
Academic Editor: Silvia Armini

Received: 24 February 2025

Revised: 17 March 2025

Accepted: 21 March 2025

Published: 24 March 2025

Citation: Li, Q.; Liu, K.; Chen, R.;

Fang, W.; Zhang, Z.; Chen, Y.; Liu, H.;

Lin, Z.; Liu, Y.; Wang, T. The Effect of

Al2O3 Nanoparticles on Hexagonal

Boron Nitride Films Resulting from

High-Temperature Annealing.

Nanomaterials 2025, 15, 484.

https://doi.org/10.3390/

nano15070484

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

The Effect of Al2O3 Nanoparticles on Hexagonal Boron Nitride
Films Resulting from High-Temperature Annealing
Qiang Li 1,2,*,† , Kangkang Liu 1,2,†, Ransheng Chen 2, Wannian Fang 2, Zhihao Zhang 2, Youwei Chen 2,
Haifeng Liu 2, Ziyan Lin 2, Yuhuai Liu 3,4,* and Tao Wang 5,*

1 Key Laboratory of Physical Electronics and Devices for Ministry of Education and Shaanxi Provincial Key
Laboratory of Photonics & Information Technology, Xi’an Jiaotong University, Xi’an 710049, China;
liukang4142@stu.xjtu.edu.cn

2 School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
chenransheng@stu.xjtu.edu.cn (R.C.); wannian333@stu.xjtu.edu.cn (W.F.);
zzh1920676733@stu.xjtu.edu.cn (Z.Z.); 202194611912@stu.xjtu.edu.cn (Y.C.); scorpio@stu.xjtu.edu.cn (H.L.);
lzy2213525329@stu.xjtu.edu.cn (Z.L.)

3 National Centre for International Joint Research of Electronic Materials and Systems, School of Information
Engineering, Zhengzhou University, Zhengzhou 450001, China

4 School of Engineering, Nagoya University, Nagoya 464-8601, Aichi, Japan
5 School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK
* Correspondence: liqiang2014@mail.xjtu.edu.cn (Q.L.); ieyhliu@zzu.edu.cn (Y.L.);

wangt61@cardiff.ac.uk (T.W.)
† These authors contributed equally to this work.

Abstract: A simple two-step approach was proposed to obtain hBN thin films with high
crystalline quality, meaning that the films were initially prepared by using an RF magnetron
sputtering technique and subsequently followed by a post-annealing process at a high
temperature. In the case of introducing Al2O3 nanoparticles, the effects of annealing
temperature from 1000 ◦C to 1300 ◦C and annealing time from 0.5 h to 1.5 h on the
recrystallization process of the grown hBN films were systematically studied by using XRD
and SEM technologies. The introduction of Al2O3 impurities during the annealing process
successfully reduced the transition temperature of hexagonal phase BN by more than
300 ◦C. The crystalline quality of hBN films grown by RF magnetron sputtering could be
effectively enhanced under annealing at 1100 ◦C for 1 h. The DUV detectors were prepared
using the hBN films before and after annealing, and showed a notable improvement in
detector performance by using annealed films. It has significant application value in further
enhancing the performance of DUV photodetectors based on high-quality hBN films.

Keywords: boron nitride; magnetron sputtering; post-annealing

1. Introduction
Hexagonal boron nitride (hBN), as a synthetic ultra wide-band semiconductor material,

exhibits excellent electrical, optical and mechanical properties [1–6]. The band gap up
to 6 eV presents great potential in luminescence and detection in the deep-ultraviolet
spectral region [7–9]. The extremely high dielectric strength (~8 MV/cm) makes it an ideal
dielectric candidate for the fabrication of switching and memory devices [10–12]. The
high thermal conductivity, antioxidant properties, and chemical stability endow hBN with
the ability of being used as a thermally conductive and heat-resistant material, coating
protection material and a variety of functional composite materials [13,14]. The two-
dimensional graphene-like layered structure associated with van der Waals forces of hBN
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offers an advantage in the fabrication of innovative electronic devices such as flexible
electronic devices [12–15].

A number of approaches have been proposed to synthesize hBN. In general, there are
mainly two methods for the fabrication of hBN films. The first one is to obtain nanosheet
films via mechanical stripping or liquid phase stripping from hBN bulk materials [16–19],
which exhibits the physical and chemical properties approaching the theoretical value
of single-crystal hBN. However, it is difficult to control the size, shape and thickness of
nanosheets, and thus they are impractical to be used for mass production purposes. The
second approach is to use an epitaxial technique on a substrate via certain precursors and
reaction processes, such as chemical vapor deposition (CVD), molecular beam epitaxy
(MBE), sputtering deposition, etc. [20–27]. The major advantage of these methods is related
to their capability of growing a continuous hBN film on a large scale. However, the epitaxy
growth generally poses challenges such as lattice mismatch and thermal mismatch between
hBN and a foreign substrate used, inevitably affecting the crystallinity of the hBN films
grown on its top. Among these methods, radio frequency (RF) magnetron sputtering
demonstrates major advantages from the perspective of the rapid growth of thick films on
a large scale at a low temperature (600–800 ◦C). Unfortunately, it should be noted that the
crystalline quality of hBN films is greatly limited by the relatively low growth temperature
(600–800 ◦C) [28]. It is generally expected that high-temperature annealing can potentially
enhance the crystal quality of semiconductors [29–32], which has also been proven to be
valid in preparing high-quality hBN thin films [24,33–37]. However, integrating a high-
temperature annealing process into RF magnetron sputtering still remains a great challenge,
and thus needs to be investigated.

Generally speaking, it is requested that either the growth of hBN thin films with
reasonable or post-annealing is conducted at a temperature of more than 1400 ◦C, posing
technical challenges. Therefore, it is necessary to develop a new approach to reduce the
required temperature, which has been the main focus for researchers [33–37].

Herein, a two-step method consisting of initial growth at a low temperature using RF
magnetron sputtering and a subsequent high-temperature annealing process is proposed,
aiming to synthesize high-quality, large-area, continuous hBN films. This method has
achieved great success in other semiconductor systems, such as AlN films grown on
sapphire [38,39]. Moreover, in this paper, we also introduce Al2O3 nano particles during
the annealing process, leading to not only a reduction in annealing temperature (down to
1100 ◦C) but also an improvement in crystalline quality. Radial morphology was observed
on the surface of the annealed samples, and the formation mechanism is discussed. Finally,
deep-ultraviolet (DUV) detectors were fabricated by using hBN films before and after
annealing. The better photoelectric performance with annealed hBN film verified the
improvement of hBN film crystal quality.

2. Materials and Methods
The growth of hBN films was triggered by means of a RF magnetron sputtering

technique. High-purity nitrogen (99.9999%) as a supplementary nitrogen source was
introduced to make up for the nitrogen deficiency problem that exists in the sputtering
process [40], and argon was used as a glow gas. At least three rounds of gas flush processes
were initially carried out to ensure that the air in the furnace was entirely removed to
prevent any oxidation. The hBN target with 99.9% purity and double-sided polished
sapphire substrate (c-plane) were used. After heating the substrate to 600 ◦C, a sputtering
process was conducted at 250 W for 8000 s. During the sputtering process, the pressure was
controlled at 0.6 Pa, where the flow rates of argon and nitrogen were 30 sccm and 10 sccm,
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respectively. The thin films with a thickness of 187 nm were obtained, showing a refractive
index of 1.72.

During the annealing process, high-purity nitrogen was introduced at a gas flow rate
of 50 sccm and the chamber pressure was maintained at 1 torr. Two pieces of samples
were placed together in a face-to-face configuration to effectively reduce decomposition
and volatilization at high temperatures, ensuring film integrity after annealing [39,41].
Aluminum oxide (Al2O3) particles, especially α- Al2O3, have excellent stability at high tem-
peratures [42]. Therefore, Al2O3 particles were innovatively introduced as oxide impurities
to reduce the phase transition temperature, based on the previous study of the influence
of impurities on the phase transition temperature of boron nitride [43–47]. Ellipsometry
(EMpro from Ellitop, Beijing, China), X-Ray Diffraction (XRD, Bruker D8 Advance, Bruker
Scientific Instruments, Ettlingen, Germany) and Scanning Electron Microscope (SEM, Gem-
ini SEM 500, Carl Zeiss Shanghai Management Co., Ltd., Shanghai, China) have been used
to characterize the thickness, crystalline quality, and surface morphology of both as-grown
and annealed hBN films, respectively.

3. Results and Discussion
In order to clarify the effect of annealing parameters on the film crystal quality fol-

lowing the introduction of Al2O3 nanoparticles, different annealing temperatures (1000–
1300 ◦C) and times (0.5–1.5 h) were selected for the study. Figure 1a,b display the XRD
characterization results of the films obtained before and after annealing, indicating a diffrac-
tion peak at 26.4◦ for the sample annealed at 1000 ◦C or 1100 ◦C corresponding to the
diffraction peak of hBN (0002). In contrast, such a peak did not appear on the pristine
sample and the samples annealed at the other higher temperatures. These results indicated
that high crystalline quality can be achieved by the annealing treatment even at 1000 ◦C
or 1100 ◦C. Moreover, the characteristic peak of (0002) for the sample annealed at 1100 ◦C
exhibited an approximately 59.6% higher intensity than that of the sample annealed at
1000 ◦C. The XRD spectrum of the sample annealed at 1100 ◦C shows a full width at half
maximum (FWHM) of 0.16◦, which is narrower than that of the sample annealed at 1000 ◦C
(0.18◦). All this meant that the optimized annealing temperature is 1100 ◦C.

Figure 1c–h present the SEM images of these samples. It can be seen from Figure 1c
that the as-grown film features many nano-particles, which is consistent with the island
growth model of hBN films [28]. Figure 1d shows many radial patterns after the sample
underwent annealing at 1000 ◦C for 1 h, while Figure 1e provides a high-definition image
for the local part of the sample. Figure 1f–h present the morphology evolution when the
annealing temperatures was increased from 1100 ◦C to 1200 ◦C and 1300 ◦C.

For detailed comparison, the characteristics of the samples before and after annealing
are provided in Figure 2. Figure 2a,b show the photographs of samples, indicating that the
films demonstrated a situation similar to “hairy glass” after annealing. Figure 2c shows
the cross section of hBN pristine film with a thickness of 187 nm. Figure 2d indicates
that the film became thicker after annealing, due to pore formation and film loosening
during recrystallization. AFM measurement was used to validate the radial morphological
changes, and the results are shown in Figure 2e,f. Figure 2e shows the pristine sample with
the root mean square (RMS) error of 7.91 nm, indicating an extremely smooth surface from
sputtered film growth. The post-annealing sample with a rough surface (RMS of 110.11 nm
in the gully region) is shown in Figure 2f. Surface morphological changes from AFM results
were consistent with the conclusion of the SEM measurement. Meanwhile, absorption
spectra tests before and after annealing at the optimal parameters were performed. The
results are shown in Figure 2g,h and the insets represent the optical bandgap, which
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indicates that the annealing process had little effect on the intrinsic absorption peak of
the films.
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Figure 1. (a) XRD characterization results of thin films before and after annealing at different
temperatures for 1 h; (b) partial enlargement. SEM morphology characterization of the sample’s
surface before and after annealing at different temperatures for 1 h: (c) pristine sample; (d) overall
surface morphology after annealing at 1000 ◦C; (e) sample annealed at 1000 ◦C; (f) sample annealed
at 1100 ◦C; (g) sample annealed at 1200 ◦C; (h) sample annealed at 1300 ◦C.

This phenomenon was attributed to the introduction of Al2O3 particles. The inner wall
of the annealing furnace was coated with a layer of micrometer-sized rod-shaped Al2O3

powders. The SEM morphology characterization of the corundum powders is shown in
Figure 3a, and the surface of the powders was covered with Al2O3 nanoparticles, as shown
in Figure 3b. At high temperatures, Al2O3 nanoparticles formed on the surface of microrod
powders and fell off due to gas-flow disturbance. Although the samples were placed in
a face-to-face manner, the Al2O3 nanoparticles could also be absorbed by the hBN film
with the continuous flow of nitrogen gas. These impurities acted as condensation nuclei,
inducing a high-temperature recrystallization process of hBN films that encompassed this
core and thus eventually forming radial patterns. With the temperature rising further, the
radial pattern on the surface began to melt, causing the surface of the film to be flat again.
It should be noted that a higher temperature (such as 1200 ◦C and 1300 ◦C) weakens the
influence of the Al2O3 nanoparticles during the transition of the film to the hexagonal phase,
while the characteristic peaks in the XRD disappeared if the temperature did not reach
a certain level (>1400 ◦C) that caused a spontaneous transition to the hexagonal phase.

Figure 4a illustrates the whole process schematically. To further demonstrate the role
of Al2O3 nanoparticles, a high-temperature tube furnace without a microrod corundum
powder coating was used for annealing. The temperatures were set to 1100 ◦C, 1300 ◦C,
and 1450 ◦C with the same annealing time and atmosphere. The surface morphology of the
sample annealing at 1450 ◦C is shown in Figure 4b and the samples annealed at different
temperatures exhibited similar morphologies, which are shown in Figure A1. For compar-
ison, the sample annealed in the previously described annealing furnace is displayed in
Figure 4c. The surfaces of the films did not show any radial patterns. A borderline between
the hBN film and the sapphire substrate was clear to be observed, indicating that the film
maintained a continuous and smooth surface even at a higher temperature. The crystalline
quality was also characterized by XRD, as shown in Figure 4d. The characteristic peaks of
hBN (0002) appeared only for the sample annealed at 1450 ◦C, but the samples annealed
at 1100 ◦C and 1300 ◦C did not show this peak. Hence, these results confirmed that the



Nanomaterials 2025, 15, 484 5 of 11

aforementioned Al2O3 particles work as condensation nuclei to induce recrystallization and
improve the crystallinity of the hBN film. Although the introduction of Al2O3 nanoparticles
caused the radial morphology, it had effectively led to a reduction in annealing temperature
by more than 300 ◦C.

Figure 2. Some characteristics of the samples before and after annealing at 1100 ◦C for 1 h: (a,b) pho-
tographs of samples; (c,d) cross-sectional SEM of the samples; (e,f) AFM characterization of samples;
The letters (A,B) are the two ends of a line segment chosen to represent the roughness of films.
Their actual physical positions are shown by the straight line in the figure. The specific thickness
changes are displayed in the inset at the top-left corner. The x-axis in the inset corresponds to A-B.
(g,h) absorption spectra and bandgap of samples.
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Figure 4. (a) Schematic diagram of the generation of radial patterns on the surface of the film after
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the high-temperature tube furnace.

The effect of annealing time on the quality of thin film crystals was also investigated.
Annealing time was chosen to be 0.5 h, 1 h and 1.5 h at 1100 ◦C while the other experimental
conditions remained unchanged. The surface morphology of these samples is shown in
Figure 5a–c. It can be found that the radial patterns always appeared regardless of annealing
time. The XRD results of the samples annealed for different times are shown in Figure 5d.
The characteristic peak of hBN (0002) appeared at 26.4◦ for all the annealed samples. The
sample annealed for 1 h showed the highest intensity of the characteristic peak compared
to the other two types of samples. The peak intensity was approximately 20.7% higher than
that of the sample annealed for 0.5 h, and 11.8% higher than that of the sample annealed
for 1.5 h. The FWHM of the XRD peaks of these annealed samples was 0.18◦, 0.16◦ and
0.18◦ for an annealing time of 0.5 h, 1 h and 1.5 h, respectively. The sample annealed for
0.5 h showed insufficient recrystallization as a result of the short time, while the sample
annealed for 1.5 h exhibited the decomposition of the film due to the excessive annealing
time. Notably, a shoulder peak was observed at the left of the hBN (0002) characteristic
peak for all the annealed samples, which possibly corresponds to the (012) characteristic
peak of the introduced Al2O3 nanoparticles. To sum up, with the introduction of Al2O3

nanoparticles, setting the annealing conditions to 1100 ◦C and 1 h effectively leads to the
higher crystallization quality of hBN films.
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In order to further validate the effect of crystalline quality on the performance of
devices, the hBN films annealed under optimal conditions (1100 ◦C for 1 h) were used to
fabricate DUV photodetectors. For comparison, un-annealed samples were fabricated into
devices using the same process. Nickel (Ni) metal finger electrodes were made with the
samples by photolithography, and their UV detection performances were tested. Figure 6a,b
shows the optical micrograph of the finger electrodes from both unannealed and annealed
samples, and the light current response was measured under 185 nm UV irradiation. The
response characteristics are shown in Figure 6c,d. The dark current of the annealed sample
was lower and stable with increasing voltage. The photocurrent was slightly better than
that of the unannealed sample at a positive voltage. Under a bias voltage of 80 V, the
dark currents of the photodetectors were measured at 32.5 pA and 9.3 pA and the photo
currents were recorded as 297 pA and 532 pA, respectively. Consequently, the photo-to-
dark current ratios were 9.1 (for the unannealed sample) and 57.2 (for the annealed sample),
respectively. Meanwhile, the responsivities of the DUV photodetectors made from the
samples before and after annealing were calculated to be 0.38 mA/W and 0.68 mA/W
under a bias voltage of 80 V, respectively. It is undeniable that the surface of the annealed
sample tends to be rough, potentially leading to a degradation in electrode contact quality.
This affected electrical performance. However, the performance of the device fabricated
from the annealed thin film was still higher than that of the device fabricated from the
unannealed sample. This further confirmed that an improvement in crystal quality of
thin films can be achieved due to annealing, eventually leading to a great enhancement in
device characteristics.
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4. Conclusions
In summary, a two-step method was employed to prepare hBN thin films with high

crystalline quality, including the initial growth using an RF magnetron sputtering tech-
nique and then high-temperature post-annealing. During the annealing processes, Al2O3

nanoparticles were introduced, where the effects of annealing temperature and annealing
time on the recrystallization process of the grown hBN films were systematically studied.
The introduction of Al2O3 nanoparticles during the annealing process successfully reduced
the transition temperature of hexagonal phase BN. The crystalline quality of the hBN films
grown by RF magnetron sputtering could be effectively enhanced after they underwent
the annealing process at 1100 ◦C for 1 h. DUV detectors were fabricated using the hBN
films with and without the annealing processes, demonstrating a significant improvement
in device performance for the devices fabricated from the annealed film. It has potential
application value in further enhancing the performance of DUV photodetectors based on
high-quality hBN films.
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