ensures that geosmin and 2-MIB first get extracted via 

a solid-phase extraction (SPE) and they are subsequently eluted using 1.0 ± 0.01 mL 
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dichloromethane into a labelled 2 mL auto sampler vial. A deuterated internal standard 

was added to the sample to assess efficiency of the run. Samples were analysed by 

GC-MS triple quadrupole MS in MRM mode (Perkins et al., 2019). Briefly explained: 

Samples were injected into a gas chromatograph using a multimode inlet in solvent 

vent mode, where helium transported the analytes on to a 30 M Ultra Inert HP-5MS 

capillary column (Agilent, USA) and they were separated by boiling point. After the gas 

chromatograph (GC), analyte detection was done with a triple quadrupole Mass 

Selective detector (MS/MS) in multiple reaction monitoring (MRM) mode (Hooper, 

2023a).  

3.3.8 DNA sample preparation and extraction 

250 ml of sample was collected in acid-washed (5-10% HCl) and sterilized 

(oven/furnace at 200 °C for two hours or autoclaved) Duran bottles (250 ml). A filter 

set-up with a sterile 50 ml syringe and a vacuum pump on the laboratory bench was 

used to filter 250 ml of sample through a 0.2 µm Sterivex filter unit. One ml of ATL 

buffer (Qiagen, Germany) was added to the filter and afterwards the filters were sealed 

with Parafilm and stored at -20 °C until analysis. Autoclaved Milli-Q water had also 

been filtered in triplicate on different days, to get an average of background DNA in 

the filtration environment, which was used for correcting DNA results.  

The liquid from defrosted Sterivex filters was distributed equally in two sterile 15 ml 

Falcon tubes (one for DNA extraction, one back-up), both containing approximately 

0.5 ml ATL. In a laminar flow hood and following sterile laboratory practices, the 

Sterivex filters were cut open with a PVC pipe cutter and the filter paper was detached 

from the cylindrical interior with a surgical blade, using advice from Cruaud et al. 

(2017). The filter paper was cut into smaller pieces and equally distributed to both 

Falcon tubes and back-up tubes were stored at -20 ºC. To the active Falcon tubes, 

43.6 µL of proteinase-K was added, they were vortexed and spun down, sealed with 

parafilm and incubated in a water bath at 56 °C for 30 minutes. Tubes were placed in 

-20 °C freezer overnight and defrosted the next day in a water bath at 56 °C for 1 

minute. Samples were dipped into liquid nitrogen for 10 seconds, then placed in a 

water bath at 65 °C, followed by another 2 minutes at -20 °C to ensure vigorous freeze-

thaw cycles. Subsequent DNA extraction protocol was adapted from Fawley and 

Fawley (2004) and was described by Watson et al. (2024) for flat DNA filters, which 

includes both chemical and physical (bead beating) treatments and DNA purification 
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using the DNAeasy® Blood & Tissue kit (QIAGEN, Germany). Purified DNA was eluted 

in 100 µL of nuclease-free water after a 10-minute incubation to ensure maximum DNA 

recovery.  

DNA quantity was measured with the Qubit High Sensitivity Assay Kit (Invitrogen, 

ThermoFisher ScientificTM, USA) and a 96-well plate was created with manual dilutions 

for each sample to normalise to 0.5 ng/µL. Manual dilution was required, instead of a 

standard 1:10 dilution, due to large differences in DNA yields between the samples. 

Extraction controls were run for each time the extraction protocol was executed. 

3.3.9 Next generation sequencing  

16S rRNA 

Following methods from Watson et al. (2024), bacteria-specific primer set 515F 

(forward) 5′-GTGCCAGCMGCCGCGGTAA-3′ and 806R (reverse) 5′-

GGACTACHVGGGTWTCTAAT-3′ (Caporaso et al., 2011) was used to amplify a 

fragment of approximately 350 base pair (bp) of the 16S rRNA gene. For the first 

polymerase chain reaction (PCR), 1 µL of template DNA (manually normalised to 0.5 

ng/µL) was added to 19 µL of amplification mixture, which consisted of 5 µL AllTaq 

Master Mix (4x concentrated) (QIAGEN, Germany), 0.525 µL of forward primer (10 

pmoles/µL), 0.525 µL of reverse primer (10 pmoles/µL), 0.25 µL of BSA (20 mg/mL) 

and 12.70 µL of nuclease-free water. Plates with master mix and template DNA in 20 

µL reaction-volumes were set up on an epMotion® robot (Eppendorf, Germany), after 

which a PCR was run on an Applied Biosystems SimpliAmp thermocycler 

(ThermoFisher ScientificTM, USA) with the following conditions: 95 ◦C for 2 min (one 

cycle), 95 ◦C for 5 s, 55 ◦C for 15 s, 72 ◦C for 10 s (30 cycles) and 72 ◦C for 5 s (one 

cycle). Samples were run in triplicate and included a negative PCR control, to reduce 

bias and enable quality assurance. Triplicates were pooled and visualised on a 

QIAxcel® Advanced System to check the quality of the PCR products. Subsequent 

sample purification was done with a Zymo Research DNA Clean-up KitTM, following 

manufacturers protocol (Zymo Research, USA). A secondary PCR was prepared in 

plates on the epMotion® robot (Eppendorf, Germany), with a total reaction volume of 

25 µL. First, 17.5 µL of amplification mixture was prepared; 12.5 µL of KAPA HiFi 

HotStart ReadyMix (2x concentrated) (Roche Diagnostics, Switzerland) and 5 µL 

nuclease-free water. This was followed by adding 2.5 µL of unique Illumina® Nextera 
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XT index adapter 1 (N7XX) to identify columns and 2.5 µL of unique Illumina® Nextera 

XT index adapter 2 (S5XX) to identify rows (Illumina®, Cambridge, UK), after which 

2.5 µL of amplified DNA was added. The PCR was executed on a MultiGene™ 

OptiMax Thermal Cycler (Labnet International, USA) to incorporate sample-specific 

Illumina® Nextera XT indices (Illumina®, Cambridge, UK), following these steps: 95 

◦C for 3 min (one cycle), 95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 30 s (8 cycles) and 

72 ◦C for 5 s (one cycle). A SequalPrepTM Normalization Plate Kit (Invitrogen, 

Carlsbad, CA, USA) was used to normalise samples to equimolar concentrations, and 

a pooled sample was sequenced on an lllumina® MiSeq (nano cartridge: 2 × 250 bp 

paired-end reads) at Cardiff School of Bioscience Genome Research Hub. Next 

generation sequencing data used for the molecular analysis can be found on the 

European Nucleotide Archive (ENA), project code: PRJEB75951. 

rbcL 

Next-generation sequencing preparation for rbcL generally followed the same protocol 

as 16S rRNA, with some primer and sample-specific alterations. The primer set 

contained two forward reading primers; rbcL_192_Diatoms (diatom-specific) 5′-

GCTACWTGGACWGTTGTWTGGAC-3′ and rbcL_192_Green (green algae-specific) 

5′-GGTACTTGGACWACWGTWTGGAC-3′ and one reverse primer; rbcL_657 (non-

specific) 5′-GAAACG[I]TCWCKCCAACGCAT-3’, which were designed by Maya 

Lhoste’s Final Year Project 2023. The primer set was used to amplify a fragment of 

approximately 550 base pair (bp) of the RuBisCO large (rbcL) gene, which is used to 

identify diatoms and green algae. 

For the first PCR, 1 µL of template DNA (manually normalised to 0.5 ng/µL) was added 

to 19 µL of amplification mixture, which consisted of 5µL AllTaq Master Mix (4x 

concentrated) (QIAGEN, Germany), 0.2625 µL of diatom-specific forward primer (10 

pmoles/µL), 0.2625 µL of green algae-specific forward primer (10 pmoles/µL), 0.525 

µL of reverse primer (10 pmoles/µL), 0.25 µL of BSA (20 mg/mL) and 12.70 µL of 

nuclease-free water. Plates with master mix and template DNA in 20-µL reaction 

volumes were set up on an epMotion® robot (Eppendorf, Germany), after which a 

PCR was run on an Applied Biosystems SimpliAmp thermocycler (ThermoFisher 

ScientificTM, USA) with the following conditions: 95 ◦C for 2 min (one cycle), 95 ◦C for 

5 s, 55 ◦C for 15 s, 72 ◦C for 10 s (32 cycles) and 72 ◦C for 5 s (one cycle). Samples 

were run in triplicate and included a negative PCR control, to reduce bias and enable 
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quality assurance. Triplicates were pooled and visualised on a QIAxcel® Advanced 

System to check the quality of the PCR products. Subsequent sample purification was 

done with a Zymo Research DNA Clean-up KitTM, following manufacturers protocol 

(Zymo Research, USA). A secondary PCR was set up on an epMotion® robot 

(Eppendorf, Germany), with KAPA HiFi HotStart ReadyMix (2x concentrated) (Roche 

Diagnostics, Switzerland) and Illumina® Nextera XT indices (Illumina®, Cambridge, 

UK), following the same concentrations as for 16S rRNA. Altered to enhance 

amplification with additional cycles, the PCR was executed on a MultiGene™ OptiMax 

Thermal Cycler (Labnet International, USA) to incorporate sample-specific Illumina® 

Nextera XT indices (Illumina®, Cambridge, UK), following these steps: 95 ◦C for 3 min 

(one cycle), 95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 30 s (10 cycles) and 72 ◦C for 5 s 

(one cycle).  

Normalisation of samples to equimolar concentrations was done manually, as PCR 

product yields were too low for SequalPrepTM Normalization Plate Kit. Amplicon 

concentration (nM) for all peaks in the correct region of the PCR product (596 to 671 

bp) was measured with the peak calling function on the QIAxcel® Advanced System 

(1:3 diluted samples). For each sample, all amplicon concentrations for correct peaks 

were summed and converted to the original concentration (nM) before 1:3 dilution. 

Sample concentrations (nM) were put into Excel and the volume of sample that was 

required to reach 1 nM was calculated, the total pool balancing out variable sample 

DNA concentrations. The samples were pooled according to the calculations into a 

single 1.5 ml Eppendorf tube. The pooled sample was cleaned with a SPRIselectTM 

bead-based reagent (Beckman Coulter, Inc., USA), following manufacturer’s protocol. 

A ratio of 0.75% SPRI beads to sample was used to remove a 250 bp contamination 

that was visible on the QIAxcel® Advanced System. The purified pooled sample was 

eluted in 100 µL of nuclease-free water and this was sequenced on an lllumina® MiSeq 

(nano cartridge: 2 × 250 bp paired-end reads) at Cardiff School of Bioscience Genome 

Research Hub. Next generation sequencing data used for the molecular analysis can 

be found on the European Nucleotide Archive (ENA), project code: PRJEB75951. 

Bioinformatics 

The bioinformatics programme QIIME2 (version 2021.8) (Bolyen et al., 2019) was 

used to analyse the sequence data, following methods from Hooper (2023a). Fastq 

files for paired-end sequences were demultiplexed and quality controlled before they 
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were imported into QIIME2 for further processing with the in-built DADA2 pipeline 

(Callahan et al., 2016), which merges paired-end reads, denoises the data, removes 

artifacts (chimeric sequences) and obtains representative sequences of original 

samples. Table 3.5 contains parameters used in the DADA2 pipeline. Truncation 

length was selected based on quality scores for forward and reverse reads in both 16S 

rRNA and rbcL sequencing runs individually. Amplicon sequence variants (ASVs) were 

taxonomically assigned using compiled databases with reference sequences for 16S 

rRNA and rbcL. The silva database v138 (Callahan, 2018) was used to extract the 16S 

rRNA variable regions V4 & V5 (515 to 806 bp) and associated taxonomic 

classification. The database for rbcL subunit sequences and associated taxonomy was 

collated for diatoms (Bacellariophyceae) and green algae (Chlorophyta), explained in 

more detail in Hooper (2023a). In brief, diatom data was sourced from an open-access 

curated barcode library Diat.barcode, and this was merged with GenBank data for all 

rbcL subunit sequences available, without duplicate or primer-containing data entries 

and cross-referenced against NCBI taxonomic identifiers to provide complete 

taxonomic classification. The 16S rRNA silva database v138 and the compiled rbcL 

database were adapted to QIIME2 version 2021.2, so they were regenerated for use 

in QIIME2 version 2021.8. ASV assignment was done in QIIME2 (version 2021.8 - 

https://view.qiime2.org/) using the fit-classifier naive-bayes function to generate a 

Bayesian classifier. After ASV assignment, certain filters were applied to clean the 

data. For 16 rRNA and rbcL sequences, chloroplasts were removed from the dataset, 

because they don’t represent real DNA sequences. Subsequently, samples that had 

reads below 2000 were filtered out for 16S rRNA, to remove the blanks with low and 

non-specific bacterial species reads. For rbcL the threshold was set to 1000 because 

the level of contamination with rbcL DNA is smaller than with 16S rRNA. These values 

have been determined based on DADA2 total number of reads (non-chimeric) for the 

highest scoring blank (Table 3.5). Moreover, proportional filtering was done per ASV 

(taxa) using the qiime feature-table filter-features-conditionally function with a -p-

abundance of 0.001 for 16S rRNA and 0.0006 for rbcL. This means that ASV’s with a 

minimum relative abundance under 0.1% for 16S rRNA (minimum number of reads for 

species identification between 10 and 29) and 0.06% for rbcL (minimum number of 

reads between 16 and 34) respectively, were removed (see Table 3.5) to ensure 

accurate species identification (ideally 10-20 reads). P prevalence was set to 0, as 
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sampling locations and conditions were different within the sequencing run and this 

prevented unique ASV’s only present in one sample from being removed.  

Table 3.5. Parameter settings that were used for bioinformatics and summarised information 
from the DADA2 table and bioinformatics filtering steps. 

Parameter 16S rRNA rbcL 

--p-trim-left-f 19 23 

--p-trim-left-r 20 21 

--p-trunc-len-f 248 248 

--p-trunc-len-r 248 248 

--p-abundance 0.001 0.0006 

Average reads in samples (from DADA2 table) 28808 34290 

Average no of reads with p abundance 29 21 

Minimum no of reads with p abundance 10 16 

Maximum no of reads with p abundance 63 34 

--p-min-frequency 2000 1000 

Blanks maximum number of reads 4740 898 

 

3.3.10 qPCR 

The diluted DNA plate (normalised to 0.5 ng/L) was used directly for geoA/mic and 

16S rRNA qPCRs. The qPCR reactions were done in triplicate in 384-well plates 

including an internal standard curve for geoA and mic as well as qPCR blanks. Exact 

qPCR conditions are described below, following protocol developed by Professor 

Peter Kille’s group, adapted from Hooper et al. (2023b).  

Standard curves for geoA, mic and 16S rRNA 

DNA extracted from cultures of Oscillatoria Nigro-Viridis, a geosmin and 2-MIB 

producing cyanobacteria, Streptomyces Coelicolor, a geosmin and 2-MIB producing 

streptomyces, and Escherichia coli was used to produce standard curves (Hooper et 

al., 2023b). geoA standard curves were generated from Oscillatoria Nigro-Viridis DNA 

using the primer set GeoA F (5’-ATGCAACCCTTTAAACTGCCAG–3’) and GeoA R 

(5’–TTAGGGATTGGTAACTGGTGACTG–3’). Standard curves for mic were also 

generated with DNA extracted from Oscillatoria Nigro-Viridis using primer set MIB F 

(5’–ATGAAAGATACCAACCTGGATGATAC-3’) and MIB R (5’-

TTAGGTTGATGATTGTGAATCCATCTG–3’). To generate standard curves for 16S 
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rRNA, equimolar concentrations of DNA extracted from Escherichia coli, Oscillatoria 

Nigro-Viridis and Streptomycytes Coelicolor were used and amplified with primer set 

27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and 1492R (5′-

GGTTACCTTGTTACGACTT-3′), as described by DeLong (1992). All amplifications 

were performed on a SimpliAmpTM Thermal Cycler (Thermo Fisher Scientific, USA) 

using the following conditions: initial denaturation at 95 ◦C for 2 min followed by 40 

cycles of 95 ◦C for 30 s (denaturation), 60 ◦C for 30 s (annealing), 72 ◦C for 2 min 

(extension) and a final extension step at 72 ◦C for 5 min. The amplicons were cleaned 

and purified using a QIAquick PCR purification kit (Qiagen Ltd, Venlo, Netherlands) 

and the amplicon size was checked with a 4200 TapeStation (Agilent Technologies, 

USA), which should be 2291 bp, 1141 bp and 1490 bp for geoA, mic and 16S rRNA, 

respectively. 

geoA and mic qPCR 

The geoA and mic qPCR was executed in the same reaction well, using probes to 

identify them. The geoA qPCR was executed with primer Geo SGF1 (5’- 

CATCGAATACATCGAGATGCG-3’) and Geo JDR1 (5’- 

TCGCCTTCATCTTCCACTTC-3’) using SGP5 probe FAM (5’- 

AGGTTGGTGGCGCACCCTGGTCA-3’), as described in (Tsao et al., 2014). qPCR for 

the mic gene was performed using primers MIBS02F (5’-

ACCTGTTACGCCACCTTCT-3’) and MIBS02R (5’- CCGCAATCTGTAGCACCATG-

3’) with a MIB probe HEX (5’- ACGACAGCTTCTACACCTCC-3’), adapted from (Chiu 

et al., 2016). A hydrolysis probe qPCR was done to combine geoA and mic qPCR 

reactions in a 10 µL reactions mixture containing 5 µL of QuantiNova probe qPCR 

Master Mix (2x) (Qiagen Ltd, Venlo, Netherlands), 0.4 µM of each primer, 0.2 µM of 

each probe, 0.05 µL of QN ROX reference dye and 2 µL of template DNA. The qPCR 

reactions were run on a QuantStudio™ 7 Flex Real-Time PCR System, with 384-well 

plates (Applied Biosystems, ThermoFisher ScientificTM, USA) and the following 

conditions were used: initial denaturation at 95 ◦C for 2 min followed by 40 cycles of 

95 ◦C for 5 s (denaturation) and 60 ◦C for 30 s (annealing and extension) which allowed 

fluorescence capture. The linear dynamic range of copy number detection in this 

qPCR was 10 and 10 x 106 copies µL-1.   
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16S rRNA qPCR 

qPCR for 16S rRNA was done with primers 534F (5′- GCCAGCAGCCGCGGTAAT-3′) 

and 907R (5′-CCGTCAATTCCTTTGAGTTT-3′), as described in Muyzer et al. (1993) 

and Muyzer (1998). A SYBR Green qPCR was performed in a 10 µL reactions mixture 

containing 5 µL of QuantiNova probe qPCR Master Mix (2x) (Qiagen Ltd, Venlo, 

Netherlands), 0.7 µM of each primer, 0.05 µL of QN ROX reference dye and 2 µL of 

template DNA. The qPCR reactions were executed on a QuantStudio™ 7 Flex Real-

Time PCR System, in 384-well plates (Applied Biosystems, ThermoFisher ScientificTM, 

USA) using the following conditions: initial denaturation at 95 ◦C for 2 min followed by 

40 cycles of 95 ◦C for 5 s (denaturation) and 60 ◦C for 20 s (annealing and extension) 

which allowed fluorescence capture, followed by a melting curve analysis of the 

amplified products: 95 ◦C for 15 s (denaturation), 60 ◦C for 1 min (annealing) and 95 

◦C for 15 s (dissociation, temperature change of 0.05 ◦C/s). The linear dynamic range 

of copy number detection in this qPCR was 10 and 10 x 106 copies µL-1.   

3.3.10.1 Blanks 

The Milli-Q filter blank that was executed during the Sterivex filtering was checked for 

16S rRNA gene copies. 84746.4 gene copies of 16S rRNA per ml of filtered water were 

present on average for all the samples, whereas the Milli-Q filter blank contained 1.5 

gene copies per ml of filtered water. As the 16S rRNA gene copies in the blank only 

make up on average 0.0018 % of the total 16S rRNA gene copies, it was chosen to 

not take the blank into further consideration. Additional blanks were executed on the 

qPCR plates for 16S rRNA and geoA and mic to check for cross-contamination. 

3.4 Statistical analyses 

3.4.1 Estimation of carbon produced per hour 

Manual oxygen monitoring  

Mean air saturation % and mean temperature was calculated for each flask. For each 

measurement, the hours since the start of the experiment (04/07/2022 09:58:00) was 

calculated. Rounded mean temperature was used to convert air saturation % into 

mg/L, with Equation 3.4 and the correct oxygen calculation ratio (at 0 salinity) that 

matched the temperature: 18 °C = 9.467, 19 °C = 9.276, 20 °C = 9.092, 21 °C = 8.914, 

22 °C = 8.743, 23 °C = 8.578. Air pressure was not considered in calculations as 
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experiments took place in a laboratory facility and was assumed to have a negligible 

effect. 

Equation 3.4: 

𝑂𝑥𝑦𝑔𝑒𝑛 (
𝑚𝑔

𝐿
) =

𝐴𝑖𝑟 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 %

100
∗ 𝑜𝑥𝑦𝑔𝑒𝑛 𝑟𝑎𝑡𝑖𝑜 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

Dissolved oxygen (mg/L) was converted to productivity in mmoles of carbon in hours 

and minutes, assuming a 1:1 molar ratio in photosynthesis (1 C + 1 O2), and using 

exact flask volumes throughout the experiment. The area under the curve calculation 

was used assuming that productivity occurred uniformly between each time interval 

(in hours or minutes) and results were summed to calculate the total carbon (mmoles), 

which resulted in mmol carbon in hours and mmol carbon in minutes. 

Continuous oxygen monitoring probes 

Continuous oxygen measurements every 15 minutes were first processed with R 

packages “zoo” (Zeileis & Grothendieck, 2005) and “xts” (Ryan & Ulrich, 2011), 

followed by calculating mmol carbon produced at each timestep with a constant 

temperature of 20 degrees in the incubator (9.092 conversion factor) and flask volume 

decrease, similar to the section “Manual oxygen monitoring” above. This data was 

interpolated using function f in R studio (approxfun) to create constant 15-minute time 

steps. The interpolated dataset was used to calculate the area under the curve, using 

R package “pracma” (Borchers, 2023), which resulted in mmoles of carbon in minutes. 

Calculated total carbon (mmoles in minutes) from continuous and manual oxygen 

sensors was comparable (Table S.3 in Appendix B).  

3.4.2 Molecular data 

Raw read counts at level 6 (genus) were downloaded from Qiime for 16S rRNA and 

rbcL separately. A normalisation was performed, dividing raw read counts of each ASV 

by the total number of reads for that sample, to determine the proportion of that ASV. 

This resulted in values for each ASV between 0 and 1 (0.1 indicates 10% of total 

reads). This normalised proportional abundance is also referred to as the relative 

abundance and was calculated for 16S rRNA and rbcL separately, as they are 

completely different datasets.  

Raw ASV read counts were used to calculate normalised counts for 16S rRNA and 

rbcL datasets. Raw ASV read counts for each sample were multiplied by the unique 
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dilution factor, which was different for each sample. Additionally, normalised counts 

were calculated for cyanobacteria, green algae and diatoms as individual groups. The 

raw ASV read counts of all species within each group were summed and this was also 

multiplied by the unique dilution factor. This resulted in the parameters 

normalised_green_counts, normalised_diatom_counts and 

normalised_cyano_counts, which is an estimate of abundance of these phytoplankton 

groups in the sample. These abundance estimates should be used with caution as 

they are not a biomass measurement and the raw ASV read counts could be 

influenced by the effectiveness of the DNA extraction technique.  

A list was created with all cyanobacteria genera found in the 16S rRNA sequencing 

indicating for each genus whether they were ‘Yes, likely producer (Y)’ or ‘Maybe 

producer (M)’ for 2-MIB and geosmin separately. This list was based on Watson et al. 

(2016) and an overview made by professor Peter Kille  by searching for geosmin and 

2-MIB synthase genes in cyanobacterial genomes using ‘Basic Local Alignment 

Search Tool’ (BLAST, NCBI). The list provides an overview of cyanobacteria genera 

that can potentially produce 2-MIB and/or geosmin. 

The results from the qPCR were used to calculate gene copy numbers for geoA, mic 

and 16S rRNA for each sample, by normalising the mean of triplicates on the plate by 

individual dilution applied on that sample. Then the copy number per ml of water 

filtered was calculated by dividing the copy number by the filtered volume on the 

Sterivex filter units, which was 250 ml in this experiment.  

qPCR copy numbers of mic were divided by the copy numbers of 16S rRNA to 

normalise the gene copies of mic over the total copies of bacterial DNA (16S rRNA). 

This result was transformed for further analysis using Equation 3.5: 

Equation 3.5:  

𝐴𝑟𝑐𝑠𝑖𝑛𝑒(√
𝑚𝑖𝑐 𝑐𝑜𝑝𝑦 𝑛𝑟.

16𝑆 𝑟𝑅𝑁𝐴 𝑐𝑜𝑝𝑦 𝑛𝑟.
)  

The amount of 2-MIB produced per unit of biomass was calculated for each flask using 

relative abundance of 2-MIB producers (Y = Yes, likely producers; from the predefined 

list) and the following Equation 3.6: 



87 
 

Equation 3.6: 

2 − 𝑀𝐼𝐵 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑛𝑔
𝐿 )

𝑅𝑒𝑙. 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 2 − 𝑀𝐼𝐵 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑠 (𝑌) ∗ 16𝑆 𝑟𝑅𝑁𝐴 𝑐𝑜𝑝𝑦 𝑛𝑟. 𝑝𝑒𝑟 𝑚𝑙
 

In both 16S rRNA and rbcL sequencing datasets, the genus name for many ASV’s was 

unknown or uninformative. When this was the case, the next best taxonomy level was 

used with an indication of which level this was; (g): genus; (f): family; (o): order; (c): 

class; (p): phylum and (k): kingdom, kingdom being the least detailed level. Stacked 

bar charts were created for 16S rRNA and rbcL separated by Phylum and Genus. To 

enable better legend visualisation, the relative abundance for all samples (start, ctrl, 

a, b, c, d, e, f, all in triplicate) was averaged. All genus (level 6) with average relative 

abundance <0.01% for 16S rRNA and <1% for rbcL, were combined in a category 

“Other”, which were 39 taxa for 16S rRNA and 76 taxa for rbcL.  

Rstudio was used (R version 4.2.1: 2022-06-23 ucrt) to perform Non-Metric Multi-

Dimensional Scaling (NMDS) on the 16S rRNA and rbcL sequencing datasets, 

normalised to relative abundances. The metaMDS function from R package “vegan” 

(vegan 2.6-4) (Oksanen et al., 2024) with a Bray-Curtis distance matrix was applied to 

the data to determine the ordination. The result was plotted in the R package “ggplot2” 

(Wickham, 2016) and each datapoint was shaped by treatment and coloured by low, 

medium or high 2-MIB concentration. 2-MIB categories (referred to as 2-MIB group) 

were defined on final day concentrations (not the difference between start and end) as 

follows: Low = < 50 ng/L; Medium = 50 – 150 ng/L and High = > 150 ng/L. The category 

low was indicative of no 2-MIB production over the course of the experiment, because 

the start concentration in all flasks was ±50 ng/L. To determine whether the three 2-

MIB categories were different from each other, ellipses were drawn around the 95% 

interval of the sample groups and statistical differences were investigated using 

PERMANOVA and ANOSIM tests. 

The envfit function from the “vegan” package was used on the NMDS results, to 

visualise other parameters that could be responsible for underlying patterns in the 

data. Only statistically significant parameters, based on the envfit output (pvalue ≤ 

0.05), were included in the final plot. Parameters that were included were: mic/16S 

(mic copy number / 16S rRNA copy number), nutrient concentrations in mg/L at the 

start of the experiment (NO3
--N, TDN, TDP, NH4

+-N), total carbon (mmoles in hours), 
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dissolved oxygen (DO) at peak (maximum % air saturation) and normalised counts of 

cyanobacteria, diatoms and greens. Another envfit function was run with all 

cyanobacteria species, of which statistically significant species (pvalue ≤ 0.05) were 

selected and plotted on the NMDS plot. 

Indicator Species Analysis was performed on the 16S rRNA and rbcL data, using R 

package “indicspecies” (De Cáceres & Legendre, 2009) using the multipatt command. 

For 16S rRNA data, relative abundance of statistically significant cyanobacteria 

(pvalue ≤ 0.05) was plotted as boxplots, grouped by 2-MIB categories. 

3.5 Results 

3.5.1 Impact of nutrient ratios on 2-MIB production 

Target and actual nutrient ratios as well as concentrations of nutrients in the flasks at 

the start of the experiment are shown in Table 3.2, Table 3.6, Figure 3.3, Figure 3.4 

and Appendix B Figure S.2. The actual nutrient ratios were close to the target ratios 

for NH4
+:NO3

- and the high SRP treatments (A, B, C) for DIN:SRP, but the low SRP 

treatments (D, E, F) seemed less consistent, which was most likely due to pipetting 

error or measurement error at such low concentrations. The focus of the experiment 

was on nutrient ratios with environmentally relevant concentrations. NO3
--N is 

generally an order 10 higher than NH4
+-N in freshwater systems (see Chapter 1, 

Section 1.2.1), which was also confirmed with water quality data from Reservoir 1. 

Implementing this environmentally relevant concentration difference in the laboratory 

microcosm experiments, meant that the concentration of total dissolved nitrogen 

(TDN) for high NH4
+-N treatments was much lower than for high NO3

--N treatments 

(Table 3.6).    

Nutrient uptake was calculated as the % of change between start and end of the 

experiment (Table 3.7, Figure 3.3, Figure 3.4 and Appendix B Figure S.2 and Table 

S.4). Both treatment A (HNO3_LNH4_HPO4) and D (HNO3_LNH4_LPO4) did not 

deplete the nitrogen pool (Table 3.7 and Figure 3.3). The % change of NH4
+ was largest 

in treatments C (LNO3_HNH4_HPO4) and F (LNO3_HNH4_LPO4), which started with 

±0.8 mg/L NH4
+-N (Table 3.6) and therefore had more available to consume. Treatment 

A (HNO3_LNH4_HPO4) was the only treatment at the end of the experiment that did 

not deplete the phosphorus pool (Table 3.7 and Figure 3.4). DOP was taken up by 

every treatment, but D (HNO3_LNH4_LPO4) had the largest % change (Table 3.7). 
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Geosmin was detected in the start community at low concentrations (<5 ng/L) and 

higher concentrations (>10 ng/L) were found in some flasks, but it was not produced 

consistently throughout the experiment (Appendix B Table S.4). The geoA gene was 

not accurately detected in any of the samples (data not shown). Hence, geosmin has 

not been considered in further analysis. 2-MIB was produced in all treatments, except 

for the control where it was even degraded (Table 3.7). Treatment D 

(HNO3_LNH4_LPO4) had the highest 2-MIB production of 521.4 ng/L but the large 

standard deviation of 551.8 ng/L indicates that this was variable between the replicates 

(Table 3.7). Treatment A (HNO3_LNH4_HPO4) and B (MNO3_MNH4_HPO4) also 

revealed high 2-MIB production of 164.7 (±95.4) ng/L and 251.4 (±213.9) ng/L.  

N:P and NH4
+:NO3

- ratios both had a significant impact on 2-MIB concentration (nested 

ANOVA log(10)(MIB+1), N:P with p = 0.00706, NH4
+:NO3

- with p= 0.01026). There was 

a significant difference between treatments and the control, and differences between 

ratios (Figure 3.5, Kruskall-Wallis test of variance). Treatments with a low NH4
+:NO3

-

ratio were significantly different from the control and a high NH4
+:NO3

- ratio, but not 

from a medium NH4
+:NO3

- ratio. Treatments with a low N:P ratio were significantly 

different from the control but not from a high N:P ratio (Figure 3.5, Kruskall-Wallis test 

of variance).   
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Table 3.6. Target NH4
+:NO3

- and DIN:SRP ratios for each treatment, average (mean) nutrient concentrations and standard deviation (SD) from 
laboratory measurements for treatment triplicates at the start of the experiment (day 0), with actual NH4

+:NO3
- and DIN:SRP ratios. 

Treatment Treatment ID Target 

NH4
+:NO3

- 

NH4
+:NO3

- TDN (mg/L) NH4
+-N (mg/L) DON (mg/L) NO3

--N (mg/L) 

Mean SD Mean SD Mean SD Mean SD Mean SD 

Ctrl No Addition x 0.323 0.021 0.733 0.021 0.090 0.007 0.352 0.016 0.279 0.002 

A HNO3_LNH4_HPO4 0.01 0.016 0.003 9.440 0.084 0.133 0.026 0.813 0.143 8.482 0.047 

B MNO3_MNH4_HPO4 0.1 0.100 0.011 2.242 0.015 0.161 0.018 0.460 0.018 1.608 0.029 

C LNO3_HNH4_HPO4 1 0.989 0.049 2.060 0.071 0.808 0.013 0.419 0.126 0.820 0.057 

D HNO3_LNH4_LPO4 0.01 0.011 0.001 9.997 0.144 0.097 0.011 1.006 0.250 8.879 0.221 

E MNO3_MNH4_LPO4 0.1 0.093 0.005 2.252 0.090 0.149 0.005 0.490 0.048 1.599 0.047 

F LNO3_HNH4_LPO4 1 0.988 0.023 2.044 0.017 0.793 0.031 0.437 0.066 0.802 0.023 

 

Treatment Treatment ID Target 

DIN:SRP 

DIN:SRP TDP (mg/L) SRP (mg/L) DOP (mg/L) 

Mean SD Mean SD Mean SD Mean SD 

Ctrl No Addition x NA NA 0.012 0.002 0.000 0.000 0.013 0.001 

A HNO3_LNH4_HPO4 9 8.972 0.044 2.247 0.010 2.127 0.002 0.120 0.011 

B MNO3_MNH4_HPO4 9 9.153 0.083 0.466 0.001 0.431 0.002 0.035 0.001 

C LNO3_HNH4_HPO4 9 9.448 0.335 0.420 0.002 0.384 0.004 0.035 0.002 

D HNO3_LNH4_LPO4 128 143.428 1.638 0.161 0.002 0.139 0.002 0.022 0.001 

E MNO3_MNH4_LPO4 128 188.997 9.671 0.036 0.004 0.021 0.001 0.015 0.003 

F LNO3_HNH4_LPO4 128 191.029 26.515 0.033 0.003 0.019 0.003 0.014 0.000 
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Table 3.7. Average nutrient % change for each treatment between start and end of the experiment, as well as average concentration of 2-MIB 
(ng/L) produced (positive) or degraded (negative) between start and end of the experiment. Colour scale in mean % change columns indicate 
(negative) change 0-25% = white, 25%-50% = light green, 50%-75%= mid green, 75%-100% = dark green. 

Treatment Treatment ID TDN % change NH4
+-N % change DON % change NO3

--N % change 

Mean SD Mean SD Mean SD Mean SD 

Ctrl No Addition -39.04 12.73 -3.80 35.26 -20.35 31.21 -78.92 11.72 

A HNO3_LNH4_HPO4 -47.44 16.21 -70.25 8.72 -27.56 19.73 -50.87 18.67 

B MNO3_MNH4_HPO4 -82.38 0.61 -75.67 7.61 -39.66 2.11 -96.75 1.15 

C LNO3_HNH4_HPO4 -80.74 0.51 -95.59 0.21 -34.55 23.29 -91.46 5.76 

D HNO3_LNH4_LPO4 -48.96 5.81 -71.98 1.92 -40.99 10.36 -50.22 6.64 

E MNO3_MNH4_LPO4 -65.90 5.57 -71.25 3.26 -47.71 8.92 -71.93 5.97 

F LNO3_HNH4_LPO4 -71.82 9.39 -94.82 0.75 -41.88 11.11 -67.22 23.42 

 

Treatment Treatment ID TDP % change SRP % change DOP % change 2-MIB production 

(ng/L) 

Mean SD Mean SD Mean SD Mean SD 

Ctrl No Addition -52.63 4.56 NA NA -39.05 3.30 -20.0 17.0 

A HNO3_LNH4_HPO4 -63.59 23.17 -64.35 23.60 -50.37 16.39 164.7 95.4 

B MNO3_MNH4_HPO4 -90.35 8.32 -93.76 8.44 -48.91 8.46 251.4 213.9 

C LNO3_HNH4_HPO4 -91.53 9.37 -94.51 8.85 -57.03 12.94 64.7 99.0 

D HNO3_LNH4_LPO4 -95.65 0.04 -100.00 0.00 -61.03 4.50 521.4 551.8 

E MNO3_MNH4_LPO4 -88.79 1.26 -100.00 0.00 -55.62 7.51 17.4 41.0 

F LNO3_HNH4_LPO4 -87.60 1.24 -100.00 0.00 -48.15 0.00 6.7 41.7 
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Figure 3.3. Concentrations of nitrogen fractions (mg/L) at the start (day 0) and the end of the experiment (day 22) averaged by treatment, with 
standard deviation indicated by error bars. 
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Figure 3.4. Concentrations of phosphorus fractions (mg/L) at the start (day 0) and the end of the experiment (day 22) averaged by treatment, 
with standard deviation indicated by error bars.  
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Figure 3.5. Boxplots showing the effect of NH4
+:NO3

- (a) and N:P ratio (b) on log(10)(MIB+1), 
number of replicates in each group indicated by (n=…), significant groups from Kruskall-Wallis 
test of variance specified in top right.  
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Several treatments had significantly different concentrations of log(10)(MIB+1); A and 

control, B and F, B and control, D and F, D and control (Figure 3.6). The low NH4
+:NO3

- 

treatments had a large (8 mg/L) difference in TDN compared to medium and high 

NH4
+:NO3

- treatments (Figure 3.6). This was a result of using the chosen ratios, whilst 

supplying environmentally relevant concentrations of NH4
+-N and NO3

--N; a NO3
--N 

concentration of 10 mg/L is not uncommon in surface water, whilst a 10 mg/L 

concentration of NH4
+-N would be toxic (Table 3.6). Treatment A, B and C for example 

all had a low N:P ratio, but A had a much higher P concentration than B and C, because 

it had to balance the amount of N that was added (Figure 3.6 and Table 3.6).  

 

Figure 3.6. Boxplot shows the effect of each treatment on log(10)(MIB+1), with triplicates for 
each treatment (n=3), blue scatter is total dissolved nitrogen (TDN) concentrations (mg/L) and 
red scatter is total dissolved phosphorus (TDP) concentrations (mg/L). Significant groups from 
Kruskall-Wallis test of variance specified in top right.  

Treatments B and E have the same TDN, but B has 0.5 mg/L of TDP whilst E has 0.04 

mg/L of TDP, with treatment B resulting in higher 2-MIB concentrations than E (Figure 
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3.6 and Table 3.7). The TDP concentration that was required for this community to 

produce elevated levels of 2-MIB was probably between 0.5 mg/L (treatment B) and 

0.2 mg/L (treatment D). The concentration of TDN that was required for development 

of the 2-MIB producers in this experiment was probably around 2.5 mg N/L (treatment 

B), as long as sufficient TDP was available. This is supported by lower 2-MIB 

concentrations in treatment E, which had the same TDN concentration but low TDP 

(0.04 mg P/L). 

3.5.2 Impact of nutrient ratios on community productivity 

Dissolved oxygen concentrations, indicative of the productivity of the 

photosynthesizing phytoplankton community, revealed differences between 

treatments (Figure 3.7). Continuous oxygen measurements in one of the flasks of 

treatments A (HNO3_LNH4_HPO4), C (LNO3_HNH4_HPO4) and control, 

demonstrated differences in oxygen response depending on the nutrient ratios, and 

revealed a clear diurnal cycling of day and night. Treatment C, with high NH4
+ and low 

NO3
-, had increasing oxygen concentrations after four days, but the peak of 16 mg/L 

after 16 days was followed by a decrease in oxygen until the end of the experiment 

(Figure 3.7). At the same time, treatment A (high NO3
- and low NH4

+), had a slower 

response time of approximately eight days, but then steadily increased to 19 mg/L until 

the end of the experiment (Figure 3.7).  

Manual oxygen measurements showed a similar pattern to the continuous sensors 

(Figure 3.7) although they were influenced by the time of day each flask was 

measured, according to diurnal oxygen dynamics. They did demonstrate that oxygen 

concentrations in the controls did not have a notable increase, whereas treated flasks 

responded according to treatment (Figure 3.7, panel B). Treatment E 

(MNO3_MNH4_LPO4) and F (LNO3_HNH4_LPO4) had a small increase in oxygen 

production compared to the start of the experiment (±9 mg/L), but on average the 

replicates did not exceed 12 mg/L of oxygen (Figure 3.7, panel B). Treatment B 

(MNO3_MNH4_HPO4) and C (LNO3_HNH4_HPO4) had a similar pattern, although 

B reacted a few days later to the nutrient spike it had a steeper oxygen increase than 

C, and they both showed an oxygen peak at day 16 which was 17 and 16 mg/L, for B 

and C respectively, followed by a steady decrease (Figure 3.7, panel B). Treatment A 

(HNO3_LNH4_HPO4) and D (HNO3_LNH4_LPO4) also had a similar pattern, 

although D had a steeper increase and seemed to plateau from day 19 onwards 
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whereas A did not reach a plateau (Figure 3.7, panel B). The general pattern for 

treatment A and D was a delayed oxygen increase but a steady increase in oxygen 

until the end of the experiment, reaching 19 and 18 mg/L, respectively (Figure 3.7, 

panel B).  

 

Figure 3.7. Dissolved oxygen concentration (mg/L) from continuous microsensor 
measurements in three selected flasks and the corresponding manual measurements with the 
Fibox sensor (a). Periodic dissolved oxygen measurements averaged for each treatment, error 
bars showing standard deviation (b). 

Visual inspection of the flasks during the experiment and at the final day also gave 

indications of biomass and health of the community (Figure 3.8). Treatment C 
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(LNO3_HNH4_HPO4) was the first treatment to develop a strong green colour, 

indicating benthic community development at day 13 of the experiment (Figure 3.8). 

However, at the final day of the experiment, day 22, the biomass in treatment C had 

turned yellow whilst treatment A (HNO3_LNH4_HPO4) and D (HNO3_LNH4_LPO4) 

turned green (Figure 3.8). A green biomass colour does not necessarily indicate 

community health, but daily visual inspections alongside oxygen measurements did 

result in similar findings. The oxygen measurements and visual indicators suggested 

that treatment C (LNO3_HNH4_HPO4) exhibited ‘boom-bust’ dynamics, whereas 

treatments A (HNO3_LNH4_HPO4) and D (HNO3_LNH4_LPO4) had more balanced 

growth over the whole experiment.  

 

Figure 3.8. Images of all treatment flasks on day 13 and day 22, to enable visual inspection of 
biomass and health. Numbers at the bottom in boxes with red outline indicate average 2-MIB 
concentrations (ng/L) that were produced (final – start concentration) during the experiment.   

Dissolved oxygen data was used to calculate the amount of carbon produced 

throughout the experiment (mmoles in minutes). The amount of carbon produced 

correlated well with log(10)(MIB+1), yielding an R2 of 0.608 in a linear model (Figure 

3.9, panel A). Treatments A, B, C and D were all significantly different from the control 

treatment and treatment D was also significantly different from treatment E and F 

(Figure 3.9, panel B).  
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Figure 3.9. Linear model of carbon total (mmoles in minutes) and log(10)(MIB+1), with model 
performance in the plot and colour of datapoints indicate 2-MIB group (high, medium or low 
concentration) (a), boxplot of carbon total (mmoles in minutes) per treatment, with significant 
groups from Kruskall-Wallis test of variance specified in top right. 
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3.5.3 Impact of nutrient ratios on species composition 

Nutrient ratios also influenced the relative abundance and biomass of species in the 

community. Normalised counts (ASV counts normalised for dilution factor) revealed 

that treatment A (HNO3_LNH4_HPO4) had by far the highest cyanobacteria biomass 

of all treatments, followed by treatment D (HNO3_LNH4_LPO4) (Figure 3.10). The 

biomass of diatoms was also highest in treatment A, although the differences between 

treatments was not as notable. Biomass of green algae was highest in treatment A, 

although there was high variability between the replicates of each treatment (Figure 

3.11). Relative abundance for the different treatments showed the same pattern as 

biomass for cyanobacteria, but there was a less pronounced difference between 

treatment A and the rest (Figure 3.10). Relative abundance for diatoms and green 

algae showed the opposite pattern to one another as these groups are the only ones 

represented in rbcL sequencing data. Diatoms seemed to dominate treatments with 

lower nutrients, whilst green algae dominated in higher nutrient treatments and the 

controls (Figure 3.10 and Figure 3.11).   

 

Figure 3.10. Cyanobacteria normalised counts and relative abundance (%; 1 = 100%), based 
on the 16S rRNA dataset. 
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Figure 3.11. Diatoms and green algae normalised counts and relative abundance (%; 1 = 
100%), based on the rbcL dataset. 
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Figure 3.12. Boxplot showing effect of treatment on cyanobacteria relative abundance (%; 1 = 
100%), based on the 16S rRNA dataset. 

Relative abundance for phylum and normalised counts (ASV counts normalised for 

dilution factor) revealed that the dominant phyla were Proteobacteria, Cyanobacteria, 

Bacteroidota, Bacteria (k) undetermined and Actinobacteria (Figure 3.13). Treatment 

A had the highest relative abundance of cyanobacteria, approximately 55% of all 16S 

rRNA (Figure 3.13 and Figure 3.14), and also by far the highest normalised counts of 

16S rRNA of all treatments (Figure 3.13). 2-MIB concentrations (ng/L) in individual 

samples was added to Figure 3.13 and Figure 3.14 (box with red outline) to visualise 

the variation in the replicates for each treatment, which could be related to biological 

differences.  
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Figure 3.13. Bacterial 16S rRNA data at phylum level for each replicate (1, 2 and 3) of the start 
community (“Start”) and final communities for every treatment, showing relative abundance 
(%; 1 = 100%) and normalised counts. 2-MIB concentrations in ng/L for start and flasks on the 
final day are visualised below x-axis in box with red outline. 
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The relative abundance of cyanobacterial genera in the 16S rRNA sequencing data 

revealed that the initial start community (“Start”) had a completely different community 

composition than the flasks at the end of the experiment (Figure 3.14). The initial start 

community (“Start”) was dominated by Aphanizomenon spp. that were most similar to 

strains Aphanizomenon sp. NIES81 and Aphanizomenon sp. MDT14a. The 

community at the end of the experiment in every flask contained mainly 

Pseudanabaena spp. (resembling strain PCC-7429), Leptolyngbya spp. (resembling 

strain SAG 2411) and Cyanobium spp. (resembling strain PCC 6307) (Figure 3.14). 

ASV counts were combined for the cyanobacterial genus and strain classification, 

because often species could not be determined, apart from Pseudanabaena galeata 

PCC-7429 and Pseudanabaena foetida PCC-7429, which were determined as closest 

DNA match alongside undetermined species of Pseudanabaena (PCC-7429). 

Leptolyngbya spp. (SAG 2411) dominated in almost every final flask and consisted of 

5 - 40% of total 16S rRNA; the highest percentage was treatment A (Figure 3.14). 

Pseudanabaena spp. (PCC-7429) were present in every final flask and consisted of 5 

– 20 % of total 16S rRNA, but mainly treatments A, B and D had elevated normalised 

counts for this genus (Figure 3.14). Normalised counts (ASV counts normalised for 

dilution factor) for cyanobacteria genera, showed that treatment A was also much 

higher than other treatments (Figure 3.14). Aphanizomenon sp. (NIES81) from the 

start community (“Start”) only developed a significant relative abundance in flask F2 

(Figure 3.14), which is the only community that produced a geosmin concentration 

>100 ng/L (Appendix B Table S.4).  
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Figure 3.14. Bacterial 16S rRNA data at genus level (or next best level, reported as taxonomic 
rank: c = class, o = order, f = family, “undetermined”) for each replicate (1, 2 and 3) of the start 
community (“Start”) and final communities for every treatment, showing relative abundance 
(%; 1 = 100%) and normalised counts. For clearer visualisation, genera with <0.01% relative 
abundance were removed from the plot. 2-MIB concentrations in ng/L for start and flasks on 
the final day are visualised below x-axis in box with red outline. 
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The most abundant species of green algae in the samples were Tetradesmus obliquus, 

Scenedesmacaea (f) undetermined, Mychonastes homosphaera, Desmodesmus 

serratus, Desmodesmus sp. (resembling TAU-MAC 0810), Choricystis sp., 

Chlorophyceae (c) undetermined, Botrycoccus braunii, Pseudopediastrum sp. and 

Ankistrodesmus fusiformis (Figure 3.15). Tetradesmus obliquus was more abundant 

(relative abundance) in the higher nutrient treatments, with high biomass in treatment 

A. Control treatments had particularly high relative abundance of Choricystis sp., 

Chlorophycaea (c) undetermined and Botryococcus braunii. The initial start community 

(“Start”) consisted of almost exclusively Botryococcus braunii with approximately 75% 

of all rbcL DNA consisting of that species (Figure 3.15). The most abundant species 

of diatom was Melosira varians, with a general trend of higher relative abundance at 

lower nutrient treatments, for example, approximately 70% of all rbcL DNA was from 

Melosira varians in treatments E (Figure 3.16). This trend is the opposite of green 

algae because they collectively make up all rbcL DNA. In some samples, 

Stephanocyclus meneghinianus, Fragilaria crotonensis, Encyonema sp. and Navicula 

sp. were present in small numbers (Figure 3.16).  
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Figure 3.15. Green algae rbcL data at genus level (or next best level, reported as taxonomic 
rank: p = phylum, c = class, o = order, f = family, “undetermined”) for each replicate (1, 2 and 
3) of the start community (“Start”) and final communities for every treatment, showing relative 
abundance (%; 1 = 100%) and normalised counts. For clearer visualisation, genera with <1% 
relative abundance were removed from the plot. 
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Figure 3.16. Diatom rbcL data at genus level (or next best level, reported as taxonomic rank: 
p = phylum, c = class, o = order, f = family, “undetermined”) for each replicate (1, 2 and 3) of 
the start community (“Start”) and final communities for every treatment, showing relative 
abundance (%; 1 = 100%) and normalised counts. For clearer visualisation, genera with <1% 
relative abundance were removed from the plot. 
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3.5.4 Relationships between 2-MIB production and community structure  

The qPCR results of 2-MIB synthase gene (mic) prevalence (copy number) were 

normalised with the 16S rRNA prevalence (copy number) and arcsine square root 

transformed, and this factor revealed a positive linear correlation with log(10)(MIB+1), 

with an R2 of 0.635 (Figure 3.17).   

 

Figure 3.17. Linear model of 2-MIB synthase gene (mic) prevalence normalised with the 16S 
rRNA prevalence (arcsine square root transformed) and log(10)(MIB+1), with model 
performance in the plot and colour of datapoints indicate 2-MIB group (high, medium or low 
concentration). 

Treatment A  had the highest relative abundance and normalised counts of 

cyanobacteria (including potential 2-MIB producers) in the 16S rRNA data (Figure 3.14 

and Figure 3.10) and also had one of the highest 2-MIB concentrations of all 

treatments, together with treatment B and D. 2-MIB concentration normalised by 

approximate biomass of potential 2-MIB producers (Figure 3.18, panel A) and 
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Pseudanabaena spp. (PCC-7429) (Figure 3.18, panel B) showed that treatments B 

and D had higher 2-MIB production per unit of biomass than treatment A. This was 

also visible in treatment C, but there was more variability between replicates (Figure 

3.18).  

 

Figure 3.18. Both plots show 2-MIB concentration divided by relative abundance of (a) 
expected 2-MIB producing cyanobacteria * 16S copy number per ml or (b) relative abundance 
of Pseudanabaena spp. (PCC-7429) * 16S copy number per ml. 
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There was a relationship between 16S rRNA and 2-MIB concentration (divided into 

low (<50 ng/L), medium (50 – 150 ng/L) and high (> 150 ng/L) (Figure 3.19)), although 

there were sometimes differences between replicates within treatments. A statistically 

significant difference between the three 2-MIB groups was evidenced with 95% 

confidence intervals (Figure 3.19), a PERMANOVA test with 999 permutations (Pr (>F) 

= 0.019; R2 = 0.916) and an ANOSIM test with 9999 permutations (ANOSIM statistic 

R = 0.286; significance = 0.0022). Additional variables from the experiment were 

plotted on the NMDS (Figure 3.20, panel A) and apart from NH4
+, they were all 

significant (pvalue < 0.05) based on the RStudio envfit function. Unexpectedly, 

mic/16S (gene copy numbers) revealed the clearest agreement with the direction of 

the high 2-MIB group. Higher NH4
+ seemed to be indicative of the low 2-MIB group 

(Figure 3.20, panel A). Cyanobacteria genera that were significant in the envfit analysis 

(pvalue < 0.05) revealed that Pseudanabaena spp. (PCC-7429) had a tendency 

towards the high 2-MIB group, Leptolyngbya spp. (SAG 2441) towards the area 

between the medium and high 2-MIB group, whilst the other nine genera pointed in 

the general direction of the low 2-MIB group (Figure 3.20, panel B). 
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Figure 3.19. 16S rRNA sequencing data used for NMDS with three 2-MIB groups; low (<50 ng/L), medium (50 – 150 ng/L) and high (> 150 ng/L), 
indicated with a coloured ellipse on the NMDS as the 95% confidence interval. 
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Figure 3.20. 16S rRNA sequencing data used for NMDS with three 2-MIB groups; low (<50 
ng/L), medium (50 – 150 ng/L) and high (> 150 ng/L). Envfit was used to overlay the NMDS 
plot in Figure 3.19 with additional variables of interest (a) and relative abundance of significant 
(pvalue <0.05) cyanobacteria genera (b). 
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Indicator species analysis for 16S rRNA revealed that two genera of cyanobacteria 

were associated with high and medium 2-MIB groups; Leptolyngbya spp. (stat = 0.512, 

pvalue = 0.0482, Table S.5 in Appendix B) and Pseudanabaena spp. (stat = 0.556, 

pvalue = 0.0253, Table S.5 in Appendix B). Relative abundance of all significant 

cyanobacteria (pvalue < 0.05) from the indicator species analysis showed that these 

two genera indeed have higher abundance for the high 2-MIB group (Figure 3.21). The 

other three significant genera of cyanobacteria from the indicator species analysis 

(pvalue <0.05) had a significantly higher abundance at the low 2-MIB group (Figure 

3.21 and Table S.5 in Appendix B). Besides cyanobacteria, several genera of other 

bacteria were significantly associated with certain 2-MIB groups (Table S.5 in Appendix 

B), but these were not investigated in this study.    

 

Figure 3.21. Relative abundance (%; 1 = 100%) of significant cyanobacteria from indicator 
species analysis (pvalue <0.05) on 16S rRNA sequencing data, separated by 2-MIB groups; 
low (<50 ng/L), medium (50 – 150 ng/L) and high (> 150 ng/L). 
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Relative abundance of Leptolyngbya spp. (SAG 2441) and Pseudanabaena spp. 

(PCC-7429) correlated with log(10)(MIB+1) yielding an R2 of 0.286 and 0.478, 

respectively (  
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Figure 3.22.  
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Figure 3.22. Linear models of log(10)(MIB+1) with relative abundance (%; 1 = 100%) of 
Leptolyngbya spp. (SAG 2441) (a) and Pseudanabaena spp. (PCC-7429) (b) from 16S rRNA 
sequencing data. 

The most interesting finding from indicator species analysis for rbcL was that green 

algae Tetradesmus sp. was significantly associated with high and medium 2-MIB 

groups (stat = 0.541, pvalue = 0.0368) (Table S.6 in Appendix B). Relative abundance 

of Tetradesmus sp. correlated with log(10)(MIB+1) yielding an R2 of 0.247 (

 

Figure 3.23).  
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Figure 3.23. Linear model of log(10)(MIB+1) with relative abundance (%; 1 = 100%) of green 
algae Tetradesmus sp. from rbcL sequencing data. 
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3.6 Discussion 

3.6.1 Impact of nutrient ratios on community productivity and 2-MIB 

Throughout the experiment, 2-MIB was produced in almost every flask, apart from the 

control treatments, and the different nutrient ratios had different effects. Low 

NH4
+:NO3

- ratios had significantly higher 2-MIB concentrations compared to control 

and high NH4
+:NO3

- treatments, whilst low N:P concentrations had significantly higher 

2-MIB concentrations than the control. Low N:P and high NH4
+:NO3

- ratios were 

expected to result in enhanced cyanobacteria growth and 2-MIB production (Harris et 

al., 2016; Perkins et al., 2019; Winston et al., 2014; Yue et al., 2024), but these ratios 

did not seem to be the most important factor in this study.  

An important finding in these experiments, is that carbon produced throughout the 

experiment by the whole community (not just 2-MIB producers) correlated well with 2-

MIB production (R2 = 0.608). This seems to suggest that 2-MIB production is related 

to increased productivity and metabolic activity. The highest 2-MIB concentrations 

occurred in treatments with high total nitrogen (as NO3
-) and sufficient phosphorus that 

had sustained balanced growth. However, this was a total community response, and 

it is important to recognise that nutrient conditions driving the growth of T&O producing 

cyanobacteria and subsequent T&O production are likely species-specific (Watson et 

al., 2016).  

3.6.2 Nitrogen effects on 2-MIB 

The results from this experiment highlight that the concentration of total dissolved 

nitrogen (TDN, as NH4
+ or NO3

-) is more important for biomass development of 2-MIB 

producing cyanobacteria than the original ratio NH4
+:NO3

-. However, NH4
+ and NO3

- 

did have a different growth response which seemed to have impacted biomass 

development of 2-MIB producers. Treatments B and C had similar TDP and TDN 

concentrations, but treatment C had NH4
+ whilst B had NO3

- as N source, which 

resulted in rapid growth (‘boom-bust’ dynamics) for treatment C (top left in Figure 3.24) 

and balanced growth in B (top right in Figure 3.24) which started four days later but 

lasted longer. Phytoplankton responded rapidly with the preferred bioavailable NH4
+-

N as N source (Dortch, 1990), whilst NO3
--N uptake was delayed because it requires 

specific enzymes that are more easily available to diatoms and green algae than 

cyanobacteria (Erratt et al., 2020; Glibert et al., 2016; Hyenstrand et al., 2000; 
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Trommer et al., 2020). However, the results from this experiment showed that slower 

balanced growth with NO3
- as N source gave benthic 2-MIB producing cyanobacteria 

more time to develop than the ‘boom-bust’ growth in NH4
+ treatments. It is possible 

that faster growing green algae, which can use a variety of N sources effectively 

(Donald et al., 2011), outcompeted benthic cyanobacteria in treatments with NH4
+ that 

had a limited concentration of TDN (Figure 3.25). The development of 2-MIB producers 

in this experiment likely required a TDN concentration of around 2.5 mg N/L, provided 

that sufficient TDP was available. 

 

Figure 3.24. Hypothetical plots showing the different treatment types. Top left: NH4
+-N as N 

source showing ‘boom-bust’ growth, partially due to lower TDN concentrations (treatment C). 
Top right: NO3

--N as N source showing a delayed growth response but overall balanced 
growth, partially due to higher TDN concentrations (treatment A and D). Bottom left: High TDN 
and high TDP have balanced growth until the end of the experiment (treatment A). Bottom 
right: High TDN but low TDP have balanced growth until TDP runs out, then possible growth 
decline or other reasons cause enhanced 2-MIB release (treatment D). 
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Figure 3.25. Hypothetical plot indicating how in a ‘boom-bust’ growth scenario with NH4
+ but 

limited TDN, a potentially slower growing Pseudanabaena sp. (cyanobacteria) would produce 
less biomass than a potentially faster growing green algae species like Scenedesmus. 

Another reason why high NH4
+ treatments could not sustain growth was because the 

TDN concentrations were 10x lower than the high NO3
- treatments and so were 

subsequent TDP concentrations (to balance the ratios). This was a result of basing 

initial NH4
+ concentrations on realistic reservoir concentrations, which are about 10x 

lower than high NO3
- concentrations (Figure 3.24). To see the effect of NH4

+ and NO3
- 

as an N source and NH4
+:NO3

- ratios on 2-MIB production, it would have been better 

to restock nutrient concentrations during the experiment, so that NH4
+:NO3

- ratios 

could be maintained and nutrient limitation would not play a role. However, it is 

important to consider how these biogeochemical dynamics work in an open system, 

such as the reservoir from which the samples were collected. In such a system, NH4
+ 

may be continuously released (for example, from internal loading of the sediment 

layer), or could be periodically introduced (via tributary input or surface runoff), which 

would have very different effects on the subsequent NH4
+:NO3

- ratios. The experiment 

showed that NH4
+ was taken up preferentially and more rapidly than NO3

-, so short 

influxes of NH4
+ and resulting impacts on the community would not be accurately 
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captured by periodic (twice monthly) chemical water sampling. This also emphasizes 

that field studies which are based on low sampling resolutions cannot capture the full 

biogeochemical dynamics and might find different relationships than high-frequency 

studies (field or laboratory) would. The suggested high NH4
+:NO3

- ratio as a driver of 

T&O events (Harris et al., 2016; Perkins et al., 2019) might be a delayed effect of N 

and P uptake processes with differing uptake speeds, depending on the bioavailability 

of the nutrient fraction, and subsequent biological response. The expected lag-time 

between environmental drivers and T&O release highlights that initial NH4
+:NO3

- ratio 

(and generally nutrient concentrations) which drive growth of T&O producing 

cyanobacteria can be altered by biogeochemical cycles in the meantime and result in 

different final NH4
+:NO3

- ratios (and nutrient concentrations) when T&O is released 

(Figure 3.26). In field studies, the final NH4
+:NO3

- ratios in a water sample would be 

compared to T&O concentrations, but due to the lag-time in T&O production and 

release, these ratios are not necessarily the same as the initial driver. The lag-time is 

incredibly important and requires further research, especially for the development of 

early warning predictors of T&O events. Knowledge from high-frequency nutrient 

monitoring could provide useful insights, which will be further discussed in Chapter 4. 
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Figure 3.26. Hypothetical plot indicating how initial NH4
+:NO3

-
 ratios stimulating T&O 

production can be different to final NH4
+:NO3

- ratios at the time when highest T&O 
concentrations are detected, after a T&O production and release lag-time. 

3.6.3 Phosphorus effects on 2-MIB 

The evidence from this experiment suggests that total dissolved nitrogen 

concentrations were more important than the NH4
+:NO3

- and N:P ratios for the 

establishment of 2-MIB producing benthic cyanobacteria Pseudanabaena spp. 

(resembling strain PCC-7429). Similarly, Gao et al. (2018) and Liu & Vyverman (2015) 

identified that relatively high concentrations of nitrogen compared to phosphorus 

concentrations were optimal growth conditions for planktic species of 

Pseudanabaena. This experiment showed that treatment D produced much higher 

concentrations of 2-MIB than E and F, which hardly produced 2-MIB. These treatments 

all had low TDP concentrations, but treatment D had much more TDN and slightly 

higher TDP than E and F. This finding suggests that TDN was more important originally 

as long as there was a certain threshold concentration of total dissolved phosphorus 

(TDP), which was sufficient to allow the development of 2-MIB producing 

cyanobacteria. The experiment indicates a potential threshold of TDP concentrations 

between 0.5 mg/L (treatment B) and 0.2 mg/L (treatment D). Similarly, a study by Kim 

et al. (2017) suggested that maximum growth of the cyanobacterium Microcystis 
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aeruginosa was primarily driven by total nitrogen (TN) concentrations when sufficient 

PO4
3-

 was available, rather than by the NH4
+:NO3

- ratio and the N:P ratio. 

However, phosphorus concentrations also revealed an interesting effect on 2-MIB 

concentrations, which seemed to be the related to the biomass of benthic 2-MIB 

producers that was able to develop under initial phosphorus concentrations. 

Treatments B and C produced on average more 2-MIB than E and F, when B, C, E 

and F all had very similar TDN concentrations, but E and F had much lower TDP 

concentrations. After the establishment of the 2-MIB producers, the experiments 

suggest that the depletion of the phosphorus source might have enhanced 2-MIB 

release. The highest 2-MIB concentrations directly and per 2-MIB producing cell (unit 

of biomass, estimated from DNA methods) were found in treatment D 

(HNO3_LNH4_LPO4), which almost completely used up the available phosphorus but 

still had plenty of N (bottom conceptual plots in Figure 3.24). This can be compared to 

treatment A (HNO3_LNH4_HPO4), which did not deplete the nitrogen or phosphorus 

pool and also had significant 2-MIB production directly but not such a high production 

per cell, as there was a much larger biomass of potential 2-MIB producers (estimated 

from DNA methods). 2-MIB concentrations normalised per biomass of all potential 2-

MIB producers and Pseudanabaena spp. (PCC-7429) (likely main 2-MIB producer) 

revealed that treatments B, C and D had much higher 2-MIB production per unit of 

biomass than for example treatment A which had a high biomass of 2-MIB producers. 

When 2-MIB producers are prevalent in the community, biomass is not necessarily a 

good indicator of 2-MIB concentrations because the amount of 2-MIB produced per 

cell or mic gene copy can vary largely depending on the conditions (Chiu et al., 2016; 

Saadoun et al., 2001; Wang et al., 2016).  

It seems that both N and P are important for the development of substantial biomass 

of 2-MIB producing cyanobacteria, but once there is an established community of 2-

MIB producing Pseudanabaena spp. (PCC-7429), a decrease in P availability (such 

as in treatment D) might result in either passive (by cell lysis (Alghanmi et al., 2018; 

Naes et al., 1989; Saadoun et al., 2001; Zhang et al., 2009)) or active (enzymatic P 

release (Bar-Yosef et al., 2010; Raven, 2010)) extracellular release. This process is 

uncertain, and would require more research, but there are some indications for it, 

because treatment D had the highest dissolved organic phosphorus (DOP) uptake of 

all treatments. Organic nutrient fractions could play a role in these systems, as recent 
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studies suggested that organic nutrients can sometimes also support phytoplankton 

growth (Reinl et al., 2022). It is possible that the effect of phosphorus depletion on 

T&O release is species-specific. A study by Oh et al. (2017) found that geosmin 

production by cultures of Anabaena sp. NIER decreased when they were exposed to 

phosphorus limitation, but 2-MIB production by Planktothrix sp. FACHB-1374 was not 

affected.  

3.6.4 Nutrient ratio effects on cyanobacteria, green algae and diatoms 

Nutrient ratios N:P did not reveal the expected effect on the relative and normalised 

counts of cyanobacteria, green algae and diatoms. Green algae were expected to 

dominate under P-limited conditions in high N:P ratios, with a suggested TN:TP ratio 

> 75:1 favouring green algae dominance over cyanobacteria (Andersen et al., 2020; 

Harris et al., 2014). However, the largest influence factor on green algae dominance 

was probably TDP, as green algae showed a clear pattern of highest read counts at 

the highest TDP concentration and a decline with less TDP.  Diatoms seemed to grow 

a bit better with the highest TDP concentration but also had relatively similar read 

counts in all the other treatments, apart from the control. Relative abundance of 

diatoms, however, increased towards treatments with the lowest TDP, whilst relative 

abundance of green algae decreased. This indicates that diatoms can cope better with 

low phosphorus treatments. Relative abundance of rbcL in the lower nutrient 

treatments (E and F) was dominated by diatoms, mainly Melosira varians, which is a 

species that can survive with low nutrient concentrations (Calderini et al., 2023). 

Cyanobacteria had a slightly unexpected response to TDP, in which treatment A had 

a much higher value for normalised counts than all other flasks, but treatment D was 

second highest, with much lower TDP concentrations. Cyanobacteria normalised 

counts and relative abundance seemed to coincide with the highest TDN 

concentrations. This indicates that TDN is also an important factor for cyanobacteria 

growth, although preferential NO3
- uptake by diatoms and NH4

+ by cyanobacteria and 

green algae, was not visible. 

3.6.5 Do species in the community control 2-MIB production? 

The final bacterial community (16S rRNA) was significantly different between 2-MIB 

groups low (<50 ng/L), medium (50 – 150 ng/L) and high (> 150 ng/L), which indicates 

there is a certain community responsible for 2-MIB production. The cyanobacterial 
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genera Leptolyngbya spp. (resembling strain SAG-2411) and Pseudanabaena spp. 

(resembling strain PCC-7429) were associated with the medium and high 2-MIB 

group, and so were mic/16S qPCR results, TDN concentration, NO3
--N concentration 

and total carbon (mmoles in hours). Pseudanabaena sp. was reported as 2-MIB 

producer in lakes many times (Chiu et al., 2016; Gao et al., 2018; Izaguirre & Taylor, 

1998; Wang & Li, 2015; Zhang et al., 2016), but these species are described as 

planktic whereas the species in this study grew on the bottom of the flask as a biofilm. 

Leptolyngbya sp. has also been described to produce 2-MIB (Chiu et al., 2016; Wang 

et al., 2015; Watson et al., 2016; Yue et al., 2024). Moreover, Pseudanabaena sp. and 

Leptolyngbya sp. are capable of producing cyanotoxins and were found in toxin-

producing benthic biofilms (Bauer et al., 2023; Borges et al., 2015; Cantoral Uriza et 

al., 2017; Catherine et al., 2013; Gaget et al., 2017; Gao et al., 2018; Perri et al., 2024; 

Rangel et al., 2014), which highlights the wider importance of studying these benthic 

cyanobacterial species. 

Biomass has not always been found to indicate high 2-MIB production (Harris et al., 

2016), which seemed to be the case in this study. Linear models of Leptolyngbya spp. 

(SAG 2441) (R2 = 0.286) and Pseudanabaena spp. (PCC-7429) (R2 = 0.478) relative 

abundance compared to 2-MIB concentrations showed that Pseudanabaena spp. 

(PCC-7429) was a better indicator of 2-MIB concentrations, which suggests it was the 

dominant producer. Even though Leptolyngbya spp. (SAG 2441) was the most 

dominant cyanobacteria in all flasks, relative abundance and normalised counts of 

Pseudanabaena spp. (PCC-7429) were specifically high in flasks with high 2-MIB 

concentrations, compared to other flasks. Relative abundance and normalised counts 

of Leptolyngbya spp. (SAG 2441) were especially high in treatment A, but this did not 

have the highest 2-MIB concentrations per biomass. 

As this was a natural phytoplankton assemblage, cyanobacteria were in competition 

for nutrients with each other, diatoms, green algae and bacteria. Normalised count 

data revealed that cyanobacteria counts in treatment A were much higher than the 

other treatments, but also that green algae counts and diatom counts were highest in 

treatment A. Unfortunately, the DNA data doesn’t allow cross comparison between 

results from cyanobacteria (16S rRNA) and green algae and diatoms (rbcL), so the 

phytoplankton community (cyanobacteria, diatoms and green algae) could not be 

analysed as a complete system. Recent research is suggesting the involvement of the 
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whole community in driving growth of certain phytoplankton species; a 

mutualistic/symbiotic relationship has been suggested with heterotrophic bacteria 

forming a microbiome surrounding phytoplankton cells (Cook et al., 2020; Louati et al., 

2015), and interactions between heterotrophic bacteria and phytoplankton could help 

facilitate nutrient uptake (Reinl et al., 2022). Laboratory studies like Saadoun et al. 

(2001), often expose cultures of one cyanobacteria species to nutrient spikes to 

identify the effect on T&O production. This might be relevant to a natural situation if a 

species is already established but is not so relevant if there is a whole community of 

phytoplankton and bacteria competing for these nutrients or influencing their 

availability.    

Species traits of cyanobacteria genera determine their optimal growth conditions and 

their ability to dominate the phytoplankton community (Reynolds, 2006). The species 

of Leptolyngbya and Pseudanabaena that originated from Reservoir 1, will most likely 

have different abilities to compete for nutrients and it seemed that Leptolyngbya spp. 

(SAG 2441) were able to develop more biomass than Pseudanabaena spp. (PCC-

7429) in all treatments. However, the fact that relatively higher abundance of 

Pseudanabaena spp. (PCC-7429) was present in treatments with low phosphorus 

indicates that this species could potentially deal better with limited phosphorus 

supplies than Leptolyngbya spp. (SAG 2441). For example, Pseudanabaena sp. in 

Gao et al. (2018) had superior tolerance for disturbance, low light and phosphorus 

deficiency.  

3.6.6 Species composition to detect 2-MIB producer 

The dominant cyanobacteria in the initial start community were Aphanizomenon sp. 

(resembling strain NIES81) and Aphanizomenon sp. (resembling strain MDT14a), but 

those did not develop in this experiment, apart from flask F2. Geosmin concentrations 

in flask F2 (110 ng/L) were possibly related to the abundance of Aphanizomenon spp., 

which indicates that geosmin production in Reservoir 1 might be related to 

Aphanizomenon spp. Moreover, it is important to note that the initial start community 

sample had a high concentration of 2-MIB (±50 ng/L), but DNA methods only found 

Aphanizomenon spp. (not a 2-MIB producer according to Watson et al. (2016)), which 

indicates that common manual water sampling cannot always detect the source of 2-

MIB production. Another sample in this dataset from Reservoir 1 (WR1 DNA data) in 

October 2022 had a high 2-MIB concentration of 160 ng/L but the most likely 
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responsible benthic cyanobacteria Leptolyngbya spp. or Pseudanabaena spp. (which 

have been studied in this experiment) were not found in the DNA of the water sample. 

This highlights again that benthic cyanobacteria are underestimated and often totally 

missed when trying to detect the source of 2-MIB. High geosmin concentrations 

occurred in the absence of geosmin-producing genes in water samples from three 

rivers in Kansas (USA) (Rider et al., 2024). Moreover, Huang et al. (2018b) found that 

sediment samples had a larger amount of mic gene copy numbers (2-MIB synthase 

gene) than water samples. Gaget et al. (2022) highlighted that benthic cyanobacteria 

are major sources of geosmin and 2-MIB in source waters, and specifically designed 

monitoring techniques are required to monitor them, because standard water sampling 

methods are inadequate (Gaget et al., 2020). The origin of 2-MIB synthase genes in 

Cheney reservoir in Kansas (USA) was linked to a periphytic cyanobacterial mat that 

was attached to the concrete drinking water inlet structure (Otten et al., 2016), which 

would be missed with standard water sampling techniques. 

In this study, the copy number of the 2-MIB synthase gene (mic) in the whole 

community normalised for the total copy numbers of 16S rRNA, revealed a good 

correlation (R2 = 0.635) and indicates that this qPCR method can be used to detect 

risk of 2-MIB concentration. Similarly, several field and culture studies used qPCR to 

detect the 2-MIB gene and found correlations with 2-MIB concentrations (Chiu et al. 

2016; Wang et al. 2016; Huang et al. 2018; Rong et al. 2018; Kim et al. 2020; Devi et 

al. 2021; Lee et al. 2023). The fact that mic gene copy numbers were a good indicator 

of 2-MIB concentrations indicate that this is a good detection method but works best 

when cells of the 2-MIB producers are present in the sample, which highlights the 

importance of using the correct sampling protocol. 

3.6.7 Other factors that influence community and 2-MIB 

Examples from “single system experiments” replicated in time could, for example, 

show strong “year effects” and “season effects” in response to the same manipulation 

(Beisner & Peres-Neto, 2009; Werner et al., 2020). What is the replicability of the 

experiment, especially at other times of the year? Is a large part of the community that 

starts developing related to the history of the community and the size of the inoculum? 

Differences between flasks of the same treatment in this experiment, can be a result 

of non-homogeneous distribution of species in the source water used to initiate the 

experiment. There were notable floating clumps and organic material that could have 
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been home to many benthic cells (cyanobacteria, green algae and diatoms). If a 

species was prevalent in autumn and is able to survive over winter (possibly in the 

sediment layer), it will most likely bloom next year when temperatures, light and 

nutrients are sufficient (Yao et al., 2022). Species with the largest initial inoculum can 

grow quickly when the water conditions become optimal, and this competitive 

advantage over other species enables them to dominate the community. The 

importance on community composition of the so-called priority effect, the time of arrival 

of a species in the community, was identified with laboratory and field studies for many 

ecosystems including freshwater phytoplankton (Fukami, 2015; Rummens et al., 

2018; Sefbom et al., 2015; Van Gremberghe et al., 2009). However, analysis of the 

initial start community revealed that later dominant Pseudanabaena spp. (PCC-7429) 

and Leptolyngbya spp. (SAG 2441) had low abundance at the start of the experiment. 

It is possible that the light and temperature conditions in the incubator and the limited 

mixing could have impacted the phytoplankton community that established in the 

treatments. Aphanizomenon spp., which are likely geosmin producers in this reservoir, 

were dominant in the initial start community but did not develop in the experiment. 

These planktic species might have required higher temperatures or light conditions, 

as benthic cyanobacteria are particularly well adapted to grow under low-light 

conditions (Abeynayaka et al., 2018; Gao et al., 2018).  

Moreover, the experiment did not control for grazing, and it turned out that zooplankton 

(Daphnia sp.) were present, but were not recorded. Grazing experiments with geosmin 

producing cyanobacteria and zooplankton (Daphnia sp. and Simocephalus sp.) 

revealed that the grazing was a major mechanism that released geosmin from cells, 

probably by causing cell lysis (Durrer et al., 1999), which could influence both 

laboratory and field results.  

3.7 Conclusions 

Microcosms with a natural phytoplankton community from a Welsh drinking water 

reservoir were used to identify the effect of different nutrient concentrations and ratios, 

NH4
+:NO3

- and DIN:SRP, on 2-MIB production. The outcomes from the experiments 

provided answers to the formulated research questions. 

1) How do different nutrient ratios (NH4
+:NO3

- and DIN:SRP) and concentrations 

impact the community structure and productivity of phytoplankton? 
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Elevated NH4
+-N concentrations with low NO3

--N lead to ‘boom-bust’ growth dynamics 

whilst elevated NO3
--N concentrations with low NH4

+-N resulted in a delayed response 

(four days later) but overall balanced growth. Treatments with high NO3
--N and high 

PO4
3--P were productive until the end of the experiment, whilst treatments with high 

NO3
--N and low PO4

3--P plateaued. Diatoms dominated treatment with low nutrients 

whilst green algae dominated in high nutrient treatments. Highest cyanobacteria 

biomass was in high NO3
--N, low NH4

+-N and high PO4
3--P treatment, followed by high 

NO3
--N, low NH4

+-N and low PO4
3--P.  

2) How do phytoplankton community structure and productivity affect the 

production of 2-MIB? 

The overall productivity of the community, the total carbon produced, correlated well 

with 2-MIB concentrations. Gene copies of the 2-MIB synthase gene and relative 

abundance of cyanobacteria Leptolyngbya spp. (resembling strain SAG 2441) and 

Pseudanabaena spp. (resembling strain PCC-7429) correlated well with 2-MIB 

concentrations, demonstrating they are the most likely producers of 2-MIB in this 

community. 

3) Can specific nutrient ratios and concentrations be used as an early warning for 

the onset of 2-MIB production? 

Ratios of NH4
+:NO3

- and DIN:SRP were less important for the development of benthic 

2-MIB producing cyanobacteria in these experiments, than total concentration of 

nitrogen (N) and phosphorus (P). 2-MIB production by benthic cyanobacteria was 

related to the abundance in the community and productivity. To enable development 

of these species, the total concentration of N was most important. They grow better 

on NO3
--N than NH4

+-N because green algae established more quickly than the 

cyanobacteria in treatments with NH4
+-N. Treatments with the same total dissolved N, 

but different levels of total dissolved P revealed that there was a potential threshold 

between 0.5 and 0.2 mg P/L for benthic 2-MIB producers to develop. Treatments with 

0.2 mg P/L and high TDN concentrations developed a significant relative abundance 

of 2-MIB producers, and subsequent depletion of the P source caused either active (to 

create a P source) or passive (cell death) 2-MIB release. The concentration of TDN 

required for the development of the benthic cyanobacteria was probably around 2.5 

mg N/L, if sufficient TDP was available. 
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The findings of this chapter highlight that nitrogen and phosphorus concentrations that 

stimulate growth of T&O producing cyanobacteria should be specified for individual 

species, to provide the best early warning of optimal growth. It is essential to realise 

that laboratory studies which identified individual species effects and field studies with 

limited temporal frequency of nutrient monitoring have both not yet fully grasped the 

nutrient drivers of T&O production. It is therefore recommended to perform site-

specific field studies with the likely T&O producers, but study them whilst keeping in 

mind the community effect (phytoplankton and bacteria). High-frequency nutrient 

monitoring is possible in situ, which could provide a better understanding of time-lags 

and responses to varying nutrient concentrations and ratios, as well as cycling of 

specific nutrient fractions. This could be linked to community productivity, which can 

be measured with in-situ methods at a high frequency. Targeted monitoring should be 

developed to better detect benthic cyanobacteria, for example with visual inspection, 

fluoroprobes or ex-situ molecular techniques (Gaget et al., 2022; Gaget et al., 2020). 

Moreover, it is recommended to research the complete community structure with 

molecular methods (Almuhtaram et al., 2021a; Devi et al., 2021), as this can highlight 

potential indicator species or co-occurring species for T&O events.   
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Chapter 4: High resolution monitoring of water 

quality in drinking water reservoirs for early 

warning of taste and odour events 
 

4.1 Introduction 

Most drinking water treatment plants don’t measure T&O frequently year-round, 

because it is a time consuming and expensive analytical method, but they often do 

have a decision framework in place with alert levels which set in motion additional 

treatment and increased monitoring (Kibuye et al., 2021). The delay in laboratory 

analyses combined with the time it takes for treated water to reach customers and 

subsequent complaints, does not allow for an early warning of T&O (Kibuye et al., 

2021). This has sparked interest to create early-warning systems by measuring other 

parameters that could indicate a T&O event is going to happen.    

4.1.1 Geosmin and 2-MIB producers 

Geosmin and 2-MIB can be produced by both benthic and planktic species of 

cyanobacteria (Chapter 1). Chapter 3 demonstrated that geosmin in Reservoir 1 is 

most likely produced by planktic cyanobacteria of the genus Aphanizomenon whilst 2-

MIB is produced by benthic cyanobacteria of the genus Leptolyngbya and 

Pseudanabaena. The different growth habitat and species traits influence what 

environmental conditions drive their growth, which provides important insights into the 

differences between geosmin and 2-MIB patterns in Reservoir 1. 

Planktic Aphanizomenon spp. have been identified as geosmin-producers (Watson et 

al., 2016) and will rely on light availability, a certain water temperature, a stable water 

column, day-length and nutrients. Aphanizomenon spp. are tolerant to low nitrogen 

(due to N2-fixation capabilities) and low carbon, but sensitive to mixing, poor light 

conditions and low phosphorus (Reynolds, 2006). Buoyancy regulation gives them a 

competitive advantage in periods of vertical stability, and N2-fixation enables them to 

thrive under N-limitation and at low N:P ratios (Chen et al., 2020; Miller et al., 2013). 

The optimal growth temperature for several Aphanizomenon spp. was 14 - 32 °C 

(Miller et al., 2013; Pham et al., 2023; Üveges et al., 2012; Yamamoto & Nakahara, 

2005), which is lower than that of toxin producing cyanobacteria Microcystis spp. (27.5 
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- 32 °C), enabling Aphanizomenon spp. to dominate earlier in the growing season 

(Miller et al., 2013). Longer light hours or continuous light (day-length) enhanced 

growth of Aphanizomenon spp., and growth limitation happened at 10:14 light:dark 

photoperiod (Pham et al., 2023; Yamamoto & Nakahara, 2005). Optimal light 

availability (irradiance) for Aphanizomenon spp. was found to be between 55.3 and 

199 µmol photons m-2 s-1 by Yamamoto & Nakahara (2005), and >150 μmol m-2 s-1 by 

Üveges et al. (2012). Planktic species often grow rapidly when the conditions are 

optimal, forming blooms with high biomass, but they can also rapidly disappear when 

conditions change (Harris et al., 2024; Yamamoto & Nakahara, 2009). 

Benthic Leptolyngbya spp. and Pseudanabaena spp. have been identified as 2-MIB 

producers (Watson et al., 2016) and they require a certain water temperature, 

sufficient light availability but they are also low-light acclimated, a stable water column 

with low sediment resuspension and nutrients (Vadeboncoeur et al., 2021). Benthic 

cyanobacteria can access nutrients in the pore-water from sediment (Jähnichen et al., 

2011) and they are low-light acclimated so they can survive periods of environmental 

disturbance like resuspension and sediment burial (Abeynayaka et al., 2018; Gao et 

al., 2018). Pseudanabaena spp. and Leptolyngbya spp. in Reservoir 1 grew as a 

benthic mat (Chapter 3), but literature suggests that Pseudanabaena spp. can be 

planktic (Yue et al., 2024) or benthic (Gaget et al., 2017; Perri et al., 2024), whilst 

Leptolyngbya spp. were described as benthic (van der Grinten et al., 2005). Planktic 

Pseudanabaena spp. thrive in turbid mixed layers, capable of withstanding low light 

but sensitive to flushing (Reynolds, 2006). Planktic Pseudanabaena spp. required 

relatively high nitrogen compared to phosphorus and tolerated phosphorus deficiency 

(Gao et al., 2018; Xiao et al., 2024). Optimal growth of planktic Pseudanabaena spp. 

occurred at 20 – 30 °C (Gao et al., 2018) and 14 - 23 °C (Xiao et al., 2024), with 

optimal irradiance of 27 μmol photons m-2 s-1 (Gao et al., 2018). Optimal growth of 

benthic Leptolyngbya spp. occurred at 25 °C and at irradiances 5 – 200 μmol photons 

m-2 s-1, with maximum growth rate at 40 μmol photons m-2 s-1 (van der Grinten et al., 

2005). Leptolyngbya spp. and Pseudanabaena spp. were related to stratification and 

shallow waters (Xiao et al., 2024; Yue et al., 2024). The growth speed of these benthic 

cyanobacteria is expected to be slower than planktic species (Vadeboncoeur et al., 

2021), but it is complicated to generate growth curves and estimate biomass, as they 

grow heterogeneously (Catherine et al., 2013). 
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Periods with high risk of geosmin and 2-MIB concentrations in a lake or reservoir can 

be predicted based on the hydrodynamics, temperature, light availability and nutrient 

dynamics; either related to external inputs (tributary runoff) or internal processes 

(Chapter 1, Section 1.5, 1.6, 1.7 and 1.8). These environmental factors will influence 

the phytoplankton community structure and determine if the geosmin and 2-MIB 

producing cyanobacteria species are present, but this does not necessarily cause a 

geosmin and 2-MIB event. Species traits of a cyanobacterial species determine its 

optimal environmental conditions for growth, but it also depends on the food web (like 

zooplankton grazing) and the phytoplankton and bacterial community, as 

cyanobacteria may rely on co-occurrence with other organisms (Louati et al., 2015; 

Reinl et al., 2022). Moreover, there is a lot of uncertainty with regards to geosmin and 

2-MIB production and release, and how it varies between species (Chiu et al., 2016; 

Saadoun et al., 2001; Wang et al., 2016; Watson & Ridal, 2004). T&O production is 

either positively (Alghanmi et al., 2018; Giglio et al., 2011; Zimba et al., 1999) or 

negatively (Kutovaya & Watson, 2014; Liu et al., 2009; Pattanaik & Lindberg, 2015; 

Saadoun et al., 2001; Shen et al., 2020; Wang & Li, 2015) related to growth and 

productivity, and release might happen passively (Zhang et al., 2016), actively (Ma et 

al., 2013) or as a mixture of both (Wang & Li, 2015; Watson, 2003). Even though 

certain bacteria can degrade these compounds (Clercin et al., 2022; Westerhoff et al., 

2005), the persistence of geosmin and 2-MIB in the water column causes dispersion 

away from the source, which complicates source-detection. Geosmin and/or 2-MIB 

production by benthic cyanobacteria will most likely be detected in the water column 

as extracellular compounds, whilst planktic cyanobacteria are present in the water 

column and can be detected both intracellularly and extracellularly. Chiu et al. (2016) 

proposed that 2-MIB compounds were produced by benthic cyanobacteria in 

Taiwanese reservoirs, which diffused to the water column. They did not detect the 2-

MIB synthase gene (mic) as evidence of the producers, despite 2-MIB concentrations 

being present in water samples.  

4.1.2 Potential drivers and predictors of geosmin and 2-MIB 

NH4
+-N, the reduced form of nitrogen is directly bioavailable to phytoplankton, whilst 

the oxidised form of nitrogen NO3
--N requires the nitrate reductase enzyme for uptake 

(Glibert et al., 2016). It has been suggested that elevated concentrations of NO3
- 

favour diatom growth whilst elevated NH4
+ concentrations favour dinoflagellates, 
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chlorophytes and cyanobacteria (Andersen et al., 2020; Donald et al., 2013; Donald 

et al., 2011; Erratt et al., 2020; Glibert & Berg, 2009). PO4
3--P is highly bioavailable to 

cyanobacteria. Aubriot and Bonilla (2012) found that PO4
3--P is taken up by bloom-

forming cyanobacteria within 15-25 minutes and increases productivity rates instantly. 

Low TN:TP concentrations are often used to indicate high risk of cyanobacteria, and 

a high NH4
+:NO3

- ratio is a potential driver of T&O production (Harris et al., 2016) (See 

Chapter 3).  

Reservoir processes 

In summer, periods of water column stability will increase organic matter 

decomposition, which lowers the redox potential. Subsequent anaerobic conditions 

cause enhanced denitrification (converts NO3
--N into N2 gas) and internal loading of 

PO4
3--P, NH4

+-N and dissolved metals like manganese and iron (Jensen & Andersen, 

1992; Jeppesen et al., 2009; Jones & Welch, 1990; Yao et al., 2023) (see Chapter 1, 

Section 1.2.2 for more details). Physical (wind) mixing and sediment resuspension 

weakens the physical boundary conditions at the sediment-water interface and allows 

dispersion of the accumulated compounds (DOC/TOC, PO4
3--P/TP, NH4

+-N, 

manganese, etc.) into the surface water layer (Jones & Welch, 1990; Santschi et al., 

1990).  

Internal loading of nitrogen (NH4
+-N) and phosphorus (PO4

3--P) has been linked to 

enhanced risk of algal blooms (Hoffman et al., 2022; Yao et al., 2023) and in turn, 

when these blooms die off and sink to the bottom of the lake, the process starts again 

as these nutrients are recycled (Zhu et al., 2013). It has been suggested that the 

composition of cyanobacterial organic matter, which settled on the sediment, 

enhanced phosphorus cycling (Wang et al., 2019b). Ma et al. (2013) found that 

decaying cyanobacterial blooms released high levels of nitrogen and phosphorus and 

simultaneously released high levels of several taste and odour compounds, but 

geosmin and 2-MIB were more related to the live cyanobacteria growth phase. A 

negative correlation between discharge and 2-MIB concentrations in a drinking water 

reservoir in North Carolina (USA) led Paerl et al. (2022) to suggest that 2-MIB 

producers are favoured under more stratified conditions. 

Tributary processes 

NO3
--N in tributaries comes from agricultural land and urban areas and depends on 

hydrological connectivity due to its tendency to accumulate in groundwater, which 
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causes a delayed response to storm events (Chen et al., 2018; Heathwaite et al., 

1996). High concentrations of NH4
+-N and PO4

3--P in streams are related to a quick 

response to storm events through overland runoff (Chen et al., 2018), as these 

compounds adsorb to soil particles. Sources of NH4
+-N and PO4

3--P are anthropogenic 

pollution from urban areas or agricultural catchments dominated by livestock or arable 

crops in which N-rich fertilisers are used (Chen et al., 2018; Dodds & Whiles, 2020; 

Heathwaite & Johnes, 1996; Jeppesen et al., 2011). In areas of livestock farming, the 

inputs from manures and slurries are associated with DON and DOP such as urea, 

amino acids and phytic acids (Turner et al., 2002), which are often at least partly 

available to phytoplankton (Chen et al., 2020; Mackay et al., 2020; Reinl et al., 2022). 

Agricultural runoff strongly influences harmful algal bloom risk, and the growing use of 

urea-based nitrogen fertilizer in the US further heightens this risk, as urea is more 

bioavailable than nitrate and can cause changes in phytoplankton communities 

(Glibert, 2020). Chen et al. (2018) showed that 10 days after a peak runoff event, a 

reservoir in southeast China experienced an algal bloom with increased chlorophyll a 

concentrations, and cyanobacterial growth was related to NH4
+-N and PO4

3--P 

concentrations rather than NO3
--N. NH4

+-N inputs in tributary inflows were a likely 

cause of 2-MIB and geosmin production in two UK reservoirs (Perkins et al., 2019). 

Painter et al. (2023) showed that flow management had a large influence on 

cyanobacterial blooms in a Canadian reservoir, as natural landscape runoff changed 

to managed flows from an upstream reservoir, which caused shifts in chemistry and 

increased cyanobacterial blooms. Clercin and Druschel (2019) studied Eagle Creek 

Reservoir (USA) and found a time-lag of 37 days between peak inflows from a river 

and 2-MIB and geosmin. Investigating the site-specific lag-time between tributary 

inflow and T&O event is a useful tool that can provide an early warning. 

4.1.3 Cyanobacteria models 

Models to predict planktic cyanobacterial blooms have been attempted by many 

studies, but predictors are often site-specific and vary between species. Commonly 

used predictors were; water column stability (Hecht et al., 2022; Persaud et al., 2015), 

water temperature and transparency (Descy et al., 2016; Hecht et al., 2022; Recknagel 

et al., 2016), inorganic nitrogen and phosphorus concentrations (Descy et al., 2016; 

Hecht et al., 2022; Persaud et al., 2015; Recknagel et al., 2016), meteorological 

factors like temperature, wind speed, wind direction, rainfall and surface irradiance or 
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sunshine hours (Descy et al., 2016; Hecht et al., 2022; Ndong et al., 2014; Persaud et 

al., 2015; Zhang et al., 2012) as well as cyanobacteria biovolume two weeks earlier 

(Persaud et al., 2015) (Chapter 1). Not many studies have attempted to predict benthic 

cyanobacterial growth, but they found useful predictors in; low water flow (Espinosa et 

al., 2020), water level related to bathymetry and light availability (Su et al., 2017), high 

DOC, low TP and low DIN:TP (Lévesque et al., 2012), high N (Heath et al., 2015), low 

river inflow, high TP, high NO3
- and day of the year (Perri et al., 2024) (Chapter 1).  

4.1.4 T&O models 

Several studies attempted to use linear or non-linear models to predict T&O events 

(Bertone & O’Halloran, 2016; Chong et al., 2018; Dzialowski et al., 2009; Harris & 

Graham, 2017; Kehoe et al., 2015; Parinet et al., 2013). Key parameters in those T&O 

models were summarised here, but full details can be found in Chapter 1. Models often 

used water quality parameters like turbidity, inorganic nitrogen (NO3
--N and NH4

+-N), 

inorganic phosphorus, total phosphorus, total nitrogen, water transparency, water 

temperature and chlorophyll a, but in some cases, silica, potassium, TOC, UV 

absorbance and potential redox are mentioned (Harris & Graham, 2017; Parinet et al., 

2013) or reservoir volume (Bertone & O’Halloran, 2016). Non-linear models can 

incorporate microbial abundance data, phytoplankton data and hydrodynamics, which 

could be modelled separately (Chong et al., 2018). Recent advancements in artificial 

intelligence have enabled T&O predictions based on larger datasets (Kehoe et al., 

2015; Parinet et al., 2013), but this can make the result hard to interpret. Another 

important predictor for geosmin and 2-MIB concentrations could be the day of the year, 

due to strong seasonal effects of cyanobacterial growth (Harris & Graham, 2017). This 

strong seasonality could mean that other water quality parameters with similar 

seasonality are good predictors but not necessarily related to geosmin and 2-MIB 

production. 

4.1.5 Sensors 

Almost all T&O models use parameters that can currently only be measured in a 

laboratory. For early-warning systems, it is better to use real-time sensors that are 

connected to the internet as they can provide direct evidence for management (Painter 

et al., 2023). Commercially available water quality sensors that might be useful for 

T&O prediction are: water temperature, water level (pressure), pH, oxidation-reduction 

potential (ORP), electrical conductivity (EC), turbidity, dissolved oxygen (DO), 
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photosynthetically active radiation (PAR), dissolved organic matter (DOM) as CDOM 

(chromomorphic or coloured DOM) or fDOM (fluorescent DOM), photosynthetic 

pigments (chlorophyll a, phycocyanin, phycoerythrin) and nutrients (NO3
--N, NH4

+-N, 

PO4
3--P, TP). Standard sensors on a multiparameter probe often include EC, pH, ORP, 

DO, water temperature, water depth and turbidity. Chlorophyll a and phycocyanin 

sensors measure fluorescence of the pigment in situ, which estimates total 

phytoplankton biomass and cyanobacteria-specific biomass, respectively (Painter et 

al., 2023). CDOM sensors measure absorbance and fDOM sensors measure 

fluorescence, but they both provide estimates of DOM and can be used to estimate 

DOC in aquatic environments (Danhiez et al., 2017).  

Nutrients NO3
--N, NH4

+-N, PO4
3--P and TP can also be measured in real-time due to 

recent advancements in sensing technology (Beaton et al., 2012; Beaton et al., 2017; 

Blaen et al., 2016; Clinton-Bailey et al., 2017; Daniel et al., 2020; Grand et al., 2017; 

Mowlem et al., 2021). Nitrate (NO3
--N) can be measured with three different 

technologies: ion-selective electrode (electrochemical), UV-Visible absorbance 

(optical) and a wet chemistry analyser (reagent-based and colorimetric). Wet 

chemistry analysers are called “lab-on-chip” as they do the colorimetric laboratory 

analysis on a microfluidic scale (Beaton et al., 2012; Beaton et al., 2017). Ammonium 

(NH4
+-N) can be measured with an ion-selective electrode and a wet chemistry 

analyser (reagent-based and colorimetric). Phosphate (PO4
3--P) and total phosphorus 

(TP) can currently only be measured with a wet chemistry analyser (reagent-based 

and colorimetric). The different technologies have a different cost; ion-selective 

electrodes are the cheapest (few hundred pounds), UV-Visible absorbance sensors 

are a lot more expensive (a few thousand pounds) and wet chemistry analysers are 

the most expensive (tens of thousands of pounds). The different technologies also 

come with differences in sensor performance (sensitivity, limit of detection, precision 

and accuracy), maintenance requirements, response time etc. which will determine 

the best choice of technology for a specific parameter and a certain monitoring 

purpose (Blaen et al., 2017; Daniel et al., 2020). 

4.1.6 Sensors for cyanobacteria and T&O prediction 

The risk of T&O events depends on three key processes in lakes or reservoirs which 

influence each other; water column conditions (hydrodynamics, light availability and 

temperature), nutrient dynamics (external and internal) and phytoplankton productivity 
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and biomass. Johnston et al. (2024) tested several in situ sensors for water quality 

and meteorological parameters to monitor harmful algal blooms in lakes and provided 

useful insight in opportunities and challenges. Water column conditions can be 

investigated with information from a weather station (potentially forecasts) or 

measured in the water column with sensors for water level as well as water 

temperature and PAR (potentially at different depths). Nutrient dynamics can be 

measured with sensors or analysers for fDOM/CDOM, NO3
--N, NH4

+-N and PO4
3--P. 

Phytoplankton productivity can be measured with sensors for DO, pH and ORP, whilst 

chlorophyll a combined with phycocyanin sensors can provide an estimation of 

phytoplankton and cyanobacterial biomass as well as the cyanobacteria dominance 

within the total phytoplankton community. Sensors that can separate certain 

phytoplankton groups based on fluorescence also exist, which can provide insight into 

the phytoplankton community composition (Johnston et al., 2024). Turbidity and EC 

can indicate many different processes, but they can provide a baseline water quality, 

and periods of change combined with catchment knowledge can indicate important 

events in the ecosystem (see Chapter 1). 

Several studies used real-time water quality sensor data for water treatment 

management. Dissolved oxygen (DO) sensors were used in a drinking water treatment 

plant to estimate phytoplankton productivity and die-off, which could predict T&O 

concentrations a few weeks later (Chen et al., 2019). Fluorescence probes (chlorophyll 

a and/or phycocyanin) in drinking water treatment plants can help optimise T&O 

treatment (Zamyadi et al., 2016). Chlorophyll a and phycocyanin sensors were also 

deployed in source waters (reservoirs) to predict cyanobacteria risk (Almuhtaram et 

al., 2021b; Carey et al., 2021; Cotterill et al., 2019; Painter et al., 2023), but without 

species information this does not directly reflect T&O risk (Kibuye et al., 2021) and it 

won’t detect benthic T&O producers (Almuhtaram et al., 2021b). Additional DO 

sensors at different depths can provide insight in hydrodynamics, which can help 

predict anoxia caused by cyanobacteria bloom decay (Wentzky et al., 2019) and 

predict iron and manganese with additional water temperature sensors, weather 

station data and a UV-Visible spectrophotometer (Hammond et al., 2023). Discharge 

from major tributaries could be measured with sensors in real-time, as this was found 

to predict geosmin and 2-MIB in two different US reservoirs (Clercin & Druschel, 2019; 

Paerl et al., 2022). Combining for example phycocyanin sensor measurements at the 
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raw water intake with laboratory results of toxins and T&O measurements and weather 

forecasts could potentially provide the best evidence for cyanobacteria management 

at drinking water treatment plants (Jalili et al., 2022).  

Algal bloom monitoring is often done with real-time sensors deployed on buoys, which 

measure meteorological parameters, standard water quality parameters and 

chlorophyll a and phycocyanin (Painter et al., 2023). To the best of my knowledge, 

real-time nutrient analysers have not yet been deployed for algal bloom monitoring 

and T&O prediction in lakes or reservoir, even though the literature suggests that 

nutrient concentrations and ratios (NH4
+:NO3

- and DIN:SRP) could be valuable 

predictors for T&O events.  

This chapter aims to provide further knowledge regarding the second overarching 

hypothesis: Nutrient concentrations and ratios are an important factor in predicting 

geosmin and 2-MIB events. However, the main aim for this chapter is to answer the 

third overarching hypothesis: Sensor data can provide an early warning for geosmin 

and 2-MIB events. 

Nine years of laboratory data from a Welsh drinking water reservoir was used to detect 

persistent trends in geosmin and 2-MIB events and identify potential processes that 

could be measured with real-time sensors. Additionally, several water quality sensors 

were deployed in the reservoir in 2022-2023, including a NH4
+-N ISE, a NO3

--N ISE 

and a NO3
--N wet chemical analyser. This data was used to identify short-term 

indicators of geosmin and 2-MIB events that could potentially be used as an early 

warning. The following research questions were addressed: 

1) What are drivers of geosmin and 2-MIB production in a drinking water 

reservoir? 

2) What is the lag-time between environmental drivers and geosmin and 2-MIB 

detection? 

3) Can sensor data in the reservoir be used to predict geosmin and 2-MIB events? 
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4.2 Methods 

4.2.1 Study site 

This is a case study for a Dŵr Cymru Welsh Water (DCWW) drinking water reservoir 

in North Wales (Figure 4.1, Figure 4.2 and Figure 4.3). Reservoir 1 is the smaller of 

two artificial, shallow, alkaline reservoirs that have a catchment area of 226 hectares. 

Reservoir 2 is the primary source for drinking water production and Reservoir 1, which 

is located upstream, acts as a storage reservoir in periods of drought (Figure 4.2). As 

Reservoir 1 is a back-up reservoir, it is not often used for abstraction, especially in 

recent years due to the poor water quality. Reservoir 2 is partially fed with pumped 

inflows from a nearby river, whilst Reservoir 1 is purely fed by surface water drainage 

from two small tributaries (Figure 4.3). Management decisions about water use are 

based on monthly manual sampling, resulting in time-lags between events in the 

reservoir and detection in the monitoring program. Because of this, water from 

Reservoir 1 gets used infrequently and inefficiently; when water quality is deemed 

poor, it can be several months before the monthly sampling regime determines that 

quality has improved sufficiently. Natural Resources Wales (NRW) also sampled both 

reservoirs from 2010 to 2014 (and continue to do so) to review lake eutrophication and 

concluded that these reservoirs have a poor water quality status and high impact of 

eutrophication (Hatton-Ellis, 2016). 87% of the land use around Reservoir 1 is 

intensive agriculture, as improved grassland and arable fields, and hence the reservoir 

receives frequent nutrient inputs (Figure 4.2). The source apportionment estimated 

that 97.2% of all catchment N contribution was from agriculture (Hatton-Ellis, 2016).  



142 
 

 
Figure 4.1. Map of Wales and reservoir location. 

 
Figure 4.2. Land cover map 2022 which visualises the location of Reservoir 1, Reservoir 2, 
the major tributary and the farm upstream along the tributary. Based upon Land Cover Map 
2022 © UKCEH 2022. Contains Ordnance Survey data © Crown Copyright 2007, Licence 
number 100017572.  

Land cover: 

Tributary 

Reservoir 1 

Farm 

upstream 

Reservoir 2 
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Figure 4.3. Bathymetry map of the reservoir where dark blue is deep and light blue is shallow, 
depth contour values are accurate when the reservoir is 100% filled. DCWW sampling location 
of the tributary (red dot) and abstraction point (yellow dot) are visualised. Blue arrows indicate 
inflow from tributaries and outflow through the spillway, farm upstream of the main tributary is 
shown. 

4.2.2 Data sources 

Several sources of data have been used in this study (Table 4.1); they are described 

in further detail below.  

Table 4.1. Sources of data. Location of measurements in reservoir and tributary shown in 
Figure 4.3. 

Dataset Timespan Frequency Location 

DCWW manual 

sampling abstraction 

2015 – 2023 Two-weekly or Monthly  Abstraction 

DCWW manual 

sampling tributary 

2017 - 2023 Two-weekly or Monthly Tributary 

NRW manual 

sampling 

2010 - 2023 Monthly or few samples 

a year 

Near abstraction 

Farm 

upstream 
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4.2.3 DCWW data 

DCWW manual sampling at the reservoir abstraction started in 2015, and tributary 

sampling started in 2017. The water samples were analysed at DCWW laboratory 

Glaslyn in Newport, South Wales, UK, with the following accreditation: ISO/IEC 

17025:2019. Several parameters were measured, see Hooper (2023a) for detailed 

methods, including concentrations of the following nutrients: NH4
+ as N (0.003 mg/L 

LoD; ±10%), Total Oxidisable Nitrogen (TOxN) as N (0.48 mg/L LoD; ±10%), NO3
- as 

N (calculated as TOxN - NO2
--N), NO2

- as N (0.0045 mg/L LoD; ±10%), chloride (3.1 

mg/L LoD; ±10%), PO4
3- as P (0.03 mg/L LoD; ±10%), silicate dissolved (0.19 mg/L 

LoD; ±10%), sulphate dissolved (2.7 mg/L LoD; ±10%), TP (0.055 mg/L LoD; ±10%), 

DOC (0.12 mg/L; ±10%) and TOC (0.12 mg/L; ±10%). TOxN is NO3
--N plus NO2

--N, 

and subtracting the concentration of NO2
--N provides a measure of NO3

--N. Samples 

were also analysed for concentrations of the following metals: dissolved and total 

aluminium (0.013 mg/L LoD; ±10%), dissolved and total iron (0.011 mg/L LoD; ±10%), 

dissolved and total manganese (0.0022 mg/L; ±10%). Additional parameters that are 

also analysed in the laboratory are: turbidity (NTU), electrical conductivity at 20 °C 

(µs/cm), pH, algal counts and species identification as well as chlorophyll a 

concentrations (2.00 µg/L LoD; ±25%). The analysis also included concentrations of 

2-MIB and geosmin (ng/L) extracted with SPME measured with a GC-MS (quadrupole 

MS operating in SIM mode) enabling a limit of detection (LoD) of 0.3 and 0.57 ng/L 

(±25%) for geosmin and 2-MIB respectively (see detailed methods in Chapter 3, 

Section 3.3.7). 

4.2.4 NRW data 

The reservoir was sampled as part of the NRW Water Framework Directive Lake 

Waterbodies Cycle 1 and 2 (Hatton-Ellis, 2016) and sampling has continued until 

Weather data 2015 - 2023 Daily Water treatment plant 

(3km from Reservoir 

1) 

ClearWater Sensors 

data 

June 2022 – 

January 2023 

2 or 3 hourly Close to abstraction, 

hanging from bridge 

Hydrolab sensor data June 2022 – 

September 

2022 

2 hourly Close to abstraction, 

hanging from bridge 

In-Situ sensor data June 2022 – 

July 2023 

1 hourly Close to abstraction, 

hanging from bridge 
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present. The data are visualised on Data Map Wales (https://datamap.gov.wales/) and 

the full dataset was requested from NRW. The data contains public sector information 

licensed under the Open Government Licence v3.0. Data was available for TOxN, TN, 

TP, PO4
3--P and chlorophyll a, which was analysed in Natural Resources Wales 

Analytical Services (NRWAS) in Swansea, South Wales, UK, accredited ISO/IEC 

17025:2017 by UKAS (national accreditation body for the United Kingdom). 

4.2.5 Meteorological data  

Meteorological data are from a local weather station Rhyl Number 2, ID 03313099999, 

Latitude 53.25° N, Longitude -3.5° W, which is ±3 km away from the reservoir. Weather 

data was downloaded from www.visualcrossing.com. Daily data was used for the 

following parameters: maximum temperature (tempmax, °C), minimum temperature 

(tempmin, °C), temperature (temp, °C), precipitation (precip, mm), windgust (mph), 

windspeed (mph), winddirection (winddir, 0-360 °), cloudcover (0-100%), solar 

radiation (solarradiation, W/m2) , solar energy (solarenergy, MJ/m2), difference in 

maximum and minimum temperature (tempdiff). Daily solar radiation is calculated as 

the mean value of the solar radiation for the day whilst daily solar energy is calculated 

as the sum of the hourly values.  

4.2.6 Sensor data 

Three water quality sensors/analysers were deployed in the reservoir (Figure 4.4), 

hanging from the bridge near the abstraction point (yellow star in Figure 4.4 and photos 

from field deployment in Figure 4.5). The following equipment was used; an OTT 

HydroMet Hydrolab DS5 multiparameter sonde (OTT HydroMet, Kempten, Germany), 

a ClearWater Sensors Ltd. nitrate analyser (ClearWater Sensors Ltd., Southampton, 

UK), and an In-Situ Aqua TROLL 600 multiparameter sonde (In-Situ, Colorado, USA). 

Regular trips to the field site (every ±2 months in summer and ±4-6 months in autumn, 

winter and spring) were made to clean the equipment, calibrate the pH, nitrate and 

ammonium sensors and to replace the cartridge on the ClearWater Sensors nitrate 

analyser (Figure 4.5). 

https://datamap.gov.wales/
http://www.visualcrossing.com/
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Figure 4.4. Sensor field deployment overview. Yellow star indicates the abstraction location. 
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Figure 4.5. Sensor deployment from the bridge (A), Necessary cleaning (B), Communicating with Clearwater Ltd. NO3
--N analyser (C), In-Situ 

telemetry and view of bridge (D), Instructions how to set up the Clearwater Ltd. NO3
--N analyser (E), Hydrolab calibration (F). 
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Hydrolab multiparameter probe 

The OTT HydroMet Hydrolab DS5 (OTT HydroMet, Kempten, Germany) had an 

internal battery pack and internal storage, with no telemetry options (Figure 4.5). This 

sensor measured water temperature (°C), electrical conductivity (EC, µS/cm), pH, 

ORP, turbidity (NTU, with a wiper brush), chlorophyll a (µg/L) and dissolved oxygen 

(DO, mg/L and % saturation). Unfortunately, the data was lost from September 2022 

onwards and the dissolved oxygen sensor stopped working early on. The data was 

quality checked and it was decided only to further analyse the chlorophyll a data due 

to data quality concerns with the other data and In-Situ Aqua TROLL data provided a 

longer dataset for these parameters. 

ClearWater Sensors nitrate analyser 

The ClearWater Sensors Ltd. nitrate analyser (ClearWater Sensors Ltd., 

Southampton, UK) was powered by a solar panel and uses lab-on-chip technology 

and onboard calibration standards to measure nitrate as N. The NO3
--N analyser is 

developed for oceanographic work, and has a limit of detection (LoD) of 0.0004 mg 

N/L (25 nM) with a precision of 0.0003 mg/L (20 nM), details of the technology can be 

found in Beaton et al. (2012) and Mowlem et al. (2021). In brief, the analyser draws in 

a sample through a 0.45-µm filter, then it mixes with Griess reagent and undergoes a 

colour reaction, which is measured by photodiodes and calculated to nitrate 

concentrations using an onboard nitrate calibration standard. The sensor has been 

tested in a variety of aquatic environments, including rivers, lakes and seawater. The 

novelty of this deployment was to connect the analyser via telemetry for real-time data 

access, which was deployed on the bridge (Figure 4.4, Figure 4.5). In the first few 

months of the deployment, July and August 2022, there was a lot of biofouling on the 

filter inlet in between maintenance days, which blocked the inlet and stopped the 

analyser from taking samples properly. This data has been removed from the dataset. 

The ClearWater Sensors nitrate analyser stopped working in January 2023 and in their 

laboratory, it was discovered that the chip needed replacing, which meant the analyser 

could not be re-deployed for the remainder of the deployment period.  

In-Situ multiparameter probe 

The In-Situ Aqua TROLL 600 multiparameter sonde (In-Situ, Colorado, USA) had 

internal batteries, a wiper brush and was connected to an In-Situ VuLink® cellular 

telemetry device (In-Situ, Colorado, USA) on the bridge (Figure 4.4, Figure 4.5) which 
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provided real-time telemetry and an extra power supply to the sonde. Sensor 

parameters were: Water temperature (°C), air temperature (°C), depth (m), electrical 

conductivity (EC, µS/cm), dissolved oxygen (DO, mg/L and % saturation), pH, ORP, 

turbidity (NTU) and ion-selective electrodes (ISE) for NO3
- (mg N/L) and NH4

+ (mg 

N/L). The electrical conductivity data was provided as actual conductivity (raw EC 

values) and specific conductivity (temperature corrected EC values to 25 °C). Specific 

conductivity data was used for further processing, and the specific conductivity is 

referred to as electrical conductivity (EC) in this thesis. Turbidity was only measured 

from June 2022 to mid-August 2022 because the sensor was replaced with the 

ammonium ion-selective sensor for the remainder of the deployment. There is a period 

of missing data for the whole month of October 2022, due to a battery failure in the 

VuLink® device. pH data was used in further analysis, but it was corrected for drift 

based on the calibrations of pH 7 during maintenance days. 

In-Situ drift correction pH 

A 3-point calibration was done each field visit with pH 4, 7 and 10. Information about 

pH 7 pre-measurement (In-Situ app) was used to calculate the drift correction between 

every calibration period (1 to 4). Values for REAL pH in this case come from the sensor 

calibration days, indicating the pH value the In-Situ sensor auto-detected for pH 7 

buffer, so what it should be after calibration. (Table 4.2).  

Table 4.2. pH drift for four periods in the sensor deployment between maintenance (CAL 1- 4) 
calculated from calibrations on maintenance days. 

 

pH drift is the difference between the measurement of pH 7 buffer before and after 

calibration. For 17/08 that is 7.24 – 7.02 = 0.22 pH units of drift. Subsequently, the pH 

Correction without Buffer drift taken into account!

Dates Days pH 7 pH7 mV REAL pH pH drift

pH drift 

per day

27/06/2022 0 7 -1.7 7

17/08/2022 51 7.24 -15.2 7.02 0.22 0.004314

17/08/2022 0 7.02 -14.9 7.02

29/09/2022 43 7.09 -19.1 7.04 0.05 0.001163

29/09/2022 0 7.04 -18.2 7.04

20/01/2023 113 7.27 -30.6 7.06 0.21 0.001858

20/01/2023 0 7.06 -29 7.06

01/08/2023 193 7.23 -42.1 7.02 0.21 0.001088

CAL 2

CAL 3

CAL 4

CAL 1
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drift per day is calculated over the duration of the deployment period. For calibration 

period 1 (CAL 1) that is 51 days and the pH 7 has drifted by 0.22 pH units, which 

calculates as a pH drift of 0.0043 per day (Table 4.2). Over that calibration period, 

each sample point is a certain number of days away from the 27/06/2022, when the 

calibration was done. Depending on how many days since the initial calibration, the 

drift in pH units is calculated for each sampling point (Equation 4.1). The first days of 

the CAL1 period won’t have much drift but it incrementally increased until it reaches a 

drift of 0.22 pH units at the end of the CAL1 period. This calculation assumes that drift 

happened linearly over the deployment period.   

Equation 4.1: 

𝑝𝐻 𝑑𝑟𝑖𝑓𝑡 𝑣𝑎𝑙𝑢𝑒 =  
𝑝𝐻 𝑑𝑟𝑖𝑓𝑡 𝐶𝐴𝐿𝑥

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝐶𝐴𝐿𝑥
∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑠𝑖𝑛𝑐𝑒 𝑠𝑡𝑎𝑟𝑡 𝐶𝐴𝐿𝑥 

The x in CALx indicates this calculation can be done for all Calibration periods CAL 1, 

2, 3 and 4. In the calculation, “pH drift CALx/number of days CALx” is the same as pH 

drift per day mentioned in Table 4.2. 

To calculate the corrected pH value for each data point, Equation 4.2 was used 

because pH was drifting upwards. 

Equation 4.2: 

𝑝𝐻 − 𝑝𝐻 𝑑𝑟𝑖𝑓𝑡 𝑣𝑎𝑙𝑢𝑒 

The difference between original pH values and the corrected pH values is visualised 

in Figure 4.6. 
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Figure 4.6. pH with uncertainty and corrected pH value 
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In-Situ NO3
--N and NH4

+-N ISE data checks 

According to manufacturer’s instructions, the NO3
--N ISE should be able to measure 

0.01 to 40,000 mg N/L (±10% or ±2 mg N/L, whichever is greater) and the NH4
+-N ISE 

should be able to measure 0.01 to 10,000 mg N/L (±10% or ±2 mg N/L, whichever is 

greater). The accuracy of ±10% or ±2 mg N/L indicates the relatively low sensitivity of 

these sensors, which are predominantly used for wastewater monitoring. During field 

deployment, the NO3
--N ISE was calibrated with a 5.6 NO3

--N mg/L prepared 

calibration solution and the NH4
+-N ISE with a 1.08 NH4

+-N mg/L calibration solution, 

but the sensors did not stabilise in the field and struggled to detect the mV values. 

Instead of using the field calibrations, raw mV values were converted into NH4
+-N and 

NO3
--N concentrations based on laboratory-determined calibration curves after the 

deployment. The NO3
--N sensor worked well in the laboratory tests at environmentally 

relevant concentrations and a calibration curve could be determined (R2 = 0.9919), 

with a range of 0.15 mg N/L at 200 mV (log10 = 0.06) to 20.31 mg N/L at 67 mV (log10 

= 1.33) (Figure 4.7). The NH4
+-N sensor was tested at environmentally relevant 

concentrations from 0.021 mg N/L (-52 mV) to 1.777 mg N/L (73 mV) and resulted in 

an exponential calibration curve (R2 = 0.9397), which went below 0 for mV around 0.2 

mg N/L (Figure 4.7). The calibration curve would have just had positive mV values and 

a linear trendline if only >0.5 mg N/L concentrations were selected, as NH4
+-N 

concentrations <0.5 mg N/L may not be detected by the sensor due to the low 

sensitivity (Figure 4.7).  

 

Figure 4.7. Laboratory-determined linear calibration curve for log10-transformed NO3
--N (left) 

and exponential calibration curve for NH4
+-N (right). 

Both calibration curves in Figure 4.7 were applied to the laboratory NO3
--N and NH4

+-

N concentrations that were measured by DCWW throughout the deployment period, 
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to convert the actual reservoir concentrations into hypothetical mV values (Figure 4.8 

and Figure 4.10). The NO3
--N ISE sensor did not have signs of drift throughout the 

dataset, but it did not measure the raw mV that it should have been (DCWW laboratory 

data) consistently; the average mV difference varied between datapoints (Figure 4.8). 

There seemed to be a mismatch between how the sensor performed in the field 

compared to in the laboratory. A correction was attempted by offsetting all raw mV 

values by 51.12 mV (the average difference between the ‘lab NO3
--N converted to mV’ 

and ‘mV sensor’ values for data that was >1 mg/L of NO3
--N; the data is marked as a 

grey shaded box in Figure 4.8), prior to NO3
--N concentration calculation with the 

laboratory-determined calibration curve (Figure 4.7). Even after mV correction, the 

NO3
--N ISE data did not capture the low or the high NO3

--N concentrations in the 

dataset accurately (Figure 4.9), so these concentrations were probably not trustworthy.  

 

Figure 4.8. NO3
--N laboratory converted to mV compared to actual mV the ISE sensor 

measured in the field. 

Average 

difference 
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Figure 4.9. NO3
--N concentration from DCWW laboratory samples (manual), the calculated 

NO3
--N concentration from the ISE sensor and the NO3

--N concentration determined by the 
ClearWater Sensors nitrate analyser. 

The NH4
+-N ISE sensor was only able to measure mV up to -40 (Figure 4.10), and 

results from the calibration curve (Figure 4.7) showed that the concentrations during 

the deployment period were probably too low for the sensitivity of this sensor. When 

the NH4
+ exponential calibration curve was applied to the raw mV data, this also 

revealed that the sensor was not able to detect differences at these low concentrations 

(Figure 4.11). This is the reason that data from ion-selective nitrate and ammonium 

sensors were not used in further data analysis. 
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Figure 4.10. NH4
+-N laboratory converted to mV compared to actual mV the ISE sensor 

measured in the field. 

 

Figure 4.11. NH4
+-N concentration from DCWW laboratory samples (manual) and the 

calculated NH4
+-N concentration from the ISE sensor. 
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4.2.7 Pre-processing of DCWW data 

All required data pre-processing was completed in R v.4.3.1 (RStudio v.2023.06.2) and 

associated packages as described. 

Abstraction data 

DCWW sampled from the abstraction tower (Figure 4.3, yellow dot) and from the 

tributary (Figure 4.3, red dot) during 2019 and 2019 onwards. The campaigns were 

not all consistent (different parameters, different sampling intervals etc.) but there was 

some continuity. In 2022, another sampling campaign started at Reservoir 1 which 

duplicated the results at certain dates. The duplicated results were compared on a 

case-by-case basis and merged, parameters with two values were averaged. There 

were five cases of duplicated results that had the following parameters averaged, with 

average standard deviation in brackets: NH4
+-N (0.025 mgN/L), TOxN (0.352 mgN/L), 

NO3
--N (0.362 mgN/L), NO2

--N (0.004 mgN/L), TP (0.008 mgP/L), PO4
3--P (0.003 

mgP/L), chloride (0.424 mg/L), silicate (0.554 mg/L), sulphate (1.598 mg/L), 

chlorophyll a (1.237 µg/L), algae total cell count (3341), blue-green algae cell count 

(1909), green algae total cell count (2120), 2-MIB (3.574 ng/L) and geosmin (2.234 

ng/L). 

The abstraction and tributary datasets from DCWW contained many values that were 

below the limit of detection (LoD) for several parameters (Table 4.3). TP and PO4
3--P 

datapoints that were below the LoD, were filled in with NRW data from the closest 

matching date using the ‘zoo’ package in R (Zeileis & Grothendieck, 2005). The NRW 

dates were maximum 15 days away from the DCWW dataset, and an average was 

taken if there were two close matches, one before and one after the date from the 

DCWW dataset. In one datapoint, data from NRW and DCWW was available for the 

same day for TP but not PO4
3-, in which case TP for both was averaged and PO4

3- was 

filled in from NRW data. 

Table 4.3. The % of datapoints below the limit of detection (LoD) for parameters that had 
<LoD values in DCWW abstraction data (TOxN, TP, chlorophyll a and PO4

3--P also after 
gaps filled with NRW data) and DCWW tributary data. 

Parameter % data below LoD in 

abstraction data DCWW 

% data below LoD in 

tributary data DCWW 

NH4
+-N 6.29 % 3.41 % 

TOxN 17.48 % 1.14 % 

TOxN with NRW data 12.5 % - 
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NO3
--N 20.28 % 20.45 % 

NO2
--N 18.18 % 19.32 % 

TP 62.68 % 23.26 % 

TP with NRW data 38.46 % - 

Aluminium 5.04 % - 

Chlorophyll a 5.04 % 29.41 % 

Chlorophyll a with NRW data 2.84 % - 

2-MIB 9.22 % 48.75 % 

Geosmin 0.71 % - 

PO4
3--P 82.72 % 20.29 % 

PO4
3--P with NRW data 29.47 % - 

Silicate reactive 16.46 % - 

Sulphate 6.67 % 1.52 % 

Aluminium dissolved 66.23 % 25.76 % 

Manganese dissolved 25.64 % 13.64 % 

 

The ‘NADA’ package in R (Lee, 2020) was used with to fill in <LoD values (censored 

data). A Regression on Order Statistics (ROS) model was used to simulate a large 

amount of data using the normal distribution of the data >LoD (uncensored data), of 

which a constrained sample, between 0 and LoD for that sample, was taken to replace 

the <LoD value. This method deals well with differences in the LoD for a parameter 

throughout the dataset, which can come from changing laboratory methods. However, 

when the % data below the LoD is more than 60%, the results from the NADA 

resampling need to be critically assessed. The DCWW abstraction point PO4
3--P, TP 

and dissolved aluminium data had more than 60% data below the LoD (red numbers 

in Table 4.3). Fortunately, NRW data could be used to fill values below the LoD for TP 

and PO4
3--P, which meant that TP had only 38.5% of data below the LoD instead of 

62.7%, whilst PO4
3--P went from 82.7% to 29.5% data below the LoD (Table 4.3).  

Following this resampling with the ‘NADA’ package, data was quality checked by 

ensuring NO2
--N was not higher than TOxN (no instances) and PO4

3--P was not higher 

than TP (3 instances, then TP was replaced with the value for PO4
3--P). Moreover, 

NH4
+-N was calculated from NH4

+ and NO3
--N was recalculated with the following 

formula: NO3
--N = TOxN – NO2

--N. Additionally, a correlation was established between 

TOxN and TN in the NRW dataset from Reservoir 1, which created the following 

formula: TN = 0.9636* TOxN + 0.8282 (Figure 4.12). The formula was used to calculate 

values for TN in the most complete version of the dataset, as TN is not measured by 

the DCWW laboratory, only TOxN. Nutrient concentrations were used to calculate 
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several nutrient ratios, including TN:TP, DIN:SRP and NH4
+:NO3

-, which were used in 

further analysis. 

 

Figure 4.12. TN vs. TOxN at the abstraction point in NRW data. 

Finally, to create one overall dataset, NRW and DCWW data were merged for the 

abstraction point. If data from DCWW and NRW was available for the same day (6 

instances), the mean value was calculated. The NRW data only contained data for TN, 

TOxN, TP, PO4
3--P, chlorophyll a and nutrient ratios, hence these parameters caused 

duplication. 

Tributary data 

Tributary data has undergone a similar data pre-processing step with the Rpackage 

NADA (Lee, 2020) and the percentage of censored over uncensored values (% of data 

points below LoD) is visible in Table 4.3. None of these percentages were above 60%, 

so the new values were accepted. PO4
3--P exceedance of TP and NO2

--N exceedance 

of TOxN was corrected similarly to abstraction data. NH4
+-N and NO3

--N were also 

calculated in the same way. TN was not calculated because NRW data was not 

collected at the tributary location and nutrient ratios were also not calculated due to 

limited available data.  

Sensor data 

Sensor data was cleaned by unifying time zones to UTC, removing calibration periods, 

and filtering out erratic values. This was done in Rstudio by computing for each row 
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the difference between its own value and the previous row as well as its value 

compared to the next row of data. For a row in which this difference for both previous 

and next data point exceeded the threshold (Table 4.4), it was replaced by a rolling 

median over a window of 5 datapoints centred around each data point, using R 

package ‘zoo’ (Zeileis & Grothendieck, 2005). Missing values were not filled in. 

Table 4.4. Threshold for filtering out erratic values in the sensor data. 

Parameter Threshold for erratic value difference 

between two consecutive data points 

pH 0.5 

ORP 50 

Water depth (m) 0.02 

DO (mg/L) 1.5 

EC (µS/cm) 7.5 

NO3
--N (mg/L) 0.8 

 

Water depth (m) was calculated from a pressure reading measured above the In-Situ 

sensor in the water column, which was hanging from the bridge (Figure 4.4). For 

plotting, this measurement was converted to reservoir water level (m), which was 

measured by DCWW using a pressure sensor port hole in the abstraction tower. The 

DCWW water level measurements go deeper than the reservoir depth, so it cannot be 

directly compared to the bathymetry (Figure 4.3) but it can be used as an indication of 

water level changes over the years. The difference between water depth (In-Situ 

sensor) and DCWW water level was 11.5 meters on the 01/01/2023, when the 

reservoir was at its maximum volume, therefore 11.5 m was added to the In-Situ water 

depth measurements (Figure 4.4).   

4.2.8 Analyses and plotting 

All required data analysis was completed in R v.4.3.1 (RStudio v.2023.06.2) and 

associated packages as described. Plotting was done with R package ‘ggplot2’ 

(Wickham, 2016) and plots were saved as vector images with the R package ‘Cairo’ 

(Urbanek & Horner, 2023). 

Nutrient rate of change 

NRW and DCWW abstraction data were combined for the years 2015 to 2023, in order 

to calculate the rate of change in nutrient concentrations. The described method below 

was applied to the merged abstraction data ("toc", "doc", "tn", "nh4n", "toxn", "no3n", 
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"no2n", "tp", po4p", "chla", "algaetot", "greenalgae", "bluegreenalgae", "otheralgaetot") 

and tributary data ("toc", "doc", "nh4n", "toxn", "no3n", "no2n", "tp", "po4p"). 

R packages ‘dplyr’ (Wickham et al., 2023), ‘data.table’ (Barrett et al., 2024) and ‘zoo’ 

(Zeileis & Grothendieck, 2005) were used to create a function that finds for selected 

columns (nutrients and algal parameters) the closest non-NA value in a previous row 

(back in time) and calculates the difference between the values. It also calculated the 

number of days between the rows and a threshold was applied to enable the rest of 

the calculation only when there was less than 90 days between the rows. This 

prevented calculation of differences from unreasonably infrequent data, with lots of NA 

values. The threshold of 90 days was chosen to provide the most complete dataset, 

especially for TP and PO4
3--P, because they were measured infrequently in the first 

few years and gaps between samples were up to 90 days. Lapsed sampling during 

the COVID-19 pandemic (that prevented staff reaching the field site) resulted in much 

larger data gaps, and this was filtered out. Care needs to be taken with differences 

calculated between rows that are 90 days, but fortunately there are very few. 

Lastly, the calculated difference in values was divided by the number of days between 

both rows, to calculate a rate of change, to compensate for differing number of days 

between rows throughout the dataset using R packages ‘gridExtra’ (Auguie, 2017). 

This was required because the number of days between observations was highly 

variable, especially with the inclusion of NRW data, which only contained a selection 

of the parameters. This method was chosen over taking monthly averages, because 

that would have reduced the temporal frequency of the data and smoothed out 

patterns in the data. 

Meteorological data calculations 

Time lags were investigated by calculating mean, maximum, minimum and sum of 

weather parameters on the weeks prior to the sampling date. The time lags explored 

were: 1 week prior to date (0-7 days from date), 2 weeks prior to date (8-14 days from 

date), 3 weeks prior to date (15-21 days from date), 4 weeks prior to date (22-28 days 

from date), and also 1, 2, 3, 4, 5, 6 and 7 days prior to date. 

Sensor data calculations 

Daily maximum, minimum, median, mean and range (difference between maximum 

and minimum values) were calculated for eight sensor parameters (EC, pH, DO, ORP, 
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NO3
--N, Chl-a, Depth, Water Temp, Air Temp). To further explore the influence of lag 

time, these were also calculated for the following intervals: 1 week prior to date (0-7 

days from date), 2 weeks prior to date (8-14 days from date), 3 weeks prior to date 

(15-21 days from date), 4 weeks prior to date (22-28 days from date). This was used 

to calculate maximum of daily maxima, mean of daily means, minimum of daily 

minima, maximum of daily range, mean of daily range and minimum of daily range, 

median of daily medians and weekly range (difference between maximum of daily 

maxima and minimum of daily minima). 

Event thresholds 

Geosmin and 2-MIB concentrations were classified based on the level of severity: low, 

medium and high. The full details of the level classification were for geosmin: low = 0 

– 5 ng/L, medium = 5 – 20 ng/L, high > 20 ng/L, and for 2-MIB: low = 0 - 2.5 ng/L, 

medium = 2.5 – 10 ng/L, high > 10 ng/L, which is the same as Hooper (2023a). The 

DCWW event threshold for geosmin is 10 ng/L and 5 ng/L for 2-MIB, which were 

halved to derive the border between the low and medium class: 5 ng/L and 2.5 ng/L 

for geosmin and 2-MIB, respectively. A geosmin and 2-MIB event was defined as a 

concentration ≥10 ng/L for geosmin and ≥5 ng/L for 2-MIB, following DCWW 

thresholds and Hooper (2023a). The event threshold for geosmin of 10 ng/L 

corresponds to the log transformed version log10(10+1) = 1.04 and 2-MIB value of 5 

ng/L corresponds to log10(5+1) = 0.78, which is used for plotting.  

PCA 

A selection of manual sampling data and weather parameters was used for the 

principal component analysis (PCA): pH, turbidity, TOC (toc), TN (tn), NH4
+-N (nh4n), 

NO3
--N (no3n), TP (tp), PO4

3--P (po4p), manganese, chlorophyll a (chla), algae total 

cell count (algaetot), green algae total cell count (greenalgae), blue-green algae cell 

count (bluegreenalgae), TN:TP ratio (tntp_ratio), NH4
+:NO3

- ratio (nh4no3_ratio), 

geosmin, 2-MIB (mib), precipitation (precip), maximum air temperature (tempmax), air 

temperature (temp), wind speed (windspeed), solar radiation (solarradiation), solar 

energy (solarenergy), average air temperature 2 weeks lagged 

(avg_temp_2weeks_prior), maximum wind gust 2 weeks lagged 

(max_windgust_2weeks_prior), sum of solar energy 2 weeks lagged 

(sum_solarenergy_2weeks_prior). These parameters were first log10(x+1) 

transformed and scaled (zero-centred). Subsequently, a principal component analysis 
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(PCA) was performed using the Nipals (Nonlinear Estimation by Iterative Partial Least 

Squares) algorithm to deal with missing values, from the R package ‘pcaMethods’ 

(Stacklies et al., 2007). The Nipals algorithm is at the foundation of the Partial Least 

Squares (PLS) regression and executes PCA with missing values by excluding them 

from the appropriate inner products. This method uses interpolation with a least-

squares-fit to find the missing values but gives these missing data no influence on the 

model. Each subsequent iteration improves the missing value by multiplying the score 

and the loading at that specific point. The Nipals algorithm can be used on datasets 

with approximately 5% missing values and this dataset had 5.3% missing values, 

which was deemed acceptable.  

Datapoints in the PCA were coloured based on whether there was a geosmin event 

(Yes, No) and this was repeated for a 2-MIB event (Yes, No). 95% ordiellipses were 

plotted to indicate the difference between event and no-event on the PCA plot. To 

determine whether an event was statistically different from no event, permutational 

multivariate analysis of variance (PERMANOVA) was done with Euclidian distance 

and 999 permutations, using R package ‘labdsv’ (Roberts, 2023). 

Simple GAMs 

Generalised additive models (GAM) were constructed for multiple parameters in the 

dataset to understand the influence of each individual parameter on geosmin and 2-

MIB concentrations, using R package ‘mgcv’ (Wood, 2017; Wood et al., 2016). For 

GAM analysis, geosmin and 2-MIB were log-transformed as follows: log10(x+1), which 

are referred to as log_geosmin and log_mib. The following basic structure was used 

for the GAM: gam(log_mib ~ s(x), data = new_data, method = "ML", family = tw()), 

which uses a smoothing term s(x) in which x is the predictor parameter in dataset 

“new_data”, a standard k of 10 (smoothing parameter), method ML (maximum 

likelihood) for the linearisation and a Tweedie data distribution (nonexponential) for the 

distribution family (Wood et al., 2016). The Tweedie distribution applies the logarithm 

of the expected value (log_mib) as a linear function of the predictor s(x). The same 

GAM was applied with log_geosmin as the modelled variable. Some parameters were 

flagged because they didn’t have sufficient different values to use k of 10, so separate 

GAMs were performed with the maximum number k. In some cases, the method “ML” 

did not perform well, so they were executed with “REML” (restricted maximum 

likelihood) instead. Individual GAMs were performed on the full dataset (2015 to 2023) 
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with manual samples and weather parameters, as well as a selection of the dataset 

that included sensor parameters (2022 to 2023). 

Full GAM for 2-MIB and geosmin 

GAMs with multiple parameters from the whole dataset (manual and weather, 2015 to 

2023) were explored to understand their ability to predict concentrations of 

log_geosmin and log_mib. Parameters were entered as a smoothing term based on 

most promising individual GAM results (highest deviance explained). The GAMs were 

validated by comparing several slightly different models with the Akaike Information 

Criterion (AIC), where a lower value indicates a better model. For example, a model 

with all parameters compared with subsequent models that excluded one of the 

parameters one-by-one, then AIC could be compared to see if excluding certain 

parameters improved the model. Residual plots (better if normally distributed residuals 

without bias) and k.check values (if smoothing parameter k wasn’t over or underfitting, 

edf not too close to k’) were checked for potential problems in the model, as well as 

autocorrelation and partial autocorrelation. A small amount of autocorrelation was 

tolerated, but if there were obvious autocorrelations in the data, then additional steps 

would be required. Parameters with as little missing data as possible were selected 

for full GAMs, as this kept more data in the model. 
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4.3 Results 

4.3.1 Water quality & meteorological data 2015-2023 

Geosmin and 2-MIB 

The water quality data from 2015 to 2023 revealed that Reservoir 1 experienced yearly 

geosmin and/or 2-MIB events above the DCWW threshold; 10 and 5 ng/L for geosmin 

and 2-MIB, respectively (although there were limited 2020 data due to COVID-19 

lockdown) (Figure 4.13). Geosmin levels above the threshold were consistently 

detected earlier in the year than 2-MIB levels above the threshold, and there were 

notable differences in between years for the compound behaviours (Figure 4.13). In 

2019 there was no 2-MIB event whilst geosmin did have an event. In 2023, the 2-MIB 

event lasted the whole year because concentrations in the 2022 to 2023 winter period 

did not go below the threshold, whilst geosmin only had a minor event (Figure 4.13).  
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Figure 4.13. Reservoir 1 manual samples, depth sensor and meteorological data 2015-2023. 
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Chlorophyll a and pH 

Chlorophyll a (µg/L) measurements generally showed a pattern of elevated 

concentrations in the second half of the year, approximately from June to October 

(Figure 4.13). However, in more recent years, chlorophyll a concentrations increase 

earlier in the year, and they can persist for long periods of time (Figure 4.13). 

Chlorophyll a did not reveal a similar pattern to geosmin or 2-MIB. 

pH and chlorophyll a generally followed the same trend, with elevated values from 

late-spring to early-autumn (Figure 4.13). Due to its buffer capacity, pH showed a 

slower response to productivity and a more predictable yearly pattern than chlorophyll 

a. The pH pattern often overlapped with periods of geosmin events (Figure 4.13).  

Water level changes 

Water level in Reservoir 1 reached maximum capacity from mid-2017 until 

approximately May 2018, when there was a steep drop of ±4 meters. A large volume 

of water was abstracted to allow maintenance work on the reservoir dam, as DCWW 

was building a spillway. Water levels were maintained at this low level until early 2021, 

with sharp increases throughout this period related to precipitation which are followed 

by a quick drawdown to maintain low water levels (Figure 4.13). In early 2021, water 

levels increased ±4 meters which refilled the reservoir to its maximum level. Later in 

springtime 2021, the water level dropped again by 1 meter, but it was refilled to the 

maximum water level at the end of the year (Figure 4.13). Since 2022, Reservoir 1 has 

not been used for drinking water abstraction, except for a short period in February-

March 2023 when water levels dropped 1.5 m over 17 days and quickly increased to 

maximum levels again over 6 days (Figure 4.13).  

Weather 

Average daily air temperature had a consistent cyclic pattern over the years with 

temperatures reaching <0 ºC in winter and >20 ºC in summer. 2022 is the only year in 

the dataset for which average daily air temperature exceeded 25 ºC (Figure 4.13). 

Solar energy (MJ/m2) revealed a similar cyclic pattern every year, but maximum values 

happened slightly earlier in the year than for daily air temperature. Periods of 

precipitation and higher wind gusts indicate unstable weather and cloudy conditions, 

also reflected in a drop in potential solar energy (MJ/m2). Most years had periods of 

stable and warm weather without precipitation in spring or summer, but prolonged dry 

spells occurred in 2015, 2018, 2020, 2022 and 2023. In these periods, there was 
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maximum potential solar energy for that time of year, little precipitation, low wind gusts 

(mph) and an increase in daily air temperature (ºC) (Figure 4.13).  

Annual statistics for weather parameters in Table 4.5 showed that 2018 and 2022 had 

exceptionally low total precipitation of 626 and 660 mm, respectively, compared to 

other years that ranged from 760 to 942 mm. The years 2018-2019 and 2022 were 

officially defined as drought years in the UK by the National Centre for Atmospheric 

Science (National Centre for Atmospheric Science, 2023). 2015 and 2022 had 

exceptionally high total solar energy of 4360 and 4123 MJ/m2, respectively, compared 

to a range of 3618 to 3982 MJ/m2 (Table 4.5). This pattern was also visible for average 

solar radiation (W/m2). Maximum wind gusts were highest in 2015, 2017 and 2020 

with wind gusts of 111, 122 and 120 mph, respectively, whilst 2023 had the lowest 

maximum wind gusts of 94 mph (Table 4.5). The average windspeed was highest for 

the years 2015, 2017 and 2020 with windspeeds of 23, 22 and 22 mph, respectively 

(Table 4.5), and lowest is 2021 with 20.4 mph. Maximum temperature was highest in 

2022, with 34 ºC and the lowest maximum temperature was in 2015 at 26 ºC (Table 

4.5). The lowest minimum temperature also happened in 2022, at -6.3 ºC and the 

highest minimum temperature was -0.3 ºC in 2020 (Table 4.5). The average 

temperature was around 10.5 ºC from 2015 to 2021 but showed an increase to 11.2 

ºC in 2022 and 2023 (Table 4.5).  

Table 4.5. Annual averages of selected meteorological parameters from 2015 to 2023. 
 

2015 2016 2017 2018 2019 2020 2021 2022 2023 

Sum 

precipitation 

(mm) 

779.7 778.0 759.4 625.6 898.9 941.5 802.9 660.3 929.1 

Sum solar 

energy 

(MJ/m2) 

4359.7 3787.5 3617.6 3766.8 3738.3 3778.5 3815.1 4123.1 3981.5 

Average 

solar 

radiation 

(W/m2) 

138.4 119.9 114.9 119.9 118.8 119.7 121.1 130.9 126.4 

Maximum 

wind gust 

(mph) 

111.2 100.1 121.7 108.4 96.1 119.9 109.1 101.9 94.0 

Average 

windspeed 

(mph) 

23.0 20.7 22.4 20.9 21.4 22.4 20.4 21.3 21.5 
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Maximum 

temperature 

(ºC) 

26.4 30.1 27.6 28.2 30.6 29.7 28.6 34.2 27.2 

Minimum 

temperature 

(ºC) 

-2.8 -2.6 -5.8 -5.6 -4.4 -0.3 -3.9 -6.3 -3.8 

Average 

temperature 

(ºC) 

10.2 10.5 10.8 10.5 10.6 10.8 10.5 11.2 11.2 

 

Reservoir patterns 

NO3
--N in Reservoir 1 had a strong seasonal pattern in the years 2015-2023, with 

highest values between 4 and 9 mg/L in the late-autumn and winter, and lowest in 

summer and early-autumn, when NO3
--N concentrations were <0.5 mg/L for long 

periods of time (Figure 4.13).  

Turbidity (NTU) measurements in this dataset were done in the laboratory rather than 

in situ. In general, turbidity peaks happened later in the year, from June to October, 

but they were not as pronounced every year (Figure 4.13). Two larger prolonged 

turbidity peaks were detected in 2015 and 2018, but the infrequency of the data means 

that other peaks might have been missed. The timing of the yearly turbidity peak 

coincided with elevated manganese (as well as aluminium and iron, Figure 4.14), 

NH4
+-N, TOC and TP in the reservoir (mg/L) as well as the timing of 2-MIB events 

(Figure 4.13).  
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Figure 4.14. Total metal concentrations (mg/L) at abstraction in Reservoir 1 from manual 
DCWW sampling. 

TOC and DOC in the reservoir and the tributary had very similar concentrations, which 

suggests that most TOC was present in dissolved form as DOC (Figure 4.15). TOC 

(mg/L) in the reservoir had a relatively predictable pattern of lower concentrations, ±4 

mg/L, in the winter and spring, and higher concentrations in summer and autumn >5 

mg/L (Figure 4.13, Figure 4.15). In October 2022, the tributary had especially high 

concentrations of TOC and DOC of ±15 mg/L, and the reservoir had a maximum TOC 

concentration of ±8 mg/L, which happened at the same time as the peak in 2-MIB. 

However, elevated TOC and DOC concentrations in the reservoir are not necessarily 

related to a 2-MIB event, which is the case in autumn 2018 (Figure 4.13, Figure 4.15). 
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Figure 4.15. DOC and TOC comparison. 

TP and PO4
3--P concentrations in the reservoir were often below the limit of detection 

for the DCWW laboratory (PO4
3--P: 0.03 mg/L; TP: 0.055 mg/L) and so were estimated 

with NRW data and the R package ‘NADA’ (see methods in Section 4.2.7). The 

estimated data should be interpreted with caution. TP seemed to follow a pattern of 

internal loading, visualised by elevated manganese concentrations, with peaks in late-

summer and autumn (Figure 4.13). Concentrations of PO4
3--P also increased during 

periods of internal loading, due to the strong pattern in TP, but the data revealed that 

PO4
3--P concentrations were influenced by multiple processes. When water levels 

were low due to maintenance works (2018 to 2021), PO4
3--P concentrations were high 

(±0.05 mg P/L) for long periods of time, and also increased to ±0.05 mg P/L directly 

after the reservoir was refilled in early 2021 (Figure 4.13). PO4
3--P concentrations were 

also influenced by biological uptake, as this is the most bioavailable form of P. This 

process is visualised by late-autumn and winter maxima and summer minima, 

following the NO3
--N pattern (Figure 4.13).  

NH4
+-N in the reservoir increased during periods of internal loading and had 

particularly high concentrations during the 2018 to 2021 period of low water levels. 

NH4
+-N concentrations peaked at 0.3 mg/L in early 2021 when the reservoir was 

refilled, which coincided with the pattern in PO4
3--P (Figure 4.13). There were also 

peaks of NH4
+-N in the reservoir at different times of the year, possibly related to short-

lived influxes of high NH4
+-N concentrations in tributary inflows (Figure 4.13). 
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Tributary inflows 

The NO3
--N pattern in the tributary was similar to the reservoir, with high 

concentrations of NO3
--N of approximately 8 mg/L in winter, whilst concentrations drop 

down to around 1 mg/L in summer (Figure 4.13). 2019 was the only year in which 

tributary concentrations did not fall below 2 mg/L in summer (Figure 4.13) and 

subsequently NO3
--N concentrations in the reservoir stayed higher than other years at 

>1 mg/L.  

TOC concentrations in the tributary were more unpredictable and high concentrations 

happened any time of the year, but it generally increased in spring and decreased 

again in autumn (Figure 4.13). Elevated TOC concentrations in the tributary seemed 

to happen at the same time as 2-MIB events, particularly in recent years when 

sampling happened more frequently. The same pattern was visible for TP and PO4
3--

P in the tributary and in some cases elevated NH4
+-N concentrations (mg/L) were also 

detected (Figure 4.13). Nutrient concentrations measured (TP, PO4
3--P, TOC, NH4

+-N) 

in the tributary inflow increased from 2021 onwards (Figure 4.13), with concentrations 

in spring-summer of around 0.5 mg/L TP, 0.25 mg/L PO4
3--P, 10 mg/L TOC and 1 mg/L 

NH4
+-N. One particularly high input of organic nutrients was detected on 20th of April 

2021 with >20 mg/L of TOC, 0.7 mg/L PO4
3--P, >1.3 mg/L TP and 4.5 mg/L of NH4

+-N 

(whilst NO3
--N in that same sample did not increase compared to previous 

measurements) (Figure 4.13).  

Tributary geosmin and 2-MIB revealed that concentrations of geosmin and 2-MIB in 

the tributary were small concentrations that hardly exceeded the DCWW thresholds 

(Figure 4.16). 
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Figure 4.16. Abstraction and tributary geosmin and 2-MIB concentrations. Dotted lines in the 
same colour as the compound indicate DCWW event threshold. 

4.3.2 Nutrient rate of change 

Nutrient rate of change plots were created to visualise the effect of increases or 

decreases in nutrients at a datapoint compared to its previous datapoint. This value 

was divided by the number of days in between the datapoints, to get the rate of change 

(see methods, Section 4.2.8). Tributary and reservoir data was used, which meant that 

internal nutrient dynamics (internal loading) and external inputs (tributary runoff) could 

be compared in the same plot. Unfortunately, the first 6 years in the dataset had limited 

data available for nutrients. Therefore, the most interesting nutrient data from 2022 

was highlighted here, and the plots for all years can be found in Appendix C (Figure 

S.3, Figure S.4, Figure S.5, Figure S.6, Figure S.7 and Figure S.8).  

TOC and DOC had a very similar pattern in 2022, the tributary TOC and DOC 

increased in March and April but decreased again during April, followed by further TOC 



173 
 

and DOC inputs in June and July (Figure 4.17). Rates of change for TOC and DOC in 

the reservoir were much smaller than the tributary inputs, but they were elevated 

during the 2-MIB event and are indicative of internal loading (Figure 4.17). NH4
+-N, TP 

and PO4
3--P had the same pattern in the tributary rate of change related to March and 

April tributary inflow (Figure 4.17). During the 2-MIB event, the levels of nutrients in 

the reservoir fluctuated (positive and negative rates of change).  

NO3
--N revealed an altogether different process of gradual decrease throughout the 

year in nutrients in both tributary and reservoir, followed by an increase in the tributary 

which started in October and a subsequent increase in NO3
--N in the reservoir at the 

next datapoint (Figure 4.17). 
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Figure 4.17. 2022 nutrient rate of change in reservoir (dark blue) and tributary (light blue), 
compared with 2-MIB and geosmin concentrations (ng/L). 
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4.3.3 PCA 

To predict geosmin and 2-MIB events, it is important to investigate the underlying 

physical and chemical processes that drive these events. A principal component 

analysis (PCA) was constructed for the nine years of manual sampling data and 

weather parameters (some lagged), using the Nipals algorithm to deal with missing 

values (see methods, Section 4.2.8). PC1 explained 32.3% of the variation and PC2 

explained 14.8% of the variation (Figure 4.18). The cos2 values in the PCA are all 

below 0.08, which is relatively low on the scale of 0 (not well representing PC axis) to 

1 (perfectly representing PC axis). This indicates that none of the parameters had a 

strong influence on either PC axis, and that patterns are probably not consistent or 

easily predictable throughout the dataset. NO3
--N and TN are both negative influences 

on PC1, and their direction is the exact opposite to 2-MIB in this PCA, which indicates 

a negative relationship between NO3
--N/TN and 2-MIB. The TN:TP ratio is closely 

related to the TN concentrations, which is logical, but it indicates that TN is the driving 

force behind TN:TP ratio calculations, and TP has less influence. 2-MIB is closely 

related to air temperature (2 weeks prior), TOC, manganese, turbidity, TP and 

NH4
+:NO3

- (Figure 4.18). Generally, geosmin seems to be on the same side of the PCA 

as solar energy/radiation, air temperature, pH, chlorophyll a and various algae counts. 

Geosmin itself does not have a very strong influence on the PCA and high geosmin 

values probably do not separate well into one side of the PCA. 
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Figure 4.18. Principal component analysis (PCA) with the Nipals algorithm to deal with missing 
values. PC1 explains 32.3% of variation and PC2 explains 14.8% of variation. Colours of the 
parameter arrows represent cos2 values; the strength of a parameters position in the PCA. 

The PCA clustered datapoints with a 2-MIB event on the right side of the plot, whilst 

datapoints without a 2-MIB event were generally located on the left side of the plot 

(Figure 4.19). Results from a permutational multivariate analysis of variance 

(PERMANOVA) revealed that this difference explained 9.8% of the variation (R2) with 

a significant difference of 0.001. Datapoints with a geosmin event were clustered on 

the right side of the PCA, whilst datapoints without a geosmin event tended to be in 

the middle and the left side (Figure 4.19). A PERMANOVA showed that 5.3% of the 

variation was explained (R2) by these two groups with a significant difference of 0.001.  
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Figure 4.19. PCA datapoints coloured by 2-MIB event (left panel) and geosmin event (right 
panel) and ellipse drawn with the 95% confidence interval. 

4.3.4 Correlations & simple GAMs full data 

Correlations with a log10-transformed dataset were performed for geosmin as well as 

2-MIB, using all parameters in the 9-year manual sampling dataset and all calculated 

weather parameters, including 1 to 7 days lagged and 1, 2, 3 or 4 weeks prior. A GAM 

with a smoothing function was executed on a selection of parameters to fit the predictor 

to the log10 transformed geosmin and 2-MIB concentrations. The correlations and 

GAM outcomes of the most interesting parameters for 2-MIB and geosmin were 

displayed in Table 4.6 and Table 4.7, respectively. A smaller subsection of parameters 

with significant GAM p-values was plotted in Figure 4.20 and Figure 4.21, for 2-MIB 

and geosmin, respectively. The full set of results can be found in Appendix C Table 

S.7, Table S.8 and Table S.9.    

2-MIB 

GAM results showed that year and day of year (DOY) explained 54% (n=141) and 

25% (n=141) of the deviance in the 2-MIB pattern (Table 4.6). The GAM plot for year 

showed the yearly 2-MIB event was most prominent from 2015 to 2017 and then a 

drop in severity from 2018 to 2020, followed by a steep increase in severity from 2021 

onwards with the highest 2-MIB year in 2022 (Figure 4.20). Day of year (seasonality 

of the event) revealed a GAM with a smooth increasing curve and a peak of 2-MIB 

around day 250, which is in early September (Figure 4.20).  
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Table 4.6. Selection of individual GAM results to predict 2-MIB. Parameters on the top rows 
have GAM visualised in Figure 4.20, whilst rows below the double line in italic are not 
visualised. Column ‘short name’ refers to the names used in Figure 4.20. 

Predictor for 

2-MIB 

Short name Log-Log 

correlation 

GAM 

P_Value 

GAM 

R2_Adj 

GAM 

Deviance 

expl. 

GAM 

obs. 

DOY Day of year 0.35 0.000 0.226 0.247 141 

year Year 0.51 0.000 0.521 0.535 141 

Sum 

solarenergy 

2weeks prior 

Sum solar energy 

2w 

0.35 0.000 0.117 0.109 141 

Min temp 

2weeks prior 

Min air temp 2w 0.48 0.000 0.221 0.216 141 

Max windgust 

2weeks prior 

Max wind gust 2w -0.44 0.000 0.188 0.188 141 

Avg 

windspeed 

1week prior 

Mean wind speed 

1w 

-0.23 0.000 0.089 0.117 141 

toc TOC 0.67 0.000 0.458 0.467 117 

no3n NO3
--N -0.53 0.000 0.279 0.277 140 

po4p PO4
3—P -0.18 0.001 0.125 0.178 93 

manganese Total manganese 0.42 0.000 0.297 0.294 137 

Tntp ratio TN:TP -0.51 0.000 0.286 0.252 92 

nh4no3 ratio NH4
+:NO3

- 0.34 0.002 0.118 0.102 139 

Toc trib Tributary TOC 0.59 0.000 0.454 0.478 68 

no3n trib Tributary NO3
--N -0.33 0.007 0.136 0.138 85 

Tp trib Tributary TP 0.39 0.000 0.395 0.427 66 

temp  0.35 0.000 0.126 0.149 141 

tn  -0.54 0.000 0.285 0.286 140 

nh4n  0.08 0.384 -0.002 0.005 139 

tp  0.13 0.254 0.005 0.013 92 

chla  0.16 0.227 0.001 0.009 139 

nh4n trib  0.09 0.805 -0.002 0.009 85 

po4p trib  0.39 0.000 0.376 0.372 66 

nh4no3 ratio 

trib 

 0.13 0.352 0.033 0.036 85 
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Figure 4.20. GAM selection for 2-MIB. Dotted line is 95% confidence interval. X-axis indicates 
all the plotted values for that parameter and vertical lines inside the plot along the x-axis 
indicate the distribution of those datapoints, units for the x-axis are in each plot title. 
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TOC and TP in the tributary explained 48% (n = 68) and 47% (n=66) of the deviance 

respectively, but the smaller dataset could have influenced these results. TOC and TP 

in the tributary had a steep increasing effect on 2-MIB from 0 to ±8 mg/L TOC and 0 

to ±0.3 mg/L TP, which then plateaued and got much more uncertain due to limited 

data at these concentrations (Figure 4.20). TOC in the reservoir explained 47% 

(n=117) of the deviance, and also showed an increasing effect on 2-MIB with 

increasing values, which plateaued > 7 mg/L due to low data availability (Figure 4.20). 

Manganese in the reservoir explained 30% of the deviance and showed a similar 

pattern to TOC in the tributary of a sharp increase from 0 to ±0.25 mg/L and then a 

plateau with larger uncertainty (Figure 4.20). 

NO3
--N and PO4

3--P in the reservoir explained 28% and 18% of the deviance (Table 

4.6), respectively, which had a negative effect on 2-MIB with increasing 

concentrations. The negative relationship was approximately linear for NO3
--N, but 

PO4
3--P first showed a small increase between 0 and 0.015 mg/L, which was then 

followed by a decrease (Figure 4.20). TN:TP ratio and NH4
+:NO3

- ratio in the reservoir 

explained 25% (n=92) and 10% (n=139) of the deviance, respectively (Table 4.6). 

TN:TP ratio revealed a sharp decreasing effect on 2-MIB from 0 to 200, which 

stabilised >200 and got more uncertain (Figure 4.20). Increasing NH4
+:NO3

- ratios had 

a positive effect on 2-MIB, but the uncertainty was rather large (Figure 4.20).  

Minimum air temperature 2 weeks prior was the best weather parameter (22% 

deviance explained), followed by maximum wind gusts 2 weeks prior (19% explained). 

A higher minimum air temperature 2 weeks prior, indicating warmer weather, had a 

positive effect on 2-MIB which was approximately linear (Figure 4.20). At the same 

time, an increasing maximum wind gust 2 weeks prior, indicating stormy weather, had 

a negative effect on 2-MIB which was also approximately linear (Figure 4.20). 

Geosmin 

The output from the individual GAMs showed that the tested parameters had lower 

overall predictive capacity (smaller deviance explained) for geosmin than they had for 

2-MIB (Table 4.6 and Table 4.7). The best predictor was year, with 34% of deviance 

explained (n=141), which showed 2015 had a relatively high geosmin event, followed 

by several years (2016 to 2020) of slightly lower severity of geosmin events, and a 

strong increase in 2021 with the peak event in 2022 which then went back down to a 
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geosmin event below average (negative partial effect) in 2023 (Figure 4.21). Day of 

year (DOY) explained 14% of the deviance (n=141) and the seasonal effect was 

different from 2-MIB which peaked at day 250 (Figure 4.20) because geosmin 

generally peaked around 150 days (late May) and revealed a slight tendency for a 

second peak around day 300 (late October) (Figure 4.21).  

Table 4.7. Selection of individual GAM results to predict geosmin. Parameters on the top rows 
have GAM visualised in Figure 4.21, whilst rows below the double line in italic are not 
visualised. Column ‘short name’ refers to the names used in Figure 4.21. 

Predictor for 

geosmin 

Short name Log-Log 

correlation 

GAM 

P_Value 

GAM 

R2_Adj 

GAM 

Deviance 

expl. 

GAM 

obs. 

DOY Day of year 0.06 0.002 0.119 0.139 141 

year Year 0.16 0.000 0.329 0.341 141 

tempmax Max air temp 0.14 0.040 0.047 0.064 141 

windspeed Wind speed -0.20 0.019 0.031 0.037 141 

Sum solarenergy 

2weeks prior 

Sum solar 

energy 2w 

0.30 0.000 0.093 0.102 141 

Sum precip 

1week prior 

Sum precip 1w -0.12 0.000 0.097 0.105 141 

Avg windspeed 

1week prior 

Mean wind 

speed 1w 

-0.24 0.000 0.057 0.078 141 

pH pH -0.19 0.001 0.122 0.153 136 

turbidity Turbidity -0.27 0.002 0.063 0.093 136 

toc TOC 0.26 0.005 0.054 0.064 117 

no3n NO3
--N -0.14 0.005 0.071 0.093 140 

po4p PO4
3--P -0.19 0.034 0.022 0.042 93 

Tntp ratio TN:TP -0.32 0.002 0.130 0.168 92 

no3n trib Tributary NO3
--N -0.27 0.004 0.073 0.092 85 

Min temp 2weeks 

prior 

 0.02 0.249 0.022 0.034 141 

Max windgust 

2weeks prior 

 -0.07 0.212 0.002 0.010 141 

tn  -0.32 0.005 0.071 0.094 140 

nh4n  0.10 0.257 0.002 0.009 139 

tp  0.11 0.272 0.002 0.013 92 

manganese  0.05 0.589 -0.006 0.002 137 

chla  0.03 0.644 -0.006 0.001 139 

nh4no3 ratio  0.14 0.121 0.009 0.017 139 

Toc rib  0.11 0.377 -0.004 0.011 68 

nh4n trib  0.10 0.488 -0.007 0.005 85 

Tp trib  0.15 0.264 0.001 0.018 66 

po4p trib  0.15 0.223 0.001 0.020 66 

nh4no3 ratio trib  0.10 0.420 -0.006 0.007 85 
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Figure 4.21. GAM selection for geosmin. Dotted line is 95% confidence interval. X-axis 
indicates all the plotted values for that parameter and vertical lines inside the plot along the x-
axis indicate the distribution of those datapoints, units for the x-axis are in each plot title. 
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NO3
--N in the reservoir (9% deviance explained, n=140) and the tributary (9% 

deviance explained, n=85) as well as PO4
3--P in the reservoir (4% deviance explained, 

n=93) had a negative effect on geosmin (Table 4.7). Reservoir PO4
3--P and tributary 

NO3
--N had approximately linear relationships, whilst NO3

--N in the reservoir showed 

a slight increase up to around 2 mg N/L and then it followed a negative linear trend for 

increasing NO3
--N concentrations (Figure 4.21). TN:TP ratio explained 17% of the 

deviance (n=92) and showed a strong decreasing effect on geosmin from 0 to 350 but 

then increased again for values >400, but the uncertainty is quite large (Figure 4.21). 

NH4
+:NO3

- ratio did not have a statistically significant effect on geosmin (Table 4.7). 

Interestingly, for geosmin it seemed that laboratory measurements of turbidity and pH 

explained 9% of the deviance (n=136) and 15% of the deviance (n=136), respectively 

(Table 4.7). Turbidity revealed a negative trend with a decreasing effect on geosmin 

from 0 to 40 NTU and then a plateau with large uncertainty bounds (Figure 4.21). pH 

revealed an interesting trend, with a pattern that showed resemblance to the GAM with 

day of year (Figure 4.21). The pH pattern had a sharp increase from pH 7.3 to pH 8 

where it peaked and then slowly decreased from pH 8 to pH 9.2 with a slight tendency 

for an increasing effect around pH 8.8 (Figure 4.21). TOC in the reservoir also 

explained some of the deviance (6%, n=117) with an approximately positively linear 

effect on geosmin, but it was nowhere near as good a predictor of geosmin as it was 

for 2-MIB (Table 4.7, Figure 4.21).  

The sum of solar energy 2 weeks prior (10% deviance explained, n=141) and the sum 

of precipitation 1 week prior (11% deviance explained, n=141) were found to be the 

best weather parameters to explain the geosmin patterns (Table 4.7). The sum of solar 

energy showed a positive, approximately linear effect on geosmin, whilst the sum of 

the precipitation had an approximately linear negative effect on geosmin (Figure 4.21). 

This suggests that geosmin production is driven by calm, stable weather 1-2 weeks 

prior, with low rainfall and high solar energy. 

Full GAM to predict 2-MIB  

The best GAM to predict log_mib included smoothing terms for NO3
--N, maximum wind 

gust 2 weeks prior and minimum temperature 2 weeks prior as well as a tensor product 

which combines year and day of year (DOY); year as a cubic regression spline (cr) 

and DOY as a cubic cyclic spine (cc). The full model is described below: 
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GAM 2-MIB = gam(log_mib ~  s(no3n) + s(max_windgust_2weeks_prior) + 

s(min_temp_2weeks_prior) + te(year, DOY, bs = c("cr", "cc"), k=c(8,12)), data = 

complete_df, method='ML', family = tw(link="log")). 

GAM residuals (Appendix C, Figure S.11), model parameters (Appendix C, Table S.12) 

and k.check results (Appendix C, Table S.13) were found to be acceptable. The impact 

from autocorrelation was limited (Appendix C, Figure S.12). The model explained 

92.7% of the deviance, with an adjusted R2 of 0.93 (n=136). Smoothing terms s(no3n) 

(p-value = 0.0422) and s(max_windgust_2weeks_prior) (p-value = 0.0492) were 

statistically significant, whilst smoothing term s(min_temp_2weeks_prior) was not 

statistically significant (p-value = 0.4134). The tensor product (year, DOY) was very 

statistically significant (p-value < 2E-16) (Appendix C, Table S.12). The partial effect 

of each smoothing term and the tensor product on log_mib, with grey 95% confidence 

intervals, is visualised in Figure 4.22. Increases in nitrate had a negative effect on 

log_mib, and this effect was stronger > 2.5 mg/L of NO3
--N (Figure 4.22). Higher 

maximum wind gusts 2 weeks prior had a negative effect on log_mib, which was 

approximately linear (Figure 4.22). An increase in the minimum temperature 2 weeks 

prior had a positive approximately linear effect on log_mib, but there was a lot of 

uncertainty around the model (Figure 4.22). The heatmap of the tensor product with 

year and day of year revealed more predictable yearly periods of positive (red) and 

negative (blue) effect on log_mib, compared to log_geosmin (Figure 4.22). This is also 

visualised in the individual GAM results for year and DOY (Figure 4.20).  
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Figure 4.22. The partial effect of each smoothing term and the tensor product on log10(MIB+1) 
in the full GAM. Grey band 95% confidence interval, lines at x-axis indicate where datapoints 
are. X-axis units are the same as in the GAM plots in Figure 4.20. 

The fitted values from the GAM model seemed to generally follow the patterns in 2-

MIB well, except for 2018 (Figure 4.23).  
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Figure 4.23. Fitted values over time from the GAM model for log10(MIB+1) (blue line with 
shaded blue 95% confidence interval) compared to observations (dots). 

Full GAM to predict geosmin 

The best GAM to predict log_geosmin included smoothing terms for NO3
--N and sum 

of solar energy 2 weeks prior as well as a tensor product which combines year and 

day of year (DOY); year as a cubic regression spline (cr) and DOY as a cubic cyclic 

spine (cc). The full model is shown below. 

GAM geosmin = gam(log_geosmin ~  s(no3n) + s(sum_solarenergy_2weeks_prior) + 

te(year, DOY, bs = c("cr", "cc"), k=c(8,12)), data = complete_df, method='ML', family = 

tw(link="log")). 

The GAM residuals (Appendix C, Figure S.9), model parameters (Appendix C, Table 

S.10) and the output from k.check (Appendix C, Table S.11) were acceptable. The 

impact from autocorrelation was limited (Appendix C, Figure S.10). The model 

explained 90.5% of the deviance with an R2 adjusted of 0.85 (n=136). The smoothing 

term s(no3n) was not significant (p-value of 0.2443), the smoothing term 

s(sum_solarenergy_2weeks_prior) was close to being statistically significant (p-value 

= 0.0819) and the tensor product te(year, DOY) was very statistically significant (p-

value < 2E-16) (Appendix C, Table S.10). The partial effect of the smoothing terms on 

log_geosmin, with 95% confidence intervals in grey, revealed that nitrate had a 

negative relationship with log_geosmin which was approximately linear, and the sum 
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of solar energy 2 weeks prior had a positive relationship with log_geosmin which was 

also approximately linear (Figure 4.24). The tensor product with year and day of year 

was plotted in Figure 4.24 as a heatmap which indicates periods of positive (red) and 

negative (blue) effect on log_geosmin. Figure 4.24 can be compared to the individual 

GAM plots for year and DOY in Figure 4.21, which showed that the timing of the yearly 

geosmin event and the strength of the event is not the same every year. However, the 

tensor product combines the information of year and DOY and therefore it was still the 

best predictor for log_geosmin.    

   

Figure 4.24. The partial effect of each smoothing term and the tensor product on 
log10(geosmin+1) in the full GAM. Grey band 95% confidence interval, lines at x-axis indicate 
where datapoints are. X-axis units are the same as in the GAM plots in Figure 4.21. 

The fitted values from the GAM model estimated the periods of increased geosmin 

relatively well (Figure 4.25). 
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Figure 4.25. Fitted values over time from the GAM model for log10(geosmin+1) (blue line with 
shaded blue 95% confidence interval) compared to observations (dots). 

 

4.3.5 Case study: using sensor data to predict T&O events 

Sensor data was plotted with relevant DCWW and weather parameters for the years 

2022 and 2023 to better see the yearly pattern (Figure 4.26), and nutrient fractions in 

the tributary and reservoir were plotted for the same period (Figure 4.27). 
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Figure 4.26. Reservoir 1 sensor, weather and lab data 2022-2023. Shaded = stable weather.  
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Figure 4.27. Samples from tributary & abstraction Reservoir 1 2022-2023. 
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NO3
- and NH4

+ sensor technologies 

The Clearwater NO3
--N analyser had good agreement with laboratory measured 

samples (Figure 4.28). The NO3
--N concentration in the reservoir showed a steep 

increase in autumn-winter from October/November until February and a gentle decline 

throughout spring and summer where it stabilized at <0.5 mg/L from mid-July until 

October/November (Figure 4.27 and Figure 4.28). The significant peak captured by 

the sensor data fell between laboratory samples, and the sensor stopped working just 

after this peak, so there is uncertainty on the event duration when NO3
--N peaked in 

January 2023 at >10 mg N/L. 

 

Figure 4.28. NO3
--N (mg/L) measured frequently by Clearwater analyser compared to manual 

laboratory samples. 

The In-Situ Aqua TROLL NO3
--N sensor had poor agreement with laboratory samples, 

even though a similar trend in data was observed in November 2022 when NO3
--N 

started increasing (Figure 4.9 in methods). The sensor could not be properly calibrated 

in the field, as the sensor would not stabilise and identify the mV difference between 

concentrations of 5.6 mg/L and 1 mg/L NO3
--N. In laboratory conditions, the sensor 

seemed relatively stable, and a calibration curve was determined (R2 = 0.9919), with 
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a range of NO3
--N concentrations from 0.15 mg N/L to 20.31 mg N/L (Figure 4.7 in 

methods, Section 4.2.6). When the raw mV data was calculated to NO3
--N 

concentrations with the calibration curve from the lab, it resulted in unrealistically high 

values of NO3
--N, and the attempted data correction did not result in better alignment 

with the laboratory data (see methods, Section 4.2.6, Figure 4.9).  

The In-Situ Aqua TROLL NH4
+-N sensor had similar issues to the NO3

--N sensor and 

field calibration was not possible. An exponential calibration curve was established in 

the laboratory for this sensor, which performed well under laboratory conditions (See 

methods, Figure 4.7) with a range of 0.021 mg N/L to 1.777 mg N/L (R2 = 0.9397). 

However, when the calibration curve was applied to field data (raw mV) to calculate 

NH4
+-N concentrations, it did not perform well (Figure 4.10 and Figure 4.11 in 

methods). It seemed that the NH4
+-N sensor could only detect concentrations above 

0.08 - 0.10 mg/L of NH4
+-N, as mV values did not respond to lower concentrations 

(See Figure 4.11 in methods). The concentration of NH4
+-N in the reservoir only went 

up to 0.15 mg/L in the measurement period, which happened largely in the period 

when the sensor was not working, so I don’t think this dataset can justify whether it 

was working or not.  

Chlorophyll a 

The chlorophyll a sensor did not work for a long period of time, and it did not have a 

wiper brush, which meant there was a build-up of organic material on the optical 

sensor that reduced its sensitivity. The sensor data captured a chlorophyll a peak in 

July 2022 which was measured by the laboratory data but then underestimated the 

trend in chlorophyll a (assuming that laboratory data is correct) for the following 3 

months. Chlorophyll a values measured in situ with the sensor were different from 

laboratory extracted chlorophyll a. There was a large range in the sensor data that 

was not fully captured by the manual samples, which indicates that manual sampling 

can easily miss a spike.  

Turbidity 

There was poor agreement between turbidity measurements in the laboratory and 

those captured by the in situ sensor (Figure 4.26). During the short period that turbidity 

was measured in the reservoir with a sensor, daily averages of turbidity showed a 

trend that was not visible from the manual samples (Figure 4.29).  
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Figure 4.29. Sensor, weather and lab data in Reservoir 1 for July – September 2022. 
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Large fluctuations in hourly turbidity data meant that a daily averaged turbidity value 

was better able to capture the general trend. A week before the turbidity maximum in 

the second half of July, a precipitation event occurred with higher wind gusts and a dip 

in solar energy, which caused a rapid decrease in water temperature and DO (Figure 

4.29). Around the time of the turbidity maximum, TOC in the tributary was >10 mg/L, 

which was the second highest concentration in 2022-2023 (Figure 4.29). 

Electrical conductivity 

Specific conductivity data was used in this analysis, which is temperature corrected to 

25 °C, further referred to as electrical conductivity (EC). EC seemed to be dependent 

on water level, with decreasing volume of water causing an increase in EC. Since EC 

measures the concentration of dissolved ions in water, a reduced water volume would 

concentrate the ions and increase the EC (Figure 4.29 and Figure 4.30). EC generally 

increased in summer and decreased in winter (Figure 4.26), likely due to water level 

changes caused by summer evaporation and winter refilling. Unfortunately, the sensor 

data did not capture one whole year, so the seasonal pattern cannot be identified 

accurately. EC data did not seem to capture important events in the reservoir, for 

example precipitation (Figure 4.29). Laboratory EC measurements of manual DCWW 

samples (corrected to 20 °C) were similar to In-Situ Aqua TROLL 600 EC (25 °C) but 

could not capture the data variability (Figure 4.26), which indicates the importance of 

measuring EC with in situ sensors. 

Water level 

Water depth (m) from the sensor measurements was converted by adding 11.5 meters 

to compare with DCWW water level (m) that was measured in the abstraction tower 

(see Section 4.2.7 in methods). The data followed the same pattern, but the sensor 

data after January 2023 was a bit lower than DCWW water level (m), which was 

probably because the sensor was not deployed at exactly the same depth after 

maintenance (Figure 4.30). The changes in water level showed a gradual decrease of 

approximately 1.5 meters from springtime to autumn due to evaporation, followed by 

a relatively fast refilling period in autumn (Figure 4.30). There was one non-natural 

drawdown event in this dataset that lasted from mid-February to early March 2023, 

where the water levels went down 1.5 m over 17 days, which caused an elevated 

water temperature and EC level. This was followed by a rapid increase in water level 

again of 1.5 m over 6 days, which caused a relatively large drop in EC of 20 µS/cm 
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with a simultaneous drop in water temperature (Figure 4.30). This could be evidence 

of the nutrient and organic material flushing process that happened due to abstraction 

and refilling with cleaner rainwater.      

 

Figure 4.30. Water level (m), water temperature and EC sensor comparison.  

Dissolved oxygen, pH and ORP 

Dissolved oxygen (DO) data showed a general pattern of strongly fluctuating 

concentrations in summer with peak oxygen concentrations >15 mg/L but also the 

lowest concentrations <5 mg/L, whilst in winter the average dissolved oxygen 

concentrations are higher, and the fluctuations are much smaller (Figure 4.31). DO 

concentrations in summer showed a diurnal pattern of high DO during the day and low 

DO during the night, caused by photosynthesis-respiration cycles (Figure 4.29). 

pH and oxidation-reduction potential (ORP) are related but distinct measurements. pH 

indicates the system's tendency to accept or donate hydrogen ions, influenced by the 

presence of acids and bases in the solution. ORP, on the other hand, reflects the 

system's tendency to gain or lose electrons, which is determined by the concentration 
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of all oxidizing and reducing agents in the solution. In oxygen rich surface water layers, 

the ORP will be fully determined by the behaviour of oxygen and hence the 

measurement of ORP does not add any value over dissolved oxygen (DO). ORP 

measurements can be interesting to reveal oxidation-reduction gradients when 

measured at different depths in the water column. Figure 4.31 showed that the ORP 

pattern was the same as pH and dissolved oxygen but then mirrored. pH manual 

samples that were done in the DCWW laboratory showed a good comparison with the 

sensor measurements (Figure 4.31), which is surprising considering the sample was 

often measured days later at a different temperature. Similar to dissolved oxygen, pH 

and ORP have a larger diurnal range in summer as phytoplankton productivity causes 

increases and decreases in dissolved ions due to photosynthesis-respiration cycles. 

 

Figure 4.31. Oxidation-reduction potential (ORP), pH and dissolved oxygen (DO) sensor 
measurements and pH manual samples. 

4.3.6 Correlations & simple GAMs sensor data 

Correlations with a log10-transformed dataset were performed for geosmin as well as 

2-MIB, using the DCWW manual sample dataset from 2022 and 2023 merged with the 

calculated sensor and weather parameters (including lags of 1, 2, 3 or 4 weeks prior). 
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A selection of parameters was made and a GAM with a smoothing function was 

executed to fit the predictor to the log10 transformed geosmin and 2-MIB 

concentrations. The correlations and GAM outcomes of the most interesting 

parameters for 2-MIB and geosmin were displayed in Table 4.8 and Table 4.9, 

respectively. Chlorophyll a and turbidity data was too sparse to be used for this 

analysis. The GAMs for these parameters were plotted in Figure 4.32 and Figure 4.33, 

for 2-MIB and geosmin, respectively. The full set of GAM results can be found in 

Appendix C Table S.14, Table S.15 and Table S.16. 

2-MIB 

The best calculated sensor parameter to predict log10(MIB+1) (further referred to as 2-

MIB) was average nitrate 2 weeks prior (94% deviance explained, n=12) (Table 4.8). 

Similarly to manual NO3
--N measurements in the full dataset (Section 4.3.4), the 

sensor data showed that the strong seasonal pattern in NO3
--N negatively correlated 

with 2-MIB concentrations (Table 4.8).  

Maximum air temperature 3 weeks prior (80% deviance explained, n=21) and average 

water temperature 2 weeks prior (80% deviance explained, n=22) both showed a clear 

increasing effect on 2-MIB with increasing temperature, but it plateaued for maximum 

air temperature at 25 °C and for water temperature at 15 °C (Figure 4.32). 

Average range 3 weeks prior of dissolved oxygen (77% deviance explained, n=21), 

pH (39%, n=21) and ORP (61% deviance explained, n=21) all have a positive effect 

on 2-MIB but a plateau for the highest levels >2 mg/L DO, >0.6 pH units and >60 ORP 

units (Figure 4.32). An increased range for these parameters indicates increased 

phytoplankton productivity, which seems to be related to 2-MIB concentrations. 

However, this is only data from the last two years of the dataset in which 2-MIB and 

geosmin were exceptionally high. 

Maximum depth 1 week prior explained 47% of the deviance (n=22) and showed an 

approximately linear negative relationship with 2-MIB (Table 4.8, Figure 4.32). 

Maximum electrical conductivity on the day (19% deviance explained, n=23) showed 

a positive effect on 2-MIB (Table 4.8, Figure 4.32). 
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Table 4.8. Simple GAM results for 2-MIB, GAMs are visualised in Figure 4.32. Column ‘short 
name’ refers to the names used in Figure 4.32. 

Predictor for 2-

MIB 

Short name Log-Log 

correlation 

GAM 

P_Value 

GAM 

R2_Adj 

GAM 

Deviance 

expl. 

GAM 

obs. 

atemp_max_max_

3weeks_prior 

Max air temp 

3w 

0.78 0.000 0.699 0.800 21 

depth_max_max_1

week_prior 

Max depth 1w -0.70 0.000 0.458 0.467 22 

do_range_avg_3w

eeks_prior 

Range DO 3w 0.82 0.000 0.731 0.766 21 

ec_max Max EC 0.45 0.024 0.170 0.190 23 

no3n_mean_avg_2

weeks_prior 

Mean NO3
--N 

2w 

-0.96 0.000 0.905 0.941 12 

orp_range_avg_3w

eeks_prior 

Range ORP 

3w  

0.76 0.001 0.560 0.608 21 

ph_range_avg_3w

eeks_prior 

Range pH 3w 0.55 0.018 0.322 0.387 21 

wtemp_mean_avg

_2weeks_prior 

Mean water 

temp 2w 

0.83 0.000 0.738 0.803 22 
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Figure 4.32. Simple GAM results for 2-MIB. Dotted lines indicate the 95% confidence interval. 
X-axis indicates all the plotted values for that parameter and vertical lines inside the plot along 
the x-axis indicate the distribution of those datapoints, units for the x-axis are in each plot title. 

Geosmin 

The best calculated sensor parameter to predict log10(geosmin+1) (further referred to 

as geosmin) was maximum nitrate 1 week prior (80% deviance explained, n=11) (Table 

4.9). A negative effect on geosmin was visible with increasing maximum NO3
--N 

concentrations up to 3 mg N/L, above which it had a large uncertainty (Figure 4.33).   

Maximum air temperature 3 weeks prior (37% deviance explained, n=21) and the 

weekly range of water temperature 3 weeks prior (38% deviance explained, n=21) 

both showed a positive, approximately linear effect on geosmin (Figure 4.33). 
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Weekly range of dissolved oxygen 3 weeks prior (47% deviance explained, n=21), 

weekly range of pH 1 week prior (29% deviance explained, n=22) and maximum daily 

range in ORP 1 week prior (43% deviance explained, n=22) all have an approximately 

linear positive effect on geosmin (Table 4.9, Figure 4.33). An increased range for these 

parameters or a higher maximum indicates increased phytoplankton productivity, 

which seems to be related to geosmin concentrations.  

Maximum depth 1 week prior explained 31% of the deviance (n=22) and showed an 

approximately linear negative relationship with geosmin (Table 4.9, Figure 4.33). 

Minimum electrical conductivity on the day (27% deviance explained, n=23) (Table 

4.9) showed a linear positive effect on geosmin (Table 4.9, Figure 4.33). 

Table 4.9. Simple GAM results for geosmin. GAMs are visualised in Figure 4.33. Column ‘short 
name’ refers to the names used in Figure 4.33. 

Predictor for 

geosmin 

Short name Log-Log 

correlation 

GAM 

P_Value 

GAM 

R2_Adj 

GAM 

Deviance 

expl. 

GAM 

obs. 

atemp_max_max_3

weeks_prior 

Max air temp 

3w 

0.56 0.003 0.346 0.369 21 

depth_max_max_1w

eek_prior 

Max depth 

1w 

-0.52 0.004 0.234 0.312 22 

do_weekly_range_3

weeks_prior 

Range DO 

3w 

0.68 0.000 0.441 0.472 21 

ec_min Min EC 0.49 0.006 0.184 0.271 23 

no3n_max_max_1w

eek_prior 

Max NO3
--N 

1w 

-0.78 0.001 0.676 0.804 11 

orp_range_max_1w

eek_prior 

Range ORP 

1w  

0.58 0.001 0.380 0.431 22 

ph_weekly_range_1

week_prior 

Range pH 1w 0.52 0.008 0.219 0.285 22 

wtemp_weekly_rang

e_3weeks_prior 

Range water 

temp 3w 

0.60 0.003 0.399 0.377 21 



201 
 

 

 

Figure 4.33. Simple GAM results for geosmin. Dotted lines indicate the 95% confidence 
interval. X-axis indicates all the plotted values for that parameter and vertical lines inside the 
plot along the x-axis indicate the distribution of those datapoints, units for the x-axis are in 
each plot title. 
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4.4 Discussion 

4.4.1 Seasonal trends in environment, geosmin and 2-MIB  

Manual sampling data in Reservoir 1 from 2015 to 2023 and daily weather parameters 

were plotted and analysed with PCA, individual GAMs and full GAMs for geosmin and 

2-MIB separately, to detect patterns and potential predictors for geosmin and 2-MIB. 

Based on environmental conditions in the PCA, a geosmin and 2-MIB event could be 

effectively separated from a non-event. Geosmin had the strongest relationship with 

solar energy, air temperature, pH, chlorophyll a and various algae counts in the PCA, 

whereas 2-MIB was closely associated with air temperature (2 weeks prior), TOC, 

manganese, turbidity, TP and NH4
+:NO3

- and directly opposite NO3
--N, TN:TP and 

maximum wind gust.  

The day of year was a good predictor for geosmin (14% deviance explained in GAM) 

and 2-MIB (25% deviance explained in GAM) events. It is not surprising there is 

seasonality in the growth of T&O producing cyanobacteria, but it would be more useful 

for T&O prediction to study the underlying environmental factors. Several 

environmental and weather parameters had strong seasonal relationships that could 

have influenced the geosmin and 2-MIB pattern. An overview of average annual 

reservoir patterns (2015-2023) was created to better visualise trends and explain 

potential relationships with biological parameters and the risk of T&O events (Figure 

4.34). Figure 4.34 illustrates the strong seasonality and interdependence of these 

parameters. The highest risk of geosmin events was from March to August with 

maximum concentrations in May and June, whilst a high risk of 2-MIB events occurred 

from May to November with a peak in August and September (Figure 4.34). This tallies 

with data from a drinking water reservoir in North Carolina in the USA that had geosmin 

peaks (likely Dolichospermum sp.) in late spring to early summer and peaked earlier 

than 2-MIB (Paerl et al., 2022).  
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Figure 4.34. Top half of figure; Seasonal patterns in solar energy (size of yellow circles at the 
top or each month), water level (fill volume of monthly rectangle), water temperature (strength 
of red colour overlay of monthly rectangle) as well as general seasonal patterns of geosmin 
(purple star) produced by planktic cyanobacteria and 2-MIB (red double star) produced by 
benthic cyanobacteria, observed in Reservoir 1 from 2015 – 2023. Bottom half of figure; 
General seasonal trends in weather (green), nutrients (purple) and geosmin and 2-MIB risk 
(orange) in Reservoir 1 from 2015 – 2023. 

Chapter 3 demonstrated that planktic Aphanizomenon spp. were likely geosmin 

producers in Reservoir 1, whilst benthic Leptolyngbya spp. and Pseudanabaena spp. 

were likely responsible for 2-MIB production. Planktic Aphanizomenon spp. generally 

thrive in high light conditions (>150 μmol photons m-2 s-1), long day-length (>12 hours 

of daylight), medium temperature (14-32 °C), stratified conditions (buoyancy control) 

and low N:P ratios as they rely on phosphorus instead of nitrogen (N2-fixation) (see 
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introduction, Section 4.1.1). Benthic Leptolyngbya spp. and Pseudanabaena spp. 

generally thrive in low-light conditions (27-40 μmol photons m-2 s-1), medium 

temperatures (14-30 °C), stratified conditions (low resuspension), high nitrogen over 

phosphorus, they can access nutrients in the sediment and are tolerant to 

disturbances (see introduction, Section 4.1.1). Chapter 3 highlighted that laboratory 

conditions (33 μmol photons m-2 s-1, 20 °C and 12h:12h light:dark cycle, with daily 

manual agitation) did not support the growth of Aphanizomenon spp., as it was 

dominant in the initial community, but mostly benthic Leptolyngbya spp. and 

Pseudanabaena spp. developed in the experiments. The seasonal pattern of earlier 

geosmin production could be related to increasing solar energy and day-length, which 

tallies with the environmental conditions required for planktic Aphanizomenon spp. 

growth. The growth of benthic 2-MIB producers Leptolyngbya spp. and 

Pseudanabaena spp. might be stimulated by increasing water temperatures and more 

stable weather (internal loading) later in the year. Moreover, it is likely that a planktic 

Aphanizomenon spp. bloom will increase turbidity in the reservoir which causes a 

shading effect that prevents benthic cyanobacteria from developing, as has been 

demonstrated in some eutrophic lakes (Poulíčková et al., 2008).  

Solar energy, air temperature and water temperature follow a predictable pattern of 

lowest values in winter and highest in summer. Solar energy is directly related to the 

shortest and longest day, with the highest levels in June and July, whilst maximum air 

temperature and maximum water temperature (a shallow reservoir warms relatively 

quickly) are about a month later, in July and August. Reservoir 1 does not have any 

pumped inflows, so rainfall directly influences the water level and through runoff from 

the catchment. In recent years (since 2022) infrequent abstractions have caused a 

natural seasonal pattern of refilling from precipitation in autumn and 

evapotranspiration in summer. 

NO3
--N and carbon exhibited seasonal trends, associated with higher biological activity 

in the summer months. NO3
--N decreased due to phytoplankton uptake, while DOC 

increased as carbon was cycled from atmospheric CO2 to cellular carbon, which was 

subsequently decomposed (Parmar et al., 2011). NO3
--N is restocked in autumn and 

winter when high rainfall results in runoff and groundwater recharge, which contains 

high levels of NO3
--N (Kristensen et al., 2018).  
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The data implied that internal loading of PO4
3--P, NH4

+-N and manganese (as well as 

other metal fractions) happened in summer and autumn in Reservoir 1. For internal 

loading to happen, a stable water column is required and higher water temperatures 

to cause elevated microbial decomposition which lead to anoxic conditions (Jeppesen 

et al., 2009). Under anoxic conditions, these compounds will be released and 

dispersed into the water column, which is enhanced by vertical mixing (Jones & Welch, 

1990) (see introduction, Section 4.1.2 and Chapter 1, Section 1.2.2).  

Tributary  

The tributary introduces additional nutrients to the reservoir, since it passes through 

intensively farmed land. There are dairy farms upstream of that tributary and the slurry 

pit is visible from the reservoir site (personal observation). Elevated TOC, PO4
3--P, TP 

and occasionally NH4
+-N concentrations in the tributary in spring to autumn are most 

likely related to rainfall-driven runoff from manure or slurry that has been spread on 

the land. One particularly high input of potentially slurry-related nutrients with >20 mg/L 

of TOC, 0.7 mg/L PO4
3--P, >1.3 mg/L TP and 4.5 mg/L of NH4

+-N in April 2021 was not 

related to precipitation, so it might have been an accident. High TOC concentrations 

in the tributary coincided with high 2-MIB concentrations in the reservoir, which is 

potentially because TOC is the least available nutrient in slurry-related runoff and 

therefore more likely to be measured with a limited sampling frequency. Moreover, 

tributary inflows could potentially be a source of geosmin and 2-MIB in the reservoir, if 

soil runoff contained species of soil bacteria Actinomycetes, which can remain active 

in the water according to several studies (Franklin et al., 2023). However, the data 

showed that tributary geosmin and 2-MIB concentrations hardly ever exceeded the 

DCWW thresholds.  

NO3
--N in the tributary is high in winter and lower in summer, which follows the same 

pattern as the reservoir, with inputs of NO3
--N from groundwater and runoff in winter, 

whilst uptake and denitrification happens in summer. The summer concentrations of 

NO3
--N in the tributary were always around 1 mg N/L, when reservoir concentrations 

were <0.5 mg N/L. The tributary discharge is unknown so loading could not be 

estimated, but the data suggests that the tributary is probably a continuous NO3
--N 

source throughout the summer. The lower concentrations measured at the reservoir 

abstraction point indicate there is active N cycling and show that nitrate is taken up 

prior to sampling, implying phytoplankton’s high affinity for NO3
--N. 
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4.4.2 Inter-annual trends in environment, geosmin and 2-MIB 

GAM results showed that the year explained 54% of deviance in the 2-MIB pattern 

and 34% for geosmin. The following important factors seem to control inter-annual 

fluctuations in geosmin and 2-MIB: I) Water level changes, II) Changes in nutrient 

loading in tributary, III) Extreme weather events, and IV) Species behaviour. Figure 

4.35 highlights some key events that happened between 2015 and 2023 and icons 

underneath each year indicate significant weather events that happened that year. 

 

Figure 4.35. Inter-annual differences of geosmin and 2-MIB severity, the size of the geosmin 
and 2-MIB icon indicates the severity of the event that year. Important events and annual 
weather extremes are indicated with icons. Solar energy = annual sum of solar energy, 
temperature = annual average temperature. 

Water level changes (I) 

Water level patterns exhibited by natural inputs (rainfall, groundwater, tributaries) and 

outputs (evapotranspiration) can be overlain by human controls, for example 

abstraction. In Reservoir 1, abstraction for drinking water ceased in 2022, but did 

influence the system prior to this date (Figure 4.13). The data revealed there have 

been some major changes in water level management over the years which possibly 

influenced geosmin and 2-MIB. Water level data from 2017 to 2023 showed that in 
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spring 2018 the water level was drawn down 4 meters, to allow maintenance work on 

the spillway. The water level was low from 2018 until early 2021, but there were sharp 

increases and decreases in water level due to precipitation followed by draw-off. The 

years 2018 to 2020 had very minor or no 2-MIB events (Figure 4.35). 

The habitat of benthic cyanobacteria dried up and the continuous abstraction to 

maintain a low water level caused sharp fluctuations in water level, and planktic 

phytoplankton shading, which could have prevented re-establishment of benthic 

cyanobacteria and subsequent 2-MIB events. Low reservoir water levels lead to large 

parts of the reservoir sediment drying out and occasionally rewetting, which is known 

to increase internal loading (PO4
3--P and NH4

+-N), turbidity and sediment 

resuspension (Cantwell, 2021). Subsequent increases in eutrophication promote 

planktic phytoplankton blooms, which reduce light at the sediment and hinder benthic 

growth (Jähnichen et al., 2011). Reservoir 1 data showed evidence of the described 

processes as PO4
3--P, NO3

--N and NH4
+-N in the reservoir were often higher during 

these years and there were high levels of chlorophyll a, turbidity and geosmin, 

especially after the initial drop in water level in 2018. A reduced water level could have 

impacted biogeochemical processes like denitrification and microbial decomposition, 

by drastically altering the sediment and water conditions. 

Ever since the low water level period from 2018 to 2021, geosmin and 2-MIB events 

have been higher than they were before. One contributing factor could be that, since 

2021, Reservoir 1 has rarely been used for abstractions and without flushing, nutrients 

entering from the tributary accumulate, increasing eutrophication or becoming stored 

as legacy nutrients in the sediment. The effect of abstraction on nutrient flushing was 

visible in March 2023, when the drop in electrical conductivity and water temperature 

suggested that the abstraction flushed out some of these dissolved nutrients. This 

could be the reason there was no geosmin event that year and why 2-MIB was lower 

than 2022.  

Changes in nutrient loading in tributary (II) 

Increased severity of geosmin and 2-MIB events (higher concentrations, Figure 4.13) 

since 2021 could also partially be caused by increases in tributary nutrient loading 

since 2021. Tributary samples revealed that nutrient concentrations (NH4
+-N, TOC, 

DOC, PO4
3--P, TP) have increased in recent years, starting in winter 2020 and 
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springtime 2021 when a substantial input of organic nutrients was measured, which 

might have been manure or slurry. Changes in nutrient loading in the tributary could 

have been caused by land-use changes or increased use of organic and urea-based 

nitrogen fertilizers (Glibert, 2020). Another possible reason is that fertilizers have 

increased in price in the last few years, in response to the Russian invasion in Ukraine 

which influenced gas prices and fertiliser production (Alexander et al., 2023). This 

might have forced farmers to use manure and slurry to fertilise the fields, which would 

have caused more organic nutrients to run off into the water courses.  

Extreme weather events (III) 

Extreme weather events will also play a role in the risk of geosmin and 2-MIB events 

in the reservoir. 2015 and 2022 had a high sum of solar energy, and both years had 

significant geosmin and 2-MIB events. 2018 was a drought year with a relatively large 

geosmin event but only a minor 2-MIB event because water levels dropped by four 

meters this year. By far the highest geosmin and 2-MIB concentrations happened in 

2022; a drought year with high solar energy and a high average temperature, which 

also had increasing eutrophication from tributary inputs and reduced abstraction. The 

years 2022 and 2023 had higher average temperatures than the other years and these 

years had high concentrations of 2-MIB, which shows the effect that climate change 

might have on increasing geosmin and 2-MIB events.  

Over the past 23 years cyanobacterial blooms have increased in severity in Lake Taihu 

(China), blooms start earlier and last longer, which seems to coincide with increasing 

temperature, sunshine hours, global radiation and decreasing wind speed (Zhang et 

al., 2012). 2-MIB production was high during a drought year, during which a low TN:TP 

was related to 2-MIB concentrations, and 2-MIB production was low in the following 

extremely wet year (Winston et al., 2014). Varying precipitation and temperature in 

lake Rotorua (New Zealand) were found to have interactive effects on physical, 

chemical and biological parameters, which led to contrasting cyanobacterial 

communities and microcystin concentrations (Wood et al., 2017). Higher NO3
--N inputs 

occurred during a wet summer, whilst prolonged stratification and increased DRP and 

low DIN concentrations happened in a drier warmer summer (Wood et al., 2017). 

Species behaviour (IV) 

The 2-MIB event in winter 2022 did not go below the threshold and 2-MIB was found 

earlier in the year in 2023, which could be due to benthic overwintering of species 
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responsible for production and a quick re-establishment in the next year (Yao et al., 

2022). A priority effect could take place if a large biomass of a species survives over 

winter, as the species with the largest initial inoculum has a competitive advantage 

over other species when the growing season starts (Van Gremberghe et al., 2009). In 

general, differences between the years could be caused by different species producing 

geosmin and 2-MIB, as different taxa have a range of production capacity per cell 

(Watson, 2003).  

4.4.3 T&O prediction and lag-times (sensor data) 

Full GAMs to predict 2-MIB and geosmin pattern had most of the data explained by 

the combined factor day of year and specific year. The specific year is not useful for 

future predictions, since it applies ‘hindsight predicting’. Day of year can be used as a 

seasonality factor, to highlight that certain times of year have higher risk of geosmin 

and/or 2-MIB events, which can guide preventative water treatment or increased 

monitoring strategies. The day of the year was an important predictor in models for 

cyanobacterial growth (Perri et al., 2024) as well as geosmin production (Harris & 

Graham, 2017). The 2-MIB full model also included the significant terms NO3
--N and 

maximum wind gust 2 weeks prior. Therefore, to develop a predictive model, the most 

significant parameters that can be regularly monitored should be explored. Chapter 2 

demonstrated the optimum frequency of monitoring for some of the parameters used 

here, and this was further investigated by interrogating the effect of lag-times of easily 

measured parameters.  

Lag-times between environmental parameters and geosmin and 2-MIB were first 

investigated using manual samples and weather data for the nine-year dataset, and 

secondly with two years of in situ sensor data. Nutrient lag-times in the manual data 

were investigated by calculating the rate of change between two manual samples, but 

the data was not frequent enough to show any good results. 

2-MIB predictors 

The most interesting significant GAM predictors for 2-MIB were summarized in Table 

4.10 and organised by how many weeks prior to the manual 2-MIB result it was 

calculated.  
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Table 4.10. Manual and weather in “parameter to measure” column indicate GAMs that were 
performed on nine-year dataset, whilst sensor indicates GAMs that were performed on the 
one-year dataset. Strength of effect for manual and weather data (0-10% deviance explained 
= +, 10-20% deviance explained = ++, >20% deviance explained = +++), Strength of effect for 
sensor data (deviance explained; 0-30% = +, 30-40% = ++, >40% = +++). “Curve” in column 
effect on 2-MIB indicates that the pattern is not 100% positive or negative, but a curve. 

Type of 

predictor 

Process Parameter to measure Effect on 2-

MIB 

Strength 

of effect 

Lagged 

predictors 2-

3 weeks 

before 

Stable 

weather  

Weather: Maximum wind gust Negative ++ 

Weather: Minimum air 

temperature 

Positive +++ 

Sensor: Maximum air 

temperature, Average water 

temperature 

Positive +++, +++ 

Phytoplankton 

productivity  

Sensor: Dissolved oxygen 

(range), pH (range), ORP 

(range) 

Positive +++, ++, 

+++ 

Nitrate in 

reservoir  

Sensor: Average NO3
--N Negative +++ 

Lagged 

predictors 1 

week before 

Water level Sensor: Maximum water depth Negative +++ 

Direct 

predictors  

Mixing and 

internal 

loading in 

reservoir 

Manual: TOC, Manganese Positive +++, +++ 

Uncertain Sensor: Maximum electrical 

conductivity 

Positive + 

Nitrate in 

reservoir 

Manual: NO3
--N, Sensor: NO3

--N Negative +++, +++ 

Phosphate in 

reservoir 

Manual: PO4
3--P “Curve” ++ 

Tributary 

inflows 

Manual: TOC, TP Positive +++, +++ 

Manual: NO3
--N Negative ++ 

Nutrient ratio 

in reservoir 

Manual: TN:TP “Curve” +++ 

Manual: NH4
+:NO3

- “Curve” ++ 

 

A conceptual diagram was designed based on the findings in Table 4.10, with the 

hypothesised drivers of 2-MIB production and release, to highlight which parameters 

could act as predictors using in situ high-frequency sensor measurements (Figure 

4.36). 
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Figure 4.36. Parameters that can be measured as short-term predictors (expected seasonal 
variables have not been included). Light blue circles indicate sensor data (one-year dataset), 
and dark blue circles indicate manual or weather data (nine-year dataset). Italic text indicates 
hypothesized or uncertain processes. 

Lagged predictors 2-3 weeks before 

Periods of stable weather with low maximum wind gusts and high minimum (air/water) 

temperature were related to elevated 2-MIB concentrations 2-3 weeks later. Stable 

weather conditions (warm and dry) in the warmer months often leads to cyanobacterial 

growth in lakes, which can be linked to enhanced stratification (internal loading of 

PO4
3-

 and NH4
+, little resuspension) (Hecht et al., 2022; Huber et al., 2012). The overall 

increased productivity of the phytoplankton community in Reservoir 1 was detected 2-

3 weeks before 2-MIB concentrations, with a large range in dissolved oxygen, pH and 

ORP (Table 4.10 and Figure 4.36). This could be related to benthic species growth as 

well, as the oxygen they produce rises and gets detected higher in the water column. 

The range of DO, pH and ORP was the best predictor, as the dataset included data 

from the whole year. Dissolved oxygen average is high in winter with small fluctuations 

(mixing and less decaying organic matter), whilst in summer, large oxygen fluctuations 

occur due to periods of high phytoplankton productivity (oxygen production) followed 

by decay (oxygen consumption), and day-night cycles (photosynthesis-respiration), 

but not necessarily a higher average than wintertime. Dissolved oxygen sensors were 
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employed to detect periods of growth and decay of cyanobacteria in a reservoir, to 

inform about T&O risk (Chen et al., 2019) and Williams et al. (2000) used high-

frequency oxygen sensors to determine diurnal oxygen dynamics and productivity of 

three UK rivers.  

Periods of stable weather could imply vertical stratification and internal loading, which 

seemed to stimulate growth of 2-MIB producing benthic cyanobacteria in Reservoir 1 

and increased 2-MIB concentrations 2-3 weeks later (Figure 4.36). 2-MIB production 

by planktic filamentous Pseudanabaena sp. increased with a lower water level, 

moderate stratification, temperatures between 14 and 23 °C and higher total nitrogen 

concentrations, with a sudden disappearance after a hydrodynamic disturbance (Xiao 

et al., 2024). 2-MIB production in a Chinese reservoir was related to short-term 

hydrometeorological processes, especially in the shallow zones; concentrations 

increased when surface water temperature exceeded 12 °C and decreased after 

rainfall (Wu et al., 2022). Paerl et al. (2022) found a negative correlation between 

discharge and 2-MIB concentrations in a drinking water reservoir in North Carolina 

(USA), which suggests the 2-MIB producers preferred stratified, stable conditions, and 

were inhibited by increased discharge. A south-central USA reservoir had high 2-MIB 

concentrations during a drought year (with low TN:TP ratio influencing concentrations), 

whilst an extremely wet year had low 2-MIB production (Winston et al., 2014). 

Temperature was correlated with low TN:TP ratios and stratified conditions in a 

Chinese reservoir, which resulted in high 2-MIB concentrations most likely produced 

by Leptolyngbya sp. (Yue et al., 2024). 

Direct predictors - Internal loading 

Once benthic cyanobacteria have established, they could produce 2-MIB that 

accumulates together with compounds released from the sediment (internal loading: 

PO4
3-

, NH4
+, manganese etc.) and compounds from decomposing organic matter 

(DOC and TOC). Decomposition of phytoplankton and cyanobacterial cells releases 

DOC (Peterson et al., 1995) and bioavailable phosphorus (Feng et al., 2018), which 

highlights that phytoplankton biomass is important in nutrient recycling. When there is 

a short period of unstable weather with rain, wind and lower temperatures, it will likely 

cause cyanobacteria die-off and additional release of 2-MIB, which will get mixed into 

the water column together with TOC, manganese, TP and NH4
+-N. Hecht et al. (2022) 

highlighted the importance of large summer runoff events which reduced water 
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temperature, sunlight penetration and stratification and caused cyanobacterial bloom 

die-off. High 2-MIB concentrations in sediments of a Chinese reservoir suggests the 

likely source is the 2-MIB release from settled planktic and benthic cyanobacteria on 

the sediment, potentially through decomposition (Huang et al., 2018b). Similarly, Ma 

et al. (2013) found that decomposition of cyanobacterial blooms caused anoxic 

conditions and increased T&O concentrations in the water. In laboratory experiments 

2-MIB release by benthic Pseudanabaena yagii happened slowly during growth but 

rapidly increased when the temperature dropped (Jeong et al., 2021).  

Due to low temporal resolution of the dataset, the exact weather events responsible 

for 2-MIB release could not be detected, and it might be more complicated than 

hypothesised here. Nevertheless, manual sampling revealed that compounds related 

to internal loading were detected in the water at the same time as 2-MIB 

concentrations and a good direct predictor of 2-MIB, which indicated they could have 

been mixed from the sediment together. Internal loading is a process that will happen 

regardless of 2-MIB production, so it won’t always result in increases of 2-MIB, but it 

is a good indicator of compounds from the sediment reaching the water column. It is 

also possible that TOC adsorbs 2-MIB at the sediment and acts as a vector that 

transports 2-MIB into the water column (Figure 4.37), which Rider et al. (2024) 

hypothesised for geosmin. 

 

Figure 4.37. TOC might adsorb 2-MIB at the sediment and act as a vector to transport it into 
the water column. 
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Direct predictors - Tributary inflows 

The hypothesised short period of unstable weather could also cause runoff from 

agricultural land and increase the nutrients in tributary inflows. TOC and TP in the 

tributary explained some of the 2-MIB patterns (Table 4.10) and could indicate 

moments of high organic (slurry) inflows into the reservoir, which could contain more 

bioavailable PO4
3--P and NH4

+-N as well as organic P and N fractions. Tributary flow 

rate is unknown, so actual impacts are uncertain. Moreover, the manual data is not 

measured frequently enough to see the extend of the tributary inputs, because most 

of these compounds will flush through the system and are taken up so quickly (Aubriot 

& Bonilla, 2012), that a measurement every two weeks won’t accurately capture these 

processes. It is also possible that tributary inflows happen at the same time as internal 

release of 2-MIB but are not a causation, as nutrient in tributary inflows are related to 

rainfall and unstable weather, which could have been the real reason for 2-MIB release 

in the reservoir. 

Sensors 

Sensor measurements of electrical conductivity (EC) could potentially detect the 

moment when 2-MIB gets released at a higher frequency, as it had a positive effect on 

2-MIB in the GAM results (Table 4.10). High-frequency EC sensors can be used to 

detect pollution in rivers (Halliday et al., 2014), but in reservoirs it may be harder to 

pinpoint agricultural pollution. The EC data indicated a relationship with reservoir 

volume and suggested a potential dilution effect from reservoir flushing. Data plotting 

(Figure 4.29) revealed that high-frequency turbidity data had the potential to give 

insight in reservoir processes that could lead to 2-MIB release, whether that is internal 

loading or tributary inputs. Turbidity can indeed capture reservoir mixing (Johnston et 

al., 2024). Both electrical conductivity and turbidity high-frequency measurements can 

be difficult to interpret, as they measure the overall effect of processes that happen in 

the reservoir but nothing specifically, so they require a good understanding of the 

specific reservoir.   

Seasonality - NO3
--N, PO4

3--P, TN:TP and NH4
+:NO3

- 

NO3
--N had a strong seasonal pattern in the tributary and the reservoir (see Section 

4.4.1), which happens regardless of 2-MIB production, but can indicate the reservoir 

goes from P-limited state to N-limited state (Howard, 2020). Low NO3
--N in summer 

coincides with high 2-MIB, but both factors have a strong seasonal pattern and it’s 
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possible that there is no direct causation. Howard (2020) found that low nitrate was 

the most important predictor of peak 2-MIB concentrations in Eagle Creek Reservoir 

(USA) and mentioned that close monitoring of nitrate levels could serve as an early 

warning for 2-MIB events. Several studies found that growth of Pseudanabaena spp. 

and Leptolyngbya spp. related to high concentrations of nitrogen, relative to 

phosphorus (Gao et al., 2018; Liu & Vyverman, 2015; Xiao et al., 2024). Based on the 

data from Reservoir 1, it is hypothesised that during the summertime when the NO3
--

N is low, periods of high NH4
+-N and PO4

3--P release indicate internal loading events 

or tributary inputs, which might be related to high levels of 2-MIB.  

PO4
3--P had a complicated pattern throughout the year, because it was generally 

higher in winter possibly due to increased mixing, runoff and less biological uptake, 

whilst lower concentrations in summer might have been caused by phytoplankton 

uptake. However, internal loading of PO4
3--P can cause a spike in summer and autumn 

(Jeppesen et al., 2009), which won’t be accurately defined with manual sampling as 

PO4
3--P is taken up by bloom-forming cyanobacteria within 15-25 minutes and 

increases productivity rates instantly (Aubriot & Bonilla, 2012). 

The result from GAMs and the PCA for nutrient ratios TN:TP and NH4
+:NO3

- in the 

reservoir as well as the nutrient concentrations separately, indicate the importance of 

low NO3
--N which means that any increases in PO4

3--P and NH4
+-N have an impact. A 

lower TN:TP relates to higher 2-MIB concentrations, which means that more PO4
3--P 

is present during a period of low TN (NO3
--N mainly). The GAM revealed a slight 

increase of the effect on 2-MIB again at very high TN:TP ratios, which was also found 

by Hooper (2023a), who attributed this pattern to a transition from nitrogen fixing 

cyanobacteria at low TN:TP to non-nitrogen fixing cyanobacteria at high TN:TP. The 

TN:TP ratio has often been related to increased growth of cyanobacterial dominance 

but does not necessarily have to be related to T&O production (Howard, 2020). The 

TN:TP ratio was found to be less important in determining cyanobacterial growth in 

eutrophic lakes, where light limitation is a more important driver (Huisman et al., 2004; 

Paerl & Fulton, 2006). Similarly, a higher NH4
+:NO3

- ratio related to a higher 2-MIB 

concentration, which shows that increases in NH4
+-N during a period of low NO3

--N 

were indicative of high 2-MIB. High NH4
+:NO3

- ratios have often been related to T&O 

events (Harris et al., 2016; Perkins et al., 2019), potentially from agricultural inputs or 

internal loading, but nutrient spiking experiments in Chapter 3 revealed that the 
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NH4
+:NO3

- ratio was not a key driver of 2-MIB production by benthic Pseudanabaena 

spp. and Leptolyngbya spp. Findings from Chapter 3 suggest that total concentration 

of nitrogen (as NO3
--N, because green algae dominated in NH4+-N treatments) was 

most important for these species to develop relative abundance, and they required 

some phosphorus for growth, but a P-limitation resulted in higher 2-MIB release 

through cell death or active release. 

Manual sampling of nutrient processes is limited by the low temporal frequency of 

measurement, which makes it difficult to pinpoint the effect of NH4
+-N and PO4

3--P 

coming from tributary inputs versus internal loading, and the subsequent lag-time 

between nutrient input and 2-MIB concentration. NH4
+-N and PO4

3--P tributary inputs 

during periods of high 2-MIB levels in the reservoir are most likely unrelated, because 

experiments in Chapter 3 indicated a potential lag-time of 4 to 8 days between nutrient 

spike and cyanobacterial growth, with subsequent 2-MIB production.  

Geosmin predictors 

The most interesting significant predictors of geosmin from GAM results were 

summarised in Table 4.11. 

Table 4.11. Manual and weather in “parameter to measure” column indicate GAMs that were 
performed on nine-year dataset, whilst sensor indicates GAMs that were performed on the 
one-year dataset. Strength of effect for manual data (0-10% deviance explained = +, 10-20% 
deviance explained = ++, >20% deviance explained = +++), Strength of effect for sensor 
data (deviance explained; 0-30% = +, 30-40% = ++, >40% = +++). “Curve” in column effect 
on geosmin indicates that the pattern is not 100% positive or negative, but a curve. 

Type of 

predictor 

Process Parameter to measure Effect on 

geosmin 

Strength 

of effect 

Lagged 

predictors 3 

weeks 

before 

Stable 

weather 

Sensor: Maximum air 

temperature, weekly range of 

water temperature 

Positive ++, ++ 

Phytoplankton 

productivity  

Sensor: Dissolved oxygen 

(weekly range) 

Positive +++ 

Lagged 

predictors 1-

2 weeks 

before 

Stable 

weather  

Weather: Sum of precipitation Negative ++ 

Weather: Sum of solar energy Positive ++ 

Phytoplankton 

productivity  

Sensor: pH (weekly range), ORP 

(maximum range) 

Positive +, +++ 

Nitrate in 

reservoir  

Sensor: Maximum NO3
--N Negative +++ 

Water level Sensor: Maximum water depth Negative ++ 
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A conceptual diagram was designed based on the findings from Table 4.11, with 

hypothesized processes related to geosmin production and release, highlighting 

parameters that could predict geosmin with in situ high-frequency sensors (Figure 

4.38). 

 

Figure 4.38. Parameters that can be measured as short-term predictors (complex or seasonal 
variables have not been included). Light blue circles indicate sensor data (one-year dataset), 
and dark blue circles indicate manual or weather data (nine-year dataset). Italic text indicates 
hypothesized or uncertain processes. 

Lagged predictors 3 weeks before 

GAM results from the sensor data (2022 to 2023 data) indicated that geosmin was 

related to high air and water temperature 3 weeks before, as well as a large range in 

Direct 

predictors  

Uncertain Sensor: Minimum electrical 

conductivity 

Positive + 

Uncertain Manual: pH, turbidity “Curve” ++, + 

Nitrate in 

reservoir 

Manual:  NO3
--N, Sensor:   NO3

--

N 

“Curve” +, +++ 

Phosphate in 

reservoir 

Manual:  PO4
3--P Negative + 

Tributary 

inflows 

Manual:  NO3
--N Negative + 

Nutrient ratio 

in reservoir 

Manual: TN:TP “Curve” ++ 
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dissolved oxygen. A high overall phytoplankton productivity during warmer weather 

can be related to increased growth of planktic cyanobacteria that are capable of 

geosmin production (see Section 4.4.3).  

Lagged predictors 1-2 weeks before 

The manual data from 2015 to 2023 revealed a strong effect 1-2 weeks before of 

various weather parameters related to stable weather, like a low amount of rainfall and 

high solar energy for a period of time (Table 4.11). Planktic geosmin producing 

Aphanizomenon spp. require high light availability (>150 μmol photons m-2 s-1) for 

optimal growth (see introduction, Section 4.1.1 and Üveges et al. (2012)), which 

explains why solar energy is a driver of geosmin concentrations. The range in 

dissolved oxygen, pH and ORP 1-2 weeks before geosmin concentrations in the water, 

is indicative of planktic cyanobacteria growth, similar to 2-MIB. In eutrophic lakes, a 

stable water column and warm weather has been related to buoyant species of 

cyanobacteria, like Aphanizomenon spp. and Microcystis spp., whilst a turbulent water 

column was related to sinking species of cyanobacteria (Huisman et al., 2004; 

Reynolds, 2006). Descy et al. (2016) also found that low average wind velocity, high 

epilimnion temperature and solar energy increased Aphanizomenon spp. dominance.  

Direct predictors 

In general, geosmin was harder to predict than 2-MIB. Elevated concentrations of 

geosmin could be related to a change in weather causing cyanobacterial bloom 

collapse, as was found by Ma et al. (2013), but data analysis and GAM results did not 

provide any clear evidence for geosmin release. Only a high electrical conductivity 

from sensor data was found to relate to geosmin, which was probably related to higher 

water temperatures. Planktic cyanobacteria blooms have more explosive growth than 

benthic species (Vadeboncoeur et al., 2021; Yamamoto & Nakahara, 2009) and there 

are many reasons why they might collapse (Harris et al., 2024). This could explain 

why there is not a straightforward predictor for the geosmin release related to mass 

cell death. Moreover, bloom collapse and geosmin release through cell lysis was 

probably not necessary for geosmin to be measured in the manual water samples. As 

the planktic cyanobacteria cells float in the water column, they are physically collected 

in the samples (Chapter 3, Section 3.3), which means that intracellular and 

extracellular geosmin are measured collectively in the laboratory.  
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Additionally, different species could have been responsible for geosmin production 

over the years, with potentially different environmental drivers and variable lag-times. 

Another possible reason is that geosmin could be more quickly biologically degraded 

by bacteria than 2-MIB, as Li et al. (2012) found that 2-MIB had a larger turnover time 

than geosmin. 

Complex patterns - pH, turbidity 

Manual pH data showed that, over the years, pH was a good indicator of geosmin 

(Table 4.11), but a little complex. Increasing levels of pH are a result of photosynthetic 

activity by the community, which generally results in the highest pH in summer when 

most activity happens (Wetzel, 2001). There is a seasonal succession of species, and 

geosmin production generally happens relatively early in the year when pH is still 

increasing (DOY plot showed geosmin peak around day 150, in May). Therefore, the 

effect of pH could just be a seasonal effect, or it is an indication of the environmental 

conditions that favours planktic producers.  

Manual turbidity data had a negative relationship with geosmin concentrations (Table 

4.11). It is possible that turbidity in the reservoir indicated periods of unstable weather, 

runoff and water column mixing (internal loading), which would have resulted in 

collapse of the planktic cyanobacterial bloom by shading from particles and diluting 

extracellular geosmin compounds. Periods of increased turbidity might mark the lack 

of geosmin events and will probably not be useful as a direct predictor, unless high-

frequency sensor data can provide direct insight when certain mixing processes occur. 

Seasonal patterns - NO3
--N, PO4

3--P and TN:TP 

The strong seasonal NO3
--N pattern in the reservoir and tributary seems to be related 

to geosmin concentrations but is less indicative than for 2-MIB (Table 4.11). There 

might be a threshold of NO3
--N, below which Aphanizomenon spp. can dominate. 

Findings by Descy et al. (2016) suggest that Aphanizomenon spp. development was 

driven by dissolved inorganic nitrogen (DIN) levels going below 1.5 mg/L in summer 

and TP exceeding 0.030 mg/L. Miller et al. (2013) discovered that blooms of 

Aphanizomenon spp. were primarily related to higher NO3
--N concentrations. In 

Reservoir 1, PO4
3--P was negatively correlated with geosmin, which is most likely 

related to the seasonal effect of elevated PO4
3--P concentrations in winter and lower 

concentrations over summer (see seasonality section for 2-MIB). The PO4
3--P patterns 
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are not well captured due to limited sampling, so the direct effect on planktic 

cyanobacteria and geosmin production is hard to predict. 

Interestingly, GAM results for TN:TP revealed that geosmin production was related to 

higher levels of TP compared to TN, even though higher PO4
3--P had a negative effect 

on geosmin. Low TN:TP was related to high geosmin concentrations and increasing 

ratios had a negative effect on geosmin, whilst the effect from a ratio of > 400 was also 

related to higher geosmin concentration. The pattern is the same as for 2-MIB, which 

could also indicate the shift from non-nitrogen fixing cyanobacteria (high TN:TP) to 

nitrogen-fixing cyanobacteria (low TN:TP). The expected source of geosmin in this 

reservoir, the cyanobacterial genus Aphanizomenon, has nitrogen-fixing capabilities 

and therefore would be most influenced by increases in phosphorus, hence the 

relationship with low TN:TP. However, other processes in this reservoir might be 

related to increases in PO4
3--P, like internal loading or runoff caused by a weather 

event, which could impact planktic cyanobacteria blooms and subsequent geosmin 

concentrations. Moreover, Aphanizomenon might be able to take up organic 

phosphorus fractions, as Raven (2010) found that Aphanizomenon ovalisporum 

released the cyanotoxin cylindrospermopsin to induce the production of alkaline 

phosphatases in other phytoplankton, to free up inorganic phosphate.  

4.4.4 NH4
+-N and NO3

--N sensor technology 

The sensitivity of the NO3
--N and NH4

+-N ISE sensors was not sufficient to capture the 

changes in biogeochemistry required to predict T&O in this reservoir. Blaen et al. 

(2016) mentioned that ISE are often subject to significant drift, ionic interferences and 

can have issues with systematic errors when the ionic activity in the calibration solution 

is notably different to the ionic activity of the field sample. This might explain why there 

was a mismatch between how the sensor performed in the field compared to the 

laboratory. The precision of ISEs was specified by the manufacturer as ±10% or ±2 

mg N/L (but they suggest an LoD of 0.01 mgN/L). However, Bende-Michl and Hairsine 

(2010) concluded that in practise, no field-deployable ISE exists that can detect 

nutrient concentrations lower than ±0.1 mg/L, and that they required frequent re-

calibration. These results highlight potential drawbacks of using ISE sensors for 

nutrients at environmentally relevant concentrations.  
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The lab-on-chip wet chemical NO3
--N analyser from Clearwater sensors had a 

precision of 0.0003 mg N/L (with a 0.0004 mg N/L LoD). The Clearwater sensors NO3
-

-N analyser had good agreement with the laboratory data but suffered from rapid 

blocking of the filter due to biofouling when the water system was very productive in 

July-August 2022. Appropriate maintenance schedules need to be designed 

depending on the site and time of year, which could prevent this from happening. 

4.4.5 Sensor recommendations 

Based on the findings of this study, it is advisable to focus monitoring efforts on the 

identified processes that might drive cyanobacterial growth in the reservoir and cause 

risk of geosmin and 2-MIB events. Several parameters can be measured at a high 

frequency with in situ sensors or analysers to better quantify these processes, the 

most important parameters being:  

- Tributary nutrient inflows: NO3
--N, NH4

+-N (ISE or lab-on-chip) or PO4
3--P (lab-

on-chip) or indicators of pollution like turbidity & EC. 

- Tributary discharge to calculate loading. 

- Reservoir conditions related to phytoplankton growth: water temperature & 

dissolved oxygen 

- Reservoir vertical stability: water temperature at different depths 

- Meteorological factors: Solar energy, air temperature, precipitation, wind speed 

- Forecasts of meteorological factors: Solar energy, air temperature, 

precipitation, wind speed 

Tributary inflows are an important source of nutrients (nitrogen, phosphorus and 

carbon) to the reservoir, as potentially slurry-related runoff occurred in this catchment. 

Current manual sampling does not capture the impact on the reservoir and the exact 

timing when they occur, which is crucial to understanding the biogeochemical 

processes and subsequently predicting T&O events. Nutrients can be measured with 

ISE sensors or lab-on-chip analysers (see Section 4.1.5 and Section 4.4.4) and 

simultaneous tributary discharge measurements can provide insight on nutrient 

loading. Tributary inflows of NO3
--N could be captured with lab-on-chip analysers or 

less sensitive ISEs, as concentrations are higher (>1 mg/L all summer) than the 

reservoir (<0.5 mg/L). High-frequency measurements of NH4
+-N and PO4

3--P in the 

tributary could provide valuable insights into the response of cyanobacterial growth 
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and subsequent T&O production to slurry-related runoff events, including any lag-time. 

Alternatively, indicators of agricultural runoff can be measured in the tributary using 

turbidity or EC sensors. The turbidity sensor in this reservoir deployment detected 

periods of high turbidity when there was precipitation and higher wind speeds, which 

indicate it could capture reservoir mixing or runoff from the tributary, similar to Johnston 

et al. (2024). The comparison with laboratory turbidity data showed that only in situ 

sensor measurements at a high frequency could capture these events. High-frequency 

EC data from this reservoir visualised a potential dilution effect from reservoir flushing, 

but it did not have a clear pattern related to unstable weather, or T&O events. EC has 

the potential to detect agricultural pollution, as it can successfully detect urban 

pollution in rivers (Halliday et al., 2014), but it might be better to target the tributary 

inflows. Additionally, this runoff could potentially be detected with other commercially 

available sensors like tryptophan-like fluorescence, fDOM, CDOM (Chapter 1) etc. but 

these won’t provide the same insight in nutrient loading.  

Measurements of dissolved oxygen, pH and ORP were found to serve a similar 

purpose in this deployment. Monitoring ORP is valuable primarily for vertical depth 

profiles, as dissolved oxygen sensors provide equivalent information in oxygen-rich 

surface waters. Additionally, dissolved oxygen sensor technology requires the least 

maintenance, making it the preferred choice over pH and ORP sensors. Dissolved 

oxygen data in the reservoir captured the response of the phytoplankton community 

to a weather event with precipitation, higher wind gusts and a drop in solar energy. 

The rapid decline in DO concentration related to phytoplankton cell death could 

highlight an important period with risk of geosmin and 2-MIB release into the reservoir. 

High-frequency measurements of DO in the source water of a water treatment plant in 

Beijing is used as early warning for T&O risk (Chen et al., 2019).  

Stable weather conditions, water column stratification and mixing were identified as 

key processes for geosmin and 2-MIB production, release and/or distribution in 

Reservoir 1. Vertical profiles of water temperature can indicate periods of stratification 

and mixing (Yang et al., 2019). Meteorological data was arguably the most important 

driver of geosmin and 2-MIB events in Reservoir 1, particularly solar energy, air 

temperature, precipitation and wind speed. Similarly, high-frequency vertical water 

quality profiles and meteorological data identified that cyanobacterial blooms were 

related to calm and sunny weather which followed periods of strong wind which had 
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released nutrients (Yang et al., 2019). Air temperature, precipitation and wind speed 

were meteorological factors determined by Johnston et al. (2024) to help monitor 

harmful algal blooms. Forecasts of these meteorological factors can serve as an early 

warning for periods of optimal conditions for phytoplankton growth, followed by an 

unstable weather event which causes bloom die-off and release of geosmin and 2-

MIB.  

Other processes that are interesting, but less important for predicting geosmin and 2-

MIB events are: 

- Reservoir chlorophyll a and phycocyanin 

- Reservoir water level 

- Reservoir light availability 

- Reservoir NO3
--N 

- Reservoir internal loading: NH4
+-N, PO4

3--P (lab-on-chip, requires high 

sensitivity) 

Chlorophyll a laboratory data in Reservoir 1 sometimes coincided with geosmin and 

2-MIB events, but chlorophyll a peaked more regularly throughout the year which was 

independent of geosmin and 2-MIB. This makes sense, as all planktic species of 

phytoplankton (diatoms, chlorophytes and cyanobacteria, which were present in 

Reservoir 1 water samples, as identified in Chapter 3) will contribute to elevated 

chlorophyll a concentrations, regardless of their T&O producing capabilities, and this 

won’t detect benthic producers. Moreover, when geosmin and 2-MIB compounds are 

released extracellularly, they get dispersed away from the producers. Nevertheless, 

chlorophyll a data has been used extensively (alongside phycocyanin) in lakes and 

reservoirs to estimate algal blooms or cyanobacterial blooms (with phycocyanin) 

(Carey et al., 2021; Painter et al., 2023; Yang et al., 2019), so it could be used as an 

indicator of potential T&O risk. The chlorophyll a sensor that was deployed in the 

reservoir highlighted the difference between laboratory and in situ chlorophyll a 

measurement methods, as the sensor detects the pigment without extraction, which 

must be considered when interpreting data. Moreover, studies suggest that chlorophyll 

a sensor measurements at night-time or in deployments where they are sheltered from 

light, are the best indicator of actual phytoplankton biomass, because there is no light 

effect on the pigment (Lucius et al., 2020). A high-frequency chlorophyll a sensor and 
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a more targeted sensor for cyanobacteria that measures phycocyanin, can be a useful 

indicator of high phytoplankton and cyanobacteria productivity. This can be used to 

prompt an investigation into the species and subsequently provide a possible warning 

for T&O events (Painter et al., 2023).  

Water level could be a useful indicator, but mainly for benthic 2-MIB producers and 

during periods when the reservoir was used for abstraction and had larger fluctuations 

in water level. Inter-annual trends in Reservoir 1 highlighted the effect of changes in 

abstraction management on benthic 2-MIB producers, with larger fluctuations due to 

abstraction limiting their growth. Water level can be used to manage benthic 

cyanobacteria (Su et al., 2017), and in certain reservoirs water level was a good 

indicator of T&O compounds (Xiao et al., 2024). 

Light availability in the water column could be measured with sensors for 

photosynthetically active radiation (PAR) at different depths, to calculate the extinction 

coefficient. This can be a useful parameter for cyanobacteria prediction (Descy et al., 

2016) but would especially be useful if the optimal light conditions were known for the 

geosmin and 2-MIB producing cyanobacteria.  

NO3
--N seasonal pattern needs to be measured but doesn’t have to be done with 

sensors as the pattern is predictable. High-frequency sensor measurements of NO3
--

N in Reservoir 1 are not required, because manual data seemed to predict the general 

seasonal trend. Internal loading should ideally be investigated, because it directly 

related with 2-MIB concentrations in Reservoir 1, but more standard parameters can 

be measured to indicate this (water temperature at different depths). Lab-on-chip 

nutrient analysers (NH4
+-N and PO4

3--P) should be able to detect internal loading, but 

this won’t provide an early warning of 2-MIB as it is ‘hindsight’ predicting. Moreover, 

high-frequency measurements of NH4
+-N in the reservoir could indicate internal 

sediment release and, consequently, the release of 2-MIB. However, the deployed ISE 

was not sensitive enough to detect this. If NH4
+-N and/or PO4

3--P internal loading is 

identified as a key driver of T&O, lab-on-chip analysers for NH4
+-N and/or PO4

3--P 

could be deployed to capture this process, potentially closer to the sediment. 

4.4.6 Parameter frequency and data elements for T&O prediction 

The optimal measurement frequency of each parameter largely depends on the 

catchment, the parameter and what element of the sensor data you require to identify 
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the process of interest (Chapter 2). Many water quality parameters have seasonal and 

diurnal cycles, and some parameters have a quick response to extreme weather 

events which influence the data variability (Chapter 2). For example, a turbidity sensor 

in the tributary to pinpoint the exact timing of runoff events might require a high 

frequency of hourly to four-hourly (Chapter 2). On the other hand, the seasonal nitrate 

cycle in the reservoir is predictable and daily or weekly measurements, with a sensor 

or manually, can be enough to capture this pattern and calculate the load (Lloyd et al., 

2014).   

It is an important consideration what element of sensor data is most useful as a 

predictor of geosmin and 2-MIB events and related processes. For parameter with 

seasonality and diurnal cycles, a daily average, maximum, minimum or range can be 

more informative. For example, the daily range in dissolved oxygen was a better 

predictor of phytoplankton productivity than for example the daily average. When using 

a dataset that includes all seasons, it is important to be aware of seasonality and 

diurnal cycles in the parameters, to pick the best element of the sensor data to identify 

the process of interest.  

It is essential that geosmin and 2-MIB in the reservoir are measured with manual 

sampling as frequently as possible during the high-risk period, to best use the high 

temporal resolution of sensor measurements and detailed weather data for geosmin 

and 2-MIB prediction. This will result in a better understanding of the processes that 

causes the initial production and release of geosmin and 2-MIB early in the season.   

4.5 Conclusions 

Nine years of Reservoir 1 data from manual sampling was merged with calculated 

weather data (lagged 1,2,3 or 4 weeks) to investigate the general environmental 

patterns in the reservoir and how they related to geosmin and 2-MIB events. Sensors 

were deployed from June 2022 until July 2023 and data was merged with the manual 

sampling data for this period to identify short-term indicators of geosmin and 2-MIB 

events that could be used as an early warning. The following research questions were 

addressed in this study:  

1) What are drivers of geosmin and 2-MIB production in a drinking water 

reservoir? 
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Day of year and year were the best predictors for geosmin and 2-MIB, which 

emphasizes that certain environmental parameters might only be related because they 

also have a strong seasonal pattern. Geosmin and 2-MIB have a different seasonal 

pattern; geosmin was detected earlier in the year than 2-MIB. Geosmin in the water 

column was likely produced by planktic cyanobacteria and the data suggested that 

geosmin events were driven by a period of stable weather with high solar energy and 

low rainfall, which could have caused internal NH4
+-N and PO4

3--P loading. Geosmin 

was directly related to low TN:TP ratios which could indicate elevated TP 

concentrations from cyanobacterial biomass or internal PO4
3--P loading in summer 

when there is low TN. Cyanobacteria bloom collapse is probably not necessary to 

detect geosmin with manual sampling, as geosmin inside planktic cyanobacteria cells 

will be physically collected. Planktic cyanobacteria can result in shading of the benthic 

environment and delay growth of benthic producers. 2-MIB was likely produced by 

benthic cyanobacteria and the production was driven by a period of stable weather 

with low wind gusts and high air/water temperatures, causing internal NH4
+-N and 

PO4
3--P loading. Most likely, a short weather event can cause runoff from the 

catchment and vertical mixing which might lead to cyanobacteria cell death. 

Simultaneously, mixing will bring all the released 2-MIB and other compounds from 

the sediment to the surface, where it can be detected with manual sampling. There 

was also a yearly difference in geosmin and 2-MIB severity, most likely impacted by a 

combination of: I) water level changes, II) changes in tributary nutrient concentrations, 

III) extreme weather events and IV) species behaviour.  

2) What is the lag-time between environmental drivers and geosmin and 2-MIB 

detection? 

Geosmin had a 1-2 week lag-time between environmental drivers and geosmin peak, 

whilst 2-MIB had a 2-3 week lag-time. The lag-time could be different for different 

species and different events. The lag-time for 2-MIB could be longer due to the added 

time of extracellular release and mixing to the water surface, or differences in growth 

speed of benthic cyanobacteria compared to planktic species.  

3) Can sensor data in the reservoir be used to predict geosmin and 2-MIB events? 

Geosmin was harder to predict than 2-MIB, possibly due to more explosive growth and 

quicker biological degradation. Sensors can identify certain processes that relate to 
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high geosmin and 2-MIB risk in Reservoir 1. Both geosmin and 2-MIB were related to 

periods of stable conditions in the reservoir. 2-MIB concentrations in the water column 

seemed to relate to vertical mixing and release of benthic compounds, whilst geosmin 

is already present in the water column and does not depend on vertical mixing. The 

following processes were recommended as most important to measure with sensors 

to provide early warning for geosmin and 2-MIB events:  

A) Tributary nutrient runoff: nutrient sensors (NH4
+-N, PO4

3--P, NO3
--N), turbidity, EC 

and discharge; B) Reservoir conditions related to phytoplankton growth: water 

temperature and dissolved oxygen; C) Reservoir vertical stability: water temperature 

at different depths; D) Meteorological parameters: precipitation, wind speed, solar 

energy, air temperature; E) Forecasts of meteorological parameters: precipitation, 

wind speed, solar energy, air temperature.  

Knowledge from Chapter 2 on optimal design of a high-frequency sensor network 

should be combined with knowledge of species-specific growth factors (Chapter 3) 

and catchment-specific processes that could identify T&O events (this chapter), to 

create the best early-warning predictors for T&O for Reservoir 1. High-frequency 

nutrient sensors have still not been effectively used to predict phytoplankton blooms 

in lakes, but this study highlights the potential of using them in T&O prediction, as long 

as the appropriate sensor technology is selected, and maintenance schedules are 

designed properly.   
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Chapter 5: General discussion 
 

This is the first study that has used a comprehensive assessment of laboratory and 

field studies to identify biogeochemical processes that are important for freshwater 

monitoring and highlight considerations regarding high-frequency sensor networks. 

High-frequency sensors and molecular measurement techniques were utilised to 

identify key biogeochemical processes that can be measured with sensors, which 

drive taste and odour (T&O) events in a drinking water reservoir. Findings from this 

thesis inform stakeholders on how to establish and utilise an effective sensor 

monitoring network. It also recommends how high-frequency sensors in the catchment 

can be used to predict and manage the presence of operationally significant 

concentrations of T&O in the drinking water treatment. Hence, this study is of 

importance to river and reservoir management. 

In the UK and worldwide, drinking water reservoirs are under threat of increasing 

eutrophication due to agricultural activity and effects of climate change, which will likely 

increase the risk of cyanobacterial blooms (Cottingham et al., 2015; Paerl & Paul, 

2012). T&O compounds are just an example of problematic compounds produced by 

cyanobacteria in drinking water reservoirs, but an increasing prevalence of 

cyanobacteria has much wider implications for water quality and can have substantial 

health impacts. Cyanobacteria species that can produce geosmin and 2-MIB can often 

also produce cyanotoxins, so it possibly has wider health impacts if these species start 

to dominate more in drinking water reservoirs. It is therefore critical that these 

reservoirs and the surrounding catchments are managed appropriately to prevent 

pollutants in the reservoir that can cause issues at the drinking water treatment and 

affect customers. Additionally, it is more sustainable if catchments and reservoirs are 

managed appropriately, because less chemical dosing and additional carbon is 

required to treat the water for drinking water production. 

To guide management decisions, it is important to understand site-specific 

meteorological and biogeochemical processes that drive T&O events. Biological 

mechanisms behind cyanobacterial T&O production remain unclear and are likely to 

be species-specific, which emphasizes that drivers of T&O events should be 

investigated on a case-by-case basis. Indicators of meteorological and 
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biogeochemical processes need to be monitored at an environmentally relevant 

temporal frequency to provide sufficient evidence to predict T&O events. Manual 

sampling in the reservoir or treatment plant inlet is most often at a weekly to monthly 

cadence with additional days before laboratory analyses report results, which is 

insufficient to provide insight in the important drivers and cannot easily be used as an 

early warning. Deploying high-frequency sensors or analysers in a drinking water 

reservoir can provide a real-time indication of meteorological and biogeochemical 

processes, which can potentially enable T&O early warning and prediction. Careful 

consideration is required to identify the optimal sensor suite and temporal frequency 

of measurement, which in turn requires a good understanding of catchment processes 

and the site-specific drivers of T&O events. 

The summarised findings from each chapter will be used to answer the overarching 

hypotheses, and the interaction between the chapters will be discussed linking into the 

wider of the area of research. Lastly, the implications of the findings will be explained 

with a focus on the drinking water industry, and future directions of research will be 

recommended. 

5.1 Hypothesis 1 

Hypothesis 1: Differing sampling frequencies of water quality sensors can impact 

interpretations of biogeochemical processes: Accepted.   

The systematic assessment of high resolution hydrochemical data from six UK 

catchments in Chapter 2 revealed that a minimum four-hourly measurement frequency 

was required to capture the necessary variation. The monitoring frequency influenced 

the calculated median and range of a parameter, but this was parameter and 

catchment specific. The most important factors that influence data variability 

determined the impact of reduced measurement frequencies on the calculated median 

and range. A reduced measurement frequency impacted the median for parameters 

with a strong intra-daily variation like temperature and dissolved oxygen, whilst it 

impacted the range for parameters with a strong rainfall-response such as turbidity. 

Manual sampling at specific times of the day would not accurately capture the full data 

variability of parameters with significant intra-daily variation. Parameters with a 

predictable pattern or seasonal cycle, like NO3
--N, could probably be measured at 

lower frequencies without impacting the data interpretation. A low measurement 
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frequency can potentially still capture the values around the median for more variable 

parameters, but it will most likely underestimate extreme values and similarly any 

extreme values it does measure will affect the interpretation of the data. An optimal 

monitoring design should consider the monitoring purpose and select the required 

sampling frequency based on the required accuracy of the result, for example a 

median or model calculation, which should be assessed for each catchment and 

parameter separately. A period of pre-monitoring sensor optimisation where data is 

captured at high resolution is recommended to understand catchment-specific 

responses. Moreover, the sensor uncertainty needs to be evaluated beforehand to 

determine if the sensors can accurately measure data fluctuations of interests beyond 

the uncertainty bounds of the measurement technique.   

High-frequency hydrochemical data from sensors and analysers can be used to 

understand water quality and biogeochemical processes in freshwaters. This chapter 

highlighted the effect of monitoring frequency and the measurement time on 

interpretation of these processes, which are catchment and parameter specific. The 

meteorological and biogeochemical processes that drive T&O need to be explored 

first, to determine the correct sensor suite that will enable T&O prediction. 

5.2 Hypothesis 2 

Hypothesis 2: Nutrient concentrations and ratios are important factors in predicting 

geosmin and 2-MIB events: Accepted. 

Chapter 3 explored the results of a laboratory microcosm study which used a natural 

phytoplankton community from a Welsh drinking water reservoir (Reservoir 1) to 

investigate the effect of varying nutrient concentrations and ratios, NH4
+:NO3

- and 

DIN:SRP, on 2-MIB production. The data revealed that a higher overall community 

productivity (the total carbon produced) related to higher 2-MIB concentrations. 

Moreover, gene copies of the 2-MIB synthase gene and relative abundance of 

cyanobacteria Leptolyngbya spp. and Pseudanabaena spp. correlated well with 2-MIB 

concentrations, demonstrating they are the most likely producers of 2-MIB in this 

community. 

These findings highlighted the need to identify factors that promote optimal growth of 

these species. Optimal growth parameters for geosmin and 2-MIB producers are often 

studied on laboratory cultures of the same species, but this prevents the competition 
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for resources within the phytoplankton community from having an impact. The 

microcosm experiment in this study was more realistic because it tested the response 

of a natural phytoplankton community, but it was more difficult to interpret the specific 

effect that nutrients and ratios had on the 2-MIB producers individually. 

Despite variability in the replicates which made some interpretation challenging, the 

experiments suggested that total available nitrogen concentration was more important 

for 2-MIB production than the ratio of NH4
+:NO3

-, total phosphorus and DIN:SRP ratio. 

Elevated concentrations of NH4
+-N with high PO4

3--P and low NO3
--N caused rapid 

growth (‘boom-bust’ dynamics) of mostly green algae. Elevated NO3
--N concentrations 

with low NH4
+-N, in both PO4

3--P treatments, resulted in a delayed response in 

productivity (4 days later than high NH4
+-N treatments) but overall balanced growth 

with more time for benthic cyanobacteria to develop. Total dissolved nitrogen (TDN) 

concentrations of around 2.5 mg N/L seemed to be required for the development of 

benthic 2-MIB producers, if sufficient total dissolved phosphorus (TDP) was available. 

Phosphorus did not have a clear effect on 2-MIB production, because also low PO4
3--

P treatments had high 2-MIB production if they had enough total nitrogen. In this 

experiment, the DIN:SRP ratio was less important for 2-MIB concentrations than total 

phosphorus concentrations. Productivity in treatments with high NO3
--N and high PO4

3-

-P was still increasing at the end of the experiment, whilst productivity in treatments 

with high NO3
--N and low PO4

3--P plateaued, but both produced high 2-MIB 

concentrations. This finding suggested that benthic cyanobacteria required a critical 

PO4
3--P concentration (TDP between 0.2 and 0.5 mg P/L) to establish dominance in 

the community, before P depletion might have triggered 2-MIB release through active 

or passive mechanisms. Diatoms dominated in the treatment with low nutrients whilst 

green algae dominated in the high nutrient treatments. Highest cyanobacteria biomass 

was present in the treatment with high NO3
--N, low NH4

+-N and high PO4
3--P, followed 

by the treatment with high NO3
--N, low NH4

+-N and low PO4
3--P. 

There was a difference in lag-times between initial nutrient concentrations and benthic 

cyanobacterial growth and detection of productivity. The lag-time between the nutrient 

spike and community productivity was four days with NH4
+ as N source due to rapid 

’boom-bust’ growth, while NO3
--N as N source resulted in slower balanced growth, with 

increasing productivity after eight days but lasting longer. The different response times 

for NH4
+-N and NO3

--N suggest that their relative availability to phytoplankton will 
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influence how NH4
+:NO3

- fluctuate over time. Therefore, the complexities in community 

response to different N sources needs to be considered when determining the drivers 

of T&O production in a natural aquatic environment.  

The findings from the microcosm experiment emphasize that nutrient concentrations 

(particularly NO3
--N and PO4

3--P) as well as ratios are important factors that result in 

high abundance and productivity of benthic cyanobacteria Leptolyngbya spp. and 

Pseudanabaena spp., which was related to 2-MIB concentrations. The findings of this 

experiment are specific for these benthic 2-MIB producing cyanobacteria species at 

that time of the year (the phytoplankton community in the inoculum). There are many 

different species of cyanobacteria that can produce geosmin and 2-MIB, planktic and 

benthic, which have different species traits and, therefore, require different growth 

stimuli. In a natural phytoplankton community with constant competition for resources, 

species traits determine which species can co-occur and have a higher relative 

abundance. There is a general lack of understanding related to benthic species 

(Catherine et al., 2013; Gaget et al., 2020), but this study is the first (to the best of my 

knowledge) that demonstrated drivers of 2-MIB production in a natural phytoplankton 

community. 

In Chapter 4, nine years of manual nutrient data from Reservoir 1 and a major tributary 

were analysed to identify drivers of geosmin and 2-MIB events. Unfortunately, 

concentrations of nutrients, geosmin and 2-MIB were measured at insufficient 

temporal frequency to fully understand how nutrients influenced geosmin and 2-MIB 

events, which is often the case in field studies (Dzialowski et al., 2009). Infrequent 

water column sampling will probably not capture cycling processes (release-uptake) 

or external inputs (in this case, the tributary runoff) of highly bioavailable nutrient 

fractions like PO4
3--P and NH4

+-N, because they have fast biological uptake rates. In 

the natural environment the nutrient ratios will be variable due to continuous uptake 

and release (nutrient cycling) with the possibility of external inputs from tributary flows. 

The concentrations and ratios in reservoirs have seasonal patterns and can have 

diurnal patterns at certain times of the year.   

Interestingly, the statistical analysis revealed that 2-MIB was directly related to high 

levels of TOC and TP in the tributary, as well as high levels of TOC, TP, NH4
+-N, 

manganese and low ratios of NH4
+:NO3

- and TN:TP in the reservoir. These findings 
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support the conclusions from other studies (Harris et al., 2016; Perkins et al., 2019). 

However, a detailed investigation of the data led to the conclusion that seasonality 

(day of the year), year, weather and water column stability could be more important 

drivers of geosmin and 2-MIB production and release. NO3
--N, for example, had a 

strong seasonal pattern (high in winter, low in summer) regardless of geosmin and 2-

MIB events, but because geosmin and 2-MIB had a strong seasonal pattern 

themselves (low in winter, high in summer), they correlated with each other. In 

summer, calm weather can result in a stable water column and increased internal 

loading of PO4
3--P, NH4

+-N, manganese and other metals near the sediment, which 

will mix throughout the water column when a short weather event disrupts water 

column stability. In the data analysis, it was clear these periods of internal loading 

overlapped with high 2-MIB concentrations, which in this reservoir most likely 

originates at the sediment and might also be mixed to the water surface during mixing 

with PO4
3--P, NH4

+-N, etc. from internal loading. However, this process also happened 

independently in years without 2-MIB events. Geosmin was generally harder to 

correlate with nutrient concentrations and ratios and didn’t relate to internal loading as 

a direct predictor, but low TN:TP concentrations had the same relationship as with 2-

MIB, which could indicate the same seasonal effect.  

The findings from Chapter 3 and 4 posed questions with regards to nutrient ratios and 

concentrations as T&O drivers. It is possible that the nutrient ratios TN:TP, DIN:SRP 

and NH4
+:NO3

- are driven by seasonality and water column stability, and just happen 

to coincide with 2-MIB and geosmin events. During the summer, nitrogen 

concentrations are low and when there is a stable water column it causes internal 

loading of PO4
3--P and NH4

+-N from sediments, which might play a role in 2-MIB and 

geosmin production by cyanobacteria. When a short weather event (such as a storm) 

disrupts the water column, it may cause mixing of sediment compounds (including 2-

MIB) and trigger cyanobacterial cell lysis, which further increases geosmin and 2-MIB 

concentrations in the water column and also results in a low TN:TP, low DIN:SRP and 

high NH4
+:NO3

- ratio. The TN:TP ratio is possibly not the best indicator of T&O events, 

because the TP measurements capture intracellular particulate organic phosphorus 

within the phytoplankton biomass, which might cause TP to correlate with planktic 

phytoplankton blooms. 
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5.3 Hypothesis 3 

Hypothesis 3: Sensor data can provide an early warning for geosmin and 2-MIB 

events: Accepted. 

High-frequency water quality sensors were deployed in 2022-2023 in Reservoir 1 to 

identify short-term physical and biogeochemical indicators of geosmin and 2-MIB 

events that could be used as for early warning in the future. Moreover, insights from 

the nine years of laboratory data for this reservoir was used to pinpoint meteorological 

and biogeochemical processes that could potentially be measured as T&O predictors 

with in situ sensors.  

Nine years of manual data revealed that geosmin and 2-MIB have a different seasonal 

pattern; geosmin probably originates from planktic cyanobacteria and was detected 

earlier in the year than 2-MIB, which was likely produced by benthic cyanobacteria. 2-

MIB was related to low wind gusts and high water temperature, whilst geosmin 

patterns were better explained by high solar energy and low rainfall. The different 

species will require different growth stimuli, but it is also important to note that geosmin 

is more readily detected in the water column than 2-MIB, as geosmin inside planktic 

cells will be sampled, whilst 2-MIB first needs to be dispersed from the sediment before 

it can be measured. Yearly differences highlighted that fluctuating water levels can 

prevent benthic 2-MIB production, that tributary nutrient concentrations increased over 

the years (potentially causing increased eutrophication and legacy P storage) and that 

years with heatwaves have a high geosmin and 2-MIB risk (potentially more internal 

loading).  

Geosmin was harder to predict than 2-MIB within the dataset, which might be due to 

more explosive growth of planktic cyanobacteria and quicker compound degradation 

in the water by specialist bacteria. The data analysis in Chapter 4 suggested that high-

frequency sensors in this reservoir can be used to identify certain processes that relate 

to high geosmin and 2-MIB risk, but there is still insufficient knowledge about T&O 

specific drivers. To predict geosmin and 2-MIB events, it is important to investigate the 

underlying physical and chemical processes that could drive these events. However, 

biological processes that will ultimately determine growth of T&O producing 

cyanobacteria and T&O production, are much harder to predict. Nevertheless, using 

in situ sensors to predict T&O risk periods (not actual concentrations) is already 
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valuable for drinking water management, as preventative measures can be put in 

place.  

It is important to consider the lag-times between environmental drivers and geosmin 

and 2-MIB production, release and detection. An added complication is that the exact 

process of production and release of 2-MIB and geosmin is still uncertain; it might 

occur actively or passively, or both, and is potentially species-specific. Chapter 3 

microcosm experiments demonstrated that NH4
+-N as a source of N resulted in a 

quicker response in productivity, whilst NO3
--N as a N source had a four-day delayed 

growth response. In the reservoir, stable weather conditions and vertical stability had 

a 1-2 week lag-time with geosmin concentrations, whilst the same conditions had a 2-

3 week lag-time for 2-MIB concentrations. This can be related to slower growth of 

benthic species compared to planktic species or the added time required for benthic 

compounds to be dispersed into the water column through vertical mixing. The manual 

reservoir data couldn’t shed light on the influence of short-term changes in nutrients 

and the response in 2-MIB and geosmin, as laboratory measurements had limited data 

frequency. Unfortunately, the high-frequency sensor data did not provide this insight 

either, due to insensitivity of NH4
+-N and NO3

--N ion-selective electrodes and the NO3
-

-N pattern being uninformative due to its predictable seasonal pattern. Lag-time 

variability based on cyanobacterial species or nutrient fraction highlights the need for 

field studies that measure the nutrient fractions and geosmin and 2-MIB 

concentrations at a high frequency, at least daily.     

5.4 Recommendations for in situ sensor deployment strategies 

to provide early warning of T&O events 

In Reservoir 1, a number of factors could be measured in situ to help predict geosmin 

and 2-MIB events. The most important processes that can be measured with the 

mentioned high-frequency sensors are:  

A) Tributary nutrient inflows  

These could be measured at high precision with lab-on-chip analysers for NO3
--N and 

PO4
3--P, but the higher concentrations present in the tributary may mean that less 

sensitive ISEs (available for NH4
+-N and NO3

--N) could be used. Proxy measurements 

such as EC or turbidity might also be useful since they would indicate significant 

transport of pollutants into the reservoir.  
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B) Tributary discharge to calculate loading  

As well as sensors measuring when the tributary flows are active, the volume of 

ingress measured by a simple discharge monitor would also be valuable.  

C) Reservoir optimal growth conditions for phytoplankton  

This could be measured with water temperature & dissolved oxygen sensors. 

D) Reservoir vertical stability 

A simple temperature sensor string, deployed at different depths, could be a useful 

indicator of stability and note when vertical mixing (and potential sediment 

remobilisation) is occurring.  

E) Meteorological factors  

These factors are already measured by local weather stations; solar energy, air 

temperature, precipitation and wind speed are the most critical. Moreover, forecasts 

of meteorological factors with solar energy, air temperature, precipitation and wind 

speed, can help predict T&O events further in the future and provide an early-warning 

system.  

Some other interesting factors can be measured with sensors, but they are less critical: 

1) Reservoir chlorophyll a and phycocyanin, fluorescence sensors can only indicate 

planktic cyanobacteria; 2) Reservoir water level with sensors; 3) Reservoir light 

availability, with PAR sensor; 4) Reservoir NO3
--N (lab-on-chip), but manual samples 

can capture predictable seasonal pattern; 5) Reservoir internal loading, exact 

concentrations can be measured with NH4
+-N and/or PO4

3--P lab-on-chip analysers 

but can be estimated from reservoir vertical stability.  

When designing a high-frequency monitoring network to predict T&O events, the 

findings from Chapter 2 need to be considered to ensure the most effective design for 

the monitoring purpose. A thorough data analysis like Chapter 4, or a high-frequency 

test period can be done to help determine the optimal sensor suite and measurement 

time and frequency. It is therefore recommended that adaptive drinking water 

treatment management is considered in the context of the data available. 

Meteorological and physical parameters are most frequently and easily measured, 

thus better use of these data should be made, in conjunction with specific biological 
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and biogeochemical parameters in at-risk locations. Field observations and laboratory 

studies like the microcosm experiments in Chapter 3 could provide critical insight in 

the cyanobacterial species responsible for T&O production. This knowledge can add 

to the design of the optimal sensor suite, as certain parameters might be more 

appropriate and specific locations in the reservoir or tributaries should be targeted for 

monitoring. 

It needs to be carefully considered whether high-frequency sensors are indeed 

necessary. Sensors and analysers are expensive, they have limitations and require 

good maintenance practices to provide useful data. A cost-benefit analysis needs to 

be done which can help determine the priorities for a certain monitoring purpose. For 

a drinking water company, it could be best to outsource the sensor monitoring to a 

third-party, as this assures good maintenance practices and network design by sensor 

engineering experts. In that case, it is essential to ensure the monitoring network is 

designed for the right purpose and the data can feed directly into existing workflows. 

5.5 Reflections & conclusions  

The problem for most of the current T&O predicting models, is that many parameters 

are laboratory-based and are not measured frequently enough to accurately capture 

lag-times. It is also important to realise that the water quality parameters that can be 

used to predict geosmin and 2-MIB are site-specific and depend on the species of 

cyanobacteria which produces the compounds. Ideally, laboratory studies with 

isolated cultures from a reservoir should be conducted to provide insights in the exact 

growth stimuli (temperature, light availability, nutrients) and their potential geosmin 

and 2-MIB production. However, laboratory simulations cannot capture competition or 

co-occurrence with other bacteria or phytoplankton, which might be more important 

for geosmin and 2-MIB production than is presently acknowledged (Cook et al., 2020; 

Hooper, 2023a; Louati et al., 2015; Reinl et al., 2022). 

Seasonal occurrence and yearly severity of geosmin and 2-MIB has been investigated 

in this specific Welsh drinking water reservoir (Reservoir 1) and differences were 

explained based on species-traits and important changes in the catchment. These 

novel insights are critical to improve reservoir management to prevent T&O events 

and can highlight potential environmental drivers in other reservoirs. Moreover, 

meteorological and biogeochemical processes were critically assessed to determine 
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which elements were most important for geosmin and 2-MIB prediction, and which 

high-frequency sensors would be recommended. A high-frequency sensor network 

could effectively be combined with information from weather forecasts, as weather 

factors played an important role in driving these events, to potentially predict geosmin 

and 2-MIB in the near-future (a few weeks before) as an early warning. To aid 

management decisions at the water treatment plant, it is essential to create a decision 

diagram with critical threshold values based on high-frequency sensor data from the 

reservoir, weather data and forecasts (using catchment knowledge) and potentially 

include measured (laboratory) parameters at WTW (Kibuye et al., 2021).  

Moreover, investments should be made to better survey and identify benthic 

cyanobacteria species. In situ methods are available, such as fluoroprobes that use in 

situ fluorescence or ex situ molecular techniques (Gaget et al., 2022; Gaget et al., 

2020). Manual water sampling in this reservoir did not detect benthic species or even 

their DNA, even during periods of high 2-MIB production. Investing in molecular 

techniques will provide more insight in the biological processes (Almuhtaram et al., 

2021a; Devi et al., 2021) and can potentially highlight important species or co-

occurring groups within the phytoplankton or bacterial community that indicate 

geosmin and 2-MIB events.  

It is important to consider biogeochemical processes that occur at the sediment in 

catchment management decisions. Benthic cyanobacterial species can access 

sediment nutrients and legacy nutrients stored in sediment layers, especially in highly 

eutrophic lakes, can cause high productivity of benthic and planktic cyanobacteria 

even when nutrients in the water column are reduced (Paerl et al., 2020). Internal 

loading of PO4
3--P and NH4

+-N during periods of vertical stability can stimulate 

cyanobacterial growth, which emphasizes that catchment nutrient reductions alone 

may not be sufficient to tackle cyanobacterial blooms since the ecological legacy of 

past nutrient inputs still plays a role in present day biogeochemical cycling (Barcala et 

al., 2021). Climate change will most likely increase cyanobacterial growth in 

freshwaters (Paerl & Huisman, 2009), and it is important to appropriately monitor and 

manage drinking water sources to protect them for the future.  
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Appendix A 
Table S.1. Summary of mesocosm and laboratory studies that investigated the effect of nutrient concentrations and ratios on geosmin and/or 2-
MIB concentrations.    

Experiment type Time Variable 

parameters 

Manipulation T&O 

metabolite 

Result Reference 

Enclosures, 3000 

L limnocorrals 

open to 

atmosphere, 

sealed at bottom. 

Polymyctic and 

mesotrophic 

drinking water 

reservoir 

located in the 

southeastern 

United States 

(Alabama) with 8 

m depth 

7 weeks 

(50 days) 

28th 

October to 

16th 

December 

2013 

Nutrients TN, 

TP (NO3
- and 

PO4
3-) & 

TN:TP ratios 

The experimental layout 

consisted of three TN levels 

(300 ug/L (low), 1000 ug/L 

(medium), and 3000 ug/L (high)) 

with four TN:TP (2:1, 10:1, 33:1, 

and 90:1; by mass) 

manipulations. Nutrient 

additions were done with 

NaNO3
- and/or NaH2PO4

3-. 

Enclosures were fertilized 

weekly at a rate of 10% of the 

target TN and TP for each 

treatment to maintain TN and 

TN:TP over time 

Geosmin and 

2-MIB, whole 

water sample 

They observed over a 700% 

increase in 2-MIB when both 

nitrogen and phosphorus 

were added, while adding 

only one had no significant 

effect. 2-MIB correlated more 

with diatom biovolume than 

with cyanobacteria. Diatoms 

increased in abundance 

throughout the experiment, 

while cyanobacteria declined 

in all treatments. 

Olsen et al. 

(2016a) 

Enclosures, 3800 

L limnocorrals 

(diameter = 1.18 

m, depth = 3.5 

m), open to 

atmosphere, 

sealed at bottom. 

Polymyctic and 

mesotrophic 

drinking water 

reservoir 

28 days 

(24th July 

2014 to 

21st 

August 

2014) 

Nutrients TN, 

TP (NO3
- and 

PO4
3-) & 

Vertical 

mixing 

Four treatments were: 

(treatment A) control (ambient 

nutrients; no mixing), (treatment 

B) mixing only (ambient 

nutrients), (treatment C) nutrient 

addition only (no mixing), and 

(treatment D) mixing and 

nutrient addition. Target TN 

(1,000 μg/L) and TP (100 μg/L) 

was used in nutrient addition 

enclosures and spikes were 

Geosmin and 

2-MIB, whole 

water sample 

2-MIB and geosmin 

increases occurred at 

different times during the 

experiment. Fertilization with 

phosphorus and nitrogen 

quickly boosted geosmin 

regardless of mixing, which 

was linked to cyanobacterial 

biovolume, but geosmin 

levels dropped below 20 ng/L 

by the end of the experiment. 

Olsen et al. 

(2016b) 
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located in the 

southeastern 

United States 

(Alabama) with 8 

m depth 

done with NaNO3
- and 

NaH2PO4
3-. 

In contrast, 2-MIB started low 

and peaked later, influenced 

by fertilization and mixing, 

and was also associated with 

cyanobacteria. 

Enclosures, 7.5 m 

deep, 1m^2 

limnocorrals, 

open to 

atmosphere, 

sealed at bottom. 

Polymyctic and 

mesotrophic 

drinking water 

reservoir located 

in the 

southeastern 

United States 

(Alabama) with 8 

m depth 

3 weeks 

(26th July 

2015 to 

20th 

August 

2015) 

Depth and 3 

fertilizer 

treatments 

(none, nitrate 

based and 

urea based) 

Three fertilization treatments; (1) 

control (no nutrients), (2) nitrate-

based, and (3) urea-based 

fertilizer) on chlorophyll a and 

phytoplankton biovolume as well 

as 2-MIB and geosmin, 

measured at four depths: 1.5, 3, 

5, and 7 m across 3 weeks. 

“Nitrate” and “urea” treatment 

enclosures were fertilized with 

sodium phosphate to increase 

TP to 100 μgl−1 and with either 

sodium nitrate or urea to 

increase TN to 1000 μgl−1.  

Geosmin and 

2-MIB, whole 

water sample 

The data suggest that the 

positive response of 

phytoplankton (e.g., 

cyanobacteria, such as 

Oscillatoria species) to the 

fertilization treatments is 

likely responsible for 

increased 2-MIB, while 

geosmin concentrations may 

be a function of 

actinobacteria-mediated 

decomposition in the 

hypolimnion. 

Chislock et 

al. (2021) 

18 microcosms 

under controlled 

conditions, using 

natural biofilm 

suspension form 

Ter river (NE, 

Spain) and flow 

through flumes. 

21 days Nutrient 

ratios 

(DIN:SRP) 

and nutrient 

concentration

s (high and 

low) 

Six treatments were set crossing 

three DIN:SRP ratios (A=4:1, 

B=16:1, C=64:1) with two 

nutrient concentrations (low and 

high). 

Geosmin, 

intracellular 

and 

extracellular 

concentration

s  

They found that a low 

DIN:SRP ratio and a 

relatively high overall nutrient 

concentration (12 ug 

Ammonium-N, 110 ug 

Nitrate-N, 4 ug Phosphate-P)  

Espinosa et 

al. (2021) 
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10 outdoor 3 m 

long flumes with a 

continuous water 

supply from the 

Ter river 

(Catalonia, NE 

Spain) 

February–

April, 2019 

Light and 

water flow 

Two light intensities were 

established: natural light (515 ± 

57 µmol photons m-2 s-1) and 

light reduced to 80% (107 ± 38 

µmol photons m-2 s-1), combined 

with five gradual water flows 

from 0.09 to 1.10 L/s (F1 = 0.09 

L/s; F2 = 0.18 L/s; F3 = 0.36 L/s; 

F4 = 0.72 L/s; and F5 = 1.10 

L/s). 

Geosmin, 

whole water 

sample 

Benthic cyanobacteria 

produced the highest 

geosmin concentrations in 

low light conditions and low 

water flow.  

Espinosa et 

al. (2020) 

Culture 

experiments with 

3 liter flasks that 

contained 900 ml 

of the culture of 

geosmin-

producing 

Anabaena sp. 

(isolated from 

Lake Ogletree 

1991) 

25 days Light, 

temperature 

and nutrient 

ratios (NO3
--

N, NH4
+-N 

and PO4
3--P) 

For temperature studies (stable 

17 µmol photons m-2 s-1) they 

used 15, 20, 25 and 30 degrees 

C. For studies on light intensity 

effects, cultures (stable 20 

degrees C) had 5, 17, 27 and 42 

µmol photons m-2 s-1 incident 

light. Nutritional studies (stable 

17 µmol photons m-2 s-1 and 20 

degrees C) were spiked with 

varying concentrations of 

NH4
+Cl-N (3, 26, 105, 328, 472), 

NaNO3
--N (2, 25, 124, 247 and 

494 ug/L) or HPO4
3--P (2, 20, 

59, 118, 235, 470, 941 ug/L) 

Geosmin, 

whole water 

sample 

In laboratory conditions with 

Anabaena sp., geosmin and 

chlorophyll a (Chl-a) 

concentrations increased with 

higher light intensity at 20°C. 

Beyond that, more light 

favored geosmin production 

over Chl-a, while higher 

temperatures promoted Chl-a 

instead of geosmin. Geosmin 

production was also linked to 

high Ammonium-N, low 

Nitrate-N, and low N:P ratios, 

which enhanced both growth 

and geosmin production. 

Saadoun et 

al. (2001) 

Culture 

experiments in 50 

ml flasks 

containing 30 ml 

of culture with 

Lyngbya 

42 days Light and 

temperature 

For the temperature treatment, 

the cultures were incubated at 

an illumination of 20 µmol 

photons m-2 s-1 under 

temperatures of 10, 25 and 

35°C. For the light intensity 

treatment, the cultures were 

Geosmin, 

whole water 

sample 

They found that a low 

temperature together with a 

low light intensity stimulated 

the production of geosmin by 

Lyngbya kuetzingii, probably 

because Chl-a production 

Zhang et al. 

(2009) 
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kuetzingii (UTEX-

1547) 

incubated at 25°C under white-

fluorescent lamps at light 

intensities of 0, 10, 20 and 75 

µmol photons m-2 s-1. 

and metabolism were 

inhibited. 

Culture 

experiments in 

250 mL flasks 

containing a 

mixed culture of 

2-MIB-producing 

Pseudanabaena 

sp. dqh15 and 

geosmin-

producing 

Anabaena 

ucrainica CHAB 

2155 

16 days Light and 

temperature 

Cultures were incubated at 10 

°C, 25°C, and 35 °C under 30 

µmol photons m-2 s-1 (12:12 

light/dark) for the temperature 

treatment. Another series of 

cultures was incubated at 10, 

30, and 60 µmol photons m-2 s-1 

under 25 °C for the light 

treatment.  

Geosmin and 

2-MIB, whole 

water sample 

They found that growth-

inhibiting temperatures and 

light intensities might 

stimulate cyanobacteria to 

produce geosmin or 2-MIB. 

The maximum geosmin 

production by Anabaena 

ucrainica was found at 10 °C 

and 60 µmol photons m-2 s-1 

and the maximum 2-MIB 

production by 

Pseudanabaena sp. at 35 °C 

and 60 µmol photons m-2 s-1.  

Wang and 

Li (2015) 

A 96-well plate 

PhotoBiobox 

system with 0.2 

ml cultures of 

Anabaena sp. 

NIER, Anabaena 

sp. Chusori, and 

Anabaena sp. 

FACHB-1384 

60 hours Light and 

temperature 

A whole range of temperatures 

and light intensities was tested 

(20-200 µmol photons m-2 s-1 

and 16-28 degrees C) 

Growth of 

cyanobacteri

a (Optical 

Density) 

In this study, geosmin-

producing Anabaena strains 

were better adapted to lower 

temperature (<20 °C) but 

were sensitive to high light 

intensity. However, 2-MIB-

producing Anabaena grew 

well at a higher light intensity 

(>100 µmol photons m-2 s-1) 

but was sensitive to low 

temperature. 

Oh et al. 

(2017) 
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250 ml flasks with 

160 ml cultures of 

Anabaena sp. 

NIER, Anabaena 

sp. Chusori 

12 days Nitrate 

concentration

s 

A range of nitrogen 

concentrations (Stable Light 

intensity of 50 µmol photons m-2 

s-1 and temperature of 25o C) as 

follows: N 250 (original BG11 

nitrate condition, 250 mg/l), N 

2.5 (BG11 100× diluted nitrate 

condition, 2.5 mg/l), and N- 

(nitrate-free condition). 

Geosmin, 

intracellular 

and 

extracellular 

concentration

s  

Despite the decrease in cell 

number, a high geosmin 

concentration was observed 

even after 8 days of 

cultivation in high nitrogen 

concentration. The geosmin 

amount per cell, however, 

was not affected by nitrate 

concentrations in batch 

cultivation 

Oh et al. 

(2017) 

Chemostat with 1 

Liter flasks with 

800 ml cultures of 

Anabaena sp. 

NIER and 2-MIB-

producer 

Planktothrix sp. 

FACHB-1374 

Until 

steady 

state was 

reached 

Phosphorus 

limitation 

Chemostat reactor dilution rates 

(0.10 d-1, 0.19 d-1, 0.25 d-1, 

0.33 d-1) with stable 25 degrees 

C and 80 µmol photons m-2 s-1 

Geosmin and 

2-MIB, 

intracellular 

and 

extracellular 

concentration

s 

The geosmin amount per cell 

decreased at lower dilution 

rates (higher P-limitation), but 

2-MIB per cell was not 

affected by P-limitation 

Oh et al. 

(2017) 

500 ml flasks with 

200 ml mixed 

culture of 

Dolichospermum 

smithii NIES-824 

28 days Nitrate 

concentration

s 

Elevated N loading with normal 

TN/TP ratio (13:1, by mass) by 

adding twice the amount of 

nitrate-N (Ca(NO3
-)2·4H2O and 

KNO3
-) (Stable CT medium with 

TN/TP ratio of 8.1) 

Geosmin, 

intracellular 

and 

extracellular 

concentration

s  

Elevated nitrogen levels 

increased Chl-a production 

but reduced geosmin 

synthesis in D. smithii NIES-

824, suggesting a 

competitive relationship 

between Chl-a and geosmin 

production. Over 90% of 

geosmin remained 

intracellular during 28 days of 

cultivation. Geosmin 

synthase gene (geoA) 

expression was constant but 

decreased with higher 

Shen et al. 

(2020) 
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nitrogen concentrations 

during the exponential growth 

phase. The decline in geoA 

expression during the cell 

decline phase indicates a 

close link between geoA 

transcription, cell activity, and 

isoprenoid production. 
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Appendix B 

 

Figure S.1. Difference between Skalar San++ and GalleryTM instrument for measuring NH4
+-

N (mg/L). 

Table S.2. Comparison of different treatments of water samples in nutrient analysis 

Device Sample NH4
+-N 

(mg/L) 

TOxN 

(mg/L) 

NO2
--N 

(mg/L) 

NO3
--N 

(mg/L) 

SRP 

(mg/L) 

Gallery WR1 freezer 0.1328 0.1497 0.0129 0.1368 0.0183 

Skalar WR1 fridge 0.154 0.199 0.006 0.193 0 

Skalar WR1 freezer 0.123 0.217 0.005 0.212 0 

       

Gallery WR2 freezer 0.0441 0.8404 0.0028 0.8377 0.0092 

Skalar WR2 fridge 0.046 0.882 -0.004 0.886 0.003 

Skalar WR2 freezer 0.046 0.911 -0.005 0.916 0.001 

 

Table S.3. Flasks Ctrl3, A2 and C1 area under the curve results for total carbon (mmol) in 
minutes for manual oxygen monitoring with a 04/07 start as well as a 08/07 start, and the 
continuous oxygen monitoring with a 07/07 start. 
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Table S.4. Average nutrient % change for each treatment between start and end of the experiment (Table A, B and C), average concentration of 
2-MIB and geosmin (ng/L) produced (positive) or degraded (negative) between start and end of the experiment (Table D), 2-MIB and geosmin 
concentrations (ng/L) in start sample (sampled three times) and flasks at day 22 (Table E), as well as average nutrient uptake rate calculated in 
mg/day (Table F). 

A TN % change TDN % change PON % change NH4
+-N % change DON % change NO3

--N % change 

Treatment Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

ctrl -17.81 16.43 -39.04 12.73 125.52 184.30 -3.80 35.26 -20.35 31.21 -78.92 11.72 

a -17.74 6.65 -47.44 16.21 348.27 145.27 -70.25 8.72 -27.56 19.73 -50.87 18.67 

b -28.18 2.46 -82.38 0.61 584.59 61.93 -75.67 7.61 -39.66 2.11 -96.75 1.15 

c -13.47 22.25 -80.74 0.51 639.26 319.13 -95.59 0.21 -34.55 23.29 -91.46 5.76 

d -18.54 5.80 -48.96 5.81 727.73 309.33 -71.98 1.92 -40.99 10.36 -50.22 6.64 

e -19.15 6.37 -65.90 5.57 609.37 384.18 -71.25 3.26 -47.71 8.92 -71.93 5.97 

f -20.68 14.61 -71.82 9.39 395.68 201.23 -94.82 0.75 -41.88 11.11 -67.22 23.42 

 

B TP % change TDP % change PP % change SRP % change DOP % change 

Treatment Mean SD Mean SD Mean SD Mean SD Mean SD 

ctrl 3.80 45.63 -52.63 4.56 31.13 67.12 NA NA -39.05 3.30 

a -11.90 5.68 -63.59 23.17 635.26 234.27 -64.35 23.60 -50.37 16.39 

b -17.26 14.13 -90.35 8.32 559.65 106.23 -93.76 8.44 -48.91 8.46 

c -2.75 26.10 -91.53 9.37 624.55 174.19 -94.51 8.85 -57.03 12.94 

d -16.78 13.86 -95.65 0.04 349.03 104.70 -100.00 0.00 -61.03 4.50 

e -5.79 19.05 -88.79 1.26 89.93 38.32 -100.00 0.00 -55.62 7.51 

f -9.77 34.68 -87.60 1.24 45.23 72.94 -100.00 0.00 -48.15 0.00 

 

C DOC % change 

Treatment Mean SD 

ctrl 0.54 15.96 
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a 20.15 35.40 

b 48.40 17.83 

c 29.35 9.46 

d 55.48 20.61 

e 4.06 18.08 

f 47.74 42.73 

 

D 2-MIB (ng/L) Geosmin (ng/L) 

Treatment Mean SD Mean SD 

ctrl -20.0 17.0 2.8 3.5 

a 164.7 95.4 3.7 4.3 

b 251.4 213.9 12.8 16.9 

c 64.7 99.0 2.9 5.0 

d 521.4 551.8 3.5 4.9 

e 17.4 41.0 2.9 6.7 

f 6.7 41.7 38.8 58.1 

 

E 
Start 

1 

Start 

2 

Start 

3 Ctrl1 Ctrl2 Ctrl3 A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3 

2-MIB 

(ng/L) 50 43 43 16 15 45 310 120 200 250 530 110 82 28 220 310 1200 190 40 110 38 25 100 31 

Geosmin 

(ng/L) 5 3.8 4.4 3.3 8.4 10 6.3 13 4.9 12 36 3.5 3.8 13 5.1 7.5 13 3.3 4.4 15 2.6 4.6 110 15 

 

F 
NH4

+-N uptake 

(mg/day) 

DON uptake (mg/day) NO3
--N uptake 

(mg/day) 

SRP uptake 

(mg/day) 

DOP uptake 

(mg/day) 

Treatment Mean SD Mean SD Mean SD Mean SD Mean SD 
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ctrl 6.83E-04 1.06E-03 4.49E-03 3.79E-03 8.86E-03 1.03E-03 NA NA 2.40E-04 2.16E-05 

a 3.91E-03 1.13E-03 1.21E-02 5.25E-03 1.93E-01 5.14E-02 5.78E-02 1.65E-02 2.73E-03 8.66E-04 

b 4.96E-03 8.39E-04 8.71E-03 5.54E-04 6.06E-02 8.78E-04 1.58E-02 1.13E-03 7.78E-04 1.18E-04 

c 3.01E-02 5.34E-04 7.74E-03 4.81E-03 2.95E-02 3.12E-03 1.42E-02 1.19E-03 8.64E-04 1.45E-04 

d 2.88E-03 3.66E-04 2.01E-02 7.76E-03 2.00E-01 2.36E-02 5.40E-03 5.95E-05 5.83E-04 6.53E-05 

e 4.37E-03 3.13E-04 1.06E-02 2.32E-03 4.73E-02 4.49E-03 8.01E-04 4.48E-05 3.75E-04 1.15E-04 

f 2.95E-02 9.75E-04 8.77E-03 2.86E-03 2.27E-02 6.95E-03 7.40E-04 1.35E-04 2.95E-04 1.71E-08 
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Figure S.2. Concentrations of DOC (mg/L) at the start (day 0) and the end of the experiment 
(day 22) averaged by treatment, with standard deviation indicated by error bars. 

Table S.5. 16S rRNA indicator species result. 
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Table S.6. rbcL indicator species result 
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Appendix C 
TOC 

Figure S.3. TOC 2022 rate of change, compared with 2-MIB and geosmin concentrations (ng/L). 
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Figure S.4. DOC 2022 rate of change, compared with 2-MIB and geosmin concentrations (ng/L).  

DOC 
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Figure S.5. NO3

--N 2022 rate of change, compared with 2-MIB and geosmin concentrations (ng/L).  

NO3
--N 
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Figure S.6. NH4

+-N 2022 rate of change, compared with 2-MIB and geosmin concentrations (ng/L). 

NH4
+-N 
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Figure S.7. TP 2022 rate of change, compared with 2-MIB and geosmin concentrations (ng/L). 

TP 
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 PO4
3--P 

Figure S.8. PO4
3--P 2022 rate of change, compared with 2-MIB and geosmin concentrations (ng/L). 
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Table S.7. Correlations and simple GAMs on all data. 

Predictor Correlation 2-

MIB 

Correlation 

Geosmin 

algaetot 0.18 0.15 

alkalinity 0.21 0.02 

aluminiumdis -0.32 0.07 

aluminiumtot -0.13 -0.27 

avg_temp_1week_prior 0.44 0.15 

avg_temp_2weeks_prior 0.36 0.11 

avg_temp_3weeks_prior 0.45 0.05 

avg_temp_4weeks_prior 0.45 0.03 

avg_tempdiff_1week_prior 0.15 0.24 

avg_tempdiff_2weeks_prior 0.21 0.31 

avg_tempdiff_3weeks_prior 0.22 0.17 

avg_tempdiff_4weeks_prior 0.27 0.21 

avg_winddir_diff_1week_prior 0.09 0.17 

avg_winddir_diff_2weeks_prior -0.07 0.21 

avg_winddir_diff_3weeks_prior 0.13 0.16 

avg_winddir_diff_4weeks_prior 0.10 0.03 

avg_windspeed_1week_prior -0.23 -0.24 

avg_windspeed_2weeks_prior -0.32 -0.14 

avg_windspeed_3weeks_prior -0.22 -0.04 

avg_windspeed_4weeks_prior -0.28 -0.14 

bluegreenalgae 0.11 0.04 

chla 0.16 0.03 

chloride 0.55 0.21 

cloudcover -0.01 -0.02 

cloudcover_lag_lag_1 -0.12 0.01 

cloudcover_lag_lag_2 -0.04 -0.05 

cloudcover_lag_lag_3 -0.11 -0.12 

cloudcover_lag_lag_4 -0.15 -0.20 

cloudcover_lag_lag_5 0.01 0.01 

cloudcover_lag_lag_6 -0.12 0.07 

cloudcover_lag_lag_7 -0.02 0.12 

conductivity 0.22 0.21 

dinsrp_ratio -0.45 -0.18 

dintp_ratio -0.53 -0.28 

doc 0.45 0.01 

doc_trib 0.59 0.12 

DOY 0.35 0.06 

geosmin 0.36 1.00 

greenalgae 0.18 0.24 

iron 0.27 -0.11 

irondis 0.42 0.24 
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manganese 0.42 0.05 

manganesedis 0.51 0.32 

max_solarenergy_1week_prior 0.27 0.31 

max_solarenergy_2weeks_prior 0.35 0.32 

max_solarenergy_3weeks_prior 0.40 0.30 

max_solarenergy_4weeks_prior 0.42 0.28 

max_solarradiation_1week_prior 0.27 0.31 

max_solarradiation_2weeks_prior 0.35 0.32 

max_solarradiation_3weeks_prior 0.40 0.30 

max_solarradiation_4weeks_prior 0.42 0.29 

max_temp_1week_prior 0.37 0.16 

max_temp_2weeks_prior 0.41 0.16 

max_temp_3weeks_prior 0.44 0.09 

max_temp_4weeks_prior 0.42 0.07 

max_tempdiff_1week_prior 0.08 0.13 

max_tempdiff_2weeks_prior 0.15 0.30 

max_tempdiff_3weeks_prior 0.24 0.18 

max_tempdiff_4weeks_prior 0.21 0.14 

max_winddir_diff_1week_prior 0.18 0.19 

max_winddir_diff_2weeks_prior -0.01 0.19 

max_winddir_diff_3weeks_prior 0.17 0.14 

max_winddir_diff_4weeks_prior 0.15 0.06 

max_windgust_1week_prior -0.33 -0.10 

max_windgust_2weeks_prior -0.44 -0.07 

max_windgust_3weeks_prior -0.30 0.07 

max_windgust_4weeks_prior -0.40 -0.07 

max_windspeed_1week_prior -0.27 -0.22 

max_windspeed_2weeks_prior -0.35 -0.17 

max_windspeed_3weeks_prior -0.25 0.03 

max_windspeed_4weeks_prior -0.32 -0.15 

mib 1.00 0.36 

min_temp_1week_prior 0.39 0.07 

min_temp_2weeks_prior 0.48 0.02 

min_temp_3weeks_prior 0.40 -0.03 

min_temp_4weeks_prior 0.45 -0.02 

min_windspeed_1week_prior -0.09 -0.17 

min_windspeed_2weeks_prior -0.13 -0.07 

min_windspeed_3weeks_prior -0.17 -0.07 

min_windspeed_4weeks_prior -0.09 -0.10 

nh4n 0.08 0.10 

nh4n_trib 0.09 0.10 

nh4no3_ratio 0.34 0.14 

nh4no3_ratio_trib 0.13 0.10 

no2n -0.26 0.05 
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no2n_trib 0.39 0.09 

no3n -0.53 -0.14 

no3n_trib -0.33 -0.27 

otheralgaetot -0.04 -0.13 

pH 0.18 0.06 

po4p -0.18 -0.19 

po4p_trib 0.39 0.15 

precip 0.05 -0.11 

precip_lag_lag_1 -0.14 -0.16 

precip_lag_lag_2 -0.09 -0.03 

precip_lag_lag_3 -0.03 -0.19 

precip_lag_lag_4 -0.07 -0.27 

precip_lag_lag_5 -0.01 -0.13 

precip_lag_lag_6 -0.16 -0.21 

precip_lag_lag_7 -0.02 -0.06 

silicate -0.09 -0.14 

solarenergy 0.18 0.29 

solarenergy_lag_lag_1 0.19 0.28 

solarenergy_lag_lag_2 0.26 0.27 

solarenergy_lag_lag_3 0.23 0.31 

solarenergy_lag_lag_4 0.22 0.37 

solarenergy_lag_lag_5 0.18 0.28 

solarenergy_lag_lag_6 0.31 0.21 

solarenergy_lag_lag_7 0.23 0.25 

solarradiation 0.16 0.28 

solarradiation_lag_lag_1 0.17 0.28 

solarradiation_lag_lag_2 0.25 0.27 

solarradiation_lag_lag_3 0.22 0.30 

solarradiation_lag_lag_4 0.22 0.36 

solarradiation_lag_lag_5 0.19 0.29 

solarradiation_lag_lag_6 0.30 0.21 

solarradiation_lag_lag_7 0.22 0.25 

sulphate -0.56 -0.22 

sum_precip_1week_prior -0.10 -0.30 

sum_precip_2weeks_prior -0.20 -0.12 

sum_precip_3weeks_prior -0.11 -0.19 

sum_precip_4weeks_prior -0.16 -0.14 

sum_solarenergy_1week_prior 0.26 0.32 

sum_solarenergy_2weeks_prior 0.35 0.33 

sum_solarenergy_3weeks_prior 0.40 0.30 

sum_solarenergy_4weeks_prior 0.43 0.29 

sum_solarradiation_1week_prior 0.26 0.32 

sum_solarradiation_2weeks_prior 0.35 0.33 

sum_solarradiation_3weeks_prior 0.40 0.30 
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sum_solarradiation_4weeks_prior 0.43 0.29 

temp 0.35 0.13 

temp_lag_lag_1 0.34 0.12 

temp_lag_lag_2 0.39 0.17 

temp_lag_lag_3 0.42 0.18 

temp_lag_lag_4 0.40 0.12 

temp_lag_lag_5 0.43 0.12 

temp_lag_lag_6 0.44 0.10 

temp_lag_lag_7 0.39 0.15 

tempdiff 0.13 0.18 

tempdiff_lag_lag_1 0.07 0.12 

tempdiff_lag_lag_2 0.12 0.12 

tempdiff_lag_lag_3 0.07 0.20 

tempdiff_lag_lag_4 0.10 0.20 

tempdiff_lag_lag_5 0.06 0.13 

tempdiff_lag_lag_6 0.19 0.11 

tempdiff_lag_lag_7 0.08 0.03 

tempdiff_max_min_1week_prior -0.05 0.05 

tempdiff_max_min_2weeks_prior -0.01 0.20 

tempdiff_max_min_3weeks_prior 0.06 0.13 

tempdiff_max_min_4weeks_prior 0.03 0.13 

tempmax 0.37 0.16 

tempmax_lag_lag_1 0.33 0.14 

tempmax_lag_lag_2 0.39 0.18 

tempmax_lag_lag_3 0.41 0.22 

tempmax_lag_lag_4 0.38 0.16 

tempmax_lag_lag_5 0.43 0.16 

tempmax_lag_lag_6 0.44 0.13 

tempmax_lag_lag_7 0.43 0.15 

tempmin 0.27 0.01 

tempmin_lag_lag_1 0.31 0.01 

tempmin_lag_lag_2 0.30 0.12 

tempmin_lag_lag_3 0.39 0.12 

tempmin_lag_lag_4 0.36 0.07 

tempmin_lag_lag_5 0.42 0.08 

tempmin_lag_lag_6 0.42 0.07 

tempmin_lag_lag_7 0.36 0.08 

tn -0.54 -0.15 

tntp_ratio -0.51 -0.32 

toc 0.67 0.26 

toc_trib 0.59 0.11 

toxn -0.54 -0.14 

toxn_trib -0.32 -0.27 

toxnsrp_ratio -0.44 -0.15 
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tp 0.13 0.11 

tp_trib 0.39 0.15 

turbidity 0.04 -0.27 

winddir -0.08 -0.04 

winddir_diff -0.09 -0.06 

winddir_diff_lag_lag_1 -0.04 0.05 

winddir_diff_lag_lag_2 0.00 0.10 

winddir_diff_lag_lag_3 -0.01 0.01 

winddir_diff_lag_lag_4 0.10 0.01 

winddir_diff_lag_lag_5 0.01 0.13 

winddir_diff_lag_lag_6 0.08 0.21 

winddir_diff_lag_lag_7 -0.06 0.01 

winddir_lag_lag_1 -0.04 -0.10 

winddir_lag_lag_2 0.04 0.00 

winddir_lag_lag_3 -0.01 -0.12 

winddir_lag_lag_4 -0.04 -0.14 

winddir_lag_lag_5 -0.09 -0.22 

winddir_lag_lag_6 0.09 -0.03 

winddir_lag_lag_7 0.03 -0.04 

windgust -0.26 -0.14 

windgust_lag_lag_1 -0.15 -0.12 

windgust_lag_lag_2 -0.26 -0.04 

windgust_lag_lag_3 -0.20 -0.06 

windgust_lag_lag_4 -0.23 -0.07 

windgust_lag_lag_5 -0.15 -0.12 

windgust_lag_lag_6 -0.30 -0.15 

windgust_lag_lag_7 -0.26 -0.10 

windspeed -0.23 -0.20 

windspeed_lag_lag_1 -0.08 -0.15 

windspeed_lag_lag_2 -0.17 -0.14 

windspeed_lag_lag_3 -0.06 -0.09 

windspeed_lag_lag_4 -0.09 -0.12 

windspeed_lag_lag_5 -0.07 -0.13 

windspeed_lag_lag_6 -0.18 -0.16 

windspeed_lag_lag_7 -0.10 -0.11 

year 0.51 0.16 

 
Table S.8. GAM all results Geosmin on all data. 

Parameter P 
Value 

R2 Adj Deviance 
Explained 

Num 
Observations 

DOY 0.002 0.119 0.139 141 

precip 0.485 -0.003 0.004 141 

tempmax 0.040 0.047 0.064 141 

tempmin 0.534 -0.005 0.003 141 

temp 0.089 0.038 0.056 141 
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windgust 0.120 0.011 0.017 141 

windspeed 0.019 0.031 0.037 141 

winddir 0.773 -0.007 0.001 141 

cloudcover 0.342 -0.001 0.006 141 

solarradiation 0.000 0.091 0.093 141 

solarenergy 0.000 0.091 0.093 141 

sum_solarenergy_2weeks_prior 0.000 0.093 0.102 141 

min_temp_2weeks_prior 0.249 0.022 0.034 141 

max_windgust_2weeks_prior 0.212 0.002 0.010 141 

sum_precip_1week_prior 0.000 0.097 0.105 141 

avg_windspeed_1week_prior 0.000 0.057 0.078 141 

pH 0.001 0.122 0.153 136 

turbidity 0.002 0.063 0.093 136 

toc 0.005 0.054 0.064 117 

doc 0.000 0.146 0.252 90 

tn 0.005 0.071 0.094 140 

nh4n 0.257 0.002 0.009 139 

no3n 0.005 0.071 0.093 140 

tp 0.272 0.002 0.013 92 

po4p 0.034 0.022 0.042 93 

manganesedis 0.010 0.084 0.087 76 

manganese 0.589 -0.006 0.002 137 

chla 0.644 -0.006 0.001 139 

algaetot 0.707 -0.007 0.001 140 

greenalgae 0.074 0.036 0.027 140 

bluegreenalgae 0.338 -0.002 0.006 140 

otheralgaetot 0.439 -0.002 0.004 138 

tntp_ratio 0.002 0.130 0.168 92 

nh4no3_ratio 0.121 0.009 0.017 139 

geosmin 0.000 0.998 0.997 141 

mib 0.000 0.136 0.126 141 

toc_trib 0.377 -0.004 0.011 68 

nh4n_trib 0.488 -0.007 0.005 85 

no3n_trib 0.004 0.073 0.092 85 

tp_trib 0.264 0.001 0.018 66 

po4p_trib 0.223 0.001 0.020 66 

nh4no3_ratio_trib 0.420 -0.006 0.007 85 

year 0.000 0.329 0.341 141 

conductivity 0.000 0.248 0.283 77 

 

Table S.9. GAM all results 2-MIB on all data. 

Parameter P 
Value 

R2 Adj Deviance 
Explained 

Num 
Observations 

DOY 0.000 0.226 0.247 141 
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precip 0.415 -0.001 0.004 141 

tempmax 0.000 0.109 0.131 141 

tempmin 0.000 0.095 0.113 141 

temp 0.000 0.126 0.149 141 

windgust 0.002 0.065 0.063 141 

windspeed 0.004 0.048 0.051 141 

winddir 0.558 -0.004 0.002 141 

cloudcover 0.644 -0.005 0.001 141 

solarradiation 0.026 0.028 0.031 141 

solarenergy 0.026 0.029 0.032 141 

sum_solarenergy_2weeks_prior 0.000 0.117 0.109 141 

min_temp_2weeks_prior 0.000 0.221 0.216 141 

max_windgust_2weeks_prior 0.000 0.188 0.188 141 

sum_precip_1week_prior 0.121 0.011 0.016 141 

avg_windspeed_1week_prior 0.000 0.089 0.117 141 

pH 0.038 0.042 0.059 136 

turbidity 0.941 -0.007 0.000 136 

toc 0.000 0.458 0.467 117 

doc 0.000 0.417 0.421 90 

tn 0.000 0.285 0.286 140 

nh4n 0.384 -0.002 0.005 139 

no3n 0.000 0.279 0.277 140 

tp 0.254 0.005 0.013 92 

po4p 0.001 0.125 0.178 93 

manganesedis 0.000 0.219 0.177 76 

manganese 0.000 0.297 0.294 137 

chla 0.227 0.001 0.009 139 

algaetot 0.254 0.000 0.008 140 

greenalgae 0.108 0.026 0.019 140 

bluegreenalgae 0.136 0.013 0.015 140 

otheralgaetot 0.539 -0.005 0.002 138 

tntp_ratio 0.000 0.286 0.252 92 

nh4no3_ratio 0.002 0.118 0.102 139 

geosmin 0.000 0.138 0.104 141 

mib 0.000 0.972 0.944 141 

toc_trib 0.000 0.454 0.478 68 

nh4n_trib 0.805 -0.002 0.009 85 

no3n_trib 0.007 0.136 0.138 85 

tp_trib 0.000 0.395 0.427 66 

po4p_trib 0.000 0.376 0.372 66 

nh4no3_ratio_trib 0.352 0.033 0.036 85 

year 0.000 0.521 0.535 141 

conductivity 0.060 0.025 0.039 77 
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Figure S.9. Full GAM Geosmin residuals. 

Table S.10. Full GAM Geosmin model parameters. 
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Table S.11. k.check output for full GAM Geosmin, k’ is k-1 (k = smoothing parameter), edf 
should be below k’ to prevent over or underfitting. 

 

  

Figure S.10. Full GAM Geosmin autocorrelation (ACF) and partial autocorrelation (pACF). 
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Figure S.11. Full GAM 2-MIB residuals. 

Table S.12. Full GAM 2-MIB model parameters. 
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Table S.13. k.check output for full GAM 2-MIB, k’ is k-1 (k = smoothing parameter), edf 
should be below k’ to prevent over or underfitting. 

 

 

Figure S.12. Full GAM 2-MIB autocorrelation (ACF) and partial autocorrelation (pACF). 

Table S.14. Correlations between environmental parameters and 2-MIB and geosmin, within 
the sensor deployment period (2022-2023). 

Predictor Correlation 

2-MIB 

Correlation 

Geosmin 

atemp_max 0.57 0.38 

atemp_max_max_1week_prior 0.69 0.43 

atemp_max_max_2weeks_prior 0.72 0.46 

atemp_max_max_3weeks_prior 0.78 0.56 

atemp_max_max_4weeks_prior 0.74 0.48 

atemp_mean 0.66 0.38 

atemp_mean_avg_1week_prior 0.75 0.43 

atemp_mean_avg_2weeks_prior 0.79 0.47 

atemp_mean_avg_3weeks_prior 0.79 0.49 

atemp_mean_avg_4weeks_prior 0.70 0.43 

atemp_median 0.66 0.38 
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atemp_median_median_1week_prior 0.72 0.41 

atemp_median_median_2weeks_prior 0.78 0.47 

atemp_median_median_3weeks_prior 0.77 0.47 

atemp_median_median_4weeks_prior 0.61 0.39 

atemp_min 0.57 0.25 

atemp_min_min_1week_prior 0.73 0.29 

atemp_min_min_2weeks_prior 0.78 0.38 

atemp_min_min_3weeks_prior 0.59 0.39 

atemp_min_min_4weeks_prior 0.63 0.33 

atemp_range 0.33 0.32 

atemp_range_avg_1week_prior 0.48 0.31 

atemp_range_avg_2weeks_prior 0.40 0.18 

atemp_range_avg_3weeks_prior 0.60 0.31 

atemp_range_avg_4weeks_prior 0.53 0.24 

atemp_range_max_1week_prior 0.30 0.34 

atemp_range_max_2weeks_prior -0.07 -0.09 

atemp_range_max_3weeks_prior 0.39 0.37 

atemp_range_max_4weeks_prior 0.42 0.22 

atemp_range_min_1week_prior 0.55 0.22 

atemp_range_min_2weeks_prior 0.24 0.09 

atemp_range_min_3weeks_prior 0.71 0.25 

atemp_range_min_4weeks_prior 0.37 0.14 

atemp_weekly_range_1week_prior 0.08 0.21 

atemp_weekly_range_2weeks_prior -0.01 0.06 

atemp_weekly_range_3weeks_prior 0.47 0.41 

atemp_weekly_range_4weeks_prior 0.43 0.28 

chla_max -0.13 0.64 

chla_max_max_1week_prior -0.18 0.64 

chla_max_max_2weeks_prior -0.15 0.57 

chla_max_max_3weeks_prior -0.35 0.61 

chla_max_max_4weeks_prior -0.32 0.14 

chla_mean -0.28 0.54 

chla_mean_avg_1week_prior -0.20 0.67 

chla_mean_avg_2weeks_prior -0.29 0.79 

chla_mean_avg_3weeks_prior -0.41 0.67 

chla_mean_avg_4weeks_prior -0.55 0.40 

chla_median -0.31 0.51 

chla_median_median_1week_prior -0.12 0.61 

chla_median_median_2weeks_prior -0.27 0.82 

chla_median_median_3weeks_prior -0.32 0.62 

chla_median_median_4weeks_prior -0.55 0.48 

chla_min -0.30 0.45 

chla_min_min_1week_prior -0.04 0.57 

chla_min_min_2weeks_prior -0.32 0.55 

chla_min_min_3weeks_prior -0.23 0.57 

chla_min_min_4weeks_prior -0.47 0.44 
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chla_range 0.09 0.67 

chla_range_avg_1week_prior -0.16 0.61 

chla_range_avg_2weeks_prior -0.26 0.61 

chla_range_avg_3weeks_prior -0.41 0.69 

chla_range_avg_4weeks_prior -0.43 0.15 

chla_range_max_1week_prior -0.17 0.62 

chla_range_max_2weeks_prior -0.15 0.52 

chla_range_max_3weeks_prior -0.38 0.63 

chla_range_max_4weeks_prior -0.30 0.09 

chla_range_min_1week_prior 0.05 0.57 

chla_range_min_2weeks_prior -0.29 0.67 

chla_range_min_3weeks_prior -0.10 0.37 

chla_range_min_4weeks_prior -0.67 0.40 

chla_weekly_range_1week_prior -0.18 0.64 

chla_weekly_range_2weeks_prior -0.12 0.53 

chla_weekly_range_3weeks_prior -0.37 0.61 

chla_weekly_range_4weeks_prior -0.31 0.11 

depth_max -0.61 -0.47 

depth_max_max_1week_prior -0.70 -0.52 

depth_max_max_2weeks_prior -0.58 -0.44 

depth_max_max_3weeks_prior -0.65 -0.49 

depth_max_max_4weeks_prior -0.66 -0.48 

depth_mean -0.60 -0.46 

depth_mean_avg_1week_prior -0.62 -0.46 

depth_mean_avg_2weeks_prior -0.56 -0.41 

depth_mean_avg_3weeks_prior -0.59 -0.42 

depth_mean_avg_4weeks_prior -0.57 -0.41 

depth_median -0.60 -0.46 

depth_median_median_1week_prior -0.63 -0.47 

depth_median_median_2weeks_prior -0.56 -0.41 

depth_median_median_3weeks_prior -0.59 -0.42 

depth_median_median_4weeks_prior -0.56 -0.40 

depth_min -0.60 -0.46 

depth_min_min_1week_prior -0.47 -0.36 

depth_min_min_2weeks_prior -0.54 -0.38 

depth_min_min_3weeks_prior -0.53 -0.37 

depth_min_min_4weeks_prior -0.53 -0.37 

depth_range 0.11 -0.10 

depth_range_avg_1week_prior -0.34 -0.28 

depth_range_avg_2weeks_prior -0.25 -0.34 

depth_range_avg_3weeks_prior -0.40 -0.40 

depth_range_avg_4weeks_prior -0.39 -0.31 

depth_range_max_1week_prior -0.36 -0.28 

depth_range_max_2weeks_prior -0.37 -0.36 

depth_range_max_3weeks_prior -0.42 -0.33 

depth_range_max_4weeks_prior -0.34 -0.23 
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depth_range_min_1week_prior -0.15 -0.21 

depth_range_min_2weeks_prior -0.18 -0.31 

depth_range_min_3weeks_prior -0.16 -0.46 

depth_range_min_4weeks_prior -0.33 -0.31 

depth_weekly_range_1week_prior -0.37 -0.28 

depth_weekly_range_2weeks_prior -0.22 -0.33 

depth_weekly_range_3weeks_prior -0.41 -0.40 

depth_weekly_range_4weeks_prior -0.36 -0.33 

do_max -0.61 -0.19 

do_max_max_1week_prior -0.50 -0.10 

do_max_max_2weeks_prior -0.38 0.01 

do_max_max_3weeks_prior -0.25 0.18 

do_max_max_4weeks_prior -0.35 -0.09 

do_mean -0.67 -0.28 

do_mean_avg_1week_prior -0.79 -0.43 

do_mean_avg_2weeks_prior -0.68 -0.22 

do_mean_avg_3weeks_prior -0.68 -0.38 

do_mean_avg_4weeks_prior -0.66 -0.32 

do_median -0.67 -0.27 

do_median_median_1week_prior -0.80 -0.43 

do_median_median_2weeks_prior -0.70 -0.26 

do_median_median_3weeks_prior -0.70 -0.46 

do_median_median_4weeks_prior -0.66 -0.36 

do_min -0.68 -0.37 

do_min_min_1week_prior -0.83 -0.53 

do_min_min_2weeks_prior -0.73 -0.36 

do_min_min_3weeks_prior -0.80 -0.55 

do_min_min_4weeks_prior -0.64 -0.20 

do_range 0.51 0.50 

do_range_avg_1week_prior 0.72 0.57 

do_range_avg_2weeks_prior 0.62 0.43 

do_range_avg_3weeks_prior 0.82 0.62 

do_range_avg_4weeks_prior 0.61 0.27 

do_range_max_1week_prior 0.66 0.51 

do_range_max_2weeks_prior 0.57 0.38 

do_range_max_3weeks_prior 0.70 0.57 

do_range_max_4weeks_prior 0.59 0.25 

do_range_min_1week_prior 0.73 0.58 

do_range_min_2weeks_prior 0.48 0.40 

do_range_min_3weeks_prior 0.74 0.41 

do_range_min_4weeks_prior 0.51 0.36 

do_weekly_range_1week_prior 0.63 0.52 

do_weekly_range_2weeks_prior 0.57 0.42 

do_weekly_range_3weeks_prior 0.71 0.68 

do_weekly_range_4weeks_prior 0.63 0.32 

ec_max 0.45 0.45 



297 
 

ec_max_max_1week_prior 0.41 0.42 

ec_max_max_2weeks_prior 0.38 0.39 

ec_max_max_3weeks_prior 0.32 0.38 

ec_max_max_4weeks_prior 0.28 0.34 

ec_mean 0.44 0.48 

ec_mean_avg_1week_prior 0.43 0.45 

ec_mean_avg_2weeks_prior 0.37 0.39 

ec_mean_avg_3weeks_prior 0.33 0.39 

ec_mean_avg_4weeks_prior 0.28 0.36 

ec_median 0.44 0.49 

ec_median_median_1week_prior 0.44 0.47 

ec_median_median_2weeks_prior 0.37 0.40 

ec_median_median_3weeks_prior 0.33 0.41 

ec_median_median_4weeks_prior 0.28 0.36 

ec_min 0.41 0.49 

ec_min_min_1week_prior 0.37 0.45 

ec_min_min_2weeks_prior 0.34 0.39 

ec_min_min_3weeks_prior 0.29 0.35 

ec_min_min_4weeks_prior 0.30 0.37 

ec_range 0.29 -0.25 

ec_range_avg_1week_prior 0.20 -0.36 

ec_range_avg_2weeks_prior 0.13 -0.40 

ec_range_avg_3weeks_prior 0.31 -0.14 

ec_range_avg_4weeks_prior -0.08 -0.27 

ec_range_max_1week_prior 0.11 -0.21 

ec_range_max_2weeks_prior 0.07 -0.28 

ec_range_max_3weeks_prior 0.29 0.04 

ec_range_max_4weeks_prior -0.17 -0.39 

ec_range_min_1week_prior 0.21 -0.36 

ec_range_min_2weeks_prior -0.02 -0.24 

ec_range_min_3weeks_prior 0.28 -0.23 

ec_range_min_4weeks_prior -0.01 0.01 

ec_weekly_range_1week_prior 0.14 -0.14 

ec_weekly_range_2weeks_prior 0.33 0.05 

ec_weekly_range_3weeks_prior 0.23 0.24 

ec_weekly_range_4weeks_prior -0.02 -0.15 

no3n_max -0.94 -0.78 

no3n_max_max_1week_prior -0.94 -0.78 

no3n_max_max_2weeks_prior -0.96 -0.74 

no3n_max_max_3weeks_prior -0.96 -0.69 

no3n_max_max_4weeks_prior -0.96 -0.62 

no3n_mean -0.94 -0.77 

no3n_mean_avg_1week_prior -0.96 -0.75 

no3n_mean_avg_2weeks_prior -0.96 -0.71 

no3n_mean_avg_3weeks_prior -0.96 -0.67 

no3n_mean_avg_4weeks_prior -0.96 -0.62 
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no3n_median -0.94 -0.77 

no3n_median_median_1week_prior -0.96 -0.75 

no3n_median_median_2weeks_prior -0.96 -0.72 

no3n_median_median_3weeks_prior -0.96 -0.67 

no3n_median_median_4weeks_prior -0.96 -0.61 

no3n_min -0.95 -0.78 

no3n_min_min_1week_prior -0.96 -0.76 

no3n_min_min_2weeks_prior -0.96 -0.69 

no3n_min_min_3weeks_prior -0.94 -0.64 

no3n_min_min_4weeks_prior -0.96 -0.61 

no3n_range -0.78 -0.60 

no3n_range_avg_1week_prior -0.84 -0.65 

no3n_range_avg_2weeks_prior -0.92 -0.64 

no3n_range_avg_3weeks_prior -0.92 -0.61 

no3n_range_avg_4weeks_prior -0.91 -0.56 

no3n_range_max_1week_prior -0.72 -0.65 

no3n_range_max_2weeks_prior -0.91 -0.67 

no3n_range_max_3weeks_prior -0.91 -0.64 

no3n_range_max_4weeks_prior -0.90 -0.57 

no3n_range_min_1week_prior -0.90 -0.73 

no3n_range_min_2weeks_prior -0.93 -0.67 

no3n_range_min_3weeks_prior -0.92 -0.60 

no3n_range_min_4weeks_prior -0.91 -0.56 

no3n_weekly_range_1week_prior -0.76 -0.62 

no3n_weekly_range_2weeks_prior -0.91 -0.73 

no3n_weekly_range_3weeks_prior -0.92 -0.66 

no3n_weekly_range_4weeks_prior -0.90 -0.59 

orp_max -0.41 -0.30 

orp_max_max_1week_prior -0.32 -0.15 

orp_max_max_2weeks_prior -0.41 -0.36 

orp_max_max_3weeks_prior -0.47 -0.28 

orp_max_max_4weeks_prior -0.48 -0.39 

orp_mean -0.45 -0.34 

orp_mean_avg_1week_prior -0.43 -0.27 

orp_mean_avg_2weeks_prior -0.44 -0.38 

orp_mean_avg_3weeks_prior -0.50 -0.33 

orp_mean_avg_4weeks_prior -0.52 -0.41 

orp_median -0.45 -0.34 

orp_median_median_1week_prior -0.42 -0.22 

orp_median_median_2weeks_prior -0.45 -0.38 

orp_median_median_3weeks_prior -0.47 -0.28 

orp_median_median_4weeks_prior -0.53 -0.42 

orp_min -0.46 -0.39 

orp_min_min_1week_prior -0.51 -0.44 

orp_min_min_2weeks_prior -0.46 -0.46 

orp_min_min_3weeks_prior -0.57 -0.44 
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orp_min_min_4weeks_prior -0.54 -0.45 

orp_range 0.53 0.53 

orp_range_avg_1week_prior 0.66 0.55 

orp_range_avg_2weeks_prior 0.66 0.45 

orp_range_avg_3weeks_prior 0.76 0.45 

orp_range_avg_4weeks_prior 0.75 0.38 

orp_range_max_1week_prior 0.67 0.58 

orp_range_max_2weeks_prior 0.62 0.44 

orp_range_max_3weeks_prior 0.75 0.45 

orp_range_max_4weeks_prior 0.76 0.34 

orp_range_min_1week_prior 0.67 0.48 

orp_range_min_2weeks_prior 0.46 0.31 

orp_range_min_3weeks_prior 0.75 0.37 

orp_range_min_4weeks_prior 0.53 0.36 

orp_weekly_range_1week_prior 0.53 0.49 

orp_weekly_range_2weeks_prior 0.45 0.36 

orp_weekly_range_3weeks_prior 0.66 0.45 

orp_weekly_range_4weeks_prior 0.68 0.36 

ph_max 0.26 0.26 

ph_max_max_1week_prior 0.38 0.39 

ph_max_max_2weeks_prior 0.31 0.31 

ph_max_max_3weeks_prior 0.46 0.43 

ph_max_max_4weeks_prior 0.40 0.35 

ph_mean 0.25 0.24 

ph_mean_avg_1week_prior 0.24 0.18 

ph_mean_avg_2weeks_prior 0.26 0.28 

ph_mean_avg_3weeks_prior 0.35 0.29 

ph_mean_avg_4weeks_prior 0.34 0.31 

ph_median 0.24 0.24 

ph_median_median_1week_prior 0.23 0.15 

ph_median_median_2weeks_prior 0.26 0.26 

ph_median_median_3weeks_prior 0.32 0.25 

ph_median_median_4weeks_prior 0.34 0.31 

ph_min 0.25 0.26 

ph_min_min_1week_prior 0.06 0.03 

ph_min_min_2weeks_prior 0.18 0.27 

ph_min_min_3weeks_prior 0.16 0.12 

ph_min_min_4weeks_prior 0.24 0.30 

ph_range 0.17 0.17 

ph_range_avg_1week_prior 0.41 0.36 

ph_range_avg_2weeks_prior 0.37 0.28 

ph_range_avg_3weeks_prior 0.55 0.37 

ph_range_avg_4weeks_prior 0.49 0.27 

ph_range_max_1week_prior 0.43 0.42 

ph_range_max_2weeks_prior 0.37 0.25 

ph_range_max_3weeks_prior 0.50 0.38 
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ph_range_max_4weeks_prior 0.46 0.21 

ph_range_min_1week_prior 0.37 0.36 

ph_range_min_2weeks_prior 0.33 0.26 

ph_range_min_3weeks_prior 0.50 0.28 

ph_range_min_4weeks_prior 0.43 0.28 

ph_weekly_range_1week_prior 0.47 0.52 

ph_weekly_range_2weeks_prior 0.34 0.24 

ph_weekly_range_3weeks_prior 0.54 0.48 

ph_weekly_range_4weeks_prior 0.46 0.29 

turb_max 0.04 0.15 

turb_max_max_1week_prior -0.42 -0.17 

turb_max_max_2weeks_prior -0.45 0.25 

turb_max_max_3weeks_prior 0.51 -0.94 

turb_max_max_4weeks_prior 0.18 0.70 

turb_mean 0.31 0.61 

turb_mean_avg_1week_prior -0.79 -0.60 

turb_mean_avg_2weeks_prior -0.10 -0.95 

turb_mean_avg_3weeks_prior 0.63 -0.88 

turb_mean_avg_4weeks_prior 0.96 -0.46 

turb_median 0.28 0.62 

turb_median_median_1week_prior -0.94 -0.82 

turb_median_median_2weeks_prior -0.09 -0.91 

turb_median_median_3weeks_prior 0.55 -0.92 

turb_median_median_4weeks_prior 0.79 -0.66 

turb_min 0.23 0.60 

turb_min_min_1week_prior -0.99 -0.92 

turb_min_min_2weeks_prior 0.59 -0.84 

turb_min_min_3weeks_prior -0.81 -0.42 

turb_min_min_4weeks_prior 0.55 -0.32 

turb_range 0.03 0.09 

turb_range_avg_1week_prior -0.60 -0.37 

turb_range_avg_2weeks_prior -0.36 -0.41 

turb_range_avg_3weeks_prior 0.66 -0.86 

turb_range_avg_4weeks_prior 0.58 0.36 

turb_range_max_1week_prior -0.41 -0.15 

turb_range_max_2weeks_prior -0.47 0.29 

turb_range_max_3weeks_prior 0.49 -0.95 

turb_range_max_4weeks_prior 0.17 0.69 

turb_range_min_1week_prior -0.82 -0.64 

turb_range_min_2weeks_prior 0.03 -0.97 

turb_range_min_3weeks_prior 0.59 -0.90 

turb_range_min_4weeks_prior 0.93 -0.69 

turb_weekly_range_1week_prior -0.37 -0.11 

turb_weekly_range_2weeks_prior -0.48 0.27 

turb_weekly_range_3weeks_prior 0.50 -0.94 

turb_weekly_range_4weeks_prior 0.17 0.69 
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wtemp_max 0.78 0.46 

wtemp_max_max_1week_prior 0.79 0.46 

wtemp_max_max_2weeks_prior 0.83 0.47 

wtemp_max_max_3weeks_prior 0.82 0.48 

wtemp_max_max_4weeks_prior 0.77 0.45 

wtemp_mean 0.79 0.46 

wtemp_mean_avg_1week_prior 0.80 0.46 

wtemp_mean_avg_2weeks_prior 0.83 0.46 

wtemp_mean_avg_3weeks_prior 0.82 0.46 

wtemp_mean_avg_4weeks_prior 0.78 0.45 

wtemp_median 0.79 0.46 

wtemp_median_median_1week_prior 0.80 0.46 

wtemp_median_median_2weeks_prior 0.83 0.46 

wtemp_median_median_3weeks_prior 0.81 0.45 

wtemp_median_median_4weeks_prior 0.77 0.45 

wtemp_min 0.79 0.47 

wtemp_min_min_1week_prior 0.80 0.46 

wtemp_min_min_2weeks_prior 0.83 0.47 

wtemp_min_min_3weeks_prior 0.82 0.45 

wtemp_min_min_4weeks_prior 0.79 0.46 

wtemp_range 0.18 0.09 

wtemp_range_avg_1week_prior 0.37 0.26 

wtemp_range_avg_2weeks_prior 0.54 0.37 

wtemp_range_avg_3weeks_prior 0.58 0.37 

wtemp_range_avg_4weeks_prior 0.60 0.41 

wtemp_range_max_1week_prior 0.31 0.19 

wtemp_range_max_2weeks_prior 0.43 0.29 

wtemp_range_max_3weeks_prior 0.51 0.35 

wtemp_range_max_4weeks_prior 0.47 0.36 

wtemp_range_min_1week_prior 0.37 0.27 

wtemp_range_min_2weeks_prior 0.53 0.30 

wtemp_range_min_3weeks_prior 0.48 0.34 

wtemp_range_min_4weeks_prior 0.51 0.24 

wtemp_weekly_range_1week_prior 0.33 0.28 

wtemp_weekly_range_2weeks_prior 0.32 0.18 

wtemp_weekly_range_3weeks_prior 0.58 0.60 

wtemp_weekly_range_4weeks_prior 0.17 0.13 

 
Table S.15. GAM sensor period result geosmin, for data within the sensor deployment period 
(2022-2023). 

Parameter P 
Value 

R2 Adj Deviance 
Explained 

Num 
Observations 

DOY 0.004 0.201 0.286 45 

precip 0.053 0.035 0.072 45 

tempmax 0.032 0.147 0.206 45 

tempmin 0.290 -0.001 0.024 45 
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temp 0.078 0.122 0.179 45 

windgust 0.422 -0.012 0.013 45 

windspeed 0.049 0.055 0.081 45 

winddir 0.760 -0.021 0.002 45 

cloudcover 0.532 0.016 0.049 45 

solarradiation 0.000 0.194 0.236 45 

solarenergy 0.000 0.197 0.237 45 

sum_solarenergy_2weeks_prior 0.000 0.245 0.311 45 

min_temp_2weeks_prior 0.039 0.050 0.085 45 

max_windgust_2weeks_prior 0.960 -0.023 0.000 45 

sum_precip_1week_prior 0.001 0.164 0.205 45 

avg_windspeed_1week_prior 0.067 0.024 0.064 45 

pH 0.035 0.131 0.213 42 

turbidity 0.975 -0.025 0.000 42 

toc 0.165 0.030 0.047 42 

doc 0.140 0.040 0.055 41 

tn 0.001 0.181 0.218 45 

nh4n 0.602 -0.017 0.006 45 

no3n 0.001 0.187 0.223 45 

tp 0.092 0.051 0.065 45 

po4p 0.220 0.000 0.029 45 

manganesedis 0.014 0.141 0.141 42 

manganese 0.006 0.189 0.176 42 

chla 0.243 0.001 0.029 44 

algaetot 0.763 -0.022 0.002 44 

greenalgae 0.094 0.076 0.071 44 

bluegreenalgae 0.315 -0.010 0.019 44 

otheralgaetot 0.441 -0.010 0.014 42 

tntp_ratio 0.012 0.187 0.237 45 

nh4no3_ratio 0.426 -0.013 0.013 45 

geosmin 0.000 1.000 1.000 45 

mib 0.000 0.218 0.250 45 

toc_trib 0.307 0.009 0.033 34 

nh4n_trib 0.201 0.016 0.044 37 

no3n_trib 0.003 0.181 0.215 37 

tp_trib 0.116 0.038 0.066 37 

nh4no3_ratio_trib 0.089 0.052 0.078 37 

atemp_max_max_3weeks_prior 0.003 0.346 0.369 21 

atemp_mean_avg_3weeks_prior 0.008 0.255 0.301 21 

depth_max_max_1week_prior 0.004 0.234 0.312 22 

do_range_avg_3weeks_prior 0.001 0.414 0.441 21 

do_min_min_1week_prior 0.009 0.236 0.278 22 

ec_max 0.012 0.148 0.234 23 

ec_mean 0.008 0.176 0.261 23 

no3n_max_max_2weeks_prior 0.012 0.539 0.651 12 

no3n_mean_avg_2weeks_prior 0.025 0.477 0.580 12 
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no3n_range_avg_2weeks_prior 0.007 0.563 0.676 12 

orp_range_avg_3weeks_prior 0.031 0.082 0.188 21 

ph_range_avg_3weeks_prior 0.063 0.052 0.143 21 

wtemp_mean_avg_2weeks_prior 0.011 0.168 0.252 22 

ec_min 0.006 0.184 0.271 23 

do_weekly_range_3weeks_prior 0.000 0.441 0.472 21 

no3n_mean 0.001 0.617 0.764 12 

no3n_max_max_1week_prior 0.001 0.676 0.804 11 

no3n_weekly_range_2weeks_prior 0.002 0.583 0.725 12 

depth_mean 0.007 0.176 0.265 23 

depth_mean_avg_1week_prior 0.012 0.175 0.250 22 

orp_range_avg_1week_prior 0.002 0.223 0.340 22 

ph_weekly_range_1week_prior 0.008 0.219 0.285 22 

ph_max_max_1week_prior 0.043 0.110 0.171 22 

wtemp_weekly_range_3weeks_prior 0.003 0.399 0.377 21 

orp_range_max_1week_prior 0.001 0.380 0.431 22 

wtemp_max_max_3weeks_prior 0.008 0.241 0.295 21 

wtemp_mean 0.008 0.168 0.254 23 

 
Table S.16. GAM sensor period result 2-MIB, for data within the sensor deployment period 
(2022-2023). 

Parameter P Value R2 Adj Deviance 
Explained 

Num 
Observations 

DOY 0.000 0.583 0.631 45 

precip 0.980 -0.023 0.000 45 

tempmax 0.001 0.325 0.348 45 

tempmin 0.000 0.409 0.421 45 

temp 0.000 0.502 0.514 45 

windgust 0.001 0.369 0.443 45 

windspeed 0.022 0.078 0.111 45 

winddir 0.227 0.070 0.097 45 

cloudcover 0.676 -0.019 0.004 45 

solarradiation 0.013 0.114 0.124 45 

solarenergy 0.014 0.114 0.125 45 

sum_solarenergy_2weeks_prior 0.000 0.261 0.273 45 

max_windgust_2weeks_prior 0.052 0.054 0.078 45 

sum_precip_1week_prior 0.872 -0.023 0.001 45 

avg_windspeed_1week_prior 0.208 0.016 0.039 45 

pH 0.593 -0.018 0.007 42 

turbidity 0.091 0.045 0.060 42 

toc 0.000 0.666 0.692 42 

doc 0.000 0.543 0.525 41 

tn 0.000 0.527 0.520 45 

nh4n 0.007 0.125 0.144 45 

no3n 0.000 0.522 0.515 45 

tp 0.000 0.230 0.208 45 
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po4p 0.818 -0.022 0.001 45 

manganesedis 0.000 0.606 0.605 42 

manganese 0.000 0.444 0.437 42 

chla 0.267 0.007 0.032 44 

algaetot 0.944 -0.024 0.000 44 

greenalgae 0.231 0.015 0.032 44 

bluegreenalgae 0.809 -0.022 0.001 44 

otheralgaetot 0.011 0.149 0.160 42 

tntp_ratio 0.000 0.503 0.494 45 

nh4no3_ratio 0.001 0.333 0.327 45 

geosmin 0.001 0.185 0.185 45 

mib 0.000 0.991 0.984 45 

toc_trib 0.004 0.280 0.309 34 

nh4n_trib 0.058 0.204 0.282 37 

no3n_trib 0.065 0.100 0.110 37 

tp_trib 0.141 0.027 0.054 37 

nh4no3_ratio_trib 0.478 -0.012 0.013 37 

atemp_max_max_3weeks_prior 0.000 0.699 0.800 21 

atemp_mean_avg_3weeks_prior 0.000 0.628 0.686 21 

depth_max_max_1week_prior 0.000 0.458 0.467 22 

do_range_avg_3weeks_prior 0.000 0.731 0.766 21 

do_min_min_1week_prior 0.000 0.668 0.720 22 

ec_max 0.024 0.170 0.190 23 

ec_mean 0.032 0.169 0.187 23 

no3n_max_max_2weeks_prior 0.000 0.916 0.958 12 

no3n_mean_avg_2weeks_prior 0.000 0.905 0.941 12 

no3n_range_avg_2weeks_prior 0.000 0.939 0.977 12 

orp_range_avg_3weeks_prior 0.001 0.560 0.608 21 

ph_range_avg_3weeks_prior 0.018 0.322 0.387 21 

wtemp_mean_avg_2weeks_prior 0.000 0.738 0.803 22 

ec_min 0.038 0.135 0.158 23 

do_weekly_range_3weeks_prior 0.001 0.547 0.606 21 

no3n_mean 0.000 0.861 0.901 12 

no3n_max_max_1week_prior 0.000 0.857 0.897 11 

no3n_weekly_range_2weeks_prior 0.000 0.821 0.852 12 

depth_mean 0.001 0.340 0.375 23 

depth_mean_avg_1week_prior 0.004 0.354 0.376 22 

orp_range_avg_1week_prior 0.005 0.269 0.306 22 

ph_weekly_range_1week_prior 0.029 0.159 0.189 22 

ph_max_max_1week_prior 0.069 0.089 0.130 22 

wtemp_weekly_range_3weeks_prior 0.011 0.209 0.251 21 

orp_range_max_1week_prior 0.001 0.376 0.398 22 

wtemp_max_max_3weeks_prior 0.000 0.692 0.767 21 

wtemp_mean 0.000 0.706 0.764 23 

min_temp_2weeks_prior_REML 0.000 0.598 0.624 45 

 


