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ABSTRACT: The development of cost-effective and high-

performance thermoelectric (TE) materials faces significant —A— Surface-treated Cu;SbSe,
challenges, particularly in improving the properties of promising 08l - Gave Wl A
copper-based TE materials such as Cu;SbSe,, which are ' Sn :
limited by their poor electrical conductivity. This study presents 061 Se |
a detailed comparative analysis of three strategies to promote b i :
the electrical transport properties of Cu;SbSe, through Sn N0_4, / :
doping: conventional Sn atomic doping, surface treatment with .J &
SnSe molecular complexes, and blending with SnSe 021 '_:_ty
nanocrystals to form nanocomposites, all followed by ' Doped Cu,5bS8,
annealing and hot pressing under identical conditions. Our 0.0 y e CUSpSel
results reveal that a surface treatment using SnSe molecular 300 400 500 600 700
Blended Cu;SbSe, NCPs T (K)

complexes significantly enhances TE performance over atomic

doping and nanocomposite formation, achieving a power factor of 1.1 mW-m™-K? and a maximum dimensionless figure of
merit zT value of 0.80 at 640 K, representing an excellent performance among Cu;SbSe,-based materials produced via
solution-processing methods. This work highlights the effectiveness of surface engineering in optimizing the transport
properties of nanostructured materials, demonstrating the versatility and cost-efficiency of solution-based technologies in

the development of advanced nanostructured materials for application in the field of TE among others.

KEYWORDS: Cu;SbSe, nanocrystal, solution processing, surface-treatment, band engineering, thermoelectricity

1 Introduction

Thermoelectric (TE) materials, which convert heat into electricity
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and vice versa, are essential components in space exploration
devices, compact cooling systems for 5G networks, and body heat
self-powering technologies integral to the Internet of Things (IoT)
among numerous other varied temperature control, cooling, and
energy harvesting applications [1, 2]. The efficiency of these
materjals is quantified by a dimensionless figure of merit, zT' =
08> T/« Where o represents electrical conductivity, S is the Seebeck
coefficient, T denotes absolute temperature, and «,,, represents total
thermal conductivity [3-5]. The interdependence of these
parameters complicates efforts to optimize 27T, as improving ¢ can
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inadvertently decrease S and increase «, thereby reducing overall
material efficiency. To address this challenge, strategies have been
developed, including incorporating nanostructured interfaces to
reduce phonon transmission without impeding electronic transport
and selectively doping materials to manipulate carrier
concentrations and mobility [6—8]. These approaches aim to
decouple the thermal and electrical properties of materials, thereby
enabling the practical realization of high-performance TE systems.

Different TE materials are used depending on the temperature
range. Lead chalcogenides are typically used for applications in the
mid-temperature range [7, 9-14], whereas Bi,Te;-based
compounds predominate in room-temperature TE devices [15-19].
Despite their proven efficacy, these materials are encumbered by
significant drawbacks, notably high costs and considerable health
and environmental hazards due to the use of scarce and toxic
elements such as Te and Pb. These limitations have driven
extensive research efforts to identify and develop alternative
materials composed of abundant and non-toxic elements. At the
same time, next-generations of TE devices should be based on more
sustainable processing approaches, beyond the energy- and labor-
intensive technologies currently used for the fabrication of TE
devices. Within this framework, Cu-based TE materials,
distinguished by the relative abundance and reduced toxicity of
their elements along with their straightforward preparation
potentially using solution-based processes, have rapidly emerged as
formidable contenders for supplanting lead-based compounds in
mid-temperature applications [20—22].

Binary copper chalcogenides, such as Cu,X (X = S, Se, and Te),
have been extensively studied for their extraordinary TE
performance, though their stability remains uncertain [23-28]. In
parallel, a much less studied category of diamond-like structured
ternary and multinary compounds, including Cu,SnSe; [29, 30],
CuGaTe, [31, 32], Cu,ZnGeSe, [33], Cu,SbSe, [34, 35], etc., has
garnered significant attention due to their improved stability and
notable TE properties. Among these, Cu;SbSe,, a semiconductor
with a relatively small bandgap of 029 eV, has emerged as
particularly promising [36]. First-principles calculations of impurity
formation energies in Cu;SbSe, reveal that this material typically
behaves as a p-type semiconductor behavior, attributed to the low
formation energy associated with Cu vacancies. At the same time,
the low energy required for Sb substitution makes it the most
favorable site for doping [37, 38]. Experimental research aligns with
these theoretical predictions, showing that to enhance the generally
poor electrical transport performance, effective doping primarily
involves acceptor doping at the Sb site. Elements from groups IIIA
and IVA, such as Sn [34], Ge [39], Al [40], Pb [41], In [40], and Ga
[40], as well as d-block elements like Ti [42] and Ni [43], have been
particularly effective in enhancing TE performance through
substitutional doping at the Sb site.

Among various strategies employed to enhance the electrical
performance of Cu;SbSe,, p-type doping with Sn at the Sb site has
proven to be the most effective strategy, significantly modifying the
band structure (Fig. 1(a)) [34, 35, 44, 45]. This is attributed to the
structural similarities but differential valence between Sn and Sb,
which ensure nearly 100% doping efficiency [34]. This large
efficiency allows adjusting the charge carrier concentration in the
range from 10" to 10” cm>, thereby significantly enhancing o.
Moreover, theoretical calculations suggest that Sn doping also
elevates the effective mass (m4*¥) of holes, which substantially boosts
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the power factor (PF = ¢§%), doubling the maximum zT value [34,
44, 45).

The phase diagram for the Cu-Sb-Se system demonstrates that,
at a Cu content of 37.5%, stoichiometric Cu;SbSe, is formed (Fig.
S1 in the Electronic Supplementary Material (ESM)). This phase
possesses a liquid phase threshold temperature of approximately
403 °C [46]. Consequently, the maximum testing and application
temperatures for bulk Cu,;SbSe, are consistently maintained below
673 K in previous studies, due to the material’s decomposition into
three distinct phases at temperatures exceeding its stability limit of
approximately 390 °C [40-42, 44, 47, 48]. Thermogravimetric
analysis (TGA) shows that Cu;SbSe, doped with a proper amount
of Sn exhibits reduced weight loss at elevated temperatures (Fig.
1(b)), indicating enhanced stability compared to pristine Cu;SbSe,.
This stability enhancement is primarily attributed to the
substitution, which establishes a more stable chemical framework
and strengthens the Sn-Se and neighboring Cu-Se bonds, thereby
enhancing their covalent characteristics and requiring more energy
to disrupt (Fig. 1(c)) [45]. Consequently, Sn doping also limits the
volatilization of Se. As shown in the inset of Fig. 1(b), the unit cell
of Sn-doped Cu;SbSe,, which features a tetragonal structure with
Cu atoms occupying two distinct lattice positions (Cu; and Cu,),
comprises a network of tetrahedrally coordinated Sb and Se bonds,
with Sn atoms incorporated at the Sb sites.

Given the significant impact of Sn in the Cu;SbSe, system,
investigating alternative strategies for incorporating this element,
beyond conventional doping, holds interest for both deepening our
understanding of Sn’s role within the material and exploring
potentially more effective introduction strategies. In this study, a
high-yield and scalable bottom-up approach to produce Cu,;SbSe,
nanocrystals (NCs) was studied in detail. Subsequently, three
distinct Sn introduction strategies were investigated: conventional
doping, surface treatment using SnSe molecular complexes, and
production of nanocomposites (NCPs) by blending Cu;SbSe, and
SnSe NCs, each of them subsequently undergoing annealing and
hot pressing under identical conditions. These approaches enable a
comprehensive exploration and discussion of the significant impact
of Sn on the charge and thermal transport mechanisms within
Cus;SbSe,. Notably, the matrix treated with molecular complexes
exhibits superior TE performance compared to other strategies (Fig.
1(d)), prompting a detailed analysis and investigation of the
microstructure to better understand the observed enhancements.

2 Results and discussion

2.1 NC properties and pellet consolidation

Cus;SbSe, NCs were synthesized following a scaled-up version of a
previously reported method [35, 41]. Briefly, Se powder was
dissolved in oleylamine (OLA) and 1-dodecanethiol (DDT), and
the solution was injected into a preheated mixture of copper(I)
chloride (CuCl) and antimony(III) chloride (SbCl;) (see details in
the ESM). This protocol facilitated a high batch-to-batch
reproducibility and achieved a material yield of ca. 94%. Following
this approach, Sn-doped Cu;SbSe, NCs (doped Cu;SbSe,) were
produced by substituting the corresponding amount of SbCl; with
tin(II) chloride dihydrate (SnCL-2H,0), maintaining consistent
synthesis conditions.

The blended Cu,;SbSe, NCPs were produced by wetting 1.5 g of
dried and ligand-free Cu;SbSe; NCs with the desired amounts of
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Figure1 (a) Calculated band structure of Cu,;SbSe, and Sn-doped Cu,SbSe,. (b) TGA profile of annealed Cu;SbSe, powder (black curve) and Sn-doped Cu;SbSe,
powder (red curve). The inset displays the unit cell of tetragonal Sn-doped Cu;SbSe,. (c) ELF of Sn-doped Cu;SbSe, (110) surface. (d) Temperature-dependent zT values

of Cu;SbSe,, doped Cu;SbSe,, surface-treated Cu,SbSe,, and blended Cu;SbSe, NCPs.

surfactant-free SnSe NCs in anhydrous hexane. The solvent was
then allowed to evaporate under a nitrogen atmosphere to ensure
the stability and purity of the final product. The as-synthesized
Cu;SbSe, NCs were first thoroughly purified through multiple
precipitation and re-dispersion steps, and then treated with
NH,SCN to efficiently remove any remaining OLA ligands from
the matrix surface, obtaining ligand-free Cu;SbSe, NCs [35].
Surfactant-free SnSe NCs were synthesized using a slightly modified
version of a previously reported solution-processed method (Fig. S2
in the ESM) [49, 50].

The surface-treated Cu;SbSe, NCs were obtained by magnetically
stirring the as-produced Cu;SbSe, NCs in an N-methyl formamide
(MFA) solution containing SnSe molecular complexes for 48 h. The
SnSe molecular complex solution was prepared by dissolving
stoichiometric amounts of tin(II) oxide (SnO) and Se powder in a
“thiol-amine” solution at room temperature under an inert
atmosphere. At the temperature of 350-375 °C , this complex
thermally crystallizes to yield a mixture of SnSe and SnSe, products
[51]. Following this preparation, the surface-treated Cu;SbSe, NCs
were isolated from the solution, sequentially washed with acetone,
and then dried under vacuum for 6 h at 60 °C to ensure the
complete removal of impurities and solvents. Further details of
these procedures can be found in the Experimental section in the
ESM. It should be noted that, aside from the bare Cu;SbSe, samples
serving as the matrix, the amount of Sn was uniformly maintained
ata 10% molar ratio in the other three samples.

Figure 2(a) displays a representative transmission electron
microscopy (TEM) image of the synthesized spherical Cu;SbSe,
NCs, which exhibit uniformity in size with an average diameter of
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16 + 3 nm (Fig. S3 in the ESM). The doped Cu;SbSe, NCs, shown
in Fig. 2(b), display quasi-spherical morphologies with an average
size of 18 + 3 nm, and a broader distribution in both size and shape,
consistent with findings from our previous report [35, 41]. Figure
2(c) displays a TEM image of Cu,;SbSe; NCs functionalized with
SnSe molecular complexes, exhibiting slight variations in
morphology due to the surface treatment processes (Fig. S4 in the
ESM). It is also evident that the presence of OLA ligands on the
surface of the Cu;SbSe, NCs contributes to the well-distributed
appearance in the TEM images of both the Cu,SbSe, and doped
Cu,;SbSe, samples (Figs. 2(a) and 2(b)) [35]. In contrast, the blended
Cu;SbSe, NCPs and the surface-treated Cu;SbSe, samples exhibit
aggregation, resulting from the removal of the original surface
organic ligands or their replacement with shorter organic chain
molecular complexes (Figs. 2(c) and 2(d), and Fig. S5 in the ESM)
[52]. Figure 2(e) presents the electron energy loss spectroscopy
(EELS) analysis of a single surface-treated Cu;SbSe, NC, revealing
the presence and uniform distribution of Cu, Sb, and Se atoms
throughout the particle, as well as highlighting the presence of Sn
atoms on the surface of the NC. The X-ray diffraction (XRD)
patterns reveal that among the four samples analyzed with the
measurement angle ranging from 20° to 80° only the blended
CusSbSe, NCPs exhibit minor peaks, consistent with the
orthorhombic phase of SnSe (PDF 00-048-1224), while the other
three samples show no evidence of secondary phases within the
detection limits of the XRD measurement (Fig. 2(f)).

All samples underwent a sequential process of ligand
displacement and annealing to mitigate the influence of organic
ligands on the electrical transport properties of the densified bulk
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Figure2 Representative TEM micrographs of (a) the Cu;SbSe, NCs, (b) doped Cu;SbSe, NCs, (c) surface-treated Cu;SbSe, NCs, and (d) blended Cu;SbSe, NCPs. The
insets show schematic diagrams of the corresponding nanoparticles. (e) Annular dark field STEM (ADF-STEM) image of a single surface-treated Cu;SbSe, NC and areal
density of each of the elements extracted from the EELS spectrum image. (f) XRD patterns of the Cu;SbSe, NCs, doped Cu,SbSe, NCs, surface-treated Cu;SbSe, NCs, and
blended Cu,SbSe, NCPs, including the PDF 85-0003 reference of Cu,SbSe, (black vertical lines).

pellets and to ensure their thermal stability, as detailed in the
Experimental section in the ESM. Subsequently, to assess the TE
performance, the annealed nanopowders were hot-pressed by
applying an uniaxial pressure of 60 MPa at 380 °C for 15 min,
forming bulk pellets (010 mm x 1.5 mm in height). This process
yielded pellets with densities exceeding 92% of the theoretical value
(Table S1 in the ESM) and demonstrated robust mechanical
properties. XRD patterns (Fig. S6 in the ESM) reveal that all
samples, except for the surface-treated Cu;SbSe, pellet, exhibit weak
secondary phases of Sb,Se;, while the surface-treated Cu,SbSe, and
blended Cu,;SbSe, NCPs samples additionally displayed minor
peaks of SnO,, which will most probably influence their electrical
and thermal transport properties as discussed below.

The compositions of the consolidated bare Cu;SbSe,, doped
Cu,SbSe,, surface-treated Cu,;SbSe,, and blended Cu;SbSe, NCPs
pellets, as determined by energy-dispersive X-ray (EDX)
spectroscopy analysis, matched their nominal values, within
experimental error (Table S2 in the ESM). Notably, the
corresponding EDX elemental mapping for the pellets shows a
relatively homogeneous distribution of these elements, with no
detectable Sb,Se; precipitates, as shown in Figs. S7-S9 in the ESM.

2.2 Pellets microstructure

Figures 3(a)-3(h) display the scanning electron microscopy (SEM)
images of the annealed powders and fractured pellets. SEM
characterization indicates that upon the annealing and
consolidation, the NCs within all samples experienced additional
growth, resulting in the formation of grains ranging in size from
tens to several hundred nanometers. This is attributed to the
annealing mechanisms and the thermodynamic properties inherent
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to the materials. Notably, compared to Cu;SbSe,, the doped
Cu,SbSe,, surface-treated Cu,SbSe,, and blended Cu;SbSe, NCPs
exhibit distinct microstructures.

In particular, cross-section SEM characterization of the doped
Cus;SbSe, sample displays smaller grain sizes and an abundance of
nanoscale grains (Fig. 3(f)), attributed to the incorporation of Sn
into the Sb sites within the Cu;SbSe, lattice during the synthesis
process (Fig. 3(i)). As noted above, this substitution directly
strengthens the Sn-Se and neighboring Cu-Se bonds, thereby
establishing a more stable chemical framework. This is evidenced
by the calculated electron localization function (ELF) (Fig. 1(c)),
which prevents the agglomeration of particles into larger grains,
thereby enhancing the thermal stability of the samples (Fig. 1(b)).

The blended Cu;SbSe, NCPs pellet exhibits smaller grain sizes
but it operates through a different mechanism compared to the
doped Cu;SbSe, sample. The limited growth of the blended
Cus;SbSe, NCPs is attributed to the Zener pinning effect [53, 54],
where the presence of SnSe as a secondary phase at the grain
boundaries of the NCPs significantly reduces the driving force for
grain boundary migration, thereby inhibiting grain growth (Fig.
3(k)). This phenomenon is similar to that observed in previously
reported systems such as SnSe-CdSe [55, 56], SnSe-PbSe [57], and
SnTe-Bi,S; [58], despite differing sample processing methods.

In the samples obtained through surface treatment of the
Cus;SbSe, NCs with SnSe molecular complexes, only slight changes
in shape and size were observed following the thiol-amine surface
treatment (Fig. S4 in the ESM). After the annealing and
consolidation steps, the particles underwent significant coalescence
and growth into larger crystallographic domains, with sizes ranging
from several hundred nanometers to ca. 1 pm, as shown in Figs.
3(c) and 3(g). This phenomenon is attributed to grain growth by
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Figure3 Representative SEM images of (a)-(d) annealed powders and (e)—(h) the fractured surfaces of pellets obtained from Cu;SbSe,, doped Cu;SbSe,, surface-treated
Cu,SbSe,, and blended Cu;SbSe, NCPs, respectively. (i) A scheme of extrinsic dopants during synthesis. Schematics of diffusion-induced grain boundary migration: (j)

surface-treatment and (k) blending process.

diffusion-induced boundary movement during the pressure-
assisted sintering in the hot press process. In this process, the high
temperatures and pressures aided the migration of Cu,;SbSe, from
the surface to inside the grain, driving the grain boundaries to
migrate along atomic diffusion paths. This migration enabled the
integration of the surface SnSe molecular complexes into the grain
interior, forming a solid solution, as shown in Fig. 3(j). Faster
atomic diffusion within the formed solid solution accelerated the
grain growth in the surface-treated Cu;SbSe, [59, 60]. EDX
mapping in Fig. S8 in the ESM confirms the uniform distribution of
Sn within the Cu;SbSe, matrix after the annealing and
consolidation processes, substantiating the inward atomic diffusion
process. As discussed below, the increased grain sizes and related
reduction of the density of grain boundaries diminished electron
scattering at these boundaries, leading to enhanced carrier mobility
in the surface-treated Cu,SbSe,.

To further evaluate the microstructure of the consolidated
surface-treated Cu,SbSe, material, TEM characterization was
performed (Fig. 4 and Fig. S10 in the ESM). Figure 4(a) displays a
dark-field scanning TEM (STEM) image of surface-treated
CusSbSe, pellet lamella obtained using the focused ion beam,
displaying a heterogeneous grain size distribution ranging up to
several hundred nanometers. Figures 4(b,)-4(b,) present
corresponding EDX elemental maps, which reveal regions enriched
with Sb and deficient in Cu. The diffraction pattern from an
individual grain, highlighted by a yellow square in Fig. 4(a), reveals
that the grains are single crystal domains with a body-centered
tetragonal CusSbSe, phase (space group: I42m), as shown in Fig.
4(c). Additionally, this pattern reveals ordered structures within the
grain, as evidenced by the extra diffraction spots marked with
yellow arrows in Fig. 4(c,), indicating cation ordering.

M EZE]
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Figure 4(d) displays a high-resolution TEM (HRTEM) of a grain’s
internal structure, revealing a highly defective grain with perfect
atomic arrangements only over short lengths of approximately
5 nm. This HRTEM image corresponds with the general TEM
micrograph shown in Fig. 4(c), which illustrates the grain structure
as being significantly defective. The corresponding fast Fourier
transform (FFT), the inset in this image, confirms the selected area
diffraction (SAED) pattern previously presented and further verifies
the presence of ordered structures within the Cu;SbSe, matrix,
while this specific grain, composed of the tetragonal Cu,SbSe,
phase, is visualized along its [111] zone axis. The main diffraction
spots of the Cu;SbSe, phase, highlighted with yellow circles,
coincide with their inverse FFT (Fig. 4(e)). This inverse FFT image
clearly reveals the prevalence of defects within the structure of the
matrix phase. Additionally, the other diffraction spots, not encircled
in yellow and generated by ordered structures within the matrix, are
illustrated through their inverse FFT in green in Fig. 4(f). This
image demonstrates that such ordered structures, ie., cation
ordering, match the periodic structure of the matrix phase in scale.
The FFT further reveals that all fundamental diffraction spots arise
from the coalescence of multiple diffraction spots rather than from
a single sharp spot, consistent with the defected structure of the
matrix phase, potentially due to compositional fluctuations within
the matrix.

The dilatation map of this HRTEM image, including rotation
(£10° rotation, Fig. S10(d) in the ESM) and dilatation (+10% strain
range, Fig. 4(g)) geometric phase analysis (GPA) maps, derived
using a Gaussian type of mask around the g = (440) spot in the
FFT, effectively demonstrates the distribution of normal strain
components &, &, and ¢, within this strain range, as shown in
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Figure4 (a) General dark-field STEM image of the surface-treated Cu,SbSe, pellet lamella, displaying a heterogeneous grain size distribution. (b) Corresponding EDX

elemental maps for (b;) Cu, (b,) Sb, (bs) Se, and (b,) Sn. (c) TEM image taken from the yellow-squared region in (a), and (c,) the SAED pattern obtained from the
individual grain in the framed region in (c). (d) HRTEM image taken from an individual grain, with the inset being FFT pattern of this HRTEM image. (e) Inverse FFT of
the yellow-circled main set of diffraction spots in the inset of (d). (f) Inverse FFT of the additional set of diffraction spots generated by the ordered structures. (g) Dilatation
(+10% strain range) GPA maps obtained from the FFT of the HRTEM image, showing the distribution of the normal strain components (g;) &, (g) €, and (g) &,
within the +10% strain range obtained by GPA. (h) HRTEM image of a grain boundary: (h-I) the enlarged view of the red-squared area with the corresponding FFT along

the [021] zone axis, and (h-II) the enlarged region of the green-squared area with the corresponding FFT, along the [111] zone axis.

Figs. 4(g,)—4(g;). The rotation and dilatation maps reveal numerous
strain fields within the grain, consistent with the generally defective
structure of the matrix phase.

Figure 4(h) presents the HRTEM image of a grain boundary
where defects are clearly visible along the boundary. The FFT of the
region highlighted in red confirms that the grain consists of the
tetragonal Cu;SbSe, phase visualized along its [021] zone axis (Fig.
4(h-1)), while the FFT of the region marked in green shows that this
grain is also composed of the tetragonal Cus;SbSe, phase but
visualized along its [111] zone axis (Fig. 4(h-II)). Consequently,
following the annealing and consolidation processes, the
microstructure of the Cu,SbSe, matrix treated with SnSe molecular
complexes exhibited no secondary SnSe phase. This observation
further confirms the high doping efficiency of Sn within the matrix,
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despite the thermal treatment temperatures being significantly
lower than those employed in the traditional solid-state method to
produce Sn-doped systems.

2.3 Electronic transport properties

Figure 5 shows the electronic transport properties of the four
Cus;SbSe,-based samples as a function of temperature, ranging from
approximately 310 to 640 K, including Cu;SbSe,, doped Cu,SbSe,,
surface-treated Cu;SbSe,, and blended Cu;SbSe, NCPs. The pristine
Cu;SbSe, sample exhibits a low o of approximately 7.8 S-cm™ at
room temperature, increasing to 29.4 S-cm™ at 640 K (Fig. 5(a)).
This increase in ¢ with temperature suggests that thermal excitation
of charge carriers plays an important role in controlling the ¢ in this
material, indicating an intrinsic or moderately doped
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semiconductor behavior consistent with previous studies [34, 35,
41]. Notably, the o values of the doped Cu;SbSe,, surface-treated
Cus;SbSe,, and blended Cu;SbSe; NCPs samples are consistently
higher and all exhibit degenerate semiconductor behavior,
characterized by a decrease in o with increasing temperature. In
particular, the doped Cu;SbSe, sample exhibits an exceptional o of
770 S-cm™ at room temperature, two orders of magnitude higher
than that of bare Cu,SbSe, The surface-treated Cu,SbSe, and
blended Cu;SbSe, NCPs samples exhibit relatively lower o across
the entire temperature range, which is attributed to the presence of
trace amounts of high-resistivity tin oxide, as evidenced by XRD
characterization (Fig. S6 in the ESM). As part of the surface SnSe
readily forms a layer of SnO,, Sn’s capacity to contribute as acceptor
dopant by Sb substitution is diminished [61, 62].

All four pellets exhibit an intrinsic p-type semiconductor
character, consistently displaying positive Seebeck coefficient (S)
values across the entire temperature range (Fig. 5(b)). Very high S
values were obtained in bare Cu;SbSe,, attributed to the low Hall
charge carrier concentration (py) in this material and the intricate
electronic structure inherent to Cu,SbSe,, characterized by multiple
energy bands, as detailed by the density functional theory (DFT)
calculations in Fig. 1(a). The S values of bare Cu,SbSe, exhibit an
initial increase, followed by a slight decrease as the temperature
rises, consistent with previous report [34, 35, 41, 42]. Conversely, all
the samples containing Sn exhibit much lower S (Fig. 5(b)), which
is associated to their higher py;.

Room temperature Hall measurements were conducted to
determine the py and carrier mobility (p). Figure 5(c) shows that
the py for undoped Cu;SbSe, is only 3.2 x 10 cm™. With the
addition of 10% Sn, a two order of magnitude increase in py, to ca.
25 x 10 cm®, is obtained for the doped Cu;SbSe,, thereby

demonstrating Sn as a highly effective dopant in this system. DFT
calculations were used to examine the impact of Sn doping on the
band structure of Cu;SbSe, (Fig. 1(a) and Fig. S11 in the ESM). The
computed band gaps (E,) were ca. 0.29 eV for bare Cu;SbSe, and
0.21 eV for Sn-doped Cu,SbSe,. This reduction in the band gap,
consistent with previous first-principles studies [37, 38],
demonstrates the shift of the Fermi level from the bandgap region
into the valence band, correlating with an increase in py and
aligning with the experimental measurements presented (Fig. 5(c)).
Interestingly, the blended Cu;SbSe, NCPs sample exhibits a higher
pu compared to the surface-treated Cu;SbSe,, which could be
attributed to the incorporation of SnSe NCs within the Cu;SbSe,
matrix, providing a larger number of Sn** ions capable of supplying
more holes than those in the surface-treated Cu,;SbSe,. Moreover,
the susceptibility of the SnSe molecular complexes used for surface
treatment to oxidize into the higher valence state of Sn*
significantly reduces the ability of Sn* as an acceptor dopant in TE
materials, further confirmed by X-ray photoelectron spectroscopy
(XPS) characterization (Fig. S12 in the ESM). This phenomenon is
also consistent with previous studies [63].

Compared with bare Cu;SbSe,, the doped Cu;SbSe, exhibits
relatively lower py, which can be attributed to two main factors. (i)
The doped Cu;SbSe, possesses significantly smaller grain sizes,
resulting in increased charge carrier scattering at grain boundaries.
(ii) The decrease in gy is associated with an increase in the density
of state (DOS) by DFT calculations (Fig. S11 in the ESM) and my*
by the single parabolic band (SPB) model. Among all these samples,
the surface-treated Cu,SbSe, exhibits the highest yy, attributable to
the largest grain size, which facilitates charge carrier transport
within the bulk. Consequently, even though the blended Cu,SbSe,
has a higher py, it exhibits identical o to that of the surface-treated
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Cu;SbSe,. The Pisarenko plot at 300 K, with S as the vertical
coordinate and py; as the horizontal coordinate, confirms a slight
increase in the mg* value for Cu;SbSe, upon Sn introduction (Fig.
5(d)). This finding is consistent with electronic structure
calculations (Fig. 1(a) and Fig. S11 in the ESM) and previous
studies [34, 44, 45].

Using the S and o values, which provide a py-independent
mobility parameter reflecting the average mobility across all
conductive channels, we calculated the weighted mobilities (uy,) for
all samples [64], revealing that the surface-treated Cu;SbSe,, which
exhibits the highest y;, demonstrates superior electrical transport
properties (Fig. 5(e)). This calculation facilitates the optimization of
PF by balancing ¢ and S, which is essential for enhancing TE
efficiency and understanding the influence of microstructural
features on electrical transport properties. Subsequently, o and S
values were utilized to calculate the PFs, as shown in Fig. 5(f), where
the PFs of the doped Cu;SbSe,, surface-treated Cu,;SbSe,, and
blended Cu;SbSe, NCPs samples are significantly higher than that
of bare Cu;SbSe,. Notably, the surface-treated Cu;SbSe, achieves the
maximum PF values across the entire temperature range, reaching
1.1 mW-m™K? at 640 K, which is significantly larger than that of
pristine Cu;SbSe, and exceeds previously reported values for
Cu;SbSe,-based compounds [41, 42, 45, 65-67].

24 Thermal transport properties

The ,, values of all the pellets consistently decrease with
temperature throughout the whole temperature range, yielding
relatively low values, as shown in Fig. 6(a). In pristine Cu;SbSe,, the
K Value drops to 0.66 W-m™K™ at 640 K, which is lower than

those reported for bulk Cu;SbSe, materials produced through solid-
state methods [34, 43-45, 67, 69-72]. The lattice thermal
conductivity (x;) values were calculated using the equation x; = x —
K., with x, = L 0T, following the Wiedemann-Franz law [73], where
L, is the Lorenz number (Fig. S13(a) in the ESM) calculated based
on the measured S values [74]. In contrast, the other three samples
exhibit higher ,, values compared to bare Cu;SbSe,, primarily due
to the increased «, contributions (Fig. S13(c) in the ESM). All
samples, including bare Cu;SbSe,, exhibit extremely low «;, with the
doped Cu;SbSe,, surface-treated Cu;SbSe,, and blended Cu;SbSe,
NCPs samples displaying slightly lower #; values than the bare
CusSbSe, (Fig. 6(b)). The surface-treated CusSbSe, sample, even
with the larger grain size, maintains a relatively low x;, which is
attributed to its highly defective structure, regions with higher Sb
content, and numerous lattice strains within the grains (Fig. 4).
These #; values are significantly lower than those typically
reported for most Cu;SbSe,-based materials prepared via solid-state
and/or solution-processing methods, as shown in Fig. 6(c) [34, 39,
40-44, 47, 48, 65, 70, 71], and approach the theoretical limit for the
amorphous state, estimated at ca. 0.47 W-m™K™ according to the
Cahill’s model [34, 75, 76]. To further understand the low «;, we
analyzed the phonon dispersion relations of Cu,SbSe, (Fig. 6(d))
and the partial phonon density of states (PDOS, Fig. 6(e)) to
explore the underlying causes of its low x;. Low and high frequency
modes are predominantly influenced by Cu, Sb, and Se atoms,
respectively. In Fig. 6(f), we illustrated the relationship between
phonon group velocity (v) and frequency (w), where the group
velocity aligns with those of typical TE materials possessing
inherently low x;. These analyses reveal that intrinsic CusSbSe,
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Figure6 Thermal transport properties of Cu;SbSe,-based samples: bare, doped, surface-treated, and blended NCPs, respectively. Temperature dependence of (a) #, and
(b) % (c) Comparison of «; for reported state-of-the-art Cu;SbSe,-based materials, including 2% SnTe [70], 1% GeTe [48], 1.5% Bi,Se; [71], 2% Sn + 6% La [44], 4% Ge
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exhibits robust coupling within the acoustic branches and between
the acoustic and low-frequency optical branches, significantly
contributing to its inherently low ;. Additionally, previous studies
have shown that introducing Sn into the Cu;SbSe, matrix
minimally impacts low-frequency phonons, thereby ensuring the
sample maintains low x; [45].

Overall, the simultaneous improvement in electrical and thermal
transport properties enables achieving a 2T, value of 0.80 at 640 K
for the surface-treated Cu;SbSe, sample (Fig. 1(d)), which is ca.
1.9 times that of bare Cu;SbSe, in the present work and is
comparable to some of notable values obtained from doped
Cu;SbSe, and Cu;SbSe,-based composites prepared via solid-state
or solution-processing methods (Fig. S13(d) in the ESM).
Importantly, the results obtained from both the doped and surface-
treated Cu,SbSe, samples exhibit remarkable stability, consistently
maintaining performance during cycling tests (Fig. S14 in the
ESM). Compared to the conventional doping and the simple
blending methods for constructing NCPs, the surface-treatment
strategy using molecular complexes offers significant advantages for
synergistically optimizing carrier and phonon transport. By
functionalizing the high-energy surface atoms of the matrix, this
approach enables the construction of desired materials through a
simplified post-processing procedure, particularly crucial for
material systems requiring precise grain refinement or those aiming
to promote grain growth. Additionally, the surface treatment
method holds potential for large-scale production using techniques
such as spray coating or dip coating; however, challenges such as
achieving uniform treatment and ensuring the stability of the
molecular complexes during production remain for industrial
implementation.

3 Conclusions

In this work, a scalable and high yield approach to synthesizing
Cu,SbSe, NCs was studied in detail. These NCs were further used
for the production of Cu;SbSe, nanomaterials that were doped with
Sn using three distinct strategies: conventional atomic doping
during the NC synthesis step, surface treatment of the NC building
blocks with SnSe molecular complexes, and blending of Cu,SbSe,
with SnSe NCs to form NCPs. The thorough analysis of the
structural characteristics and charge and thermal transport
properties of the materials obtained after annealing and hot
pressing the NC building blocks under identical conditions
provided a comprehensive understanding of the impact of Sn on
the electrical and thermal transport mechanisms of CusSbSe,. Both
computational and experimental results revealed that surface
treatment using SnSe molecular complexes significantly enhances
the TE performance of Cu;SbSe, compared to conventional doping
and blending methods. The surface-treated Cu,SbSe, sample
achieved the highest PF and a maximum zT value of 0.80 at 640 K,
demonstrating promising performance among high-performing
doped Cu;SbSe,-based materials and composites prepared via solid-
state and solution-processing methods. This study underscores the
significant advantages of using surface molecular complexes in
optimizing charge and thermal transport properties in
nanomaterials produced from the bottom-up assembly of NC
building blocks, presenting a promising strategy for development of
next generations of functional nanomaterials, including for TE and
other applications.
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Electronic Supplementary Material: Supplementary material
(details of the chemicals used, NC synthesis, pellet fabrication,
additional materials characterization (XRD patterns, SEM, TEM,
XPS patterns, and extra electrical and thermal characterization),
material stability, pellet density and composition, and comparison
with literature values) is available in the online version of this article
at https://doi.org/10.26599/NR.2025.94907072.
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