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Abstract
In the synthetic geometric setting introduced byKunzinger and Sämann, we present an
analogue of Toponogov’s Globalisation Theorem which applies to Lorentzian length
spaces with lower (timelike) curvature bounds. Our approach utilises a “cat’s cradle”
construction akin to that which appears in several proofs in the metric setting. On the
road to our main result, we also provide a lemma regarding the subdivision of triangles
in spaces with a local lower curvature bound and a synthetic Lorentzian version of the
Lebesgue Number Lemma. Several properties of time functions and the null distance
on globally hyperbolic Lorentzian length spaces are also highlighted. We conclude
by presenting several applications of our results, including versions of the Bonnet–
Myers Theorem and the Splitting Theorem for Lorentzian length spaces with local
lower curvature bounds, as well as discussion of stability of curvature bounds under
Gromov–Hausdorff convergence.
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1 Introduction

Recall that a metric space (X , d) is called a length (or intrinsic) space if its distance
function d(p, q) can be recovered as the infimumof the length of curves joining p to q.
This is the realm of so-called synthetic geometry, which can be seen as a generalisation
of Riemannian geometry to spaces of lower regularity. Such spaces have proven an
essential tool in the study of geometric flows [7, 28], optimal transport [62, 68], and
bounds on the number of finite subgroups of fundamental groups, see [18, Corollary
9.3.2]. One notion that frequently arises in this setting is the concept of curvature
bounds; a metric length space is said to have a lower (or upper) curvature bound if a
given comparison condition1 holds on a neighbourhood of each point x ∈ X , [3, 18].
These conditions are used to tame some of themore erratic behaviours of metric length
spaces, so that they act more like their Riemannian counterparts, while not requiring
smoothness.

A vast amount of theory has been developed concerning spaceswhich exhibit global
curvature bounds (where the comparison condition holds on the whole space) and their
properties [32, 33]. The preservation of curvature bounds along sequences of spaces
which converge in the Gromov–Hausdorff topology is a prime example [19, 40]. As
such, it is pertinent to ask when a space with a known local curvature bound also
possesses a global one, that is, when does a curvature bound globalise?

In the case of lower curvature bounds, this was first proven in two dimensions by
Pizzetti [56] (see the history [52] for more details) and later independently re-proven
by Alexandrov [5, 6]. These “Toponogov Globalisation Theorems” were popularised
by Toponogov’s proof for Riemannian manifolds in the late 1950s [63–65]. Since
then, Burago, Gromov and Perelman [19] and Plaut [57, 58] have extended the result
to arbitrary completemetric length spaces, with refinements to their proofs beingmade
by Alexander, Kapovitch, and Petrunin [3], as well as Lang and Schroeder [43]. A
further generalisation regarding (not necessarily complete) geodesic spaces was also
provided by Petrunin in [55].

Analogously tometric length spaces, in [41], Kunzinger and Sämann introduced the
notion of a Lorentzian (pre-)length space, which facilitates the study of non-smooth

1 Several of these comparison conditions are on display in [3, Theorem 8.30] and are shown to be equivalent
for complete metric length spaces.
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Lorentzian geometry, with key applications in the investigation of spacetimes with low
regularity metrics [24, 30, 31], cones [2], and robust concepts of Gromov–Hausdorff
convergence in the Lorentzian setting [42, 46, 47]. This synthetic Lorentzian picture
also admits bounds on the so-called timelike curvature of a Lorentzian length space,
via comparison conditions [8, 16, 41]. These timelike curvature bounds have been
shown to behave like their metric counterparts in many circumstances and have hence
been crucial for deriving Lorentzian equivalents to many metric results, including the
Reshetnyak Gluing Theorem [15, 59], Splitting Theorem [14], and a Bonnet–Myers
style theorem for spaces with global lower timelike curvature bounds [13]. Timelike
curvature bounds of Ricci type have also been defined and been shown to have good
local-to-global properties [17, 22].

As for metric spaces, it is again pertinent to ask when a Lorentzian space with a
local timelike curvature bound has a global one. In the smooth Lorentzian setting, the
first result in this direction was achieved by Harris in [38], where a global comparison
condition was inferred from lower timelike (sectional) curvature bounds. An Alexan-
drov’s Patchwork approach was used by three of the present authors to answer this
question for Lorentzian length spaces in the case of upper timelike curvature bounds in
[13], where globalisation results in the metric and Lorentzian settings were compared
in detail. This paper is a continuation of that work and presents a solution for spaces
with lower timelike curvature bounds, as well as several consequences of interest.

The paper is organised as follows. We begin in Sect. 2 with a brief review of some
basic yet crucial properties of Lorentzian (pre-)length spaces. We provide an overview
of hyperbolic angles and how they may be used to describe curvature bounds, before
discussing existence conditions for time functions and null distances with advanta-
geous properties. The principal part of this paper is contained in Sect. 3, which begins
with a series of supplementary results, including aLorentzian analogueof theLebesgue
Number Lemma and a result concerning the splitting of triangles in Lorentzian length
spaces with lower curvature bounds, in the spirit of the Gluing Lemma [15]. We then
proceed with a construction derived from the “cat’s cradle” of Lang and Schroeder
[43] in the metric setting, with our main result being stated as follows:

Theorem 3.6 Let X be a connected, globally hyperbolic, regular Lorentzian length
space with a time function T and curvature bounded below by K ∈ R in the sense
of angle comparison. Then each of the properties in Definition 2.7 hold globally; in
particular, the entire space X is a (≥ K )-comparison neighbourhood and hence has
curvature globally bounded below by K .

This result globalises the notion of lower curvature bounds defined via “angle
comparison,” as in Definition 2.7. Analogously to the metric setting, curvature bounds
may also be characterised with respect to other comparison conditions, which can
be shown to be equivalent (see [12, Theorem 5.1] for a complete list of equivalent
characterisations). Therefore, these conditions also exhibit the globalisation property,
sometimes under additional assumptions which shall be discussed in Sect. 3.

In the manifold setting, Theorem 3.6 extends the work of Harris [38] to globally
hyperbolic Lipschitz spacetimes. This is due to [29, Theorem 1.2] by Graf and Ling,
which shows that every strongly causal Lipschitz spacetime is a regular Lorentzian
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length space, alongside the fact that a time function is guaranteed to exist on any
second countable, globally hyperbolic Lorentzian length space, see Proposition 2.12.

We close this paper in Sect. 4 with an overview of some applications of our results.
In particular, we extend the Lorentzian Bonnet–Myers Theorem [13] and Splitting
Theorem [14] to Lorentzian length spaces with (local) lower curvature bounds, and
show that lower curvature bounds are preserved under appropriate Lorentzian versions
of Gromov–Hausdorff convergence (for example Minguzzi–Suhr convergence [46]).
Potential future results are also discussed.

2 Preliminaries

Over the course of the last half-decade, the theory of Lorentzian length spaces has
gained immense traction, so much so that it is now a rather standard tool in the study
ofLorentzian geometry.Consequently, in this sectionweonly presentmaterialwhich is
both critical for deriving our results and which also appears infrequently or disparately
in the literature. In particular, we focus on the properties of hyperbolic angles [8, 16],
time functions [42], and null distances [61]. For more fundamental definitions, we
refer the reader to [13, 41].

2.1 Notation and conventions

Let us begin by reintroducing our main concepts and fixing our conventions. Recall
that a Lorentzian pre-length space (X , d,≤,�, τ ) consists of a metric space (X , d)

equipped with a causal relation ≤, timelike relation �, and time separation function
τ , cf. [41, Definition 2.8]. For brevity, we shall simply denote such spaces by their
associated set X , where the additional structures can be identified from the context.
A Lorentzian pre-length space which is additionally locally causally closed, causally
path-connected, localisable, and whose time separation function takes the form

τ(x, y) = sup{Lτ (γ )|γ future-directed, causal curve from x to y} ,

for x, y ∈ X with a future-directed causal curve between them and τ(x, y) = 0
otherwise, is called a Lorentzian length space, cf. [41, Definition 3.22].

Unless explicitly stated otherwise, causal curves are assumed to be future-directed.
Furthermore,we use the term distance realiser to refer to any causal curve in aLorentz-
ian pre-length space, cf. [41, Definition 2.24], whose τ -length attains the τ -distance
between its endpoints, i.e. a causal curve γ from x to y, such that Lτ (γ ) = τ(x, y).

We inherit from earlier works the notion of the causal past/future of a point x ∈ X ,
which we denote by J±(x). The analogous timelike past/future is denoted I±(x).
Causal and timelike diamonds with defining points x, y ∈ X are respectively denoted
by J (x, y) := J+(x) ∩ J−(y) and I (x, y) := I+(x) ∩ I−(y). Recall that a Lorentz-
ian pre-length space is globally hyperbolic if all causal diamonds J (x, y) ⊆ X are
compact and X is non-totally imprisoning, cf [41, Definition 2.35 (iii)].
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We now wish to address the concept of regularity, one of the defining properties
of a regularly localisable Lorentzian pre-length space, cf. [41, Definition 3.16] and a
natural condition to impose on a Lorentzian pre-length space in its own right. This
property is also crucial for defining timelike curvature bounds via angle comparison.

Definition 2.1 (Regularity) Let X be a Lorentzian (pre-)length space. X is called
regular if any distance realiser between timelike related points is timelike, i.e. it
cannot contain a null piece.

It is worth observing that under strong causality, the notion of being regularly
localisable is equivalent to being regular (in the sense ofDefinition 2.1) and localisable,
see [12, Lemma 3.6].

2.2 Hyperbolic angles and curvature bounds

Hyperbolic angles in Lorentzian pre-length spaces were introduced in [8, 16], where
the latter puts a greater focus on comparison results. Throughout this section, we
follow the conventions of the former reference.

First recall that the finite diameter of a Lorentzian pre-length space is given by the
supremum of (finite) τ -values on the space. Denote by L

2(K ) the Lorentzian model
space of constant curvature K and its finite diameter by DK , cf. [16, Definition 1.11].
Similarly to the metric case, we have

DK = diamfin(L
2(K )) =

{
∞, if K ≥ 0 ,

π√−K
, if K < 0 .

Furthermore, in a Lorentzian pre-length space, triples of points (p, q, r) with
τ(p, r) < ∞, either p � q ≤ r or p ≤ q � r , and (non-trivial) time-separations
realised by distance realisers, will be called admissible causal triangles. They shall
be denoted by �(p, q, r), where the points are written according to their causal order
unless otherwise stated, with each side being labelled either by the name of an associ-
ated distance realiser or, if the specific choice of distance realiser or parametrisation
thereof is unimportant, by the closed interval between the endpoints, i.e. [p, q] is a
distance realiser from p to q. If we additionally have p � q � r , the triple is called
a timelike triangle, cf. [41, Lemma 4.4]. Throughout the remainder of this paper, we
tacitly assume that any such triangles satisfy appropriate size bounds, cf. [41, Lemma
4.6], that is, τ(p, r) < DK .

Definition 2.2 (Comparison angles) Let K ∈ R and let X be a Lorentzian pre-length
space. Let x1 ≤ x2 ≤ x3 be a triple of causally related points in X , satisfying size
bounds for K , cf. [41, Lemma 4.6] and let �(x̄1, x̄2, x̄3) be a comparison triangle.2

in L
2(K ) for (x1, x2, x3). Fix distinct indices i, j, k ∈ {1, 2, 3} and assume that xi is

timelike related to both x j and xk in some way.

2 Recall that a triple of causally related points has a comparison triangle in the model space L2(K ) if the
side-lengths satisfy size bounds with respect to K , cf. [41, Definition 4.14] This does not require the points
to be timelike related, nor that curves between the points exist.
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(i) The (unsigned) comparison angle at xi is

�̃K
xi (x j , xk) := �L

2(K )
x̄i

(x̄ j , x̄k),

where �L
2(K )

x̄i
(x̄ j , x̄k) is the hyperbolic angle at x̄i in �(x̄1, x̄2, x̄3) ⊆ L

2(K ).
(ii) The sign σ of the comparison angle at xi is defined to be σ = 1 if i = 2, i.e. xi

is not a time-endpoint, and σ = −1 if i = 1 or 3, i.e. xi is a time-endpoint.
(iii) The signed comparison angle at xi is then defined by

�̃S,K
xi (x j , xk) = σ �̃K

xi (x j , xk),

where �̃K
xi (x j , xk) > 0.

The hyperbolic angle �L
2(K )

x̄i
(x̄ j , x̄k) at x̄i in the Lorentzian model space L

2(K )

can be calculated using the law of cosines, cf. [16, Lemma 2.3]. For convenience, we
reiterate this result here.

Lemma 2.3 (Law of cosines) Let K ∈ R. Let x̄1 ≤ x̄2 ≤ x̄3 be a triple of causally
related points in L

2(K ) forming a finite causal triangle. Fix distinct indices i, j, k ∈
{1, 2, 3} and assume that x̄i is timelike related to both x̄ j and x̄k in some order. Denote
the hyperbolic angle at x̄i byω = �L

2(K )
x̄i

(x̄ j , x̄k), its sign by σ , and the scale factor by

s = √|K |. Finally, set a = max{τ(x̄i , x̄ j ), τ (x̄ j , x̄i )}, b = max{τ(x̄i , x̄k), τ (x̄k, x̄i )},
and c = max{τ(x̄ j , x̄k), τ (x̄k, x̄ j )}, noting that a, b > 0 and c ≥ 0. Then we have

a2 + b2 = c2 − 2abσ cosh(ω) for K = 0 ,

cos(sc) = cos(sa) cos(sb) − σ cosh(ω) sin(sa) sin(sb) for K < 0 ,

cosh(sc) = cosh(sa) cosh)sb) + σ cosh(ω) sinh(sa) sinh(sb) for K > 0 .

An important consequence of the law of cosines is the following property for
unsigned angles, which will be used extensively throughout this work.

Corollary 2.4 (Law of cosines monotonicity) Let K ∈ R and consider any timelike
triangle in the Lorentzian model space L2(K ). Then fixing the two short side lengths
and varying the longest, any angle is monotonically increasing. Fixing one short side
and the longest side length and varying the other short side, any angle is monotonically
decreasing.

Both upper angles and angles between timelike curves in a Lorentzian pre-length
space may now be defined via the comparison angle introduced above.

Definition 2.5 (Angles) Let X be a Lorentzian pre-length space and α, β : [0, ε) → X
be two timelike curves (where we permit one or both of the curves to be past-directed)
with x := α(0) = β(0). Then we define the upper angle

�x (α, β) = lim sup
(s,t)∈D
s,t→0

�̃K
x (α(s), β(t)),
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where

D = {(s, t)|s, t > 0, α(s), β(t) timelike related}
∩ {(s, t)|α(s), β(t), x satisfies size bounds for K } .

If the limit superior is in fact a limit and is finite, we say the angle exists and call
�x (α, β) an angle.

Observe that the sign σ of the comparison angle is independent of (s, t) ∈ D.
Therefore, the sign of the (upper) angle is also defined to be precisely σ . The signed
(upper) angle is then defined as �S

x (α, β) = σ�x (α, β).

The following proposition provides sufficient conditions for adjacent angles taken
at a point along a distance realiser to be equal. This property is similar to the metric
notion of a segment being balanced, cf. [43, Lemma 1.3], and, as such, it will be crucial
in constructing a proof of our main result.

Proposition 2.6 (Balanced segments in Lorentzian pre-length space) Let X be a
strongly causal and locally causally closed Lorentzian pre-length space with timelike
curvature bounded below by K ∈ R, and let α : [0, 1] → X be a timelike dis-
tance realiser. Let x = α(t) for t ∈ (0, 1) and consider the restrictions α− = α|[0,t]
and α+ = α|[t,1] as past-directed and future-directed distance realisers emanating
from x, respectively. Let β be a timelike distance realiser emanating from x. Then
�x (α−, β) = �x (α+, β).

Proof See [16, Corollary 4.6] (and [16, Lemma 4.10] for the existence of the angle).
��

Throughout this paper, we make use of several different formulations of curvature
bounds via comparison methods. Each of these has been introduced in the context of
Lorentzian length spaces in earlier works, with full details on all current formulations
being found in [12], which also provides conditions under which they are equivalent.
Since we predominantly use the formulation of curvature bounds in terms of angle
comparison, we now provide this explicitly. This angle comparison condition is analo-
gous to the one globalised by [38] in the smooth Lorentzian setting and is the definition
to which our globalisation result will directly apply.

Definition 2.7 (Curvature bounds by angle comparison) An open subsetU in a regular
Lorentzian pre-length space X is called a (≥ K )-comparison neighbourhood if it
satisfies the following:

(i) τ is continuous on (U ×U ) ∩ τ−1([0, DK )) and this set is open.
(ii) For all x, y ∈ U with x � y and τ(x, y) < DK there exists a distance realiser

contained entirely in U connecting x and y.
(iii) Let α : [0, a] → U , β : [0, b] → U be timelike distance realisers with arbitrary

time-orientation and such that x := α(0) = β(0) and �(x, α(a), β(b)), with
some permutation of vertices, is an admissible causal triangle satisfying size
bounds. Then

�S
x (α, β) ≤ �̃K ,S

x (α(a), β(b)).
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(iv) Additionally, the following property must hold. If α, β, γ : [0, ε) → U are three
timelike curves with x := α(0) = β(0) = γ (0), α, γ pointing in the same
time direction, and β in the other, then we have the following special case of the
triangle inequality of angles:

�x (α, γ ) ≤ �x (α, β) + �x (β, γ ) . (2.1)

We say that X has curvature bounded below by K in the sense of angle comparison if
every point in X has a (≥ K )-comparison neighbourhood.

If X itself is a (≥ K )-comparison neighbourhood, then we say that X has curvature
globally bounded below by K , and similarly for curvature bounds above.

Observe that, in point (iv) of the above definition, we can also take the curves
to be maps into X , as the angles only depend on the initial segments of the curves.
Furthermore, when considering curvature bounds from above, the inequality in (iii) is
reversed and (iv) is dropped, though this notion will not be used in the remainder of the
paper. We make use of two other characterisations of curvature bounds in this paper:
hinge comparison and triangle comparison. The definition of triangle comparison
does not include the triangle inequality of angles given in (2.1), but the equivalence
of all three characterisations (Proposition 2.8) is at present only known under the
assumption that (2.1) holds. This is another reason why we prefer to work with angle
comparison directly: (2.1) is already imposed by definition. We explain here how to
adapt the definition of a (≥ K )-comparison neighbourhood to obtain these alternative
characterisations.

Curvature is bounded below in the sense of hinge comparison if item (iii) of Defini-
tion 2.7 is replaced by the following statement: Let α : [0, a] → U , β : [0, b] → U be
timelike distance realisers with arbitrary time-orientation and such that x := α(0) =
β(0) and�(x, α(a), β(b)), with some permutation of vertices, is an admissible causal
triangle satisfying size bounds. Then either�S

x (α, β) = −∞ or else�x (α, β) is finite,
in which case, letting (α̃, β̃) form a comparison hinge in L2(K ) for (α, β),

τ(α(a), β(b)) ≥ τ(α̃(a), β̃(b)).

Curvature is bounded below in the sense of triangle comparison if item (iv) of
Definition 2.7 is removed and item (iii) is replaced by the following statement: Let
�(x, y, z) be a timelike triangle inU , with p, q two points on the sides of �(x, y, z).
Let �(x̄, ȳ, z̄) be a comparison triangle in L

2(K ) for �(x, y, z) and p̄ and q̄ be
comparison points for p and q respectively. Then

τ(p, q) ≤ τ( p̄, q̄).

We now state the equivalence result for these three characterisations of curvature
bounds. This result is an application of part of [12, Theorem 5.1] to our specific setting.

Proposition 2.8 (Equivalence of curvature bounds) Let X be a globally hyperbolic and
regular Lorentzian length spacewhich satisfies (2.1). Then the following are equivalent
for an open subset U ⊆ X:
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(i) U is a (≥ K )-comparison neighbourhood in the sense of angle comparison, cf.
Definition 2.7.

(ii) U is a (≥ K )-comparison neighbourhood in the sense of hinge comparison, cf.
[12, Definition 3.14].

(iii) U is a (≥ K )-comparison neighbourhood in the sense of timelike triangle com-
parison, cf. [12, Definition 3.1].

Our eventual proof of the globalisation of timelike curvature bounds will consider
admissible causal triangleswhich are not contained in comparison neighbourhoods and
for which Definition 2.7(iii) fails to hold at some vertex and show that, under certain
assumptions, these cannot exist. We formulate the aforementioned failure character-
istic more precisely as follows.

Definition 2.9 (Angle condition holds/fails) Let X be a regular Lorentzian pre-length
space with timelike curvature bounded below by K ∈ R in the sense of angle compar-
ison and let α : [0, a] → X , β : [0, b] → X be timelike distance realisers of arbitrary
time-orientation (not necessarily contained in a comparison neighbourhood), with
L(α), L(β), τ(α(a), β(b)), τ(β(b), α(a)) < DK , and such that x := α(0) = β(0)
and α(a), β(b) are causally related. We say that the angle condition holds at x if Def-
inition 2.7(iii) is satisfied at x , with respect to the curvature bound K on X . Similarly,
we say that the angle condition fails to hold at x if Definition 2.7(iii) is not satisfied
at x , i.e. if the inequality

�S
x (α, β) > �̃K ,S

x (α(a), β(b)),

holds, with respect to the curvature bound K on X . In particular, the angle condition
may be said to hold/fail at vertices between timelike sides of an admissible causal
triangle.

Moreover, note that by [12, Remark 3.12], it is sufficient to only consider timelike
triangles when dealing with curvature bounds in the sense of angle comparison.

In order to verify whether or not triangles may have a failing angle condition, we
need to be able to divide timelike triangles into smaller timelike triangles for which
the answer to this question is known. To do so, we will use the Lorentzian versions of
Alexandrov’s Lemma. There are two very similar versions, each corresponding to a
different subcase depending onwhich sidewe divide along;more precisely, the “across
version” discusses divisions along the longest side,while the “future version” discusses
divisions alongoneof the shorter sides. Since the statements of these lemmata are rather
extensive, we only provide the statement of the latter. The former is illustrated in Fig. 2
and the reader is referred to [14, Proposition 2.42, 2.43] and [15, Lemma 4.2.1, 4.2.2]
formore detail, including proofs of the respective statements.While the presentation in
[14] concerns the case K = 0, generalising to non-zero K is straightforward, provided
we assume the associated size bounds.

Proposition 2.10 (Alexandrov Lemma: future version) Let X be a Lorentzian pre-
length space. Let � := �(p, q, r) be a timelike triangle satisfying size bounds for K .
Let x be a point on the side [p, q], such that the distance realiser between x and r exists.

123



T. Beran et al.

Fig. 1 A convex situation in the
future version of Alexandrov’s
Lemma

Fig. 2 A concave situation in the
across version of Alexandrov’s
Lemma

Then we can consider the smaller triangles �1 := �(p, x, r) and �2 := �(x, q, r).
We construct a comparison situation consisting of a comparison triangle �̄1 for�1 and
�̄2 for �2, with p̄ and q̄ on different sides of the line through [x̄, r̄ ] and a comparison
triangle �̃ for � with a comparison point x̃ for x on the side [ p̃, q̃]. This contains the
subtriangles �̃1 := �( p̃, x̃, r̃) and �̃2 := �(x̃, q̃, r̃), see Fig.1.

Then the situation �̄1,�̄2 is convex (concave) at x (i.e. �x̄ (q̄, r̄) ≤ �x̄ ( p̄, r̄) (or
≥)) if and only if τ(x, r) = τ(x̄, r̄) ≤ τ(x̃, r̃) (or ≥). The same is true if x is a point
on the side [q, r ].

Note that if X has timelike curvature bounded below (resp. above) by K and � is
within a comparison neighbourhood then τ(x, q) ≤ τ̄ (x̃, q̃) (resp. τ(x, q) ≥ τ̄ (x̃, q̃))
and so the convexity (resp. concavity) condition is always satisfied.
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2.3 Null distance

The null distance dT induced by a time function T was originally introduced by
Sormani and Vega [61] in the smooth setting, as a convenient way of equipping a
spacetime with a (distance) metric which is compatible with the causal structure. This
concept has also been introduced in the setting of synthetic Lorentzian geometry, cf.
[42], and is defined as follows:

Definition 2.11 (Time functions and null distance) Let X be a Lorentzian pre-length
space.

(i) A continuous map T : X → R is called a time function if it is strictly monotonic
with respect to the causal relation.

(ii) A curve γ : [a, b] → X is called piecewise causal if there exists a partition
a = s1 ≤ . . . ≤ sk = b of [a, b] such that γ is causal or constant on each
[si , si+1].

(iii) The null length of a piecewise causal curve γ : [a, b] → X is

L̂T (γ ) =
k∑

i=1

|T (γ (si+1)) − T (γ (si ))|.

(iv) The null distance between two points p and q in X is

dT (p, q) = inf{L̂T (γ )|γ is piecewise causal from p to q}. (2.2)

In the case of spacetimes, if the infimum in (2.2) between non-timelike related point
is achieved, this must occur along a piecewise null geodesic, cf. [61, Lemma 3.20],
inspiring the name. However, the null distance is not necessarily a true distance, with
[61, Theorem 4.6] demonstrating that a necessary and sufficient condition for dT to
be a distance function is T being locally anti-Lipschitz.

With regard to our ultimate goal of globalisation, the null distance is also an ideal
way of describing the “size" of a timelike triangle. Contrary to the metric setting, there
are always two notions of size at play in a Lorentzian pre-length space: on the one
hand, we have the τ -length of the sides of a triangle, which may be used to describe
timelike curvature bounds, and on the other, we have the d-length of the sides, which is
responsible for whether or not a triangle is inside a comparison neighbourhood. It will
turn out that particularly well behaved null distances, when combined with timelike
diamonds which are also comparison neighbourhoods, à la [13, Proposition 4.3], form
the key to controlling both of these aspects simultaneously.

Although in the next section we directly assume that our space possesses a time
function, we first draw the reader’s attention to the following result, which provides
sufficient conditions for this to be the case.

Proposition 2.12 (Existence of time functions) Let X be a second countable, globally
hyperbolic Lorentzian length space. Then X possesses a time function T .

Proof The result is clear upon combining [20, Theorem 3.2] with [1, Theorem 3.20],
[59, Lemma 3.8], and [41, Theorem 3.7]. ��
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We now wish to make the notion of a well behaved null distance more precise;
in particular, we shall require our null distance to be a finite, continuous pseudo-
metric.3 If two points p and q are not connected by a piecewise causal curve, then
dT (p, q) = ∞. Therefore, if we require the null distance to be finite, it is necessary
for there to be a piecewise causal curve between every pair of points. We begin by
investigating when a space has this level of causal connectedness.

Lemma 2.13 (Path-connected Lorentzian pre-length spaces) Let X be a causally path
connected Lorentzian pre-length space such that for each x ∈ X either I+(x) or
I−(x) is non-empty. Then the following are equivalent:

(i) X is connected.
(ii) X is path connected.
(iii) X is piecewise causal path connected, i.e. any x, y ∈ X can be connected by a

continuous curve consisting of future directed and past directed causal pieces,
cf. [42, Definition 3.2].

Proof Two of the implications are clear, so let X be connected and we claim it is
piecewise causal path connected. Let p ∈ X and Rp be the set of all points which are
connected to p by piecewise causal paths. We claim that Rp is open and in turn that
Rp = X : By assumption, for each q ∈ Rp, there exists an r � q (or q � r ) and, as X
is causally path connected, a causal curve between them. Hence there is a piecewise
causal curve from p to r and so r ∈ Rp. Similarly, each point in I+(r) (resp. I−(r))
is connected to r (and hence p) by a piecewise causal curve. So I+(r) ⊆ Rp (resp.
I−(r) ⊆ Rp) is an open neighbourhood of q contained in Rp. As q was arbitrary, it
follows that Rp is open. Furthermore, for any pair of points p, q ∈ X , the sets Rp and
Rq are either equal or disjoint. Consequently, {Rp|p ∈ X} gives an open partition of
X . However, X is connected, hence the partitionmust consist of precisely one element,
namely Rp = X for all p ∈ X , and X is piecewise causal path-connected. ��

It should be clear that the above lemma holds for Lorentzian length spaces and this is
the context in whichwewill utilise the result.We also note that a Lorentzian pre-length
space X which is connected and causally path connected, such that for each x ∈ X one
of I+(x) or I−(x) is non-empty, is automatically sufficiently causally connected, see
[42, Definition 3.4]. The equivalence between path-connected and piecewise causal
path-connected was also noted by [42, Lemma 3.5] and [61, Lemma 3.5] in their
respective settings.

In the following proposition we demonstrate that the null distance on a connected
Lorentzian length space satisfies all of the requirements of a distance function aside
from separation of points, even if we do not assume that the associated time function is
locally anti-Lipschitz (cf. [61, Lemma 3.8] for a corresponding result on spacetimes).

Proposition 2.14 (Null distance is a finite, continuous pseudo-metric) Let X be a
connected Lorentzian length space with a (not necessarily locally anti-Lipschitz) time

3 By pseudo-metric we mean a metric which does not always distinguish points. Compare with the ‘semi-
metric’ applied to the quotient spaces in [15, 59].

123



A Toponogov globalisation result for Lorentzian length spaces…

function T and metric d. Then the null distance dT , induced by T , is a finite pseudo-
metric which is continuous (with respect to d). Moreover,

p ≤ q ⇒ dT (p, q) = T (q) − T (p) . (2.3)

Proof By our previous discussion, every connected Lorentzian length space is suf-
ficiently causally connected. The fact that dT is a finite pseudo-metric then follows
directly from [42, Lemma 3.7]. Similarly, continuity of dT and (2.3) follow from [42,
Proposition 3.9] and [42, Proposition 3.8.(ii)], respectively. ��

The diameter of a subset in a metric space is a well known concept, which also
makes sense when considering such a pseudo-metric. We denote the dT -diameter of a
set by diamT . The following result on the diameter of causal diamonds improves the
bound given in [42, Proposition 3.8(iv)] to an equality.

Lemma 2.15 (Null distance diameter of diamonds) Let X be a connected Lorentzian
length space with a (not necessarily locally anti-Lipschitz) time function T and let
p ≤ q. Then diamT (J (p, q)) = T (q)−T (p). If p � q, then also diamT (I (p, q)) =
T (q) − T (p).

Proof By definition of the diameter, we always have diamT (J (p, q)) ≥ dT (p, q) =
T (q) − T (p). Let x, y ∈ J (p, q). By applying the triangle inequality for dT , we
obtain from (2.3)

dT (x, y) ≤ dT (x, p) + dT (p, y) = T (x) − T (p) + T (y) − T (p)

dT (x, y) ≤ dT (x, q) + dT (q, y) = T (q) − T (x) + T (q) − T (y) .

Summing these up, we obtain 2dT (x, y) ≤ 2(T (q) − T (p)) = 2dT (p, q) and the
claim follows.

In the case p � q, we still have diamT (I (p, q)) ≤ diamT (J (p, q)) = T (q) −
T (p). Conversely, consider sequences pn, qn ∈ I (p, q) so that pn → p, qn → q,
p � pn , qn � q, which exist by [1, Lemma 2.25]. Then dT (pn, qn) = T (qn) −
T (pn) → T (q) − T (p) = dT (p, q) since T is continuous. ��

Viewing an admissible causal triangle as the union of the images of the curves
corresponding to its sides, we therefore have diamT (�(p, q, r)) = T (r)− T (p). It is
in this sense that the dT -diameter of an admissible causal triangle gives a topological
notion of its “size” which is more compatible with the causal structure. Of course,
from a metric point of view, any admissible causal triangle is degenerate with respect
to dT , i.e.

dT (p, r) = dT (p, q) + dT (q, r). (2.4)

In the next section we shall put the key we have just constructed to use and finally
prove the Toponogov Globalisation Theorem for Lorentzian length spaces.
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3 Lorentzian Toponogov globalisation

The main goal of this section is to prove a synthetic Lorentzian analogue of Topono-
gov’s Globalisation theorem for lower timelike curvature bounds. This will be proven
in the setting of connected, globally hyperbolic, regular Lorentzian length spaces
having a time function. As previously noted, second countability is sufficient for the
existence of a time function.

However, before we dive into the proof proper, we first require a small collection of
essential lemmata. To begin, recall that globally hyperbolic Lorentzian length spaces
X are geodesic with finite and continuous time separation τ [41, Theorems 3.28 and
3.30]. Thus, in this case, (i) and (ii) from Definition 2.7 (curvature bounds in the
sense of angle comparison) hold for U = X , i.e. globalisation of these properties is
automatic for such spaces. We will also use the geodesic nature of globally hyperbolic
Lorentzian length spaces implicitly throughout the remainder of this section, to avoid
concerns regarding the existence of distance realisers.

Our next result is a slight adaptation of the LebesgueNumber Lemma, which allows
us to properly configure coverings of causal diamonds by small and well behaved
timelike diamonds.

Lemma 3.1 (Lebesgue Number Lemma, Lorentzian version) Let X be a connected,
globally hyperbolic, Lorentzian length space with T : X → R a time function on X
and let dT be the associated null distance. Consider any causal diamond J (x, y) in X
and let {Di }ni=1 be an open cover of J (x, y) consisting of timelike diamonds.4 Then
there exists an ε > 0 such that any causal (and hence any timelike) diamond with
dT -diameter less than ε contained in J (x, y) is also contained in one element of the
covering.

Proof The main difference when comparing to the original version of the Lebesgue
number lemma is that dT is only a finite, continuous, pseudo-metric in general, as a
result of Proposition 2.14. The causal structure of diamonds and its interplay with the
null distance will be crucial in the proof.

Firstly, if J (x, y) ⊆ Di for some i then we can choose ε arbitrary and we are done.
Otherwise, denote by Ci := J (x, y)\Di the complement of Di in J (x, y). Define a
function f : J (x, y) → R via

f (p) = max
i∈{1,2,...,n} dT (p,Ci ∩ (J+(p) ∪ J−(p))) . (3.1)

Note that the infimum in the definition of dT (p,Ci ∩ (J+(p) ∪ J−(p))) is attained
as Ci ∩ (J+(p) ∪ J−(p)) is a closed subset of J (x, y) and hence compact. We now
show that f (p) ∈ (0,∞) for all p.

If f (p) were 0 for some p ∈ J (x, y), then for all i there is a point pi ∈ Ci with
dT (p, pi ) = 0 such that pi ∈ J+(p) ∪ J−(p). From this, we infer that p = pi and
so p ∈ Ci for all i . Equivalently, p /∈ Di for all i . As the Di cover J (x, y), we arrive
at the contradiction p /∈ J (x, y). If f (p) = ∞ for some p, then there exists some i

4 Such an open cover must exist by [59, Corollary 3.6] and [41, Theorem 3.26.(v)].
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such that Ci ∩ (J+(p) ∪ J−(p)) = ∅. Indeed, as all of these sets are compact and
the null distance is finite valued, the maximum of finitely many infima can only be
infinite if (at least) one of the sets is empty. Thus, J (x, y) ∩ (J+(p) ∪ J−(p)) ⊆ Di ,
and hence x, y ∈ Di . As Di is a timelike diamond and therefore causally convex, this
implies J (x, y) ⊆ Di , which we treated separately.

As the sets Ci ∩ (J+(p) ∪ J−(p)) are all compact and the null distance is
continuous, it follows that f is continuous and hence attains its minimum value. Con-
sequently, set ε := minp∈J (x,y) f (p) > 0. Now let p, q ∈ J (x, y) with p ≤ q
and diamT (J (p, q)) = dT (p, q) < ε. As f (p) ≥ ε, there exists i such that
dT (p,Ci ∩ (J+(p) ∪ J−(p)) ≥ ε. Then clearly, p /∈ Ci . Furthermore, p ≤ q
and dT (p, q) < ε, hence also q /∈ Ci . Thus, p, q ∈ Di and by the causal convexity
of diamonds, also J (p, q) ⊆ Di . ��

We now turn to proving the most essential synthetic Lorentzian tool required for
the proof of the Globalisation Theorem. Recall that the so-called Gluing Lemma for
triangles with upper curvature bounds, [15, Lemma 4.3.1, Corollary 4.3.2], roughly
states that when two subtriangles satisfy the same curvature inequalities, then a large
triangle formed by combining the two must also satisfy that curvature bound. The
GluingLemma (and hence theLorentzian analogue of theReshetnyakGluingTheorem
[15, Theorem 5.2.1]) is not valid in full generality for lower curvature bounds, as not
all of the inequalities in the Alexandrov Lemma 2.10 point in the same direction in
this case.

However, we propose the following result, in the spirit of the Gluing Lemma, under
lower curvature bounds. In essence, if the angle condition fails to hold at a vertex in a
timelike triangle then, upon splitting the triangle into two timelike subtriangles along
one of the adjacent sides, then at least one angle condition must fail in one of the two
subtriangles. In particular, the failing angle condition(s) will either be at the original
vertex (viewed as part of a subtriangle), or at the point at which we split the adjacent
side.

Lemma 3.2 (Gluing Lemma for timelike triangles, lower curvature bounds) Let X be
a globally hyperbolic, regular Lorentzian length space with curvature bounded below
by K ∈ R in the sense of angle comparison. Let �(p, q, r) be a timelike triangle in
X (which is not necessarily contained in a comparison neighbourhood), where the
sides are given by distance realisers α from p to r , β from p to q and γ from q to r ,
respectively. Let �( p̃, q̃, r̃) be a comparison triangle for �(p, q, r) and assume that
the angle condition fails to hold at p in �(p, q, r), i.e. �p(α, β) < � p̃(q̃, r̃).

Let x be a point on β. Then at least one of the following three angle conditions
fails to hold: the angle conditions at x in �(p, x, r), at p in �(p, x, r) and at x in
�(x, q, r) (see Fig.3).

An analogous statement holds if x is on α and timelike related to q, or if the angle
condition initially failed at r (and the subdividing point x is on γ or on α and timelike
related to q) or at q (and x is on either β or γ ), instead of p.

Proof We prove the result for the case where the angle condition fails to hold at p in
�(p, q, r) and x is on β. Denote a distance realiser (which exists since X is globally
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Fig. 3 If the angle condition at p
in �(p, q, r) fails to hold (in
black), then at least one of the
three angles conditions (in red)
at x or p in the smaller triangles
fail to hold (color figure online)

hyperbolic) from x to r by η. Denote by β− and β+ the parts of β which go from
x to p and from x to q, respectively. Consider comparison triangles �( p̄, x̄, r̄) and
�(x̄, q̄, r̄) for�(p, x, r) and�(x, q, r), respectively, as well as a comparison triangle
�( p̃, q̃, r̃) for�(p, q, r). Assume that the angle condition at p in�(p, x, r) holds, i.e.
�p(α, β−) ≥ � p̄(x̄, r̄), otherwise we are done. We now show that the angle condition
at x in �(p, x, r) or at x in �(x, q, r) must fail. Let x̃ be the comparison point for x
in �( p̃, q̃, r̃) and consider the subtriangle �( p̃, x̃, r̃). �( p̄, x̄, r̄) and �( p̃, x̃, r̃) have
two sides of equal length, and for the angles at p̄ and p̃ we know

� p̄(x̄, r̄) ≤ �p(α, β) < � p̃(q̃, r̃) = � p̃(x̃, r̃) . (3.2)

Thus, law of cosines monotonicity gives τ(x, r) = τ(x̄, r̄) > τ(x̃, r̃) and so, by the
Alexandrov Lemma 2.10, the comparison triangles �( p̄, x̄, r̄) and �(x̄, q̄, r̄) form a
concave situation, i.e.

�x̄ ( p̄, r̄) < �x̄ (q̄, r̄) . (3.3)

Moreover, by Proposition 2.6, we have�x (β−, η) = �x (η, β+). If the angle condition
were to hold both at x in �(p, x, r) and at x in �(x, q, r), then we would have

�x̄ ( p̄, r̄) ≥ �x (β−, η) = �x (η, β+) ≥ �x̄ (q̄, r̄) , (3.4)

a contradiction to (3.3). Hence, the angle condition must fail at x either in �(p, x, r)
or �(x, q, r), if it does not fail at p in �(p, x, r).

For the remaining cases, the proof is similar, upon using the appropriate version of
the Alexandrov Lemma (cf. [15, Lemma 4.2.1] or [14, Proposition 2.42]). ��

As should be clear from the proof, this gluing property also holds for strongly
causal, locally causally closed, regular Lorentzian pre-length spaces with curvature
bounded below in the sense of angle comparison.

Using the previous lemmata, we can now prove two results which, when taken
together, allow us to prove our main theorem. One key difficulty in generalising glob-
alisation to the Lorentzian setting is that splitting a timelike triangle along the longest

123



A Toponogov globalisation result for Lorentzian length spaces…

side does not, in general, produce two timelike triangles. This issue is handled by the
first result, which demonstrates that if any angle fails, it is always possible to assume
that an angle of type σ = +1 fails.

Proposition 3.3 (Failing angles can be assumed to be of type σ = +1) Let X be a
connected, globally hyperbolic, regular Lorentzian length space with time function
T and curvature bounded below by K ∈ R in the sense of angle comparison. Let
0 < ε < 1. Let � = �(p, q, r) be a timelike triangle in X which satisfies the size
bounds for K and for which the angle condition fails at some vertex.

Suppose that the angle condition holds at each angle in every timelike triangle
�(p′, q ′, r ′) ⊆ J (p, r) with dT (p′, r ′) ≤ (1 − ε)dT (p, r). Then there is at least one
timelike triangle �(p′′, q ′′, r ′′) ⊆ J (p, r) such that the angle condition fails at q ′′,
i.e., �q ′′(p′′, r ′′) > �q̄ ′′( p̄′′, r̄ ′′).

Proof Without loss of generality, assume that the angle condition in � fails at p (the
case where it fails at r is analogous under reversal of the time orientation, while if it
fails at q the result is trivially satisfied).

Splitting the side [p, q] into two pieces at some x ∈ [p, q], say the dT -midpoint, by
Lemma 3.2 we get that either an angle condition fails at x in�(p, x, r), in which case
the result follows, or at either p in �(p, x, r) or x in �(x, q, r). In either of the two
latter cases, we rename the triangle where the angle condition fails by �(p1, q1, r),
with the angle condition now failing at p1. (Both triangles may have a failing angle
condition, in which case we may simply pick one at random.) This procedure can be
repeated arbitrarily many times (see Fig. 4) and, if no positive angle fails at any stage,
this will result in a sequence of pairs pn � qn on the side [p, q] such that the angle
conditions in �(pn, qn, r) fail at pn . If the new subdivision point (which is either
relabelled to pn or qn) is always chosen to be the midpoint of the side [pn−1, qn−1] in
the dT metric, then dT (pn, qn) → 0 and, since these points lie on the distance realiser
[p, q], it must be the case that pn and qn have a common limit point p∗ ∈ [p, q] with
pn ↗ p∗ and qn ↘ p∗.

If dT (p∗, r) < (1−ε)dT (p, r), then dT (pn, r) ≤ (1−ε)dT (p, r) for large n so that
�(pn, qn, r) is already sufficiently small that it cannot have a failing angle, yielding a
contradiction. However, this inequality need not hold and it may be necessary to split
the long side [pn, r ] in the following manner.

Let r ′
n be the point on the intersection of some distance realiser [pn, r ]with ∂ J+(qn)

(by regularity, this point of intersection is unique). By compactness of J (p, r), we
may, after passing to a subsequence if necessary, assume that r ′

n is convergent with
r ′
n → r∗. By construction, τ(qn, r ′

n) = 0, qn ≤ r ′
n , and hence by continuity of τ and

the closedness of the causal relation, we get τ(p∗, r∗) = 0, p∗ ≤ r∗. Moreover, we
have τ(pn, r) = τ(pn, r ′

n) + τ(r ′
n, r) and hence again by continuity, 0 < τ(p∗, r) =

τ(p∗, r∗) + τ(r∗, r), so the three points lie on a distance realiser. By regularity, the
segment [p∗, r ] is timelike, so τ(p∗, r∗) = 0 �⇒ p∗ = r∗.

For sufficiently large n, then, we may take a point rn slightly to the future of r ′
n on

the segment pnr . Then pn , qn and rn are all so close to p∗ that the timelike triangle
�(pn, qn, rn) has dT (pn, rn) ≤ (1 − ε)dT (p, r). Splitting the triangle �(pn, qn, r),
which has an angle condition failing at pn , through qnrn using Lemma 3.2, results
either in an angle condition failing at rn in �(qn, rn, r), so that the result follows, or
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Fig. 4 The angle condition
(black) originally fails to hold at
p0 in �(p0, q0, r). After the
first subdivision (dashed), the
angle condition (red) fails to
hold at p1 in �(p1, q1, r). After
the second subdivision (dotted),
the angle condition (blue) fails
to hold at p2 in �(p2, q2, r)
(color figure online)

at pn or rn in �(pn, qn, rn), which is not possible since �(pn, qn, rn) is sufficiently
small in the dT metric. ��

Following the work of Plaut across two papers [57, 58], Lang and Schroeder [43]
provided a “cat’s cradle" construction for use in proving Toponogov’s theorem for
metric length spaces. Independently of and in parallel to this, Petrunin [55] also derived
a similar, elegant scheme. In our second result, we demonstrate that this construction
can also be used in the Lorentzian setting, despite the challenge posed by the fact that
triangles with short side lengths (in τ ) need not be small topologically. This rules out
the failure of angles of type σ = +1, provided that a collection of smaller triangles
obey the angle condition at each of their vertices, essentially completing the proof.

Proposition 3.4 (Cat’s cradle) Let X be a connected, globally hyperbolic, regular
Lorentzian length space with time function T and curvature bounded below by K ∈ R

in the sense of angle comparison. Let 0 < ε < 1
2 and let� = �(p, q, r) be a timelike

triangle in X which satisfies the size bounds for K .
Suppose that the angle condition holds at each angle in every timelike triangle

�(p′, q ′, r ′) ⊆ J (p, r) with dT (p′, r ′) ≤ (1 − ε)dT (p, r). Then the angle condition
also holds at q in �.

Since the following proof is rather lengthy, we first offer a brief overview. The cat’s
cradle construction (see Fig. 5) is a recursive decomposition of� into smaller triangles
designed to ensure that the angle condition holds for the σ = +1 angle opposite the
longest side, namely for the angle at q. From this construction, we infer a sequence
of inequalities (3.5). We then continue with a similarly recursive construction in the
model space, assembling a sequence of comparison triangles to infer a sequence of
inequalities (3.6). Finally we show that the two sequences of inequalities converge to
the same limit, which implies that hinge comparison at q cannot fail.
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Fig. 5 The cat’s cradle
construction, showing the first
three subtriangles �1, �2 and
�3

Proof To begin, set L := dT (p, r) and q0 := q. Assume without loss of generality
that dT (p, q0) ≥ dT (q0, r), otherwise the roles of p and r should be interchanged. Let
q1 be the point on the distance realiser [p, q0] such that5 dT (p, q1) = εL , from which
it follows by (2.4) that dT (q1, r) = (1 − ε)L . Now �1 = �(q1, q0, r) is a timelike
triangle satisfying conditions of the statement, hence the angle condition holds at all
vertices of �1 by assumption.

We continue this construction recursively, picking points qn , depending on whether
n is odd or even, to form new triangles. For even n, pick qn on the distance realiser
[qn−1, r ] so that,6 dT (qn, r) = εL and dT (p, qn) = (1 − ε)L . This defines a triangle
�n = �(p, qn−1, qn) for n ≥ 1. Similarly, for odd n, pick qn on the distance realiser
[p, qn−1] to define �n = �(qn, qn−1, r). In both cases, �n satisfies the conditions of
the statement and so the angle condition holds at all vertices of �n by assumption.

Consider now the angles in �n . Let θn := �qn−1(p, r) be the angle at qn−1, which
is given by �qn−1(p, qn) or �qn−1(qn, r) in �n , when n is respectively even or odd.
Denote by φn the angle at qn in �n , which will be adjacent to θn+1 in the subsequent
triangle.When n is even,φn is�qn (qn−1, p), while for odd n, the angle is�qn (qn−1, r).
In either case, φn = θn+1, but with opposite signs σ , by Proposition 2.6.

Set ln := τ(p, qn)+τ(qn, r), for n ≥ 0. By applying the reverse triangle inequality
to each �n (recalling that these are defined for n ≥ 1), we have

0 < l0 ≤ l1 ≤ · · · ≤ τ(p, r). (3.5)

Indeed, for oddn, we have ln−1 = τ(p, qn−1)+τ(qn−1, r) = τ(p, qn)+τ(qn, qn−1)+
τ(qn−1, r) ≤ τ(p, qn)+ τ(qn, r) = ln and for even n a similar argument can be used.
The initial, strict inequality is due to�(p, q0, r) being non-degenerate, while the final
inequality in the chain follows fromapplying reverse triangle inequality to�(p, qn, r).

5 By (2.4), dT (p, q0) ≥ 1
2 L and as ε < 1

2 , it follows that dT (p, ·) attains εL within the distance realiser
[p, q0].
6 Again, such a qn exists as dT (qn−1r) = (1 − ε)L > εL .
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The sequence {(ln)}n≥0 in (3.5) is a Cauchy sequence, as it is monotone increasing
and bounded above by τ(p, r) (which is finite by size-bounds). Therefore, we have
that ln+1 − ln → 0. This value is the excess in the triangle �n , that is, the value by
which the longest side exceeds the sum of the two shortest sides (see Fig. 5). For n
even, this is τ(qn+1, r) − τ(qn, r) − τ(qn+1, qn). For n odd, on the other hand, this is
τ(p, qn+1) − τ(p, qn) − τ(qn, qn+1).

Claim: For some subsequence ni , the time separation between the vertices qni−1 and
qni of the triangle �ni is uniformly bounded away from zero.

Proof of claim: For a contradiction, assume that the claim is false. Then we have
limn→∞ τ(q2n−1, q2n) = limn→∞ τ(q2n+1, q2n) = 0. Consider the sequence of
triples {(q2n−1, q2n, q2n+1)}n≥1, which lies in the compact set J (p, r) × J (p, r) ×
J (p, r). After passing to some subsequence ni , we have that these converge to a limit
triple (qa, qb, qc). Inspecting the time function, we see that

T (q2n−1) − T (p) = dT (p, q2n−1) = εL = dT (p, q2n+1) = T (q2n+1) − T (p).

Furthermore, since q2n−1 ≤ q2n , (2.3) yields

T (q2n) − T (q2n±1) = dT (q2n±1, q2n) = (1 − 2ε)L > 0.

Hence, T (q2n−1) = T (q2n+1) �= T (q2n), which in the limit n → ∞ implies that
qa �= qb �= qc. Thus, by continuity of τ , we have τ(qa, qb) = τ(qc, qb) = 0.

Again by continuity of τ , we have τ(p, qc) + τ(qc, qb) = τ(p, qb) and by causal
closedness, we have p ≤ qc ≤ qb. In particular, p, qc, and qb lie on a distance realiser
with a non-constant null piece [qc, qb]. Thus, by regularity, the whole distance realiser
must be null and therefore τ(p, qb) = 0.

Similarly, from τ(qa, qb) + τ(qb, r) = τ(qa, r) and qa ≤ qb ≤ r , we obtain
that qa, qb, and r lie on a distance realiser which is null, so τ(qb, r) = 0 (see Fig. 6).
Therefore, limi→∞ l2ni = limi→∞

(
τ(p, q2ni ) + τ(q2ni , r)

) = τ(p, qb)+τ(qb, r) =
0. However, (3.5) states that ln is a non-decreasing sequence, beginning with l0 > 0,
which yields a contradiction. Claim proven.

Let pn = p and rn = r for all n ≥ 0.We now carry out a similar construction in the
model space L2(K ) by arranging comparison triangles �̄n (see Fig. 7) for �n . Since,
in general, the angles in �̄n do not match those in �n , the construction in L2(K ) does
not fit together as neatly.

In fact, we begin by considering a comparison hinge ([q̄0, p̄0], [q̄0, r̄0], ω̄1) in
L
2(K ) for ([q0, p0], [q0, r0], θ1); here, ( p̄0, q̄0, r̄0) is a triple of points such that

τ( p̄0, q̄0) = τ(p0, q0), τ(q̄0, r̄0) = τ(q0, r0), and the angle ω̄1 between the dis-
tance realisers [q̄0, p̄0], [q̄0, r̄0] satisfies ω̄1 = θ1. In particular, there is no a priori
restriction on τ( p̄0, r̄0) and instead we set out to obtain one (we are not considering a
comparison triangle for �, for example).

Using our hinge, we now recursively construct the comparison triangles �̄n , for
n ≥ 1. For odd n, fix q̄n on the distance realiser [ p̄n−1, q̄n−1], such that τ( p̄n−1, q̄n) =
τ(pn−1, qn). Then choose r̄n such that the timelike triangle �̄n = �(q̄n, q̄n−1, r̄n) has
the same side lengths as �n . Finally, set p̄n = p̄n−1. For even n, similarly fix q̄n on
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Fig. 6 The limiting
configuration of the cat’s cradle,
demonstrating that side lengths
are bounded away from zero

Fig. 7 The comparison
construction of the cat’s cradle.
Not marked for n ≥ 2 are the
angles ω̄n which are adjacent to
φ̄n−1, and are located in
approximately the same position
as θ̄n

the distance realiser [q̄n−1, r̄n−1], such that τ(q̄n, r̄n−1) = τ(qn, rn−1), construct a
comparison triangle �̄n = �( p̄n, q̄n−1, q̄n), and set r̄n = r̄n−1.

The choice of the two new points at each stage again defines new angles. Denote
by θ̄n the angle in �̄n at q̄n−1 (note that θ̄n = �̃qn−1(qn, rn) for n odd and θ̄n =
�̃qn−1(qn, pn) for n even), by φ̄n the angle in �̄n at q̄n and by ω̄n+1 the angle of
the remaining open hinge ([q̄n, p̄n], [q̄n, r̄n]) adjacent to φ̄n , see Fig. 7. Note that
φ̄n = ω̄n+1, but with opposite sign, again by Proposition 2.6.

As the angle condition holds at qn−1 and qn in �n by our assumptions, we have
θn ≤ θ̄n at qn−1, and at qn , the type σ = −1 angle satisfies φn ≥ φ̄n . Furthermore, by
construction ω̄1 = θ1 and by the above θ1 ≤ θ̄1, so ω̄1 ≤ θ̄1. More generally, using
the inequalities for φn and θn borne from the angle conditions holding in each �n ,
as well as equality of adjacent angles (see Proposition 2.6), we obtain ω̄n = φ̄n−1 ≤
φn−1 = θn ≤ θ̄n for all n ≥ 2. Therefore, we have ω̄n ≤ θ̄n for all n ≥ 1, such
that the relative sizes of the angles are indeed as depicted in Fig. 7. Hence, by law of
cosines monotonicity (Corollary 2.4), we have τ( p̄n−1, r̄n−1) ≤ τ( p̄n, r̄n). Thus, the
sequence of inequalities
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τ( p̄0, r̄0) ≤ τ( p̄1, r̄1) ≤ · · · (3.6)

holds.
Consider again the subsequence ni from the claim above. Since in�ni the length of

the (short) side [qni−1, qni ] is uniformly bounded away from zero on this subsequence,
the same is true of the length of the side [q̄ni−1, q̄ni ] in �̄ni . Note that this implies the
length of the longest side in �̄ni is also uniformly bounded away from zero. Hence,
the angle φ̄ni lies between two timelike sides of the triangle �̄ni whose lengths are
uniformly bounded away from zero, where the excess of �̄ni (being equal to that of
�ni ) is approaching 0. This means that this sequence of configurations approaches
a line, and not a point, so that φ̄ni → 0. It follows from ω̄n+1 = φ̄n that ω̄ni+1 →
0. As ω̄ni+1 is given by �q̄ni

( p̄ni , r̄ni ), we conclude that, along our subsequence,
τ( p̄ni , r̄ni ) − τ( p̄ni , q̄ni ) − τ(q̄ni , r̄ni ) = τ( p̄ni , r̄ni ) − lni → 0. In other words, the
difference of the terms of the sequences in (3.5) and (3.6) is converging to 0.

Finally, assume that τ(p, r) < τ( p̄0, r̄0), that is, the hinge condition [12, Definition
3.14] fails at q in �. Set C := τ( p̄0, r̄0) − τ(p, r) > 0. Since τ( p̄n, r̄n) − ln ≥
τ( p̄0, r̄0) − τ(p, r) for all n ≥ 0 by (3.5) and (3.6), we have τ( p̄n, r̄n) − ln ≥ C > 0
for all n, contradicting the fact that, on ni , τ( p̄n, r̄n)−ln → 0. It follows, therefore, that
the hinge conditionmust hold at q in�. Since hinge comparison and angle comparison
are equivalent (see Proposition 2.8) the claim follows. ��

Collecting the previous two propositions, we can deduce that the angle conditions
hold in the large as long as they hold in the small. We formalise this statement here
and will apply it in the proof of the main theorem.

Corollary 3.5 (Core argument of Lorentzian Toponogov Globalisation) Let X be a
connected, globally hyperbolic, regular Lorentzian length space with time function
T and curvature bounded below by K ∈ R in the sense of angle comparison. Let
0 < ε < 1

2 . Let � = �(p, q, r) be a timelike triangle in X which satisfies the size
bounds for K .

Suppose that the angle condition holds at each angle in every timelike triangle
�(p′, q ′, r ′) ⊆ J (p, r) with dT (p′, r ′) ≤ (1 − ε)dT (p, r). Then the angle condition
holds at all vertices of �(p′, q ′, r ′), then the angle condition also holds at each angle
in �.

Proof First, observe that our assumptions include the criteria for Proposition 3.4 to
hold. In particular, the angle condition must not fail at q in �. Now assume for a
contradiction that the angle condition fails at either p or r in �. Then by Proposition
3.3, there exists a timelike triangle�′′ := �(p′′, q ′′, r ′′) ⊆ J (p, r) such that the angle
condition fails at q ′′.

Furthermore, byLemma2.15 andour discussion around (2.4),wehavedT (p′′, r ′′) ≤
dT (p, r). Suppose that �(p′, q ′, r ′) ⊆ J (p′′, r ′′) is a timelike triangle with
dT (p′, r ′) ≤ (1 − ε)dT (p′′, r ′′). Then it is also the case that �(p′, q ′, r ′) ⊆ J (p, r)
and dT (p′, r ′) ≤ (1− ε)dT (p, r). By the initial hypotheses, then, the angle condition
holds at all vertices of all such �(p′, q ′, r ′) and so Proposition 3.4 may be applied to
�′′, to show that the angle condition cannot fail at q ′′, yielding a contradiction. Hence
the angle condition must also not fail at p or r in � and our result follows. ��
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The previous result shows that the angle condition holds at all vertices of an arbitrar-
ily large triangle, under the assumption that the angle condition holds for all vertices
in a certain proportion of the smaller triangles in the space. It remains to show that
(local) lower curvature bounds provide sufficiently many triangles with no failing
angle condition for the above assumption to hold for each and every triangle. That is,
no triangle possesses a vertex at which the angle condition fails.

Theorem 3.6 (Lorentzian Toponogov globalisation) Let X be a connected, globally
hyperbolic, regular Lorentzian length space with a time function T and curvature
bounded below by K ∈ R in the sense of angle comparison. Then each of the properties
inDefinition 2.7 hold globally; in particular, the entire space X is a (≥ K )-comparison
neighbourhood and hence has curvature globally bounded below by K .

Proof First note that Definition 2.7(iv) is a local condition, only requiring the germs
of curves, hence it globalises trivially. Recall from the opening of this section that
Definitions 2.7(i) and 2.7(ii) also hold globally under our assumptions. It remains to
check Definition 2.7(iii) for arbitrarily large triangles in X .

Let� = �(p, q, r) be a triangle in X , which wemay assume to be timelike by [12,
Remark 3.12], such that the angle condition fails at some vertex in� (this also permits
triangles where the angle condition fails at multiple vertices). Clearly, � is contained
in the causal diamond J (p, r), which is compact by the global hyperbolicity of X .
Suppose δ > 0 is a greatest lower bound on the dT -diameter of timelike triangles in
J (p, r)which exhibit a failing angle condition. In particular, any timelike trianglewith
dT -diameter less than δ satisfies the angle condition, and there are triangles with dT -
diameter greater than yet arbitrarily close to δ that exhibit a failing angle condition.7

Applying Corollary 3.5 to such triangles yields a contradictionwhich proves the result.
All that remains is to establish the existence of the greatest lower bound δ. Let

A be the set of dT -diameters of triangles in J (p, r) with a failing angle condition.
By assumption, an angle condition fails in �(p, q, r), so dT (p, r) ∈ A and A �= ∅.
It follows that A has a greatest lower bound, which we now verify is positive by
demonstrating the existence of some positive lower bound. By [13, Proposition 4.3]8,
we can cover J (p, r) by finitely many timelike diamonds which are all comparison
neighbourhoods. Then by Lemma 3.1 there exists some δ′ > 0, such that any timelike
diamond of dT -diameter less than δ′ contained in J (p, r) is contained in an element
of this covering. In particular, any timelike triangle of dT -diameter less than δ′ is
contained in a comparison neighbourhood and so has no failing angle conditions. It
follows that δ′ is a positive lower bound for A. ��

An application of Proposition 2.8 also yields that, provided (2.1) holds, lower
curvature bounds in the sense of hinge, monotonicity, and triangle comparison also
globalise.

7 It is not strictly necessary that δ be a greatest lower bound. This allows us to apply our propositions with
an arbitrarily small constant ε > 0, but they are stated for any 0 < ε < 1

2 .
8 Recall that any globally hyperbolic Lorentzian length space is both non-timelike locally isolating and
strongly causal. Furthermore, although [13, Proposition 4.3] is formulated in terms of distance comparison,
it is clear that the proof also holds for curvature bounds in terms of angle comparison.
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We also note that, since all causal diamonds J (p, q) considered in this work satisfy
τ(p, q) < DK , it is enough for only these diamonds to be assumed to be compact.
The full power of global hyperbolicity is not used and we could instead use the weaker
notion known as global hyperbolicity of order

√−K introduced by Harris [38].

4 Applications and outlook

Finally, in this sectionwe demonstrate the application of our results to thewider field of
synthetic Lorentzian geometry and discuss potential refinements of the globalisation
theorem along with some open problems.

4.1 Gromov–Hausdorff convergence

We begin by taking inspiration from the metric setting and consider the stability of
curvature bounds under Gromov–Hausdorff convergence, a result which has been
crucial for the proofs of finiteness results in Riemannian geometry.

Prior to the development of Alexandrov geometry as an independent subject, it
was already understood that limits of Riemannian manifolds with sectional curvature
bounded below are length spaces with curvature bounded below, in the sense that
the conclusion of the Toponogov comparison theorem and certain nice topological
properties hold [36]. This insightwas used to prove a variety of finiteness, pinching and
rigidity results [34, 35, 37, 51, 69]. The proof of the globalisation theorem for general
Alexandrov spaces [19] placed this on a much clearer footing. It ensures that lower
curvature bounds in the triangle comparison sense always survive Gromov–Hausdorff
convergence, since there is no possibility that the size of comparison neighborhoods
shrinks to zero along the sequence. Perelman used Alexandrov geometry to prove
a much more powerful homeomorphism finiteness result for Alexandrov spaces and
hence Riemannian manifolds [53], which has been generalised further to the setting
of Riemannian orbifolds [39].

Gromov–Hausdorff convergence is most natural in the compact setting and can
then be generalised to the non-compact case. As most interesting Lorentzian exam-
ples are non-compact, however, it has proved difficult to establish a general notion of
convergence in this setting. Minguzzi and Suhr have provided an excellent notion of
convergence for “bounded Lorentzian metric spaces” [46] and in the globally hyper-
bolic case this can be applied to causal diamonds, as we will soon show. Indeed, since
our work was completed, Bykov, Minguzzi and Suhr generalised this notion to the
unbounded case [21]. Sakovich and Sormani have also carried out extensive research
into notions of intrinsic distances between “causally-null-compactifiable spacetimes”
[60]. We do not address these more recent notions of convergence in the present work.

For any reasonable notion of Gromov–Hausdorff convergence of Lorentzian length
spaces, we should expect that the condition of a timelike lower curvature bound is
stable. This general principle is illustrated by Theorem 4.2, which brings together the
globalisation result for spaces in the Kunzinger–Sämann sense with the convergence
result for bounded spaces in the Minguzzi–Suhr sense.
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A bounded Lorentzian metric space is a topological space with a continuous time
separation function satisfying a boundedness property ({(p, q) : τ(p, q) ≥ ε} is
compact for all ε > 0) and distinguishing points (if p �= q then for some r either
τ(p, r) �= τ(q, r) or τ(r , p) �= τ(r , q)). It is a bounded Lorentzian length space in the
sense of Minguzzi–Suhr if timelike related points are connected by distance realisers
(“maximal isocausal curves” in the terminology of [46]).

For bounded Lorentzian metric spaces, a Gromov–Hausdorff semi-distance can be
defined simply by using the time separation in place of a metric. Bounded Lorentzian
metric spaces admit at most one point which is not timelike related to any other point.
If this exists it is denoted by i0 and is called the spacelike boundary. The Gromov–
Hausdorff semi-distance, restricted to bounded Lorentzian metric spaces which do
not contain i0, is a true metric. The same is true of bounded Lorentzian metric spaces
which do contain i0. For both classes of bounded Lorentzian metric spaces, then, we
may speak of a Lorentzian Gromov–Hausdorff convergence.

Webeginwith a lemma to show that causal diamonds are boundedLorentzian length
spaces in the Minguzzi–Suhr sense (after removing the spacelike boundary). Note,
however, that causal diamonds are not Lorentzian length spaces in the Kunzinger–
Sämann sense, since they are not localisable.

Lemma 4.1 (BoundedLorentzian length spaces and causal diamonds)Let X be a glob-
ally hyperbolic, regular Lorentzian length space (in the sense of Kunzinger–Sämann,
as used throughout this paper) and let J (p, q) be a causal diamond in X. Let S be the
set of points in J (p, q) which are not timelike related to any other point in J (p, q) –
the “spacelike boundary” of the diamond. Then J (p, q) \ S is a bounded Lorentzian
length space in the sense of Minguzzi–Suhr.

Proof Let J (p, q) be a causal diamond in a globally hyperbolic Lorentzian length
space. By global hyperbolicity, τ is continuous with respect to the metric topology
and, since J (p, q) is compact and τ vanishes on S, the boundedness property holds on
J (p, q) \ S. The final requirement for J (p, q) \ S to be a bounded Lorentzian metric
space is that τ distinguishes points.

We adapt the argument from [1] which shows that globally hyperbolic Lorentz-
ian length spaces have the stronger property of being past- and future-distinguishing.
Assume for a contradiction that there exist distinct points x, y ∈ J (p, q) \ S, which
are not distinguished by τ . In particular, I−(x) = I−(y) and I+(x) = I+(y). If the
points are timelike related to each other, this contradicts chronology, which is implied
by global hyperbolicity.

Consider now the case when x and y are not timelike related. Since x /∈ S, at
least one point in J (p, q) \ S is timelike related to x . Then, x is joined to that point
by a timelike curve in J (p, q) and so is the limit of some sequence xn , with the
entire sequence lying either in I−(x) or I+(x). Without loss of generality, suppose
xn ∈ I−(x). Since I−(x) = I−(y), we also have xn ∈ I−(y). Hence, x ∈ J−(y),
with τ(x, y) = 0 and x �= y. As τ does not distinguish x and y, we have τ(xn, x) =
τ(xn, y) > 0, from which it follows that the concatenation of the distance realisers
from xn to x and from x to y forms a distance realising curve ofmixed causal character,
contradicting regularity. Therefore J (p, q) \ S is a bounded Lorentzian metric space.
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Finally,we demonstrate that timelike related points are connected by distance realis-
ers lying inside J (p, q)\S. Let x � y in J (p, q)\S. By global hyperbolicity, x and
y are connected by a distance realiser lying in J (p, q). If there were a point s ∈ S
on the distance realiser from x to y, we would have 0 = τ(x, s) = τ(s, y). However,
τ(x, y) = τ(x, s) + τ(s, y) = 0, contradicting x � y. ��
Theorem 4.2 (Stability of lower curvature bounds) Let Xi be a sequence of connected,
globally hyperbolic, regular, Lorentzian length spaces with time functions and curva-
ture bounded below by K ∈ R in the sense of angle comparison. Let Ji = J (pi , qi )
be a sequence of causal diamonds in Xi and let Si be the spacelike boundary of Ji .
If the sequence Ji\Si converges in the sense of Minguzzi–Suhr to some J , then J is
a bounded Lorentzian length space with sectional curvature bounded below by K in
the sense of Minguzzi–Suhr.

Proof Each Ji \Si is a boundedLorentzian length space in the sense ofMinguzzi–Suhr,
by the previous lemma. By Theorem 3.6, these spaces have a global lower curvature
bound in any of the senses mentioned in Proposition 2.8. In particular, Ji\Si has
curvature globally bounded below by K in the sense of timelike triangle comparison,
which is precisely the definition of sectional curvature bounded below by K in the
sense of Minguzzi–Suhr. By [46, Theorem 5.18], the limit J is a bounded Lorentzian
length space in the sense of Minguzzi–Suhr. and by [46, Theorem 6.7], it has sectional
curvature bounded below in the sense of Minguzzi–Suhr. ��

In particular, an application of Proposition 2.8 also yields that, provided (2.1) holds
on each Xi , lower curvature bounds in the sense of hinge, monotonicity, and triangle
comparison are also stable under convergence, in the same sense, i.e. the limit space
has sectional curvature bounded below in the sense of Minguzzi–Suhr.

4.2 Geometric consequences

There are also several direct corollaries toTheorem3.6,which extend known results for
spaces with global timelike curvature bounds to those with local timelike curvature
bounds, under the assumptions of our Toponogov-style Globalisation Theorem. In
what follows, we present two such results, namely the Bonnet–Myers Theorem and
the Splitting Theorem.

First proven by Bonnet in two dimensions, the Bonnet–Myers theorem states that
a complete Riemannian manifold with sectional curvature bounded below by some
positive k ∈ R, has diameter diam(M) ≤ π√

k
. For dimensions greater than two,

the result was formalised by Myers [48], who later demonstrated that the weaker
assumption of a positive lower Ricci curvature bound was sufficient to obtain an
associated upper bound on the diameter [49]. A corresponding synthetic result appears
in [18, Theorem 10.4.1], where complete metric length spaces with sectional curvature
bounded below by some k > 0 are shown to also satisfy diam(X) ≤ π√

k
.

Bonnet–Myers-style theorems also appear in the literature of Lorentzian geom-
etry. In the smooth setting, Beem and Ehrlich [9, Theorem 9.5] have shown that
globally hyperbolic spacetimes with timelike (sectional) curvature bounded below by

123



A Toponogov globalisation result for Lorentzian length spaces…

some negative K ∈ R have diam(M) ≤ π√−K
, where the diameter is now defined

in terms of the Lorentzian distance function induced by the spacetime metric.9 In
the synthetic Lorentzian setting, where the diameter is defined in terms of the time-
separation function τ , Cavalletti and Mondino [22, Proposition 5.10] have shown that
measured Lorentzian pre-length spaces with suitable timelike measure contraction
property (such as that implied by a lower Ricci curvature bound), also have an upper
bound on their diameter.

Observe how, while the metric theorems consider k > 0, the Lorentzian results
concern K < 0. This is not quite as superficial a change as it might first seem; it
is a consequence of the hierarchy of curvature bound implications being reversed,
following the conventions set by [41]. In particular, in the metric setting, curvature
bounded below by k implies curvature bounded below by all k′ ≤ k, whereas in
the Lorentzian setting, curvature bounded below by K implies curvature bounded
below by all K ′ ≥ K . A similar statement holds for upper curvature bounds, with the
inequalities reversed. Although we adhere to these conventions throughout this paper,
they are by no means ubiquitous. For example, [4, 9, 22] present Lorentzian results
using the metric hierarchy.

While, in the metric setting, we could be content with a result utilising bounds
on the Ricci curvature, since they are known to be weaker than sectional curvature
bounds, see [54], in the setting of Lorentzian pre-length spaces, the hierarchy of Ricci
curvature bounds and timelike (sectional) curvature bounds via triangle comparison
is an open question. As such, in [13, Theorem 4.11], a preliminary Bonnet–Myers
result for timelike curvature bounds via triangle comparison is proven; namely, it is
shown that strongly causal, locally causally closed, regular, and geodesic Lorentzian
pre-length spaces with timelike curvature globally bounded below by K < 0 have
finite diameter diamfin(X) ≤ π√−K

. Applying Theorem 3.6 re-frames this result in
terms of local timelike curvature bounds as follows.

Theorem 4.3 (Synthetic Lorentzian Bonnet–Myers) Let X be a connected, globally
hyperbolic, and regular Lorentzian length space which has a time function T and
local curvature bounded below by K ∈ R in the sense of angle comparison. Assume
K < 0. Assume that X possesses the following non-degeneracy condition: for each
pair of points x � z in X we find y ∈ X such that �(x, y, z) is a non-degenerate
timelike triangle. Then the diameter10 satisfies diam(X) ≤ π√−K

.

Following [13, Remark 4.12], this result may be viewed as a direct synthetic exten-
sion of [9, Theorem 9.5], with an additional non-degeneracy condition. Similarly to
the exclusion of spaces isomorphic to R, (0,∞), [0, B] for all B > π√

k
, and circles

of radius greater than 1√
k
in the metric setting, the non-degeneracy condition excludes

locally one-dimensional spaces from the scope of our theorem.
Recall that, throughout this paper, we have assumed triangles satisfy appropriate

size-bounds, such that their comparison triangle is realisable cf. [4, Lemma 2.1]. In

9 Lorentzian distance functions are, in essence, time-separation functionswhich are induced by aLorentzian
metric, in much the same way that a Riemannian manifold induces a distance.
10 Here we can replace the finite diameter with the diameter, since these notions coincide on globally
hyperbolic Lorentzian length spaces.
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particular, given a Lorentzian pre-length space X with curvature bounded below (or
above) by K , we assume that triangles �(p, q, r) have τ(p, r) < DK . The following
lemma,whichwas previously presented in the context of spacetimes by [9, Proposition
9.4], gives us conditions under which the diameter of a Lorentzian pre-length space is
not attained. Note that the following lemma is formulated via the ordinary diameter
instead of the finite diameter, i.e. the supremum of all τ -values in the space.

Lemma 4.4 Let X be a strongly causal Lorentzian pre-length space. If diam(X) is
finite, then it is not attained on X. Furthermore, if X is a globally hyperbolic Lorentzian
length space, then diam(X) is never attained on X, independently of whether it is finite.

Proof Let X be a strongly causal Lorentzian pre-length space. Assume for contradic-
tion that diam(X) is finite and attained by some p, q ∈ X , that is, τ(p, q) = diam(X).
Then, by strong causality, there exists a point q ′ with q � q ′, such that τ(p, q ′) ≥
τ(p, q)+τ(q, q ′) > τ(p, q) = diam(X), contradicting the definition of the diameter.

Now assume that X is a globally hyperbolic Lorentzian length space. Recall that,
on such a space, the time separation function is finite. Furthermore, the assumptions
of the previous part still hold, hence diam(X) can never be attained. ��

Therefore, all triangles in Lorentzian pre-length spaces which satisfy the assump-
tions of either [13, Theorem 4.11] or 4.3 for some K < 0 satisfy size bounds for
K .

Let us now move on to discussing the Splitting Theorem. Under the assumption
of non-negative curvature, splitting theorems have also been proven in a variety of
settings. In Riemannian geometry, Toponogov showed that if a complete manifold
with non-negative sectional curvature contains a line, it splits as a product, with R as
one of the factors [66, 67]. Cheeger and Gromoll generalised this to the case where
the manifold has only non-negative Ricci curvature [23].

Beem, Ehrlich, Markvorsen and Galloway proved an analogous result for
Lorentzian manifolds, where the hypothesis of completeness is replaced with global
hyperbolicity, non-negative sectional curvature need only hold on timelike planes, and
the line must be timelike [10, 11]. The assumption of non-negative (sectional) cur-
vature can again be weakened to a bound on the Ricci curvature, known in general
relativity as the strong energy condition. In increasing degrees of generality, Galloway
[26] and Eschenburg [25] were able to prove this result for globally hyperbolic and
timelike geodesically complete spacetimes,withGalloway dropping the latter assump-
tion in [27]. The splitting theorem for timelike geodesically complete spacetimes, as
originally conjectured byYau in [70] (without the assumption of global hyperbolicity),
was finally proven by Newman in [50].

In the synthetic setting, Toponogov’s splitting result can be generalised to Alexan-
drov geometry. This was first achieved by Milka, with the stronger assumption that an
affine function exists [45], but was later weakened by Burago–Burago–Ivanov to the
presence of a line [18]. In the context of Lorentzian length spaces, Beran, Ohanyan,
Rott and Solis proved a Splitting Theorem under the presence of global curvature
bounds [14], which we can now restate with the weaker assumption of local curvature
bounds.
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Theorem 4.5 (Synthetic Lorentzian Splitting) Let (X , d,�,≤, τ ) be a connected,
globally hyperbolic, regular Lorentzian length space with a proper metric d, a time
function T , and (local) timelike curvature bounded below by zero, which satisfies
timelike geodesic prolongation and contains a complete timelike line γ : R → X.
Then there is a τ - and ≤-preserving homeomorphism f : R × S → X, where S is a
proper, strictly intrinsic metric space of Alexandrov curvature ≥ 0.

Observe that the only additional assumption, cf. [14, Theorem 1.4], made in order to
replace global curvature bounds with local ones in the above is the presence of a time
function, which is necessary in order to apply Theorem 3.6. Since time functions exist
on any second countable, globally hyperbolic, Lorentzian length space (seeProposition
2.12), this condition is relatively mild.

4.3 Future work

The assumption in Theorem 3.6 that the space be a globally hyperbolic Lorentz-
ian length space is quite a strong one. In the metric setting, the assumptions are
comparatively mild, e.g. [19, 43] manage to show the theorem for complete length
spaces. The result can even be shown for non-complete geodesic spaces of curvature
bounded below [55]. It is therefore only natural to ask whether or not the Toponogov
Globalisation Theorem holds in the Lorentzian context under milder assumptions
as well. Given that [19] globalises curvature bounds using a four-point condition,
which was recently adapted to the Lorentzian setting [12, Definition 4.6], we are
optimistic that the answer is positive and amore general result might be obtained. Such
a generalisation would also extend the applicability of the Bonnet–Myers theorem, for
which the assumptions of the Globalisation Theorem are sufficient but may not all be
necessary. In particular, the additional assumptions under which the Bonnet–Myers
theorem holds for global curvature bounds are weaker than the local version, aside
from the bounds themselves.

In the metric case, a powerful consequence of the Toponogov Globalisation The-
orem is that the Hausdorff dimension of an Alexandrov space is the same at all
neighborhoods in the space [19]. A similar notion of dimension has been proposed for
Lorentzian length spaces by McCann and Sämann [44] and it is reasonable to expect
that Theorem 3.6 can be used to make an analogous statement.
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