
GCol: A High-Performance Python Library for Graph
Colouring
Rhyd Lewis 1¶ and Geraint Palmer 1

1 School of Mathematics, Cardiff University, Wales, United Kingdom ¶ Corresponding author
DOI: 10.21105/joss.07871

Software
• Review
• Repository
• Archive

Editor: Vissarion Fisikopoulos
Reviewers:

• @paulbrodersen
• @IvanIsCoding

Submitted: 19 February 2025
Published: 02 April 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Graph colouring is the computational problem of assigning colours to entities of a graph so
that adjacent entities receive different colours. The aim is to use as few colours as possible. In
general terms, a graph is a mathematical object comprising a set of nodes and a set of edges
that join pairs of nodes. Graphs are also known as networks, nodes as vertices, and edges
as links. Examples of graph colouring are shown in Figure 1, which help to demonstrate the
following principles.

Figure 1: A node colouring, edge colouring, and face colouring (respectively), of a fifteen-node planar
graph. Each of these examples uses the minimum number of colours and was generated using GCol’s
colouring and visualisation routines.

• A node colouring is an assignment of colours to the nodes of a graph so that adjacent
nodes have different colours. The smallest number of colours needed for the nodes of a
graph 𝐺 is known as its chromatic number, denoted by 𝜒(𝐺). Identification of 𝜒(𝐺) is
an NP-hard problem.

• An edge colouring is an assignment of colours to the edges of a graph so that all adjacent

Lewis, & Palmer. (2025). GCol: A High-Performance Python Library for Graph Colouring. Journal of Open Source Software, 10(108), 7871.
https://doi.org/10.21105/joss.07871.

1

https://orcid.org/0000-0003-1046-811X
https://orcid.org/0000-0001-7865-6964
https://doi.org/10.21105/joss.07871
https://github.com/openjournals/joss-reviews/issues/7871
https://github.com/Rhyd-Lewis/GCol
https://doi.org/10.5281/zenodo.15111694
https://vissarion.github.io
https://orcid.org/0000-0002-0780-666X
https://github.com/paulbrodersen
https://github.com/IvanIsCoding
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07871


edges have different colours. The smallest number of colours needed for the edges of
a graph 𝐺 is known at the chromatic index, denoted by 𝜒′(𝐺). According to Vizing’s
theorem, 𝜒′(𝐺) is either Δ(𝐺) or Δ(𝐺)+ 1, where Δ(𝐺) is the maximum degree in 𝐺.
Identifying 𝜒′(𝐺) is also NP-hard (Toft & Wilson, 2011).

• A face colouring is an assignment of colours to the faces of a planar embedding so that
all adjacent faces have different colours. Note that planar embeddings only exist for
planar graphs. The smallest number of colours needed to colour the faces of a planar
embedding is known as its face chromatic number. Due to the Four Colour Theorem,
this number never exceeds four and, unlike 𝜒(𝐺) and 𝜒′(𝐺), can be determined in
polynomial time (Robertson et al., 1997).

Graph colouring has applications in many practical areas including timetabling, sports league
scheduling, designing seating plans, code optimisation, and solving Sudoku puzzles (Lewis,
2021a). It is also a topic of theoretical interest that often appears in university-level courses
on graph theory, algorithms, and combinatorics (Cranston, 2024).

GCol is a new, open-source Python library for graph colouring that is built on top of the
well-known NetworkX library (Hagberg et al., 2008). It provides easy-to-use, high-performance
algorithms for the above three problems, as well as routines for equitable colouring, weighted
colouring, pre-colouring, maximum independent set identification, and solution visualisation.
The following code snippet shows how to use the library to create a dodecahedral graph
𝐺, colour its nodes using 𝜒(𝐺) = 3 colours, and then output the solution in textual and
diagrammatic form (see Figure 2).

>>> import networkx as nx

>>> import matplotlib.pyplot as plt

>>> import gcol

>>> G = nx.dodecahedral_graph()

>>> c = gcol.node_coloring(G)

>>> print("Node coloring of G =", c)

Node coloring of G = {0: 0, 1: 1, 19: 1, 10: 1, 2: 0, 3: 2, 8: 0, 9: 2, 18: 0,

11: 2, 6: 1, 7: 2, 4: 0, 5: 2, 13: 0, 12: 1, 14: 1, 15: 0, 16: 2, 17: 1}

>>> nx.draw_networkx(G, node_color=gcol.get_node_colors(G, c))

>>> plt.show() # See Figure 2

Figure 2: Output from the code snippet.

Lewis, & Palmer. (2025). GCol: A High-Performance Python Library for Graph Colouring. Journal of Open Source Software, 10(108), 7871.
https://doi.org/10.21105/joss.07871.

2

https://doi.org/10.21105/joss.07871


Statement of need
Open-source resources for graph colouring have existed for some time, primarily for node
colouring. An early example is the PL/I code for node colouring included in the paper of
Leighton (1979). Stand-alone C-based resources were also made available online in the mid-
1990s due to Culberson (1994) and Trick (1994). A Java-based package implementing the
methods of Culberson is now also available (Shah, 2020).

Graph colouring functionality is also included in some popular open-source C++ libraries.
The Boost Graph Library, Version 1.8.7 (2025) uses a simple constructive heuristic for node
colouring, while the Lemon library (Dezso et al., 2011) includes a method for colouring
the nodes of planar graphs using at most five colours. The Goblin Graph Library, Version
2.8 (2025) features a similar method to Lemon and, in addition, includes a mixed integer
linear programming approach for exactly solving the node and edge colouring problems. This
algorithm has an exponential time complexity and, consequently, is unsuitable for larger problem
instances.

A further open-source option that, in addition, includes visualisation tools is provided by
SageMath (The Sage Developers, 2025). This has methods for both node and edge colouring,
and can also enumerate all node colourings of a graph. Like Goblin, however, its algorithms
are based on integer programming and operate in exponential time. NetworkX itself also
includes some simple greedy heuristics for node colouring (Hagberg et al., 2008) as does the
alternative Python library Graph-Tool (Peixoto, 2014). In addition, NetworkX features an
exact polynomial-time algorithm for balancing the number of nodes per colour (equitable node
colouring); however, this can only be applied when the number of available colours exceeds
Δ(𝐺)—for fewer colours, where the problem is NP-hard, no functionality is available.

Further specialised methods for node colouring are also provided by the ColPack software
(Gebremedhin et al., 2013) and in the algorithm suite of Lewis (2021b), both in C++. The
algorithms of ColPack are described as “greedy heuristics in the sense that the algorithms
progressively extend a partial colouring by processing one vertex at a time, in some order, in
each step assigning a vertex the smallest allowable colour”. On the other hand, the suite of
Lewis (2021b) features several contrasting algorithms, including constructive heuristics, an
exact algorithm based on backtracking, and bespoke metaheuristics. Finally, graph colouring
functionality is also provided by the igraph library (Csardi & Nepusz, 2005). The open-source
C- and R-based versions of this library use similar greedy heuristics to ColPack, whereas the
(proprietary) Mathematica version also includes tools for edge and face colouring.

The above survey suggests that existing open-source options for graph colouring are limited.
Current resources tend to either use simple constructive heuristics that lead to low-quality
solutions, or exponential-time exact algorithms that cannot cope with larger graphs. There are
also few open-source options for edge colouring, equitable colouring, and solution visualisation,
and, to our knowledge, no options for face colouring, weighted colouring, or pre-colouring.

The GCol library features routines for all of the above. Optimisation is performed by a choice
of node-colouring algorithms that include an exact, heuristically-guided, exponential-time
backtracking algorithm, and several high-performance polynomial-time heuristics. The latter
methods combine fast constructive methods with contemporary local search heuristics that
extend the C++ implementations of Lewis (2021b), allowing high-quality solutions to be
generated in reasonable run times, even for very large graphs. Edge colourings and face
colourings are also determined by these algorithms by colouring, respectively, the nodes of the
corresponding line graphs and dual graphs.

The various optimisation algorithms available in the GCol library are described in detail in its
official documentation (GCol, 2025) and in the book of Lewis (2021a). These resources include
detailed information on the asymptotic complexity of all methods used. Results concerning
the runtimes and accuracy of GCol’s algorithms, equitable colouring functionality, and other
associated optimisation problems are also reported in the documentation.

Lewis, & Palmer. (2025). GCol: A High-Performance Python Library for Graph Colouring. Journal of Open Source Software, 10(108), 7871.
https://doi.org/10.21105/joss.07871.

3

https://doi.org/10.21105/joss.07871


References
Cranston, D. (2024). Graph coloring methods. Cranston, Richmond, Virginia. ISBN: 979-8-

218-46240-0

Csardi, G., & Nepusz, T. (2005). The IGraph software package for complex network research.
InterJournal, Complex Systems(1695), 1–9. https://igraph.org/

Culberson, J. (1994). Culberson’s node coloring implementations. https://www3.cs.stonybrook.
edu/~algorith/implement/culberson/implement.shtml.

Dezso, B., Juttner, A., & Kovacs, P. (2011). LEMON – an open source C++ graph
template library. Electronic Notes in Theoretical Computer Science, 264(5), 23–45. https:
//doi.org/10.1016/j.entcs.2011.06.003

GCol: A library for graph coloring. (2025). https://gcol.readthedocs.io/en/latest/.

Gebremedhin, A., Nguyen, D., Patwary, M., & Pothen, A. (2013). ColPack: Graph coloring
software for derivative computation and beyond. ACM Transactions on Mathematical
Software, 40(1), 1–31. https://doi.org/10.1145/2513109.2513110

Hagberg, A., Schult, D., & Swart, P. (2008). Exploring network structure, dynamics, and
function using NetworkX. In G. Varoquaux, T. Vaught, & J. Millman (Eds.), Proceedings
of the 7th Python in science conference (SciPy2008) (pp. 11–15). https://doi.org/10.
25080/TCWV9851

Leighton, F. (1979). A graph coloring algorithm for large scheduling problems. Journal of
Research of the National Bureau of Standards, 84(6), 489–506. https://doi.org/10.6028/
jres.084.024

Lewis, R. (2021a). A guide to graph colouring: Algorithms and applications. Springer Cham.
https://doi.org/10.1007/978-3-030-81054-2

Lewis, R. (2021b). A guide to graph colouring: User guide. https://rhydlewis.eu/gcol/.

Peixoto, T. (2014). The graph-tool Python library. Figshare. https://doi.org/10.6084/m9.
figshare.1164194

Robertson, N., Sanders, D., Seymour, P., & Thomas, R. (1997). The four color theorem.
Journal of Combinatorial Theory, 70, 2–44.

Shah, S. (2020). JCOL: A Java package for solving the graph coloring problem. Journal of
Open Source Software, 5(48), 1843. https://doi.org/10.21105/joss.01843

The Boost graph library, version 1.8.7. (2025). https://www.boost.org/doc/libs/1_46_1/
libs/graph/doc/index.html.

The Goblin graph library, version 2.8. (2025). https://goblin2.sourceforge.net/.

The Sage Developers. (2025). SageMath, the Sage Mathematics Software System (Version
10.5).

Toft, B., & Wilson, R. (2011). A brief history of edge-colorings – with personal reminiscences.
Discrete Mathematics Letters, 6, 38–46. https://doi.org/10.47443/dml.2021.s105

Trick, M. (1994). COLOR.C: Easy code for graph coloring. https://mat.tepper.cmu.edu/
COLOR/solvers/trick.c.

Lewis, & Palmer. (2025). GCol: A High-Performance Python Library for Graph Colouring. Journal of Open Source Software, 10(108), 7871.
https://doi.org/10.21105/joss.07871.

4

https://graphcoloringmethods.com/
https://igraph.org/
https://www3.cs.stonybrook.edu/~algorith/implement/culberson/implement.shtml
https://www3.cs.stonybrook.edu/~algorith/implement/culberson/implement.shtml
https://doi.org/10.1016/j.entcs.2011.06.003
https://doi.org/10.1016/j.entcs.2011.06.003
https://gcol.readthedocs.io/en/latest/
https://doi.org/10.1145/2513109.2513110
https://doi.org/10.25080/TCWV9851
https://doi.org/10.25080/TCWV9851
https://doi.org/10.6028/jres.084.024
https://doi.org/10.6028/jres.084.024
https://doi.org/10.1007/978-3-030-81054-2
https://rhydlewis.eu/gcol/
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.21105/joss.01843
https://www.boost.org/doc/libs/1_46_1/libs/graph/doc/index.html
https://www.boost.org/doc/libs/1_46_1/libs/graph/doc/index.html
https://goblin2.sourceforge.net/
https://doi.org/10.47443/dml.2021.s105
https://mat.tepper.cmu.edu/COLOR/solvers/trick.c
https://mat.tepper.cmu.edu/COLOR/solvers/trick.c
https://doi.org/10.21105/joss.07871

	Summary
	Statement of need
	References

