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Abstract: With the increase in ownership of Internet of Things (IoT) devices, there is a
bigger demand for stronger implementation of security mechanisms and addressing zero-
day vulnerabilities. This work is the first to provide a platform that combines featureless
approaches with artificial intelligence (AI) algorithms, which are deep learning and large
language models, to uncover IoT security vulnerabilities based on network traffic data
directly without manual feature selection. The platform correctly identifies vulnerable
and secure IoT devices just by raw network traffic! Experimental results show that the
proposed study detects vulnerability with great accuracy by using pre-trained deep learning
and LLM models, which facilitates direct extraction of vulnerability features from the
dataset and therefore helps speed up the identification process. In addition, the design
of the platform ensures that the models are accessible and can be easily applied by users
with a user-friendly interface. Furthermore, the models with small sizes, 277.5 MB and
334 MB for the deep learning model and the LLM model, respectively, illustrated the
potential use of the detection tool in practical settings. The ability to defend large-scale,
diversified IoT ecosystems efficiently and in a scalable way by installing thousands of
software manifestations quickly while exposing new applications to growing cyber threats
is made possible by this significant advancement in the field of IoT security.

Keywords: IoT security; LLM; deep learning; vulnerability detection

1. Introduction
The IoT has seen explosive growth in recent years [1]. It is now prevalent in many

sectors such as smart homes, healthcare, manufacturing, critical infrastructure, etc. IoT
devices offer high connectivity, automation, and data-driven functionality [2]. However,
the widespread deployment of IoT devices introduces several security risks. Due to
their interconnected nature and limited computational capabilities, IoT devices are more
susceptible to cyber threats, including zero-day attacks—unknown vulnerabilities exploited
by attackers before the vendor becomes aware or before a patch is released.

As IoT devices increasingly handle sensitive data and control critical systems, the need
for robust security measures becomes essential. Current vulnerability detection methods
for IoT systems rely on manually designed feature extraction, which has proven effective
to some extent. Nonetheless, these methods possess inherent limitations in their ability to
adapt to new or unknown threats. Feature engineering can be costly and time-consuming,
and it may not effectively generalize to the constantly evolving threat landscape [3].

Recent advances in artificial intelligence (AI) and Machine Learning (ML) have created
new opportunities to enhance IoT security [4]. AI-driven approaches, particularly deep
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learning models, enable automatic learning of patterns or deviations in large-scale data
without manual feature construction. This capability is valuable for uncovering hidden
vulnerabilities often ignored by traditional detection methods.

Existing approaches to detecting IoT vulnerabilities often depend on manual feature
engineering, which is time-consuming and highly susceptible to missing minor patterns
in network data. Furthermore, many traditional solutions suffer from limited real-time
detection capabilities and typically lack integrated mitigation strategies, necessitating
separate procedures to address discovered vulnerabilities. These shortcomings create a
clear need for a novel approach that can automatically extract features, operate effectively
in real time, and provide end-to-end vulnerability identification and mitigation, a goal that
our proposed strategy aims to achieve.

Given the importance of IoT devices in modern infrastructures and the increasing
complexity of cyber attacks, there is a need for scalable, effective, and efficient solutions that
can operate in real-world environments. Therefore, these solutions should be user-friendly
and lightweight, as both devices and networks often have limited computational resources.

In our approach, we analyze network traffic directly, eliminating the need for manual
data setup. This method simplifies the process and enhances the system’s ability to respond
quickly in practical settings. This combination of direct data processing, lightweight design,
and built-in remediation distinguishes our approach from existing methods. We expect our
paper to provide a clearer picture of the emerging risks in mobile networks. Thus, the study
employs featureless detection models with AI processing, addressing scalability concerns
while enhancing detection accuracy and flexibility. This results in a scalable, real-time
detection and resource-efficient solution that operates effectively in IoT environments. This
study thoroughly addresses the technical and practical aspects of IoT security, offering
effective protection for increasingly connected systems against complex cyber threats. The
main contributions are summarized as follows:

• This paper proposes a novel method for zero-day IoT vulnerability detection, us-
ing a deep learning model enhanced by pre-trained LLMs to automatically extract
vulnerability features.

• A resource-constrained platform was developed based on the detection model for real-
world scenarios, which is able to run a 277.5 MB deep learning model and a 334 MB
LLM model, allowing users to quickly identify vulnerabilities in network traffic.

• We developed an end-to-end framework that goes beyond vulnerability detection,
employing featureless CNN and CyBERT models, to provide automated mitigation
strategies. This integrated approach enables real-time discovery and targeted miti-
gation of critical vulnerabilities, such as Ripple20 CVEs, significantly enhancing IoT
network security.

This paper is organized as follows: A review of related work is presented in Section 2.
The proposed methods, including our approach, architecture, and functionality, are de-
tailed in Section 3. The validation, which encompasses the setup and design of the exper-
iment along with the results of the proposed platform, is discussed in Section 4. Finally,
Section 5 concludes with a discussion of future work.

2. Related Works
In AI, a featureless system or model operates without an explicit representation of

features to transmit information through the system. This concept traces back to early work
by Rodney Brooks, who advocated for a theory of intelligence that is embodied. This means
that intelligence must interface directly with the world through perception and action,
rather than relying on intermediary representations [5]. This approach enables the training
of autonomous robots in the real world without specifying features. Featureless paradigms
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offer several advantages; however, they can struggle in complex scenarios where nuanced
understanding and representation could enhance performance. Brooks’ stance highlights
the ongoing discussion in AI regarding how to strike a balance between feature-based and
featureless approaches.

2.1. Featureless in the IoT Security

Few previous works have utilized featureless approaches to enhance IoT security.
These featureless methods are increasingly convenient for executing ML models in real
time, particularly with regard to IoT security. These methods are increasingly convenient
for executing ML models in real time, particularly in the context of IoT security. While
previous studies have explored featureless approaches, most research has focused on spe-
cific sectors, such as healthcare and general security. A recent investigation introduced the
FEL-ML (Feature Engineering-Less Machine Learning) model for malware detection in IoT
architectures. One of the main limitations of existing methods is their reliance on extensive
feature engineering, which entails manually crafting relevant features from raw packet
data to optimize detection. In contrast, the FEL-ML model streamlines computations com-
pared with traditional methods, which struggle with large datasets or require significant
feature engineering.

In a recent study, a novel approach to monitoring and recognizing objects in dynamic
environments was investigated. This method detects and monitors objects without relying
on mathematical properties, contrasting with previous algorithms that often depend on
such properties. The study demonstrated the robustness and dependability of this ap-
proach in dynamic contexts and confirmed its efficacy through real-world experiments and
simulations. The results revealed that this featureless technique offers an effective method
for item detection and tracking, particularly in challenging and dynamic applications [6].

2.2. Convolutional Neural Network (CNN) Models in IoT Security

CNN models have been widely used in IoT security, achieving excellent performance
in recognizing and categorizing cyber attacks. Various studies demonstrate that CNNs
enhance intrusion detection systems and anomaly detection in IoT environments. One
study compared CNNs with traditional ML models and found that a CNN-BiLSTM model
achieved accuracies of 99.89% and 98.95% on benchmark datasets, outperforming conven-
tional methods [7]. Another study developed a CNN-LSTM model to classify IoT traffic,
achieving 98.42% accuracy using a large dataset, highlighting its robustness against cyber
threats [8].

Other studies have utilized CNN models in IoT security through anomaly detection
and traffic classification. For example, CNNs combined with Variational Autoencoders
(VAEs) are effective in detecting anomalies in IoT environments. This combination has
achieved a classification accuracy of up to 95% [9]. CNNs have also successfully identified
cybersecurity-related threats, achieving 99.10% for multiclass classifications and 99.40%
for binary classification [10]. While CNNs deliver satisfying results in securing IoT by
accurately detecting threats, hurdles remain. The primary issue is the computational
complexity of running CNN models within the time constraints of real-time IoT systems.
It is essential to note that models can quickly become outdated as cyber threats evolve,
highlighting the need for continuous model updates. This motivates future research to
develop low-complexity CNNs that are also resilient against new security threats [11].

2.3. LLM Models for IoT Security

The use of LLMs in security issues related to IoT has recently gained attention, with re-
search efforts aimed at increasing cybersecurity levels and enhancing user comprehension
of privacy policies. Although LLMs could have many applications in this context, some
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studies indicate the need for new techniques to improve their effectiveness in other fields.
LLMs have potential uses in IoT security across various domains, for example, Cyberse-
curity Helper: open-source LLMs that may assist in simulating vulnerable IoT systems
and provide cybersecurity advice without disclosing personal data to cloud services or
compromising user privacy [12]. Another application is Privacy Policy Simplification.
Quantized LLMs are proposed to address the challenges of analyzing and simplifying com-
plex IoT privacy policies in large-scale networks. This approach makes information more
understandable to users while enhancing transparency and user-friendliness [13]. The final
application is text-based generative IoT systems. A modified prompt approach has been
suggested to improve the operational efficiency of open-source LLMs in local networks,
making them more secure than commercial alternatives in IoT environments [14]. However,
the use of LLMs in IoT security raises several concerns. First is corruption: quantized LLMs
may be vulnerable to backdoor attacks. In this type of attack, adversarial behaviors can be
injected into the model, enabling attackers to perform malicious actions while appearing
to operate normally [15]. Second, protecting intellectual property is essential to prevent
the piracy of LLMs deployed on edge; solutions such as SLIP have been proposed. These
solutions maintain the privacy of the models to prevent theft and introduce a specific
amount of overhead, allowing businesses to keep their white-box models secure [16]. Thus,
even though LLMs show great promise in strengthening IoT security, their deployment
requires careful arrangements to mitigate potential risks and vulnerabilities.

2.4. LLM Models in IoT Security Mitigation

Recently, LLMs have shown significant potential in detecting and preventing cyber
attacks, particularly in the context of code generation and security audits. Their ability to
analyze and generate code can help identify vulnerabilities, although challenges regarding
accuracy and false positives remain. Several studies have used LLM to improve IoT security,
for example, [17]; this work introduces LLMSecEval, a dataset of 150 natural language
prompts aimed at evaluating the security behavior of LLMs when generating code. Each of
the prompts relates to code that has vulnerabilities associated with problems specified in
the Top 25 Most Common Software Security Errors (CWEs), which is a standard for the
software community. To perform such a comparison, the authors made sure to include
a dataset of secure code with all the prompts to have a proper standard for comparison.
The application of LLMSecEval illustrates how it is useful in a more clinical manner to
judge the security quality of code produced from NL instructions. Moreover, it also
demonstrates the capabilities and shortcomings of such models in generating secure code.
However, the context of the dataset is limited to the Top 25 CWEs. Although this is certainly
thorough, it may ignore more recent or newer security issues that may be applicable to
existing software systems. Furthermore, the paper does not use run-time or dynamic
security evaluation of the code snippets, only static evaluation, and therefore misses the
opportunity to identify additional vulnerabilities that static techniques would not identify.

A recent study [18] investigates how LLMs, such as GPTs, can be incorporated
into system-on-chip (SoC) security verification to address issues of flexibility, scalabil-
ity, and comprehensiveness. LLMs show promise by using language comprehension and
program synthesis to enable effective and sophisticated security verification. To illustrate
the advantages and challenges of this approach, the paper provides a comprehensive review
of existing research, along with real-world case studies and experiments. However, there
are several limitations regarding the use of LLMs in SoC security verification. Awareness
of new risks identified after training is constrained by the knowledge cut-off point. De-
pendence on static analysis limits the detection of vulnerabilities that may emerge during
run-time. Since LLMs are trained primarily on software and lack contextual knowledge,
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they demonstrate insufficient coverage of hardware-specific vulnerabilities. Moreover, gen-
eralization issues hinder their ability to adapt to hardware-centric security requirements.
Lastly, LLMs struggle to comprehend complex hardware behaviors and relationships,
making it challenging to identify hidden security vulnerabilities in intricate systems.

2.5. Current Detection Platforms in IoT Security

Several previous works have designed platforms to enhance IoT security. In one
paper [19], researchers highlight the necessary security and privacy issues in IoT, noting
well-known vulnerabilities since most IoT devices belong to wireless sensor networks
(WSNs). The paper presents a passive network traffic-based security intrusion detection
model to monitor threats, including Denial of Service (DoS) attacks, brute-force attempts,
and device tampering. This model uses sniffing tools to identify irregular patterns, unau-
thorized access, and unusual device activity or behavior. It incorporates mechanisms such
as automated responses (alerts or device isolation), which, combined with an iterative
feedback loop for continual improvement in threat detection, make it responsive to changes
in attack types and vectors.

However, this study points out some limitations. The model may be harder to deploy
due to real-time network monitoring, and approximations in congestion estimation using
sniffing tools introduce privacy concerns. While these tools are ideal for security purposes,
they can inadvertently capture sensitive information, leading to ethically concerning data
privacy issues. Additionally, the complexities involved in deploying a successful network
monitoring setup make real-world implementation challenging. Despite these challenges,
the model presented illustrates an attempt to address IoT security from a proactive stand-
point, balancing the need for robust intrusion detection with privacy considerations.

Secondly, in the study in [20], the researchers proposed an intrusion detection system
(IDS) using Raspberry Pi for IoT devices to address this gap. The study aims to understand
how effectively an IDS can identify various network attacks, enhance its configuration for
improved performance, and evaluate its vulnerabilities. A simulated IoT environment
utilizing the Raspberry Pi IDS, a temperature sensor, and background traffic generators is
employed to conduct experiments and analyze system performance through metrics de-
rived from log files. Finally, the expected outcomes of this research include demonstrating
the concept of securing IoT devices with a Raspberry Pi-based IDS and providing recom-
mendations on tuning the Snort IDS for optimal performance on a Raspberry Pi device.

However, securing IoT networks requires more comprehensive solutions than the
specific lightweight Raspberry Pi-based intrusion detection system (IDS), particularly in
larger or more diverse IoT environments. Additionally, IDS evaluation is limited to specific
network attacks, which may hinder its effectiveness against novel or more sophisticated
threats. It also depends on proper configuration and necessitates further investigation into
the optimal settings. Finally, the results cannot be fully generalized to all IoT scenarios,
as this study was conducted using a particular setup, indicating that special adaptations
are needed for various IoT applications.

Harwalkar et al. addressed the major security issues facing IoT networks due to the
large-scale data exchange between connected devices [21]. The authors proposed a neural
network-based IDS that employs Long Short-Term Memory (LSTM) and Tuna Swarm
Optimization to enhance intrusion detection accuracy in an IoT environment. The model
utilized the NSL-KDD dataset, which was preprocessed using SMOTE for balancing and
RFE for feature filtering. Feature selection was refined further through the Moth Flame
Optimization (MFO) process. Next, they implemented the TSO-LSTM model for attack
detection and used TSO optimization to identify attacks based on LSTM outputs, achieving
a detection accuracy of 99.98%. This model outperformed several benchmark approaches,
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including DBN, SMO-HPSO, CNN-LSTM, and BFO-RF, which achieved accuracies ranging
from 98.8% to 99.96%. However, this study has limitations regarding the proposed model.
Its reliance on the NSL-KDD dataset may restrict generalization, as it might not accurately
represent realistic IoT environments.

Furthermore, the complex combination of LSTM and TSO in the model may be chal-
lenging to implement and tune in real-world applications. Another concern is that the
system may not scale well and could perform poorly as the number of IoT devices increases.
Furthermore, the study lacks sufficient information to identify which types of attacks
intentionally targeting the model would be effective, limiting its performance against a
broader range of threats. Finally, the absence of real-time testing overlooks a crucial aspect
of the model’s practical performance, significantly important in IoT dynamic environments
that require real-time responsiveness.

Finally, the work in [22] proposed a real-time security monitoring (RSM) platform that
utilizes deep learning models such as CNN, LSTM, and Deep Neural Networks (DNN)
to predict and visualize attacks on IoT networks. The models are evaluated using the
IoT23 dataset based on precision, recall rate, and F1-score values. The practical experiment
employs a Raspberry Pi to collect log data. An edge router sends this data to the server,
enabling real-time predictions, while Power BI serves as the dashboard for monitoring
IoT performance. As a result, the RSM platform demonstrates improved performance for
attack prediction.

Table 1 presents a comparative analysis of the latest related works and explains how
this paper enhances them.

In conclusion, many works demonstrate that conventional methods, such as CNN
or LSTM models, can effectively identify known security issues in network traffic. These
studies have provided valuable insights into the effectiveness of data-driven detection
in controlled settings. However, a major limitation of these approaches is their heavy
reliance on manually defined steps to extract features from raw data. This process not only
demands expert knowledge but also makes the systems less adaptable to new or evolving
threats. Additionally, many methods face challenges when deployed in environments with
limited resources, as they tend to be computationally intensive. Another gap in the existing
literature is the lack of integration between detection and mitigation. While many methods
focus solely on identifying vulnerabilities, few offer built-in solutions or recommendations
to address these issues in real time.

Finally, several limitations affect the robustness and practicality of existing platforms.
Deep learning-based models are central to many real-time security monitoring systems,
but their performance can vary significantly depending on the dataset and type of attack
used during testing. For example, the IoT23 dataset is only one instance and may not
encompass all possible IoT attack methods, which can impact the overall robustness of
the platform. Moreover, in massive IoT networks involving numerous devices, real-
time processing can pose significant challenges. Additionally, issues with integration
and standardization may arise when attempting to incorporate a real-time security
monitoring platform into various existing IoT architectures and systems, leading to
further complications.

As summarized in Table 2, our research addresses important gaps in the literature on
IoT security and intrusion detection through an innovative, featureless AI-based method-
ology. Previous research has demonstrated that standard IDS is limited in IoT scenarios.
For example, a low-resource Raspberry Pi-based intrusion detection system, optimized for
IoT environments, has been introduced. However, its restricted scalability, dependence
on specific network setups, and challenges in adapting to complex IoT ecosystems with
diverse device types limit its effectiveness. Additionally, research has explored the use of
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DL approaches for intrusion detection; however, these studies often rely on feature extrac-
tion techniques or complex optimization algorithms, which hinder real-time flexibility and
increase implementation complexity. The limited capacity of these models to effectively
address zero-day threats arises from their reliance on complex, manually created features
to detect vulnerabilities.

Table 1. Comparative Analysis of Existing Works and Improvements in Our Study.

Reference Approach Dataset Performance Limitations How Our Work
Improves

[19]

Passive sniffing
detects network
anomalies and
unauthorized

access efficiently.

Controlled
network traffic Not specified

Sensitive data risk,
real-time

processing and
integration

complexities

Direct raw traffic
processing with

automated,
real-time

remediation
solves privacy and

deployment
issues.

[20]

Raspberry Pi IDS
detects simulated

IoT network
attacks.

Simulated IoT
setup Not specified

Scenario-limited,
scalability issues,

extensive
configuration

required

Lightweight,
scalable, intuitive:
ideal for diverse,
resource-limited
IoT deployments

[21]

LSTM neural
network IDS with

Tuna Swarm
Optimization

detects attacks.

NSL-KDD Up to 99.98%
detection accuracy

Generalization
limitations,

incomplete IoT
attack dataset

possible

Comprehensive
framework:
diverse IoT
scenarios,
real-time

mitigation
recommendations

integrated

[22]

DL-based RSM
platform predicts

and visualizes
attacks in
real-time.

IoT23
0.86 for LSTM,

0.95 for CNN, and
0.99 for DNN

Restricted attack
coverage,

real-time scaling
issues, diverse IoT

integration
challenges

Accurate,
end-to-end

vulnerability
detection with

tailored, real-time
remediation.

In order to overcome these challenges, we have developed the first platform that
combines featureless methods with DL and LLM models. These models examine unpro-
cessed network traffic data to identify zero-day IoT vulnerabilities. In contrast to traditional
methods that rely on manual feature extraction, our platform directly extracts and analyses
vulnerability factors from the dataset using pre-trained AI models. This approach increases
scalability and simplifies the detection process, allowing our lightweight models to perform
efficiently even in IoT environments with limited resources. Furthermore, we integrate
a user-friendly interface that addresses the accessibility gap noted in previous research,
enabling non-technical individuals to utilize complex IoT security measures. Our study
directly addresses the problems identified in earlier studies by offering a scalable, effective,
and flexible solution for IoT security.
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Table 2. Overview of the Proposed Method and Related Research.

Aspect Previous Works Our Approach

Methodology Relied on manually defined steps to process
data and detect threats

Processes raw network traffic directly
without manual intervention, streamlining

the detection process

Performance
Often faced challenges with slower

processing times and lower adaptability to
new threats

Offers faster detection with high accuracy
and is able to adjust to evolving security

challenges quickly

Real-World Application
Typically not designed for use in settings

with limited resources and may lack
user-friendly tools

Optimized for environments with limited
computing power and includes an intuitive

interface suitable for both experts and
non-specialists

Integrated Mitigation Often requires manual steps and separate
tools for mitigation

Provides automated mitigation strategies
alongside detection, offering an end-to-end

solution within a single platform

3. Methodology
The featureless approach identifies features from raw input without requiring pro-

fessionals to manually extract them, unlike classic ML techniques that depend on feature
discovery as input for the model. Featureless approaches promise automatic feature
learning from raw input. They utilize multiple layers of DL networks to build complex
representations from the input. Compared with current DL-based models, featureless DL
approaches can achieve superior performance, including enhanced accuracy [23,24].

The process of converting heterogeneous data types into an appropriate format is
crucial but time-consuming in AI and ML applications, as models often require standard-
ized numerical data. Traditional IoT security approaches often rely on manually extracting
certain features from raw network traffic. This manual process requires significant expert
involvement to identify and extract relevant data attributes. Moreover, it may overlook
minor or emerging patterns outside of pre-established factors, leading to decreased accu-
racy and slower adaptation to new threats. In contrast, our approach analyzes raw network
traffic directly, eliminating the need for manual feature extraction. This allows the system to
automatically identify essential data patterns that might be ignored when using predefined
features. Direct processing streamlines the detection pipeline and increases efficiency by
removing the time-consuming and costly phase of manual data preparation. Additionally,
by dispensing with manual feature selection, our approach can adapt more rapidly to evolv-
ing security threats, providing a more robust solution for real-world IoT environments. The
feature engineering process may not be necessary for identifying cyberattacks and unusual
activities in real time. This can help ensure that accurate and timely responses to cyber
incidents are implemented.

Our work aims to create a tool that utilizes a featureless instance-based 1D-CNN
model and an LLM model to protect networks from both internal and external attacks
and to discover IoT vulnerabilities in an IoT environment. The primary reason for using a
featureless approach is to handle data as they are, which saves time and enhances realism.
This design choice also facilitates use by non-expert users, enabling them to secure their
networks effectively. In contrast, functional engineering requires identifying features,
removing them from unprocessed data, and then combining, expanding, and filtering the
remaining data. Consequently, these feature engineering strategies tend to be extensive,
complex, and non-emergent. The advantages of the featureless approach have become
increasingly vital in the IoT ecosystem. A fundamental principle behind the featureless
method is to convert data into bytes and input them into the model without altering the
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original traffic data. As a result, the feature extraction procedure has been eliminated from
the ML phases.

From a mathematical perspective, feature engineering in ML techniques involves
transforming unstructured data into a set of features that computers can understand. This
process is essential for effective model training. The development of featureless Machine
Learning algorithms addresses the need for this transformation. Consider a conventional
ML framework where a dataset D encompasses n instances, each delineated by m attributes.
Mathematically, it can be expressed as a matrix X with dimensions n × m. The goal of the
procedure is to create a mapping function f that combines the target vector Y with X

Y = f (X) (1)

The featureless approach uses a series of byte vectors {b1, b2, . . . , bn}, each of which
bi represents raw data in byte form. The objective assigned to the model is to identify a
function g(·) that transforms these byte vectors into the intended results Y,

Y = g(D) (2)

The function g(·) can analyze the raw data independently and extract patterns from
the byte-encoded input. This approach is particularly useful when there is uncertainty
about the most effective features or when the dataset has multiple dimensions. Using raw
data as representation at the byte level, featureless ML allows the model to learn from the
smallest unit of input. As a result, the need for manual feature extraction is eliminated,
potentially leading to more accurate models that are less susceptible to biases in the relative
values of numerous features detected by humans.

As previously known, this work presents a featureless IoT vulnerability detector. We
designed and programmed a tool using Python in Visual Studio that allows users to monitor
their network traffic in real-time to ensure that both the network and connected devices
are secure. The key aspect of this platform is its design, which is based on two trained
models. Both models utilize featureless techniques, making them more accessible to users.
The trained models are the 1D-CNN feature model and the featureless CyBERT model.
Figure 1 illustrates how the IoT vulnerability detector platform functions at each step. It
begins by uploading the network traffic file, followed by selecting one of the featureless
models to analyze the provided network traffic. Once the model completes the prediction,
it generates results that include several outputs to enhance accuracy and comprehensibility:
detection time, vulnerability percentage, a chart showing the number of vulnerable and
normal packets, and detailed information for each packet indicating which exact packets
are vulnerable. In the following sections, we discuss how each model operates for IoT
vulnerability detection.

Figure 1. The featureless IoT vulnerability detection tool workflow.
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3.1. Data Preparation

In Figure 1, Step 1 shows how to prepare the data after collecting them from IoT
devices. There is a single procedure in this process that employs Python scripts to transform
network packets into bytes for processing by the model, in line with the featureless model
approach. IoT devices generate various types of data, among which we use the network
traffic data for our study. The featureless approach converts this raw data directly into byte
sequences. A sequence of bytes represents every sample xi of IoT data.

Xi = [xi1, xi2, . . . , xin] (3)

where xij is the byte in the i-th sample at position j-th, and n is the total number of bytes
in each sample. After that, if the CNN model is chosen, the data will progress to the
input layer, which is used in the embedding layer to convert the bytes into continuous
vectors. If the CyBERT model is chosen, these byte sequences are merged to form a single
text-like sequence that the CyBERT model can process. The byte sequences are combined
to create a continuous form that simulates text. This method ensures the model processes
incoming data in a manner suitable for applications involving natural language processing.
The combined sequence Si for the i-th sample in a set of m samples is expressed as follows.

Si = [xi1, xi2, . . . , xin] (4)

The system processes raw data via two parallel pathways: a user-selectable 1D-CNN or
CyBERT model. The following outlines the workflow for each processing branch.

3.2. Featureless CNN Model Architecture

To identify the significant risks of IoT vulnerability across the network, this model
develops a straightforward, lightweight, featureless one-dimensional convolution neural
network (1D-CNN) model that can be implemented in small devices, such as IoT devices
and routers. In Figure 1, Step 2.1 shows how the data are handled to be used in the
CNN model, while the model details are illustrated in Figure 2. It can be summarized
as a 1D-CNN with two convolutional layers, a fully connected layer, and a hidden layer.
Since network packets entering the device can be viewed as cases dispersed over time, this
scenario can be classified as a time series issue. One-dimensional CNNs have been applied
in several previous studies to label time series data [25–27].

Figure 2. The featureless CNN model architecture.
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3.2.1. Embedding of Byte Sequence

Bytes are transformed into continuous vectors in the embedding layer through the
input layer, which represents the relationships and contexts between the vectors. These
vectors are then fed into CNN layers, which utilize different types of layers to learn from
higher-level feature instances. Each byte xi is mapped to a continuous vector using an
embedding function e(·). Thus, the embedded representation as

E = [e(x1), e(x2), . . . , e(xn)] (5)

3.2.2. Convolution Operation

The Conv1D layer follows the input layer. A one-dimensional convolutional filter
of size k is applied to the embedded sequence. At a given position i, the convolution is
computed as

zi = σ

(
k

∑
j=1

wj · e(xi+j−1) + b

)
(6)

in which wj are the filter weights, b is the bias, and σ(·) is an activation function.

3.2.3. Pooling and Classification

Then, the MaxPooling1D layer procedure receives the output after that to reduce the
output size. Next, we implemented a single hidden layer that was built in order to teach the
non-linear link to the model weights. A maxpooling operation is applied to the sequence
{zi} to reduce its dimensionality as

p = max{z1, z2, . . . , zn−k+1} (7)

The pooled feature p is then passed through one fully connected layer to produce the final
vulnerability score as

y = f (p) (8)

in which f (·) denotes the mapping implemented by the fully connected layers.
Finally, the output layer consists of a Dense layer with a “sigmoid” activation function.

This function is suitable for a prediction model, as its probability ranges only between 0
and 1 [28]. Since our model uses binary classification, we employed the Adam optimizer
with a learning rate of 0.0001 and binary cross-entropy as the loss function while compiling
the model to prevent overfitting. The model parameters for each layer are shown in Table 3.

Table 3. Featureless CNN model parameters.

Layer Operation Filter Output

0 conv1D 6 × 200 5 × 200
1 Maxpooling1D 2 × 200 3 × 30
2 Dense - 98,334
3 Dense - 1

3.3. Featureless CyBERT Model Architecture

In Figure 1, Step 2.2 shows how the data are handled to be used in the CyBERT model,
while the model details in Figure 3 show how the featureless CyBERT model works in
each step.
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Figure 3. The featureless CyBERT model architecture.

3.3.1. The CyBERT Model Architecture

In Figure 3, the operation of the featureless CyBERT model at each step is illustrated.
To address cybersecurity needs, the BERT architecture was modified to create the CyBERT
model, which effectively analyzes raw byte sequences.

The process begins with the raw bytes of network traffic, and the model takes these
raw bytes directly, capturing all information from the original data. Second, tokenization,
which converts bytes into tokens, this tokenization makes the raw data compatible with
subsequent text-like processing. Third, the tokens are then encoded into numerical vectors,
preparing them for input to the model. This step translates the text-like representation into
a form that can be handled by numerical computations. Fourth, the data are organized
into NumPy arrays. This format is commonly used in many computational libraries,
ensuring efficient data manipulation and integration with deep learning frameworks. Fifth,
the internal parameters of the model, such as weights, biases, and learning rate, are set or
initialized. This setup lays the foundation for training. Finally, during training, the model
iteratively adjusts its parameters by examining labeled data. It refines its ability to identify
potential vulnerabilities by minimizing the difference between its predictions and known
labels. The performance of the model is then evaluated using separate data. This evaluation
measures how well the model identifies vulnerabilities in previously unseen traffic.

The model architecture consists of several transformer layers designed to capture the
relationships and patterns in the data. It includes the embedding layer and transformer layers.

The embedding layer: All bytes xij are assigned to a high-dimensional vector by an
embedding function e(xij). The embedded sequence of the i-th sample can be identified by

Ei = [e(xi1), e(xi2), . . . , e(xin)] (9)

Transformer layers: Several transformer layers that leverage feedforward neural
networks and self-attention processes handle the encoded sequence. Let T be the transfor-
mation that these layers apply, and let Hi be the hidden representation of the sample for
the i th sample that comes after the last transformer layer.

Hi = T (Ei) (10)

3.3.2. Processing Raw Traffic Data with CYBERT

The featureless CyBERT model processes network traffic by utilizing its language-
understanding capabilities after converting the raw data into a text-like format. This section
explains the step-by-step data conversion and fine-tuning process.
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First, each network packet is converted into a sequence of bytes in Equation (3).
Next, the byte sequence X is transformed into a text-like sequence by joining the

individual bytes. This process results in a string that captures key aspects of network
traffic, e.g.,

S = join(X) =⇒ “Protocol: TCP; Port: 80; Packet Length: 1500 bytes; Flow Duration: 120 ms” (11)

The text sequence S is then used as input to the pre-trained CyBERT model. In our
approach, the pre-trained CyBERT is fine-tuned on our labeled dataset to adapt it for
IoT vulnerability detection. Fine-tuning adjusts the model parameters to ensure accurate
interpretation of these text-like sequences and classification based on the presence of
vulnerabilities. The expected output is a classification indicating whether the input exhibits
signs of vulnerability. For example, the output might be “1”, where 1 indicates a detected
vulnerability and 0 indicates no vulnerability.

3.4. Vulnerability Detection

To identify vulnerabilities, the output layer, known as the classification layer, receives
the hidden representation Hi, which estimates the probability that a sample is vulnerable.
Unusual behaviors indicating vulnerabilities in IoT data can only be detected through
vulnerability detection. The training procedure for both models aims to develop representa-
tions that distinguish between normal and vulnerable data. From the input data, the g(Si)

function generates an anomalous score. The objective of the vulnerability detection loss,
which is the total of the losses Lvulnerable for all training samples m, is to enhance the
difference between the normal and vulnerable sample sets.

Lvul =
m

∑
i=1

ℓ(g(Si), ti) (12)

where ℓ is used to identify vulnerabilities. To prevent the model from overfitting, the loss
function ℓ is employed, with learning rates of 0.0001 for the CNN model and 1 × 10−5

for the CyBERT model. This function compares the anomaly score for the i-th sample,
produced by the model g(Si), with the ground truth label ti.

3.5. Vulnerability Mitigation

Using LLM models to mitigate IoT vulnerabilities is complex due to the diversity of
IoT data, as each threat requires different mitigation strategies. However, we designed
these models to automate the identification and mitigation of network vulnerabilities by
referencing Common Vulnerabilities and Exposures (CVEs), specifically from the Ripple20
vulnerability set, and utilizing LLM models to generate additional mitigation strategies.
This approach is particularly valuable in a real-time network security context, where
packets or network traffic must be evaluated for vulnerabilities and appropriate mitigations
need to be applied swiftly. In our case, when the CyBERT model detects a vulnerability in
the network traffic, the affected traffic is passed to the LLM model, specifically GPT-3.5,
which identifies and analyzes the vulnerability to suggest the best solution. The mitigation
step can be summarized as follows: the LLM receives the vulnerable packets, analyzes them
to extract main features and patterns, and utilizes featureless models to identify essential
features related to the vulnerability patterns, such as ports, protocol, and packet length,
while also calculating the flow duration for each packet. The following section explains the
steps for the mitigation suggestion and illustrates them mathematically.

Let us assume these notations (Table 4).
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Table 4. Table of Notation.

C A set of known CVE entries relevant to Ripple20 vulnerabilities,
e.g., {c1, c2, . . . , ck}.

M A set of possible mitigation strategies returned by the LLM.
T The space of textual prompts or user-provided messages/logs.
V A set of vulnerabilities detected in the IoT data (e.g., from a CyBERT model).

ypredicted
ypredicted ∈ {0, 1}n is a binary vector of length n, where each entry
corresponds to a packet classified as non-vulnerable (0) or vulnerable (1).

P P = {p1 . . . pn} is a set of network packets or logs to be evaluated for
vulnerabilities.

3.5.1. Implementation of LLM-Based Mitigation

Define vulnerability mapping with the main features, mapping the top vulnerabili-
ties associated with IoT networks based on the Common Vulnerabilities and Exposures
(CVEs) website; in our case, we focus on the Ripple20 vulnerabilities. The objective is to
associate particular vulnerabilities (CVE entries) with their relevant attributes, enabling
the following:

• The recognition of vulnerabilities through network characteristics such as protocol,
port, and flow duration.

• The examination of possible attack vectors by utilizing the Common Vulnerability
Scoring System (CVSS) score and comprehensive descriptions.

• The application of mitigation tactics specifically designed for each vulnerability.

Let ripple20_cve_mapping be a structure that associates each CVE ID c ∈ C with
specific vulnerability details. We can denote this mapping as

M : C → Vinfo (13)

where Vinfo is the space of vulnerability details (e.g., CVSS score, description, and recom-
mended patch). For each c ∈ C,

M(c) = {description, CVSS_score, attack_vector, . . .} (14)

identifies matching vulnerability CVEs by comparing attributes of individual packets
against the pre-defined Ripple20 vulnerability mapping. Then, prepare prompts for the
LLM by scanning the provided text (prompt) for mentions of CVEs from the CVE mapping
list. Return the corresponding vulnerability details if a match is found. This process is
useful for identifying which CVE corresponds to specific information, such as protocols
and ports.

Finally, generate structured, human-readable prompts summarizing packet details
and linked vulnerabilities to query the LLM, associating the vulnerabilities with appropri-
ate mitigations.

Generating a contextual prompt for LLM to produce mitigation strategies. Each
vulnerability instance is distilled into a structured prompt that includes the relevant CVE
details, protocol, port, flow duration, and preliminary mitigation steps. An example prompt
is shown below Listings 1 and 2:
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Listing 1. LLM Prompt Example for IoT Vulnerabilities.

1 prompt = f"Vulnerability: {cve_data[’CVE ’]} - {cve_data[’description ’]}\n"
\

2 f"Protocol: {cve_data[’protocol ’]} Port: {cve_data[’port ’]} Flow Duration:
{cve_data[’flow_duration ’]}\n" \

3 f"Suggested Mitigation: {cve_data[’mitigation ’]}\n\n" \
4 f"Now , Find an appropriate CVE for this IoT vulnerability if possible ,

rank the potential risk CVSS based on the CVE website and then Suggest
mitigation."

5 ]

This prompt is then provided to the LLM, along with a system message defining its
role as a cybersecurity expert:

Listing 2. LLM message for the LLM.

1 messages = [
2 {"role": "system", "content": "You are a cybersecurity expert."},
3 {"role": "user", "content": f"Suggest mitigation for this IoT

vulnerability: {prompt}"}
4 ]

The system message ensures that the model aligns its response with security-focused
best practices, while the user message presents the vulnerability details identified in
our pipeline.

Mathematically, we define a function that scans a given text prompt T ∈ T for
references to CVE IDs in C. Formally,

find_matching_cve : T → C ∪ {∅} (15)

in which ∅ indicates that no match was found. Thus, for a prompt T, as

c = find_matching_cve(T) (16)

If c ̸= ∅, we retrieve additional vulnerability details from M(c).
Generate mitigation suggestions for network vulnerabilities by passing descriptive

prompts about flagged packets. It works by using packet-level vulnerability information
encapsulated at the prompt to query an LLM. First, an advanced API provides additional
strategies to mitigate detected vulnerabilities. If a prompt, such as a network log, includes a
specific vulnerability reference, it is adjusted to request detailed mitigation suggestions and
a summary of the associated information. This ensures a tailored and relevant response to
the vulnerability in question. Second, to determine specific situations where vulnerabilities
are present, a thorough examination of the anticipated vulnerability labels is carried out.
The process described above enables a comprehensive approach to solving potential se-
curity threats, producing accurate mitigation methods for each case. Additionally, these
recommendations should be included in the dataset for further reporting or analysis. Define

get_mitigation : (T , C) → M (17)

such that for a prompt T (e.g., a packet log or message) and a CVE ID c matched by
find_matching_cve, the function constructs a specialized prompt for the LLM. This prompt
requests remediation guidance for c based on the associated details M(c), as

Mc = get_mitigation(T, c), (18)

in which Mc is the mitigation strategy set suggested by the LLM. If no CVE is found,
it may return a default or must relate to a mitigation set. Let ypredicted be the output
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of a vulnerability detection model (e.g., CyBERT), indicating which packets are vulner-
able. The function mitigate_vulnerabilities processes each packet pi that is classified as
vulnerable (ypredicted,i = 1) and obtains mitigation suggestions via get_mitigation. As

mitigate_vulnerabilities : (P , ypredicted) → R (19)

in which R is the resulting set of records containing vulnerabilities, CVE mapping, and mit-
igation steps. The process is summarized as follows:

When submitted to the LLM, the model interprets the contextual input, which includes
the CVE number, protocol, port, flow duration, and existing mitigation. It then returns a
refined or additional mitigation plan.

(1). For each packet pi:

if ypredicted,i = 1, then gather relevant details from pi to form Ti ∈ T .

(2). Identify CVE IDs mentioned in Ti:

c = find_matching_cve(Ti).

(3). If c ̸= ∅, generate mitigation suggestions:

Mc = get_mitigation(Ti, c).

(4). Aggregate results into a record ρi, associating (pi, c,Mc).

ρi = {packet_id : pi, cve_id : c, mitigation_recommendations : Mc}.

Finally, the set of records {ρi} is returned as R, providing a comprehensive mapping
of detected vulnerabilities and suggested mitigation.

3.5.2. Rationale

• Context preservation ensures the model has complete context to produce accurate
mitigation techniques by integrating protocol, port, and flow length with current
vulnerability specifics (CVE, description, CVSS).

• In the expert role, “You are a cybersecurity expert”, the system message directs the
LLM to concentrate on threat analysis and security suggestions.

• With CVE alignment, requesting the model to “Find an appropriate CVE” checks
the identified vulnerability against the model’s knowledge base and may reveal
additional threats.

• With adaptive responses, the LLM can comment on partial matches and suggest more
comprehensive mitigations in the event of partial CVE mappings or new threats.

3.5.3. Verification of LLM-Based Mitigation Strategies

To enhance confidence in mitigation solutions generated by LLMs, we propose several
verification approaches. Firstly, cross-validation with established databases, which are
mitigation recommendations, is verified against well-known vulnerability databases and
established fixing techniques. Secondly, rule-based post-processing. Before deploying
the LLM results, we apply a set of predefined guidelines that ensure compatibility with
industry best practices.

These verification procedures aim to reduce the likelihood of inaccurate or unactionable
suggestions. They will be used to assess the mitigation framework in real-world circumstances.
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4. Validation
This work aims to deploy the trained featureless models from the previous works.

As the training results were outstanding, we created a platform that could help the user,
expert or not, to ensure their IoT network. Both featureless models were trained on collected
data from our lab and a set of IoT23 datasets, and both were used to detect and identify
vulnerabilities related to IoT devices.

4.1. Datasets

The first dataset for our experiments consists of network traffic collected from a smart
home network at Cardiff University Smart Home Lab. The network comprises 12 smart
home devices, 6 of which are affected by Ripple20 vulnerabilities, while 6 are confirmed
to be secure. The status of each device was determined by scanning it with the Nessus
platform to identify the presence or absence of Ripple20 vulnerabilities.

The network packets were captured using Wireshark over a period of four hours. This
duration was chosen because the Ripple20 vulnerability typically manifests during the
initial connection phase when the device begins its authentication process. This method en-
sures that, even with a high volume of packets, critical vulnerability patterns are effectively
captured. In total, the capture resulted in 253,914 packets saved in a Pcap file, which has a
size of 324.2 MB.

The collected data were analyzed and labeled to distinguish traffic containing Rip-
ple20 vulnerabilities from traffic that is free of these vulnerabilities. This labeling process
enabled the model to learn and recognize the patterns associated with vulnerabilities
during training.

The second dataset is a subset of the IoT23 dataset, specifically linked to our Ripple20
vulnerability case study and its implications regarding attacks. The IoT23 dataset comprises
normal packets and DDoS attack packets, totaling 1,760,865 network packets with a size of
1.8 GB.

4.2. Training Configurations and Hyperparameters

Data were initially split into training and test sets using an 80/20 ratio with a fixed
random seed random_state = 42 to ensure reproducibility. Within the training set, we used
a validation split of 10% during model training to monitor and tune performance.

To ensure reproducibility and robust performance, we provide the key training con-
figurations used for our models. Additionally, to address the class imbalance, we applied
a RandomOverSampler to the training data only to ensure that the model learns effectively
from minority classes without being biased towards the majority class. The test set, on the
other hand, is left unaltered to accurately reflect the real-world distribution and to provide
a fair evaluation of the model’s performance.

Table 5 shows the training configurations and hyperparameters. The tuning was per-
formed using grid search on a validation set. Additional parameters, such as dropout rates
and weight decay, were adjusted based on preliminary experiments to prevent overfitting
and improve generalization.

Table 5. Training Configurations and Hyperparameters.

Parameter 1D-CNN Model CyBERT Model

Optimizer Adam Adam
Learning Rate 0.0001 1 × 10−5

Batch Size 64 32
Number of Epochs 50 30

Loss Function Binary cross-entropy Binary cross-entropy
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4.3. Experimental Setup

The featureless proposed model was evaluated by calculating various matrices and
training and detecting time on different non-featureless LLM models such as BERT, Se-
cureBERT, CySecBERT, and CyBERT. The results were then compared with those from our
featureless model. Table 6 compares the performance, including training and validation
time, for representative non-featureless techniques with our proposed featureless model.
It is clear that our featureless CyBERT achieves excellent results within a shorter time
for training and validation. This high level of efficiency is crucial in IoT deployments,
where reducing power usage and providing immediate threat detection are top priorities.
Although CySecBERT achieved comparable accuracy, it required nearly seven times as long
to complete its training phase, illustrating the practical compromise between complexity
and limited device resources. In addition, these outcomes align with previous research
that underscores the importance of lightweight, near-real-time security measures in con-
nected environments. So, we decided to use our featureless model within the detection and
mitigation platform.

Table 6. Comparison of representative non-featureless techniques with our featureless model.

The Model Accuracy Precision Recall F1-Score Training and
Testing Time (s)

BERT Model 0.9988 0.9988 0.9988 0.9988 11,724.72
SecureBERT Model 0.9979 0.9979 0.9979 0.9979 11,306.92
CySecBERT Model 0.9990 0.9990 0.9990 0.9990 11,697.347

CyBERT 0.9951 0.9951 0.9951 0.9951 5945.0
Featureless CyBERT 0.999 0.999 0.999 0.999 1470.81

For training the models, we conducted the experiment on an Ubuntu 22.04.1 LTS server,
powered by an NVIDIA GeForce RTX 3080 with 32 GB of memory and a 12th-generation
Intel i7-12700 CPU. Then, we used Visual Studio and Python to create the platform. Of
the data collected, six IoT devices were linked to the Ripple20 vulnerability, while the
remaining six were not affected. DDoS attack packets and regular packets made up the
IoT23 dataset that was used.

4.4. Experimental Design and Rationales

As we evaluate the performance of these models, we calculate several metrics while
considering the processing time. Table 7 shows the results of the metrics for both models.
Accuracy serves as a training and validation measure for the data, as it is defined as the
percentage of correctly categorized data among all classifications performed by the model.

Accuracy =
TP + TN

TP + TN + FP + FN
(20)

in which TP denotes a true positive, TN denotes a true negative, FP denotes a false positive,
and FN denotes a false negative, respectively.

Table 7. Featureless CNN and CyBERT Models results.

Model Accuracy Precision Recall F1-Score RMSE AUC-ROC Time

Featureless CNN 0.9996 99994 0.99912 0.99953 0.02 0.99 837.57
Featureless CyBERT 0.999 0.999 0.999 0.999 0.0 1.0 1470.81
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Precision is the ability of a classification model to identify and emphasize the most
significant data points. Mathematically, it is defined as the ratio of true positives to the total
number of true positives and false positives combined.

Precision =
TP

TP + FP
(21)

Recall is a mathematical term that describes a model’s ability to find all relevant
examples during data collection. It is expressed as the ratio of the total number of true
positives to the sum of true positives and false negatives.

Recall =
TP

TP + FN
(22)

The F1 score is calculated using the weighted average of accuracy and recall levels of
the verified data.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(23)

A common method to quantify the differences between predicted and actual values is
the Root Mean Square Error (RMSE). RMSE is defined as the square root of the mean of
the squared differences between the actual and predicted values. This metric is especially
useful for highlighting large errors, which are generally undesirable. It can be calculated
using the following formula:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (24)

in which the following are used:

- n is the number of observations.
- yi is the actual value for the i-th observation.
- ŷi is the predicted value for the i-th observation.

4.5. Results

Table 7 presents two methods, the featureless CNN and the featureless CyBERT. Both
methods achieve exceptionally high accuracy 99.96% and 99.9%, respectively, indicating that
nearly all instances are correctly classified. In terms of precision, recall, and F1-score, both
methods are similarly strong, suggesting that they not only correctly identify most positive
cases but also avoid excessive false alarms. The RMSE is low in both approaches, and the
AUC-ROC values reveal a high level of distinction between normal and vulnerable traffic.
A key difference lies in processing time. The featureless CNN requires 837.57 s, whereas
the featureless CyBERT needs 1470.81 s. Although both methods provide robust detection,
the shorter time of the featureless CNN may be more practical for settings where devices
have limited power or where fast responses are necessary. On the other hand, those willing
to invest more time in processing may find the featureless CyBERT method attractive,
especially since it achieves a perfect AUC-ROC score. Ultimately, the choice between these
methods would depend on the specific needs and constraints of the intended application.

Since both models were trained on different datasets to distinguish between normal
and vulnerable traffic, we are preparing to deploy these models for user access.

Figure 4 shows the platform interface that detects vulnerabilities through IoT network
traffic. This platform takes several steps to present a user-friendly interface, allowing any
user to deploy both models:
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1. Model Preparation: Preparing the models for use after training is the first step.
The models need to be stored in a format that supports easy integration into the
tool after it has been trained. The most common format is h5 for the TensorFlow/K-
eras models that were used. By saving the model, it makes sure that it can be loaded
and used in many scenarios, such as the Python-based use which is being developed.

2. Integrating the Model: The model must then be integrated into the Python tool
that was being developed after it is prepared. While many more techniques might
be employed, we choose to use API-based integration in our case. Using Python,
the easiest way is to use packages like pickle and TensorFlow/Keras to import the
stored model straight into the source code. As a result, the tool can obtain predictions
from the API.

3. Building the User Interface: The next stage after integrating the model is to design a
simple user interface so that participants can communicate with it. Users can provide
data, see results, and obtain model predictions using a graphical interface designed
with Python frameworks such as PyQt and Tkinter. This ensures that users can
effectively use the possibilities of the model by making the tool easily accessible and
user-friendly.

4. Testing and Optimization: Thorough testing and optimization are essential when the
model is implemented and the interface is developed. This process makes sure that
the model runs smoothly within the tool, that the predictions are correct, and that
when users interact with the interface, it behaves as expected. The tool’s dependability
in practical situations is confirmed by testing under different scenarios. Performance
optimization is also required to reduce memory usage, increase interface responsive-
ness, and improve prediction speed. This preserves the fact that the tool works well
even when handling large datasets or producing predictions in real-time.

Figure 4. The featureless IoT vulnerability detector.

The figure illustrates that the detection tool is user-friendly for all users. When users
upload a network traffic file, the tool detects vulnerable packets and presents various
results, including detection time, vulnerability percentage of the packet file, total counts of
vulnerable and normal packets, and additional details for each packet. Moreover, security
experts can explore each packet further to gain deeper insights into the network traffic.
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Then, when vulnerabilities are detected, the mitigation option will be activated.
The vulnerable packets will be automatically sent to GPT-3.5 for mitigation suggestions
based on the identified steps. The suggestions will be received in a few seconds, as shown
in Figure 5. In conclusion, the tool is designed to automate the detection, identification,
and mitigation of vulnerabilities in IoT networks by referencing known CVEs and utilizing
AI to generate additional mitigation strategies. This approach is valuable in a real-time
network security context, where packets or network traffic must be evaluated for vulnera-
bilities, and appropriate mitigation applied immediately.

Figure 5. Featureless IoT vulnerability detection and mitigation.

5. Discussion
5.1. Contributions to the Field

The value of these study results is discussed in terms of how AI-driven DL and LLM
can be effectively integrated to discover zero-day vulnerabilities across IoT networks. This
work illustrates the strength of using raw network traffic data, which eliminates manual
feature engineering and reduces the expertise and time required to detect vulnerabilities
in IoT. Through the use of pre-trained DL and LLM, this study extends previous work in
which [29] first investigated the potential of LLM in IoT security. LLMs are recursive and
can be trained in any domain due to a global design pattern. We demonstrate that this
approach is effective by applying it to the analysis and classification of network traffic data
in cybersecurity.

Thus, with modern-day IoT security becoming increasingly important, this study
aligns with the recent trend emphasizing the necessity for lightweight, accessible, and scal-
able tools. This study has achieved a significant milestone by developing a platform that
includes a user-friendly interface and much lighter models, 277.5 MB for DL and 334 MB
for LLM. This advancement makes real-world deployment on low-power and resource-
constrained IoT devices feasible moving forward. Deploying lightweight and user-friendly
models is crucial for IoT applications, as noted in [3,30], where computational resources
are typically limited.

Unlike standard ML approaches that rely on manually built features for vulnerability
identification, our methodology evaluates raw network traffic data, eliminating the need for
direct feature extraction. Manual feature engineering is time-consuming and may overlook
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small patterns critical for identifying emerging threats. Our featureless DL technique
automatically learns these representations, enhancing detection accuracy and flexibility.
Furthermore, the integration of LLM enables the production of actionable mitigation
measures, resulting in an end-to-end solution for IoT security. Furthermore, the integration
of LLM enables the production of actionable mitigation measures, resulting in an end-to-end
solution for IoT security.

Our tests of both the Cardiff University Smart Home Lab dataset and a subset of
the IoT23 dataset show that our technique outperforms traditional methods regarding
processing efficiency, resilience, and overall performance. This comparison highlights the
significant benefits of our methodology over previous approaches, particularly in dynamic
IoT contexts where real-time detection and reaction are crucial.

What is particularly important about this study is that, compared with traditional
intrusion detection systems (IDS), which often use supervised learning and feature ex-
traction, the methodology employed here is much more featureless. Malicious software
encountered by intrusion detection systems, especially zero-day vulnerabilities, can ef-
fectively identify threats by detecting unknown data patterns without relying on hard
signatures from previous research [31]. Our approach of leveraging raw data to identify
vulnerabilities aligns with the idea that this system should operate without, or at least
minimize, frequent manual feature engineering and the unbounded adaptability of release
agents against unknown threats.

The integration of LLMs into mitigating IoT vulnerabilities, particularly Ripple20
vulnerabilities, represents a significant advancement in cybersecurity. LLMs enhance the
process by automating vulnerability identification through parsing network traffic and
logs, enabling real-time and accurate detection. They also provide contextually tailored
mitigation strategies, including specific remediation steps or configuration changes for
identified CVEs. Furthermore, LLMs offer scalability by monitoring extensive IoT networks
and analyzing diverse data. Their adaptability ensures that mitigation strategies remain
effective against evolving threats.

5.2. Future Research Directions

This study raises several future research directions. One potential direction is to
continue developing LLM architectures by optimizing them or enhancing their efficiency
within IoT contexts. These models can be effectively implemented in constrained IoT
devices, improving performance without compromising their lightweight nature due to
hardware limitations. Moreover, it would be intriguing for these AI models to learn from
new threats using adaptive mechanisms, such as reinforcement learning or continuous
updates, as proposed in the work on adaptive security frameworks by [30]. Such advance-
ments could improve detection capabilities for emerging vulnerabilities, which is in high
demand given the rapidly changing cybersecurity landscape.

Integration with Explainable AI (XAI) combines LLMs with XAI techniques, providing
transparent and understandable mitigation strategies to assist security professionals in their
decision-making processes. This integration enhances the interpretability of LLM-driven
output and addresses challenges identified in previous research.

Collaborative security frameworks that implement LLMs within collaborative plat-
forms can facilitate the sharing of threat intelligence and mitigation strategies between
organizations, thereby improving collective resilience to cybersecurity.

Concerning adversarial threats and countermeasures, our method is highly accurate in
detecting IoT vulnerabilities. However, it is critical to recognize potential adversarial threats
in real-world implementations. Attackers can manipulate network traffic by injecting
specifically designed packets to avoid detection or confuse the system. Modifications to
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packet features, such as header information, payload content, or packet timing, that seem to
normalize traffic are examples of potential adversarial threats. Such manipulations can lead
to false negatives, where true vulnerabilities are ignored, or false positives, where benign
traffic is misidentified as malicious. Several countermeasures can enhance our detection
framework, including anomaly detection and ensemble methods.

Enhanced mitigation frameworks aim to improve the mitigation process by combining
expert evaluation with ensemble approaches. Domain experts will assess the developed
mitigation techniques to confirm their accuracy and applicability. Concurrently, ensemble or
consensus-based methodologies will be explored to aggregate findings from various models.
This combined approach is expected to produce more reliable mitigation recommendations.

Lastly, introducing privacy-preserving methods such as federated learning can further
enhance the separability of these models by allowing their training on data from multiple
IoT network locations. However, this does not ensure that a high-accuracy detection system
can maintain data privacy. One approach to address this is the development of privacy-
preserving models for similar applications of IoT and IIoT devices. Partnerships between
industry and academia that test these models in real-world IoT setups, as well as more
diverse environments around the world, can provide valuable feedback. This feedback
would help refine the design of these models, ensuring they operate robustly across all
deployment scenarios.
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