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A B S T R A C T

Wave breaking is a complex physical process about which open questions remain. For some applications, it
is critical to include breaking effects in phase-resolved envelope-based wave models such as the non-linear
Schrödinger. A promising approach is to use machine learning to capture breaking effects. In the present
paper we develop the machine learning architecture to model breaking developed by Eeltink et al. (2022)
further, potentially enabling more detailed breaking physics to be captured. We show that this model can be
trained on focused wave groups but can also capture breaking in random waves and modulated plane waves.
Analysis of the model suggests that the machine learning has broken the problem into two—one part which
detects whether the wave is breaking and another which captures the subsequent behaviour, consistent with
the way human scientists routinely understand the breaking problem.
1. Introduction

Surface gravity wave breaking is a familiar phenomenon to those
observing the ocean (Babanin, 2011), yet a good understanding cap-
turing the fundamental physics of wave breaking has proved difficult
for scientists and engineers. Understanding breaking is important for
multiple reasons, including for understanding the energy balance in the
ocean (Hasselmann, 1974), ocean mixing (Melville et al., 1998), air-
sea interaction (Melville, 1996; Deike, 2022), short-term wave statis-
tics (Toffoli et al., 2010), and loading on maritime structures (Pere-
grine, 2003).

The problem of wave-breaking in the ocean is multi-scale. Wave
breaking must be represented in phase-average sea-state models which
typically have the scale of (10–100 km) but ultimately these are
trying to capture energy dissipation processes which occur at (1 μm-
10 m) (Deike, 2022). Understanding the problem of wave breaking
on a wave-by-wave basis (as opposed to a phased-averaged sea-state
analysis) is frequently broken down into understanding when waves
break and then understanding the subsequent evolution. Both parts of
the problem are active areas of research.

Wave breaking criteria typically use the wave steepness, wave
speed and water depth to provide a threshold above which waves
would break. Various formulations for breaking criteria exist. Recent
developments on this is the concept of breaking inception introduced
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in Derakhti et al. (2020), which describes the initiation of an irre-
versible process within the crest that leads to breaking and occurs
prior to the stage of breaking onset. The breaking inception indicator
proposed by Derakhti et al. (2020) is based on the diagnostic parameter
𝐵thresh used in the kinematic breaking criterion (Barthelemy et al.,
2018). In Barthelemy et al. (2018), a threshold value 𝐵thresh ≈ 0.855
is suggested, and this experimental threshold value is verified in labo-
ratory experiments and numerical studies for a variety of wave packet
types.

The post-breaking behaviour is a complex multi-scale process. The
breaking process generates turbulence, which is chaotic and complex.
In simplified potential flow-based models this complexity can never
(fully) be captured. However, we can attempt to model the key energy
changes that occur when waves break. Liu et al. (2023) demonstrate
that the cumulative dissipation effect of breaking itself is less chaotic
and can be approximated. This suggests that prediction of the evolution
of breaking waves (and thus wave forecasting) could be enhanced
through improved physics-based models, data-driven methods, or other
suitable techniques.

In addition to the strong non-linear process of wave breaking,
weakly non-linear processes also play a role in water-wave evolution.
One computationally fast model that captures this for narrowbanded
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𝜙

deep-water waves is the ‘Modified non-linear Schödinger’ (MNLS) equa-
tion (Dysthe, 1979) or variants of it (see also Dysthe and Trulsen,
2001). The MNLS equation models the evolution of the wave’s complex
envelope. Generally, these equations can predict the evolution of ocean
waves well, although prediction of the largest waves remains chal-
lenging even for initially narrowbanded spectra due to the non-linear
physics driving a local contraction of a wavegroup in space and which
can also be thought of as a broadening of the spectrum (Adcock and
Taylor, 2016). In random wave simulation there will always be some
wave breaking, which is not captured in the basic MNLS equations.
Thus, it is necessary to modify the standard equations in order to
capture this process by adding a reduced-form (e.g., Trulsen and Dysthe
(1990), Kato and Oikawa (1995), Hwung et al. (2011), Majda and Wang
(2001) and Tian et al. (2012)) or data-driven breaking term (e.g., Liu
et al. (2023)). Liu et al. (2023) showed that envelope-based reduced-
form breaking models can capture elements of wave breaking in the
MNLS. but that this remains a challenging problem.

One approach to improving on envelope-based reduced-form break-
ing models is to use data-driven models and machine learning. In
particular, we focus here on Artificial Neural Networks (ANN), highly
efficient tools to capture the evolution of non-linear physics (Raissi
et al., 2019; Kochkov et al., 2021). ANNs have been applied to study
ocean waves in various ways (Qi and Majda, 2020; Eeltink et al., 2022).
Attempts have been made to predict the evolution of significant wave
height in the real ocean (Fan et al., 2020; Choi et al., 2020). Attempts
have also been made to predict properties of the turbulence arising
from wave breaking (Manucharyan et al., 2021) or the evolution of
the interface in a two-phase system (Deo et al., 2023). Of particular
importance here are applications to wave breaking. In Eeltink et al.
(2022), the authors applied a blended model to predict wave breaking
dissipation using the (temporal) MNLS equation (Dysthe, 1979; She-
mer et al., 2010) combined with a long-short-term memory (LSTM)
model (Hochreiter and Schmidhuber, 1997) to capture the effect of
breaking dissipation.

In this study, we extend the work of Eeltink et al. (2022). We
propose a novel blended model utilising a convolutional LSTM cell
(ConvLSTM) (Shi et al., 2015) in conjunction with the spatial MNLS
equation (Trulsen et al., 2000) to predict the evolution of focused
wave-induced breaking dissipation in time. We aim at implement-
ing a ‘per-step’ model to produce highly spatially resolved prediction
in space. Synthetic focused wave data generated the envelope-based
reduced-form breaking model of Liu et al. (2023) is applied to train this
model. The long-term objective would be to train on highly spatially
resolved Computational Fluid Dynamics (CFD) simulations or experi-
mental measurements (if possible). We then analyse the performance
of the trained model for focused waves, modulated plane waves and
random waves.

The new approach has a number of advantages over (Eeltink et al.,
2022) due to the introduction of the convolutional-recurrent archi-
tecture. We found that the ConvLSTM model learns breaking features
locally, which enables the model to learn from a smaller set of rep-
resentative samples before generalising these to arbitrary wave fields
with flexible domain width and duration. The ConvLSTM model is able
to predict the ‘per-step’ evolution of the wave breaking dissipation for
highly spatially resolved wave field. Comparing this with the LSTM
model, the behaviour of the ConvLSTM model is easier to interpret. In
this study, we will show that our model is not limited to a single type of
wave condition but can be effectively applied across various conditions
even if not directly trained on these.

The present paper is part of a wider programme of work in which
researchers are trying to use machine learning to capture multi-scale
interactions with improved fidelity. In the present paper, we base our
analysis on envelope-based models. The inability of these to capture
wave breaking is one reason why their use has primarily been for
academic research rather than as operational models. An reason for
2

improving breaking characterisation is to make such a model more
applicable to the real world and thus more useful operationally.

This paper is organised as follows. In Section 2 we introduce the
method we use to generate the synthetic data. In Section 3 we in-
troduce the model and training details. In Section 4 we evaluate the
performance of the model using a test dataset not used for training.
In Section 5 we analyse the performance of the for different types of
waves, before summarising in the conclusions.

2. Methods

Our base model in the present paper is the Modified Nonlinear
Schrödinger (MNLS) equation proposed by Trulsen et al. (2000); it
solves the potential-flow equations and does not account for wave
breaking. This model solves the linear part of the envelope evolution
exactly and approximates the effects of weak nonlinearity under the
assumption that the waves are narrowbanded. In the present work we
assume the fluid is deep but not infinitely so, thus accounting for finite
depth in the linear dispersion relation and in the return current but
not in the coefficients of the non-linear terms which are only weakly
influenced by depth for the depth range considered here (Barratt et al.,
2021).

2.1. Envelope-based evolution equation

The velocity potential 𝜙 and the surface elevation 𝜂 are given by:

= �̄� + 1
2
(𝛩𝑒𝑖(𝑘0𝑥−𝜔0𝑡)+𝑘0𝑧 + 𝛩2𝑒

2𝑖(𝑘0𝑥−𝜔0𝑡)+2𝑘0𝑧 +⋯ + c.c.), (1)

𝜂 = �̄� + 1
2
(𝐵𝑒𝑖(𝑘0𝑥−𝜔0𝑡) + 𝐵2𝑒

2𝑖(𝑘0𝑥−𝜔0𝑡) +⋯ + c.c.), (2)

where c.c. denotes the complex conjugate, 𝑘0 and 𝜔0 are the dimen-
sional wavenumber and angular frequency of the carrier wave, 𝛩(𝑥, 𝑧, 𝑡)
and 𝐵(𝑥, 𝑡) are complex envelopes, and �̄� and �̄� are the mean-flow
potential and the wave-averaged free surface, respectively. The enve-
lope 𝐵(𝑥, 𝑡) is described by the MNLS equation (Trulsen et al., 2000)
(given here in two dimensions or for unidirectional wave propagation).
In Eqs. (1) and (2), all variables are dimensional, and the primes
as superscripts denoting their dimensionality are omitted here. It is
more convenient to work with a non-dimensional system. The variables
below are used as follows (Gramstad and Trulsen, 2011):
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(3)

where 𝜖 is the characteristic steepness, 𝐴0 is the characteristic wave
height, 𝐿0 is the length scale, 𝑇0 is the time scale, 𝑘0 is the non-
dimensional carrier wavenumber, 𝜔0 is the non-dimensional carrier
angular frequency and 𝑑 is the non-dimensional water depth. Variables
with a prime indicating the corresponding dimensional variables. Vari-
ables without a prime are always non-dimensional (except for scaling
variables 𝐴0, 𝐿0 and 𝑇0). Thus, we solve the following equations:

𝜕𝐵
𝜕𝑡

+𝐿(𝜕𝑥)𝐵+ 𝑖𝜖
2
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∇2�̄� = 0 for − 𝑑 ≤ 𝑧 ≤ 0, (6)
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here 𝐵∗ denotes the complex conjugate of 𝐵, and 𝐷 is the dissipation
erm that will be used to incorporate the reduced-form breaking models
nto the MNLS. In Fourier wavenumber space, the linear operator 𝐿(𝜕𝑥)
an be written as (Trulsen et al., 2000):

𝜕�̂�
𝜕𝑡

+ 𝑖[𝜔(𝑘0 + 𝜆) − 𝜔0]�̂� = 0, (8)

where 𝜆 is the modulation wavenumber. The variables 𝜔 and 𝑘 follows
the linear dispersion relationship:

𝜔2 = 𝑘𝑔tanh(𝑘𝑑), (9)

where 𝑔 = 𝑔′𝑇 2
0 ∕𝐿0 is the non-dimensional gravitational constant (𝑔′ =

.81m2 s−1).
Eq. (4) is solved using a spectral method in space and time-

arched using a fourth-order Runge–Kutta scheme. The complex en-
elope 𝐵(𝑥, 𝑡 = 0) is required as an initial condition for the solver. We
ither compute the envelope directly or reconstruct it from the Hilbert
ransform of the linearised surface elevation profile. In our simulation,
e fix the steepness 𝜖 = 0.35, so that 𝐴0 depends on the choice of carrier
avenumber.

The first-order surface elevation is obtained by shifting the complex
nvelope to the carrier frequency and taking the real part:

= Re
(

𝐵𝑒𝑖(𝑘0𝑥−𝜔0𝑡)
)

. (10)

.2. Reduced-form breaking model

We use the modified Kato & Oikawa (M-KO95 hereinafter) model
eveloped in Liu et al. (2023). We also include in our comparison MNLS
imulations with no breaking model (labelled ‘NBM’). The MNLS is able
o integrate the equations even breaking would have occurred.

Kato and Oikawa (1995) (KO95) model breaking by modifying the
eturn-current term. We use a spectral dissipation strength parameter
̂(𝑘), which is a function of wavenumber 𝑘, to model the contribution
o the dissipation term 𝐷 on different wavenumbers. This model takes
he form:

= 𝑘0𝐵−1
{

𝛽(𝑘)
{

𝜕�̄�
𝜕𝑥

}}

𝐻, (11)

where 𝛽(𝑘) is obtained from fitting experimental measurements (see Liu
t al., 2023) and the heaviside function 𝐻 depends on whether a
reaking criterion is satisfied. A global kinematic criterion with a
ixed-duration active breaking interval is implemented.

The local kinematic breaking criterion, 𝐻(𝑢∕𝑐 > 0.855 ± 0.05)
rom Barthelemy et al. (2018) and Derakhti et al. (2018), is based
n the ratio of the horizontal fluid speed 𝑢 and the crest speed 𝑐.
he former is obtained from the potential (cf. 𝑢 = 𝜕𝜙∕𝜕𝑥), which is
econstructed up to 𝑂(𝜖3) according to (Carter et al., 2019):

(𝑥, 𝑧, 𝑡) =

[

𝑖𝜖𝜔0
𝑘0

�̃� +
𝜖2𝜔0

2𝑘20
�̃�𝑥 + 𝜖3

(

−
𝑖𝑘0𝜔0
2

|�̃�|2�̃�𝑥 −
3𝑖𝜔0

8𝑘30
�̃�𝑥𝑥

)]

× 𝑒𝑖(𝑘0𝑥−𝜔0𝑡)+𝑘0𝑧 + c.c., (12)

where �̃� = 𝐵𝑒𝑘0𝑧, we set 𝑧 = 𝜂1, and c.c. represents the complex
conjugate. We ignore the effect of bound waves on the velocity as these
are small. The breaking crest speed 𝑐 is approximated by 0.8𝜔0∕𝑘0.
The breaking criterion is local, which means it is applied only at those
locations where 𝑢∕𝑐 > 0.855.

The global kinematic breaking criterion, 𝐻(𝑢∕𝑐 > 0.855), will
activate globally for a fixed time interval 𝑇𝑏 whenever the kinematic
breaking criterion is activated at any location, as detailed in Derakhti
et al. (2018). We set the active breaking time interval 𝑇𝑏 = 0.75 ×
3

(2𝜋∕(𝑘𝑏𝑐𝑏)) (Derakhti et al., 2018), where we set 𝑐𝑏 = 0.8𝜔0∕𝑘0 and
assume 𝑘𝑏 = 𝑘local with the latter obtained from (Kurnia and Groesen,
2014):

𝑘local(𝑥, 𝑡) =
1

𝜂2 +2(𝜂)

(

𝜂 𝜕
𝜕𝑥

(𝜂) −(𝜂) 𝜕
𝜕𝑥
𝜂
)

, (13)

where  is a Hilbert transform. Choosing 𝑘𝑏 when the kinematic break-
ing criterion 𝐻(𝑢∕𝑐 > 0.855 ± 0.05) is satisfied at multiple locations, we
take the maximum value and apply it globally. This treatment works
for a scenario where only one breaking event is ever active at the same
time.

2.3. Initial conditions for the MNLS simulations

We perform simulations for 3 types of wave conditions: (1) focused
wave group (for training and testing purpose), (2) modulated plane
wave (for testing purpose only), (3) random waves (for testing purpose
only). We take the same sets of parameters from laboratory experiments
on wave breaking for all types of waves (Eeltink et al., 2022) and give
a brief review as follows. All variables in this section are dimensional
with primes omitted.

2.3.1. Focused wave groups and random waves
We generate focused wave groups and random waves using the

dimensional form of the JONSWAP spectrum 𝑆(𝜔):

𝑆(𝜔) =
𝐾𝑠𝑔2

𝜔5
exp

[

−5
4

(𝜔0
𝜔

)4
]

𝛾𝑟, (14)

𝑟 = exp

[

−
(𝜔 − 𝜔0)2

2𝜎2𝜔2
0

]

, (15)

=

{

0.07 𝜔 ≤ 𝜔0,
0.09 𝜔 > 𝜔0,

(16)

where 𝐾𝑠 is a scaling parameter to obtain appropriate initial wave
mplitude 𝑎0. All variables in are dimensional, but we omit primes
or simplicity. For focused wave groups with JONSWAP spectrum,
hases are assigned by computing a linear phase shift from a given
ocussing distance 𝐿𝑓 based on linear theory. For random waves, the
mplitudes are derived from the JONSWAP spectrum, and the phases
re randomised by a fixed random number seed. As the final step, the
urface elevation thus generated is made non-dimensional according to
3). The parameters for the focused wave group and random wave cases
re drawn from the following ranges: 𝛾 ∈ [2, 5], 𝑎0 ∈ [10, 60] mm, 𝑓0 ∈

[0.5, 1.25] Hz, 𝐿𝑓 ∈ [10, 24] m for the focused wave only.

2.3.2. Modulated plane wave
We initialise our modulated plane wave case according to Eeltink

et al. (2022) as

𝜂(𝑥, 0) = 𝑎0
[

√

𝑏𝑐 sin(𝑘0𝑥) +
√

𝑏+ sin(𝑘+𝑥 + 𝜓) +
√

𝑏− sin(𝑘−𝑥 + 𝜓)
]

, (17)

where the upper and lower sideband frequencies are set according to
𝜔± = 𝜔0 ± Δ𝜔 with Δ𝜔 the modulational frequency, and 𝜓 is the
phase shift of the sidebands compared to the carrier wave. Sideband
wave numbers 𝑘± are calculated using the linear dispersion relationship
𝜔2
± = 𝑔𝑘± tanh(𝑘±𝑑). The amplitudes of the carrier wave and the upper

and lower sidebands are set according to 𝑎𝑐 = 𝑎0
√

𝑏𝑐 , 𝑎+ = 𝑎0
√

𝑏+, and
− = 𝑎0

√

𝑏−, where 𝑏𝑐 = 1−𝑏𝐹 , 𝑏+ = (1−𝑏𝑐−𝛼)∕2, and 𝑏− = (1−𝑏𝑐+𝛼)∕2,
respectively, and 𝑏𝐹 is the sideband fraction. All variables in Eq. (17)
are dimensional, with all single quotes omitted. The parameters are
drawn randomly from the following ranges: 𝑓0 = 𝜔0∕(2𝜋) ∈ [1.30, 1.55]
Hz, 𝑎0𝑘0 ∈ [0.12, 0.25], 𝑏𝐹 ∈ [0.01, 0.1], Δ𝜔 ∈ [0.7, 1.55] rad/s, 𝜓 ∈
[0, 2𝜋] and 𝛼 ∈ [−0.16, 0.16].
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Fig. 1. Schematic of the structure and computing diagram of a neural network model composed of four layers in vertical: an input layer accepting a pair of real numbers (the
magnitudes of the real and imaginary part of the complex envelope), a ConvLSTM layer, a convolution layer, and an output layer. 𝜏 is the timestep. The model accepts input �̂�𝑛
and model states 𝐻𝑛−1, 𝐶𝑛−1 from the previous timestep and predicts the change in 𝛥𝐵𝑛 and model states 𝐻𝑛, 𝐶𝑛 between timesteps.
2.4. Simulation settings

We perform non-dimensional MNLS simulations to generate syn-
thetic wave breaking data. We use a 1D uniform mesh as our compu-
tational domain. The length of the computing domain spans [−40𝐿0,
40𝐿0] in the direction of wave propagation, and the resolution in space
is 0.15625𝐿0. The left- and right-hand sides of the domain are periodic
boundaries. The duration of the simulation is 100𝑇0, and the resolution
in time is 𝜏 = 0.125𝑇0. We set the water depth to 0.8 m for all the cases
in this study.

3. Neural network model

We introduce a novel approach to predict breaking dissipation
locally in MNLS simulations, which is based on a convolution-recurrent
neural network structure (Shi et al., 2015). In Fig. 1, we present the
structure of the neural network model. It is composed of a ConvLSTM
cell with tanh activation and a hard sigmoid for recurrent activation, a
convolution layer, and an output layer, both with linear activation. We
define the operators 𝛷 ∶ Z → Z for the MNLS equation and the neural
network model:

𝛷𝜏
MNLS(𝐵0) = 𝐵(𝜏), (18)

𝛷𝜏
M−KO95(𝐵0) = 𝐵(𝜏), (19)

𝛷𝜏
NN (𝜉(0); 𝛽) = 𝜉(𝜏), (20)

where 𝛷𝜏
MNLS indicates the operator for the MNLS equation (4) without

a breaking model (NBM), 𝛷𝜏
M−KO95 is the operator of the MNLS equation

with the M-KO95 breaking model (hereafter MNLS+M-KO95) and 𝛷𝜏
NN

is the neural network operator. 𝐵0 is the initial condition and 𝐵(𝜏)
is the solution to the initial value problem of Eq. (4) for 𝑡 ∈ [0, 𝜏].
𝛥𝐵(𝜏) = 𝛷𝜏

M−KO95(𝐵0) − 𝛷𝜏
MNLS(𝐵0) is the ‘per-step difference’ of the

complex envelope and 𝜏 is the time step. The ‘per-step difference’ is
the change in the complex wave-envelope for each single time step. 𝛽
is the set of weights and biases of the neural network, 𝜉 are the auxiliary
states at time 𝑡:

𝜉(𝑡) =
[

�̂�(𝑡),𝐻(𝑡), 𝐶(𝑡)
]

, (21)
4

where �̂� is the approximation of 𝐵 by Eq. (4), 𝐻,𝐶 are the hidden
states and cell states of the neural network, respectively. Thus, we are
seeking to model breaking as an infinitesimal-domain ML correction
occurring over the real duration of the event. This contrasts with the
previous work of Eeltink et al. (2022) where breaking was lumped.
Periodic boundary conditions in space are embedded into the input and
hidden-state tensor.

The model is trained with a complex envelope 𝐵 as input and a per-
step difference 𝛥𝐵 as target. We use the Mean Squared Error (MSE) as
loss function:

𝐽 (𝛽) = 1
𝑛batch𝑛𝑥𝑛

𝑛batch
∑

𝑘=1

𝑛
∑

𝑗=1

𝑛𝑥
∑

𝑖=1

(

𝛥𝐵𝑖𝑗𝑘,pred − 𝛥𝐵𝑖𝑗𝑘,true
)2 , (22)

where 𝑛batch, 𝑛𝑥, 𝑛 are the batch size, grid number in space and grid
number in time, respectively. We minimise the MSE loss according
to Eq. (22). Since 𝐵 is complex valued, Eq. (22) is identical in physics
space and fourier space. Once the model is trained, we deploy the
model for the prediction task. The algorithm for the simulation of the
machine learning-corrected MNLS equation (hereafter MNLS+ML) is
given by Algorithm 1.
Algorithm 1 MNLS+ML
1: for n = 1, 2,… do
2: �̂�𝑛 ← 𝛷𝜏

MNLS(𝐵𝑛−1)

3:
⎡

⎢

⎢

⎣

𝛥𝐵𝑛
𝐻𝑛
𝐶𝑛

⎤

⎥

⎥

⎦

← 𝛷𝜏
NN

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

�̂�𝑛
𝐻𝑛−1
𝐶𝑛−1

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

4: 𝐵𝑛 ← �̂�𝑛 + 𝛥𝐵𝑛
5: end for

In Algorithm 1, we define several key variables that facilitate the
execution of the MNLS+ML prediction:

1. 𝐵𝑛: This complex envelope evolves over iterations. It is calcu-
lated by applying the MNLS equation, denoted by 𝛷MNLS, to
the preceding state 𝐵𝑛−1. Subsequently, a machine learning (ML)
correction term 𝛥𝐵𝑛 is incorporated into each iteration to adjust
this state.

2. �̂�𝑛: This variable serves as aplaceholder, representing the tenta-
tive state of 𝐵𝑛 before applying the ML correction. It is derived
by applying the function 𝛷𝜏 to the preceding state 𝐵 .
MNLS 𝑛−1
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3. 𝛥𝐵𝑛: This variable serves as the ML correction. It is added to
�̂�𝑛 to obtain the updated state 𝐵𝑛. This correction is part of the
output derived from the 𝛷𝜏

NN function.
4. 𝐻𝑛 and 𝐶𝑛: These auxiliary variables represent internal states

that undergo updates at each iteration. They are associated with
the 𝛷𝜏

NN function, which updates these states simultaneously
with 𝛥𝐵𝑛.

. Focused wave cases

In this section, we explain the methodology used to generate the
ynthetic focused wave cases for the training phase of our model.
oncurrently, we undertake a grid search to identify the optimal hyper-
arameters for our model. Subsequently, we analyse the performance
f the model in predictive tasks.

.1. Synthetic data generation

For training and evaluation purposes, we have synthesised a wave
reaking dataset using the MNLS+M-KO95 model, which we designate
s the ‘ground truth’. This dataset comprises 1000 breaking focused
ave cases, partitioned into 80% used for training, 15% used for vali-
ation, and used 5% for testing. We have chosen 1000 as a moderate
umber of cases and the model can generate acceptable predictions
ith fewer training cases, such as 100. We have also generated 50
odulated plane wave cases and random wave cases to investigate

he generalisability of the model (see relevant discussion in Section 5).
he parameter selection adheres to a uniform distribution across a
ange of parameters pertinent to ocean waves introduced in Section 2.3.
n addition, we incorporate a classifier during the generation process
o exclude cases characterised by an excessively high or low initial
teepness. Cases with an inordinately high initial steepness often trigger
ave breaking at the beginning of the simulation or could cause the

olver to blow up due to the non-physical steepness. Conversely, cases
ith an excessively low initial steepness never trigger wave breaking

hroughout the simulation, reducing their utility for training. Both
cenarios could potentially impede the learning rate.

Our training dataset comprises input and output fields. Initially,
e perform the MNLS+M-KO95 simulation to obtain synthetic ground

ruth, denoted as 𝐵M−KO95(𝑡) = 𝛷𝑡
M−KO95(𝐵0), at discrete time steps 𝑡 =

0, 𝜏, 2𝜏,… , 𝑛𝜏, where 𝑛 represents the final time step’s index and 𝛷𝑛𝜏 =
𝛷𝜏◦… ◦𝛷𝜏
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑛

. Subsequently, we engage a ‘per-step’ NBM simulation at

each time step, generating the per-step prediction 𝐵MNLS given by:

𝐵MNLS(𝑡 + 𝜏) = 𝛷𝜏
MNLS(𝐵M−KO95(𝑡)) for 𝑡 = 0, 𝜏,… , (𝑛 − 1)𝜏. (23)

Next, we compute the per-step difference between the ground truth
and the estimated field, designated as 𝛥𝐵(𝑡) = 𝐵MNLS(𝑡)−𝐵M−KO95(𝑡), for
𝑡 = 𝜏, 2𝜏,… , 𝑛𝜏. For training the neural network model, the input data
consists of a time series of complex envelope 𝐵MNLS(𝑡), at specific time
steps 𝑡 = 𝜏, 2𝜏,… , 𝑛𝜏. The output data, on the other hand, is defined
by the change in the complex envelope, represented as the per-step
difference 𝛥𝐵(𝑡), at the same time steps.

4.2. Training history

Our model is trained for 50 epochs with an early stopping mecha-
nism activated when there is no improvement in validation loss over
10 consecutive epochs. Moreover, we generate several models with
different configurations to evaluate the impact of the choice of hy-
perparameters. The model is trained with data with time-steps of
both 0.125𝑇0 and 0.25𝑇0, and we do not find a clear link between
performance and time resolution. The number and width of filters in
the ConvLSTM layer turns out to be a critical hyperparameter that
influences the model’s size and performance. A grid search for these
5

two variables indicates that our state-of-the-art (SOTA) model (which
minimises the prediction loss for focused wave cases) employs 64
filters, each with a width of 9 (hereafter referred to as the w9f64 model)
and comprises 160 898 trainable parameters. The training history of
this SOTA model is illustrated in Table 1. Additionally, Table 1 shows
the losses taken into account across all nine model configurations,
revealing that the w9f64 model achieves the lowest prediction loss for
the focused wave group cases. We also test a ‘light’ configuration –
the w3f16 model – with a minimum of 16 filters of width 3 and a
total of 5954 trainable parameters. This lighter configuration may be
preferred when striking a balance between model accuracy and model
size. The lighter configuration also seems to generalise to unseen wave
types well, such as modulated plane waves and random waves. We also
explored some other simple variants that enable stable prediction for
long-term simulations. However, for the sake of simplicity, our study
focusses primarily on the SOTA model, with a brief discussion of the
other variants given in Appendix A.

4.3. Model analysis

In this section, we investigate the response of the neural network
model to an arbitrarily selected case from the test dataset. Although
we focus on this specific case, our conclusions generally apply to other
scenarios. We specifically examine the cell states (Shi et al., 2015) of
the ConvLSTM layer. In Fig. 2 we plot the spatial–temporal evolution
of cell state for each channel (each filter in the ConvLSTM layer creates
a channel, see Fig. 1). We find that some channels, especially the
channels that maintain a high energy level throughout the duration,
are activated over most of the simulation regardless of the state of
the waves. Set against this, the other, ‘weak’, channels react to the
input only during breaking. Interestingly, the cell states of some of
the high-energy-level channels are blurred during breaking, which may
be evidence that the model is switching between different states. This
hints that the model has learnt to break the wave evolution problem
into two processes – a classification process, which detects breaking,
and a regression process, which occurs once breaking is detected –
similar to how humans might tackle the breaking problem. The other
evidence is obtained from the ‘energy’ of the cell state, defined as the
mean squared sum over space: 𝐸𝑐𝑒𝑙𝑙,𝑖(𝑡, 𝑐) = (1∕𝑛𝑥)

∑𝑛𝑥
𝑖 𝐶(𝑡, 𝑥𝑖, 𝑐)2 of the

ConvLSTM layer. In Fig. 3 we plot the evolution of the ‘energy’ of the
cell state 𝐶. The channel is sorted in descending order based on the cell
energy at the last timestep. We find that the ‘energies’ of each channel
are not equally distributed, and the ‘energy’ of some channels changes
significantly during breaking.

4.4. Prediction for focused wave groups

We apply our neural network model to a test dataset of 50 fo-
cused wave cases unseen during the training phase. To illustrate its
performance, we present a specific test case before assessing the error
across the entire test dataset. This model has limited capabilities and
inherits bias from the synthesised dataset, which makes it unsuitable
to compare with laboratory experiments. However, we expect that a
model trained with high-fidelity simulation data or experiment data can
be compared with experiment measurements directly.

Fig. 4(a) compares the evolution of the complex envelope 𝐵 in
oth the physical and wavenumber spaces for the NBM simulation,
NLS+ML simulation, and the ground truth. We note that the ground

truth is synthetic data based on M-KO95 model, and for a thorough
comparison among M-KO95 model, other reduced-order models, and
laboratory data, can be found in Liu et al. (2023). Fig. 4(b) depicts the
evolution of energy (‖𝐵‖2), peak frequency, and steepness for all three
simulations, and the evolution of the MSE compared to the ground truth
for NBM simulations and MNLS+ML simulations. Our observations in
Fig. 4 suggest that the neural network model effectively predicts wave
breaking dissipation and achieves a mean squared error (MSE) of the

envelope approximately two orders of magnitude lower than that of the
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Table 1
Overview of the training, validation and prediction losses of the models considered. The MNLS equation without a breaking model (NBM) and
with a fully connected LSTM model (Hochreiter and Schmidhuber, 1997) are evaluated as baseline. All losses are computed by (22), divided
by a universal upper bound of magnitude of 𝛥𝐵, which is 0.04 for all types of waves considered in this study.
Model # Training Validation Prediction Prediction Prediction
name parameter loss loss loss loss loss

(Type I, focused) (Type II, plane wave) (Type III, random)

NBM – – – 0.3631 4.587 1.517
LSTM 722 432 0.0205 0.0225 – – –
w3f16 5954 0.0233 0.0207 0.0141 0.454 0.491
w3f32 17 666 0.0201 0.0167 0.0149 0.632 0.860
w3f64 59 522 0.0159 0.0141 0.0116 0.849 0.775
w9f16 12 866 0.0196 0.0166 0.0107 0.563 0.697
w9f32 43 778 0.0153 0.0132 0.0214 0.645 1.041
w9f64 160 898 0.0140 0.0123 0.0105 0.520 0.724
w15f16 19 778 0.0176 0.0148 0.0135 0.915 0.718
w15f32 69 890 0.0148 0.0131 0.0133 0.972 0.946
w15f64 262 274 0.0138 0.0118 0.0120 0.995 0.932
Fig. 2. In this figure, the cell state 𝐶 for each filter channel is represented in a spatial–temporal plot where space axis is horizontal and time axis is vertical, arranged in panels
from top to bottom and left to right. The colour scale of the plots is normalised to [−1, 1] for each panel, where brighter colours indicate higher values, darker colours represent
lower values and colour with decreased saturation for values close to zero. The scaling factor for the colour range in each plot is denoted in the annotation at the top-left corner
of each panel.
6
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Fig. 3. The evolution of the ‘energy’ (for each channel) of the cell state. The channels are sorted in descending order based on the energy level of the channel.
Fig. 4. The figures consists of two subplots. In subplot (a), panels (i), (ii) and (iii) show the evolution of the absolute value of the complex envelope using different models, while
panels (iv), (v), and (vi) show the evolution of the absolute value of the wavenumber spectrum of the complex envelope. Specifically, panel (i) and (iv) show the NBM result,
panel (ii) and (v) show the MNLS+ML result, and panel (iii) and (vi) show the ground truth generated by the M-KO95 model. In subplot (b), panel (i) plots the mean squared
error (MSE) of the absolute value of the complex envelope. Panels (ii), (iii), and (iv) compare the energy evolution 𝐸 = ∫ ‖𝐵‖2 d𝑡 normalised by its value at the first time step
𝐸0, wavenumber spectral mean or centroid, 𝛬centre = ∫ 𝑘�̃�(𝑘)d𝑘∕ ∫ �̃�(𝑘)d𝑘, and evolution of steepness. All panels share the same legend, which is placed on the top of subplot (b).
In the legend, the green solid line represents the ground truth, the blue dashed line represents the MNLS+ML result or MSE of MNLS+ML compared to the ground truth, and the
orange dotted line represents the NBM result or MSE of NBM result compared to the ground truth.
NBM simulation. The model also accurately reproduces the evolution of
energy, peak frequency, and steepness.

Fig. 5 presents the time series of the surface elevation profile and
the frequency spectrum recorded at seven gauges within the domain.
The recorded time series is shifted by the group speed calculated using
linear dispersion, and subsequently cropped to a fixed duration 𝑡 ∈
[0, 40]. Our observations in Fig. 5 indicate that the predicted time series
aligns closely with the ground truth in both the time and frequency
domains, while the NBM solution quickly diverges from the ground
truth.

Broadening our focus beyond a single instance, we assess the perfor-
mance of the neural network model across all 50 focused wave group
test cases. Fig. 6(a) presents the evolution of the mean squared error
(MSE) for both the MNLS+ML simulations and the NBM simulations
with respect to time. Further, Fig. 6(b) displays a histogram of the MSE
at the final time step of the simulation. We observe that significant MSE
errors arise from inaccurate predictions concerning both the onset and
strength of the breaking event.
7

5. Modulated plane and random waves

To examine the model’s generalisability beyond wave groups, we
apply the trained model to predict breaking dissipation in modulated
plane wave and random wave scenarios. We generate 50 modulated
plane wave cases and 50 random wave cases for testing, the latter
characterised by a JONSWAP spectrum. It is important to note that the
performance of the M-KO95 model tends to deteriorate when applied to
waves other than focused wave groups, owing to its non-local breaking
dissipation. Consequently, given that the scenarios under consideration
here are modulated plane waves and random waves, we anticipate
observing larger discrepancies when compared to the true evolution as
predicted by the M-KO95 model.

Figs. 7(a) and 7(b) plot the time series of surface elevation of a mod-
ulated plane wave and frequency spectrum. We find that the MNLS+ML
simulation is much more accurate than the NBM simulations compared
to ground truth. The error is, however, larger than for the focused
wave cases presumably due to it being harder to localise the breaking
event. Figs. 7(c) and 7(d) plot the time series of surface elevation of
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Fig. 5. The figure depicts profiles of a specific case from the test dataset at different gauge locations 𝑥. The case is randomly selected from the test dataset. The solid green line
is ground truth, the blue dashed line is the MNLS+ML simulation and the orange dotted line is the NBM simulation. Panel (a) plots the surface elevation 𝜂 normalised by the
characteristic wave amplitude 𝑎0 and panel (b) represents the frequency spectrum of normalised surface elevation, where 𝛺 = 𝜔∕𝜔0 − 1 is the normalised modulational frequency.
Fig. 6. This figure plots the MSE error distribution across the test dataset. Panel (a) shows the evolution of MSE of MNLS+ML and NBM simulations as a function of time, where
the blue line with the shaded region corresponding to ±1𝜎 indicates the MSE of the MNLS+ML simulations and the orange line with the shaded region corresponding to ±1𝜎
indicates the MSE of the NBM simulations. Panel (b) illustrates the distribution of the MSE for the MNLS+ML and the NBM simulations at the final time step, where blue bars
stand for MNLS+ML and orange bars for NBM.
a random wave case and corresponding frequency spectrum and we
are able to draw the same conclusion from the figures. We find that
the neural network model is able to predict surface elevation with
little discrepancy. Furthermore, Fig. 8 presents the evolution of the
maximum breaking parameter, 𝑢∕𝑐, in the nonbreaking zone, averaged
between test cases. We split nonbreaking and breaking zones in the
MNLS+ML simulation by assessing whether the neural network output
surpasses 3% of its total output range. Figs. 8(a) and 8(b) compare
8

the evolution of the mean breaking parameter, 𝑢∕𝑐, in MNLS+ML
simulation with NBM and ground truth, for modulated plane wave and
random waves respectively. The MNLS+ML and ground truth show
similar 𝑢∕𝑐 evolution, while the NBM simulation exhibits unbounded
growth. Error bars for the MNLS+ML series denote extremes of the
breaking parameters in the test cases, with most maxima aligning or
falling below the threshold value of 0.855 ± 0.05, validating that the
MNLS+ML simulation adheres to the breaking criterion. As such, we
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Fig. 7. The figure depicts (a) the surface elevation profile of a modulational plane wave case;(b) the corresponding frequency spectrum; (c) the surface elevation profile of a
random wave case and (d) the corresponding frequency spectrum. The case was randomly selected from the test dataset. Solid green line is ground truth, blue dashed line is
MNLS+ML and orange dotted line is NBM simulation. The time series of random wave case is not shifted by group speed.
can say that the ML architecture developed herein appears to work for
other wave breaking scenarios and not just for isolated wave groups.
Additional results are given in Appendix B.

6. Conclusion

Machine learning the complexities of wave breaking is a promis-
ing way of capturing the key physics of breaking in computationally
fast, reduced-form models such as the MNLS equation. As such, an
MNLS+ML model promises greater fidelity than alternative reduced-
form breaking models that have been implemented in the MNLS equa-
tion (see comparison of existing reduced-form breaking models in Liu
et al. (2023)). This paper extends the framework proposed in Eeltink
et al. (2022). The model proposed here achieves similar or superior
performance compared to Eeltink et al. (2022), with a scalable structure
9

that allows one to use from thousands to hundred thousands of parame-
ters. The model utilises a convolutional-recurrent structure that enables
it to support simulations with arbitrary length in space and time.

The model assumes that wave breaking dissipation is local in space.
We train the model with focused wave cases only and show that the
model is able to generalise to breaking in very different wave fields.
The ability of a neural network model to learn from a small set of
canonical samples and generalise to arbitrary conditions is promising.
This reduces the potential difficulty in preparing a dataset for such
models as both computational fluid dynamics (CFD) simulations and
wave tank experiments for focused waves are cheaper than similar such
simulations or experiments for modulated-plane-wave or random-wave
datasets.

To improve the real-world accuracy of the model, integrating CFD
data into the training process can be considered in future work, and the
framework developed here is designed to enable this extension. This
would enable the model to capture the complex dynamics of fluid flow
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Fig. 8. The figure plots the evolution of maximum breaking parameter 𝑢∕𝑐 (Barthelemy et al., 2018) in nonbreaking zone averaged over test cases for (a) modulated plane wave
and (b) random waves. Solid green line is ground truth, blue dashed line with errorbars is MNLS+ML and orange dotted line is NBM simulation. The errorbars indicate maxima
and minima of maximum breaking parameter throughout the test cases.
and wave breaking. In addition, efforts should be made to establish
a robust theoretical backbone for the model, incorporating insights
from fluid dynamics, wave mechanics, and machine learning which
the richer data from CFD might be able to provide. This would not
only contribute to a deeper understanding of the underlying processes
governing wave breaking and dissipation, but would also enable the
development of more reliable and efficient models.
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Appendix A. Simple variants of the ConvLSTM model

Figs. 9–11 provides a comprehensive review on the performance of
the w3f16 model. We can see that for all types of waves, the model
is able to predict the evolution of the surface elevation reasonably
well. It can also forecast the evolution of energy, spectral centroid and
steepness of the wave field.

Fig. 12 plots the structure of four simple variants of the base model
we have explored in this study. In this figure, the models accept an
input �̂� and provide an residual output 𝑧, where a shortcut is designed
to build the final output by concatenating the input and the residual
output in various ways. We find that after 200 epochs of training, the
10
base model and variant V1 achieves a validation loss of 0.008, and
variants V2, V3, V4 achieves a validation loss of 0.016. In addition,
by utilising ReLU activation function, variants V2, V3 and V4 is un-
conditionally stable as these models only dissipates energy, which is
suitable for long-term predictions. Notice that these unconditionally
stable variants impose an assumption that the wave breaking only
dissipates the energy and/or modifies the phases.

Appendix B. Additional results for plane wave and random waves

Fig. 13(a) demonstrates the evolution of the complex envelope 𝐵
in both physical and wavenumber spaces across the NBM, MNLS+ML
simulations, and the ground truth. Energy progression, peak frequency,
and steepness for all three simulations, along with the MSE evolution
for the NBM and MNLS+ML simulations relative to the ground truth,
are depicted in Fig. 13(b). The neural network model, as inferred from
Fig. 13, effectively predicts wave breaking dissipation, outperforming
the NBM simulation by reducing the envelope’s MSE by two orders
of magnitude. This model accurately reproduces the energy evolution,
peak frequency, and steepness. A similar conclusion can be drawn from
Figs. 14(a) and 14(b) for random waves, with the MSE, in this case,
being 2.5 times lower than the NBM simulation.

Figs. 15(a) and 16(a) illustrates the temporal evolution of the mean
squared error (MSE) for both the MNLS+ML simulation and the NBM
simulation in the case of modulated plane waves and random waves,
respectively. Additionally, Figs. 15(b) and 16(b) presents a histogram
of the MSE at the final time step of the simulation. Notably, the MSE
shows a significant reduction of approximately an order of magnitude
for modulated plane wave cases and 2.5 times for random cases.
It is intriguing to observe that the model’s performance in random
cases correlates with the tail strength of the wave spectrum, which is
governed by the bandwidth parameter 𝛾. As the 𝛾 decreases (i.e. the
background spectrum becomes more broadbanded), the neural network
prediction deteriorates rapidly.
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Fig. 9. Various measurements taken from a randomly selected test cases of focused wave, simulated by w3f16 model. The parameters for this case are 𝛾 = 4.5027, 𝑎0 = 0.0561 m,
𝑓0 = 0.6100 Hz, 𝐿𝑓 = 23.8265 m and 𝜎𝑠 = 1.2857.
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Fig. 10. Depictions of various measurements taken from a randomly selected test case of modulated plane wave, simulated by w3f16 model. The parameters for this case are 𝑓0
= 1.3769 Hz, 𝑎0𝑘0 = 0.2322, 𝑏𝐹 = 0.0355, 𝛿𝜔 = 0.9984, 𝜓 = 𝜋 and 𝛼 = 0.
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Fig. 11. Various measurements taken from a randomly selected test cases of random wave, simulated by w3f16 model. The parameters for this case are 𝛾 = 2.5328, 𝑎0 = 0.0383 m,
𝑓0 = 1.2343 Hz and 𝜎𝑠 = 1.2857.
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Fig. 12. This figure depicts four simple variants of the ConvLSTM model.

Fig. 13. The figure depicts various measurements taken from a randomly selected modulated plane wave case simulated by w9f64 model. In subplot (a), panels (i), (ii) and
(iii) show the evolution of the absolute value of the complex envelope using different models, while panels (iv), (v), and (vi) show the evolution of the absolute value of the
wavenumber spectrum. Specifically, panel (i) and (iv) show the NBM result, panel (ii) and (v) show the MNLS+ML result, and panel (iii) and (vi) show the ground truth generated
by the M-KO95 model. In subplot (b), panel (i) plots the mean squared error (MSE) of the absolute value of the complex envelope. Panels (ii), (iii), and (iv) compare the energy
evolution, wavenumber spectral mean or centroid, and evolution of steepness. All panels share the same legend, which is placed on the top of the subplot (b). In the legend, the
green solid line represents the ground truth, the blue dashed line represents the MNLS+ML result or MSE of MNLS+ML compared to the ground truth, and the orange dotted line
represents the NBM result or MSE of NBM result compared to the ground truth.
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Fig. 14. The figure depicts various measurements taken from a randomly selected random wave case simulated by w9f64 model. In subplot (a), panels (i), (ii) and (iii) show
the evolution of the absolute value of the complex envelope using different models, while panels (iv), (v), and (vi) show the evolution of the absolute value of the wavenumber
spectrum. Specifically, panel (i) and (iv) show the NBM result, panel (ii) and (v) show the MNLS+ML result, and panel (iii) and (vi) show the ground truth generated by the
M-KO95 model. In subplot (b), panel (i) plots the mean squared error (MSE) of the absolute value of the complex envelope. Panels (ii), (iii), and (iv) compare the energy evolution,
wavenumber spectral mean or centroid, and evolution of steepness. All panels share the same legend, which is placed on the top of the subplot (b). In the legend, the green solid
line represents the ground truth, the blue dashed line represents the MNLS+ML result or MSE of MNLS+ML compared to the ground truth, and the orange dotted line represents
the NBM result or MSE of NBM result compared to the ground truth.

Fig. 15. This figure plots the MSE error distribution across the modulated plane wave test cases. Panel (a) shows the evolution of MSE of MNLS+ML prediction and NBM with
respect to time where blue line with ±1𝜎 error bar indicates the MSE of MNLS+ML prediction and orange line with ±1𝜎 error bar indicates the MSE of NBM prediction. Panel (b)
illustrates the MSE of MNLS+ML prediction and NBM at the final time step where blue bar stands for MNLS+ML and orange bar for NBM.
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Fig. 16. This figure plots the MSE error distribution across the random wave test cases. Panel (a) shows the evolution of MSE of MNLS+ML prediction and NBM with respect to
time where blue line with ±1𝜎 error bar indicates the MSE of MNLS+ML prediction and orange line with ±1𝜎 error bar indicates the MSE of NBM prediction. Panel (b) illustrates
the MSE of MNLS+ML prediction and NBM at the final time step where blue bar stands for MNLS+ML and orange bar for NBM.
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